Sample records for labeled annexin-v imaging

  1. Technetium-99m-labeled annexin V imaging for detecting prosthetic joint infection in a rabbit model.

    PubMed

    Tang, Cheng; Wang, Feng; Hou, Yanjie; Lu, Shanshan; Tian, Wei; Xu, Yan; Jin, Chengzhe; Wang, Liming

    2015-05-01

    Accurate and timely diagnosis of prosthetic joint infection is essential to initiate early treatment and achieve a favorable outcome. In this study, we used a rabbit model to assess the feasibility of technetium-99m-labeled annexin V for detecting prosthetic joint infection. Right knee arthroplasty was performed on 24 New Zealand rabbits. After surgery, methicillin-susceptible Staphylococcus aureus was intra-articularly injected to create a model of prosthetic joint infection (the infected group, n = 12). Rabbits in the control group were injected with sterile saline (n = 12). Seven and 21 days after surgery, technetium-99m-labeled annexin V imaging was performed in 6 rabbits of each group. Images were acquired 1 and 4 hours after injection of technetium-99m-labeled annexin V (150 MBq). The operated-to-normal-knee activity ratios were calculated for quantitative analysis. Seven days after surgery, increased technetium-99m-labeled annexin V uptake was observed in all cases. However, at 21 days a notable decrease was found in the control group, but not in the infected group. The operated-to-normal-knee activity ratios of the infected group were 1.84 ± 0.29 in the early phase and 2.19 ± 0.34 in the delay phase, both of which were significantly higher than those of the control group (P = 0.03 and P = 0.02). The receiver operator characteristic curve analysis showed that the operated-to-normal-knee activity ratios of the delay phase at 21 days was the best indicator, with an accuracy of 80%. In conclusion, technetium-99m-labeled annexin V imaging could effectively distinguish an infected prosthetic joint from an uninfected prosthetic joint in a rabbit model.

  2. A preliminary study of imaging paclitaxel-induced tumor apoptosis with (99)Tc(m)-His10-Annexin V.

    PubMed

    Zheng, Yu-min; Wang, Feng; Fang, Wei; Hua, Zi-chun; Wang, Zi-zheng; Meng, Qing-le; Yan, Jue

    2013-01-01

    In tumors the process of apoptosis occurs over an interval of time after chemotherapy. It is important to determine the best time for detecting apoptosis by in vivo imaging. In this study, we evaluated the dynamics and feasibility of imaging non-small cell lung cancer (NSCLC) apoptosis induced by paclitaxel treatment using a (99)Tc(m)-labeled Annexin V recombinant with ten consecutive histidines (His10-Annexin V) in a mouse model. (99)Tc(m)-His10-Annexin V was prepared by one step direct labeling; radio-chemical purity (RCP) and radio-stability was tested. The binding of (99)Tc(m)-His10-Annexin V to apoptotic cells was validated in vitro using camptothecin-induced Jurkat cells. In vivo bio-distribution was determined in mice by dissection. The human H460 NSCLC tumor cell line (H460) tumor-bearing mice were treated with intravenous paclitaxel 24, 48 and 72 hours later. (99)Tc(m)-His10-Annexin V was injected intravenously, and planar images were acquired at 2, 4 and 6 hours post-injection on a dual-head gamma camera fitted with a pinhole collimator. Tumor-to-normal tissue ratios (T/NT) were calculated by ROI analysis and they reflected specific binding of (99)Tc(m)-His10-Annexin V. Mice were sacrificed after imaging. Caspase-3, as the apoptosis detector, was determined by flow cytometry, and DNA fragmentation was analyzed by the terminal deoxynucleotidytransferase mediated dUTP nick-end labeling (TUNEL) assay. Nonspecific accumulation of protein was estimated using bovine serum albumin (BSA). The imaging data were correlated with TUNEL-positive nuclei and caspase-3 activity. (99)Tc(m)-His10-Annexin V had a RCP > 98% and high stability 2 hours after radio-labeling, and it could bind to apoptotic cells with high affinity. Bio-distribution of (99)Tc(m)-His10-Annexin V showed predominant uptake in kidney, relatively low uptake in myocardium, liver and gastrointestinal tract, and rapid clearance from blood and kidney was observed. The T/NT was significantly increased

  3. PET imaging of apoptosis in tumor-bearing mice and rabbits after paclitaxel treatment with 18F-Labeled recombinant human His10-annexin V

    PubMed Central

    Qin, Haidong; Zhang, Ming-Rong; Xie, Lin; Hou, Yanjie; Hua, Zichun; Hu, Minjin; Wang, Zizheng; Wang, Feng

    2015-01-01

    Monitoring response to chemo- or radiotherapy is of great importance in clinical practice. Apoptosis imaging serves as a very useful tool for the early evaluation of tumor response. The goal of this study was PET imaging of apoptosis with 18F-labeled recombinant human annexin V linked with 10 histidine tag (18F-rh-His10-annexin V) in nude mice bearing an A549 tumor and rabbits bearing a VX2 lung cancer after paclitaxel therapy. 18F-rh-His10-annexin V was prepared by conjugation of rh-His10-annexin V with N-succinimidyl 4-[18F]fluorobenzoate. Biodistribution was determined in mice by the dissection method and small-animal PET. Single-dose paclitaxel (175 mg/m2) was used to induce apoptosis in A549 and VX2 tumor models. 18F-rh-His10-annexin V was injected into A549 mice and VX rabbits to acquire dynamic and static PET images 72 h after paclitaxel treatment. The uptake of 18F-rh-His10-annexin V in apoptotic cells 4 h after induction was 6.45±0.52 fold higher than that in non-induced cells. High focal uptake of 18F-rh-His10-annexin V was visualized in A549 (SUVmax: 0.35±0.13) and VX2 (0.41±0.23) tumor models after paclitaxel treatment, whereas lower uptake was found in the corresponding tumors before treatment (A549 SUVmax: 0.04±0.02; VX2: 0.009±0.002). The apoptotic index was 75.61±11.56% in the treated VX2 cancer, much higher than that in the untreated VX2 (8.03±2.81%). This study demonstrated the feasibility of 18F-rh-His10-annexin V for the detection of apoptosis after chemotherapy in A549 and VX2 tumor models. PMID:25625024

  4. Imaging the Molecular Signatures of Apoptosis and Injury with Radiolabeled Annexin V

    PubMed Central

    Blankenberg, Francis G.

    2009-01-01

    Annexin V is a ubiquitous intracellular protein in humans that has a variety of intriguing characteristics, including a nanomolar affinity for the membrane-bound constitutive anionic phospholipid known as phosphatidylserine (PS). PS is selectively expressed on the surface of apoptotic or physiologically stressed cells. As such, radiolabeled forms of annexin V have been used in both animal models and human Phase I and Phase II trials to determine if this tracer can be employed as an early surrogate marker of therapeutic efficacy in NSCLC and non-Hodgkin's lymphoma. Many other pulmonary imaging applications of radiolabeled annexin V are also possible, including the detection and monitoring of active pulmonary inflammation and other pathophysiologic stressors in a variety of diseases. In this article, the salient molecular features of apoptosis (and other forms of cell death) that permits imaging with radiolabeled annexin V will be discussed. The latest results from Phase II imaging trials with NSCLC and non-Hodgkin's lymphoma will be also be detailed. Finally, the potential future application of this tracer for the imaging of other pulmonary pathologies will be outlined. PMID:19687221

  5. Renilla luciferase-labeled Annexin V: a new probe for detection of apoptotic cells.

    PubMed

    Nazari, Mahboobeh; Emamzadeh, Rahman; Hosseinkhani, Saman; Cevenini, Luca; Michelini, Elisa; Roda, Aldo

    2012-11-07

    The Ca(2+)-dependent binding of Annexin V to phosphatidylserine on cell surfaces is a reliable marker for apoptosis that is widely used in flow cytometry based apoptosis assays. In this paper, we report a new class of Annexin V-based probes for apoptosis. Luciferase from Renilla reniformis (RLuc) was linked to Annexin V and expressed successfully in a soluble form in Escherichia coli BL21 (DE3). The new probe, Rluc/Annexin V, was purified and functionally assayed for detection of apoptosis in actinomycin D-induced apoptotic Jurkat cells. Moreover, the spontaneous apoptosis in neutrophils was shown using the new probe. The results indicate that Rluc/Annexin V can bind to the apoptotic cells, and the signal of Renilla luciferase can be detected by luminometric measurements. The availability of Rluc/Annexin V may be of potential commercial interest for improving current apoptosis assays.

  6. Quantum dots-based probes conjugated to Annexin V for photostable apoptosis detection and imaging

    NASA Astrophysics Data System (ADS)

    Le Gac, Séverine; Vermes, Istvan; van den Berg, Albert

    2008-02-01

    Quantum dots (Qdots) are nanoparticles exhibiting fluorescent properties that are widely applied for cell staining. We present here the development of quantum dots for specific targeting of apoptotic cells, for both apoptosis detection and staining of apoptotic "living" cells. These Qdots are functionalized with Annexin V, a 35-kDa protein that specifically interacts with the membrane of apoptotic cells: Annexin V recognizes and binds to phosphatidylserine (PS) moieties which are present on the outer membrane of apoptotic cells and not on this of healthy or necrotic cells. By using Annexin V, our Qdots probes are made specific for apoptotic cells. For that purpose, Qdots Streptavidin Conjugates are coupled to biotinylated Annexin V. Staining of apoptotic cells was checked using fluorescence and confocal microscopy techniques on nonfixed cells. It is shown here that Qdots are insensitive to bleaching after prolonged and frequent exposure as opposed to organic dyes and this makes them excellent candidates for time-lapse imaging purposes. We illustrate the application of our Qdots-based probes to continuously follow fast changes occurring on the membrane of apoptotic cells.

  7. ¹¹¹In-DOTA-Annexin V for imaging of apoptosis during HSV1-tk/GCV prodrug activation gene therapy in mice with NG4TL4 sarcoma.

    PubMed

    Lin, Ming-Hsien; Wu, Shih-Yen; Wang, Hsin-Ell; Liu, Ren-Shyan; Chen, Jyh-Cheng

    2016-02-01

    Apoptosis has been suggested as a cytocidal mechanism of the HSV1-tk-expressing cells when exposed to ganciclovir (GCV). This study evaluated the efficacy of (111)In-labeled Annexin V for monitoring tumor responses during prodrug activation gene therapy with HSV1-tk and GCV. Annexin V was conjugated to DOTA using N-hydroxysulfosuccinimide (sulfo-NHS) and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), labeled with (111)In-InCl3 and purified using size exclusion chromatography to give (111)In-DOTA-Annexin V conjugate. The radiochemical yield and the radiochemical purity of (111)In-DOTA-Annexin V were 74±12% and 98±3%, respectively (n=10). (111)In-DOTA-BSA was prepared similarly. An in vitro study to demonstrate the apoptosis of NG4TL4-STK cells after GCV treatment has been performed. Mice bearing NG4TL4-STK and NG4TL4-WT tumors were treated with GCV (10 mg/kg daily) by i.p. injection for 7 consecutive days. Before and during the GCV treatment, biodistribution studies and scintigraphic imaging were performed at 2h post injection of the radiotracers. The uptake of (111)In-DOTA-Annexin V in treated cells (13.41±1.30%) was 4.1 times higher than that in untreated cells (3.21±0.37%). The GCV-induced cell apoptosis in NG4TL4-STK tumor resulted in a significantly increasing accumulation of (111)In-DOTA-Annexin V (1.92±0.32%ID/g at day 0, 4.79±0.86%ID/g at day 2, 4.56±0.58%ID/g at day 4) was observed, but not for that of (111)In-DOTA-BSA. During consecutive GCV treatment, scintigraphic imaging with (111)In-DOTA-Annexin V revealed high uptake in NG4TL4-STK tumor compared with that in NG4TL4-WT tumor. However, no specific (111)In-DOTA-BSA accumulation in NG4TL4-STK and NG4TL4-WT tumors was observed throughout the course of GCV treatment. This study demonstrated that (111)In-DOTA-Annexin V can be used for monitoring tumor cell apoptosis during prodrug activation gene therapy with HSV1-tk and GCV for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights

  8. A low molecular weight zinc2+-dipicolylamine-based probe detects apoptosis during tumour treatment better than an annexin V-based probe.

    PubMed

    Palmowski, Karin; Rix, Anne; Lederle, Wiltrud; Behrendt, Florian F; Mottaghy, Felix M; Gray, Brian D; Pak, Koon Y; Palmowski, Moritz; Kiessling, Fabian

    2014-02-01

    Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc2+-dipicolylamine (Zn2+-DPA) with the established but reasonably larger protein annexin V. Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn2+-DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, μPET with 18 F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P < 0.05) and 4 days (P < 0.01) of treatment. Concordantly, Zn2+-DPA uptake increased significantly after 1 day (P < 0.05) and 4 days (P < 0.01). Surprisingly, annexin V failed to detect significant differences between control and treated animals. Contrary to the increasing uptake of Zn2+-DPA, 18 F-FDG tumour uptake decreased significantly at days 1 (P < 0.05) and 4 (P < 0.01). Increase in apoptosis during anti-angiogenic therapy was detected significantly better with the low molecular weight probe Zn2+-DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn2+-DPA as with measurements of the glucose metabolism using 18 F-FDG. • The detection of apoptosis by non-invasive imaging is important in oncology. • A new low molecular weight probe Zn2+-DPA shows promise in depicting anti-angiogenic effects. • The small Zn2+-DPA ligand appears well suited for monitoring therapy. • Treatment effects are detectable just as early with Zn2+-DPA as with 18F-FDG.

  9. Annexin-V/quantum dot probes for multimodal apoptosis monitoring in living cells: improving bioanalysis using electrochemistry

    NASA Astrophysics Data System (ADS)

    Montón, Helena; Parolo, Claudio; Aranda-Ramos, Antonio; Merkoçi, Arben; Nogués, Carme

    2015-02-01

    There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry.There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry

  10. Anti-cancer activity of Annexin V in murine melanoma model by suppressing tumor angiogenesis.

    PubMed

    Zhang, Xuerui; Huo, Lina; Jin, Haibo; Han, Yuheng; Wang, Jie; Zhang, Yanjun; Lai, Xinghuan; Le, Ziwei; Zhang, Jing; Hua, Zichun

    2017-06-27

    Annexin V, a protein with high affinity to phosphatidylserine (PS) in a calcium dependent manner, has been widely used to probe apoptosis. Annexin V in inhibiting engulfment of apoptotic cells by macrophages had been reported to increase the immunogenicity of tumor cells undergoing apoptosis. However, far less is known about its multiple properties, especially in cancer therapies. Here we found that Annexin V had a good anti-tumor activity in murine melanomaxenograft model. Treatment with Annexin V showed significant reduction in tumor size and remarkable tumor necrosis areas. The serum level of VEGF was downregualted by Annexin V both in normal mice and mice bearing tumor, suggesting that its new role on impeding tumor angiogenesis. In Silico analysis using Oncomine database, we also found the negative correlation of AnnexinV and VEGF both in skin and melanoma. The decreased Annexin V expression shows linearity relation with the elevated VEGF expression. These data provided a possibility that Annexin V can be used as a novel angiogenesis inhibitor in tumor therapy.

  11. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-03-24

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.

  12. Cytoprotective nanoparticles by conjugation of a polyhis tagged annexin V to a nanoparticle drug.

    PubMed

    Chen, Howard H; Yuan, Hushan; Cho, Hoonsung; Sosnovik, David E; Josephson, Lee

    2015-02-14

    We synthesized a cytoprotective magnetic nanoparticle by reacting a maleimide functionalized Feraheme (FH) with a disulfide linked dimer of a polyhis tagged annexin V. Following reductive cleavage of disulfide, the resulting annexin-nanoparticle (diameter = 28.0 ± 2.0 nm by laser light scattering, 7.6 annexin's/nanoparticle) was cytoprotective to cells subjected to plasma membrane disrupting chemotherapeutic or mechanical stresses, and significantly more protective than the starting annexin V. Annexin-nanoparticles provide an approach to the design of nanomaterials which antagonize the plasma membrane permeability characteristic of necrosis and which may have applications as cytoprotective agents.

  13. The Role of (99m)Tc-Annexin V Apoptosis Scintigraphy in Visualizing Early Stage Glucocorticoid-Induced Femoral Head Osteonecrosis in the Rabbit.

    PubMed

    Wang, Xiaolong; Liu, Yu; Wang, Xuemei; Liu, Rui; Li, Jianbo; Zhang, Guoliang; Li, Qiang; Wang, Lei; Bai, Zhigang; Zhao, Jianmin

    2016-01-01

    To validate the ability of (99m)Tc-Annexin V to visualize early stage of glucocorticoid-induced femoral head necrosis by comparing with (99m)Tc-MDP bone scanning. Femoral head necrosis was induced in adult New Zealand white rabbits by intramuscular injection of methylprednisolone. (99m)Tc-Annexin scintigraphy and (99m)Tc-MDP scans were performed before and 5, 6, and 8 weeks after methylprednisolone administration. Rabbits were sacrificed at various time points and conducted for TUNEL and H&E staining. All methylprednisolone treated animals developed femoral head necrosis; at 8 weeks postinjection, destruction of bone structure was evident in H&E staining, and apoptosis was confirmed by the TUNEL assay. This was matched by (99m)Tc-Annexin V images, which showed a significant increase in signal over baseline. Serial (99m)Tc-Annexin V scans revealed that increased (99m)Tc-Annexin V uptake could be observed in 5 weeks. In contrast, there was no effect on (99m)Tc-MDP signal until 8 weeks. The TUNEL assay revealed that bone cell apoptosis occurred at 5 weeks. (99m)Tc-Annexin V is superior to (99m)Tc-MDP for the early detection of glucocorticoid-induced femoral head necrosis in the rabbit and may be a better strategy for the early detection of glucocorticoid-induced femoral head necrosis in patients.

  14. Evaluation of a 99mTc-labeled AnnexinA5 variant for non-invasive SPECT imaging of cell death in liver, spleen and prostate.

    PubMed

    Greupink, Rick; Sio, Charles F; Ederveen, Antwan; Orsel, Joke

    2009-12-01

    We investigate radio-labeling and pharmacokinetics of a new AnnexinA5 variant (HYNIC-cys-AnxA5) and then assess its utility for the non-invasive detection of cell death in liver, spleen and prostate. AnnexinA5 binds to phosphatidylserine expressed on the surface of apoptotic and necrotic cells. Contrary to other AnnexinA5 variants, the new cys-AnxA5 allows for site-specific conjugation of a hydrazinonicotinamide-maleimide moiety and subsequent radio-labeling with (99m)Tc at a position not involved in the AnxA5-phosphatidylserine interaction. Distribution of (99m)Tc-HYNIC-cys-AnxA5 was studied in rats, both invasively and via SPECT/CT. Cycloheximide was used to induce cell death in liver and spleen, whereas apoptosis in the prostate was induced by castration. HYNIC-cys-AnxA5 was efficiently and reproducibly labeled with (99m)Tc. Blood clearance of radioactivity after iv-injection was adequately described by a two-compartment model, the renal cortex representing the main site of accumulation. Cycloheximide treatment resulted in increased accumulation of intravenous-injected (99m)Tc-HYNIC-cys-AnxA5 in liver and spleen over controls, which correlated well with TUNEL staining for cell death in corresponding tissue sections. However, the increase in TUNEL-positive prostate epithelial cells observed following castration was not paralleled by greater (99m)Tc-HYNIC-cys-AnxA5 accumulation. (99m)Tc-HYNIC-cys-AnxA5 appears a suitable tracer for assessment of cell death in liver and spleen, but not prostate.

  15. Annexin V and anti-Annexin V antibodies: two interesting aspects in acute myocardial infarction

    PubMed Central

    Shojaie, Mohammad; Sotoodah, Abdoreza; Roozmeh, Shohre; Kholoosi, Ensieh; Dana, Samira

    2009-01-01

    Background Myocardial infarction is the combined result of environmental factors and personal predispositions. Prothrombotic factors might play an important role in this phenomenon. Annexin V (ANV) is a calcium-dependent glycoprotein widely present in various tissues exerting a potent anticoagulant effect in vitro by reducing plaque adhesion and aggregation. Anti-annexin V antibodies (aANVAs) are detected in various diseases like rheumatoid arthritis, systemic lupus erythematosus and anti-phospholipid antibody syndrome. The study of ANV in Acute Myocardial Infarction (AMI) might shed light on hypercoagulability mechanisms in the pathogenesis of acute coronary syndromes. This study was conducted to investigate the association of plasma ANV, aANVAs and anti-cardiolipin antibodies (aCLAs) with AMI. Methods This study recruited 45 patients with the diagnosis of AMI according to WHO criteria in their first 24 hours of admission. 36 matched individuals were studied as the control group with normal coronary artery angiography. Plasma levels of ANV, aANVAs and aCLAs were determined by enzyme-linked immunosorbent assay and the results were compared. Results Plasma ANV levels in the patients with AMI on admission were significantly lower than those in the control group (p = 0.002). Positive test for aANVAs were found to be present in a significant number of our patients (p = 0.004). The studied groups were similar in their rate of patients with positive aCLAs tests. ANV, aANVAs and aCLAs were not correlated with hypertension, diabetes mellitus, hyperlipidemia, sex, age and smoking. Conclusion Our findings suggest that low plasma ANV levels along with positive aANVAs tests in patients with AMI are indicative of hypercoagulable state that is not related to the traditional cardiovascular risk factors. PMID:19622170

  16. Differential distribution of annexins-I, -II, -IV, and -VI in synovium.

    PubMed Central

    Goulding, N J; Dixey, J; Morand, E F; Dodds, R A; Wilkinson, L S; Pitsillides, A A; Edwards, J C

    1995-01-01

    OBJECTIVES--To examine the distribution of four annexins in non-inflamed rheumatoid arthritic and osteoarthritic synovial tissue. METHODS--Frozen sections were stained with monoclonal antibodies (MAb) specific for annexins-I, -II, -IV, and -VI, and for cell lineage related markers including CD68 and CD14 (macrophages), prolyl hydroxylase (fibroblasts), and CD3 (T cells). RESULTS--Each of the annexins was present in synovial tissues in significant amounts in the three groups studied. Annexin-I was predominantly found within the synovial lining layer and double labelling showed it to be present predominantly in cells of the macrophage lineage. In rheumatoid specimens there was increased staining within the lining layer, perivascularly and on macrophages within the tissue stroma. Annexin-II was present in a distribution similar to that of annexin-I, but with more prominent perivascular staining. Annexins-IV and -VI were seen chiefly in association with areas of lymphocyte infiltration in rheumatoid tissue, whereas annexins-I and -II were absent from these areas. Endothelial cells stained weakly positive for annexins-I and -II, and more strongly for -IV and -VI. CONCLUSIONS--This study demonstrates that annexins (particularly annexin-I, a putative mediator of the anti-inflammatory activities of glucocorticoids) are abundant in rheumatoid and non-rheumatoid synovial tissue, annexins-IV and -VI having a distribution distinct from that of -I and -II. Images PMID:7492225

  17. Attenuating a sickle cell crisis with annexin V.

    PubMed

    Kennedy, James Randall

    2015-05-01

    A sickle cell crisis is a painful and dangerous condition that defies effective treatment but fortunately it usually terminates spontaneously and patients spend far more time crisis free than in its painful throes. This suggests that an unstable physiologic balance exists between steady state sickle cell disease (SCD) and the crisis state and if this is so a therapeutic nudge during a crisis may help to terminate it. Annexin V may be able to provide this push. The phosphatidylserine (PS) molecules normally appear on the surface of senescent erythrocytes where they are recognized by macrophages and rapidly removed so that normally only about 1% are present in the circulation but in SCD 30-40% are prematurely senescent and their removal is delayed. The PS+ sickle erythrocytes remaining in the circulation adhere to the endothelium and their exposed PS acts as a platform for the initiation of the coagulation cascade that is responsible for clot propagation. Annexin V's great affinity for PS allows it to bond to it forming a shield that blocks both of these actions suggesting that its therapeutic administration during a sickle crisis may be able to hasten its termination. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Intraoperative Detection of Cell Injury and Cell Death with an 800 nm Near-Infrared Fluorescent Annexin V Derivative

    PubMed Central

    Ohnishi, Shunsuke; Vanderheyden, Jean-Luc; Tanaka, Eiichi; Patel, Bhavesh; De Grand, Alec; Laurence, Rita G.; Yamashita, Kenichiro; Frangioni, John V.

    2008-01-01

    The intraoperative detection of cell injury and cell death is fundamental to human surgeries such as organ transplantation and resection. Because of low autofluorescence background and relatively high tissue penetration, invisible light in the 800 nm region provides sensitive detection of disease pathology without changing the appearance of the surgical field. In order to provide surgeons with real-time intraoperative detection of cell injury and death after ischemia/reperfusion (I/R), we have developed a bioactive derivative of human annexin V (annexin800), which fluoresces at 800 nm. Total fluorescence yield, as a function of bioactivity, was optimized in vitro, and final performance was assessed in vivo. In liver, intestine and heart animal models of I/R, an optimal signal to background ratio was obtained 30 min after intravenous injection of annexin800, and histology confirmed concordance between planar reflectance images and actual deep tissue injury. In summary, annexin800 permits sensitive, real-time detection of cell injury and cell death after I/R in the intraoperative setting, and can be used during a variety of surgeries for rapid assessment of tissue and organ status. PMID:16869796

  19. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex.

    PubMed

    Wang, Hongliang; Tang, Xiaolan; Tang, Ganghua; Huang, Tingting; Liang, Xiang; Hu, Kongzhen; Deng, Huaifu; Yi, Chang; Shi, Xinchong; Wu, Kening

    2013-08-01

    The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An (18)F-labeled DPAZn2 complex (4-(18)F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), (18)F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of (18)F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2'-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[(18)F]-fluorobenzoate ((18)F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of (18)F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of (18)F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of (18)F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that (18)F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of (18)F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.

  20. sCD30, interleukin-1beta-converting enzyme and anti-Annexin V autoantibodies concentrations in heart transplant recipients.

    PubMed

    Zeglen, Sławomir; Zakliczyński, Michał; Nozyński, Jerzy; Rogala, Barbara; Zembala, Marian

    2006-11-01

    sCD30 and ICE/caspase-1 as apoptosis-regulating factors are suspected to be involved in the survival rate of immunocompetent cells during immunosuppression after allotransplantation. Serum CD30 and ICE/caspase-1 concentrations were estimated and associated with unspecific serum apoptosis marker--anti-Annexin V antibodies and myocardial biopsies results. 28 clinically stabile patients--heart transplant recipients at least 3 months after cardiac transplantation performed due to heart failure caused by ischaemic and/or congestive cardiomyopathy or/and primary valvular heart disease (26 men and 2 women, mean age=36.8 years, S.D.=7.6) with normal heart function assessed by use of ultrasound scan--were involved in the trial. The patients were divided and analyzed in two ways: first according to the results of elective endomyocardial biopsies and second to main immunosuppressive agent used. The enzyme immunoassay (CD30, Dako; interleukin-1beta-converting enzyme (ICE)/Caspase-1 ELISA and anti-Annexin V BENDER MedSystem) for soluble CD30, caspase-1 and anti-Annexin V autoantibodies serum levels was used. sCD30 and caspase-1 concentrations were non-significantly up-regulated in all analysed groups--with or without rejection signs or immunosuppressed with cyclosporine or especially tacrolimus. In contrast anti-Annexin V autoantibodies concentration was non-significantly down-regulated also in all studied groups. Moreover in the group with signs of transplant rejection, strong negative correlation between anti-Annexin antibodies and rejection grade was observed (-0.65, p<0.05). Biopsy results were comparable in groups treated with tacrolimus and cyclosporine A. The increasing tendency of sCD30 and caspase-1 as well as the decrease in anti-Annexin V autoantibodies concentrations in heart recipients could be the result of post-transplant apoptosis disturbances. This tendency seems to be inhibited in a greater degree by tacrolimus than by cyclosporine. Anti-Annexin V

  1. Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining.

    PubMed

    Bahmani, Peyman; Schellenberger, Eyk; Klohs, Jan; Steinbrink, Jens; Cordell, Ryan; Zille, Marietta; Müller, Jochen; Harhausen, Denise; Hofstra, Leo; Reutelingsperger, Chris; Farr, Tracy Deanne; Dirnagl, Ulrich; Wunder, Andreas

    2011-05-01

    To monitor stroke-induced brain damage and assess neuroprotective therapies, specific imaging of cell death after cerebral ischemia in a noninvasive manner is highly desirable. Annexin A5 has been suggested as a marker for imaging cell death under various disease conditions including stroke. In this study, C57BL6/N mice received middle cerebral artery occlusion (MCAO) and were injected intravenously with either active or inactive Cy5.5-annexin A5 48 hours after reperfusion. Some mice also received propidium iodide (PI), a cell integrity marker. Only in mice receiving active Cy5.5-annexin A5 were fluorescence intensities significantly higher over the hemisphere ipsilateral to MCAO than on the contralateral side. This was detected noninvasively and ex vivo 4 and 8 hours after injection. The majority of cells positive for fluorescent annexin A5 were also positive for PI and fragmented DNA as detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining. This study demonstrates the high specificity of annexin A5 for visualization of cell death in a mouse model of stroke. To our knowledge, this is the first study to compare the distribution of injected active and inactive annexin A5, PI, and TUNEL staining. It provides important information on the experimental and potential clinical applications of annexin A5-based imaging agents in stroke.

  2. Annexin V Incorporated into Influenza Virus Particles Inhibits Gamma Interferon Signaling and Promotes Viral Replication

    PubMed Central

    Berri, Fatma; Haffar, Ghina; Lê, Vuong Ba; Sadewasser, Anne; Paki, Katharina; Lina, Bruno; Wolff, Thorsten

    2014-01-01

    ABSTRACT During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes. PMID

  3. Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining

    PubMed Central

    Bahmani, Peyman; Schellenberger, Eyk; Klohs, Jan; Steinbrink, Jens; Cordell, Ryan; Zille, Marietta; Müller, Jochen; Harhausen, Denise; Hofstra, Leo; Reutelingsperger, Chris; Farr, Tracy Deanne; Dirnagl, Ulrich; Wunder, Andreas

    2011-01-01

    To monitor stroke-induced brain damage and assess neuroprotective therapies, specific imaging of cell death after cerebral ischemia in a noninvasive manner is highly desirable. Annexin A5 has been suggested as a marker for imaging cell death under various disease conditions including stroke. In this study, C57BL6/N mice received middle cerebral artery occlusion (MCAO) and were injected intravenously with either active or inactive Cy5.5-annexin A5 48 hours after reperfusion. Some mice also received propidium iodide (PI), a cell integrity marker. Only in mice receiving active Cy5.5-annexin A5 were fluorescence intensities significantly higher over the hemisphere ipsilateral to MCAO than on the contralateral side. This was detected noninvasively and ex vivo 4 and 8 hours after injection. The majority of cells positive for fluorescent annexin A5 were also positive for PI and fragmented DNA as detected by terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate-biotin nick end labeling (TUNEL) staining. This study demonstrates the high specificity of annexin A5 for visualization of cell death in a mouse model of stroke. To our knowledge, this is the first study to compare the distribution of injected active and inactive annexin A5, PI, and TUNEL staining. It provides important information on the experimental and potential clinical applications of annexin A5-based imaging agents in stroke. PMID:21245871

  4. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats.

    PubMed

    Kizmazoglu, Ceren; Aydin, Hasan Emre; Sevin, Ismail Ertan; Kalemci, Orhan; Yüceer, Nurullah; Atasoy, Metin Ant

    2015-12-01

    Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.

  5. Annexin II is associated with mRNAs which may constitute a distinct subpopulation.

    PubMed Central

    Vedeler, A; Hollås, H

    2000-01-01

    Protein-mRNA interactions affect mRNA transport, anchorage, stability and translatability in the cytoplasm. During the purification of three subpopulations of polysomes, it was observed that a 36-kDa protein, identified as annexin II, is associated with only one specific population of polysomes, namely cytoskeleton-associated polysomes. This association appears to be calcium-dependent since it was sensitive to EGTA and could be reconstituted in vitro. UV irradiation resulted in partial, EGTA-resistant cross-linking of annexin II to the polysomes. Binding of (32)P-labelled total RNA to proteins isolated from the cytoskeleton-bound polysomes on a NorthWestern blot resulted in a radioactive band having the same mobility as annexin II and, most importantly, purified native annexin II immobilized on nitrocellulose specifically binds mRNA. The mRNA population isolated from cytoskeleton-bound polysomes binds to annexin II with the highest affinity as compared with those isolated from free or membrane-bound polysomes. Interestingly, the annexin II complex, isolated from porcine small intestinal microvilli was a far better substrate for mRNA binding than the complex derived from transformed Krebs II ascites cells. When cytoskeleton-associated polysomes were split into 60 S and 40 S ribosomal subunits, and a peak containing mRNA complexes, annexin II fractionated with the mRNAs. Finally, using affinity purification of mRNA on poly(A)(+)-coupled magnetic beads, annexin II was only detected in association with messenger ribonucleoproteins (mRNPs) present in the cytoskeletal fraction (non-polysomal mRNPs). These results, derived from both in vitro experiments and cell fractionation, suggest that annexin II binds directly to the RNA moiety of mRNP complexes containing a specific population of mRNAs. PMID:10839987

  6. (99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials.

    PubMed

    Belhocine, Tarik Z; Blankenberg, Francis G; Kartachova, Marina S; Stitt, Larry W; Vanderheyden, Jean-Luc; Hoebers, Frank J P; Van de Wiele, Christophe

    2015-12-01

    (99m)Tc-Annexin A5 has been used as a molecular imaging probe for the visualization, characterization and measurement of apoptosis. In an effort to define the quantitative (99m)Tc-annexin A5 uptake criteria that best predict tumor response to treatment, we performed a systematic review and meta-analysis of the results of all clinical imaging trials found in the literature or publicly available databases. Included in this review were 17 clinical trials investigating quantitative (99m)Tc-annexin A5 (qAnx5) imaging using different parameters in cancer patients before and after the first course of chemotherapy and/or radiation therapy. Qualitative assessment of the clinical studies for diagnostic accuracy was performed using the QUADAS-2 criteria. Of these studies, five prospective single-center clinical trials (92 patients in total) were included in the meta-analysis after exclusion of one multicenter clinical trial due to heterogeneity. Pooled positive predictive values (PPV) and pooled negative predictive values (NPV) (with 95% CI) were calculated using Meta-Disc software version 1.4. Absolute quantification and/or relative quantification of (99m)Tc-annexin A5 uptake were performed at baseline and after the start of treatment. Various quantitative parameters have been used for the calculation of (99m)Tc-annexin A5 tumor uptake and delta (Δ) tumor changes post-treatment compared to baseline including: tumor-to-background ratio (TBR), ΔTBR, tumor-to-noise ratio, relative tumor ratio (TR), ΔTR, standardized tumor uptake ratio (STU), ΔSTU, maximum count per pixel within the tumor volume (Cmax), Cmax%, absolute ΔU and percentage (ΔU%), maximum ΔU counts, semiquantitative visual scoring, percent injected dose (%ID) and %ID/cm(3). Clinical trials investigating qAnx5 imaging have included patients with lung cancer, lymphoma, breast cancer, head and neck cancer and other less common tumor types. In two phase I/II single-center clinical trials, an increase of ≥25% in

  7. Annexin V conjugated nanobubbles: A novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy.

    PubMed

    Zhou, Tian; Cai, Wenbin; Yang, Hengli; Zhang, Huizhong; Hao, Minghua; Yuan, Lijun; Liu, Jie; Zhang, Li; Yang, Yilin; Liu, Xi; Deng, Jianling; Zhao, Ping; Yang, Guodong; Duan, Yunyou

    2018-04-28

    In vivo assessment of apoptotic response to cancer therapy is believed to be very important for optimizing management of treatment. However, few noninvasive strategies are currently available to monitor the therapeutic response in vivo. Ultrasonography has been used to detect apoptotic cell death in vivo, but a high-frequency transducer is needed. Fortunately, the capability of ultrasound contrast agents (UCAs) to exit the leaky vasculature of tumors enables ultrasound-targeted imaging of molecular events in response to cancer therapy. In this study, we prepared a novel nano-sized UCA, namely, Annexin V-conjugated nanobubbles (AV-NBs, 635.5 ± 25.4 nm). In vitro studies revealed that AV-NBs were relatively stable and highly echogenic. Moreover, these AV-NBs could easily extravasate into the tumor vasculature and recognize the apoptotic cells with high specificity and affinity in tumors sensitive to chemotherapy. Ultrasound imaging results demonstrated that AV-NBs had higher echogenicity and significantly greater enhancement compared with the untargeted control NBs (P < 0.01) inside the tumors after chemotherapy. Taken together, this study provides a promising method to accurately evaluate therapeutic effects at the molecular level to support cancer management. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides

    PubMed Central

    Yim, Cheng-Bin; Franssen, Gerben M.; Schuit, Robert C.; Luurtsema, Gert; Liu, Shuang; Oyen, Wim J. G.; Boerman, Otto C.

    2010-01-01

    Purpose Due to the restricted expression of αvβ3 in tumours, αvβ3 is considered a suitable receptor for tumour targeting. In this study the αvβ3-binding characteristics of 68Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their 111In-labelled counterparts. Methods A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]2) and a tetrameric (E{E[c(RGDfK)]2}2) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with 68Ga. In vitro αvβ3-binding characteristics were determined in a competitive binding assay. In vivo αvβ3-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. Results The IC50 values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2 were 23.9 ± 1.22, 8.99 ± 1.20 and 1.74 ± 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 ± 1.15, 3.34 ± 1.16 and 1.80 ± 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the 68Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 ± 0.30, 5.24 ± 0.27 and 7.11 ± 0.67%ID/g, respectively) was comparable to that of their 111In-labelled counterparts (2.70 ± 0.29, 5.61 ± 0.85 and 7.32 ± 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. Conclusion The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The 68Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of αvβ3 expression with PET. Electronic supplementary material The online version of this article (doi:10.1007/s00259-010-1615-x) contains supplementary material, which is available to authorized users. PMID:20857099

  9. EV-Associated MMP9 in High-Grade Serous Ovarian Cancer Is Preferentially Localized to Annexin V-Binding EVs.

    PubMed

    Reiner, Agnes T; Tan, Sisareuth; Agreiter, Christiane; Auer, Katharina; Bachmayr-Heyda, Anna; Aust, Stefanie; Pecha, Nina; Mandorfer, Mattias; Pils, Dietmar; Brisson, Alain R; Zeillinger, Robert; Lim, Sai Kiang

    2017-01-01

    High-grade serous ovarian cancer (HGSOC) is the most aggressive type of ovarian cancer and is responsible for most deaths caused by gynecological cancers. Numerous candidate biomarkers were identified for this disease in the last decades, but most were not sensitive or specific enough for clinical applications. Hence, new biomarkers for HGSOC are urgently required. This study aimed to identify new markers by isolating different extracellular vesicle (EV) types from the ascites of ovarian cancer patients according to their affinities for lipid-binding proteins and analyzing their protein cargo. This approach circumvents the low signal-to-noise ratio when using biological fluids for biomarker discovery and the issue of contamination by large non-EV complexes. We isolated and analyzed three distinct EV populations from the ascites of patients with ovarian cancer or cirrhosis and observed that Annexin V-binding EVs have higher levels of matrix metalloproteinase 9 in malignant compared to portal-hypertensive ascites. As this protein was not detected in other EV populations, this study validates our approach of using different EV types for optimal biomarker discovery. Furthermore, MMP9 in Annexin V-binding EVs could be a HGSOC biomarker with enhanced specificity, because its identification requires detection of two distinct components, that is, lipid and protein.

  10. Redistribution of annexin in gravistimulated pea plumules

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Rafati, D. S.; Bolton, R. J.; Dauwalder, M.; Roux, S. J.

    2000-01-01

    We used immunocytochemistry to investigate the effects of gravistimulation on annexin localization in etiolated pea plumule shoots. In longitudinal sections, an asymmetric annexin immunostaining pattern was observed in a defined group of cells located just basipetal to apical meristems at the main shoot apex and at all of the axillary buds, an area classically referred to as the leaf gap. The pattern was observed using both protein-A-purified anti-annexin and affinity-purified anti-annexin antibodies for the immunostaining. A subset of the cells with the annexin staining also showed an unusually high level of periodic acid Schiff (PAS) staining in their cell walls. Prior to gravistimulation, the highest concentration of annexin was oriented toward the direction of gravity along the apical end of these immunostained cells. In contrast, both at 15 and 30 min after gravistimulation, the annexin immunostain became more evenly distributed all around the cell and more distinctly cell peripheral. The asymmetry along the lower wall of these cells was no longer evident. In accord with current models of annexin action, we interpret the results to indicate that annexin-mediated secretion in the leaf gap area is preferentially toward the apical meristem prior to gravistimulation, and that gravistimulation results in a redirection of this secretion. These data are to our knowledge the first to show a correlation between the vector of gravity and the distribution of annexins in the cells of flowering plants. c 2000 Editions scientifiques et medicales Elsevier SAS.

  11. The Assessment of Parameters Affecting the Quality of Cord Blood by the Appliance of the Annexin V Staining Method and Correlation with CFU Assays

    PubMed Central

    Radke, Teja Falk; Barbosa, David; Duggleby, Richard Charles; Saccardi, Riccardo; Querol, Sergio; Kögler, Gesine

    2013-01-01

    The assessment of nonviable haematopoietic cells by Annexin V staining method in flow cytometry has recently been published by Duggleby et al. Resulting in a better correlation with the observed colony formation in methylcellulose assays than the standard ISHAGE protocol, it presents a promising method to predict cord blood potency. Herein, we applied this method for examining the parameters during processing which potentially could affect cord blood viability. We could verify that the current standards regarding time and temperature are sufficient, since no significant difference was observed within 48 hours or in storage at 4°C up to 26°C. However, the addition of DMSO for cryopreservation alone leads to an inevitable increase in nonviable haematopoietic stem cells from initially 14.8% ± 4.3% to at least 30.6% ± 5.5%. Furthermore, CFU-assays with varied seeding density were performed in order to evaluate the applicability as a quantitative method. The results revealed that only in a narrow range reproducible clonogenic efficiency (ClonE) could be assessed, giving at least a semiquantitative estimation. We conclude that both Annexin V staining method and CFU-assays with defined seeding density are reliable means leading to a better prediction of the final potency. Especially Annexin V, due to its fast readout, is a practical tool for examining and optimising specific steps in processing, while CFU-assays add a functional confirmation. PMID:23533443

  12. Siloxane nanoprobes for labeling and dual modality imaging of neural stem cells

    PubMed Central

    Addington, Caroline P.; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E.; Kodibagkar, Vikram D.

    2015-01-01

    Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality (1H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μl/104 cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by 1H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast 1H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability. PMID:26597417

  13. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging.

    PubMed

    Briat, Arnaud; Wenk, Christiane H F; Ahmadi, Mitra; Claron, Michael; Boturyn, Didier; Josserand, Véronique; Dumy, Pascal; Fagret, Daniel; Coll, Jean-Luc; Ghezzi, Catherine; Sancey, Lucie; Vuillez, Jean-Philippe

    2012-06-01

    Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches. © 2012 Japanese Cancer Association.

  14. Live imaging of apoptotic cells in zebrafish

    PubMed Central

    van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.

    2010-01-01

    Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526

  15. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoyer, Friedrich Felix; Paul, Kathrin; Heiermann, Nadine; Becher, Marc Ulrich; Abu Hussein, Nebal; Kebschull, Moritz; Bedorf, Jörg; Franklin, Bernardo S; Latz, Eicke; Nickenig, Georg; Werner, Nikos

    2012-08-01

    Endothelial microparticles (EMP) are released from activated or apoptotic cells, but their effect on target cells and the exact way of incorporation are largely unknown. We sought to determine the uptake mechanism and the biological effect of EMP on endothelial and endothelial-regenerating cells. EMP were generated from starved endothelial cells and isolated by ultracentrifugation. Caspase 3 activity assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that EMP protect target endothelial cells against apoptosis in a dose-dependent manner. Proteomic analysis was performed to identify molecules contained in EMP, which might be involved in EMP uptake. Expression of annexin I in EMP was found and confirmed by Western blot, whereas the corresponding receptor phosphatidylserine receptor was present on endothelial target cells. Silencing either annexin I on EMP or phosphatidylserine receptor on target cells using small interfering RNA showed that the uptake of EMP by human coronary artery endothelial cells is annexin I/phosphatidylserine receptor dependent. Annexin I-downregulated EMP abrogated the EMP-mediated protection against apoptosis of endothelial target cells. p38 activation was found to mediate camptothecin-induced apoptosis. Finally, human coronary artery endothelial cells pretreated with EMP inhibited camptothecin-induced p38 activation. EMP are incorporated by endothelial cells in an annexin I/phosphatidylserine receptor-dependent manner and protect target cells against apoptosis. Inhibition of p38 activity is involved in EMP-mediated protection against apoptosis.

  16. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells.

    PubMed

    Pan, Bing; Kong, Jinge; Jin, Jingru; Kong, Jian; He, Yubin; Dong, Shuying; Ji, Liang; Liu, Donghui; He, Dan; Kong, Liming; Jin, David K; Willard, Belinda; Pennathur, Subramaniam; Zheng, Lemin

    2016-06-01

    High density lipoprotein (HDL) as well as annexin A1 have been reported to be associated with cardiovascular protection. However, the correlation between HDL and annexin A1 was still unknown. In this study, HDL increased endothelial annexin A1 and prevented the decrease of annexin A1 in TNF-α-activated endothelial cells in vitro and in vivo, and above effects were attenuated after knockdown of annexin A1. Annexin A1 modulation affected HDL-mediated inhibition of monocyte adhesion to TNF-α-activated endothelium (45.2±13.7% decrease for annexin A1 RNA interference; 78.7±16.3% decrease for anti-Annexin A1 antibody blocking; 11.2±6.9% increase for Ad-ANXA1 transfection). Additionally, HDL up-regulated annexin A1 through scavenger receptor class B type I, involving ERK, p38MAPK, Akt and PKC signaling pathways, and respective inhibitors of these pathways attenuated HDL-induced annexin A1 expression as well as impaired HDL-mediated inhibition of monocyte-endothelial cell adhesion. Apolipoprotein AI also increased annexin A1 and activated similar signaling pathways. Endothelial annexin A1 from apolipoprotein AI knockout mice was decreased in comparison to that from wild type mice. Finally, HDL-induced annexin A1 inhibited cell surface VCAM-1, ICAM-1 and E-selectin, and secretion of MCP-1, IL-8, VCAM-1 and E-selectin, thereby inhibiting monocyte adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A dual-labeled knottin peptide for PET and near-infrared fluorescence imaging of integrin expression in living subjects

    PubMed Central

    Kimura, Richard H.; Miao, Zheng; Cheng, Zhen; Gambhir, Sanjiv S.; Cochran, Jennifer R.

    2010-01-01

    Previously, we used directed evolution to engineer mutants of the Ecballium elaterium trypsin inhibitor (EETI-II) knottin that bind to αvβ3 and αvβ5 integrin receptors with low nanomolar affinity, and showed that Cy5.5- or 64Cu-DOTA-labeled knottin peptides could be used to image integrin expression in mouse tumor models using near-infrared fluorescence (NIRF) imaging or positron emission tomography (PET). Here, we report the development of a dual-labeled knottin peptide conjugated to both NIRF and PET imaging agents for multimodality imaging in living subjects. We created an orthogonally-protected peptide-based linker for stoichiometric coupling of 64Cu-DOTA and Cy5.5 onto the knottin N-terminus, and confirmed that conjugation did not affect binding to αvβ3 and αvβ5 integrins. NIRF and PET imaging studies in tumor xenograft models showed that Cy5.5 conjugation significantly increased kidney uptake and retention compared to the knottin peptide labeled with 64Cu-DOTA alone. In the tumor, the dual-labeled 64Cu-DOTA/Cy5.5 knottin probe showed decreased wash-out leading to significantly better retention (p < 0.05) compared to the 64Cu-DOTA-labeled knottin probe. Tumor uptake was significantly reduced (p < 0.05) when the dual-labeled probe was co-injected with an excess of unlabeled competitor and when tested in a tumor model with lower levels of integrin expression. Finally, plots of tumor-to-background tissue ratios for Cy5.5 versus 64Cu uptake were well correlated over several time points post injection, demonstrating pharmacokinetic cross validation of imaging labels. This dual-modality NIRF/PET imaging agent is promising for further development in clinical applications where high sensitivity and high-resolution are desired, such as detection of tumors located deep within the body and image-guided surgical resection. PMID:20131753

  18. Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5).

    PubMed

    Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco

    2009-08-15

    To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.

  19. Young women with polycystic ovary syndrome have raised levels of circulating annexin V-positive platelet microparticles.

    PubMed

    Willis, G R; Connolly, K; Ladell, K; Davies, T S; Guschina, I A; Ramji, D; Miners, K; Price, D A; Clayton, A; James, P E; Rees, D A

    2014-12-01

    Are circulating microparticles (MPs) altered in young women with polycystic ovary syndrome (PCOS)? Women with PCOS have elevated concentrations of circulating platelet-derived MPs, which exhibit increased annexin V binding and altered microRNA (miR) profiles compared with healthy volunteers. Some studies have shown that cardiovascular risk is increased in young women with PCOS but the mechanisms by which this occurs are uncertain. Circulating MPs are elevated in patients with cardiovascular disease but the characteristics of MPs in patients with PCOS are unclear. Case-control study comprising 17 women with PCOS (mean ± SD; age 31 ± 7 years, BMI 29 ± 6 kg/m(2)) and 18 healthy volunteers (age 31 ± 6 years, BMI 30 ± 6 kg/m(2)). The study was conducted in a University hospital. Nanoparticle tracking analysis (NTA) and flow cytometry (CD41 platelet, CD11b monocyte, CD144 endothelial) were used to determine MP size, concentration, cellular origin and annexin V positivity (reflecting phosphatidylserine exposure). Fatty acid analysis was performed by gas chromatography and MP miR expression profiles were compared by microarray. PCOS subjects showed increased MP concentrations compared with healthy volunteers (mean ± SD; 11.5 ± 5 × 10(12)/ml versus 10.0 ± 4 × 10(12)/ml, respectively; P = 0.03), which correlated with the homeostasis model of insulin resistance (r = 0.53, P = 0.03). This difference was predominantly seen in MPs whose size was in the small exosomal range (<150 nm in diameter, P< 0.05). PCOS patients showed a greater percentage of annexin V(+) MPs compared with healthy volunteers (84 ± 18 versus 74 ± 24%, respectively, P = 0.05) but the cellular origin of MPs, which were predominantly platelet-derived (PCOS: 99 ± 0.9%; controls: 99 ± 2.5%), did not differ. MP fatty acid concentration and composition was similar between groups but 16 miRs were differentially expressed (P < 0.05). Patients with PCOS were classified by the Rotterdam criteria, which

  20. Robust Statistical Fusion of Image Labels

    PubMed Central

    Landman, Bennett A.; Asman, Andrew J.; Scoggins, Andrew G.; Bogovic, John A.; Xing, Fangxu; Prince, Jerry L.

    2011-01-01

    Image labeling and parcellation (i.e. assigning structure to a collection of voxels) are critical tasks for the assessment of volumetric and morphometric features in medical imaging data. The process of image labeling is inherently error prone as images are corrupted by noise and artifacts. Even expert interpretations are subject to subjectivity and the precision of the individual raters. Hence, all labels must be considered imperfect with some degree of inherent variability. One may seek multiple independent assessments to both reduce this variability and quantify the degree of uncertainty. Existing techniques have exploited maximum a posteriori statistics to combine data from multiple raters and simultaneously estimate rater reliabilities. Although quite successful, wide-scale application has been hampered by unstable estimation with practical datasets, for example, with label sets with small or thin objects to be labeled or with partial or limited datasets. As well, these approaches have required each rater to generate a complete dataset, which is often impossible given both human foibles and the typical turnover rate of raters in a research or clinical environment. Herein, we propose a robust approach to improve estimation performance with small anatomical structures, allow for missing data, account for repeated label sets, and utilize training/catch trial data. With this approach, numerous raters can label small, overlapping portions of a large dataset, and rater heterogeneity can be robustly controlled while simultaneously estimating a single, reliable label set and characterizing uncertainty. The proposed approach enables many individuals to collaborate in the construction of large datasets for labeling tasks (e.g., human parallel processing) and reduces the otherwise detrimental impact of rater unavailability. PMID:22010145

  1. Evidence for specific annexin I-binding proteins on human monocytes.

    PubMed Central

    Goulding, N J; Pan, L; Wardwell, K; Guyre, V C; Guyre, P M

    1996-01-01

    Recombinant human annexin I and a monoclonal antibody specific for this protein (mAb 1B) were used to investigate surface binding of this member of the annexin family of proteins to peripheral blood monocytes. Flow cytometric analysis demonstrated trypsin-sensitive, saturable binding of annexin I to human peripheral blood monocytes but not to admixed lymphocytes. A monoclonal antibody that blocks the anti-phospholipase activity of annexin I also blocked its binding to monocytes. These findings suggest the presence of specific binding sites on monocytes. Furthermore, surface iodination, immunoprecipitation and SDS/PAGE analysis were used to identify two annexin I-binding proteins on the surface of monocytes with molecular masses of 15 kDa and 18 kDa respectively. The identification and characterization of these annexin I-binding molecules should help us to better understand the specific interactions of annexin I with monocytes that lead to down-regulation of pro-inflammatory cell functions. PMID:8687405

  2. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    PubMed Central

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  3. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-01-01

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with

  4. Annexins in plasma membrane repair.

    PubMed

    Boye, Theresa Louise; Nylandsted, Jesper

    2016-10-01

    Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.

  5. Amino acid sequence analysis of the annexin super-gene family of proteins.

    PubMed

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of

  6. Spermatozoa with numerical chromosomal abnormalities are more prone to be retained by Annexin V-MACS columns.

    PubMed

    Esbert, M; Godo, A; Soares, S R; Florensa, M; Amorós, D; Ballesteros, A; Vidal, F

    2017-07-01

    Colloidal super-paramagnetic microbeads conjugated with annexin V are effective for separating apoptotic spermatozoa by MACS as a result of the high affinity of annexin V for externalized PS molecules. The effectiveness of the procedure in reducing the percentage of sperm with fragmented DNA and abnormal morphology has also been reported. However, it is still unknown if it could decrease the percentage of aneuploid spermatozoa. The objective of our prospective study, performed on 16 males with abnormal FISH on spermatozoa, was to assess if MACS columns were useful tools to retain spermatozoa carrying chromosomal abnormalities in semen samples processed after density gradient centrifugation (DGC). The pellet obtained after DGC was subjected to MACS, and sperm FISH analyses were performed both in the eluded fraction and in the fraction retained in the column. The observed frequencies of disomy and nullisomy 13, 18, and 21, X and Y, as well as the diploidy rates in the MACS eluded fraction and the fraction retained in the MACS column were recorded. We observed that the frequencies of aneuploidies in the eluded fraction were lower than in the fraction retained in the MACS column (0.59% vs. 0.75%; p = 0.010). DGC determined a significant reduction in sperm concentration (z-ratio = 2.83; p = 0.005) and a significant increase in sperm progressive motility (z-ratio = -3.5; p < 0.001). MACS also led to a significant reduction in sperm concentration (z-ratio = 3.14; p = 0.002) and a significant increase in progressive motility (z-ratio = -2.59; p = 0.01) when compared with the post-DGC sample. Sperm concentration was similar in the two fractions generated by MACS (z-ratio = 0.63; p = 0.52), while progressive motility was significantly higher in the MACS eluded fraction (z-ratio = 2.42; p = 0.02). According to our results, MACS columns are able to selectively retain spermatozoa carrying chromosomal abnormalities. Furthermore, the performance of DGC

  7. Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.

    PubMed

    Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas

    2018-04-03

    With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.

  8. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.

    PubMed

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2011-08-01

    Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.

  9. Immunolocalization of an annexin-like protein in corn

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1994-08-01

    Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2+ in growth regulation has been discovered. Our recent studies on a Ca2+-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalization analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.

  10. Immunolocalization of an annexin-like protein in corn

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1994-01-01

    Although calcium has been proposed to be an important regulatory element in plant gravitropic growth, as yet no specific function of Ca2(+) in growth regulation has been discovered. Our recent studies on a Ca2(+)-binding protein in pea seedlings called p35 indicate that it is a member of the annexin family of proteins and may play a key role in growth regulation through its function in delivering polysaccharides needed for wall construction. We previously reported the isolation of p35 from pea plumules and the production of polyclonal antibodies to it. Immunolocalization analyses of p35 in pea tissues revealed high levels of staining in secretory cell types such as developing vascular cells and outer root cap cells. To test how general was the occurrence and distribution of this annexin-like protein in plant cells we initiated an analysis of annexins in the monocot corn using immunological techniques. Our results indicate the immunochemical properties and localization of corn annexins are very similar to those reported for pea. They are consistent with the postulate that annexins may play a general role in the regulation of the secretion of wall polysaccharides needed for growth, and thus could be an important target of calcium action during gravitropic growth.

  11. Differential expression of members of the annexin multigene family in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Sessions, A.; Eastburn, D. J.; Roux, S. J.

    2001-01-01

    Although in most plant species no more than two annexin genes have been reported to date, seven annexin homologs have been identified in Arabidopsis, Annexin Arabidopsis 1-7 (AnnAt1--AnnAt7). This establishes that annexins can be a diverse, multigene protein family in a single plant species. Here we compare and analyze these seven annexin gene sequences and present the in situ RNA localization patterns of two of these genes, AnnAt1 and AnnAt2, during different stages of Arabidopsis development. Sequence analysis of AnnAt1--AnnAt7 reveals that they contain the characteristic four structural repeats including the more highly conserved 17-amino acid endonexin fold region found in vertebrate annexins. Alignment comparisons show that there are differences within the repeat regions that may have functional importance. To assess the relative level of expression in various tissues, reverse transcription-PCR was carried out using gene-specific primers for each of the Arabidopsis annexin genes. In addition, northern blot analysis using gene-specific probes indicates differences in AnnAt1 and AnnAt2 expression levels in different tissues. AnnAt1 is expressed in all tissues examined and is most abundant in stems, whereas AnnAt2 is expressed mainly in root tissue and to a lesser extent in stems and flowers. In situ RNA localization demonstrates that these two annexin genes display developmentally regulated tissue-specific and cell-specific expression patterns. These patterns are both distinct and overlapping. The developmental expression patterns for both annexins provide further support for the hypothesis that annexins are involved in the Golgi-mediated secretion of polysaccharides.

  12. Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information.

    PubMed

    Vats, Nidhi; Wilhelm, Claire; Rautou, Pierre-Emmanuel; Poirier-Quinot, Marie; Péchoux, Christine; Devue, Cécile; Boulanger, Chantal M; Gazeau, Florence

    2010-07-01

    Submicron membrane fragments termed microparticles (MPs), which are released by apoptotic or activated cells, are newly considered as vectors of biological information and actors of pathology development. We propose the tagging of MPs with magnetic nanoparticles as a new approach allowing imaging, manipulation and targeting of cell-derived MPs. MPs generated in vitro from human endothelial cells or isolated from atherosclerotic plaques were labeled using citrate-coated 8 nm iron-oxide nanoparticles. MPs were tagged with magnetic nanoparticles on their surface and detected as Annexin-V positive by flow cytometry. Labeled MPs could be mobilized, isolated and manipulated at a distance in a magnetic field gradient. Magnetic mobility of labeled MPs was quantified by micromagnetophoresis. Interactions of labeled MPs with endothelial cells could be triggered and modulated by magnetic guidance. Nanoparticles served as tracers at different scales: at the subcellular level by electron microscopy, at the cellular level by histology and at the macroscopic level by MRI. Magnetic labeling of biogenic MPs opens new prospects for noninvasive monitoring and distal manipulations of these biological effectors.

  13. Extraction and labeling high-resolution images from PDF documents

    NASA Astrophysics Data System (ADS)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  14. Functional Association between Regulatory RNAs and the Annexins

    PubMed Central

    Monastyrskaya, Katia

    2018-01-01

    Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs. PMID:29462943

  15. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.

    PubMed

    Christiansen, Eric M; Yang, Samuel J; Ando, D Michael; Javaherian, Ashkan; Skibinski, Gaia; Lipnick, Scott; Mount, Elliot; O'Neil, Alison; Shah, Kevan; Lee, Alicia K; Goyal, Piyush; Fedus, William; Poplin, Ryan; Esteva, Andre; Berndl, Marc; Rubin, Lee L; Nelson, Philip; Finkbeiner, Steven

    2018-04-19

    Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Nitrogen-13-labeled ammonia for myocardial imaging.

    PubMed

    Walsh, W F; Fill, H R; Harper, P V

    1977-01-01

    Cyclotron-produced nitrogen-13 (half-life 10 min), as labeled ammonia (13NH4+), has been evaluated as a myocardial perfusion imaging agent. The regional myocardial uptake of 13NH4+ has been shown to be proportional to regional tissue perfusion in animal studies. Intravenously administered 13NH4+ is rapidly cleared from the circulation, being extracted by the liver (15%), lungs, myocardium (2%-4%), brain, kidney, and bladder. Myocardial ammonia is metabolized mainly to glutamine via the glutamine synthetase pathway. Pulmonary uptake is substantial, but usually transient, except in smokers where clearance may be delayed. The position annihilation irradiation (511 keV) of 13N may be imaged with a scintillation camera, using either a specially designed tungsten collimator or a pinhole collimator. After early technical problems with collimation and the production method of 13NH4+ were overcome, reproducible high quality myocardial images were consistently obtained. The normal myocardial image was established to be of a homogeneous "doughnut" configuration. Imaging studies performed in patients with varying manifestations of ischemic and valvular heart disease showed a high incidence of localized perfusion defects, especially in patients with acute myocardial infarction. Sequential studies at short intervals in patients with acute infarction showed correlation between alterations in regional perfusion and the clinical course of the patient. It is concluded that myocardial imaging with 13NH4+ and a scintillation camera provides a valid and noninvasive means of assessing regional myocardial perfusion. This method is especially suitable for sequential studies of acute cardiac patients at short intervals. Coincidence imaging of the 511 keV annihilation irradiation provides a tomographic and potentially quantitative assessment of the regional myocardial uptake of 13NH4+.

  17. New markers of pancreatic cancer identified through differential gene expression analyses: claudin 18 and annexin A8.

    PubMed

    Karanjawala, Zarir E; Illei, Peter B; Ashfaq, Raheela; Infante, Jeffrey R; Murphy, Kathleen; Pandey, Akhilesh; Schulick, Richard; Winter, Jordan; Sharma, Rajni; Maitra, Anirban; Goggins, Michael; Hruban, Ralph H

    2008-02-01

    New markers to distinguish benign reactive glands from infiltrating ductal adenocarcinoma of the pancreas are needed. The gene expression patterns of 24 surgically resected primary infiltrating ductal adenocarcinomas of the pancreas were compared with 18 non-neoplastic samples using the Affymetrix U133 Plus 2.0 Arrays and the Gene Logic GeneExpress Software System. Gene fragments from 4 genes (annexin A8, claudin 18, CXCL5, and S100 A2) were selected from the fragments found to be highly expressed in infiltrating adenocarcinomas when compared with normal tissues. The protein expression of these genes was examined using immunohistochemical labeling of tissue microarrays. Claudin 18 labeled infiltrating carcinomas in a membranous pattern. When compared with normal and reactive ducts, claudin 18 was overexpressed, at least focally, in 159 of 166 evaluable carcinomas (96%). Strong and diffuse claudin 18 overexpression was most often seen in well-differentiated carcinomas (P=0.02). Claudin 18 was overexpressed in 51 of 52 cases (98%) of pancreatic intraepithelial neoplasia. Annexin A8 was at least focally overexpressed in 149 of 154 evaluable infiltrating carcinomas (97%). S100 A2 was at least focally overexpressed in 118 of 154 evaluable infiltrating carcinomas (77%). Non-neoplastic glands also frequently expressed S100 A2 diminishing its potential diagnostic utility. Immunolabeling with antibodies directed against CXCL5 did not reveal any significant differences in protein expression between infiltrating adenocarcinomas and normal pancreatic ducts. Claudin 18 and annexin A8 are frequently highly overexpressed in infiltrating ductal adenocarcinomas when compared with normal reactive ducts, suggesting a role for these molecules in pancreatic ductal adenocarcinomas. Furthermore, these may serve as diagnostic markers, as screening tests and as therapeutic targets.

  18. Percutaneous fiber-optic sensor for the detection of chemotherapy-induced apoptosis in vivo

    NASA Astrophysics Data System (ADS)

    O'Kelly, James; Liao, Kuo-Chih; Clifton, William; Lu, Daning; Koeffler, Phillip; Loeb, Gerald

    2010-02-01

    Early imaging of tumor response to chemotherapy has the potential for significant clinical benefits. We are developing a family of fiber-optic sensors called SencilsTM (sensory cilia), which are disposable, minimally invasive, and can provide in vivo monitoring of various analytes for several weeks. The objective of this study was to develop and test our sensor to image the labeling of phosphatidylserine by apoptotic cells in response to chemotherapeutic drugs. FM1-43 was a better fluorescent marker for detecting phosphatidylserine expression than Annexin V-FITC; both the proportion of labeled cells (Annexin V, 15%; FM1-43, 58%) and the relative fluorescent increase (Annexin V-FITC, 1.5-fold; FM1-43, 4.5-fold) was greater when FM1-43 was used to detect apoptosis. Initial testing of the optical sensing technology using Taxol-treated MCF-7 cells demonstrated that injection of FM1-43 resulted in a rapid, transient increase in fluorescence that was greater in apoptotic cells compared to control cells (apoptotic cells, 4-fold increase; control cells, 2-fold increase). Using an established animal model, mice were injected with cyclophosphamide and hepatic apoptosis was assessed by imaging of PS expression. Both the amplitude of fluorescence increase and the time taken for the amplitude to decay to half of its peak were increased in livers from animals treated with cyclophosphamide. Our optical sensing technology can be used to detect the early apoptotic response of cells to chemotherapeutic drugs both in vitro and in vivo. This novel technology represents a unique option for the imaging of tumor responses in vivo, and provides an inexpensive, specific system for the detection of early-stage apoptosis.

  19. Annexin II-Dependent Mechanism of Breast Cancer Progression

    DTIC Science & Technology

    2008-06-01

    and migratory capacities of the annexin II-suppressed cells. Methods: We used antisense RNA technology to silence the annexin II gene in MDA...gene in mDA-MB231 cells using polymerase chain reaction-based short hairpin RNA (1–7 months) b) Characterize the proliferative, invasive, and...MB231 cells according to methods described by Li et al. (24). Briefly, three different diothionated antisense nucleotides (ODN) were synthesized

  20. Annexin II-binding immunoglobulins in patients with lupus nephritis and their correlation with disease manifestations.

    PubMed

    Cheung, Kwok Fan; Yung, Susan; Chau, Mel K M; Yap, Desmond Y H; Chan, Kwok Wah; Lee, Cheuk Kwong; Tang, Colin S O; Chan, Tak Mao

    2017-04-25

    Annexin II on mesangial cell surface mediates the binding of anti-dsDNA antibodies and consequent downstream inflammatory and fibrotic processes. We investigated the clinical relevance of circulating annexin II-binding immunoglobulins (Igs) in patients with severe proliferative lupus nephritis, and renal annexin II expression in relation to progression of nephritis in New Zealand Black and White F1 mice (NZBWF1/J) mice. Annexin II-binding Igs in serum were measured by ELISA. Ultrastructural localization of annexin II was determined by electron microscopy. Seropositivity rates for annexin II-binding IgG and IgM in patients with active lupus nephritis were significantly higher compared with controls (8.9%, 1.3% and 0.9% for annexin II-binding IgG and 11.1%, 4.0% and 1.9% for annexin II-binding IgM for patients with active lupus nephritis, patients with non-lupus renal disease and healthy subjects respectively). In lupus patients, annexin II-binding IgM level was higher at disease flare compared with remission. Annexin II-binding IgG and IgM levels were associated with that of anti-dsDNA and disease activity. Annexin II-binding IgG and IgM levels correlated with histological activity index in lupus nephritis biopsy samples. In NZBWF1/J mice, serum annexin II-binding IgG and IgM levels and glomerular annexin II and p11 expression increased with progression of active nephritis. Annexin II expression was present on mesangial cell surface and in the mesangial matrix, and co-localized with electron-dense deposits along the glomerular basement membrane. Our results show that circulating annexin II-binding IgG and IgM levels are associated with clinical and histological disease activity in proliferative lupus nephritis. The co-localization of annexin II and p11 expression with immune deposition in the kidney suggests pathogenic relevance. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. HCP: A Flexible CNN Framework for Multi-label Image Classification.

    PubMed

    Wei, Yunchao; Xia, Wei; Lin, Min; Huang, Junshi; Ni, Bingbing; Dong, Jian; Zhao, Yao; Yan, Shuicheng

    2015-10-26

    Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground-truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) the shared CNN is flexible and can be well pre-trained with a large-scale single-label image dataset, e.g., ImageNet; and 4) it may naturally output multi-label prediction results. Experimental results on Pascal VOC 2007 and VOC 2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 90.5% by HCP only and 93.2% after the fusion with our complementary result in [44] based on hand-crafted features on the VOC 2012 dataset.

  2. Novel image processing method study for a label-free optical biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  3. Functional interaction of TRPV4 channel protein with annexin A2 in DRG.

    PubMed

    Ning, Liping; Wang, Chuanwei; Ding, Xinli; Zhang, Yang; Wang, Xuping; Yue, Shouwei

    2012-09-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable, non-selective cation channel that is involved in the transmission of pain signals mediated by dorsal root ganglion (DRG). Annexin A2 belongs to a class of membrane-binding proteins that plays an important role in the regulation of ion channels. Nevertheless, little is known about the interaction between them in DRG. In this paper, we evaluated the functional interaction of TRPV4 with annexin A2 in DRG. We have used immunocytochemistry and co-immunoprecipitation assays to investigate the interaction between annexin A2 and TRPV4 in DRG. The role of annexin A2 in the regulation of TRPV4 activity in DRG was further verified by measurement of intracellular free calcium concentrations ([Ca(2+)](i)) and substance P (SP) release. First, annexin A2 was showed partial co-localization with TRPV4 in DRG neurons. Then, annexin A2 and TRPV4 were co-precipitated with each other in DRG lysates. Furthermore, the downregulation of annexin A2 using specific small interfering RNA significantly inhibited Ca(2+) influx and SP mediated by TRPV4. Our results provide evidence that annexin A2 is associated with TRPV4 and regulates TRPV4-mediated Ca(2+) influx and SP release in DRG neurons. The objective of this work is to determine the influence of annexin A2 on TRPV4 in DRG neurons, which may be the basis for treatment of pain relief.

  4. Image labeling. The need for a better look.

    PubMed

    Hunter, T

    1994-10-01

    The important message in this editorial is for radiologists to critically examine how well images are labeled in their own department. If it is not satisfactory, then institute corrective measures. These can range from sophisticated computer programs for printing flashcards to merely sending the chief technologist all those films one comes across with unreadable labels. The quality of the image labeling should also be a consideration when purchasing CT, MRI, ultrasound, computed radiography and digital angiography equipment. The fact that you consider this important should be communicated to equipment manufacturers in the hope that they will pay more attention to it and offer more flexibility for each department to design its own labels. In any event, I feel consistently bad film labeling results in sloppy radiology with possible patient harm and unpleasant legal consequences for the radiologist.

  5. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  6. Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines.

    PubMed

    Pisal, Mahesh M; Annadate, Ritesh A; Athalye, Meghana C; Kumar, Deepak; Chavan, Subhash P; Sarkar, Dhiman; Borate, Hanumant B

    2017-02-15

    Synthesis of 3,4,5-triheterocyclyl-2,6-dicyanoanilines, starting from heterocyclic aldehydes and 1,2-diheterocycle-substituted ethanones, is described. 2,6-Dicyanoanilines with one or two heterocyclic substituents have also been synthesized. It was found that some of these molecules have selective cell-staining properties useful for cell imaging applications. The compounds 1g, 10f and 11 were found to stain cytoplasm of the cells in contact but not the nucleus while the compound 12 showed affinity to apoptotic cells resulting in blue fluorescence. The cell imaging results with compound 12 were similar to Annexin V-FITC, a known reagent containing recombinant Annexin V conjugated to green-fluorescent FITC dye, used for detection of apoptotic cells. These compounds were found to be non-cytotoxic and have potential application as cell imaging agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Immunological Development and Cardiovascular Function Are Normal in Annexin VI Null Mutant Mice

    PubMed Central

    Hawkins, Tim E.; Roes, Jürgen; Rees, Daryl; Monkhouse, Jayne; Moss, Stephen E.

    1999-01-01

    Annexins are calcium-binding proteins of unknown function but which are implicated in important cellular processes, including anticoagulation, ion flux regulation, calcium homeostasis, and endocytosis. To gain insight into the function of annexin VI, we performed targeted disruption of its gene in mice. Matings between heterozygous mice produced offspring with a normal Mendelian pattern of inheritance, indicating that the loss of annexin VI did not interfere with viability in utero. Mice lacking annexin VI reached sexual maturity at the same age as their normal littermates, and both males and females were fertile. Because of interest in the role of annexin VI in cardiovascular function, we examined heart rate and blood pressure in knockout and wild-type mice and found these to be identical in the two groups. Similarly, the cardiovascular responses of both sets of mice to septic shock were indistinguishable. We also examined components of the immune system and found no differences in thymic, splenic, or bone marrow lymphocyte levels between knockout and wild-type mice. This is the first study of annexin knockout mice, and the lack of a clear phenotype has broad implications for current views of annexin function. PMID:10567528

  8. Key role of the N-terminus of chicken annexin A5 in vesicle aggregation.

    PubMed

    Turnay, Javier; Guzmán-Aránguez, Ana; Lecona, Emilio; Barrasa, Juan I; Olmo, Nieves; Lizarbe, Ma Antonia

    2009-05-01

    Annexins are calcium-dependent phospholipid-binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N-terminus as truncation of the N-terminus of chicken annexin A5 significantly decreases this process and replacement of the N-terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N-terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium-dependent membrane aggregation.

  9. Down-regulation of annexin A1 in the urothelium decreases cell survival after bacterial toxin exposure.

    PubMed

    Monastyrskaya, Katia; Babiychuk, Eduard B; Draeger, Annette; Burkhard, Fiona C

    2013-07-01

    We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Consumer opinion on social policy approaches to promoting positive body image: Airbrushed media images and disclaimer labels.

    PubMed

    Paraskeva, Nicole; Lewis-Smith, Helena; Diedrichs, Phillippa C

    2017-02-01

    Disclaimer labels on airbrushed media images have generated political attention and advocacy as a social policy approach to promoting positive body image. Experimental research suggests that labelling is ineffective and consumers' viewpoints have been overlooked. A mixed-method study explored British consumers' ( N = 1555, aged 11-78 years) opinions on body image and social policy approaches. Thematic analysis indicated scepticism about the effectiveness of labelling images. Quantitatively, adults, although not adolescents, reported that labelling was unlikely to improve body image. Appearance diversity in media and reorienting social norms from appearance to function and health were perceived as effective strategies. Social policy and research implications are discussed.

  11. Automatic multi-label annotation of abdominal CT images using CBIR

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2017-03-01

    We present a technique to annotate multiple organs shown in 2-D abdominal/pelvic CT images using CBIR. This annotation task is motivated by our research interests in visual question-answering (VQA). We aim to apply results from this effort in Open-iSM, a multimodal biomedical search engine developed by the National Library of Medicine (NLM). Understanding visual content of biomedical images is a necessary step for VQA. Though sufficient annotational information about an image may be available in related textual metadata, not all may be useful as descriptive tags, particularly for anatomy on the image. In this paper, we develop and evaluate a multi-label image annotation method using CBIR. We evaluate our method on two 2-D CT image datasets we generated from 3-D volumetric data obtained from a multi-organ segmentation challenge hosted in MICCAI 2015. Shape and spatial layout information is used to encode visual characteristics of the anatomy. We adapt a weighted voting scheme to assign multiple labels to the query image by combining the labels of the images identified as similar by the method. Key parameters that may affect the annotation performance, such as the number of images used in the label voting and the threshold for excluding labels that have low weights, are studied. The method proposes a coarse-to-fine retrieval strategy which integrates the classification with the nearest-neighbor search. Results from our evaluation (using the MICCAI CT image datasets as well as figures from Open-i) are presented.

  12. Anti-dsDNA Antibodies Bind to Mesangial Annexin II in Lupus Nephritis

    PubMed Central

    Yung, Susan; Cheung, Kwok Fan; Zhang, Qing

    2010-01-01

    Production of anti-dsDNA antibodies is a hallmark of lupus nephritis, but how these antibodies deposit in organs and elicit inflammatory damage remains unknown. In this study, we sought to identify antigens on the surface of human mesangial cells (HMC) that mediate the binding of human anti-dsDNA antibodies and the subsequent pathogenic processes. We isolated anti-dsDNA antibodies from patients with lupus nephritis by affinity chromatography. We used multiple methods to identify and characterize antigens from the plasma membrane fraction of mesangial cells that crossreacted with the anti-dsDNA antibodies. We found that annexin II mediated the binding of anti-dsDNA antibodies to HMC. After binding to the mesangial cell surface, anti-dsDNA antibodies were internalized into the cytoplasm and nucleus. This also led to induction of IL-6 secretion and annexin II synthesis, mediated through activation of p38 MAPK, JNK, and AKT. Binding of anti-dsDNA antibodies to annexin II correlated with disease activity in human lupus nephritis. Glomerular expression of annexin II correlated with the severity of nephritis, and annexin II colocalized with IgG and C3 deposits in both human and murine lupus nephritis. Gene silencing of annexin II in HMC reduced binding of anti-dsDNA antibody and partially decreased IL-6 secretion. In summary, our data demonstrate that annexin II mediates the binding of anti-dsDNA antibodies to mesangial cells, contributing to the pathogenesis of lupus nephritis. This interaction provides a potential target for therapeutic intervention. PMID:20847146

  13. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2015-10-01

    retinopathy annexin macrophage retinal pigmented epithelial cell dispase penetrating ocular injury diabetic retinopathy epithelial...include evaluation of human surgical PVR samples from patients with diabetic retinopathy and a history of prior retinal surgery. Dissemination of

  14. Role of annexin A5 in cisplatin-induced toxicity in renal cells: molecular mechanism of apoptosis.

    PubMed

    Jeong, Jin-Joo; Park, Nahee; Kwon, Yeo-Jung; Ye, Dong-Jin; Moon, Aree; Chun, Young-Jin

    2014-01-24

    Annexin A5 belongs to a large family of calcium-binding and phospholipid-binding proteins and may act as an endogenous regulator of various pathophysiological processes. There is increasing evidence that annexin A5 is related to cytotoxicity, but the precise function of this protein has yet to be elucidated. In this study, we aimed to verify the function of annexin A5 in the apoptosis of renal epithelial cells. Real-time PCR and Western blot analysis, together with immunofluorescence analysis, showed that the expression of annexin A5 significantly increased in the presence of cisplatin in both human and rat renal epithelial cells. With regard to the mechanism of cisplatin-induced apoptosis, apoptosis-inducing factor (AIF) release into the cytosol was observed, and the underlying mechanism was identified as voltage-dependent anion channel (VDAC) oligomerization. Mitochondrial membrane potential (Δψm) was found to be greatly disrupted in cisplatin-treated cells. Moreover, cisplatin strongly induced translocation of annexin A5 into mitochondria. To understand the functional significance of annexin A5 in renal cell death, we used a siRNA-mediated approach to knock down annexin A5. Annexin A5 depletion by siRNA led to decreased annexin A5 translocation into mitochondria and significantly reduced VDAC oligomerization and AIF release. Annexin A5 siRNA also increased cell viability compared with the control. Moreover, expression of annexin A5 was induced by other nephrotoxicants such as CdCl2 and bacitracin. Taken together, our data suggest that annexin A5 may play a crucial role in cisplatin-induced toxicity by mediating the mitochondrial apoptotic pathway via the induction and oligomerization of VDAC.

  15. microPET Imaging of Glioma Integrin (alpha-v, beta-3) Expression Using Cu-64-Labeled Tetrameric RGD Peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Zhang, , Xianzhong; Xiong, , Zhengming

    2005-10-01

    Integrins ?v?3 and ?v?5 play a critical role in tumor-induced angiogenesis and metastasis, and have become promising diagnostic indicators and therapeutic targets of tumors. Radiolabeled RGD peptides that are integrin-specific may be used for non-invasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. We previously conjugated a series of mono- and dimeric RGD peptides with 1,4,7,10-tetraazacyclododecane-N, N?,N??,N???-tetraacetic acid (DOTA) and labeled these with copper-64 for microPET imaging in various mouse xenograft models. The copper-64 tracers showed ?v?3-selective tumor uptake, but the magnitude of tumor uptake was relatively low, the tumor washout was rapid, and non-target organ/tissuemore » retention was high. In this study we developed a tetrameric RGD peptide tracer 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 for positron emission tomography (PET) imaging of integrin ?v?3 expression in a subcutaneous U87MG glioma xenograft model in female athymic nude mice. The RGD tetramer showed significantly higher integrin binding affinity than the corresponding mono- and dimeric RGD analogs, most likely due to polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 ? 0.01%ID/g at 30 min and 0.21 ? 0.01 %ID/g at 4 h postinjection (p.i.), respectively) and predominantly renal excretion. Tumor uptake was rapid and high and the tumor washout was slow (9.93 ? 1.05 %ID/g at 30 min p.i. and 4.56 ? 0.51 %ID/g at 24 h post-injection). The metabolic stability of 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70, 58, 51 and 26 percent, respectively. Non-invasive microPET imaging studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution

  16. Synthesis and evaluation of a radiolabeled bis-zinc(II)-cyclen complex as a potential probe for in vivo imaging of cell death.

    PubMed

    Wang, Hongliang; Wu, Zhifang; Li, Sijin; Hu, Kongzhen; Tang, Ganghua

    2017-04-01

    The exposition of phosphatidylserine (PS) from the cell membrane is associated with most cell death programs (apoptosis, necrosis, autophagy, mitotic catastrophe, etc.), which makes PS an attractive target for overall cell death imaging. To this end, zinc(II) macrocycle coordination complexes with cyclic polyamine units as low-molecular-weight annexin mimics have a selective affinity for biomembrane surfaces enriched with PS, and are therefore useful for detection of cell death. In the present study, a 11 C-labeled zinc(II)-bis(cyclen) complex ( 11 C-CyclenZn2) was prepared and evaluated as a new positron emission tomography (PET) probe for cell death imaging. 11 C-CyclenZn2 was synthesized by methylation of its precursor, 4-methoxy-2,5-di-[10-methyl-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester] phenol (Boc-Cyclen2) with 11 C-methyl triflate as a prosthetic group in acetone, deprotection by hydrolysis in aqueous HCl solution, and chelation with zinc nitrate. The cell death imaging capability of 11 C-CyclenZn2 was evaluated using in vitro cell uptake assays with camptothecin-treated PC-3 cells, biodistribution studies, and in vivo PET imaging in Kunming mice bearing S-180 fibrosarcoma. Starting from 11 C-methyl triflate, the total preparation time for 11 C-CyclenZn2 was ~40 min, with an uncorrected radiochemical yield of 12 ± 3% (based on 11 C-CH 3 OTf, n = 10), a radiochemical purity of greater than 95%, and the specific activity of 0.75-1.01 GBq/μmol. The cell death binding specificity of 11 C-CyclenZn2 was demonstrated by significantly different uptake rates in camptothecin-treated and control PC-3 cells in vitro. Inhibition experiments for 18 F-radiofluorinated Annexin V binding to apoptotic/necrotic cells illustrated the necessity of zinc ions for zinc(II)-bis(cyclen) complexation in binding cell death, and zinc(II)-bis(cyclen) complexe and Annexin V had not identical binding pattern with apoptosis/necrosis cells

  17. Purification and immunolocalization of an annexin-like protein in pea seedlings

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1992-01-01

    As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.

  18. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  19. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  20. Apoptosis imaging studies in various animal models using radio-iodinated peptide.

    PubMed

    Kwak, Wonjung; Ha, Yeong Su; Soni, Nisarg; Lee, Woonghee; Park, Se-Il; Ahn, Heesu; An, Gwang Il; Kim, In-San; Lee, Byung-Heon; Yoo, Jeongsoo

    2015-01-01

    Apoptosis has a role in many medical disorders and treatments; hence, its non-invasive evaluation is one of the most riveting research topics. Currently annexin V is used as gold standard for imaging apoptosis. However, several drawbacks, including high background, slow body clearance, make it a suboptimum marker for apoptosis imaging. In this study, we radiolabeled the recently identified histone H1 targeting peptide (ApoPep-1) and evaluated its potential as a new apoptosis imaging agent in various animal models. ApoPep-1 (CQRPPR) was synthesized, and an extra tyrosine residue was added to its N-terminal end for radiolabeling. This peptide was radiolabeled with (124)I and (131)I and was tested for its serum stability. Surgery- and drug-induced apoptotic rat models were prepared for apoptosis evaluation, and PET imaging was performed. Doxorubicin was used for xenograft tumor treatment in mice, and the induced apoptosis was studied. Tumor metabolism and proliferation were assessed by [(18)F]FDG and [(18)F]FLT PET imaging and compared with ApoPep-1 after doxorubicin treatment. The peptide was radiolabeled at high purity, and it showed reasonably good stability in serum. Cell death was easily imaged by radiolabeled ApoPep-1 in an ischemia surgery model. And, liver apoptosis was more clearly identified by ApoPep-1 rather than [(124)I]annexin V in cycloheximide-treated models. Three doxorubicin doses inhibited tumor growth, which was evaluated by 30-40% decreases of [(18)F]FDG and [(18)F]FLT PET uptake in the tumor area. However, ApoPep-1 demonstrated more than 200% increase in tumor uptake after chemotherapy, while annexin V did not show any meaningful uptake in the tumor compared with the background. Biodistribution data were also in good agreement with the microPET imaging results. All of the experimental data clearly demonstrated high potential of the radiolabeled ApoPep-1 for in vivo apoptosis imaging.

  1. Label-free high-throughput imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  2. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  3. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  4. Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers

    PubMed Central

    Haylock, Anna-Karin; Nilvebrant, Johan; Mortensen, Anja; Velikyan, Irina; Nestor, Marika; Falk, Ronny

    2017-01-01

    Aim The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients. Materials and methods Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I. Results Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p.i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor. Conclusion The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging. PMID:29029420

  5. Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

    PubMed Central

    Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein

    2005-01-01

    The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561

  6. Zea mays Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance[W

    PubMed Central

    Laohavisit, Anuphon; Mortimer, Jennifer C.; Demidchik, Vadim; Coxon, Katy M.; Stancombe, Matthew A.; Macpherson, Neil; Brownlee, Colin; Hofmann, Andreas; Webb, Alex A.R.; Miedema, Henk; Battey, Nicholas H.; Davies, Julia M.

    2009-01-01

    Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+]cyt) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+]cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+]cyt, and may function as peroxidases in vitro. PMID:19234085

  7. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056

  8. Regulation of the Low Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas J.; Opresko, Lee K.; Waisman, David M.

    2009-07-13

    ABSTRACT-Here we identify release of annexin A2 into the culture medium in response to low dose X-ray radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we observe that annexin A2 levels associated with non-irradiated neighboring cells seeded in the lower chamber (annexin A2 silenced [shRNA] JB6 cells) are increased upon coculture with irradiated (10-50 cGy) JB6 cells seeded in the upper chamber, relative to coculture with sham exposed JB6 cells seeded in the upper chamber, suggesting that annexin A2 released into the medium is capable of communicating inmore » a paracrine fashion. Using a previously established coculture model, we observed that the paracrine factor-mediated anchorage-independent growth response to low dose X-ray radiation is markedly reduced when irradiated annexin A2 silenced (shRNA) JB6 cells are used, relative to coculture with irradiated annexin A2 competent vector control counterparts. These observations suggest that annexin A2 is functionally linked to the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells.« less

  9. Specific in vivo labeling with GFP retroviruses, lentiviruses, and adenoviruses for imaging

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.; Kishimoto, Hiroyuki; Fujiwara, Toshiyoshi

    2008-02-01

    Fluorescent proteins have revolutionized the field of imaging. Our laboratory pioneered in vivo imaging with fluorescent proteins. Fluorescent proteins have enabled imaging at the subcellular level in mice. We review here the use of different vectors carrying fluorescent proteins to selectively label normal and tumor tissue in vivo. We show that a GFP retrovirus and telomerase-driven GFP adenovirus can selectively label tumors in mice. We also show that a GFP lentivirus can selectively label the liver in mice. The practical application of these results are discussed.

  10. Progressive multi-atlas label fusion by dictionary evolution.

    PubMed

    Song, Yantao; Wu, Guorong; Bahrami, Khosro; Sun, Quansen; Shen, Dinggang

    2017-02-01

    Accurate segmentation of anatomical structures in medical images is important in recent imaging based studies. In the past years, multi-atlas patch-based label fusion methods have achieved a great success in medical image segmentation. In these methods, the appearance of each input image patch is first represented by an atlas patch dictionary (in the image domain), and then the latent label of the input image patch is predicted by applying the estimated representation coefficients to the corresponding anatomical labels of the atlas patches in the atlas label dictionary (in the label domain). However, due to the generally large gap between the patch appearance in the image domain and the patch structure in the label domain, the estimated (patch) representation coefficients from the image domain may not be optimal for the final label fusion, thus reducing the labeling accuracy. To address this issue, we propose a novel label fusion framework to seek for the suitable label fusion weights by progressively constructing a dynamic dictionary in a layer-by-layer manner, where the intermediate dictionaries act as a sequence of guidance to steer the transition of (patch) representation coefficients from the image domain to the label domain. Our proposed multi-layer label fusion framework is flexible enough to be applied to the existing labeling methods for improving their label fusion performance, i.e., by extending their single-layer static dictionary to the multi-layer dynamic dictionary. The experimental results show that our proposed progressive label fusion method achieves more accurate hippocampal segmentation results for the ADNI dataset, compared to the counterpart methods using only the single-layer static dictionary. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification.

    PubMed

    Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; Zhang, David

    2017-02-01

    Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.

  12. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Automatic labeling of MR brain images through extensible learning and atlas forests.

    PubMed

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic

  14. Increased level of annexin A1 in bronchoalveolar lavage fluid as a potential diagnostic indicator for lung cancer.

    PubMed

    Biaoxue, Rong; Xiguang, Cai; Hua, Liu; Tian, Fu; Wenlong, Gao

    2017-03-02

    Annexin A1 has been implicated in various tumor types, but few studies have investigated its involvement in lung cancer. The purpose of this investigation was to quantify the annexin A1 level in bronchoalveolar lavage fluid (BALF) and analyze its usefulness in lung cancer diagnosis. Annexin A1 expression was measured by immunohistochemistry and enzyme immunoassay. The sensitivity and specificity of annexin A1 for distinguishing lung cancer were determined by receiver operator characteristic (ROC) curves. Tumor tissues, BALF and serum of patients with lung cancer contained higher levels of annexin A1 than those of the control group of patients with benign lung diseases. Moreover, an increased level of BALF annexin A1 was closely correlated with lymphatic invasion and malignant progression of lung cancer. The sensitivity and specificity of BALF annexin A1 for distinguishing lung cancer were 94.2% and 90.2%, respectively. Increased annexin A1 in BALF was correlated with lymphatic invasion and malignant progression of lung cancer, suggesting that it could be an indicator for discerning lung cancer and predicting outcome.

  15. Multi-atlas label fusion using hybrid of discriminative and generative classifiers for segmentation of cardiac MR images.

    PubMed

    Sedai, Suman; Garnavi, Rahil; Roy, Pallab; Xi Liang

    2015-08-01

    Multi-atlas segmentation first registers each atlas image to the target image and transfers the label of atlas image to the coordinate system of the target image. The transferred labels are then combined, using a label fusion algorithm. In this paper, we propose a novel label fusion method which aggregates discriminative learning and generative modeling for segmentation of cardiac MR images. First, a probabilistic Random Forest classifier is trained as a discriminative model to obtain the prior probability of a label at the given voxel of the target image. Then, a probability distribution of image patches is modeled using Gaussian Mixture Model for each label, providing the likelihood of the voxel belonging to the label. The final label posterior is obtained by combining the classification score and the likelihood score under Bayesian rule. Comparative study performed on MICCAI 2013 SATA Segmentation Challenge demonstrates that our proposed hybrid label fusion algorithm is accurate than other five state-of-the-art label fusion methods. The proposed method obtains dice similarity coefficient of 0.94 and 0.92 in segmenting epicardium and endocardium respectively. Moreover, our label fusion method achieves more accurate segmentation results compared to four other label fusion methods.

  16. Time course of Paclitaxel-induced apoptosis in an experimental model of virus-induced breast cancer.

    PubMed

    Erba, Paola A; Manfredi, Chiara; Lazzeri, Elena; Minichilli, Fabrizio; Pauwels, Ernest K J; Sbrana, Alberto; Strauss, H William; Mariani, Giuliano

    2010-05-01

    Early assessment of the efficacy of treatment is important in patients with breast cancer, whose routine adjuvant regimen frequently includes chemotherapy. Irrespective of the exact mechanisms involved in induction, the common early phenotypic marker of apoptosis is the expression on the outer cell membrane surface of phosphatidylserine, which avidly binds annexin V. (99m)Tc-labeled annexin V has been proposed for in vivo scintigraphic detection of apoptosis, albeit with contradicting results. This study was performed to define the time course of apoptosis induced by the chemotherapeutic agent paclitaxel in a model of virus-induced murine breast cancer. The RIII virus induces an estrogen-dependent, slow-growing breast cancer; BALB-c/cRIII female mice with breast tumors averaging 10 mm were studied, both in baseline conditions and at various times after the intravenous administration of paclitaxel (equivalent to a human dose of 20 mg/70 kg of body weight). The biodistribution of (99m)Tc-annexin V was evaluated at baseline and then at 1, 3, 6, and 24 h after paclitaxel administration. Apoptotic and antiapoptotic markers were also evaluated in tumor samples obtained at the same time points: DNA breaks (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling [TUNEL]), active caspase-3, apoptosis-inducing factor, and Bcl-2 protein. Baseline uptake of (99m)Tc-annexin V in breast tumors was about 2-fold higher than the uptake in normal breast tissue (demonstrating some ongoing apoptosis); tracer uptake increased at 1 and 3 h after paclitaxel administration (to almost double the baseline value) and then declined to levels even lower than baseline. Although no activation of the apoptosis-inducing factor mechanism was detected, a peak in TUNEL-positive tumor cells was reached 3 h after paclitaxel administration (to more than 6-fold the baseline level). The antiapoptotic marker Bcl-2 exhibited a biphasic pattern, with a maximum drop at 3 h, followed by return

  17. Annexin A2 is an independent prognostic biomarker for evaluating the malignant progression of laryngeal cancer

    PubMed Central

    Luo, Shi; Xie, Chubo; Wu, Ping; He, Jian; Tang, Yaoyun; Xu, Jing; Zhao, Suping

    2017-01-01

    Due to the lack of a definite diagnosis, a frequent recurrence rate and resistance to chemotherapy or radiotherapy, the clinical outcome for patients with advanced laryngeal cancer has not improved over the last decade. Annexin A2 is associated with the invasion and metastasis of cancer cells. In the present study, it was demonstrated using differential proteomics analysis that Annexin A2 is highly expressed in laryngeal carcinoma tissues and this was confirmed using immunohistochemistry, which demonstrated that the expression of Annexin A2 in laryngeal carcinoma tissues was significantly higher than in healthy adjacent tissue. In addition, its potential predictive value in the prognosis of patients with laryngeal carcinoma was evaluated. The results demonstrated that Annexin A2 expression was significantly associated with tumor size, lymph node metastasis, distant metastasis and clinical stage. In addition, higher Annexin A2 expression was associated with a poor prognosis of patients with laryngeal cancer. Thus, the results of the present study indicate that Annexin A2 expression is an independent prognostic biomarker for evaluating the malignant progression of laryngeal cancer. PMID:29285166

  18. Labeling tetracysteine-tagged proteins with biarsenical dyes for live cell imaging.

    PubMed

    Gaietta, Guido M; Deerinck, Thomas J; Ellisman, Mark H

    2011-01-01

    Correlation of real-time or time-lapse light microscopy (LM) with electron microscopy (EM) of cells can be performed with biarsenical dyes. These dyes fluorescently label tetracysteine-tagged proteins so that they can be imaged with LM and, upon fluorescent photoconversion of 3,3'-diaminobenzidine tetrahydrochloride (DAB), with EM as well. In the following protocol, cells expressing tetracysteine-tagged proteins are labeled for 1 h with biarsenical dyes. The volumes indicated are for a single 30-mm culture dish containing 2 mL of labeling medium. Scale the suggested volumes up or down depending upon the size of the culture dish used in the labeling. The same procedure can be adapted for longer labeling times by lowering the amount of dye used to 50-100 nM; however, the amount of the competing dithiol EDT is maintained at 10-20 μM. Longer labeling times often produce higher signal-to-noise ratios and cause less trauma to the treated cells prior to imaging.

  19. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy

    DOE PAGES

    Lu, Fa-Ke; Basu, Srinjan; Igras, Vivien; ...

    2015-08-31

    Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based onmore » changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Moreover, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. In conclusion, our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time.« less

  20. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy

    PubMed Central

    Lu, Fa-Ke; Basu, Srinjan; Igras, Vivien; Hoang, Mai P.; Ji, Minbiao; Fu, Dan; Holtom, Gary R.; Neel, Victor A.; Freudiger, Christian W.; Fisher, David E.; Xie, X. Sunney

    2015-01-01

    Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based on changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Furthermore, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. Our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time. PMID:26324899

  1. A near-infrared phthalocyanine dye-labeled agent for integrin αvβ6-targeted theranostics of pancreatic cancer.

    PubMed

    Gao, Duo; Gao, Liquan; Zhang, Chenran; Liu, Hao; Jia, Bing; Zhu, Zhaohui; Wang, Fan; Liu, Zhaofei

    2015-06-01

    Integrin αvβ6 is widely upregulated in variant malignant cancers but is undetectable in normal organs, making it a promising target for cancer diagnostic imaging and therapy. Using streptavidin-biotin chemistry, we synthesized an integrin αvβ6-targeted near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated whether it could be used for cancer imaging, optical imaging-guided surgery, and phototherapy in pancreatic cancer mouse models. Dye-SA-B-HK specifically bound to integrin αvβ6 in vitro and in vivo with high receptor binding affinity. Using small-animal optical imaging, we detected subcutaneous and orthotopic BxPC-3 human pancreatic cancer xenografts in vivo. Upon optical image-guidance, the orthotopically growing pancreatic cancer lesions could be successfully removed by surgery. Using light irradiation, Dye-SA-B-HK manifested remarkable antitumor effects both in vitro and in vivo. (18)F-FDG positron emission tomography (PET) imaging and ex vivo fluorescence staining validated the observed decrease in proliferation of treated tumors by Dye-DA-B-HK phototherapy. Tissue microarray results revealed overexpression of integrin αvβ6 in over 95% cases of human pancreatic cancer, indicating that theranostic application of Dye-DA-B-HK has clear translational potential. Overall, the results of this study demonstrated that integrin αvβ6-specific Dye-SA-B-HK is a promising theranostic agent for the management of pancreatic cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  3. Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging.

    PubMed

    Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J

    2012-07-01

    A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.

  4. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    PubMed

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  5. Modeling of annexin A2-Membrane interactions by molecular dynamics simulations.

    PubMed

    Hakobyan, Davit; Gerke, Volker; Heuer, Andreas

    2017-01-01

    The annexins are a family of Ca2+-regulated phospholipid binding proteins that are involved in membrane domain organization and membrane trafficking. Although they are widely studied and crystal structures are available for several soluble annexins their mode of membrane association has never been studied at the molecular level. Here we obtained molecular information on the annexin-membrane interaction that could serve as paradigm for the peripheral membrane association of cytosolic proteins by Molecular Dynamics simulations. We analyzed systems containing the monomeric annexin A2 (AnxA2), a membrane with negatively charged phosphatidylserine (POPS) lipids as well as Ca2+ ions. On the atomic level we identify the AnxA2 orientations and the respective residues which display the strongest interaction with Ca2+ ions and the membrane. The simulation results fully agree with earlier experimental findings concerning the positioning of bound Ca2+ ions. Furthermore, we identify for the first time a significant interaction between lysine residues of the protein and POPS lipids that occurs independently of Ca2+ suggesting that AnxA2-membrane interactions can also occur in a low Ca2+ environment. Finally, by varying Ca2+ concentrations and lipid composition in our simulations we observe a calcium-induced negative curvature of the membrane as well as an AnxA2-induced lipid ordering.

  6. Annexins are instrumental for efficient plasma membrane repair in cancer cells.

    PubMed

    Lauritzen, Stine Prehn; Boye, Theresa Louise; Nylandsted, Jesper

    2015-09-01

    Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Polar distribution of annexin-like proteins during phytochrome-mediated initiation and growth of rhizoids in the ferns Dryopteris and Anemia

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Turnwald, S.; Tirlapur, U. K.; Haas, C. J.; von der Mark, K.; Roux, S. J.; Scheuerlein, R.

    1995-01-01

    Although the calcium requirement of phytochrome-mediated fern spore germination and early rhizoid growth is well established, the calcium-binding proteins that serve as transducers for these responses are not known. Here we report the presence of annexin-like proteins in germinating spores of Dryopteris filix-mas (L.) Schott and Anemia phyllitidis (L.) Sw. and evidence that they may be important participants in early photomorphogenic changes in gametophytes. Immunolocalization and immunoblot assays of these proteins were carried out using polyclonal antibodies raised either against a 35-kDa annexin-like protein from pea or against anchorin CII from chicken. Western-blot analysis showed that crude protein extracts obtained from both species after red-light treatment contained two cross-reactive protein bands with molecular weights around 70 kDa. These proteins were annexin-like in that they bound to a phosphatidylserine affinity column in a calcium-dependent fashion. Using this column, two protein bands around 70 kDa, i.e. 67 and 73 kDa, were partially purified together with proteins at 36 kDa and a doublet at 54 kDa. Proteins of these latter molecular weights are suggested to be members of the annexin family, but no cross-reactivity could be found between these and the two antibodies used in our investigations. Immunodetectable levels of these proteins were observed only after light-mediated induction of spore germination. Imaging of the immuno-localization patterns observed with both antibodies showed that the annexin-like proteins are concentrated at the extreme tips of the rhizoids in D. filix-mas and A. phyllitidis during rhizoid initiation and all stages of elongation. We suggest that these proteins may play a major role in the tip-oriented exocytosis events that are critical for the initiation and growth of fern rhizoids.

  8. Polar distribution of annexin-like proteins during phytochrome-mediated initiation and growth of rhizoids in the ferns Dryopteris and Anemia.

    PubMed

    Clark, G B; Turnwald, S; Tirlapur, U K; Haas, C J; von der Mark, K; Roux, S J; Scheuerlein, R

    1995-01-01

    Although the calcium requirement of phytochrome-mediated fern spore germination and early rhizoid growth is well established, the calcium-binding proteins that serve as transducers for these responses are not known. Here we report the presence of annexin-like proteins in germinating spores of Dryopteris filix-mas (L.) Schott and Anemia phyllitidis (L.) Sw. and evidence that they may be important participants in early photomorphogenic changes in gametophytes. Immunolocalization and immunoblot assays of these proteins were carried out using polyclonal antibodies raised either against a 35-kDa annexin-like protein from pea or against anchorin CII from chicken. Western-blot analysis showed that crude protein extracts obtained from both species after red-light treatment contained two cross-reactive protein bands with molecular weights around 70 kDa. These proteins were annexin-like in that they bound to a phosphatidylserine affinity column in a calcium-dependent fashion. Using this column, two protein bands around 70 kDa, i.e. 67 and 73 kDa, were partially purified together with proteins at 36 kDa and a doublet at 54 kDa. Proteins of these latter molecular weights are suggested to be members of the annexin family, but no cross-reactivity could be found between these and the two antibodies used in our investigations. Immunodetectable levels of these proteins were observed only after light-mediated induction of spore germination. Imaging of the immuno-localization patterns observed with both antibodies showed that the annexin-like proteins are concentrated at the extreme tips of the rhizoids in D. filix-mas and A. phyllitidis during rhizoid initiation and all stages of elongation. We suggest that these proteins may play a major role in the tip-oriented exocytosis events that are critical for the initiation and growth of fern rhizoids.

  9. Learning a Dictionary of Shape Epitomes with Applications to Image Labeling

    PubMed Central

    Chen, Liang-Chieh; Papandreou, George; Yuille, Alan L.

    2015-01-01

    The first main contribution of this paper is a novel method for representing images based on a dictionary of shape epitomes. These shape epitomes represent the local edge structure of the image and include hidden variables to encode shift and rotations. They are learnt in an unsupervised manner from groundtruth edges. This dictionary is compact but is also able to capture the typical shapes of edges in natural images. In this paper, we illustrate the shape epitomes by applying them to the image labeling task. In other work, described in the supplementary material, we apply them to edge detection and image modeling. We apply shape epitomes to image labeling by using Conditional Random Field (CRF) Models. They are alternatives to the superpixel or pixel representations used in most CRFs. In our approach, the shape of an image patch is encoded by a shape epitome from the dictionary. Unlike the superpixel representation, our method avoids making early decisions which cannot be reversed. Our resulting hierarchical CRFs efficiently capture both local and global class co-occurrence properties. We demonstrate its quantitative and qualitative properties of our approach with image labeling experiments on two standard datasets: MSRC-21 and Stanford Background. PMID:26321886

  10. Annexins - scaffolds modulating PKC localization and signaling.

    PubMed

    Hoque, Monira; Rentero, Carles; Cairns, Rose; Tebar, Francesc; Enrich, Carlos; Grewal, Thomas

    2014-06-01

    Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca(2+)) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hartung, Annegret; Lisy, Marcus R.; Herrmann, Karl-Heinz; Hilger, Ingrid; Schüler, Dirk; Lang, Claus; Bellemann, Matthias E.; Kaiser, Werner A.; Reichenbach, Jürgen R.

    2007-04-01

    This work investigated macrophages labeled with magnetosomes for the possible detection of inflammations by MR molecular imaging. Pure magnetosomes and macrophages containing magnetosomes were analyzed using a clinical 1.5 T MR-scanner. Relaxivities of magnetosomes and relaxation rates of cells containing magnetosomes were determined. Peritonitis was induced in two mice. T1, T2 and T2* weighted images were acquired following injection of the probes. Pure magnetosomes and labeled cells showed slight effects on T1, but strong effects on T2 and T2* images. Labeled macrophages were located with magnetic resonance imaging (MRI) in the colon area, thus demonstrating the feasibility of the proposed approach.

  12. ECT imaging with Tc(V)-99m dimercaptosuccinic acid useful to detect lung metastases of osteosarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, H.; Ishii, M.; Yoshizumi, M.

    1985-01-01

    ECT imaging, using Tc(V)-99m dimercaptosuccinic acid (Tc(V)-DMS) was performed in two patients with lung metastasis of osteosarcoma, and the results were compared with those of CT scan. Clear accumulation of Tc(V)-DMS was recognized in all cases in the same area that CT scans demonstrated. Tc(V)-DMS was labeled under optimal pH 8, had very low SnCl/sub 2/ concentrations, an equilibrium between a stable form and a dissociated form of anion TcO/sub 4/(3-) structurally similar to PO/sub 4/(3-), and was postulated for tumor uptake. Considering this proposed mechanism for Tc(V)-DMS uptake by tumor cells, ECT imaging using this tracer could be ofmore » use in the early detection of lung metastasis of osteosarcoma.« less

  13. Non-rigid ultrasound image registration using generalized relaxation labeling process

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  14. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-11-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  15. Annexin A1 influences in breast cancer: Controversies on contributions to tumour, host and immunoediting processes.

    PubMed

    Tu, Yan; Johnstone, Cameron N; Stewart, Alastair G

    2017-05-01

    Annexin A1 is a multifunctional protein characterised by its actions in modulating the innate and adaptive immune response. Accumulating evidence of altered annexin A1 expression in many human tumours raises interest in its functional role in cancer biology. In breast cancer, altered annexin A1 expression levels suggest a potential influence on tumorigenic and metastatic processes. However, reports of conflicting results reveal a relationship that is much more complex than first conceptualised. In this review, we explore the diverse actions of annexin A1 on breast tumour cells and various host cell types, including stromal immune and structural cells, particularly in the context of cancer immunoediting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Label fusion based brain MR image segmentation via a latent selective model

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Guo, Xiantang; Zhu, Kai; Liao, Hengxu

    2018-04-01

    Multi-atlas segmentation is an effective approach and increasingly popular for automatically labeling objects of interest in medical images. Recently, segmentation methods based on generative models and patch-based techniques have become the two principal branches of label fusion. However, these generative models and patch-based techniques are only loosely related, and the requirement for higher accuracy, faster segmentation, and robustness is always a great challenge. In this paper, we propose novel algorithm that combines the two branches using global weighted fusion strategy based on a patch latent selective model to perform segmentation of specific anatomical structures for human brain magnetic resonance (MR) images. In establishing this probabilistic model of label fusion between the target patch and patch dictionary, we explored the Kronecker delta function in the label prior, which is more suitable than other models, and designed a latent selective model as a membership prior to determine from which training patch the intensity and label of the target patch are generated at each spatial location. Because the image background is an equally important factor for segmentation, it is analyzed in label fusion procedure and we regard it as an isolated label to keep the same privilege between the background and the regions of interest. During label fusion with the global weighted fusion scheme, we use Bayesian inference and expectation maximization algorithm to estimate the labels of the target scan to produce the segmentation map. Experimental results indicate that the proposed algorithm is more accurate and robust than the other segmentation methods.

  17. Tc-99m Labeled carrier for imaging

    DOEpatents

    Henze, Eberhard

    1984-01-01

    Novel radionuclide imaging agents, having particular application for lymphangiography are provided by non-covalently binding Tc-99m to a pharmaceutically acceptable cross-linked polysaccharide. Upon injection of the Tc-99m labeled polysaccharide into the blood stream, optimum contrast can be obtained within one hour.

  18. A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques

    NASA Astrophysics Data System (ADS)

    Kulkarni, Padmakar V.; Vasdev, Neil; Hao, Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu, Bao Xi; Sun, Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.

    2011-06-01

    Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.

  19. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.

    PubMed

    You, Sixian; Tu, Haohua; Chaney, Eric J; Sun, Yi; Zhao, Youbo; Bower, Andrew J; Liu, Yuan-Zhi; Marjanovic, Marina; Sinha, Saurabh; Pu, Yang; Boppart, Stephen A

    2018-05-29

    Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM.

  20. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2016-10-01

    migrate in the presence of macrophages in an in vitro system. In addition, analysis of human retinal tissue from subjects undergoing ocular surgery... tissue from subjects undergoing ocular surgery for PVR reveals the presence of A2- immunoreactive cells that express both macrophage and RPE cell...greatly attenuated in the absence of annexin A2. Task 2: Macrophage depletion and tissue specific knockout. We have completed the characterization

  1. Impact of explained v. unexplained front-of-package nutrition labels on parent and child food choices: a randomized trial.

    PubMed

    Graham, Dan J; Lucas-Thompson, Rachel G; Mueller, Megan P; Jaeb, Melanie; Harnack, Lisa

    2017-04-01

    The present study investigated whether parent/child pairs would select more healthful foods when: (i) products were labelled with front-of-package (FOP) nutrition labels relative to packages without labels; (ii) products were labelled with colour-coded Multiple Traffic Light (MTL) FOP labels relative to monochromatic Facts up Front (FuF) FOP labels; and (iii) FOP labels were explained via in-aisle signage v. unexplained. Participants were randomly assigned to one of five conditions: (i) FuF labels with in-aisle signs explaining the labels; (ii) FuF labels, no signage; (iii) MTL labels with in-aisle signage; (iv) MTL labels, no signage; (v) control group, no labels/signage. Saturated fat, sodium, sugar and energy (calorie) content were compared across conditions. The study took place in a laboratory grocery aisle. Parent/child pairs (n 153) completed the study. Results did not support the hypothesis that MTL labels would lead to more healthful choices than FuF labels. The presence of FOP labels did little to improve the healthfulness of selected foods, with few exceptions (participants with v. without access to FOP labels selected lower-calorie cereals, participants with access to both FOP labels and in-aisle explanatory signage selected products with less saturated fat v. participants without explanatory signage). Neither MTL nor FuF FOP labels led to food choices with significantly lower saturated fat, sodium or sugar. In-aisle signs explaining the FOP labels were somewhat helpful to consumers in making more healthful dietary decisions. New FOP labelling programmes could benefit from campaigns to increase consumer awareness and understanding of the labels.

  2. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting.

    PubMed

    Delbes, G; Herrero, M B; Troeung, E-T; Chan, P T K

    2013-09-01

    Sperm chromatin integrity may affect the outcomes of assisted reproductive technology (ART). Developing a clinically reliable strategy to enrich sperm samples with high chromatin quality spermatozoa prior to sperm banking or use in ART would thus be advantageous. The objectives of this study were to: (i) assess the sperm chromatin quality in men with different categories of semen parameters; and (ii) evaluate the extents of Annexin-V magnetic-activated cell sorting (MACS) technology coupled with differential density gradient centrifugation (DGC) in improving sperm chromatin quality. Three categories of men from couples attending a university-based fertility clinic were recruited based on their semen parameters: normozoospermic (n = 13), asthenoteratozoospermic (n = 17) and teratozoospermic (n = 12). For each patient, spermatozoa in semen samples were processed first by DGC to enrich the motility and further by MACS to remove spermatozoa showing apoptotic features. The yield and enrichment of sperm quality was evaluated at each step with conventional semen parameters in conjunction with a combination of five complementary assays, to assess sperm maturity, chromatin structure, compaction and DNA integrity (Hyaluronic Binding Assay, SCSA, chromomycine A3 staining and TUNEL and COMET assays). Our results demonstrated that, compared with normozoospermic samples, raw asthenoteratozoospermic and teratozoospermic samples had a higher proportion of spermatozoa containing DNA breaks, but only asthenoteratozoospermic exhibited altered chromatin structure and decreased binding to hyaluronic acid. Interestingly, the DGC appeared to select for more mature spermatozoa with high DNA compaction. More importantly, in all categories of semen samples, Annexin-V MACS allows enrichment of spermatozoa with good chromatin quality as measured by the TUNEL and SCSA. Because effective treatment modalities to improve sperm DNA damage are limited, our results suggest a potential clinical

  3. Novel fluorescence molecular imaging of chemotherapy-induced intestinal apoptosis

    NASA Astrophysics Data System (ADS)

    Levin, Galit; Shirvan, Anat; Grimberg, Hagit; Reshef, Ayelet; Yogev-Falach, Merav; Cohen, Avi; Ziv, Ilan

    2009-09-01

    Chemotherapy-induced enteropathy (CIE) is one of the most serious complications of anticancer therapy, and tools for its early detection and monitoring are highly needed. We report on a novel fluorescence method for detection of CIE, based on molecular imaging of the related apoptotic process. The method comprises systemic intravenous administration of the ApoSense fluorescent biomarker (N,N'-didansyl-L-cystine DDC) in vivo and subsequent fluorescence imaging of the intestinal mucosa. In the reported proof-of-concept studies, mice were treated with either taxol+cyclophosphamide or doxil. DDC was administered in vivo at various time points after drug administration, and tracer uptake by ileum tissue was subsequently evaluated by ex vivo fluorescent microscopy. Chemotherapy caused marked and selective uptake of DDC in ileal epithelial cells, in correlation with other hallmarks of apoptosis (i.e., DNA fragmentation and Annexin-V binding). Induction of DDC uptake occurred early after chemotherapy, and its temporal profile was parallel to that of the apoptotic process, as assessed histologically. DDC may therefore serve as a useful tool for detection of CIE. Future potential integration of this method with fluorescent endoscopic techniques, or development of radio-labeled derivatives of DDC for emission tomography, may advance early diagnosis and monitoring of this severe adverse effect of chemotherapy.

  4. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  5. Self-assessed performance improves statistical fusion of image labels

    PubMed Central

    Bryan, Frederick W.; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M.; Reich, Daniel S.; Landman, Bennett A.

    2014-01-01

    Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance

  6. Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.

    PubMed

    Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang

    2018-09-01

    Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.

  7. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2017-10-01

    cells , leading to formation of an epiretinal membrane, retinal detachment, and loss of vision. At present, there are no reliable means of...type versus annexin A2- deficient mice, [2] define the role of A2 in the function of activated macrophages and RPE cells in PVR, and [3] examine the...expression is needed in both macrophages and RPE cells , and that A2 is extensively expressed within cells of epiretinal membranes in human PVR. Our

  8. 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging.

    PubMed

    Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A

    2011-07-01

    Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.

  9. Label-free imaging of cellular malformation using high resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Li, Bingbing; Yang, Sihua

    2014-09-01

    A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.

  10. Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes.

    PubMed

    Kamal, A; Ying, Y; Anderson, R G

    1998-08-24

    Previously we reported that annexin VI is required for the budding of clathrin-coated pits from human fibroblast plasma membranes in vitro. Here we show that annexin VI bound to the NH2-terminal 28-kD portion of membrane spectrin is as effective as cytosolic annexin VI in supporting coated pit budding. Annexin VI-dependent budding is accompanied by the loss of approximately 50% of the spectrin from the membrane and is blocked by the cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Incubation of fibroblasts in the presence of ALLN initially blocks the uptake of low density lipoprotein (LDL), but the cells recover after 1 h and internalize LDL with normal kinetics. The LDL internalized under these conditions, however, fails to migrate to the center of the cell and is not degraded. ALLN-treated cells have twice as many coated pits and twofold more membrane clathrin, suggesting that new coated pits have assembled. Annexin VI is not required for the budding of these new coated pits and ALLN does not inhibit. Finally, microinjection of a truncated annexin VI that inhibits budding in vitro has the same effect on LDL internalization as ALLN. These findings suggest that fibroblasts are able to make at least two types of coated pits, one of which requires the annexin VI-dependent activation of a cysteine protease to disconnect the clathrin lattice from the spectrin membrane cytoskeleton during the final stages of budding.

  11. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity.

    PubMed

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H; Hajjar, Katherine A; Wang, Xiaoying

    2013-06-01

    Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.

  12. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity

    PubMed Central

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H.; Hajjar, Katherine A.; Wang, Xiaoying

    2014-01-01

    Summary Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes. PMID:23572070

  13. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging.

    PubMed

    Wang, Yuqi; An, Ruibing; Luo, Zhiliang; Ye, Deju

    2018-04-17

    Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif.

    PubMed

    Rosenbaum, Sabrina; Kreft, Sandra; Etich, Julia; Frie, Christian; Stermann, Jacek; Grskovic, Ivan; Frey, Benjamin; Mielenz, Dirk; Pöschl, Ernst; Gaipl, Udo; Paulsson, Mats; Brachvogel, Bent

    2011-02-18

    Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.

  15. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    DTIC Science & Technology

    2015-10-01

    eyes and image choroidal vessels/capillaries using CARS intravital microscopy Subtask 3: Measure oxy-hemoglobin levels in PBI test and control eyes...AWARD NUMBER: W81XWH-14-1-0537 TITLE: Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia...4. TITLE AND SUBTITLE Mobile, Multimodal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia 5a. CONTRACT NUMBER W81XWH

  16. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

    PubMed

    Skelton, Rhys J P; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-01

    Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts, highlighting its

  17. Labeling and Magnetic Resonance Imaging of Exosomes Isolated from Adipose Stem Cells.

    PubMed

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2017-06-19

    Adipose stem cells (ASC) represent a promising therapeutic approach for neurodegenerative diseases. Most biological effects of ASC are probably mediated by extracellular vesicles, such as exosomes, which influence the surrounding cells. Current development of exosome therapies requires efficient and noninvasive methods to localize, monitor, and track the exosomes. Among imaging methods used for this purpose, magnetic resonance imaging (MRI) has advantages: high spatial resolution, rapid in vivo acquisition, and radiation-free operation. To be detectable with MRI, exosomes must be labeled with MR contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIO). Here, we set up an innovative approach for exosome labeling that preserves their morphology and physiological characteristics. We show that by labeling ASC with USPIO before extraction of nanovesicles, the isolated exosomes retain nanoparticles and can be visualized by MRI. The current work aims at validating this novel USPIO-based exosome labeling method by monitoring the efficiency of the labeling with MRI both in ASC and in exosomes. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging.

    PubMed

    Valm, Alex M; Mark Welch, Jessica L; Rieken, Christopher W; Hasegawa, Yuko; Sogin, Mitchell L; Oldenbourg, Rudolf; Dewhirst, Floyd E; Borisy, Gary G

    2011-03-08

    Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.

  19. The Protein Corona around Nanoparticles Facilitates Stem Cell Labeling for Clinical MR Imaging.

    PubMed

    Nejadnik, Hossein; Taghavi-Garmestani, Seyed-Meghdad; Madsen, Steven J; Li, Kai; Zanganeh, Saeid; Yang, Phillip; Mahmoudi, Morteza; Daldrup-Link, Heike E

    2018-03-01

    Purpose To evaluate if the formation of a protein corona around ferumoxytol nanoparticles can facilitate stem cell labeling for in vivo tracking with magnetic resonance (MR) imaging. Materials and Methods Ferumoxytol was incubated in media containing human serum (group 1), fetal bovine serum (group 2), StemPro medium (group 3), protamine (group 4), and protamine plus heparin (group 5). Formation of a protein corona was characterized by means of dynamic light scattering, ζ potential, and liquid chromatography-mass spectrometry. Iron uptake was evaluated with 3,3'-diaminobenzidine-Prussian blue staining, lysosomal staining, and inductively coupled plasma spectrometry. To evaluate the effect of a protein corona on stem cell labeling, human mesenchymal stem cells (hMSCs) were labeled with the above formulations, implanted into pig knee specimens, and investigated with T2-weighted fast spin-echo and multiecho spin-echo sequences on a 3.0-T MR imaging unit. Data in different groups were compared by using a Kruskal-Wallis test. Results Compared with bare nanoparticles, all experimental groups showed significantly increased negative ζ values (from -37 to less than -10; P = .008). Nanoparticles in groups 1-3 showed an increased size because of the formation of a protein corona. hMSCs labeled with group 1-5 media showed significantly shortened T2 relaxation times compared with unlabeled control cells (P = .0012). hMSCs labeled with group 3 and 5 media had the highest iron uptake after cells labeled with group 1 medium. After implantation into pig knees, hMSCs labeled with group 1 medium showed significantly shorter T2 relaxation times than hMSCs labeled with group 2-5 media (P = .0022). Conclusion The protein corona around ferumoxytol nanoparticles can facilitate stem cell labeling for clinical cell tracking with MR imaging. © RSNA, 2017 Online supplemental material is available for this article.

  20. Involvement of the Receptor for Formylated Peptides in the in Vivo Anti-Migratory Actions of Annexin 1 and its Mimetics

    PubMed Central

    Perretti, Mauro; Getting, Stephen J.; Solito, Egle; Murphy, Philip M.; Gao, Ji-Liang

    2001-01-01

    An innovative avenue for anti-inflammatory therapy is inhibition of neutrophil extravasation by potentiating the action of endogenous anti-inflammatory mediators. The glucocorticoid-inducible protein annexin 1 and derived peptides are effective in inhibiting neutrophil extravasation. Here we tested the hypothesis that an interaction with the receptor for formylated peptide (FPR), so far reported only in vitro, could be the mechanism for this in vivo action. In a model of mouse peritonitis, FPR antagonists abrogated the anti-migratory effects of peptides Ac2-26 and Ac2-12, with a partial reduction in annexin 1 effects. A similar result was obtained in FPR (knock-out) KO mice. Binding of annexin 1 to circulating leukocytes was reduced (>50%) in FPR KO mice. In vitro, annexin binding to peritoneal macrophages was also markedly reduced in FPR KO mice. Finally, evidence of direct annexin 1 binding to murine FPR was obtained with HEK-293 cells transfected with the receptor. Overall, these results indicate a functional role for FPR in the anti-migratory effect of annexin 1 and derived peptides. PMID:11395373

  1. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    PubMed

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  2. Small molecule inhibitors of the annexin A2 heterotetramer prevent human papillomavirus type 16 infection.

    PubMed

    Woodham, Andrew W; Taylor, Julia R; Jimenez, Andrew I; Skeate, Joseph G; Schmidt, Thomas; Brand, Heike E; Da Silva, Diane M; Kast, W Martin

    2015-01-01

    High-risk human papillomavirus (HPV) infection leads to the development of several human cancers that cause significant morbidity and mortality worldwide. HPV type 16 (HPV16) is the most common of the cancer-causing genotypes and gains entry to the basal cells of the epithelium through a non-canonical endocytic pathway that involves the annexin A2/S100A10 heterotetramer (A2t). A2t is composed of two annexin A2 monomers bound to an S100A10 dimer and this interaction is a potential target to block HPV16 infection. Here, recently identified small molecule inhibitors of A2t (A2ti) were investigated for their ability to prevent HPV16 infection in vitro. A2ti were added to HeLa cells in increasing concentrations prior to the addition of HPV16. Cytotoxicity was evaluated via trypan blue exclusion. HPV16 pseudovirion infection and fluorescently labelled HPV16 capsid internalization was measured with flow cytometry. A2ti blocked HPV16 infection by 100% without substantial cellular toxicity or reduction in cell growth. Furthermore, A2ti blocked HPV16 entry into epithelial cells by 65%, indicating that the observed inhibition of HPV16 infection is in part due to a block in entry and that non-infectious entry may occur in the absence of A2t binding. These results demonstrate that targeting A2t may be an effective strategy to prevent HPV16 infection. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Monitoring apoptosis in real time.

    PubMed

    Green, Allan M; Steinmetz, Neil D

    2002-01-01

    Many therapeutically active anticancer treatments exert their effect by the induction of apoptosis and necrosis. Serial biopsies in breast cancer patients have suggested that response to therapy correlates with early posttreatment increases in tumor apoptotic index. Radiolabeled technetium Tc 99m-recombinant human (rh) annexin V provides a noninvasive technique for imaging treatment-induced cell death. Annexin V is a naturally occurring human protein that binds avidly to membrane-associated phosphatidylserine (PS). PS is normally found only on the inner leaflet of the cell membrane double layer, but it is actively transported to the outer layer as an early event in apoptosis and becomes available for annexin binding. Annexin also gains access to PS as a result of the membrane fragmentation associated with necrosis. In vitro studies of apoptosis using fluorescein annexin have shown good correlation with assessments of apoptosis documented by nuclear DNA degradation and caspase activation. In vivo localization of intravenously administered Tc 99m-annexin V has been demonstrated in numerous preclinical models of apoptosis, including anti-Fas-mediated hepatic apoptosis, rejection of allogeneic heterotopic cardiac allografts, cyclophosphamide treatment of murine lymphoma, cyclophosphamide-induced apoptosis in bone marrow, and leukocyte apoptosis associated with abscess formation. Scintigraphic studies in humans using Tc 99m-rh annexin V have demonstrated the feasibility of imaging cell death in acute myocardial infarction, in tumors with a high apoptotic index, and in response to anti-tumor chemotherapy of non-small cell lung cancer, small-cell lung cancer, breast cancer, lymphoma, and sarcoma. Increased localization of Tc 99m-rh annexin V within 1 to 3 days of chemotherapy has been noted in some, but not all, subjects with these tumors. To date, most subjects showing increased Tc 99m-rh annexin V uptake after the first course of chemotherapy have shown objective

  4. Study of Relative Quantitation of Tc-99m Annexin Localization in Pulmonary Nodules Using an Anthropomorphic Phantom

    NASA Astrophysics Data System (ADS)

    King, M.; Boening, Guido; Baker, S.; Steinmetz, N.

    2004-10-01

    In current clinical oncology practice, it often takes weeks or months of cancer therapy until a response to treatment can be identified by evaluation of tumor size in images. It is hypothesized that changes in relative localization of the apoptosis imaging agent Tc-99m Annexin before and after the administration of chemotherapy may be useful as an early indicator of the success of therapy. The objective of this study was to determine the minimum relative change in tumor localization that could be confidently determined as an increased localization. A modified version of the Data Spectrum Anthropomorphic Torso phantom, in which four spheres could be positioned in the lung region, was filled with organ concentrations of Tc-99m representative of those observed in clinical imaging of Tc-99m Annexin. Five acquisitions of an initial sphere to lung concentration, and at concentrations of 1.1, 1.2, 1.3, and 1.4 times the initial concentration, were acquired at clinically realistic count levels. The acquisitions were reconstructed by filtered backprojection, ordered subset expectation maximization (OSEM) without attenuation compensation (AC), and OSEM with AC. Permutation methodology was used to create multiple region-of-interest count ratios from the five noise realizations at each concentration and between the elevated and initial concentrations. The resulting distributions were approximated by Gaussians, which were then used to estimate the likelihood of Type 1 and Type 2 Errors. It was determined that for the cases investigated, greater than a 20% to 30% or more increase was needed to confidently determine that an increase in localization had occurred depending on sphere size and reconstruction strategy.

  5. A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2016-11-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin α V β 3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin α V β 3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin α V β 3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin α V β 3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin α V β 3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study.

    PubMed

    Buzhynskyy, Nikolay; Golczak, Marcin; Lai-Kee-Him, Joséphine; Lambert, Olivier; Tessier, Béatrice; Gounou, Céline; Bérat, Rémi; Simon, Anne; Granier, Thierry; Chevalier, Jean-Marc; Mazères, Serge; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Brisson, Alain R

    2009-10-01

    Annexins are soluble proteins that bind to biological membranes in a Ca(2+)-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear. To address this question, we studied the association of AnxA6 with model phospholipid membranes by combining the techniques of quartz crystal microbalance with dissipation monitoring (QCM-D), (cryo-) transmission electron microscopy (TEM) and atomic force microscopy (AFM). The properties of membrane binding and membrane aggregation of AnxA6 were compared to two reference systems, annexin A5 (AnxA5), which is the annexin prototype, and a chimerical AnxA5-dimer molecule, which is able to aggregate two membranes in a symmetrical manner. We show that AnxA6 presents two modes of association with lipid membranes depending on Ca(2+)-concentration. At low Ca(2+)-concentration ( approximately 60-150microM), AnxA6 binds to membranes via its two coplanar annexin modules and is not able to associate two separate membranes. At high Ca(2+)-concentration ( approximately 2mM), AnxA6 molecules are able to bind two adjacent phospholipid membranes and present a conformation similar to the AnxA6 3D crystallographic structure. Possible biological implications of these novel membrane-binding properties of AnxA6 are discussed.

  7. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling.

    PubMed

    Cui, Hong-Yong; Wang, Shi-Jie; Miao, Ji-Yu; Fu, Zhi-Guang; Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-02-02

    The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis.

  8. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling

    PubMed Central

    Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-01-01

    The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis. PMID:26716413

  9. Watermarking and copyright labeling of printed images

    NASA Astrophysics Data System (ADS)

    Hel-Or, Hagit Z.

    2001-07-01

    Digital watermarking is a labeling technique for digital images which embeds a code into the digital data so the data are marked. Watermarking techniques previously developed deal with on-line digital data. These techniques have been developed to withstand digital attacks such as image processing, image compression and geometric transformations. However, one must also consider the readily available attack of printing and scanning. The available watermarking techniques are not reliable under printing and scanning. In fact, one must consider the availability of watermarks for printed images as well as for digital images. An important issue is to intercept and prevent forgery in printed material such as currency notes, back checks, etc. and to track and validate sensitive and secrete printed material. Watermarking in such printed material can be used not only for verification of ownership but as an indicator of date and type of transaction or date and source of the printed data. In this work we propose a method of embedding watermarks in printed images by inherently taking advantage of the printing process. The method is visually unobtrusive to the printed image, the watermark is easily extracted and is robust under reconstruction errors. The decoding algorithm is automatic given the watermarked image.

  10. Fluorescence labeled microbubbles for multimodal imaging.

    PubMed

    Barrefelt, Åsa; Zhao, Ying; Larsson, Malin K; Egri, Gabriella; Kuiper, Raoul V; Hamm, Jörg; Saghafian, Maryam; Caidahl, Kenneth; Brismar, Torkel B; Aspelin, Peter; Heuchel, Rainer; Muhammed, Mamoun; Dähne, Lars; Hassan, Moustapha

    2015-08-28

    Air-filled polyvinyl alcohol microbubbles (PVA-MBs) were recently introduced as a contrast agent for ultrasound imaging. In the present study, we explore the possibility of extending their application in multimodal imaging by labeling them with a near infrared (NIR) fluorophore, VivoTag-680. PVA-MBs were injected intravenously into FVB/N female mice and their dynamic biodistribution over 24 h was determined by 3D-fluorescence imaging co-registered with 3D-μCT imaging, to verify the anatomic location. To further confirm the biodistribution results from in vivo imaging, organs were removed and examined histologically using bright field and fluorescence microscopy. Fluorescence imaging detected PVA-MB accumulation in the lungs within the first 30 min post-injection. Redistribution to a low extent was observed in liver and kidneys at 4 h, and to a high extent mainly in the liver and spleen at 24 h. Histology confirmed PVA-MB localization in lung capillaries and macrophages. In the liver, they were associated with Kupffer cells; in the spleen, they were located mostly within the marginal-zone. Occasional MBs were observed in the kidney glomeruli and interstitium. The potential application of PVA-MBs as a contrast agent was also studied using ultrasound (US) imaging in subcutaneous and orthotopic pancreatic cancer mouse models, to visualize blood flow within the tumor mass. In conclusion, this study showed that PVA-MBs are useful as a contrast agent for multimodal imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Conformational flexibility of domain III of annexin V: the effect of pH and binding to membrane-water interfaces

    NASA Astrophysics Data System (ADS)

    Sopkova, Jana; Vincent, Michel; Takahashi, Maza; Lewit-Bentley, Anita; Gallay, Jacques

    1999-05-01

    Steady-state and time-resolved fluorescence of the single tryptophan residue (W187) of annexin V show that the conformation and the dynamics of domain III are strongly modified upon binding of the protein to negatively charged phospholipid vesicles in the presence of calcium, or upon incorporation into reverse micelles of water/sodium bis(2- ethylhexyl) sulfosuccinate (AOT) in iso-octane. In the protein at neutral pH, W187 is slightly mobile and buried in a hydrophobic pocket. It becomes more mobile and is moved in a more polar environment when the protein interacts with the model membranes. In each condition, the heterogeneity of the fluorescence intensity decay of W187 is likely due to the co- existence of local conformers with different dynamics. A similar change of conformation and dynamics can be provoked by mild acidic pH. This suggests that electrostatic interactions are important for the folding of domain III. An interplay of salt bridges implying charged amino-acid side-chains at the protein surface in domain III can be observed in the crystal structure. Local pH modifications at the membrane surface can therefore be responsible for the observed conformational change. The high flexibility of domain III in the membrane- bound protein suggests moreover that this domain may not be crucial for the interaction of the protein with the membrane, in agreement with recent atomic force microscope results (Reviakine et al., 1998, J. Struct. Biol. 121, 356-362).

  12. Label-free volumetric optical imaging of intact murine brains

    NASA Astrophysics Data System (ADS)

    Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.

    2017-04-01

    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).

  13. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    PubMed

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  14. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands

  15. New horizons in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers.

    PubMed

    Kobayashi, Ryohei; Chen, Xinyu; Werner, Rudolf A; Lapa, Constantin; Javadi, Mehrbod S; Higuchi, Takahiro

    2017-12-01

    Cardiac sympathetic nervous activity can be uniquely visualized by non-invasive radionuclide imaging techniques due to the fast growing and widespread application of nuclear cardiology in the last few years. The norepinephrine analogue 123 I-meta-iodobenzylguanidine ( 123 I-MIBG) is a single photon emission computed tomography (SPECT) tracer for the clinical implementation of sympathetic nervous imaging for both diagnosis and prognosis of heart failure. Meanwhile, positron emission tomography (PET) imaging has become increasingly attractive because of its higher spatial and temporal resolution compared to SPECT, which allows regional functional and dynamic kinetic analysis. Nevertheless, wider use of cardiac sympathetic nervous PET imaging is still limited mainly due to the demand of costly on-site cyclotrons, which are required for the production of conventional 11 C-labeled (radiological half-life, 20 min) PET tracers. Most recently, more promising 18 F-labeled (half-life, 110 min) PET radiopharmaceuticals targeting sympathetic nervous system have been introduced. These tracers optimize PET imaging and, by using delivery networks, cost less to produce. In this article, the latest advances of sympathetic nervous imaging using 18 F-labeled radiotracers along with their possible applications are reviewed.

  16. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes

    PubMed Central

    2015-01-01

    Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β+ decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of 18F into molecules of interest. The significant increase in 18F radiotracers for PET imaging accentuates the need for simple and efficient 18F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for 18F labeling of small molecules and biomolecules. PMID:25473848

  17. Label-free chemical imaging of live Euglena gracilis by high-speed SRS spectral microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wakisaka, Yoshifumi; Suzuki, Yuta; Tokunaga, Kyoya; Hirose, Misa; Domon, Ryota; Akaho, Rina; Kuroshima, Mai; Tsumura, Norimichi; Shimobaba, Tomoyoshi; Iwata, Osamu; Suzuki, Kengo; Nakashima, Ayaka; Goda, Keisuke; Ozeki, Yasuyuki

    2016-03-01

    Microbes, especially microalgae, have recently been of great interest for developing novel biofuels, drugs, and biomaterials. Imaging-based screening of live cells can provide high selectivity and is attractive for efficient bio-production from microalgae. Although conventional cellular screening techniques use cell labeling, labeling of microbes is still under development and can interfere with their cellular functions. Furthermore, since live microbes move and change their shapes rapidly, a high-speed imaging technique is required to suppress motion artifacts. Stimulated Raman scattering (SRS) microscopy allows for label-free and high-speed spectral imaging, which helps us visualize chemical components inside biological cells and tissues. Here we demonstrate high-speed SRS imaging, with temporal resolution of 0.14 seconds, of intracellular distributions of lipid, polysaccharide, and chlorophyll concentrations in rapidly moving Euglena gracilis, a unicellular phytoflagellate. Furthermore, we show that our method allows us to analyze the amount of chemical components inside each living cell. Our results indicate that SRS imaging may be applied to label-free screening of living microbes based on chemical information.

  18. Label-free optical imaging of lymphatic vessels within tissue beds in vivo

    PubMed Central

    Yousefi, Siavash; Zhi, Zhongwei; Wang, Ruikang K.

    2015-01-01

    Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis. PMID:25642129

  19. Novel Fitc-Labeled Igy Antibody: Fluorescence Imaging Toxoplasma Gondii In Vitro.

    PubMed

    Sert, Mehtap; Cakir Koc, Rabia; Budama Kilinc, Yasemin

    2017-04-12

    Toxoplasmosis is caused by T. gondii and can create serious health problems in humans and also worldwide economic harm. Because of the clinical and veterinary importance of toxoplasmosis, its timely and accurate diagnosis has a major impact on disease-fighting strategies. T. gondii surface antigen 1 (SAG1), an immunodominant-specific antigen, is often used as a diagnostic tool. Therefore, the aim of this study was the optimization of novel fluorescein isothiocyanate (FITC) labeling of the SAG1-specific IgY antibody to show the potential for immunofluorescence imaging of T. gondii in vitro. The specificity of IgY antibodies was controlled by an enzyme-linked immunosorbent assay (ELISA), and the concentration of the IgY antibody was detected using a spectrophotometer. The optimum incubation time and FITC concentration were determined with a fluorescence spectrometer. The obtained FITC-labeled IgY was used for marking T. gondii tachyzoites, which were cultured in vitro and viewed using light microscopy. The interaction of the fluorescence-labeled antibody and the T. gondii tachyzoites was examined with a fluorescence microscope. In this study, for the first time, a FITC-labeled anti-SAG1 IgY antibody was developed according to ELISA, fluorescence spectrometer, and fluorescence imaging of cell culture. In the future, the obtained FITC-labeled T. gondii tachyzoites' specific IgY antibodies may be used as diagnostic tools for the detection of T. gondii infections in different samples.

  20. Dexamethasone enhances interaction of endogenous annexin 1 with L-selectin and triggers shedding of L-selectin in the monocytic cell line U-937.

    PubMed

    de Coupade, Catherine; Solito, Egle; Levine, Jon D

    2003-09-01

    (1) L-selectin, constitutively expressed by leukocytes, is involved in the initial binding of leukocytes to activated endothelium. Anti-inflammatory drugs like glucocorticoids can induce shedding of L-selectin, but the mechanism is still unknown. Annexin 1, a protein whose synthesis and externalization/secretion are induced during the inflammatory response, has been proposed as a mediator of the anti-inflammatory actions of glucocorticoids. (2) The monocytic cell line U-937 strongly expresses Annexin 1 after 24 h of phorbol 12-myristate 13-acetate (PMA, 1 nm) treatment and externalizes/releases the protein after additional 16 h of dexamethasone (1 microm) treatment. (3) This study investigated the possible regulation of cell surface L-selectin shedding by endogenous Annexin 1, and its role in glucocorticoid-induced L-selectin shedding in the U-937 cell line. (4) PMA- and dexamethasone treatment-induced L-selectin shedding was potentially mediated by Annexin 1, since neutralizing antibodies against Annexin 1 reduced dexamethasone- and Annexin 1-induced shedding. (5) Immunoprecipitation and binding assays provided support for the suggestion that this effect could be mediated by an interaction between externalized Annexin 1 and L-selectin. Such interaction involved the N-terminal domain of Annexin 1 and was calcium-dependent. Confocal microscopy studies demonstrated increased colocalization of Annexin 1 and L-selectin on the cell surface. (6) Overall, our study provides new insights into the potential role of endogenous ANXA1 as a mediator of dexamethasone-induced L-selectin shedding, which may contribute to the anti-inflammatory activity of glucocorticoids.

  1. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary

    PubMed Central

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1β, were analyzed by RT–PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1β, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage. PMID:16831232

  2. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary.

    PubMed

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1beta, were analyzed by RT-PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1beta, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage.

  3. Experimental basis of myocardial imaging with 123I-labeled hexadecenoic acid.

    PubMed

    Poe, N D; Robinson, G D; Graham, L S; MacDonald, N S

    1976-12-01

    Progress in myocardial perfusion imaging has been slowed by the lack or radiopharmaceuticals with suitable physical and biologic characteristics. Hexadecenoic acid, terminally labeled with 123I, partially overcomes these limitations by providing a compound that concentrates in the myocardium in proportion to relative regional blood flow and carries a gamma-emitter with desirable detection and imaging qualities. After intravenous injection in experimental animals, the clearance half-times of hexadecenoic acid for blood and myocardium are 1.7 and 20 min, respectively. These values compare favorably with 18-carbon fatty-acid analogs labeled with 11C. In acute and chronic infarction, similar distribution patterns are found for hexadecenoic acid and 43K, which indicates that hexadecenoic acid is a suitable substitute for the potassium analogs now in use for myocardial imaging. Because of the high count rates obtainable with 123I-hexadecenoic acid, good-guality images can be acquired in as little as 2-3 min per view. Iodine-123-hexadecenoic acid is potentially a useful radiopharmaceutical for clinical application.

  4. "Warning: This image has been digitally altered": The effect of disclaimer labels added to fashion magazine shoots on women's body dissatisfaction.

    PubMed

    Tiggemann, Marika; Brown, Zoe; Zaccardo, Mia; Thomas, Nicole

    2017-06-01

    The present experiment aimed to investigate the impact of the addition of disclaimer labels to fashion magazine shoots on women's body dissatisfaction. Participants were 320 female undergraduate students who viewed fashion shoots containing a thin and attractive model with no disclaimer label, or a small, large, or very large disclaimer label, or product images. Although thin-ideal fashion shoot images resulted in greater body dissatisfaction than product images, there was no significant effect of disclaimer label. Internalisation of the thin ideal was found to moderate the effect of disclaimer label, such that internalisation predicted increased body dissatisfaction in the no label and small label conditions, but not in the larger label conditions. Overall, the results showed no benefit for any size of disclaimer label in ameliorating the negative effect of viewing thin-ideal media images. It was concluded that more extensive research is required before the effective implementation of disclaimer labels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multimodality Molecular Imaging of [18F]-Fluorinated Carboplatin Derivative Encapsulated in [111In]-Labeled Liposomes

    NASA Astrophysics Data System (ADS)

    Lamichhane, Narottam

    -(5-fluoro-pentyl)-2-methyl malonic acid as the labeling agent to coordinate with the cisplatin aqua complex. It was then used to treat various cell lines and compared with cisplatin and carboplatin at different concentrations ranging from 0.001 microM to 100 microM for 72 hrs and 96 hrs. IC50 values calculated from cell viability indicated that 19F-FCP is a more potent drug than Carboplatin. Manual radiosynthesis and characterization of [18F]-FCP was performed using [18F]-2-(5-fluoro-pentyl)-2-methyl malonic acid with coordination with cisplatin aqua complex. Automated radiosynthesis of [18F]-FCP was optimized using the manual synthetic procedures and using them as macros for the radiosynthesizer. [18F]-FCP was evaluated in vivo with detailed biodistribution studies and PET imaging in normal and KB 3-1 and KB 8-5 tumor xenograft bearing nude mice. The biodistribution studies and PET imaging of [18F]-FCP showed major uptake in kidneys which attributes to the renal clearance of radiotracer. In vivo plasma and urine stability demonstrated intact [18F]-FCP. [ 111In]-Labeled Liposomes was synthesized and physiochemical properties were assessed with DLS. [111In]-Labeled Liposome was evaluated in vivo with detailed pharmacokinetic studies and SPECT imaging. The biodistribution and ROI analysis from SPECT imaging showed the spleen and liver uptake of [111In]-Labeled Liposome and subsequent clearance of activity with time. [18F]-FCP encapsulated [111In]-Labeled Liposome was developed and physiochemical properties were characterized with DLS. [18F]-FCP encapsulated [111In]-Labeled Liposome was used for in vivo dual tracer PET and SPECT imaging from the same nanoconstruct in KB 3-1 (sensitive) and COLO 205 (resistant) tumor xenograft bearing nude mice. PET imaging of [18F]-FCP in KB 3-1 (sensitive) and COLO 205 (resistant) tumor xenograft bearing nude mice was performed. Naked [18F]-FCP and [18F]-FCP encapsulated [ 111In]-Labeled Liposome showed different pharmacokinetic profiles. PET

  6. Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.

    PubMed

    Seville, Rachel A; Nijjar, Sarbjit; Barnett, Mark W; Massé, Karine; Jones, Elizabeth A

    2002-04-01

    Vertebrate kidney organogenesis is characterised by the successive formation of the pronephros, the mesonephros and the metanephros. The pronephros is the first to form and is the functional embryonic kidney of lower vertebrates; although it is vestigial in higher vertebrates, it is a necessary precursor for the other kidney types. The Xenopus pronephros is a simple paired organ; each nephron consists of a single large glomus, one set of tubules and a single duct. The simple organisation of the pronephros and the amenability of Xenopus laevis embryos to manipulation make the Xenopus pronephros an attractive system in which to study organogenesis. It has been shown that pronephric tubules can be induced to form in presumptive ectodermal tissue by treatment with RA and activin. We have used this system in a subtractive hybridisation screen that resulted in the cloning of Xenopus laevis annexin IV (Xanx-4). Xanx-4 transcripts are specifically located to the developing pronephric tubules, and the protein to the luminal surface of these tubules. Temporal expression shows zygotic transcription is upregulated at the time of pronephric tubule specification and persists throughout pronephric development. The temporal and spatial expression pattern of Xanx-4 suggests it may have a role in pronephric tubule development. Overexpression of Xanx-4 yields no apparent phenotype, but Xanx-4 depletion, using morpholinos, produces a shortened, enlarged tubule phenotype. The phenotype observed can be rescued by co-injection of Xanx-4 mRNA. Although the function of annexins is not yet clear, studies have suggested a role for annexins in a number of cellular processes. Annexin IV has been shown to have an inhibitory role in the regulation of epithelial calcium-activated chloride ion conductance. The enlarged pronephric tubule phenotype observed may be attributed to incorrect modulation of exocytosis, membrane plasticity or ion channels and/or water homeostasis. In this study, we

  7. Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro.

    PubMed

    Woodham, Andrew W; Sanna, Adriana M; Taylor, Julia R; Skeate, Joseph G; Da Silva, Diane M; Dekker, Lodewijk V; Kast, W Martin

    2016-11-18

    During sexual transmission of human immunodeficiency virus (HIV), macrophages are initial targets for HIV infection. Secretory leukocyte protease inhibitor (SLPI) has been shown to protect against HIV infection of macrophages through interactions with annexin A2 (A2), which is found on the macrophage cell surface as a heterotetramer (A2t) consisting of A2 and S100A10. Therefore, we investigated potential protein-protein interactions between A2 and HIV-1 gp120 through a series of co-immunoprecipitation assays and a single molecule pulldown (SiMPull) technique. Additionally, inhibitors of A2t (A2ti) that target the interaction between A2 and S100A10 were tested for their ability to impair productive HIV-1 infection of macrophages. Our data suggest that interactions between HIV-1 gp120 and A2 exist, though this interaction may be indirect. Furthermore, an anti-A2 antibody impaired HIV-1 particle production in macrophages in vitro, whereas A2ti did not indicating that annexin A2 may promote HIV-1 infection of macrophages in its monomeric rather than tetrameric form.

  8. Large area, label-free imaging of extracellular matrix using telecentricity

    NASA Astrophysics Data System (ADS)

    Visbal Onufrak, Michelle A.; Konger, Raymond L.; Kim, Young L.

    2017-02-01

    Subtle alterations in stromal tissue structures and organizations within the extracellular matrix (ECM) have been observed in several types of tissue abnormalities, including early skin cancer and wounds. Current microscopic imaging methods often lack the ability to accurately determine the extent of malignancy over a large area, due to their limited field of view. In this research we focus on the development of simple mesoscopic (i.e. between microscopic and macroscopic) biomedical imaging device for non-invasive assessment of ECM alterations over a large, heterogeneous area. In our technology development, a telecentric lens, commonly used in machine vision systems but rarely used in biomedical imaging, serves as a key platform to visualize alterations in tissue microenvironments in a label-free manner over a clinically relevant area. In general, telecentric imaging represents a simple, alternative method for reducing unwanted scattering or diffuse light caused by the highly anisotropic scattering properties of biological tissue. In particular, under telecentric imaging the light intensity backscattered from biological tissue is mainly sensitive to the scattering anisotropy factor, possibly associated with the ECM. We demonstrate the inherent advantages of combining telecentric lens systems with hyperspectral imaging for providing optical information of tissue scattering in biological tissue of murine models, as well as light absorption of hemoglobin in blood vessel tissue phantoms. Thus, we envision that telecentric imaging could potentially serve for simple site-specific, tissue-based assessment of stromal alterations over a clinically relevant field of view in a label-free manner, for studying diseases associated with disruption of homeostasis in ECM.

  9. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  10. Glioblastoma cells labeled by robust Raman tags for enhancing imaging contrast.

    PubMed

    Huang, Li-Ching; Chang, Yung-Ching; Wu, Yi-Syuan; Sun, Wei-Lun; Liu, Chan-Chuan; Sze, Chun-I; Chen, Shiuan-Yeh

    2018-05-01

    Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

  11. Glioblastoma cells labeled by robust Raman tags for enhancing imaging contrast

    PubMed Central

    Huang, Li-Ching; Chang, Yung-Ching; Wu, Yi-Syuan; Sun, Wei-Lun; Liu, Chan-Chuan; Sze, Chun-I; Chen, Shiuan-Yeh

    2018-01-01

    Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and “broadcasts” stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery. PMID:29760976

  12. Imaging of experimental amyloidosis with /sup 131/I-labeled serum amyloid P component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspi, D.; Zalzman, S.; Baratz, M.

    1987-11-01

    /sup 131/I-labeled human serum amyloid P component, which was injected into mice with experimentally induced systemic AA amyloidosis and into controls, became specifically localized and was retained in amyloidotic organs. In comparison, it was rapidly and completely eliminated from unaffected tissues and from control animals. Distinctive images of this amyloid-specific deposition of labeled serum amyloid P component were derived from whole body scanning, in vivo, of amyloidotic mice. These findings suggest that such imaging may have applications for the diagnosis and quantitation of amyloid deposits in humans.

  13. Pathogenic Natural Antibodies Recognizing Annexin IV Are Required to Develop Intestinal Ischemia-Reperfusion Injury1

    PubMed Central

    Kulik, Liudmila; Fleming, Sherry D.; Moratz, Chantal; Reuter, Jason W.; Novikov, Aleksey; Chen, Kuan; Andrews, Kathy A.; Markaryan, Adam; Quigg, Richard J.; Silverman, Gregg J.; Tsokos, George C.; Holers, V. Michael

    2010-01-01

    Intestinal ischemia-reperfusion (IR)3 injury is initiated when natural IgM antibodies recognize neo-epitopes that are revealed on ischemic cells. The target molecules and mechanisms whereby these neo-epitopes become accessible to recognition are not well understood. Proposing that isolated intestinal epithelial cells (IEC) may carry IR-related neo-epitopes, we used in vitro IEC binding assays to screen hybridomas created from B cells of unmanipulated wild type C57BL/6 mice. We identified a novel IgM monoclonal antibody (mAb B4) that reacted with the surface of IEC by flow cytometric analysis and was alone capable of causing complement activation, neutrophil recruitment and intestinal injury in otherwise IR-resistant Rag1−/− mice. Monoclonal Ab B4 was found to specifically recognize mouse annexin IV. Pre-injection of recombinant annexin IV blocked IR injury in wild type C57BL/6 mice, demonstrating the requirement for recognition of this protein in order to develop IR injury in the context of a complex natural antibody repertoire. Humans were also found to exhibit IgM natural antibodies that recognize annexin IV. These data in toto identify annexin IV as a key ischemia-related target antigen that is recognized by natural Abs in a pathologic process required in vivo to develop intestinal IR injury. PMID:19380783

  14. Longitudinal In Vivo SPECT/CT Imaging Reveals Morphological Changes and Cardiopulmonary Apoptosis in a Rodent Model of Pulmonary Arterial Hypertension

    PubMed Central

    Paffett, Michael L.; Hesterman, Jacob; Candelaria, Gabriel; Lucas, Selita; Anderson, Tamara; Irwin, Daniel; Hoppin, Jack; Norenberg, Jeffrey; Campen, Matthew J.

    2012-01-01

    Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the

  15. Neuronal Tracing with Magnetic Labels: NMR Imaging Methods, Preliminary Results, and New Optimized Coils.

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratik

    1992-01-01

    The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.

  16. Hierarchical Multi-atlas Label Fusion with Multi-scale Feature Representation and Label-specific Patch Partition

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Sanroma, Gerard; Wang, Qian; Munsell, Brent C.; Shen, Dinggang

    2014-01-01

    Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images, after registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape appearance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that they often apply a fixed size image patch throughout the entire label fusion procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-art by adding three new label fusion contributions: First, each image patch now characterized by a multi-scale feature representation that encodes both local and semi-local image information. Doing so will increase the accuracy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity measurement being wrongly guided by the presence of multiple anatomical structures in the same image patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according to the existing labels. Since image information has now been semantically divided into different patterns, these new label-specific atlas patches make the label fusion process more specific and flexible. Lastly, in order to correct target points that are mislabeled during label fusion, a hierarchically approach is used to improve the

  17. Fluorine-19 Labeling of Stromal Vascular Fraction Cells for Clinical Imaging Applications

    PubMed Central

    Rose, Laura C.; Kadayakkara, Deepak K.; Wang, Guan; Bar-Shir, Amnon; Helfer, Brooke M.; O’Hanlon, Charles F.; Kraitchman, Dara L.; Rodriguez, Ricardo L.

    2015-01-01

    Stromal vascular fraction (SVF) cells are used clinically for various therapeutic targets. The location and persistence of engrafted SVF cells are important parameters for determining treatment failure versus success. We used the GID SVF-1 platform and a clinical protocol to harvest and label SVF cells with the fluorinated (19F) agent CS-1000 as part of a first-in-human phase I trial (clinicaltrials.gov identifier NCT02035085) to track SVF cells with magnetic resonance imaging during treatment of radiation-induced fibrosis in breast cancer patients. Flow cytometry revealed that SVF cells consisted of 25.0% ± 15.8% CD45+, 24.6% ± 12.5% CD34+, and 7.5% ± 3.3% CD31+ cells, with 2.1 ± 0.7 × 105 cells per cubic centimeter of adipose tissue obtained. Fluorescent CS-1000 (CS-ATM DM Green) labeled 87.0% ± 13.5% of CD34+ progenitor cells compared with 47.8% ± 18.5% of hematopoietic CD45+ cells, with an average of 2.8 ± 2.0 × 1012 19F atoms per cell, determined using nuclear magnetic resonance spectroscopy. The vast majority (92.7% ± 5.0%) of CD31+ cells were also labeled, although most coexpressed CD34. Only 16% ± 22.3% of CD45−/CD31−/CD34− (triple-negative) cells were labeled with CS-ATM DM Green. After induction of cell death by either apoptosis or necrosis, >95% of 19F was released from the cells, indicating that fluorine retention can be used as a surrogate marker for cell survival. Labeled-SVF cells engrafted in a silicone breast phantom could be visualized with a clinical 3-Tesla magnetic resonance imaging scanner at a sensitivity of approximately 2 × 106 cells at a depth of 5 mm. The current protocol can be used to image transplanted SVF cells at clinically relevant cell concentrations in patients. Significance Stromal vascular fraction (SVF) cells harvested from adipose tissue offer great promise in regenerative medicine, but methods to track such cell therapies are needed to ensure correct administration and monitor survival. A clinical protocol

  18. Impaired osteoblast differentiation in Annexin A2- and -A5-deficient cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genetos, Damian C.; Wong, Alice; Weber, Thomas J.

    Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts inflammation,fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We generated annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and asked whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to vector controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and staining activity were also suppressed in AnxA2-more » or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to controls. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. Using a murine fracture model, we demonstrate that AnxA2 and AnxA5 are rapidly expressed within the fracture callus. These data demonstrate that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation and differentiation in addition to their well-studied function in matrix vesicles.« less

  19. Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice.

    PubMed

    Jia, Yali; Wang, Ruikang K

    2010-12-15

    Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of monitoring dynamic meningeal microcirculations, preferably decoupled from cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ∼2 mm, with an unprecedented imaging sensitivity to blood flow at ∼4 μm/s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within the meninges and cortex in mice with the cranium left intact. Using a thrombotic mouse model, we show that the OMAG can yield longitudinal measurements of meningeal vascular responses to the insult and can decouple these responses from those in the cortex, giving valuable information regarding the localized hemodynamics along with the dynamic formation of thrombotic event. The results indicate that OMAG can be a useful tool to study therapeutic strategies in preclinical animal models in order to mitigate various pathologies that are mainly related to the meningeal circulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Multi-atlas based segmentation using probabilistic label fusion with adaptive weighting of image similarity measures.

    PubMed

    Sjöberg, C; Ahnesjö, A

    2013-06-01

    Label fusion multi-atlas approaches for image segmentation can give better segmentation results than single atlas methods. We present a multi-atlas label fusion strategy based on probabilistic weighting of distance maps. Relationships between image similarities and segmentation similarities are estimated in a learning phase and used to derive fusion weights that are proportional to the probability for each atlas to improve the segmentation result. The method was tested using a leave-one-out strategy on a database of 21 pre-segmented prostate patients for different image registrations combined with different image similarity scorings. The probabilistic weighting yields results that are equal or better compared to both fusion with equal weights and results using the STAPLE algorithm. Results from the experiments demonstrate that label fusion by weighted distance maps is feasible, and that probabilistic weighted fusion improves segmentation quality more the stronger the individual atlas segmentation quality depends on the corresponding registered image similarity. The regions used for evaluation of the image similarity measures were found to be more important than the choice of similarity measure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. High-efficiency dual labeling of influenza virus for single-virus imaging.

    PubMed

    Liu, Shu-Lin; Tian, Zhi-Quan; Zhang, Zhi-Ling; Wu, Qiu-Mei; Zhao, Hai-Su; Ren, Bin; Pang, Dai-Wen

    2012-11-01

    Many viruses invade host cells by entering the cells and releasing their genome for replication, which are remarkable incidents for viral infection. Therefore, the viral internal and external components should be simultaneously labeled and dynamically tracked at single-virus level for further understanding viral infection mechanisms. However, most of the previously reported methods have very low labeling efficiency and require considerable time and effort, which is laborious and inconvenient for researchers. In this work, we report a general strategy to high-efficiently label viral envelope and genome for single-virus imaging with quantum dots (QDs) and Syto 82, respectively. It was found that nearly all viral envelopes could be labeled with QDs with superior stability, which makes it possible to realize global and long-term tracking of single virus in individual cells. Effectively labeling their genome with Syto 82, about 90% of QDs-labeled viruses could be used to monitor the viral genome signal, which may provide valuable information for deeply studying viral genome transport. This is very important and meaningful to investigate the viral infection mechanism. Our labeling strategy has advantage in commonality, convenience and efficiency, which is expected to be widely used in biological research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Whole-organ atlas imaged by label-free high-resolution photoacoustic microscopy assisted by a microtome

    NASA Astrophysics Data System (ADS)

    Wong, Terence T. W.; Zhang, Ruiying; Hsu, Hsun-Chia; Maslov, Konstantin I.; Shi, Junhui; Chen, Ruimin; Shung, K. Kirk; Zhou, Qifa; Wang, Lihong V.

    2018-02-01

    In biomedical imaging, all optical techniques face a fundamental trade-off between spatial resolution and tissue penetration. Therefore, obtaining an organelle-level resolution image of a whole organ has remained a challenging and yet appealing scientific pursuit. Over the past decade, optical microscopy assisted by mechanical sectioning or chemical clearing of tissue has been demonstrated as a powerful technique to overcome this dilemma, one of particular use in imaging the neural network. However, this type of techniques needs lengthy special preparation of the tissue specimen, which hinders broad application in life sciences. Here, we propose a new label-free three-dimensional imaging technique, named microtomy-assisted photoacoustic microscopy (mPAM), for potentially imaging all biomolecules with 100% endogenous natural staining in whole organs with high fidelity. We demonstrate the first label-free mPAM, using UV light for label-free histology-like imaging, in whole organs (e.g., mouse brains), most of them formalin-fixed and paraffin- or agarose-embedded for minimal morphological deformation. Furthermore, mPAM with dual wavelength illuminations is also employed to image a mouse brain slice, demonstrating the potential for imaging of multiple biomolecules without staining. With visible light illumination, mPAM also shows its deep tissue imaging capability, which enables less slicing and hence reduces sectioning artifacts. mPAM could potentially provide a new insight for understanding complex biological organs.

  3. Advances in PET myocardial perfusion imaging: F-18 labeled tracers.

    PubMed

    Rischpler, Christoph; Park, Min-Jae; Fung, George S K; Javadi, Mehrbod; Tsui, Benjamin M W; Higuchi, Takahiro

    2012-01-01

    Coronary artery disease and its related cardiac disorders represent the most common cause of death in the USA and Western world. Despite advancements in treatment and accompanying improvements in outcome with current diagnostic and therapeutic modalities, it is the correct assignment of these diagnostic techniques and treatment options which are crucial. From a diagnostic standpoint, SPECT myocardial perfusion imaging (MPI) using traditional radiotracers like thallium-201 chloride, Tc-99m sestamibi or Tc-99m tetrofosmin is the most utilized imaging technique. However, PET MPI using N-13 ammonia, rubidium-82 chloride or O-15 water is increasing in availability and usage as a result of the growing number of medical centers with new-generation PET/CT systems taking advantage of the superior imaging properties of PET over SPECT. The routine clinical use of PET MPI is still limited, in part because of the short half-life of conventional PET MPI tracers. The disadvantages of these conventional PET tracers include expensive onsite production and inconvenient on-scanner tracer administration making them unsuitable for physical exercise stress imaging. Recently, two F-18 labeled radiotracers with longer radioactive half-lives than conventional PET imaging agents have been introduced. These are flurpiridaz F 18 (formerly known as F-18 BMS747158-02) and F-18 fluorobenzyltriphenylphosphonium. These longer half-life F-18 labeled perfusion tracers can overcome the production and protocol limitations of currently used radiotracers for PET MPI.

  4. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    PubMed

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.

  5. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    PubMed Central

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  6. Label-free optical imaging of nonfluorescent molecules by stimulated radiation.

    PubMed

    Min, Wei

    2011-12-01

    Imaging contrasts other than fluorescence are highly desirable for label-free detection and interrogation of nonfluorescent molecular species inside live cells, tissues, and organisms. The recently developed stimulated Raman scattering (SRS) and stimulated emission microscopy techniques provide sensitive and specific contrast mechanisms for nonfluorescent species, by employing the light amplification aspect of stimulated radiation. Compared to their spontaneous counterparts, stimulated radiation can enhance the imaging performance significantly, making the previously 'dark' molecules observable. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. ARES V CONCEPT IMAGE

    NASA Technical Reports Server (NTRS)

    2008-01-01

    THIS CONCEPT IMAGE SHOWS THE ARES V CARGO LAUNCH VEHICLE. THE HEAVY LIFTING ARES V IS NASA'S PRIMARY VEHICLE FOR SAFE AND RELIABLE DELIVERY OF LARGE SCALE HARDWARE TO SPACE. THIS INCLUDES THE LUNAR LANDER, MATERIALS FOR ESTABLISHING A PERMANENT MOON BASE, AND THE VEHICLES AND HARDWARE NEEDED TO EXTEND A HUMAN PRESENCE BEYOND EARTH ORBIT. ARES V CAN CARRY APPROXIMATELY 290,000 POUNDS TO LOW EARTH ORBIT AND 144,000 POUNDS TO LUNAR ORBIT.

  8. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  9. Label-free and live cell imaging by interferometric scattering microscopy.

    PubMed

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  10. Apo And Calcium-Bound Crystal Structures of Alpha-11 Giardin, An Unusual Annexin From 'Giardia Lamblia'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathuri, P.; Nguyen, E.T.; Svard, S.G.

    2007-07-12

    Alpha-11 giardin is a member of the multi-gene alpha-giardin family in the intestinal protozoan, Giardia lamblia. This gene family shares an ancestry with the annexin super family, whose common characteristic is calcium-dependent binding to membranes that contain acidic phospholipids. Several alpha giardins are highly expressed during parasite-induced diarrhea in humans. Despite being a member of a large family of proteins, little is known about the function and cellular localization of alpha-11 giardin, although giardins are often associated with the cytoskeleton. It has been shown that Giardia exhibits high levels of alpha-11 giardin mRNA transcript throughout its life cycle; however, constitutivemore » over-expression of this protein is lethal to the parasite. Determining the three-dimensional structure of an alpha-giardin is essential to identifying functional domains shared in the alpha-giardin family. Here we report the crystal structures of the apo and Ca{sup 2+}-bound forms of alpha-11 giardin, the first alpha giardin to be characterized structurally. Crystals of apo and Ca{sup 2+}-bound alpha-11 giardin diffracted to 1.1 angstroms and 2.93 angstroms, respectively. The crystal structure of selenium-substituted apo alpha-11 giardin reveals a planar array of four tandem repeats of predominantly {alpha}-helical domains, reminiscent of previously determined annexin structures, making this the highest-resolution structure of an annexin to date. The apo alpha-11 giardin structure also reveals a hydrophobic core formed between repeats I/IV and II/III, a region typically hydrophilic in other annexins. Surprisingly, the Ca{sup 2+}-bound structure contains only a single calcium ion, located in the DE loop of repeat I and coordinated differently from the two types of calcium sites observed in previous annexin structures. The apo and Ca{sup 2+}-bound alpha-11 giardin structures assume overall similar conformations; however, Ca2+-bound alpha-11 giardin crystallized in

  11. Up-regulation of hnRNP A1, Ezrin, tubulin β-2C and Annexin A1 in sentinel lymph nodes of colorectal cancer

    PubMed Central

    He, Zhen-Yu; Wen, Hao; Shi, Chuan-Bing; Wang, Jie

    2010-01-01

    AIM: To investigate the early metastasis-associated proteins in sentinel lymph node micrometastasis (SLNMM) of colorectal cancer (CRC) through comparative proteome. METHODS: Hydrophobic protein samples were extracted from individual-matched normal lymph nodes (NLN) and SLNMM of CRC. Differentially expressed protein spots were detected by two-dimensional electrophoresis and image analysis, and subsequently identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry-mass spectrometry and Western blotting, respectively. RESULTS: Forty proteins were differentially expressed in NLN and SLNMM, and 4 metastasis-concerned proteins highly expressed in SLNMM were identified to be hnRNP A1, Ezrin, tubulin β-2C and Annexin A1. Further immunohistochemistry staining of these four proteins showed their clinicopathological characteristics in lymph node metastasis of CRC. CONCLUSION: Variations of hydrophobic protein expression in NLN and SLNMM of CRC and increased expression of hnRNP A1, Ezrin, tubulin β-2C and Annexin A1 in SLNMM suggest a significantly elevated early CRC metastasis. PMID:20872967

  12. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging

    PubMed Central

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-01-01

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375

  13. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  14. 64Cu-Labeled Phosphonate Cross-Bridged Chelator Conjugates of c(RGDyK) for PET/CT Imaging of Osteolytic Bone Metastases.

    PubMed

    Ocak, Meltem; Beaino, Wissam; White, Alexander; Zeng, Dexing; Cai, Zhengxin; Anderson, Carolyn J

    2018-03-01

    The goal of this research was to evaluate c(RGDyK) conjugated to phosphonate-based cross-bridged chelators using Cu-free click chemistry in the 4T1 mouse mammary tumor bone metastasis model in comparison with 64 Cu-CB-TE2A-c(RGDyK), which previously showed selective binding to integrin αvβ3 on osteoclasts. Two phosphonate-based cross-bridged chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to c(RGDyK) through bio-orthogonal strain-promoted alkyne-azide cycloaddition. In vitro and in vivo evaluation of the 64 Cu-labeled TE1A1P-DBCO-c(RGDyK) (AP-c(RGDyK)), TE1K1P-PEG4-DBCO-c(RGDyK) (KP-c(RGDyK)), and CB-TE2A-c(RGDyK) were compared in the 4T1 mouse model of bone metastasis. The affinities of the unconjugated and chelator-c(RGDyK) analogs for αvβ3 integrin were determined using a competitive-binding assay. For in vivo evaluation, BALB/c mice were injected with 1 × 10 5 4T1/Luc cells in the left ventricle. Formation of metastases was monitored by bioluminescence imaging (BLI) followed by small-animal PET/CT 2 h postinjection of radiotracers. The chelator-peptide conjugates showed similar affinity to integrin αvβ3, in the low nM range. PET imaging demonstrated a higher uptake in bones having metastases for all 64 Cu-labeled c(RGDyK) analogs compared with bones in nontumor-bearing mice. The correlation between uptake of 64 Cu-AP-c(RGDyK) and 64 Cu-KP-c(RGDyK) in bones with metastases based on PET/CT imaging, and osteoclast number based on histomorphometry, was improved over the previously investigated 64 Cu-CB-TE2A-c(RGDyK). These data suggest that the phosphonate chelator conjugates of c(RDGyK) peptides are promising PET tracers suitable for imaging tumor-associated osteoclasts in bone metastases.

  15. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages.

    PubMed

    Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan

    2013-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.

  16. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    PubMed

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  17. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  18. In vitro labelling and detection of mesenchymal stromal cells: a comparison between magnetic resonance imaging of iron-labelled cells and magnetic resonance spectroscopy of fluorine-labelled cells.

    PubMed

    Rizzo, Stefania; Petrella, Francesco; Zucca, Ileana; Rinaldi, Elena; Barbaglia, Andrea; Padelli, Francesco; Baggi, Fulvio; Spaggiari, Lorenzo; Bellomi, Massimo; Bruzzone, Maria Grazia

    2017-01-01

    Among the various stem cell populations used for cell therapy, adult mesenchymal stromal cells (MSCs) have emerged as a major new cell technology. These cells must be tracked after transplantation to monitor their migration within the body and quantify their accumulation at the target site. This study assessed whether rat bone marrow MSCs can be labelled with superparamagnetic iron oxide (SPIO) nanoparticles and perfluorocarbon (PFC) nanoemulsion formulations without altering cell viability and compared magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) results from iron-labelled and fluorine-labelled MSCs, respectively. Of MSCs, 2 × 10 6 were labelled with Molday ION Rhodamine-B (MIRB) and 2 × 10 6 were labelled with Cell Sense. Cell viability was evaluated by trypan blue exclusion method. Labelled MSCs were divided into four samples containing increasing cell numbers (0.125 × 10 6 , 0.25 × 10 6 , 0.5 × 10 6 , 1 × 10 6 ) and scanned on a 7T MRI: for MIRB-labelled cells, phantoms and cells negative control, T1, T2 and T2* maps were acquired; for Cell Sense labelled cells, phantoms and unlabelled cells, a 19 F non-localised single-pulse MRS sequence was acquired. In total, 86.8% and 83.6% of MIRB-labelled cells and Cell Sense-labelled cells were viable, respectively. MIRB-labelled cells were visible in all samples with different cell numbers; pellets containing 0.5 × 10 6 and 1 × 10 6 of Cell Sense-labelled cells showed a detectable 19 F signal. Our data support the use of both types of contrast material (SPIO and PFC) for MSCs labelling, although further efforts should be dedicated to improve the efficiency of PFC labelling.

  19. Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles

    PubMed Central

    2013-01-01

    Background In the present study, we used multimodal imaging to investigate biodistribution in rats after intravenous administration of a new 99mTc-labeled delivery system consisting of polymer-shelled microbubbles (MBs) functionalized with diethylenetriaminepentaacetic acid (DTPA), thiolated poly(methacrylic acid) (PMAA), chitosan, 1,4,7-triacyclononane-1,4,7-triacetic acid (NOTA), NOTA-super paramagnetic iron oxide nanoparticles (SPION), or DTPA-SPION. Methods Examinations utilizing planar dynamic scintigraphy and hybrid imaging were performed using a commercially available single-photon emission computed tomography (SPECT)/computed tomography (CT) system. For SPION containing MBs, the biodistribution pattern of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs was investigated and co-registered using fusion SPECT/CT and magnetic resonance imaging (MRI). Moreover, to evaluate the biodistribution, organs were removed and radioactivity was measured and calculated as percentage of injected dose. Results SPECT/CT and MRI showed that the distribution of 99mTc-labeled ligand-functionalized MBs varied with the type of ligand as well as with the presence of SPION. The highest uptake was observed in the lungs 1 h post injection of 99mTc-labeled DTPA and chitosan MBs, while a similar distribution to the lungs and the liver was seen after the administration of PMAA MBs. The highest counts of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs were observed in the lungs, liver, and kidneys 1 h post injection. The highest counts were observed in the liver, spleen, and kidneys as confirmed by MRI 24 h post injection. Furthermore, the results obtained from organ measurements were in good agreement with those obtained from SPECT/CT. Conclusions In conclusion, microbubbles functionalized by different ligands can be labeled with radiotracers and utilized for SPECT/CT imaging, while the incorporation of SPION in MB shells enables imaging using MR. Our investigation revealed that biodistribution

  20. Imaging Complex Protein Metabolism in Live Organisms by Stimulated Raman Scattering Microscopy with Isotope Labeling

    PubMed Central

    2016-01-01

    Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse–chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial–temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse–chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305

  1. Automated detection and labeling of high-density EEG electrodes from structural MR images.

    PubMed

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high

  2. Automated detection and labeling of high-density EEG electrodes from structural MR images

    NASA Astrophysics Data System (ADS)

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work

  3. Single cell systems biology by super-resolution imaging and combinatorial labeling

    PubMed Central

    Lubeck, Eric; Cai, Long

    2012-01-01

    Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral separability of fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using Fluorescence in situ Hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured the mRNA levels of 32 genes simultaneously in single S. cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells provides a natural approach to bring systems biology into single cells. PMID:22660740

  4. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    PubMed Central

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  5. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    PubMed

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  6. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    NASA Astrophysics Data System (ADS)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  7. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  9. Imaging of immunolabeled membrane receptors in uncoated SEM specimens.

    PubMed

    Heinzmann, U; Reninger, A; Autrata, R; Höfler, H

    1994-01-01

    Epidermal growth factor receptors (EGFR) were labeled with 10 nm immunogold and examined on uncoated specimens of A431 human epidermoid carcinoma cells. A field emission gun and a high-sensitivity YAG ring detector were used to demonstrate the affinity labeling simultaneously in the secondary-electron (SE) and backscattered-electron (BSE) modes with a low accelerating voltage (Vo). At Vo = 2 kV, the SE and BSE signals were too weak to identify all markers, while at Vo = 3-7 kV labeling was observed unambiguously in both the SE and BSE modes with smaller and higher working distances. Increasing the Vo to above 7 kV sometimes provokes instability of the specimens. A Vo of > or = 10 kV produces charging artifacts in the SE image, but permits a BSE image of the gold markers providing additional topographic information. In conclusion, immunogold labeling can be used with good results for uncoated specimens.

  10. Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ₃ integrin tracer ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄.

    PubMed

    Aung, Winn; Jin, Zhao-Hui; Furukawa, Takako; Claron, Michael; Boturyn, Didier; Sogawa, Chizuru; Tsuji, Atsushi B; Wakizaka, Hidekatsu; Fukumura, Toshimitsu; Fujibayashi, Yasuhisa; Dumy, Pascal; Saga, Tsuneo

    2013-09-01

    The purpose of this study was to develop a clinically relevant orthotopic xenotransplantation model of pancreatic cancer and to perform a preclinical evaluation of a new positron emission tomography (PET) imaging probe, ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄ peptide (⁶⁴Cu-RAFT-RGD), using this model. Varying degrees of αvβ₃ integrin expression in several human pancreatic cancer cell lines were examined by flow cytometry and Western blotting. The cell line BxPC-3, which is stably transfected with a red fluorescence protein (RFP), was used for surgical orthotopic implantation. Orthotopic xenograft was established in the pancreas of recipient nude mice. An in vivo probe biodistribution and receptor blocking study, preclinical PET imaging coregistered with contrast-enhanced computed tomography (CECT) comparing ⁶⁴Cu-RAFT-RGD and ¹⁸F-fluoro-2-deoxy-d-glucose (¹⁸F-FDG) accumulation in tumor, postimaging autoradiography, and histologic and immunohistochemical examinations were done. Biodistribution evaluation with a blocking study confirmed that efficient binding of probe to tumor is highly αvβ₃ integrin specific. ⁶⁴Cu-RAFT-RGD PET combined with CECT provided for precise and easy detection of cancer lesions. Autoradiography, histologic, and immunohistochemical examinations confirmed the accumulation of ⁶⁴Cu-RAFT-RGD in tumor versus nontumor tissues. In comparative PET studies, ⁶⁴Cu-RAFT-RGD accumulation provided better tumor contrast to background than ¹⁸F-FDG. Our results suggest that ⁶⁴Cu-RAFT-RGD PET imaging is potentially applicable for the diagnosis of αvβ₃ integrin-expressing pancreatic tumors.

  11. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  12. Annexin A1, Annexin A2, and Dyrk 1B are upregulated during GAS1-induced cell cycle arrest.

    PubMed

    Pérez-Sánchez, Gilberto; Jiménez, Adriana; Quezada-Ramírez, Marco A; Estudillo, Enrique; Ayala-Sarmiento, Alberto E; Mendoza-Hernández, Guillermo; Hernández-Soto, Justino; Hernández-Hernández, Fidel C; Cázares-Raga, Febe E; Segovia, Jose

    2018-05-01

    GAS1 is a pleiotropic protein that has been investigated because of its ability to induce cell proliferation, cell arrest, and apoptosis, depending on the cellular or the physiological context in which it is expressed. At this point, we have information about the molecular mechanisms by which GAS1 induces proliferation and apoptosis; but very few studies have been focused on elucidating the mechanisms by which GAS1 induces cell arrest. With the aim of expanding our knowledge on this subject, we first focused our research on finding proteins that were preferentially expressed in cells arrested by serum deprivation. By using a proteomics approach and mass spectrometry analysis, we identified 17 proteins in the 2-DE protein profile of serum deprived NIH3T3 cells. Among them, Annexin A1 (Anxa1), Annexin A2 (Anxa2), dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B), and Eukaryotic translation initiation factor 3, F (eIf3f) were upregulated at transcriptional the level in proliferative NIH3T3 cells. Moreover, we demonstrated that Anxa1, Anxa2, and Dyrk1b are upregulated at both the transcriptional and translational levels by the overexpression of GAS1. Thus, our results suggest that the upregulation of Anxa1, Anxa2, and Dyrk1b could be related to the ability of GAS1 to induce cell arrest and maintain cell viability. Finally, we provided further evidence showing that GAS1 through Dyrk 1B leads not only to the arrest of NIH3T3 cells but also maintains cell viability. © 2017 Wiley Periodicals, Inc.

  13. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    PubMed Central

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  14. Micrometer-sized iron oxide particle labeling of mesenchymal stem cells for magnetic resonance imaging-based monitoring of cartilage tissue engineering.

    PubMed

    Saldanha, Karl J; Doan, Ryan P; Ainslie, Kristy M; Desai, Tejal A; Majumdar, Sharmila

    2011-01-01

    To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration. Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T(1ρ) sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined. MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T(1ρ) imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation. This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies. Published by Elsevier Inc.

  15. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    NASA Astrophysics Data System (ADS)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  16. Rapid Synthesis of 68Ga-labeled macroaggregated human serum albumin (MAA) for routine application in perfusion imaging using PET/CT.

    PubMed

    Mueller, D; Kulkarni, Harshad; Baum, Richard P; Odparlik, Andreas

    2017-04-01

    99m Tc-labeled MAA is commonly used for single photon emission computed tomography SPECT. In contrast, positron emission tomography/CT (PET/CT) delivers images with significantly higher resolution. The generator produced radionuclide 68 Ga is widely used for PET/CT imaging agents and 68 Ga-labeled MAA represents an attractive alternative to 99m Tc-labeled MAA. We report a simple and rapid NaCl based labeling procedure for the labeling of MAA with 68 Ga using a commercially available MAA labeling kit for 99m Tc. The procedure delivers 68 Ga-labeled MAA with a high specific activity and a high labeling efficiency (>99%). The synthesis does not require a final step of separation or the use of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quantitative label-free multimodality nonlinear optical imaging for in situ differentiation of cancerous lesions

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyun; Li, Xiaoyan; Cheng, Jie; Liu, Zhengfan; Thrall, Michael J.; Wang, Xi; Wang, Zhiyong; Wong, Stephen T. C.

    2013-03-01

    The development of real-time, label-free imaging techniques has recently attracted research interest for in situ differentiation of cancerous lesions from normal tissues. Molecule-specific intrinsic contrast can arise from label-free imaging techniques such as Coherent Anti-Stokes Raman Scattering (CARS), Two-Photon Excited AutoFluorescence (TPEAF), and Second Harmonic Generation (SHG), which, in combination, would hold the promise of a powerful label-free tool for cancer diagnosis. Among cancer-related deaths, lung carcinoma is the leading cause for both sexes. Although early treatment can increase the survival rate dramatically, lesion detection and precise diagnosis at an early stage is unusual due to its asymptomatic nature and limitations of current diagnostic techniques that make screening difficult. We investigated the potential of using multimodality nonlinear optical microscopy that incorporates CARS, TPEAF, and SHG techniques for differentiation of lung cancer from normal tissue. Cancerous and non-cancerous lung tissue samples from patients were imaged using CARS, TPEAF, and SHG techniques for comparison. These images showed good pathology correlation with hematoxylin and eosin (H and E) stained sections from the same tissue samples. Ongoing work includes imaging at various penetration depths to show three-dimensional morphologies of tumor cell nuclei using CARS, elastin using TPEAF, and collagen using SHG and developing classification algorithms for quantitative feature extraction to enable lung cancer diagnosis. Our results indicate that via real-time morphology analyses, a multimodality nonlinear optical imaging platform potentially offers a powerful minimally-invasive way to differentiate cancer lesions from surrounding non-tumor tissues in vivo for clinical applications.

  18. Label-free imaging and spectroscopy for early detection of cervical cancer.

    PubMed

    Jing, Yueyue; Wang, Yulan; Wang, Xinyi; Song, Chuan; Ma, Jiong; Xie, Yonghui; Fei, Yiyan; Zhang, Qinghua; Mi, Lan

    2018-05-01

    The label-free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label-free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washburn, L. C.; Sun, T. T.; Byrd, B. L.

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two othersmore » for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.« less

  20. Evaluation of a 125I-labelled benzazepinone derived voltage-gated sodium channel blocker for imaging with SPECT.

    PubMed

    Pérez-Medina, Carlos; Patel, Niral; Robson, Mathew; Badar, Adam; Lythgoe, Mark F; Årstad, Erik

    2012-12-21

    Voltage-gated sodium channels (VGSCs) are a family of transmembrane proteins that mediate fast neurotransmission, and are integral to sustain physiological conditions and higher cognitive functions. Imaging of VGSCs in vivo holds promise as a tool to elucidate operational functions in the brain and to aid the treatment of a wide range of neurological diseases. To assess the suitability of 1-benzazepin-2-one derived VGSC blockers for imaging, we have prepared a (125)I-labelled analogue of BNZA and evaluated the tracer in vivo. In an automated patch-clamp assay, a diastereomeric mixture of the non-radioactive compound blocked the Na(v)1.2 and Na(v)1.7 VGSC isoforms with IC(50) values of 4.1 ± 1.5 μM and 0.25 ± 0.07 μM, respectively. [(3)H]BTX displacement studies revealed a three-fold difference in affinity between the two diastereomers. Iodo-destannylation of a tin precursor with iodine-125 afforded the two diastereomerically pure tracers, which were used to assess binding to VGSCs in vivo by comparing their tissue distributions in mice. Whilst the results point to a lack of VGSC binding in vivo, SPECT imaging revealed highly localized uptake in the interscapular region, an area typically associated with brown adipose tissue, which in addition to high metabolic stability of the iodinated tracer, demonstrate the potential of 1-benzazepin-2-ones for in vivo imaging.

  1. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    PubMed

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  2. SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model

    PubMed Central

    Li, Weiguo; Zhang, Zhuoli; Gordon, Andrew C.; Chen, Jeane; Nicolai, Jodi; Lewandowski, Robert J.; Omary, Reed A.

    2016-01-01

    Purpose To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models. Materials and Methods Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models. Results Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO–labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R2 = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO–labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001). Conclusion MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model. © RSNA, 2015 Online supplemental material is available for this article. PMID:26313619

  3. Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.

    2017-03-01

    4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.

  4. Discriminative confidence estimation for probabilistic multi-atlas label fusion.

    PubMed

    Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard

    2017-12-01

    Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  6. Comparison of pre-processing techniques for fluorescence microscopy images of cells labeled for actin.

    PubMed

    Muralidhar, Gautam S; Channappayya, Sumohana S; Slater, John H; Blinka, Ellen M; Bovik, Alan C; Frey, Wolfgang; Markey, Mia K

    2008-11-06

    Automated analysis of fluorescence microscopy images of endothelial cells labeled for actin is important for quantifying changes in the actin cytoskeleton. The current manual approach is laborious and inefficient. The goal of our work is to develop automated image analysis methods, thereby increasing cell analysis throughput. In this study, we present preliminary results on comparing different algorithms for cell segmentation and image denoising.

  7. Selective Imaging of VEGFR-1 and VEGFR-2 Using 89Zr-Labeled Single-Chain VEGF Mutants.

    PubMed

    Meyer, Jan-Philip; Edwards, Kimberly J; Kozlowski, Paul; Backer, Marina V; Backer, Joseph M; Lewis, Jason S

    2016-11-01

    Vascular endothelial growth factor-A (VEGF-A) acts via 2 vascular endothelial growth factor receptors, VEGFR-1 and VEGFR-2, that play important and distinct roles in tumor biology. We reasoned that selective imaging of these receptors could provide unique information for diagnostics and for monitoring and optimizing responses to anticancer therapy, including antiangiogenic therapy. Herein, we report the development of 2 first-in-class 89 Zr-labeled PET tracers that enable the selective imaging of VEGFR-1 and VEGFR-2. Functionally active mutants of scVEGF (an engineered single-chain version of pan-receptor VEGF-A with an N-terminal cysteine-containing tag for site-specific conjugation), named scVR1 and scVR2 with enhanced affinity to, respectively, VEGFR-1 and VEGFR-2, were constructed. Parental scVEGF and its receptor-specific mutants were site-specifically derivatized with the 89 Zr chelator desferroxamine B via a 3.4-kDa PEG linker. 89 Zr labeling of the desferroxamine B conjugates furnished scV/Zr, scVR1/Zr, and scVR2/Zr tracers with high radiochemical yield (>87%), high specific activity (≥9.8 MBq/nmol), and purity (>99%). Tracers were tested in an orthotopic breast cancer model using 4T1luc-bearing syngeneic BALB/c mice. For testing tracer specificity, tracers were coinjected with an excess of cold proteins of the same or opposite receptor specificity or pan-receptor scVEGF. PET imaging, biodistribution, and dosimetry studies in mice, as well as immunohistochemical analysis of harvested tumors, were performed. All tracers rapidly accumulated in orthotopic 4T1luc tumors, allowing for the successful PET imaging of the tumors as early as 2 h after injection. Blocking experiments with an excess of pan-receptor or receptor-specific cold proteins indicated that more than 80% of tracer tumor uptake is VEGFR-mediated, whereas uptake in all major organs is not affected by blocking within the margin of error. Critically, blocking experiments indicated that VEGFR

  8. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  9. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  10. Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg

    2015-01-19

    We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. Themore » quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.« less

  11. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    PubMed Central

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  12. Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT

    PubMed Central

    Schurz, Matthias; Perner, Josef

    2017-01-01

    In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of “theory of mind (ToM)” but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of “theory of mind” is supposed to be if visual perspective taking is not one of them. PMID:28367446

  13. Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT.

    PubMed

    Arora, Aditi; Schurz, Matthias; Perner, Josef

    2017-01-01

    In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of "theory of mind (ToM)" but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of "theory of mind" is supposed to be if visual perspective taking is not one of them.

  14. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    PubMed Central

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  15. Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval.

    PubMed

    Zhang, Haofeng; Liu, Li; Long, Yang; Shao, Ling

    2018-04-01

    In order to achieve efficient similarity searching, hash functions are designed to encode images into low-dimensional binary codes with the constraint that similar features will have a short distance in the projected Hamming space. Recently, deep learning-based methods have become more popular, and outperform traditional non-deep methods. However, without label information, most state-of-the-art unsupervised deep hashing (DH) algorithms suffer from severe performance degradation for unsupervised scenarios. One of the main reasons is that the ad-hoc encoding process cannot properly capture the visual feature distribution. In this paper, we propose a novel unsupervised framework that has two main contributions: 1) we convert the unsupervised DH model into supervised by discovering pseudo labels; 2) the framework unifies likelihood maximization, mutual information maximization, and quantization error minimization so that the pseudo labels can maximumly preserve the distribution of visual features. Extensive experiments on three popular data sets demonstrate the advantages of the proposed method, which leads to significant performance improvement over the state-of-the-art unsupervised hashing algorithms.

  16. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.

    PubMed

    Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank

    2018-02-27

    In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

  17. Simultaneous stimulated Raman scattering and higher harmonic generation imaging for liver disease diagnosis without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Wang, Zi; Zheng, Wei; Huang, Zhiwei

    2014-02-01

    Nonlinear optical microscopy (e.g., higher harmonic (second-/third- harmonic) generation (HHG), simulated Raman scattering (SRS)) has high diagnostic sensitivity and chemical specificity, making it a promising tool for label-free tissue and cell imaging. In this work, we report a development of a simultaneous SRS and HHG imaging technique for characterization of liver disease in a bile-duct-ligation rat-modal. HHG visualizes collagens formation and reveals the cell morphologic changes associated with liver fibrosis; whereas SRS identifies the distributions of hepatic fat cells formed in steatosis liver tissue. This work shows that the co-registration of SRS and HHG images can be an effective means for label-free diagnosis and characterization of liver steatosis/fibrosis at the cellular and molecular levels.

  18. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging.

    PubMed

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-10-15

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. © 2017 Schvartz et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip.

    PubMed

    Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun

    2017-09-14

    Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.

  20. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches.

    PubMed

    Krafft, Christoph; Schmitt, Michael; Schie, Iwan W; Cialla-May, Dana; Matthäus, Christian; Bocklitz, Thomas; Popp, Jürgen

    2017-04-10

    Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label-free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface-enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman-active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber-based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT.

    PubMed

    Scholtz, Jan-Erik; Wichmann, Julian L; Kaup, Moritz; Fischer, Sebastian; Kerl, J Matthias; Lehnert, Thomas; Vogl, Thomas J; Bauer, Ralf W

    2015-03-01

    To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. 77 patients (28 women, 49 men, mean age 65.3±14.4 years) with known or suspected spinal disorders (degenerative spine disease n=32; disc herniation n=36; traumatic vertebral fractures n=9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p<0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p<0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time-saving when reconstructions of 2 and more vertebrae are performed. Checking results of automatic labeling is necessary to prevent errors in labeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    NASA Astrophysics Data System (ADS)

    Taik Lim, Yong; Cho, Mi Young; Noh, Young-Woock; Chung, Jin Woong; Chung, Bong Hyun

    2009-11-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  3. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    PubMed

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  4. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    PubMed

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without

  5. Intra-operative label-free multimodal multiphoton imaging of breast cancer margins and microenvironment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Yi; You, Sixian; Tu, Haohua; Spillman, Darold R.; Marjanovic, Marina; Chaney, Eric J.; Liu, George Z.; Ray, Partha S.; Higham, Anna; Boppart, Stephen A.

    2017-02-01

    Label-free multi-photon imaging has been a powerful tool for studying tissue microstructures and biochemical distributions, particularly for investigating tumors and their microenvironments. However, it remains challenging for traditional bench-top multi-photon microscope systems to conduct ex vivo tumor tissue imaging in the operating room due to their bulky setups and laser sources. In this study, we designed, built, and clinically demonstrated a portable multi-modal nonlinear label-free microscope system that combined four modalities, including two- and three- photon fluorescence for studying the distributions of FAD and NADH, and second and third harmonic generation, respectively, for collagen fiber structures and the distribution of micro-vesicles found in tumors and the microenvironment. Optical realignments and switching between modalities were motorized for more rapid and efficient imaging and for a light-tight enclosure, reducing ambient light noise to only 5% within the brightly lit operating room. Using up to 20 mW of laser power after a 20x objective, this system can acquire multi-modal sets of images over 600 μm × 600 μm at an acquisition rate of 60 seconds using galvo-mirror scanning. This portable microscope system was demonstrated in the operating room for imaging fresh, resected, unstained breast tissue specimens, and for assessing tumor margins and the tumor microenvironment. This real-time label-free nonlinear imaging system has the potential to uniquely characterize breast cancer margins and the microenvironment of tumors to intraoperatively identify structural, functional, and molecular changes that could indicate the aggressiveness of the tumor.

  6. Label-free in situ SERS imaging of biofilms.

    PubMed

    Ivleva, Natalia P; Wagner, Michael; Szkola, Agathe; Horn, Harald; Niessner, Reinhard; Haisch, Christoph

    2010-08-12

    Surface-enhanced Raman scattering (SERS) is a promising technique for the chemical characterization of biological systems. It yields highly informative spectra, can be applied directly in aqueous environment, and has high sensitivity in comparison with normal Raman spectroscopy. Moreover, SERS imaging can provide chemical information with spatial resolution in the micrometer range (chemical imaging). In this paper, we report for the first time on the application of SERS for in situ, label-free imaging of biofilms and demonstrate the suitability of this technique for the characterization of the complex biomatrix. Biofilms, being communities of microorganisms embedded in a matrix of extracellular polymeric substances (EPS), represent the predominant mode of microbial life. Knowledge of the chemical composition and the structure of the biofilm matrix is important in different fields, e.g., medicine, biology, and industrial processes. We used colloidal silver nanoparticles for the in situ SERS analysis. Good SERS measurement reproducibility, along with a significant enhancement of Raman signals by SERS (>10(4)) and highly informative SERS signature, enables rapid SERS imaging (1 s for a single spectrum) of the biofilm matrix. Altogether, this work illustrates the potential of SERS for biofilm analysis, including the detection of different constituents and the determination of their distribution in a biofilm even at low biomass concentration.

  7. Tumor margin assessment of surgical tissue specimen of cancer patients using label-free hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Lu, Guolan; Wang, Xu; Zhang, Hongzheng; Little, James V.; Magliocca, Kelly R.; Chen, Amy Y.

    2017-02-01

    We are developing label-free hyperspectral imaging (HSI) for tumor margin assessment. HSI data, hypercube (x,y,λ), consists of a series of high-resolution images of the same field of view that are acquired at different wavelengths. Every pixel on the HSI image has an optical spectrum. We developed preprocessing and classification methods for HSI data. We used spectral features from HSI data for the classification of cancer and benign tissue. We collected surgical tissue specimens from 16 human patients who underwent head and neck (H&N) cancer surgery. We acquired both HSI, autofluorescence images, and fluorescence images with 2-NBDG and proflavine from the specimens. Digitized histologic slides were examined by an H&N pathologist. The hyperspectral imaging and classification method was able to distinguish between cancer and normal tissue from oral cavity with an average accuracy of 90+/-8%, sensitivity of 89+/-9%, and specificity of 91+/-6%. For tissue specimens from the thyroid, the method achieved an average accuracy of 94+/-6%, sensitivity of 94+/-6%, and specificity of 95+/-6%. Hyperspectral imaging outperformed autofluorescence imaging or fluorescence imaging with vital dye (2-NBDG or proflavine). This study suggests that label-free hyperspectral imaging has great potential for tumor margin assessment in surgical tissue specimens of H&N cancer patients. Further development of the hyperspectral imaging technology is warranted for its application in image-guided surgery.

  8. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    PubMed

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research

  9. Fully convolutional networks with double-label for esophageal cancer image segmentation by self-transfer learning

    NASA Astrophysics Data System (ADS)

    Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei

    2017-07-01

    Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.

  10. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, R.L.; Garg, P.K.; Gard, S.

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor sitemore » relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.« less

  11. [The mechanism of docetaxel-induced apoptosis in human lung cancer cells].

    PubMed

    Li, Y; Shi, T; Zhao, W

    2000-05-01

    To study the mechanism of docetaxel-induced apoptosis. Morphological study, DNA gel electrophoresis, flow cytometry and fluorescin labeled Annexin V to detect apoptosis, RT-PCR to detect the gene related with apoptosis. Human lung cancer A549 cells treated with docetaxel induced cell cycle arrest at G2M phase, leading to apoptosis. The morphology of A549 showed nuclear chromatine condensation and fragmentation. Typical ladder pattern of DNA fragmentation was observed. Sub-G1 peak was found by flow cytometry. Transcription of Fas gene was enhanced, while no change in c-myc and bcl-2 genes. Annexin labeling results revealed the co-existence of cell apoptosis and necrosis in docetaxel-treated A549 cells. Docetaxel induces apoptosis and necrosis of human lung cancer. The induction of apoptosis may be related to expression of Fas.

  12. Label-free optical imaging of membrane patches for atomic force microscopy

    PubMed Central

    Churnside, Allison B.; King, Gavin M.; Perkins, Thomas T.

    2010-01-01

    In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample. PMID:21164738

  13. Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging.

    PubMed

    Zeng, Yan; Xu, Jin; Li, Dong; Li, Li; Wen, Zilong; Qu, Jianan Y

    2012-07-01

    We demonstrate a label-free in vivo flow cytometry in zebrafish blood vessels based on two-photon excited autofluorescence imaging. The major discovery in this work is the strong autofluorescence emission from the plasma in zebrafish blood. The plasma autofluorescence provides excellent contrast for visualizing blood vessels and counting blood cells. In addition, the cellular nicotinamide adenine dinucleotide autofluorescence enables in vivo imaging and counting of white blood cells (neutrophils).

  14. Decreased sensitivity of early imaging with In-111 oxine-labeled leukocytes in detection of occult infection: concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datz, F.L.; Jacobs, J.; Baker, W.

    1984-03-01

    Imaging with leukocytes labeled with indium-111 oxine is a sensitive technique for detecting sites of occult infection. Traditionally, imaging is performed 24 hr after injection. The authors undertook a prospective study of 35 patients (40 studies) with possible occult infection to see whether a 24-hr delay in imaging is really necessary. Patients were imaged at 1-4 hr and again at 24 hr after injection. The early images had a sensitivity of only 33%, compared with 95% for the 24-hr images. Of the seven studies that were positive on both early and delayed images, 71% had more intense uptake at 24more » hr. There were no false-positive early images. It was concluded that imaging 1-4 hr after injection with In-111 oxine-labeled leukocytes has a low sensitivity for detecting occult infection. However, a positive early image is specific for a site of infection.« less

  15. Automatic atlas-based three-label cartilage segmentation from MR knee images

    PubMed Central

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  16. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug.

    PubMed

    Rand, Jacob H; Wu, Xiao-Xuan; Quinn, Anthony S; Ashton, Anthony W; Chen, Pojen P; Hathcock, James J; Andree, Harry A M; Taatjes, Douglas J

    2010-03-18

    Annexin A5 (AnxA5) is a potent anticoagulant protein that crystallizes over phospholipid bilayers (PLBs), blocking their availability for coagulation reactions. Antiphospholipid antibodies disrupt AnxA5 binding, thereby accelerating coagulation reactions. This disruption may contribute to thrombosis and miscarriages in the antiphospholipid syndrome (APS). We investigated whether the antimalarial drug, hydroxychloroquine (HCQ), might affect this prothrombotic mechanism. Binding of AnxA5 to PLBs was measured with labeled AnxA5 and also imaged with atomic force microscopy. Immunoglobulin G levels, AnxA5, and plasma coagulation times were measured on cultured human umbilical vein endothelial cells and a syncytialized trophoblast cell line. AnxA5 anticoagulant activities of APS patient plasmas were also determined. HCQ reversed the effect of antiphospholipid antibodies on AnxA5 and restored AnxA5 binding to PLBs, an effect corroborated by atomic force microscopy. Similar reversals of antiphospholipid-induced abnormalities were measured on the surfaces of human umbilical vein endothelial cells and syncytialized trophoblast cell lines, wherein HCQ reduced the binding of antiphospholipid antibodies, increased cell-surface AnxA5 concentrations, and prolonged plasma coagulation to control levels. In addition, HCQ increased the AnxA5 anticoagulant activities of APS patient plasmas. In conclusion, HCQ reversed antiphospholipid-mediated disruptions of AnxA5 on PLBs and cultured cells, and in APS patient plasmas. These results support the concept of novel therapeutic approaches that address specific APS disease mechanisms.

  17. Imaging biomarkers to predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer

    PubMed Central

    Shah, Chirayu; Miller, Todd W.; Wyatt, Shelby K.; McKinley, Eliot T.; Olivares, Maria Graciela; Sanchez, Violeta; Nolting, Donald D.; Buck, Jason R.; Zhao, Ping; Ansari, M. Sib; Baldwin, Ronald M.; Gore, John C.; Schiff, Rachel; Arteaga, Carlos L.; Manning, H. Charles

    2010-01-01

    Purpose To evaluate non-invasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and non-responding tumor-bearing cohorts. Experimental Design Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin-V accumulation), glucose metabolism ([18F]FDG-PET), and proliferation ([18F]FLT-PET) were evaluated throughout a bi-weekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical (IHC) analysis of cleaved caspase-3, phosphorylated AKT (p-AKT) and Ki67. Results NIR700-Annexin-V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed, but not in non-responding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and IHC analysis. Conclusions Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2(+) tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not appear to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer. PMID:19584166

  18. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer.

    PubMed

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-09-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.

  19. 40 CFR Appendix V to Part 600 - Fuel Economy Label Style Guidelines for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel Economy Label Style Guidelines for 2008 and Later Model Year Vehicles V Appendix V to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. V Appendix V to Part...

  20. Evidence from immunoneutralization and antisense studies that the inhibitory actions of glucocorticoids on growth hormone release in vitro require annexin 1 (lipocortin 1)

    PubMed Central

    Taylor, A D; Christian, H C; Morris, J F; Flower, R J; Buckingham, J C

    2000-01-01

    Our previous studies have identified a role for annexin 1 as a mediator of glucocorticoid action in the neuroendocrine system. The present study centred on growth hormone (GH) and exploited antisense and immunoneutralization strategies to examine in vitro the potential role of annexin 1 in effecting the regulatory actions of glucocorticoids on the secretion of this pituitary hormone. Rat anterior pituitary tissue responded in vitro to growth hormone releasing hormone, forskolin, 8-Bromo-cyclic adenosine 3′5′-monophosphate (8-Br-cyclic AMP) and an L-Ca2+ channel opener (BAY K8644) with concentration-dependent increases GH release which were readily inhibited by corticosterone and dexamethasone. The inhibitory actions of the steroids on GH release elicited by the above secretagogues were effectively reversed by an annexin 1 antisense oligodeoxynucleotide (ODN), but not by control (sense or scrambled) ODNs, as also were the glucocorticoid-induced increases in annexin 1. Similarly, a specific anti-annexin 1 monoclonal antibody quenched the corticosterone-induced suppression of secretagogue-evoked GH release while an isotype matched control antibody was without effect. Transmission electron micrographs showed that the integrity and ultrastructural morphology of the pituitary cells were well preserved at the end of the incubation and unaffected by exposure to the ODNs, antibodies, steroids or secretagogues. The results provide novel evidence for a role for annexin 1 as a mediator of the inhibitory actions of glucocorticoids on the secretion of GH by the anterior pituitary gland and suggest that its actions are effected at a point distal to the formation of cyclic AMP and Ca2+ entry. PMID:11090102

  1. Evidence from immunoneutralization and antisense studies that the inhibitory actions of glucocorticoids on growth hormone release in vitro require annexin 1 (lipocortin 1).

    PubMed

    Taylor, A D; Christian, H C; Morris, J F; Flower, R J; Buckingham, J C

    2000-12-01

    1. Our previous studies have identified a role for annexin 1 as a mediator of glucocorticoid action in the neuroendocrine system. The present study centred on growth hormone (GH) and exploited antisense and immunoneutralization strategies to examine in vitro the potential role of annexin 1 in effecting the regulatory actions of glucocorticoids on the secretion of this pituitary hormone. 2. Rat anterior pituitary tissue responded in vitro to growth hormone releasing hormone, forskolin, 8-Bromo-cyclic adenosine 3'5'-monophosphate (8-Br-cyclic AMP) and an L-Ca(2+) channel opener (BAY K8644) with concentration-dependent increases GH release which were readily inhibited by corticosterone and dexamethasone. 3. The inhibitory actions of the steroids on GH release elicited by the above secretagogues were effectively reversed by an annexin 1 antisense oligodeoxynucleotide (ODN), but not by control (sense or scrambled) ODNs, as also were the glucocorticoid-induced increases in annexin 1. Similarly, a specific anti-annexin 1 monoclonal antibody quenched the corticosterone-induced suppression of secretagogue-evoked GH release while an isotype matched control antibody was without effect. 4. Transmission electron micrographs showed that the integrity and ultrastructural morphology of the pituitary cells were well preserved at the end of the incubation and unaffected by exposure to the ODNs, antibodies, steroids or secretagogues. 5. The results provide novel evidence for a role for annexin 1 as a mediator of the inhibitory actions of glucocorticoids on the secretion of GH by the anterior pituitary gland and suggest that its actions are effected at a point distal to the formation of cyclic AMP and Ca(2+) entry.

  2. Comparison of indium-labeled-leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis. A prospective study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, K.D.; Brown, M.L.; Dewanjee, M.K.

    We prospectively compared sequential technetium-gallium imaging with indium-labeled-leukocyte imaging in fifty patients with suspected low-grade musculoskeletal sepsis. Adequate images and follow-up examinations were obtained for forty-two patients. The presence or absence of low-grade sepsis was confirmed by histological and bacteriological examinations of tissue specimens taken at surgery in thirty of the forty-two patients. In these thirty patients, the sensitivity of sequential Tc-Ga imaging was 48 per cent, the specificity was 86 per cent, and the accuracy was 57 per cent, whereas the sensitivity of the indium-labeled-leukocyte technique was 83 per cent, the specificity was 86 per cent, and the accuracymore » was 83 per cent. When the additional twelve patients for whom surgery was deemed unnecessary were considered, the sensitivity of sequential Tc-Ga imaging was 50 per cent, the specificity was 78 per cent, and the accuracy was 62 per cent, as compared with a sensitivity of 83 per cent, a specificity of 94 per cent, and an accuracy of 88 per cent with the indium-labeled-leukocyte method. In patients with a prosthesis the indium-labeled-leukocyte image was 94 per cent accurate, compared with 75 per cent accuracy for sequential Tc-Ga imaging. Statistical analysis of these data demonstrated that the indium-labeled-leukocyte technique was superior to sequential Tc-Ga imaging in detecting areas of low-grade musculoskeletal sepsis.« less

  3. An efficient approach to integrated MeV ion imaging.

    PubMed

    Nikbakht, T; Kakuee, O; Solé, V A; Vosuoghi, Y; Lamehi-Rachti, M

    2018-03-01

    An ionoluminescence (IL) spectral imaging system, besides the common MeV ion imaging facilities such as µ-PIXE and µ-RBS, is implemented at the Van de Graaff laboratory of Tehran. A versatile processing software is required to handle the large amount of data concurrently collected in µ-IL and common MeV ion imaging measurements through the respective methodologies. The open-source freeware PyMca, with image processing and multivariate analysis capabilities, is employed to simultaneously process common MeV ion imaging and µ-IL data. Herein, the program was adapted to support the OM_DAQ listmode data format. The appropriate performance of the µ-IL data acquisition system is confirmed through a case study. Moreover, the capabilities of the software for simultaneous analysis of µ-PIXE and µ-RBS experimental data are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 40 CFR Appendix V to Part 600 - Fuel Economy Label Style Guidelines for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for 2008 and Later Model Year Vehicles V Appendix V to Part 600 Protection of Environment... MOTOR VEHICLES Pt. 600, App. V Appendix V to Part 600—Fuel Economy Label Style Guidelines for 2008 and... specifications in appendix V. A. apply. ER27DE06.099 ER27DE06.100 ER27DE06.101 ER27DE06.102 C. Format Guidelines...

  5. Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging

    USDA-ARS?s Scientific Manuscript database

    In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...

  6. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin.

    PubMed

    Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu

    2017-04-01

    Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.

  7. Total-hip arthroplasty: Periprosthetic indium-111-labeled leukocyte activity and complementary technetium-99m-sulfur colloid imaging in suspected infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palestro, C.J.; Kim, C.K.; Swyer, A.J.

    1990-12-01

    Indium-111-labeled leukocyte images of 92 cemented total-hip arthroplasties were correlated with final diagnoses. Prostheses were divided into four zones: head (including acetabulum), trochanter, shaft, and tip. The presence (or absence) and intensity of activity in each zone was noted, and compared to the corresponding contralateral zone. Though present in all 23 infected arthroplasties, periprosthetic activity was also present in 77% of uninfected arthroplasties, and was greater than the contralateral zone 51% of the time. When analyzed by zone, head zone activity was the best criterion for infection (87% sensitivity, 94% specificity, 92% accuracy). Fifty of the arthroplasties were studied withmore » combined labeled leukocyte/sulfur colloid imaging. Using incongruence of images as the criterion for infection, the sensitivity, specificity, and accuracy of the study were 100%, 97%, and 98%, respectively. While variable periprosthetic activity makes labeled leukocyte imaging alone unreliable for diagnosing hip arthroplasty infection, the addition of sulfur colloid imaging results in a highly accurate diagnostic procedure.« less

  8. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  9. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    USDA-ARS?s Scientific Manuscript database

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  10. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.

    PubMed

    Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike

    2017-08-15

    The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Image velocimetry for clouds with relaxation labeling based on deformation consistency

    NASA Astrophysics Data System (ADS)

    Horinouchi, Takeshi; Murakami, Shin-ya; Kouyama, Toru; Ogohara, Kazunori; Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto

    2017-08-01

    Correlation-based cloud tracking has been extensively used to measure atmospheric winds, but still difficulty remains. In this study, aiming at developing a cloud tracking system for Akatsuki, an artificial satellite orbiting Venus, a formulation is developed for improving the relaxation labeling technique to select appropriate peaks of cross-correlation surfaces which tend to have multiple peaks. The formulation makes an explicit use of consistency inherent in the type of cross-correlation method where template sub-images are slid without deformation; if the resultant motion vectors indicate a too-large deformation, it is contradictory to the assumption of the method. The deformation consistency is exploited further to develop two post processes; one clusters the motion vectors into groups within each of which the consistency is perfect, and the other extends the groups using the original candidate lists. These processes are useful to eliminate erroneous vectors, distinguish motion vectors at different altitudes, and detect phase velocities of waves in fluids such as atmospheric gravity waves. As a basis of the relaxation labeling and the post processes as well as uncertainty estimation, the necessity to find isolated (well-separated) peaks of cross-correlation surfaces is argued, and an algorithm to realize it is presented. All the methods are implemented, and their effectiveness is demonstrated with initial images obtained by the ultraviolet imager onboard Akatsuki. Since the deformation consistency regards the logical consistency inherent in template matching methods, it should have broad application beyond cloud tracking.

  12. Labelling fashion magazine advertisements: Effectiveness of different label formats on social comparison and body dissatisfaction.

    PubMed

    Tiggemann, Marika; Brown, Zoe

    2018-06-01

    The experiment investigated the impact on women's body dissatisfaction of different forms of label added to fashion magazine advertisements. Participants were 340 female undergraduate students who viewed 15 fashion advertisements containing a thin and attractive model. They were randomly allocated to one of five label conditions: no label, generic disclaimer label (indicating image had been digitally altered), consequence label (indicating that viewing images might make women feel bad about themselves), informational label (indicating the model in the advertisement was underweight), or a graphic label (picture of a paint brush). Although exposure to the fashion advertisements resulted in increased body dissatisfaction, there was no significant effect of label type on body dissatisfaction; no form of label demonstrated any ameliorating effect. In addition, the consequence and informational labels resulted in increased perceived realism and state appearance comparison. Yet more extensive research is required before the effective implementation of any form of label. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging.

    PubMed

    Mendive-Tapia, Lorena; Subiros-Funosas, Ramon; Zhao, Can; Albericio, Fernando; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc

    2017-08-01

    Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C 2 -BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).

  14. Preparation and evaluation of a 68Ga-labeled RGD-containing octapeptide for noninvasive imaging of angiogenesis: biodistribution in non-human primate

    PubMed Central

    Velikyan, Irina; Lindhe, Örjan

    2018-01-01

    Monitoring general disease marker such as angiogenesis may contribute to the development of personalized medicine and improve therapy outcome. Readily availability of positron emitter based imaging agents providing quantification would expand clinical positron emission tomography (PET) applications. Generator produced 68Ga provides PET images of high resolution and the half-life time frame is compatible with the pharmacokinetics of small peptides comprising arginine-glycine-aspartic acid (RGD) sequence specific to αvβ3 integrin receptors. The main objective of this study was to develop a method for 68Ga-labeling of RGD containing bicyclic octapeptide ([68Ga]Ga-DOTA-RGD) with high specific radioactivity and preclinically assess its imaging potential. DOTA-RGD was labeled using generator eluate preconcentration technique and microwave heating. The binding and organ distribution properties of [68Ga]Ga-DOTA-RGD were tested in vitro by autoradiography of frozen tumor sections, and in vivo in mice carrying a Lewis Lung carcinoma graft (LL2), and in non-human primate (NHP). Another peptide with aspartic acid-glycine-phenylalanine sequence was used as a negative control. The full 68Ga radioactivity eluted from two generators was quantitatively incorporated into 3-8 nanomoles of the peptide conjugates. The target binding specificity was confirmed by blocking experiments. The specific uptake in the LL2 mice model was observed in vivo and confirmed in the corresponding ex vivo biodistribution experiments. Increased accumulation of the radioactivity was detected in the wall of the uterus of the female NHP probably indicating neovascularization. [68Ga]Ga-DOTA-RGD demonstrated potential for the imaging of angiogenesis. PMID:29531858

  15. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    PubMed Central

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  16. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells.

    PubMed

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-07-07

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.

  17. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy.

    PubMed

    Jin, Qiutong; Zhu, Wenjun; Jiang, Dawei; Zhang, Rui; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang; Cheng, Liang

    2017-08-31

    Cancer nanotechnology has become the hot topic nowadays. While various kinds of nanomaterials have been widely explored for innovative cancer imaging and therapy applications, safe multifunctional nano-agents without long-term retention and toxicity are still demanded. Herein, iron-gallic acid coordination nanoparticles (Fe-GA CPNs) with ultra-small sizes are successfully synthesized by a simple method for multimodal imaging-guided cancer therapy. After surface modification with polyethylene glycol (PEG), the synthesized Fe-GA-PEG CPNs show high stability in various physiological solutions. Taking advantage of high near-infrared (NIR) absorbance as well as the T 1 -MR contrasting ability of Fe-GA-PEG CPNs, in vivo photoacoustic tomography (PAT) and magnetic resonance (MR) bimodal imaging are carried out, revealing the efficient passive tumor targeting of these ultra-small CPNs after intravenous (i.v.) injection. Interestingly, such Fe-GA-PEG CPNs could be labeled with the 64 Cu isotope via a chelator-free method for in vivo PET imaging, which also illustrates the high tumor uptake of Fe-GA CPNs. We further utilize Fe-GA-PEG CPNs for in vivo photothermal therapy and achieve highly effective tumor destruction after i.v. injection of Fe-GA-PEG CPNs and the following NIR laser irradiation of the tumors, without observing any apparent toxicity of such CPNs to the treated animals. Our work highlights the promise of ultra-small iron coordination nanoparticles for imaging-guided cancer therapy.

  18. Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy.

    PubMed

    Du, Yang; Liang, Xiaolong; Li, Yuan; Sun, Ting; Jin, Zhengyu; Xue, Huadan; Tian, Jie

    2017-11-06

    The overexpression of programmed cell death-1 (PD-1) in tumors as breast cancer makes it a possible target for cancer imaging and therapy. Advances in molecular imaging, including radionuclide imaging and near-infrared fluorescence (NIRF) imaging, enable the detection of tumors with high sensitivity. In this study, we aim to develop a novel PD-1 antibody targeted positron emission tomography (PET) and NIRF labeled liposome loaded with doxorubicin (DOX) and evaluate its application for in vivo cancer imaging and therapy. IRDye800CW and 64 Cu were conjugated to liposomes with PD-1 antibody labeling, and DOX was inside the liposomes to form theranostic nanoparticles. The 4T1 tumors were successfully visualized with PD-1-Liposome-DOX- 64 Cu/IRDye800CW using NIRF/PET imaging. The bioluminescent imaging (BLI) results showed that tumor growth was significantly inhibited in the PD-1-Liposome-DOX-treated group than the IgG control. Our results highlight the potential of using dual-labeled theranostic PD-1 mAb-targeted Liposome-DOX- 64 Cu/IRDye800CW for the management of breast tumor.

  19. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    PubMed

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  20. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    PubMed Central

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  1. Magnetic Resonance Imaging of Chondrocytes Labeled with Superparamagnetic Iron Oxide Nanoparticles in Tissue-Engineered Cartilage

    PubMed Central

    Ramaswamy, Sharan; Greco, Jane B.; Uluer, Mehmet C.; Zhang, Zijun; Zhang, Zhuoli; Fishbein, Kenneth W.

    2009-01-01

    The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration–approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics. PMID:19788362

  2. Automated segmentation of thyroid gland on CT images with multi-atlas label fusion and random classification forest

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chang, Kevin; Kim, Lauren; Turkbey, Evrim; Lu, Le; Yao, Jianhua; Summers, Ronald

    2015-03-01

    The thyroid gland plays an important role in clinical practice, especially for radiation therapy treatment planning. For patients with head and neck cancer, radiation therapy requires a precise delineation of the thyroid gland to be spared on the pre-treatment planning CT images to avoid thyroid dysfunction. In the current clinical workflow, the thyroid gland is normally manually delineated by radiologists or radiation oncologists, which is time consuming and error prone. Therefore, a system for automated segmentation of the thyroid is desirable. However, automated segmentation of the thyroid is challenging because the thyroid is inhomogeneous and surrounded by structures that have similar intensities. In this work, the thyroid gland segmentation is initially estimated by multi-atlas label fusion algorithm. The segmentation is refined by supervised statistical learning based voxel labeling with a random forest algorithm. Multiatlas label fusion (MALF) transfers expert-labeled thyroids from atlases to a target image using deformable registration. Errors produced by label transfer are reduced by label fusion that combines the results produced by all atlases into a consensus solution. Then, random forest (RF) employs an ensemble of decision trees that are trained on labeled thyroids to recognize features. The trained forest classifier is then applied to the thyroid estimated from the MALF by voxel scanning to assign the class-conditional probability. Voxels from the expert-labeled thyroids in CT volumes are treated as positive classes; background non-thyroid voxels as negatives. We applied this automated thyroid segmentation system to CT scans of 20 patients. The results showed that the MALF achieved an overall 0.75 Dice Similarity Coefficient (DSC) and the RF classification further improved the DSC to 0.81.

  3. Robust multi-atlas label propagation by deep sparse representation

    PubMed Central

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2016-01-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared

  4. Robust multi-atlas label propagation by deep sparse representation.

    PubMed

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2017-03-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures

  5. 18F-positron-emitting/fluorescent labeled erythrocytes allow imaging of internal hemorrhage in a murine intracranial hemorrhage model

    PubMed Central

    Wang, Ye; An, Fei-Fei; Chan, Mark; Friedman, Beth; Rodriguez, Erik A; Tsien, Roger Y; Aras, Omer

    2017-01-01

    An agent for visualizing cells by positron emission tomography is described and used to label red blood cells. The labeled red blood cells are injected systemically so that intracranial hemorrhage can be visualized by positron emission tomography (PET). Red blood cells are labeled with 0.3 µg of a positron-emitting, fluorescent multimodal imaging probe, and used to non-invasively image cryolesion induced intracranial hemorrhage in a murine model (BALB/c, 2.36 × 108 cells, 100 µCi, <4 mm hemorrhage). Intracranial hemorrhage is confirmed by histology, fluorescence, bright-field, and PET ex vivo imaging. The low required activity, minimal mass, and high resolution of this technique make this strategy an attractive alternative for imaging intracranial hemorrhage. PET is one solution to a spectrum of issues that complicate single photon emission computed tomography (SPECT). For this reason, this application serves as a PET alternative to [99mTc]-agents, and SPECT technology that is used in 2 million annual medical procedures. PET contrast is also superior to gadolinium and iodide contrast angiography for its lack of clinical contraindications. PMID:28054494

  6. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    PubMed Central

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  7. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Siva, Shankar

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metricsmore » model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically

  8. 40 CFR Appendix V to Part 600 - Fuel Economy Label Style Guidelines for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel Economy Label Style Guidelines for 2008 Through 2012 Model Year Vehicles V Appendix V to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  9. 40 CFR Appendix V to Part 600 - Fuel Economy Label Style Guidelines for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel Economy Label Style Guidelines for 2008 Through 2012 Model Year Vehicles V Appendix V to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  10. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.

    PubMed

    Wice, B M; Gordon, J I

    1992-01-01

    differentiation/translocation up the villus. Immunocytochemical studies reveal that the intestine-specific annexin (ISA) is associated with the plasma membrane of undifferentiated, proliferating crypt epithelial cells as well as differentiated villus enterocytes. In polarized enterocytes, the highest concentrations of ISA are found at the apical compared to basolateral membrane. In vitro studies using an octapeptide derived from residues 2-9 of the primary translation product of ISA mRNA and purified myristoyl-CoA:protein N-myristoyltransferase suggested that it is N-myristoylated. In vivo labeling studies confirmed that myristate is covalently attached to ISA via a hydroxylamine resistant amide linkage. The restricted cellular expression and acylation of ISA distinguish it from other known annexins.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  12. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating

    NASA Astrophysics Data System (ADS)

    Hui, Yuen Yung; Su, Long-Jyun; Chen, Oliver Yenjyh; Chen, Yit-Tsong; Liu, Tzu-Ming; Chang, Huan-Cheng

    2014-07-01

    Nanodiamonds containing high density ensembles of negatively charged nitrogen-vacancy (NV-) centers are promising fluorescent biomarkers due to their excellent photostability and biocompatibility. The NV- centers in the particles have a fluorescence lifetime of up to 20 ns, which distinctly differs from those (<10 ns) of cell and tissue autofluorescence, making it possible to achieve background-free detection in vivo by time gating. Here, we demonstrate the feasibility of using fluorescent nanodiamonds (FNDs) as optical labels for wide-field time-gated fluorescence imaging and flow cytometric analysis of cancer cells with a nanosecond intensified charge-coupled device (ICCD) as the detector. The combined technique has allowed us to acquire fluorescence images of FND-labeled HeLa cells in whole blood covered with a chicken breast of ~0.1-mm thickness at the single cell level, and to detect individual FND-labeled HeLa cells in blood flowing through a microfluidic device at a frame rate of 23 Hz, as well as to locate and trace FND-labeled lung cancer cells in the blood vessels of a mouse ear. It opens a new window for real-time imaging and tracking of transplanted cells (such as stem cells) in vivo.

  13. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    PubMed Central

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  14. PET-radioimmunodetection of integrins: imaging acute colitis using a ⁶⁴Cu-labeled anti-β₇ integrin antibody.

    PubMed

    Dearling, Jason L J; Packard, Alan B

    2012-01-01

    Integrins are involved in a wide range of cell interactions. Imaging their distribution using high-resolution noninvasive techniques that are directly translatable to the clinic can provide new insights into disease processes and presents the opportunity to directly monitor new therapies. In this chapter, we describe a protocol to image, the in vivo distribution of the integrin β(7), expressed by lymphocytes recruited to and retained by the inflamed gut, using a radiolabeled whole antibody. The antibody is purified, conjugated with a bifunctional chelator for labeling with a radiometal, labeled with the positron-emitting radionuclide (64)Cu, and injected into mice for microPET studies. Mice with DSS-induced colitis were found to have higher uptake of the (64)Cu-labeled antibody in the gut than control groups.

  15. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  16. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian; Zheng, Wei; Wang, Zi

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  17. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  18. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  19. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography.

    PubMed

    Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph

    2012-03-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.

  20. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer.

    PubMed

    Shetty, Praveenkumar; Patil, Vidya S; Mohan, Rajashekar; D'souza, Leonard Clinton; Bargale, Anil; Patil, Basavaraj R; Dinesh, U S; Haridas, Vikram; Kulkarni, Shrirang P

    2017-07-01

    Background AnnexinA2 (AnxA2) membrane deposition has a critical role in HB-EGF shedding as well as IL-6 secretion in breast cancer cells. This autocrine cycle has a major role in cancer cell proliferation, migration and metastasis. The objective of the study is to demonstrate annexinA2-mediated autocrine regulation via HB-EGF and IL-6 in Her-2 negative breast cancer progression. Methods Secretory annexinA2, HB-EGF and IL-6 were analysed in the peripheral blood sample of Her-2 negative ( n = 20) and positive breast cancer patients ( n = 16). Simultaneously, tissue expression was analysed by immunohistochemistry. The membrane deposition of these secretory ligands and their autocrine regulation was demonstrated using triple-negative breast cancer cell line model. Results Annexina2 and HB-EGF expression are inversely correlated with Her-2, whereas IL-6 expression is seen in both Her-2 negative and positive breast cancer cells. RNA interference studies and upregulation of annexinA2 proved that annexinA2 is the upstream of this autocrine pathway. Abundant soluble serum annexinA2 is secreted in Her-2 negative breast cancer (359.28 ± 63.73 ng/mL) compared with normal (286.10 ± 70.04 ng/mL, P < 0.01) and Her-2 positive cases (217.75 ± 60.59 ng/mL, P < 0.0001). In Her-2 negative cases, the HB-EGF concentrations (179.16 ± 118.81 pg/mL) were highly significant compared with normal (14.92 ± 17.33 pg/mL, P < 0.001). IL-6 concentrations were increased significantly in both the breast cancer phenotypes as compared with normal ( P < 0.001). Conclusion The specific expression pattern of annexinA2 and HB-EGF in triple-negative breast cancer tissues, increased secretion compared with normal cells, and their major role in the regulation of EGFR downstream signalling makes these molecules as a potential tissue and serum biomarker and an excellent therapeutic target in Her-2 negative breast cancer.

  1. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    NASA Astrophysics Data System (ADS)

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-10-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  2. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound.

    PubMed

    Pope, Ava G; Wu, Gongting; McWhorter, Frances Y; Merricks, Elizabeth P; Nichols, Timothy C; Czernuszewicz, Tomasz J; Gallippi, Caterina M; Oldenburg, Amy L

    2013-10-21

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml(-1) Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  3. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    PubMed Central

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-01-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004

  4. Evaluation of 99mTc labeled diadenosine tetraphosphate as an atherosclerotic plaque imaging agent in experimental models.

    PubMed

    Cao, Wei; Zhang, Yongxue; An, Rui

    2006-01-01

    The potential of 99mTc labeled P1, P4-di (adenosine-5')-tetraphosphate (Ap4A) for imaging experimental atherosclerotic plaques was evaluated in New Zealand white (NZW) rabbits. To label the 99mTc to Ap4A, stannous tartrate solution was used. 99mTc-Ap4A was purified on a Sephadex G-25 column. The radiochemistry purities of 99mTc-Ap4A were 85% to 91%. Biodistribution study revealed 99mTc-Ap4A cleared from blood rapidly. Thirty min after 99mTc-Ap4A administrated on NZW atherosclerotic rabbits, lesion to blood (target/blood, T/B) ratio was 3.17 +/- 1.27, and lesions to normal (target/non-target, T/NT) ratio was 5.23 +/- 1.87. Shadows of atherosclerotic plaques were clearly visible on radioautographic film. Aortas with atherosclerotic plaques also could be seen on ex vivo gamma camera images. Atherosclerotic abdominal aortas were clearly visible on in vivo images 15 min to 3 h after 99mTc-Ap4A administration. 99mTc-labeled Ap4A can be used for rapid noninvasive detection of experimental atherosclerotic plaque.

  5. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells.

    PubMed

    Sun, Bing; Bai, Yuxin; Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    Lung cancer remains the leading cancer killer around the world. It's crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer.

  6. Immuno-analysis of microparticles: probing at the limits of detection

    PubMed Central

    Latham, Sharissa L.; Tiberti, Natalia; Gokoolparsadh, Naveena; Holdaway, Karen; Olivier Couraud, Pierre; Grau, Georges E. R.; Combes, Valery

    2015-01-01

    Microparticle (MP) research is clouded by debate regarding the accuracy and validity of flow cytometry (FCM) as an analytical methodology, as it is influenced by many variables including the pre-analytical conditions, instruments physical capabilities and detection parameters. This study utilises a simplistic in vitro system for generating MP, and through comparative analysis with immuno-electron microscopy (Immuno-EM) assesses the strengths and limitations of probe selection and high-sensitivity FCM. Of the markers examined, MP were most specifically labelled with phosphatidylserine ligands, annexin V and lactadherin, although only ~60% MP are PS positive. Whilst these two ligands detect comparable absolute MP numbers, they interact with the same population in distinct manners; annexin V binding is enhanced on TNF induced MP. CD105 and CD54 expression were, as expected, consistent and enhanced following TNF activation respectively. Their labelling however accounted for as few as 30–40% of MP. The greatest discrepancies between FCM and I-EM were observed in the population solely labelled for the surface antigen. These findings demonstrate that despite significant improvements in resolution, high-sensitivity FCM remains limited in detecting small-size MP expressing low antigen levels. This study highlights factors to consider when selecting endothelial MP probes, as well as interpreting and representing data. PMID:26553743

  7. Proximal Bright Vessel Sign on Arterial Spin Labeling Magnetic Resonance Imaging in Acute Cardioembolic Cerebral Infarction.

    PubMed

    Kato, Ayumi; Shinohara, Yuki; Kuya, Keita; Sakamoto, Makoto; Kowa, Hisanori; Ogawa, Toshihide

    2017-07-01

    The congestion of spin-labeled blood at large-vessel occlusion can present as hyperintense signals on perfusion magnetic resonance imaging with 3-dimensional pseudo-continuous arterial spin labeling (proximal bright vessel sign). The purpose of this study was to clarify the difference between proximal bright vessel sign and susceptibility vessel sign in acute cardioembolic cerebral infarction. Forty-two patients with cardioembolic cerebral infarction in the anterior circulation territory underwent magnetic resonance imaging including diffusion-weighted imaging, 3-dimensional pseudo-continuous arterial spin labeling perfusion magnetic resonance imaging, T2*-weighted imaging, and 3-dimensional time-of-flight magnetic resonance angiography using a 3-T magnetic resonance scanner. Visual assessments of proximal bright vessel sign and the susceptibility vessel sign were performed by consensus of 2 experienced neuroradiologists. The relationship between these signs and the occlusion site of magnetic resonance angiography was also investigated. Among 42 patients with cardioembolic cerebral infarction, 24 patients showed proximal bright vessel sign (57.1%) and 25 showed susceptibility vessel sign (59.5%). There were 19 cases of proximal bright vessel sign and susceptibility vessel sign-clear, 12 cases of proximal bright vessel sign and susceptibility vessel sign-unclear, and 11 mismatched cases. Four out of 6 patients with proximal bright vessel sign-unclear and susceptibility vessel sign-clear showed distal middle cerebral artery occlusion, and 2 out of 5 patients with proximal bright vessel sign-clear and susceptibility vessel sign-unclear showed no occlusion on magnetic resonance angiography. Proximal bright vessel sign is almost compatible with susceptibility vessel sign in patients with cardioembolic cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirofumi; Lei, Cheng; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    Acquired drug resistance is a fundamental predicament in cancer therapy. Early detection of drug-resistant cancer cells during or after treatment is expected to benefit patients from unnecessary drug administration and thus play a significant role in the development of a therapeutic strategy. However, the development of an effective method of detecting drug-resistant cancer cells is still in its infancy due to their complex mechanism in drug resistance. To address this problem, we propose and experimentally demonstrate label-free image-based drug resistance detection with optofluidic time-stretch microscopy using leukemia cells (K562 and K562/ADM). By adding adriamycin (ADM) to both K562 and K562/ADM (ADM-resistant K562 cells) cells, both types of cells express unique morphological changes, which are subsequently captured by an optofluidic time-stretch microscope. These unique morphological changes are extracted as image features and are subjected to supervised machine learning for cell classification. We hereby have successfully differentiated K562 and K562/ADM solely with label-free images, which suggests that our technique is capable of detecting drug-resistant cancer cells. Our optofluidic time-stretch microscope consists of a time-stretch microscope with a high spatial resolution of 780 nm at a 1D frame rate of 75 MHz and a microfluidic device that focuses and orders cells. We compare various machine learning algorithms as well as various concentrations of ADM for cell classification. Owing to its unprecedented versatility of using label-free image and its independency from specific molecules, our technique holds great promise for detecting drug resistance of cancer cells for which its underlying mechanism is still unknown or chemical probes are still unavailable.

  9. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  10. A transversal approach for patch-based label fusion via matrix completion

    PubMed Central

    Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Thung, Kim-Han; Guo, Yanrong; Shen, Dinggang

    2015-01-01

    Recently, multi-atlas patch-based label fusion has received an increasing interest in the medical image segmentation field. After warping the anatomical labels from the atlas images to the target image by registration, label fusion is the key step to determine the latent label for each target image point. Two popular types of patch-based label fusion approaches are (1) reconstruction-based approaches that compute the target labels as a weighted average of atlas labels, where the weights are derived by reconstructing the target image patch using the atlas image patches; and (2) classification-based approaches that determine the target label as a mapping of the target image patch, where the mapping function is often learned using the atlas image patches and their corresponding labels. Both approaches have their advantages and limitations. In this paper, we propose a novel patch-based label fusion method to combine the above two types of approaches via matrix completion (and hence, we call it transversal). As we will show, our method overcomes the individual limitations of both reconstruction-based and classification-based approaches. Since the labeling confidences may vary across the target image points, we further propose a sequential labeling framework that first labels the highly confident points and then gradually labels more challenging points in an iterative manner, guided by the label information determined in the previous iterations. We demonstrate the performance of our novel label fusion method in segmenting the hippocampus in the ADNI dataset, subcortical and limbic structures in the LONI dataset, and mid-brain structures in the SATA dataset. We achieve more accurate segmentation results than both reconstruction-based and classification-based approaches. Our label fusion method is also ranked 1st in the online SATA Multi-Atlas Segmentation Challenge. PMID:26160394

  11. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    PubMed

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bio-Imaging of Colorectal Cancer Models Using Near Infrared Labeled Epidermal Growth Factor

    PubMed Central

    Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip

    2012-01-01

    Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues. PMID:23144978

  13. Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor.

    PubMed

    Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip

    2012-01-01

    Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.

  14. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  15. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  16. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging.

    PubMed

    Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M

    2013-04-01

    To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.

  17. Label-free imaging of rat spinal cords based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  18. Positron Emission Tomography and Near-Infrared Fluorescence Imaging of Vascular Endothelial Growth Factor with Dual-Labeled Bevacizumab.

    PubMed

    Zhang, Yin; Hong, Hao; Engle, Jonathan W; Yang, Yunan; Barnhart, Todd E; Cai, Weibo

    2012-01-01

    The pivotal role of vascular endothelial growth factor (VEGF) in cancer is underscored by the approval of bevacizumab (Bev, a humanized anti-VEGF monoclonal antibody) for first line treatment of cancer patients. The aim of this study was to develop a dual-labeled Bev for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of VEGF. Bev was conjugated to a NIRF dye (i.e. 800CW) and 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) before (64)Cu-labeling. Flow cytometry analysis of U87MG human glioblastoma cells revealed no difference in VEGF binding affinity/specificity between Bev and NOTA-Bev-800CW. (64)Cu-labeling of NOTA-Bev-800CW was achieved with high yield. Serial PET imaging of U87MG tumor-bearing female nude mice revealed that tumor uptake of (64)Cu-NOTA-Bev-800CW was 4.6 ± 0.7, 16.3 ± 1.6, 18.1 ± 1.4 and 20.7 ± 3.7 %ID/g at 4, 24, 48 and 72 h post-injection respectively (n = 4), corroborated by in vivo/ex vivo NIRF imaging and biodistribution studies. Tumor uptake as measured by ex vivo NIRF imaging had a good linear correlation with the %ID/g values obtained from PET (R(2) = 0.93). Blocking experiments and histology both confirmed the VEGF specificity of (64)Cu-NOTA-Bev-800CW. The persistent, prominent, and VEGF-specific uptake of (64)Cu-NOTA-Bev-800CW in the tumor, observed by both PET and NIRF imaging, warrants further investigation and future clinical translation of such Bev-based imaging agents.

  19. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging.

    PubMed

    Ma, Wenhui; Fu, Fanfan; Zhu, Jingyi; Huang, Rui; Zhu, Yizhou; Liu, Zhenwei; Wang, Jing; Conti, Peter S; Shi, Xiangyang; Chen, Kai

    2018-03-29

    We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.

  20. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    PubMed Central

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  1. Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival

    PubMed Central

    Zhang, Danhua; Golubkov, Vladislav S.; Han, Wenlong; Correa, Ricardo G.; Zhou, Ying; Lee, Sunyoung; Strongin, Alex Y.; Dong, P. Duc Si

    2014-01-01

    To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing β-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic β-cell apoptosis and cancer cell chemoresistance. PMID:25176043

  2. Label-Free Biosensor Imaging on Photonic Crystal Surfaces.

    PubMed

    Zhuo, Yue; Cunningham, Brian T

    2015-08-28

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  3. Label-Free Biosensor Imaging on Photonic Crystal Surfaces

    PubMed Central

    Zhuo, Yue; Cunningham, Brian T.

    2015-01-01

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity. PMID:26343684

  4. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys.

    PubMed

    Baldwin, Mary K L; Kaskan, Peter M; Zhang, Bin; Chino, Yuzo M; Kaas, Jon H

    2012-02-15

    Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age. Copyright © 2011 Wiley-Liss, Inc.

  5. Superresolution Imaging of Human Cytomegalovirus vMIA Localization in Sub-Mitochondrial Compartments

    PubMed Central

    Bhuvanendran, Shivaprasad; Salka, Kyle; Rainey, Kristin; Sreetama, Sen Chandra; Williams, Elizabeth; Leeker, Margretha; Prasad, Vidhya; Boyd, Jonathan; Patterson, George H.; Jaiswal, Jyoti K.; Colberg-Poley, Anamaris M.

    2014-01-01

    The human cytomegalovirus (HCMV) viral mitochondria-localized inhibitor of apoptosis (vMIA) protein, traffics to mitochondria-associated membranes (MAM), where the endoplasmic reticulum (ER) contacts the outer mitochondrial membrane (OMM). vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED) imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM), we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM). With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization. PMID:24721787

  6. Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30.

    PubMed

    Perk, Lars R; Stigter-van Walsum, Marijke; Visser, Gerard W M; Kloet, Reina W; Vosjan, Maria J W D; Leemans, C René; Giaccone, Giuseppe; Albano, Raffaella; Comoglio, Paolo M; van Dongen, Guus A M S

    2008-10-01

    Targeting the c-Met receptor with monoclonal antibodies (MAbs) is an appealing approach for cancer diagnosis and treatment because this receptor plays a prominent role in tumour invasion and metastasis. Positron emission tomography (PET) might be a powerful tool for guidance of therapy with anti-Met MAbs like the recently described MAb DN30 because it allows accurate quantitative imaging of tumour targeting (immuno-PET). We considered the potential of PET with either (89)Zr-labelled (residualising radionuclide) or (124)I-labelled (non-residualising radionuclide) DN30 for imaging of Met-expressing tumours. The biodistribution of co-injected (89)Zr-DN30 and iodine-labelled DN30 was compared in nude mice bearing either the human gastric cancer line GLT-16 (high Met expression) or the head-and-neck cancer line FaDu (low Met expression). PET images were acquired in both xenograft models up to 4 days post-injection (p.i.) and used for quantification of tumour uptake. Biodistribution studies in GTL-16-tumour-bearing mice revealed that (89)Zr-DN30 achieved much higher tumour uptake levels than iodine-labelled DN30 (e.g. 19.6%ID/g vs 5.3%ID/g, 5 days p.i.), while blood levels were similar, indicating internalisation of DN30. Therefore, (89)Zr-DN30 was selected for PET imaging of GLT-16-bearing mice. Tumours as small as 11 mg were readily visualised with immuno-PET. A distinctive lower (89)Zr uptake was observed in FaDu compared to GTL-16 xenografts (e.g. 7.8%ID/g vs 18.1%ID/g, 3 days p.i.). Nevertheless, FaDu xenografts were also clearly visualised with (89)Zr-DN30 immuno-PET. An excellent correlation was found between PET-image-derived (89)Zr tumour uptake and ex-vivo-assessed (89)Zr tumour uptake (R(2)=0.98). The long-lived positron emitter (89)Zr seems attractive for PET-guided development of therapeutic anti-c-Met MAbs.

  7. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    PubMed

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Plasma membrane repair and cellular damage control: the annexin survival kit.

    PubMed

    Draeger, Annette; Monastyrskaya, Katia; Babiychuk, Eduard B

    2011-03-15

    Plasmalemmal injury is a frequent event in the life of a cell. Physical disruption of the plasma membrane is common in cells that operate under conditions of mechanical stress. The permeability barrier can also be breached by chemical means: pathogens gain access to host cells by secreting pore-forming toxins and phospholipases, and the host's own immune system employs pore-forming proteins to eliminate both pathogens and the pathogen-invaded cells. In all cases, the influx of extracellular Ca(2+) is being sensed and interpreted as an "immediate danger" signal. Various Ca(2+)-dependent mechanisms are employed to enable plasma membrane repair. Extensively damaged regions of the plasma membrane can be patched with internal membranes delivered to the cell surface by exocytosis. Nucleated cells are capable of resealing their injured plasmalemma by endocytosis of the permeabilized site. Likewise, the shedding of membrane microparticles is thought to be involved in the physical elimination of pores. Membrane blebbing is a further damage-control mechanism, which is triggered after initial attempts at plasmalemmal resealing have failed. The members of the annexin protein family are ubiquitously expressed and function as intracellular Ca(2+) sensors. Most cells contain multiple annexins, which interact with distinct plasma membrane regions promoting membrane segregation, membrane fusion and--in combination with their individual Ca(2+)-sensitivity--allow spatially confined, graded responses to membrane injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Annexin-directed β-glucuronidase for the targeted treatment of solid tumors.

    PubMed

    Guillen, Katrin P; Ruben, Eliza A; Virani, Needa; Harrison, Roger G

    2017-02-01

    Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme β-glucuronidase (βG), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted βG to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human βG, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 μg/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. βG fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Sentinel lymph nodes detection with an imaging system using Patent Blue V dye as fluorescent tracer

    NASA Astrophysics Data System (ADS)

    Tellier, F.; Steibel, J.; Chabrier, R.; Rodier, J. F.; Pourroy, G.; Poulet, P.

    2013-03-01

    Sentinel lymph node biopsy is the gold standard to detect metastatic invasion from primary breast cancer. This method can help patients avoid full axillary chain dissection, thereby decreasing the risk of morbidity. We propose an alternative to the traditional isotopic method, to detect and map the sentinel lymph nodes. Indeed, Patent Blue V is the most widely used dye in clinical routine for the visual detection of sentinel lymph nodes. A Recent study has shown the possibility of increasing the fluorescence quantum yield of Patent Blue V, when it is bound to human serum albumin. In this study we present a preclinical fluorescence imaging system to detect sentinel lymph nodes labeled with this fluorescent tracer. The setup is composed of a black and white CCD camera and two laser sources. One excitation source with a laser emitting at 635 nm and a second laser at 785 nm to illuminate the region of interest. The prototype is operated via a laptop. Preliminary experiments permitted to determine the device sensitivity in the μmol.L-1 range as regards the detection of PBV fluorescence signals. We also present a preclinical evaluation performed on Lewis rats, during which the fluorescence imaging setup detected the accumulation and fixation of the fluorescent dye on different nodes through the skin.

  11. Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2012-02-01

    This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.

  12. Mid-IR hyperspectral imaging for label-free histopathology and cytology

    NASA Astrophysics Data System (ADS)

    Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.

    2018-02-01

    Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.

  13. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  14. Increased expression of annexin I and thioredoxin detected by two-dimensional gel electrophoresis of drug resistant human stomach cancer cells.

    PubMed

    Sinha, P; Hütter, G; Köttgen, E; Dietel, M; Schadendorf, D; Lage, H

    1998-11-18

    The therapy of advanced cancer using chemotherapy alone or in combination with radiation or hyperthermia yields an overall response rate of about 20-50%. This success is often marred by the development of resistance to cytostatic drugs. Our aim was to study the global analysis of protein expression in the development of chemoresistance in vitro. We therefore used a cell culture model derived from the gastric carcinoma cell line EPG 85-257P. A classical multidrug-resistant subline EPG85-257RDB selected to daunorubicin and an atypical multidrug-resistant cell variant EPG85-257RNOV selected to mitoxantrone, were analysed using two-dimensional electrophoresis in immobilized pH-gradients (pH 4.0-8.0) in the first dimension and linear polyacrylamide gels (12%) in the second dimension. After staining with coomassie brilliant blue, image analysis was performed using the PDQuest system. Spots of interest were isolated using preparative two-dimensional electrophoresis and subjected to microsequencing. A total of 241 spots from the EPG85-257RDB-standard and 289 spots from the EPG85-257RNOV-standard could be matched to the EPG85-257P-standard. Microsequencing after enzymatic hydrolysis in gel, mass spectrometric data and sequencing of the peptides after their fractionation using microbore HPLC identified that two proteins annexin I and thioredoxin were overexpressed in chemoresistant cell lines. Annexin I was present in both the classical and the atypical multidrug-resistant cells. Thioredoxin was found to be overexpressed only in the atypical multidrug-resistant cell line.

  15. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy

    PubMed Central

    Small, David M.; Jones, Jason S.; Tendler, Irwin I.; Miller, Paul E.; Ghetti, Andre; Nishimura, Nozomi

    2017-01-01

    Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool. PMID:29359098

  16. Improvements in low-cost label-free QPI microscope for live cell imaging

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-07-01

    This paper reports an improvement in the development of a low-cost QPI microscope offering new capabilities in term of phase measurement accuracy for label-free live samples in the longer term (i.e., hours to days). The spatially separated scattered and non-scattered image light fields are reshaped in the Fourier plane and modulated to form an interference image at a CCD camera. The apertures that enable these two beams to be generated have been optimised by means of laser-cut apertures placed on the mirrors of a Michelson interferometer and has improved the phase measuring and reconstruction capability of the QPI microscope. The microscope was tested with transparent onion cells as an object of interest.

  17. Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins

    PubMed Central

    Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying

    2014-01-01

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322

  18. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca²+- and K+-permeable conductance in root cells.

    PubMed

    Laohavisit, Anuphon; Shang, Zhonglin; Rubio, Lourdes; Cuin, Tracey A; Véry, Anne-Aliénor; Wang, Aihua; Mortimer, Jennifer C; Macpherson, Neil; Coxon, Katy M; Battey, Nicholas H; Brownlee, Colin; Park, Ohkmae K; Sentenac, Hervé; Shabala, Sergey; Webb, Alex A R; Davies, Julia M

    2012-04-01

    Plant cell growth and stress signaling require Ca²⁺ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²⁺-permeable conductance that permits Ca²⁺ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²⁺-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²⁺- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²⁺ in response to OH•. An OH•-activated Ca²⁺ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²⁺-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²⁺ in plants.

  19. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation

    PubMed Central

    Pleiner, Tino; Bates, Mark; Trakhanov, Sergei; Lee, Chung-Tien; Schliep, Jan Erik; Chug, Hema; Böhning, Marc; Stark, Holger; Urlaub, Henning; Görlich, Dirk

    2015-01-01

    Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target. DOI: http://dx.doi.org/10.7554/eLife.11349.001 PMID:26633879

  20. KIFC3, a microtubule minus end–directed motor for the apical transport of annexin XIIIb–associated Triton-insoluble membranes

    PubMed Central

    Noda, Yasuko; Okada, Yasushi; Saito, Nobuhito; Setou, Mitsutoshi; Xu, Ying; Zhang, Zheizeng; Hirokawa, Nobutaka

    2001-01-01

    We have identified and characterized a COOH-terminal motor domain–type kinesin superfamily protein (KIFC), KIFC3, in the kidney. KIFC3 is a minus end–directed microtubule motor protein, therefore it accumulates in regions where minus ends of microtubules assemble. In polarized epithelial cells, KIFC3 is localized on membrane organelles immediately beneath the apical plasma membrane of renal tubular epithelial cells in vivo and polarized MDCK II cells in vitro. Flotation assay, coupled with detergent extraction, demonstrated that KIFC3 is associated with Triton X-100–insoluble membrane organelles, and that it overlaps with apically transported TGN-derived vesicles. This was confirmed by immunoprecipitation and by GST pulldown experiments showing the specific colocalization of KIFC3 and annexin XIIIb, a previously characterized membrane protein for apically transported vesicles (Lafont, F., S. Lecat, P. Verkade, and K. Simons. 1998. J. Cell Biol. 142:1413–1427). Furthermore, we proved that the apical transport of both influenza hemagglutinin and annexin XIIIb was partially inhibited or accelerated by overexpression of motor-domainless (dominant negative) or full-length KIFC3, respectively. Absence of cytoplasmic dynein on these annexin XIIIb–associated vesicles and distinct distribution of the two motors on the EM level verified the existence of KIFC3-driven transport in epithelial cells. PMID:11581287

  1. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells

    NASA Astrophysics Data System (ADS)

    Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit

    2016-03-01

    Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.

  2. In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh

    Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have provenmore » to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. As a result, we believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.« less

  3. In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy

    DOE PAGES

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; ...

    2016-11-22

    Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have provenmore » to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. As a result, we believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.« less

  4. Film labels: a new look.

    PubMed

    Hunter, T B

    1994-02-01

    Every diagnostic image should be properly labeled. To improve the labeling of radiographs in the Department of Radiology at the University Medical Center, Tucson, Arizona, a special computer program was written to control the printing of the department's film flashcards. This program captures patient data from the hospital's radiology information system and uses it to create a film flashcard that contains the patient's name, hospital number, date of birth, age, the time the patient checked into the radiology department, and the date of the examination. The resulting film labels are legible and aesthetically pleasing. Having the patient's age and date of birth on the labels is a useful quality assurance measure to make certain the proper study has been performed on the correct patient. All diagnostic imaging departments should institute measures to assure their film labeling is as legible and informative as possible.

  5. From Ugly Duckling to Swan: Unexpected Identification from Cell-SELEX of an Anti-Annexin A2 Aptamer Targeting Tumors

    PubMed Central

    Cibiel, Agnes; Nguyen Quang, Nam; Gombert, Karine; Thézé, Benoit; Garofalakis, Anikitos; Ducongé, Frédéric

    2014-01-01

    Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application. PMID:24489826

  6. Fluorophore-labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging

    PubMed Central

    Shi, Yang; Kunjachan, Sijumon; Wu, Zhuojun; Gremse, Felix; Moeckel, Diana; van Zandvoort, Marc; Kiessling, Fabian; Storm, Gert; van Nostrum, Cornelus F.; Hennink, Wim E.; Lammers, Twan

    2015-01-01

    Aim To enable multimodal in vivo and ex vivo optical imaging of the biodistribution and tumor accumulation of core-crosslinked polymeric micelles (CCPM). Materials & Methods mPEG-b-p(HPMAm-Lac)-based polymeric micelles, core-crosslinked via cystamine and covalently labeled with two fluorophores (Dy-676/488) were synthesized. The CCPM were intravenously injected in CT26 tumor-bearing mice. Results Upon intravenous injection, the CCPM accumulated in CT26 tumors reasonably efficiently, with values reaching ~4 %ID at 24 hours. Ex vivo TPLSM confirmed efficient extravasation of the iCCPM out of tumor blood vessels and deep penetration into the tumor interstitium. Conclusions CCPM were labeled with multiple fluorophores, and they exemplify that combining different in vivo and ex vivo optical imaging techniques is highly useful for analyzing the biodistribution and tumor accumulation of nanomedicines. PMID:25929568

  7. Quantitative Whole Body Biodistribution of Fluorescent-Labeled Agents by Non-Invasive Tomographic Imaging

    PubMed Central

    Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.

    2011-01-01

    When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation

  8. Specifically and wash-free labeling of SNAP-tag fused proteins with a hybrid sensor to monitor local micro-viscosity.

    PubMed

    Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi

    2017-05-15

    Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal

    PubMed Central

    Ducourthial, Guillaume; Leclerc, Pierre; Mansuryan, Tigran; Fabert, Marc; Brevier, Julien; Habert, Rémi; Braud, Flavie; Batrin, Renaud; Vever-Bizet, Christine; Bourg-Heckly, Geneviève; Thiberville, Luc; Druilhe, Anne; Kudlinski, Alexandre; Louradour, Frédéric

    2015-01-01

    We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope’s transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope’s unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states. PMID:26673905

  10. Intravital imaging of multicolor-labeled tumor immune microenvironment through skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2015-03-01

    Tumor immune microenvironment became very important for the tumor immunotherapy. There were several kinds of immune cells in tumor stromal, and they played very different roles in tumor growth. In order to observe the behaviors of multiple immune cells in tumor microenvironment and the interaction between immune cells and tumor cells at the same time, we generated a multicolor-labeled tumor immune microenvironment model. The tumor cells and immune cells were labeled by different fluorescent proteins. By using of skin-fold window chamber implanted into mice and intravital imaging technology, we could dynamically observe the different immune cells in tumor microenvironment. After data analysis from the video, we could know the behavior of TILs, DCs and Tregs in tumor immune microenvironment; furthermore, we could know these immune cells play different roles in the tumor microenvironment.

  11. Novel 64Cu Labeled RGD2-BBN Heterotrimers for PET Imaging of Prostate Cancer.

    PubMed

    Lucente, Ermelinda; Liu, Hongguang; Liu, Yang; Hu, Xiang; Lacivita, Enza; Leopoldo, Marcello; Cheng, Zhen

    2018-05-16

    Bombesin receptor 2 (BB 2 ) and integrin α v β 3 receptor are privileged targets for molecular imaging of cancer because of their overexpression in a number of tumor tissues. The most recent developments in heterodimer-based radiopharmaceuticals concern BB 2 - and integrin α v β 3 -targeting compounds, consisting of bombesin (BBN) and cyclic arginine-glycine-aspartic acid peptides (RGD), connected through short length linkers. Molecular imaging probes based on RGD-BBN heterodimer design exhibit improved tumor targeting efficacy compared to the single-receptor targeting peptide monomers. However, their application in clinical study is restricted because of inefficient synthesis or unfavorable in vivo properties, which could depend on the short linker nature. Thus, the aim of the present study was to develop a RGD 2 -BBN heterotrimer, composed of (7-14)BBN-NH 2 peptide (BBN) linked to the E[ c(RGDyK)] 2 dimer peptide (RGD 2 ), bearing the new linker type [Pro-Gly] 12 . The heterodimer E[c(RGDyK)] 2 -PEG 3 -Glu-(Pro-Gly) 12 -BBN(7-14)-NH 2 (RGD 2 -PG 12 -BBN) was prepared through conventional solid phase synthesis, then conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODA-GA). In 64 Cu labeling, the NODA-GA chelator showed superior radiochemical characteristics compared to DOTA (70% vs 40% yield, respectively). Both conjugates displayed dual targeting ability, showing good α v β 3 affinities and high BB 2 receptor affinities which, in the case of the NODA-GA conjugate, were in the same range as the best RGD-BBN heterodimer ligands reported to date ( K i = 24 nM). 64 Cu-DOTA and 64 Cu-NODA-GA probes were also found to be stable after 1 h incubation in mouse serum (>90%). In a microPET study in prostate cancer PC-3 xenograft mice, both probes showed low tumor uptake, probably due to poor pharmacokinetic properties in vivo. Overall, our study demonstrates that novel RGD

  12. IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques.

    PubMed

    Kung, Mei-Ping; Hou, Catherine; Zhuang, Zhi-Ping; Zhang, Bin; Skovronsky, Daniel; Trojanowski, John Q; Lee, Virginia M-Y; Kung, Hank F

    2002-11-29

    Development of small molecular probes for in vivo labeling and detection of beta-amyloid (Abeta) plaques in patients of Alzheimer's disease (AD) is of significant scientific interest, and it may also assist the development of drugs targeting Abeta plaques for treatment of AD. A novel probe, [123I/(125)I]IMPY, 6-iodo-2-(4'-dimethylamino-)phenyl-imidazo[1,2-a]pyridine, was successfully prepared with an iododestannylation reaction catalyzed by hydrogen peroxide. The modified thioflavin-T derivative displayed a good binding affinity for preformed synthetic Abeta40 aggregates in solution (K(i)=15+/-5 nM) and showed selective plaque labeling on postmortem AD brain sections. Biodistribution study in normal mice after an iv injection of [125I]IMPY exhibited excellent brain uptake (2.9% initial dose/brain at 2 min) and fast washout (0.2% initial dose/brain at 60 min). These properties are highly desirable for amyloid plaque imaging agents. In vivo plaque labeling was evaluated in a transgenic mouse model (Tg2576) engineered to produce excess amyloid plaques in the brain. Ex vivo autoradiograms of brain sections of the Tg 2576 mouse obtained at 4 h after an i.v. injection of [125I]IMPY clearly displayed a distinct plaque labeling with a low background activity. When the same brain section was stained with a fluorescent dye, thioflavin-S, the same Abeta plaques showed prominent fluorescent labeling consistent with the results of the autoradiogram. In conclusion, these findings clearly suggest that radioiodinated IMPY demonstrates desirable characteristics for in vivo labeling of Abeta plaques and it may be useful as a molecular imaging agent to study amyloidogenesis in the brain of living AD patients. Copyright 2002 Elsevier Science B.V.

  13. A Novel PET Imaging Using 64Cu-Labeled Monoclonal Antibody against Mesothelin Commonly Expressed on Cancer Cells

    PubMed Central

    Kobayashi, Kazuko; Sasaki, Takanori; Takenaka, Fumiaki; Yakushiji, Hiromasa; Fujii, Yoshihiro; Kishi, Yoshiro; Kita, Shoichi; Shen, Lianhua; Kumon, Hiromi; Matsuura, Eiji

    2015-01-01

    Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions. PMID:25883990

  14. In vivo evaluation of a radiogallium-labeled bifunctional radiopharmaceutical, Ga-DOTA-MN2, for hypoxic tumor imaging.

    PubMed

    Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro

    2013-01-01

    On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.

  15. Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging

    NASA Astrophysics Data System (ADS)

    Bassi, B.; Taglietti, A.; Galinetto, P.; Marchesi, N.; Pascale, A.; Cabrini, E.; Pallavicini, P.; Dacarro, G.

    2016-07-01

    Surface modification of noble metal nanoparticles with mixed molecular monolayers is one of the most powerful tools in nanotechnology, and is used to impart and tune new complex surface properties. In imaging techniques based on surface enhanced Raman spectroscopy (SERS), precise and controllable surface modifications are needed to carefully design reproducible, robust and adjustable SERS nanoprobes. We report here the attainment of SERS labels based on gold nanostars (GNSs) coated with a mixed monolayer composed of a poly ethylene glycol (PEG) thiol (neutral or negatively charged) that ensure stability in biological environments, and of a signalling unit 7-Mercapto-4-methylcoumarin as a Raman reporter molecule. The composition of the coating mixture is precisely controlled using an original method, allowing the modulation of the SERS intensity and ensuring overall nanoprobe stability. The further addition of a positively charged layer of poly (allylamine hydrocloride) on the surface of negatively charged SERS labels does not change the SERS response, but it promotes the penetration of GNSs in SH-SY5Y neuroblastoma cells. As an example of an application of such an approach, we demonstrate here the internalization of these new labels by means of visualization of cell morphology obtained with SERS mapping.

  16. Preclinical Comparison of Near-Infrared-Labeled Cetuximab and Panitumumab for Optical Imaging of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Day, Kristine E.; Sweeny, Larissa; Kulbersh, Brian; Zinn, Kurt R.; Rosenthal, Eben L.

    2014-01-01

    Purpose: Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC). Procedures: Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n=22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology. Results: Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (KD=0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p=0.08 SPY, p=0.48 Pearl; SCC-1: p=0.77 SPY, p=0.59 Pearl; paired t tests). Conclusions: There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC. PMID:23715932

  17. Some constructions on total labelling of m triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voon, Chen Huey, E-mail: chenhv@utar.edu.my; Hui, Liew How, E-mail: liewhh@utar.edu.my; How, Yim Kheng, E-mail: tidusyimhome@hotmail.com

    2016-06-02

    Let mK{sub 3} = (V{sub m}, E{sub m}) be a finite disconnected graph consisting of m disjoint triangles K{sub 3}, where V{sub m} is the set of vertices, E{sub m} is the set of edges and both V{sub m} and E{sub m} are of the same size 3m. A total labelling of mK{sub 3} is a function f which maps the elements in V{sub m} and E{sub m} to positive integer values, i.e. f : V{sub m} ∪ E{sub m} → {1, 2, 3,···}. Let c be a positive integer. A triangle is said have a c-Erdősian triangle labelling ifmore » it is a total labelling f : V{sub m} ∪ E{sub m} → {c, c + 1, ···, c + 6m − 1} such that f (x) + f (y) = f (xy) for any x, y ∈ V{sub m} and an edge xy ∈ E{sub m} joining them. In order to find all the c-Erdősian triangle labelling, a straightforward is to use the exhaustive search. However, the exhaustive search is only able to find c-Erdősian triangle labelling for m ≤ 5 due to combinatorial explosion. By studying the constant sum of vertex labels, we propose a strong permutation approach, which allows us to generate a certain classes of c-Erdősian triangle labelling up until m = 8.« less

  18. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    PubMed

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of

  19. Capacitive label reader

    DOEpatents

    Arlowe, H. Duane

    1985-01-01

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  20. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1983-07-15

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  1. Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins.

    PubMed

    Fortin, Dale A; Tillo, Shane E; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V; Guo, Caiying; Mao, Tianyi; Zhong, Haining

    2014-12-10

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. Copyright © 2014 the authors 0270-6474/14/3416698-15$15.00/0.

  2. Ptychography: use of quantitative phase information for high-contrast label free time-lapse imaging of living cells

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; O'Toole, Peter

    2014-03-01

    Here we report a novel label free, high contrast and quantitative method for imaging live cells. The technique reconstructs an image from overlapping diffraction patterns using a ptychographical algorithm. The algorithm utilises both amplitude and phase data from the sample to report on quantitative changes related to the refractive index (RI) and thickness of the specimen. We report the ability of this technique to generate high contrast images, to visualise neurite elongation in neuronal cells, and to provide measure of cell proliferation.

  3. Nanoscale Photoacoustic Tomography (nPAT) for label-free super-resolution 3D imaging of red blood cells

    NASA Astrophysics Data System (ADS)

    Samant, Pratik; Hernandez, Armando; Conklin, Shelby; Xiang, Liangzhong

    2017-08-01

    We present our results in developing nanoscale photoacoustic tomography (nPAT) for label-free super-resolution imaging in 3D. We have made progress in the development of nPAT, and have acquired our first signal. We have also performed simulations that demonstrate that nPAT is a viable imaging modality for the visualization of malaria infected red blood cells (RBCs). Our results demonstrate that nPAT is both feasible and powerful for the high resolution labelfree imaging of RBCs.

  4. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging

    PubMed Central

    Yang, Yaliang; Li, Fuhai; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Shen, Steven S.; Wong, Kelvin K.; Wong, Stephen T. C.

    2011-01-01

    We present a label-free, chemically-selective, quantitative imaging strategy to identify breast cancer and differentiate its subtypes using coherent anti-Stokes Raman scattering (CARS) microscopy. Human normal breast tissue, benign proliferative, as well as in situ and invasive carcinomas, were imaged ex vivo. Simply by visualizing cellular and tissue features appearing on CARS images, cancerous lesions can be readily separated from normal tissue and benign proliferative lesion. To further distinguish cancer subtypes, quantitative disease-related features, describing the geometry and distribution of cancer cell nuclei, were extracted and applied to a computerized classification system. The results show that in situ carcinoma was successfully distinguished from invasive carcinoma, while invasive ductal carcinoma (IDC) and invasive lobular carcinoma were also distinguished from each other. Furthermore, 80% of intermediate-grade IDC and 85% of high-grade IDC were correctly distinguished from each other. The proposed quantitative CARS imaging method has the potential to enable rapid diagnosis of breast cancer. PMID:21833355

  5. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    PubMed

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  6. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study.

    PubMed

    Pirhonen, Juho; Arola, Johanna; Sädevirta, Sanja; Luukkonen, Panu; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Isomäki, Antti; Hukkanen, Mika; Yki-Järvinen, Hannele; Ikonen, Elina

    2016-01-01

    Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD. We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0-4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals. We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III. This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.

  7. Hybrid lymph node imaging using 64Cu-labeled mannose-conjugated human serum albumin with and without indocyanine green.

    PubMed

    Kang, Choong Mo; An, Gwang Il; Choe, Yearn Seong

    2015-10-01

    Human serum albumin (HSA), which has 58 Lys residues, one Cys residue, and indocyanine green (ICG) adsorption sites, can be used as a multifunctional platform for the development of hybrid imaging probes. In this study, we prepared 64Cu-labeled mannose-conjugated HSA with and without ICG ([64Cu]1-ICG and [64Cu]1, respectively) and compared hybrid PET/near-infrared fluorescence (NIRF) imaging with positron emission tomography (PET)/Cerenkov luminescence (CL) imaging of lymph nodes (LNs). 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)/mannose-conjugated HSA (1) was synthesized by conjugating mannose molecules to Lys residues and a DOTA molecule to a Cys residue of HSA. Compound 1 was then labeled with Cu ([64Cu]1), and the resulting [64Cu]1 was adsorbed with ICG ([64Cu]1-ICG). PET/NIRF or PET/CL imaging and subsequent biodistribution studies were performed in ICR mice after injection of the probes into the foot pads. The numbers of mannose and DOTA molecules conjugated to HSA were 7.17 ± 0.49 and 0.95 ± 0.18, respectively. The site-specific conjugation of one DOTA molecule to HSA was sufficient for 64Cu-labeling with high efficiency (96.0 ± 1.1%). PET/NIRF and PET/CL imaging and subsequent biodistribution studies demonstrated that the probes were avidly taken up by the popliteal LNs (PO), with a slightly higher uptake ratio of the PO to the lumbar LNs by [64Cu]1. In-vivo studies suggest that [64Cu]1 has more specific and selective binding to mannose receptors in the PO than [64Cu]1-ICG.

  8. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  9. Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy.

    PubMed

    Schulze, H Georg; Konorov, Stanislav O; Piret, James M; Blades, Michael W; Turner, Robin F B

    2013-06-21

    The nucleolus is a prominent subnuclear structure whose major function is the transcription and assembly of ribosome subunits. The size of the nucleolus varies with the cell cycle, proliferation rate and stress. Changes in nucleolar size, number, chemical composition, and shape can be used to characterize malignant cells. We used spontaneous Raman microscopy as a label-free technique to examine nucleolar spatial and chemical features. Raman images of the 1003 cm(-1) phenylalanine band revealed large, well-defined subnuclear protein structures in MFC-7 breast cancer cells. The 783 cm(-1) images showed that nucleic acids were similarly distributed, but varied more in intensity, forming observable high-intensity regions. High subnuclear RNA concentrations were observed within some of these regions as shown by 809 cm(-1) Raman band images. Principal component analyses of sub-images and library spectra validated the subnuclear presence of RNA. They also revealed that an actin-like protein covaried with DNA within the nucleolus, a combination that accounted for 64% or more of the spectral variance. Embryonic stem cells are another rapidly proliferating cell type, but their nucleoli were not as large or well defined. Estimating the size of the larger MCF-7 nucleolus was used to show the utility of Raman microscopy for morphometric analyses. It was concluded that imaging based on Raman microscopy provides a promising new method for the study of nucleolar function and organization, in the evaluation of drug and experimental effects on the nucleolus, and in clinical diagnostics and prognostics.

  10. PET Imaging of Tumor-Associated Macrophages with 89Zr-Labeled High-Density Lipoprotein Nanoparticles

    PubMed Central

    Pérez-Medina, Carlos; Tang, Jun; Abdel-Atti, Dalya; Hogstad, Brandon; Merad, Miriam; Fisher, Edward A.; Fayad, Zahi A.; Lewis, Jason S.; Mulder, Willem J.M.; Reiner, Thomas

    2015-01-01

    Tumor-associated macrophages (TAMs) are increasingly investigated in cancer immunology and are considered a promising target for better and tailored treatment of malignant growth. Although TAMs also have high diagnostic and prognostic value, TAM imaging still remains largely unexplored. Here, we describe the development of reconstituted high-density lipoprotein (rHDL)–facilitated TAM PET imaging in a breast cancer model. Methods Radiolabeled rHDL nanoparticles incorporating the long-lived positron-emitting nuclide 89Zr were developed using 2 different approaches. The nanoparticles were composed of phospholipids and apolipoprotein A-I (apoA-I) in a 2.5:1 weight ratio. 89Zr was complexed with deferoxamine (also known as desferrioxamine B, desferoxamine B), conjugated either to a phospholipid or to apoA-I to generate 89Zr-PL-HDL and 89Zr-AI-HDL, respectively. In vivo evaluation was performed in an orthotopic mouse model of breast cancer and included pharmacokinetic analysis, biodistribution studies, and PET imaging. Ex vivo histologic analysis of tumor tissues to assess regional distribution of 89Zr radioactivity was also performed. Fluorescent analogs of the radiolabeled agents were used to determine cell-targeting specificity using flow cytometry. Results The phospholipid- and apoA-I–labeled rHDL were produced at 79% ± 13% (n = 6) and 94% ± 6% (n = 6) radiochemical yield, respectively, with excellent radiochemical purity (>99%). Intravenous administration of both probes resulted in high tumor radioactivity accumulation (16.5 ± 2.8 and 8.6 ± 1.3 percentage injected dose per gram for apoA-I– and phospholipid-labeled rHDL, respectively) at 24 h after injection. Histologic analysis showed good colocalization of radioactivity with TAM-rich areas in tumor sections. Flow cytometry revealed high specificity of rHDL for TAMs, which had the highest uptake per cell (6.8-fold higher than tumor cells for both DiO@Zr-PL-HDL and DiO@Zr-AI-HDL) and accounted for 40.7% and

  11. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific 68Ga- and 44Sc-labeled DOTA-NAPamide in melanoma imaging.

    PubMed

    Nagy, Gábor; Dénes, Noémi; Kis, Adrienn; Szabó, Judit P; Berényi, Ervin; Garai, Ildikó; Bai, Péter; Hajdu, István; Szikra, Dezső; Trencsényi, György

    2017-08-30

    Alpha melanocyte stimulating hormone (α-MSH) enhances melanogenesis in melanoma malignum by binding to melanocortin-1 receptors (MC1-R). Earlier studies demonstrated that alpha-MSH analog NAPamide molecule specifically binds to MC1-R receptor. Radiolabeled NAPamide is a promising radiotracer for the non-invasive detection of melanin producing melanoma tumors by Positron Emission Tomography (PET). In this present study the MC1-R selectivity of the newly developed Sc-44-labeled DOTA-NAPamide was investigated in vitro and in vivo using melanoma tumors. DOTA-NAPamide was labeled with Ga-68 and Sc-44 radionuclides. The MC1-R specificity of Ga-68- and Sc-44-labeled DOTA-NAPamide was investigated in vitro and in vivo using MC1-R positive (B16-F10) and negative (A375) melanoma cell lines. For in vivo imaging studies B16-F10 and A375 tumor-bearing mice were injected with 44 Sc/ 68 Ga-DOTA-NAPamide (in blocking studies with α-MSH) and whole body PET/MRI scans were acquired. Radiotracer uptake was expressed in terms of standardized uptake values (SUVs). 44 Sc/ 68 Ga-labeled DOTA-NAPamide were produced with high specific activity (approx. 19 GBq/μmol) and with excellent radiochemical purity (99%<). MC1-R positive B16-F10 cells showed significantly (p≤0.01) higher in vitro radiotracer accumulation than that of receptor negative A375 melanoma cells. In animal experiments, also significantly (p≤0.01) higher Ga-68-DOTA-NAPamide (SUVmean: 0.38±0.02), and Sc-44-DOTA-NAPamide (SUVmean: 0.52±0.13) uptake was observed in subcutaneously growing B16-F10 tumors, than in receptor negative A375 tumors, where the SUVmean values of Ga-68-DOTA-NAPamide and Sc-44-DOTA-NAPamide were 0.04±0.01 and 0.07±0.01, respectively. Tumor-to-muscle (T/M SUVmean) ratios were approximately 15-fold higher in B16-F10 tumor-bearing mice, than that of A375 tumors, and this difference was also significant (p≤0.01) using both radiotracers after 60 min incubation time. Our newly synthesized 44 Sc-labeled

  12. Differential conductance (dI/dV) imaging of a heterojunction-nanorod

    NASA Astrophysics Data System (ADS)

    Kundu, Biswajit; Bera, Abhijit; Pal, Amlan J.

    2017-03-01

    Through scanning tunneling spectroscopy, we envisage imaging a heterostructure, namely a junction formed in a single nanorod. While the differential conductance spectrum provides location of conduction and valence band edges, dI/dV images record energy levels of materials. Such dI/dV images at different voltages allowed us to view p- and n-sections of heterojunction nanorods and more importantly the depletion region in such a junction that has a type-II band alignment. Viewing of selective sections in a heterojunction occurred due to band-bending in the junction and is correlated to the density of states spectrum of the individual semiconductors. The dI/dV images recorded at different voltages could be used to generate a band diagram of a pn junction.

  13. Effect of Dye and Conjugation Chemistry on the Biodistribution Profile of Near-Infrared-Labeled Nanobodies as Tracers for Image-Guided Surgery.

    PubMed

    Debie, Pieterjan; Van Quathem, Jannah; Hansen, Inge; Bala, Gezim; Massa, Sam; Devoogdt, Nick; Xavier, Catarina; Hernot, Sophie

    2017-04-03

    Advances in optical imaging technologies have stimulated the development of near-infrared (NIR) fluorescently labeled targeted probes for use in image-guided surgery. As nanobodies have already proven to be excellent candidates for molecular imaging, we aimed in this project to design NIR-conjugated nanobodies targeting the tumor biomarker HER2 for future applications in this field and to evaluate the effect of dye and dye conjugation chemistry on their pharmacokinetics during development. IRDye800CW or IRdye680RD were conjugated either randomly (via lysines) or site-specifically (via C-terminal cysteine) to the anti-HER2 nanobody 2Rs15d. After verification of purity and functionality, the biodistribution and tumor targeting of the NIR-nanobodies were assessed in HER2-positive and -negative xenografted mice. Site-specifically IRDye800CW- and IRdye680RD-labeled 2Rs15d as well as randomly labeled 2Rs15d-IRDye680RD showed rapid tumor accumulation and low nonspecific uptake, resulting in high tumor-to-muscle ratios at early time points (respectively 6.6 ± 1.0, 3.4 ± 1.6, and 3.5 ± 0.9 for HER2-postive tumors at 3 h p.i., while <1.0 for HER2-negative tumors at 3 h p.i., p < 0.05). Contrarily, using the randomly labeled 2Rs15d-IRDye800CW, HER2-positive and -negative tumors could only be distinguished after 24 h due to high nonspecific signals. Moreover, both randomly labeled 2Rs15d nanobodies were not only cleared via the kidneys but also partially via the hepatobiliary route. In conclusion, near-infrared fluorescent labeling of nanobodies allows rapid, specific, and high contrast in vivo tumor imaging. Nevertheless, the fluorescent dye as well as the chosen conjugation strategy can affect the nanobodies' properties and consequently have a major impact on their pharmacokinetics.

  14. Annexin A6 interacts with p65 and stimulates NF-κB activity and catabolic events in articular chondrocytes.

    PubMed

    Campbell, Kirk A; Minashima, Takeshi; Zhang, Ying; Hadley, Scott; Lee, You Jin; Giovinazzo, Joseph; Quirno, Martin; Kirsch, Thorsten

    2013-12-01

    ANXA6, the gene for annexin A6, is highly expressed in osteoarthritic (OA) articular chondrocytes but not in healthy articular chondrocytes. This study was undertaken to determine whether annexin A6 affects catabolic events in these cells. Articular chondrocytes were isolated from Anxa6-knockout mice, wild-type (WT) mice, and human articular cartilage in which ANXA6 was overexpressed. Cells were treated with interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα), and expression of catabolic genes and activation of NF-κB were determined by real-time polymerase chain reaction and luciferase reporter assay. Anxa6(-/-) and WT mouse knee joints were injected with IL-1β or the medial collateral ligament was transected and partial resection of the medial meniscus was performed to determine the role of Anxa6 in IL-1β-mediated cartilage destruction and OA progression. The mechanism by which Anxa6 stimulates NF-κB activity was determined by coimmunoprecipitation and immunoblot analysis of nuclear and cytoplasmic fractions of IL-1β-treated Anxa6(-/-) and WT mouse chondrocytes for p65 and Anxa6. Loss of Anxa6 resulted in decreased NF-κB activation and catabolic marker messenger RNA (mRNA) levels in IL-1β- or TNFα-treated articular chondrocytes, whereas overexpression of ANXA6 resulted in increased NF-κB activity and catabolic marker mRNA levels. Annexin A6 interacted with p65, and loss of Anxa6 caused decreased nuclear translocation and retention of the active p50/p65 NF-κB complex. Cartilage destruction in Anxa6(-/-) mouse knee joints after IL-1β injection or partial medial meniscectomy was reduced as compared to that in WT mouse joints. Our data define a role of annexin A6 in the modulation of NF-κB activity and in the stimulation of catabolic events in articular chondrocytes. Copyright © 2013 by the American College of Rheumatology.

  15. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1985-11-12

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.

  16. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    PubMed Central

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  17. Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.

    PubMed

    Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P

    2017-05-01

    Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi

    2017-10-01

    High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.

  19. Mining big data sets of plankton images: a zero-shot learning approach to retrieve labels without training data

    NASA Astrophysics Data System (ADS)

    Orenstein, E. C.; Morgado, P. M.; Peacock, E.; Sosik, H. M.; Jaffe, J. S.

    2016-02-01

    Technological advances in instrumentation and computing have allowed oceanographers to develop imaging systems capable of collecting extremely large data sets. With the advent of in situ plankton imaging systems, scientists must now commonly deal with "big data" sets containing tens of millions of samples spanning hundreds of classes, making manual classification untenable. Automated annotation methods are now considered to be the bottleneck between collection and interpretation. Typically, such classifiers learn to approximate a function that predicts a predefined set of classes for which a considerable amount of labeled training data is available. The requirement that the training data span all the classes of concern is problematic for plankton imaging systems since they sample such diverse, rapidly changing populations. These data sets may contain relatively rare, sparsely distributed, taxa that will not have associated training data; a classifier trained on a limited set of classes will miss these samples. The computer vision community, leveraging advances in Convolutional Neural Networks (CNNs), has recently attempted to tackle such problems using "zero-shot" object categorization methods. Under a zero-shot framework, a classifier is trained to map samples onto a set of attributes rather than a class label. These attributes can include visual and non-visual information such as what an organism is made out of, where it is distributed globally, or how it reproduces. A second stage classifier is then used to extrapolate a class. In this work, we demonstrate a zero-shot classifier, implemented with a CNN, to retrieve out-of-training-set labels from images. This method is applied to data from two continuously imaging, moored instruments: the Scripps Plankton Camera System (SPCS) and the Imaging FlowCytobot (IFCB). Results from simulated deployment scenarios indicate zero-shot classifiers could be successful at recovering samples of rare taxa in image sets. This

  20. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Datta, Rupsa; Heylman, Christopher; George, Steven C.; Gratton, Enrico

    2016-01-01

    In this work we demonstrate a label-free optical imaging technique to assess metabolic status and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes by two-photon fluorescence lifetime imaging of endogenous fluorophores. Our results show the sensitivity of this method to detect shifts in metabolism and oxidative stress in the cardiomyocytes upon pathological stimuli of hypoxia and cardiotoxic drugs. This non-invasive imaging technique could prove beneficial for drug development and screening, especially for in vitro cardiac models created from stem cell-derived cardiomyocytes and to study the pathogenesis of cardiac diseases and therapy. PMID:27231614

  1. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging

    PubMed Central

    Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.

    2013-01-01

    Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699

  2. Co-Labeling for Multi-View Weakly Labeled Learning.

    PubMed

    Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W

    2016-06-01

    It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi

  3. A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging

    PubMed Central

    Mao, Weihua; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Xing, Lei

    2008-01-01

    The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by intrafraction organ motion. A new approach to gain near real-time 3D positions of internally implanted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam images (from fluoroscopic or electronic portal image devices). Before we can use this real-time image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be addressed. (1) How will fiducial motion blur the image and hinder tracking fiducials? kV and MV images are acquired while the tumor is moving at various speeds. We find that a fiducial can be successfully detected at a maximum linear speed of 1.6 cm∕s. (2) How does MV beam scattering affect kV imaging? We investigate this by varying MV field size and kV source to imager distance, and find that common treatment MV beams do not hinder fiducial detection in simultaneous kV images. (3) How can one detect fiducials on images from 3DCRT and IMRT treatment beams when the MV fields are modified by a multileaf collimator (MLC)? The presented analysis is capable of segmenting a MV field from the blocking MLC and detecting visible fiducials. This enables the calculation of nearly real-time 3D positions of markers during a real treatment. (4) Is the analysis fast enough to track fiducials in nearly real time? Multiple methods are adopted to predict marker positions and reduce search regions. The average detection time per frame for three markers in a 1024×768 image was reduced to 0.1 s or less. Solving these four issues paves the way to tracking moving fiducial markers throughout a 3DCRT or IMRT treatment. Altogether, these four studies demonstrate that our algorithm can track fiducials in real time, on degraded kV images (MV scatter), in rapidly moving tumors (fiducial blurring), and even provide useful information in the case when some fiducials are blocked from view by the MLC. This technique can provide a gating signal

  4. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging.

    PubMed

    Zhou, Jing; Yu, Mengxiao; Sun, Yun; Zhang, Xianzhong; Zhu, Xingjun; Wu, Zhanhong; Wu, Dongmei; Li, Fuyou

    2011-02-01

    Molecular imaging modalities provide a wealth of information that is highly complementary and rarely redundant. To combine the advantages of molecular imaging techniques, (18)F-labeled Gd(3+)/Yb(3+)/Er(3+) co-doped NaYF(4) nanophosphors (NPs) simultaneously possessing with radioactivity, magnetic, and upconversion luminescent properties have been fabricated for multimodality positron emission tomography (PET), magnetic resonance imaging (MRI), and laser scanning upconversion luminescence (UCL) imaging. Hydrophilic citrate-capped NaY(0.2)Gd(0.6)Yb(0.18)Er(0.02)F(4) nanophosphors (cit-NPs) were obtained from hydrophobic oleic acid (OA)-coated nanoparticles (OA-NPs) through a process of ligand exchange of OA with citrate, and were found to be monodisperse with an average size of 22 × 19 nm. The obtained hexagonal cit-NPs show intense UCL emission in the visible region and paramagnetic longitudinal relaxivity (r(1) = 0.405 s(-1)·(mM)(-1)). Through a facile inorganic reaction based on the strong binding between Y(3+) and F(-), (18)F-labeled NPs have been fabricated in high yield. The use of cit-NPs as a multimodal probe has been further explored for T(1)-weighted MR and PET imaging in vivo and UCL imaging of living cells and tissue slides. The results indicate that (18)F-labeled NaY(0.2)Gd(0.6)Yb(0.18)Er(0.02) is a potential candidate as a multimodal nanoprobe for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Machine learning approaches in medical image analysis: From detection to diagnosis.

    PubMed

    de Bruijne, Marleen

    2016-10-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-01

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs ((SPIO)o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. (SPIO)o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected (SPIO)o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected (SPIO)o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected (SPIO)o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials.

  7. Annexin A5 anticoagulant activity in children with systemic lupus erythematosus and the association with antibodies to domain I of β2-glycoprotein I

    PubMed Central

    Wahezi, Dawn M.; Ilowite, Norman T.; Wu, Xiao Xuan; Pelkmans, Leonie; de Laat, Bas; Schanberg, Laura E.; Rand, Jacob H.

    2014-01-01

    Children with systemic lupus erythematosus (SLE) have a high prevalence of antiphospholipid (aPL) antibodies and are at increased risk for aPL-related thrombosis. We investigated the association between annexin A5 anticoagulant activity and antibodies to the domain I portion of β2-glycoprotein I (anti-DI antibodies), and propose a potential mechanism for the pathogenesis of aPL-related thrombosis. Using samples from 183 children with SLE collected during the Atherosclerosis Prevention in Pediatric Lupus Erythematosus (APPLE) trial, we examined resistance to the anticoagulant effects of annexin A5, using the annexin A5 resistance (A5R) assay, and evaluated for anti-DI IgG antibodies. Children with SLE had higher frequency of anti-D1 antibodies (p=0.014) and significantly reduced A5R compared to pediatric controls: mean A5R = 172 ± 30 % versus 242 ± 32 % (p<0.0001). Children with SLE and positive anti-DI antibodies had significantly lower mean A5R levels compared to those with negative anti-DI antibodies: mean A5R = 155 ± 24 % versus 177 ± 30% (p<0.0001). In multivariate analysis, anti-DI antibodies (p=0.013) and lupus anticoagulant (LA) (p=0.036) were both independently associated with reduced A5R. Children with SLE have significantly reduced annexin A5 anticoagulant activity that is associated with the presence of LA and anti-DI antibodies. PMID:23690366

  8. V-Sipal - a Virtual Laboratory for Satellite Image Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Buddhiraju, K. M.; Eeti, L.; Tiwari, K. K.

    2011-09-01

    In this paper a virtual laboratory for the Satellite Image Processing and Analysis (v-SIPAL) being developed at the Indian Institute of Technology Bombay is described. v-SIPAL comprises a set of experiments that are normally carried out by students learning digital processing and analysis of satellite images using commercial software. Currently, the experiments that are available on the server include Image Viewer, Image Contrast Enhancement, Image Smoothing, Edge Enhancement, Principal Component Transform, Texture Analysis by Co-occurrence Matrix method, Image Indices, Color Coordinate Transforms, Fourier Analysis, Mathematical Morphology, Unsupervised Image Classification, Supervised Image Classification and Accuracy Assessment. The virtual laboratory includes a theory module for each option of every experiment, a description of the procedure to perform each experiment, the menu to choose and perform the experiment, a module on interpretation of results when performed with a given image and pre-specified options, bibliography, links to useful internet resources and user-feedback. The user can upload his/her own images for performing the experiments and can also reuse outputs of one experiment in another experiment where applicable. Some of the other experiments currently under development include georeferencing of images, data fusion, feature evaluation by divergence andJ-M distance, image compression, wavelet image analysis and change detection. Additions to the theory module include self-assessment quizzes, audio-video clips on selected concepts, and a discussion of elements of visual image interpretation. V-SIPAL is at the satge of internal evaluation within IIT Bombay and will soon be open to selected educational institutions in India for evaluation.

  9. Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.

    PubMed

    Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro

    2017-09-01

    The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain.

    PubMed

    Lee, Na Kyung; Kim, Hyeong Seop; Yoo, Dongkyeom; Hwang, Jung Won; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2017-02-01

    The success of stem cell therapy is highly dependent on accurate delivery of stem cells to the target site of interest. Possible ways to track the distribution of MSCs in vivo include the use of reporter genes or nanoparticles. The U.S. Food and Drug Administration (FDA) has approved ferumoxytol (Feraheme® [USA], Rienso® [UK]) as a treatment for iron deficiency anemia. Ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) that has recently been used to track the fate of transplanted cells using magnetic resonance imaging (MRI). The major objectives of this study were to demonstrate the feasibility of labeling hUCB-MSCs with ferumoxytol and to observe, through MRI, the engraftment of ferumoxytol-labeled human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) delivered via stereotactic injection into the hippocampi of a transgenic mouse model of familial Alzheimer's disease (5XFAD). Ferumoxytol had no toxic effects on the viability or stemness of hUCB-MSCs when assessed in vitro. Through MRI, hypointense signals were discernible at the site where ferumoxytol-labeled human MSCs were injected. Iron-positive areas were also observed in the engrafted hippocampi. The results from this study support the use of nanoparticle labeling to monitor transplanted MSCs in real time as a follow-up for AD stem cell therapy in the clinical field.

  11. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study

    PubMed Central

    Pirhonen, Juho; Arola, Johanna; Sädevirta, Sanja; Luukkonen, Panu; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Isomäki, Antti; Hukkanen, Mika

    2016-01-01

    Background and Aims Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD. Methods We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0–4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals. Results We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III. Conclusions This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading. PMID:26808140

  12. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images.

    PubMed

    Ruusuvuori, Pekka; Aijö, Tarmo; Chowdhury, Sharif; Garmendia-Torres, Cecilia; Selinummi, Jyrki; Birbaumer, Mirko; Dudley, Aimée M; Pelkmans, Lucas; Yli-Harja, Olli

    2010-05-13

    Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.

  13. Detection of Cancer Metastases with a Dual-labeled Near-Infrared/Positron Emission Tomography Imaging Agent12

    PubMed Central

    Sampath, Lakshmi; Kwon, Sunkuk; Hall, Mary A; Price, Roger E; Sevick-Muraca, Eva M

    2010-01-01

    By dual labeling a targeting moiety with both nuclear and optical probes, the ability for noninvasive imaging and intraoperative guidance may be possible. Herein, the ability to detect metastasis in an immunocompetent animal model of human epidermal growth factor receptor 2 (HER-2)-positive cancer metastases using positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging is demonstrated. METHODS: (64Cu-DOTA)n-trastuzumab-(IRDye800)m was synthesized, characterized, and administered to female Balb/c mice subcutaneously inoculated with highly metastatic 4T1.2neu/R breast cancer cells. (64Cu-DOTA)n-trastuzumab-(IRDye800)m (150 µg, 150 µCi, m = 2, n = 2) was administered through the tail vein at weeks 2 and 6 after implantation, and PET/computed tomography and NIR fluorescence imaging were performed 24 hours later. Results were compared with the detection capabilities of F-18 fluorodeoxyglucose (18FDG-PET). RESULTS: Primary tumors were visualized with 18FDG and (64Cu-DOTA)n-trastuzumab-(IRDye800)m, but resulting metastases were identified only with the dual-labeled imaging agent. 64Cu-PET imaging detected lung metastases, whereas ex vivo NIR fluorescence showed uptake in regions of lung, skin, skeletal muscle, and lymph nodes, which corresponded with the presence of cancer cells as confirmed by histologic hematoxylin and eosin stains. In addition to detecting the agent in lymph nodes, the high signal-to-noise ratio from NIR fluorescence imaging enabled visualization of channels between the primary tumor and the axillary lymph nodes, suggesting a lymphatic route for trafficking cancer cells. Because antibody clearance occurs through the liver, we could not distinguish between nonspecific uptake and liver metastases. CONCLUSION: (64Cu-DOTA)n-trastuzumab-(IRDye800)m may be an effective diagnostic imaging agent for staging HER-2-positive breast cancer patients and intraoperative resection. PMID:20885893

  14. Crystallization of the Membrane-Associated Annexin B1: Roles of Additive Screen, Dynamic Light Scattering, and Bioactivity Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, F.; Xu, Y; Azzi, A

    2010-01-01

    Annexin B1 (AnxB1) is a calcium-dependent phospholipid binding protein from Taenia solium cysticercus and has been reported to possess anticoagulant activity, to inhibit phospholipase A{sub 2}, and to regulate membrane transport. Native AnxB1 and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. The results of dynamic light scattering analysis showed that Hepes buffer combined with low concentration salts (NaCl or CaCl{sub 2}) was beneficial for preventing aggregation and for AnxB1 stabilization in the storage. After the additive screen, crystals have been yielded in the presence of guanidine hydrochloride (Gn-HCl). We determined that a low concentration of Gn-HClmore » significantly delayed clotting time and increased anticoagulant activity. Analysis of the crystal showed that in the presence of Gn-HCl, AnxB1 crystallizes in orthorhombic space group, which is modified from the cubic space group for crystals grown in the absence of Gn-HCl. A high quality data set (at 1.9 {angstrom}) has been collected successfully for crystals of L-selenomethionine labeled protein in the presence of Gn-HCl, to solve the structure with the single anomalous dispersion method (SAD). The unit cell parameters are a = 102.35 {angstrom}, b = 103.59 {angstrom}, c = 114.60 {angstrom}, {alpha} = {beta} = {gamma} = 90.00{sup o}.« less

  15. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{supmore » +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.« less

  16. Imaging of single cells and tissue using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Bettiol, A. A.; van Kan, J. A.; Ynsa, M. D.; Minqin, Ren; Rajendran, R.; Huifang, Cui; Fwu-Shen, Sheu; Jenner, A. M.

    2009-06-01

    With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.

  17. Detection of microparticles from human red blood cells by multiparametric flow cytometry

    PubMed Central

    Grisendi, Giulia; Finetti, Elena; Manganaro, Daniele; Cordova, Nicoletta; Montagnani, Giuliano; Spano, Carlotta; Prapa, Malvina; Guarneri, Valentina; Otsuru, Satoru; Horwitz, Edwin M.; Mari, Giorgio; Dominici, Massimo

    2015-01-01

    Background During storage, red blood cells (RBC) undergo chemical and biochemical changes referred to as “storage lesions”. These events determine the loss of RBC integrity, resulting in lysis and release of microparticles. There is growing evidence of the clinical importance of microparticles and their role in blood transfusion-related side effects and pathogen transmission. Flow cytometry is currently one of the most common techniques used to quantify and characterise microparticles. Here we propose multiparametric staining to monitor and quantify the dynamic release of microparticles by stored human RBC. Material and methods RBC units (n=10) were stored under blood bank conditions for up to 42 days. Samples were tested at different time points to detect microparticles and determine the haemolysis rate (HR%). Microparticles were identified by flow cytometry combining carboxyfluorescein diacetate succinimidyl ester (CFSE) dye, annexin V and anti-glycophorin A antibody. Results We demonstrated that CFSE can be successfully used to label closed vesicles with an intact membrane. The combination of CFSE and glycophorin A antibody was effective for monitoring and quantifying the dynamic release of microparticles from RBC during storage. Double staining with CFSE/glycophorin A was a more precise approach, increasing vesicle detection up to 4.7-fold vs the use of glycophorin A/annexin V alone. Moreover, at all the time points tested, we found a robust correlation (R=0.625; p=0.0001) between HR% and number of microparticles detected. Discussion Multiparametric staining, based on a combination of CFSE, glycophorin A antibody and annexin V, was able to detect, characterise and monitor the release of microparticles from RBC units during storage, providing a sensitive approach to labelling and identifying microparticles for transfusion medicine and, more broadly, for cell-based therapies. PMID:25369588

  18. Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD

    NASA Astrophysics Data System (ADS)

    Donnard, J.; Arlicot, N.; Berny, R.; Carduner, H.; Leray, P.; Morteau, E.; Servagent, N.; Thers, D.

    2009-11-01

    The Beta autoradiography is widely used in pharmacology or in biological fields to study the response of an organism to a certain kind of molecule. The image of the distribution is processed by studying the concentration of the radioactivity into different organs. We report on the development of an integrated apparatus based on a PIM device (Parallel Ionization Multiplier) able to process the image of 10 microscope slides at the same time over an area of 18*18 cm2. Thanks to a vacuum pump and a regulation gas circuit, 5 minutes is sufficient to begin an acquisition. All the electronics and the gas distribution are included in the structure leading to a transportable device. Special software has been developed to process data in real time with image visualization. Biological samples can be labelled with β emitters of low energy like 3H/14C or Auger electrons of 125I/99mTc. The measured spatial resolution is 30 μm in 3H and the trigger and the charge rate are constant over more than 6 days of acquisition showing good stability of the device. Moreover, collaboration with doctors and biologists of INSERM (National Institute for Medical Research in France) has started in order to demonstrate that MPGD's can be easily proposed outside a physics laboratory.

  19. PET Imaging of VEGFR-2 Expression in Lung Cancer with 64Cu-Labeled Ramucirumab.

    PubMed

    Luo, Haiming; England, Christopher G; Graves, Stephen A; Sun, Haiyan; Liu, Glenn; Nickles, Robert J; Cai, Weibo

    2016-02-01

    Lung cancer accounts for 17% of cancer-related deaths worldwide, and most patients present with locally advanced or metastatic disease. Novel PET imaging agents for assessing vascular endothelial growth factor receptor-2 (VEGFR-2) expression can be used for detecting VEGFR-2-positive malignancies and subsequent monitoring of therapeutic response to VEGFR-2-targeted therapies. Here, we report the synthesis and characterization of an antibody-based imaging agent for PET imaging of VEGFR-2 expression in vivo. Ramucirumab (named RamAb), a fully humanized IgG1 monoclonal antibody, was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu. Flow cytometry analysis and microscopy studies were performed to compare the VEGFR-2 binding affinity of RamAb and NOTA-RamAb. PET imaging and biodistribution studies were performed in nude mice bearing HCC4006 and A549 xenograft tumors. Ex vivo histopathology was performed to elucidate the expression patterns of VEGFR-2 in different tissues and organs to validate in vivo results. Flow cytometry examination revealed the specific binding capacity of fluorescein isothiocyanate-RamAb to VEGFR-2, and no difference in VEGFR-2 binding affinity was seen between RamAb and NOTA-RamAb. After being labeled with (64)Cu, PET imaging revealed specific and prominent uptake of (64)Cu-NOTA-RamAb in VEGFR-2-positive HCC4006 tumors (9.4 ± 0.5 percentage injected dose per gram at 48 h after injection; n = 4) and significantly lower uptake in VEGFR-2-negative A549 tumors (4.3 ± 0.2 percentage injected dose per gram at 48 h after injection; n = 3). Blocking experiments revealed significantly lower uptake in HCC4006 tumors, along with histology analysis, further confirming the VEGFR-2 specificity of (64)Cu-NOTA-RamAb. This study provides initial evidence that (64)Cu-NOTA-RamAb can function as a PET imaging agent for visualizing VEGFR-2 expression in vivo, which may also find

  20. A semi-automated technique for labeling and counting of apoptosing retinal cells

    PubMed Central

    2014-01-01

    Background Retinal ganglion cell (RGC) loss is one of the earliest and most important cellular changes in glaucoma. The DARC (Detection of Apoptosing Retinal Cells) technology enables in vivo real-time non-invasive imaging of single apoptosing retinal cells in animal models of glaucoma and Alzheimer’s disease. To date, apoptosing RGCs imaged using DARC have been counted manually. This is time-consuming, labour-intensive, vulnerable to bias, and has considerable inter- and intra-operator variability. Results A semi-automated algorithm was developed which enabled automated identification of apoptosing RGCs labeled with fluorescent Annexin-5 on DARC images. Automated analysis included a pre-processing stage involving local-luminance and local-contrast “gain control”, a “blob analysis” step to differentiate between cells, vessels and noise, and a method to exclude non-cell structures using specific combined ‘size’ and ‘aspect’ ratio criteria. Apoptosing retinal cells were counted by 3 masked operators, generating ‘Gold-standard’ mean manual cell counts, and were also counted using the newly developed automated algorithm. Comparison between automated cell counts and the mean manual cell counts on 66 DARC images showed significant correlation between the two methods (Pearson’s correlation coefficient 0.978 (p < 0.001), R Squared = 0.956. The Intraclass correlation coefficient was 0.986 (95% CI 0.977-0.991, p < 0.001), and Cronbach’s alpha measure of consistency = 0.986, confirming excellent correlation and consistency. No significant difference (p = 0.922, 95% CI: −5.53 to 6.10) was detected between the cell counts of the two methods. Conclusions The novel automated algorithm enabled accurate quantification of apoptosing RGCs that is highly comparable to manual counting, and appears to minimise operator-bias, whilst being both fast and reproducible. This may prove to be a valuable method of quantifying apoptosing retinal

  1. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  2. Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution

    PubMed Central

    Song, Yantao; Wu, Guorong; Sun, Quansen; Bahrami, Khosro; Li, Chunming; Shen, Dinggang

    2015-01-01

    Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary. PMID:26942233

  3. Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution.

    PubMed

    Song, Yantao; Wu, Guorong; Sun, Quansen; Bahrami, Khosro; Li, Chunming; Shen, Dinggang

    2015-10-01

    Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary.

  4. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection.

    PubMed

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J; Gao, Feng; Bouchard, Richard; Lang, Frederick F; Stafford, R Jason; Melancon, Marites P

    2018-04-20

    To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml -1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. MSCs labeled with SPIO@Au at 4 μg ml -1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and

  5. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection

    NASA Astrophysics Data System (ADS)

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J.; Gao, Feng; Bouchard, Richard; Lang, Frederick F.; Stafford, R. Jason; Melancon, Marites P.

    2018-04-01

    Objective. To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Materials and methods. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ˜82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. Results. MSCs labeled with SPIO@Au at 4 μg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Conclusions. Our results demonstrated the feasibility of tracking carotid artery

  6. On the V-Line Radon Transform and Its Imaging Applications

    PubMed Central

    Morvidone, M.; Nguyen, M. K.; Truong, T. T.; Zaidi, H.

    2010-01-01

    Radon transforms defined on smooth curves are well known and extensively studied in the literature. In this paper, we consider a Radon transform defined on a discontinuous curve formed by a pair of half-lines forming the vertical letter V. If the classical two-dimensional Radon transform has served as a work horse for tomographic transmission and/or emission imaging, we show that this V-line Radon transform is the backbone of scattered radiation imaging in two dimensions. We establish its analytic inverse formula as well as a corresponding filtered back projection reconstruction procedure. These theoretical results allow the reconstruction of two-dimensional images from Compton scattered radiation collected on a one-dimensional collimated camera. We illustrate the working principles of this imaging modality by presenting numerical simulation results. PMID:20706545

  7. 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging.

    PubMed

    Miao, Yubin; Gallazzi, Fabio; Guo, Haixun; Quinn, Thomas P

    2008-02-01

    The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.

  8. New integrative modules for multicolor-protein labeling and live-cell imaging in Saccharomyces cerevisiae.

    PubMed

    Malcova, Ivana; Farkasovsky, Marian; Senohrabkova, Lenka; Vasicova, Pavla; Hasek, Jiri

    2016-05-01

    Live-imaging analysis is performed in many laboratories all over the world. Various tools have been developed to enable protein labeling either in plasmid or genomic context in live yeast cells. Here, we introduce a set of nine integrative modules for the C-terminal gene tagging that combines three fluorescent proteins (FPs)-ymTagBFP, mCherry and yTagRFP-T with three dominant selection markers: geneticin, nourseothricin and hygromycin. In addition, the construction of two episomal modules for Saccharomyces cerevisiae with photostable yTagRFP-T is also referred to. Our cassettes with orange, red and blue FPs can be combined with other fluorescent probes like green fluorescent protein to prepare double- or triple-labeled strains for multicolor live-cell imaging. Primers for PCR amplification of the cassettes were designed in such a way as to be fully compatible with the existing PCR toolbox representing over 50 various integrative modules and also with deletion cassettes either for single or repeated usage to enable a cost-effective and an easy exchange of tags. New modules can also be used for biochemical analysis since antibodies are available for all three fluorescent probes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Comparison of Biological Properties of 99mTc-Labeled Cyclic RGD Peptide Trimer and Dimer Useful as SPECT Radiotracers for Tumor Imaging

    PubMed Central

    Zhao, Zuo-Quan; Yang, Yong; Fang, Wei; Liu, Shuang

    2016-01-01

    Introduction This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. Methods HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. Results 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200 GBq/µmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. Conclusion Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors. PMID:27556955

  10. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics

    NASA Astrophysics Data System (ADS)

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-01

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  11. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics.

    PubMed

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-30

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  12. Quantitative Analysis of Self-Association and Mobility of Annexin A4 at the Plasma Membrane

    PubMed Central

    Crosby, Kevin C.; Postma, Marten; Hink, Mark A.; Zeelenberg, Christiaan H.C.; Adjobo-Hermans, Merel J.W.; Gadella, Theodorus W.J.

    2013-01-01

    Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca2+ binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca2+ influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. PMID:23663830

  13. Quantitative analysis of self-association and mobility of annexin A4 at the plasma membrane.

    PubMed

    Crosby, Kevin C; Postma, Marten; Hink, Mark A; Zeelenberg, Christiaan H C; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J

    2013-05-07

    Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca(2+) binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca(2+) influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  15. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.

    PubMed

    Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim

    2018-05-30

    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.

  16. Low cost label-free live cell imaging for biological samples

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-02-01

    This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.

  17. Label-free NIR reflectance imaging as a complimentary tool for two-photon fluorescence microscopy: multimodal investigation of stroke (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2016-03-01

    Two-photon imaging combined with targeted fluorescent indicators is extensively used for visualizing critical features of brain functionality and structural plasticity. Back-scattered photons from the NIR laser provide complimentary information without introducing any exogenous labelling. Here, we describe a versatile approach that, by collecting the reflected NIR light, provides structural details on the myelinated axons and blood vessels in the brain, both in fixed samples and in live animals. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from Thy1-GFPm mice, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Label-free detection of axonal elongations over the layer 2/3 of mouse cortex under a cranial window was also possible in live brain. Finally, blood flow could be measured in vivo, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated simultaneously.

  18. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Lee, Seoeun; Yoon, Jonghee; Heo, Jihan; Choi, Chulhee; Park, Yongkeun

    2016-11-01

    Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.

  19. Identification, characterization and purification to near-homogeneity of a novel 67 kDa phosphotyrosyl protein phosphatase associated with pig lung annexin extract.

    PubMed Central

    Vicendo, P; Fauvel, J; Ragab-Thomas, J M; Chap, H

    1991-01-01

    During the purification of annexin VI from pig lung, we previously reported the isolation of another 67 kDa protein (protein 67E) differing from the former by immunological reactivity, amino acid composition, inability to interact with anionic phospholipids in the presence of Ca2+ and inability to inhibit phospholipase A2 [Fauvel, Vicendo, Roques, Ragab-Thomas, Granier, Vilgrain, Chambaz, Rochat, Chap & Douste-Blazy (1987) FEBS Lett. 221, 397-402]. Attempts to phosphorylate protein 67E by the protein tyrosine kinase of epidermal-growth-factor receptor revealed a dramatic inhibition of receptor autophosphorylation, which was also observed with insulin receptor. This inhibitory effect was found to be supported by a phosphatase active towards p-nitrophenyl phosphate, phosphotyrosine, [32P]phosphotyrosyl histones and [32P]phosphotyrosyl poly(Glu,Tyr), but inactive towards phosphoserine, phosphothreonine and [32P]phosphoseryl histones. Although not purified to complete homogeneity, the enzyme was purified 273-fold over EGTA extracts from pig lung and corresponded to a monomeric protein displaying an apparent molecular mass of 67 kDa. With [32P]phosphotyrosyl poly(Glu,Tyr) as substrate, the purified enzyme displayed Km and Vmax. values of 10 microM and 1.93 mumol/min per mg respectively, which compare reasonably well with other recently described phosphotyrosyl protein phosphatases. From these data and from its sensitivity to various inhibitors, it is concluded that protein fraction 67E contains a novel phosphotyrosyl protein phosphatase, the association of which with annexin extract might offer a clue to the understanding of its possible targeting to membrane substrates. Images Fig. 1. Fig. 3. Fig. 5. PMID:1654882

  20. Imaging label-free biosensor with microfluidic system

    NASA Astrophysics Data System (ADS)

    Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.

    2015-06-01

    We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.

  1. Hemin-induced suicidal erythrocyte death.

    PubMed

    Gatidis, Sergios; Föller, Michael; Lang, Florian

    2009-08-01

    Several diseases, such as malaria, sickle cell disease, and ischemia/reperfusion may cause excessive formation of hemin, which may in turn trigger hemolysis. A variety of drugs and diseases leading to hemolysis triggers suicidal erythrocyte death or eryptosis, i.e., cell membrane scrambling and cell shrinkage. Eryptosis is elicited by increased cytosolic Ca(2+) activity and by ceramide. The present study explored whether hemin stimulates eryptosis. Cell membrane scrambling was estimated from annexin V-binding to phosphatidylserine exposed at the cell surface, cell shrinkage from forward scatter in fluorescence-activated cell sorter analysis, cytosolic Ca(2+) activity from Fluo3 fluorescence and ceramide formation from fluorescence-labeled antibody binding. Exposure to hemin (1-10 microM) within 48 h significantly increased annexin V-binding, decreased forward scatter, increased cytosolic Ca(2+) activity, and stimulated ceramide formation. In conclusion, hemin stimulates suicidal cell death, which may in turn contribute to the clearance of circulating erythrocytes and thus to anemia.

  2. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  3. Perfusion deficits detected by arterial spin-labeling in patients with TIA with negative diffusion and vascular imaging.

    PubMed

    Qiao, X J; Salamon, N; Wang, D J J; He, R; Linetsky, M; Ellingson, B M; Pope, W B

    2013-01-01

    A substantial portion of clinically diagnosed TIA cases is imaging-negative. The purpose of the current study is to determine if arterial spin-labeling is helpful in detecting perfusion abnormalities in patients presenting clinically with TIA. Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired on 49 patients suspected of TIA within 24 hours of symptom onset. All patients were free of stroke history and had no lesion-specific findings on general MR, DWI, and MRA sequences. The calculated arterial spin-labeling CBF maps were scored from 1-3 on the basis of presence and severity of perfusion disturbance by 3 independent observers blinded to patient history. An age-matched cohort of 36 patients diagnosed with no cerebrovascular events was evaluated as a control. Interobserver agreement was assessed by use of the Kendall concordance test. Scoring of perfusion abnormalities on arterial spin-labeling scans of the TIA cohort was highly concordant among the 3 observers (W = 0.812). The sensitivity and specificity of arterial spin-labeling in the diagnosis of perfusion abnormalities in TIA was 55.8% and 90.7%, respectively. In 93.3% (70/75) of the arterial spin-labeling CBF map readings with positive scores (≥2), the brain regions where perfusion abnormalities were identified by 3 observers matched with the neurologic deficits at TIA onset. In this preliminary study, arterial spin-labeling showed promise in the detection of perfusion abnormalities that correlated with clinically diagnosed TIA in patients with otherwise normal neuroimaging results.

  4. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Lu, Guolan; Wang, Xu; Zhang, Hongzheng; Little, James V.; Patel, Mihir R.; Griffith, Christopher C.; El-Diery, Mark W.; Chen, Amy Y.

    2017-08-01

    A label-free, hyperspectral imaging (HSI) approach has been proposed for tumor margin assessment. HSI data, i.e., hypercube (x,y,λ), consist of a series of high-resolution images of the same field of view that are acquired at different wavelengths. Every pixel on an HSI image has an optical spectrum. In this pilot clinical study, a pipeline of a machine-learning-based quantification method for HSI data was implemented and evaluated in patient specimens. Spectral features from HSI data were used for the classification of cancer and normal tissue. Surgical tissue specimens were collected from 16 human patients who underwent head and neck (H&N) cancer surgery. HSI, autofluorescence images, and fluorescence images with 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) and proflavine were acquired from each specimen. Digitized histologic slides were examined by an H&N pathologist. The HSI and classification method were able to distinguish between cancer and normal tissue from the oral cavity with an average accuracy of 90%±8%, sensitivity of 89%±9%, and specificity of 91%±6%. For tissue specimens from the thyroid, the method achieved an average accuracy of 94%±6%, sensitivity of 94%±6%, and specificity of 95%±6%. HSI outperformed autofluorescence imaging or fluorescence imaging with vital dye (2-NBDG or proflavine). This study demonstrated the feasibility of label-free, HSI for tumor margin assessment in surgical tissue specimens of H&N cancer patients. Further development of the HSI technology is warranted for its application in image-guided surgery.

  5. ARES I AND ARES V CONCEPT IMAGE

    NASA Technical Reports Server (NTRS)

    2008-01-01

    THIS CONCEPT IMAGE SHOWS NASA'S NEXT GENERATION LAUNCH VEHICLE SYSTEMS STANDING SIDE BY SIDE. ARES I, LEFT, IS THE CREW LAUNCH VEHICLE THAT WILL CARRY THE ORION CREW EXPLORATION VEHICLE TO SPACE. ARES V IS THE CARGO LAUNCH VEHICLE THAT WILL DELIVER LARGE SCALE HARDWARE, INCLUDING THE LUNAR LANDER, TO SPACE.

  6. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN.

    PubMed

    Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan

    2009-01-22

    Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.

  7. Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

    PubMed Central

    Wang, Hongzhi; Yushkevich, Paul A.

    2013-01-01

    Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427

  8. Label-free photoacoustic nanoscopy

    PubMed Central

    Danielli, Amos; Maslov, Konstantin; Garcia-Uribe, Alejandro; Winkler, Amy M.; Li, Chiye; Wang, Lidai; Chen, Yun; Dorn, Gerald W.; Wang, Lihong V.

    2014-01-01

    Abstract. Super-resolution microscopy techniques—capable of overcoming the diffraction limit of light—have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging agent sizes and insufficient or variable labeling densities. By contrast, the use of endogenous pigments allows imaging of the intrinsic structures of biological samples with unaltered molecular constituents. Here, we report label-free photoacoustic (PA) nanoscopy, which is exquisitely sensitive to optical absorption, with an 88 nm resolution. At each scanning position, multiple PA signals are successively excited with increasing laser pulse energy. Because of optical saturation or nonlinear thermal expansion, the PA amplitude depends on the nonlinear incident optical fluence. The high-order dependence, quantified by polynomial fitting, provides super-resolution imaging with optical sectioning. PA nanoscopy is capable of super-resolution imaging of either fluorescent or nonfluorescent molecules. PMID:25104412

  9. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  10. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.

    PubMed

    Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero

    2017-10-16

    In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

  11. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    PubMed

    Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

  12. Recombination imaging of III-V solar cells

    NASA Technical Reports Server (NTRS)

    Virshup, G. F.

    1987-01-01

    An imaging technique based on the radiative recombination of minority carriers in forward-biased solar cells has been developed for characterization of III-V solar cells. When used in mapping whole wafers, it has helped identify three independent loss mechanisms (broken grid lines, shorting defects, and direct-to-indirect bandgap transitions), all of which resulted in lower efficiencies. The imaging has also led to improvements in processing techniques to reduce the occurrence of broken gridlines as well as surface defects. The ability to visualize current mechanisms in solar cells is an intuitive tool which is powerful in its simplicity.

  13. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    PubMed

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  14. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer

    PubMed Central

    Brichory, Franck M.; Misek, David E.; Yim, Anne-Marie; Krause, Melissa C.; Giordano, Thomas J.; Beer, David G.; Hanash, Samir M.

    2001-01-01

    The identification of circulating tumor antigens or their related autoantibodies provides a means for early cancer diagnosis as well as leads for therapy. The purpose of this study was to identify proteins that commonly induce a humoral response in lung cancer by using a proteomic approach and to investigate biological processes that may be associated with the development of autoantibodies. Aliquots of solubilized proteins from a lung adenocarcinoma cell line (A549) and from lung tumors were subjected to two-dimensional PAGE, followed by Western blot analysis in which individual sera were tested for primary antibodies. Sera from 54 newly diagnosed patients with lung cancer and 60 patients with other cancers and from 61 noncancer controls were analyzed. Sera from 60% of patients with lung adenocarcinoma and 33% of patients with squamous cell lung carcinoma but none of the noncancer controls exhibited IgG-based reactivity against proteins identified as glycosylated annexins I and/or II. Immunohistochemical analysis showed that annexin I was expressed diffusely in neoplastic cells in lung tumor tissues, whereas annexin II was predominant at the cell surface. Interestingly, IL-6 levels were significantly higher in sera of antibody-positive lung cancer patients compared with antibody-negative patients and controls. We conclude that an immune response manifested by annexins I and II autoantibodies occurs commonly in lung cancer and is associated with high circulating levels of an inflammatory cytokine. The proteomic approach we have implemented has utility for the development of serum-based assays for cancer diagnosis as we report in this paper on the discovery of antiannexins I and/or II in sera from patients with lung cancer. PMID:11504947

  15. 99mTc: Labeling Chemistry and Labeled Compounds

    NASA Astrophysics Data System (ADS)

    Alberto, R.; Abram, U.

    This chapter reviews the radiopharmaceutical chemistry of technetium related to the synthesis of perfusion agents and to the labeling of receptor-binding biomolecules. To understand the limitations of technetium chemistry imposed by future application of the complexes in nuclear medicine, an introductory section analyzes the compulsory requirements to be considered when facing the incentive of introducing a novel radiopharmaceutical into the market. Requirements from chemistry, routine application, and market are discussed. In a subsequent section, commercially available 99mTc-based radiopharmaceuticals are treated. It covers the complexes in use for imaging the most important target organs such as heart, brain, or kidney. The commercially available radiopharmaceuticals fulfill the requirements outlined earlier and are discussed with this background. In a following section, the properties and perspectives of the different generations of radiopharmaceuticals are described in a general way, covering characteristics for perfusion agents and for receptor-specific molecules. Technetium chemistry for the synthesis of perfusion agents and the different labeling approaches for target-specific biomolecules are summarized. The review comprises a general introduction to the common approaches currently in use, employing the N x S4-x , [3+1] and 2-hydrazino-nicotinicacid (HYNIC) method as well as more recent strategies such as the carbonyl and the TcN approach. Direct labeling without the need of a bifunctional chelator is briefly reviewed as well. More particularly, recent developments in the labeling of concrete targeting molecules, the second generation of radiopharmaceuticals, is then discussed and prominent examples with antibodies/peptides, neuroreceptor targeting small molecules, myocardial imaging agents, vitamins, thymidine, and complexes relevant to multidrug resistance are given. In addition, a new approach toward peptide drug development is described. The section

  16. On Super Edge-magic Total Labeling of Modified Watermill Graph

    NASA Astrophysics Data System (ADS)

    Nurdin; Ungko, T. S.; Gormantara, J.; Abdullah, A.; Aulyah, S.; Nikita

    2018-03-01

    An edge-magic total labeling on a graph G is one-to-one map from V(G) ∪ E(G) onto the set of integers 1,2, ...,ν + e, where ν = |V(G)| and e = |E(G)|, with the property that, given any edge uv, f(u) + f(u, ν}) + f(ν) = k for every u,vV(G), and k is called magic valuation. An edge-magic total labeling f is called super edge-magic total if f(v(G)) = {1,2 ...,|V(G)|} and f(E(G)) = {|V(G)| + 1, |V(G)| + 2,... |V(G) + E(G)|}. In this paper we investigate edge-magic total labeling of a new graph called modified Watermill graph. Furthermore, the magic valuation of the modified Watermill graph WM(n) is k=\\frac{1}{2}(21n+3), for n odd, n ≥ 3.

  17. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with (64)Cu, (68)Ga, and (111)In.

    PubMed

    Roosenburg, S; Laverman, P; Joosten, L; Cooper, M S; Kolenc-Peitl, P K; Foster, J M; Hudson, C; Leyton, J; Burnet, J; Oyen, W J G; Blower, P J; Mather, S J; Boerman, O C; Sosabowski, J K

    2014-11-03

    Cholecystokinin-2 (CCK-2) receptors, overexpressed in cancer types such as small cell lung cancers (SCLC) and medullary thyroid carcinomas (MTC), may serve as targets for peptide receptor radionuclide imaging. A variety of CCK and gastrin analogues has been developed, but a major drawback is metabolic instability or high kidney uptake. The minigastrin analogue PP-F11 has previously been shown to be a promising peptide for imaging of CCK-2 receptor positive tumors and was therefore further evaluated. The peptide was conjugated with one of the macrocyclic chelators DOTA, NOTA, or NODAGA. The peptide conjugates were then radiolabeled with either (68)Ga, (64)Cu, or (111)In. All (radio)labeled compounds were evaluated in vitro (IC50) and in vivo (biodistribution and PET/CT and SPECT/CT imaging). IC50 values were in the low nanomolar range for all compounds (0.79-1.51 nM). In the biodistribution studies, (68)Ga- and (111)In-labeled peptides showed higher tumor-to-background ratios than the (64)Cu-labeled compounds. All tested radiolabeled compounds clearly visualized the CCK2 receptor positive tumor in PET or SPECT imaging. The chelator did not seem to affect in vivo behavior of the peptide for (111)In- and (68)Ga-labeled peptides. In contrast, the biodistribution of the (64)Cu-labeled peptides showed high uptake in the liver and in other organs, most likely caused by high blood levels, probably due to dissociation of (64)Cu from the chelator and subsequent transchelation to proteins. Based on the present study, (68)Ga-DOTA-PP-F11 might be a promising radiopharmaceutical for PET/CT imaging of CCK2 receptor expressing tumors such as MTC and SCLC. Clinical studies are warranted to investigate the potential of this tracer.

  18. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells

    PubMed Central

    Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I.

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells. PMID:28072868

  19. GPER-targeted, 99mTc-labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding.

    PubMed

    Nayak, Tapan K; Ramesh, Chinnasamy; Hathaway, Helen J; Norenberg, Jeffrey P; Arterburn, Jeffrey B; Prossnitz, Eric R

    2014-11-01

    Our understanding of estrogen (17β-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. These studies provide a molecular basis to evaluate GPER expression and function

  20. 89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute seek parties interested in in-licensing and/or collaborative research to develop and commercialize cell labeling, cell tracking, cell trafficking, cell-based therapy, and PET imaging for cancer.

  1. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.

    PubMed

    Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos

    2014-10-01

    The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (< 8% of I.D.) of the instilled particles. The majority of leaked radiocolloid particles were found in inguinal lymph nodes during the 9 months of follow-up. All the animals tolerated the treatment well; the compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.

  2. Generating region proposals for histopathological whole slide image retrieval.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu; Shi, Jun

    2018-06-01

    Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels. This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus-Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing. The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled. The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems. Copyright

  3. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  4. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    PubMed Central

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  5. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features canmore » be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors

  6. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging.

    PubMed

    Wu, Meng; Keil, Andreas; Constantin, Dragos; Star-Lack, Josh; Zhu, Lei; Fahrig, Rebecca

    2014-12-01

    The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kV and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10-15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%-10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. The authors have shown that it is possible to improve the image quality of

  7. Incidental Detection of Type B2 Thymoma on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT Imaging.

    PubMed

    Krishnaraju, Venkata Subramanian; Basher, Rajender Kumar; Singh, Harmandeep; Singh, Shrawan Kumar; Bal, Amanjit; Mittal, Bhagwant Rai

    2018-05-01

    Ga-labeled prostate-specific membrane antigen is a novel radiotracer for imaging of prostate cancer. We report a hormonally treated patient with prostate carcinoma, presenting with lower urinary tract symptoms and rising prostate-specific antigen levels, who underwent Ga-labeled prostate-specific membrane antigen PET/CT for suspected recurrence. No tracer avid lesion was noted in the prostate gland and locoregional area. However, intense tracer avid heterogeneously enhancing soft tissue lesion with cystic areas and coarse calcifications was seen in the anterior mediastinum. PET/CT-guided biopsy from the mediastenal lesion revealed type B2 thymoma.

  8. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Back, N L; Eder, D C

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less

  9. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  10. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    PubMed

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  11. Segmentation of Vasculature from Fluorescently Labeled Endothelial Cells in Multi-Photon Microscopy Images.

    PubMed

    Bates, Russell; Irving, Benjamin; Markelc, Bostjan; Kaeppler, Jakob; Brown, Graham; Muschel, Ruth J; Brady, Sir Michael; Grau, Vicente; Schnabel, Julia A

    2017-08-09

    Vasculature is known to be of key biological significance, especially in the study of tumors. As such, considerable effort has been focused on the automated segmentation of vasculature in medical and pre-clinical images. The majority of vascular segmentation methods focus on bloodpool labeling methods, however, particularly in the study of tumors it is of particular interest to be able to visualize both perfused and non-perfused vasculature. Imaging vasculature by highlighting the endothelium provides a way to separate the morphology of vasculature from the potentially confounding factor of perfusion. Here we present a method for the segmentation of tumor vasculature in 3D fluorescence microscopy images using signals from the endothelial and surrounding cells. We show that our method can provide complete and semantically meaningful segmentations of complex vasculature using a supervoxel-Markov Random Field approach. We show that in terms of extracting meaningful segmentations of the vasculature, our method out-performs both a state-ofthe- art method, specific to these data, as well as more classical vasculature segmentation methods.

  12. Positron emitter labeled enzyme inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline andmore » L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.« less

  13. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  14. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  15. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng, E-mail: mengwu@stanford.edu; Keil, Andreas; Constantin, Dragos

    Purpose: The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Methods: Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kVmore » and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. Results: The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10–15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%–10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. Conclusions: The authors have shown

  16. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakwe, Amos M., E-mail: asakwe@mmc.edu; Koumangoye, Rainelli; Guillory, Bobby

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagenmore » type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.« less

  17. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    NASA Astrophysics Data System (ADS)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  18. GPER-targeted, 99mTc-labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding

    PubMed Central

    Nayak, Tapan K.; Ramesh, Chinnasamy; Hathaway, Helen J.; Norenberg, Jeffrey P.; Arterburn, Jeffrey B.; Prossnitz, Eric R.

    2014-01-01

    Our understanding of estrogen (E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER1/GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial and ovarian cancers, establishing the importance of non-invasive methods to evaluate GPER expression in vivo. Herein, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor and for GPER visualization in whole animals. A series of 99mTc(I)-labeled non-steroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10–30 nM range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1 %ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, mammary tissue) as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/ image-guided drug delivery. PMID:25030373

  19. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    DTIC Science & Technology

    2006-08-01

    64Cu -Labeled Abegrin™, a Humanized Monoclonal Antibody against Integrin αvβ3 Cancer Res. 2006;66(19):9673-81. 11. Hsu AR, Hou LC, Veeravagu A...FL, March, 2006. 5. Wu Y, Cai W, Zhang X, Chen K, Cao Q, Tice D, Chen X. In Vitro and In Vivo Characterization of 64Cu -Labeled Vitaxin, a...53rd SNM Annual meeting, San Diego, CA, June 2006 9. Cai W, Wu Y, Cao Q, Chen K, Zhang X, Tice D, Chen X 64Cu -Labeled Humanized Anti

  20. Tc-labeling of Peptidomimetic Antagonist to Selectively Target alpha(v)beta(3) Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands.

    PubMed

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C P; Wood, Bradford; Carrasquillo, Jorge A; Danthi, S Narasimhan; Paik, Chang H

    2010-01-01

    OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by

  1. Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice

    PubMed Central

    Jia, Yali; Wang, Ruikang K.

    2010-01-01

    Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of monitoring dynamic meningeal microcirculations, preferably decoupled from cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ~2 mm, with an unprecedented imaging sensitivity to blood flow at ~4 µm/s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within the meninges and cortex in mice with the cranium left intact. Using a thrombotic mouse model, we show that the OMAG can yield longitudinal measurements of meningeal vascular responses to the insult and can decouple these responses from those in the cortex, giving valuable information regarding the localized hemodynamics along with the dynamic formation of thrombotic event. The results indicate that OMAG can be a useful tool to study therapeutic strategies in preclinical animal models in order to mitigate various pathologies that are mainly related to the meningeal circulations. PMID:20933005

  2. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition.

    PubMed

    Robson, Philip M; Madhuranthakam, Ananth J; Smith, Martin P; Sun, Maryellen R M; Dai, Weiying; Rofsky, Neil M; Pedrosa, Ivan; Alsop, David C

    2016-02-01

    Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    NASA Astrophysics Data System (ADS)

    Brahmi, C.; Domart-Coulon, I.; Rougée, L.; Pyle, D. G.; Stolarski, J.; Mahoney, J. J.; Richmond, R. H.; Ostrander, G. K.; Meibom, A.

    2012-09-01

    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions.

  4. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  5. Comparative assessment of a 99mTc labeled H1299.2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging.

    PubMed

    Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal

    2017-05-01

    Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging.

    PubMed

    Shimizu, Kazuhiro; Kosaka, Nobuyuki; Fujiwara, Yasuhiro; Matsuda, Tsuyoshi; Yamamoto, Tatsuya; Tsuchida, Tatsuro; Tsuchiyama, Katsuki; Oyama, Nobuyuki; Kimura, Hirohiko

    2017-01-10

    The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99m Tc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL-MRI as debated in brain imaging.

  7. Collaborative labeling of malignant glioma with WebMILL: a first look

    NASA Astrophysics Data System (ADS)

    Singh, Eesha; Asman, Andrew J.; Xu, Zhoubing; Chambless, Lola; Thompson, Reid; Landman, Bennett A.

    2012-02-01

    Malignant gliomas are the most common form of primary neoplasm in the central nervous system, and one of the most rapidly fatal of all human malignancies. They are treated by maximal surgical resection followed by radiation and chemotherapy. Herein, we seek to improve the methods available to quantify the extent of tumors using newly presented, collaborative labeling techniques on magnetic resonance imaging. Traditionally, labeling medical images has entailed that expert raters operate on one image at a time, which is resource intensive and not practical for very large datasets. Using many, minimally trained raters to label images has the possibility of minimizing laboratory requirements and allowing high degrees of parallelism. A successful effort also has the possibility of reducing overall cost. This potentially transformative technology presents a new set of problems, because one must pose the labeling challenge in a manner accessible to people with little or no background in labeling medical images and raters cannot be expected to read detailed instructions. Hence, a different training method has to be employed. The training must appeal to all types of learners and have the same concepts presented in multiple ways to ensure that all the subjects understand the basics of labeling. Our overall objective is to demonstrate the feasibility of studying malignant glioma morphometry through statistical analysis of the collaborative efforts of many, minimally-trained raters. This study presents preliminary results on optimization of the WebMILL framework for neoplasm labeling and investigates the initial contributions of 78 raters labeling 98 whole-brain datasets.

  8. Fruit-related terms and images on food packages and advertisements affect children's perceptions of foods' fruit content.

    PubMed

    Heller, Rebecca; Martin-Biggers, Jennifer; Berhaupt-Glickstein, Amanda; Quick, Virginia; Byrd-Bredbenner, Carol

    2015-10-01

    To determine whether food label information and advertisements for foods containing no fruit cause children to have a false impression of the foods' fruit content. In the food label condition, a trained researcher showed each child sixteen different food label photographs depicting front-of-food label packages that varied with regard to fruit content (i.e. real fruit v. sham fruit) and label elements. In the food advertisement condition, children viewed sixteen, 30 s television food advertisements with similar fruit content and label elements as in the food label condition. After viewing each food label and advertisement, children responded to the question 'Did they use fruit to make this?' with responses of yes, no or don't know. Schools, day-care centres, after-school programmes and other community groups. Children aged 4-7 years. In the food label condition, χ 2 analysis of within fruit content variation differences indicated children (n 58; mean age 4·2 years) were significantly more accurate in identifying real fruit foods as the label's informational load increased and were least accurate when neither a fruit name nor an image was on the label. Children (n 49; mean age 5·4 years) in the food advertisement condition were more likely to identify real fruit foods when advertisements had fruit images compared with when no image was included, while fruit images in advertisements for sham fruit foods significantly reduced accuracy of responses. Findings suggest that labels and advertisements for sham fruit foods mislead children with regard to the food's real fruit content.

  9. Stem Cell Monitoring with a Direct or Indirect Labeling Method.

    PubMed

    Kim, Min Hwan; Lee, Yong Jin; Kang, Joo Hyun

    2016-12-01

    The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.

  10. Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use

    PubMed Central

    Gutova, Margarita; Frank, Joseph A.; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M.; Annala, Alexander J.; Metz, Marianne Z.; Abramyants, Yelena; Herrmann, Kelsey A.; Ghoda, Lucy Y.; Najbauer, Joseph; Brown, Christine E.; Blanchard, M. Suzette; Lesniak, Maciej S.; Kim, Seung U.; Barish, Michael E.

    2013-01-01

    Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking. PMID:24014682

  11. Positron emitter labeled enzyme inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgylinemore » and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.« less

  12. Generation-V dual-Purkinje-image eyetracker

    NASA Technical Reports Server (NTRS)

    Crane, H. D.; Steele, C. M.

    1985-01-01

    Major advances characterize the Generation-V dual-Purkinje-image eyetracker compared with the Generation-III version previously described. These advances include a large reduction in size, major improvements in frequency response and noise level, automatic alignment to a subject, and automatic adjustment for different separation between the visual and optic axes, which can vary considerably from subject to subject. In a number of applications described in the paper, the eyetracker is coupled with other highly specialized optical devices. These applications include accurately stabilizing an image on a subject's retina; accurately simulating a visually dead retinal region (i.e., a scotoma) of arbitrary shape, size, and position; and, for clinical purposes, stabilizing the position of a laser coagulator beam on a patient's retina so that the point of contact is unaffected by the patient's own eye movements.

  13. Behaviour of adipose-derived canine mesenchymal stem cells after superparamagnetic iron oxide nanoparticles labelling for magnetic resonance imaging.

    PubMed

    Kolecka, Malgorzata Anna; Arnhold, Stefan; Schmidt, Martin; Reich, Christine; Kramer, Martin; Failing, Klaus; von Pückler, Kerstin

    2017-02-24

    Therapy with mesenchymal stem cells (MSCs) has been reported to provide beneficial effects in the treatment of neurological and orthopaedic disorders in dogs. The exact mechanism of action is poorly understood. Magnetic resonance imaging (MRI) gives the opportunity to observe MSCs after clinical administration. To visualise MSCs with the help of MRI, labelling with an MRI contrast agent is necessary. However, it must be clarified whether there is any negative influence on cell function and viability after labelling prior to clinical administration. For the purpose of the study, seven samples with canine adipose-derived stem cells were incubated with superparamagnetic iron oxide nanoparticles (SPIO: 319.2 μg/mL Fe) for 24 h. The internalisation of the iron particles occurred via endocytosis. SPIO particles were localized as free clusters in the cytoplasm or within lysosomes depending on the time of investigation. The efficiency of the labelling was investigated using Prussian blue staining and MACS assay. After 3 weeks the percentage of SPIO labelled canine stem cells decreased. Phalloidin staining showed no negative effect on the cytoskeleton. Labelled cells underwent osteogenic and adipogenic differentiation. Chondrogenic differentiation occurred to a lesser extent compared with a control sample. MTT-Test and wound healing assay showed no influence of labelling on the proliferation. The duration of SPIO labelling was assessed using a 1 Tesla clinical MRI scanner and T2 weighted turbo spin echo and T2 weighted gradient echo MRI sequences 1, 2 and 3 weeks after labelling. The hypointensity caused by SPIO lasted for 3 weeks in both sequences. An Endorem labelling concentration of 319.2 μg/mL Fe (448 μg/mL SPIO) had no adverse effects on the viability of canine ASCs. Therefore, this contrast agent could be used as a model for iron oxide labelling agents. However, the tracking ability in vivo has to be evaluated in further studies.

  14. Self-assembled mPEG-PCL-g-PEI micelles for multifunctional nanoprobes of doxorubicin delivery and magnetic resonance imaging and optical imaging.

    PubMed

    Guo, Qingfa; Kuang, Lei; Cao, Hui; Li, Weizhong; Wei, Jing

    2015-12-01

    In this paper, a novel bifunctional nanoprobe based on polyethylene glycol(MPEG)-poly(ϵ-caprolactone)(ϵ-CL)-polyethylenimine(PEI) labeled with FITC (MPEG-PCL-PEI-FITC, PCIF) were prepared to provide tumor therapy and simultaneous diagnostic information via magnetic resonance imaging (MRI) and optical imaging. Superparamagnetic iron oxide (SPIO) and doxorubicin (DOX) loaded PCIF (PCIF/SPIO/DOX) nanoprobes were prepared by self-assembling into micelles, which had uniformly distributed particle size of 130 ± 5 nm and a zeta potential of +35 ± 2 mV. Transmission electronic microscopy(TEM) showed that SPIO NPs were loaded into PCIF micelles. The PCIF/SPIO/DOX nanoprobes were superparamagnetic at 300 K with saturated magnetization of 20.5 emu/g Fe by vibrating-sample-magnetomete (VSM). Studies on cellular uptake of PCIF/SPIO/DOX nanoprobes demonstrated that SPIO NPs, DOX and FITC labeled MPEG-PCL-PEI were simultaneously taken up by the breast cancer (4T1) cells. After intravenous injection of PCIF/SPIO/DOX nanoprobes in 4T1 tumor-bearing mice, SPIO NPs, DOX and FITC labeled MPEG-PCL-PEI micelles were simultaneously delivered into tumor tissue by histochemisty. This work is important for the applications to multimodal diagnostic and theragnosis as nanomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    PubMed

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  16. Reducing the negative effects of media exposure on body image: Testing the effectiveness of subvertising and disclaimer labels.

    PubMed

    Frederick, David A; Sandhu, Gaganjyot; Scott, Terri; Akbari, Yasmin

    2016-06-01

    Body image activists have proposed adding disclaimer labels to digitally altered media as a way to promote positive body image. Another approach advocated by activists is to alter advertisements through subvertising (adding social commentary to the image to undermine the message of the advertisement). We examined if body image could be enhanced by attaching Photoshop disclaimers or subvertising to thin-ideal media images of swimsuit models. In Study 1 (N=1268), adult women exposed to disclaimers or subvertising did not report higher body state satisfaction or lower drive for thinness than women exposed to unaltered images. In Study 2 (N=820), adult women who were exposed to disclaimers or subvertising did not report higher state body satisfaction or lower state social appearance comparisons than women exposed to unaltered images or to no images. These results raise questions about the effectiveness of disclaimers and subvertising for promoting body satisfaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue

    PubMed Central

    Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270

  18. A contribution to examination of propidium iodide and annexin V plasma cells indices in multiple myeloma.

    PubMed

    Scudla, V; Ordeltova, M; Bacovsky, J; Vytrasova, M; Sumna, E; Martinek, A; Horak, P

    2003-01-01

    The aim of this study was a contemporaneous measurement and a mutual comparison of plasma cells proliferative activity and grade of apoptosis in patients with monoclonal gammopathy of undetermined significance (MGUS) and various phases of MM i.e. smoldering (SMM), stable/plateau and active (progression/relapse) forms of this disease. The analyzed group of 197 patients consisted of 30 MGUS, 21 SMM, 82 patients examined at the time of MM diagnosis and 64 patients analyzed during various phases of the disease after previous chemotherapy. Plasma cell proliferative activity was measured by means of a propidium iodide index (PC-PI) examined by flow cytometry using a DNA/CD138 double staining technique. For detection of plasma cells entering apoptosis (PC-AI) flow cytometry method with annexin V FITC and MoAb CD138 was used. The individuals with MGUS, SMM and stable/plateau form of MM had overall low levels of PC-PI (M-1.8, 1.7% and 2.1%) and relatively high levels of PC-AI (M-9.1, 10.8 and 9.0%). The correlation between PC-PI and PC-AI was in all the groups mutually highly statistically significant (p=0.000). Analysis of plasma cells proliferative activity (PC-PI) was statistically significant in comparison of MGUS or SMM and versus: patients examined at the time of MM diagnosis (p=0.018 or 0.016); patients evaluated during various phases of MM after previous chemotherapy (p=0.021 or 0.019); stable/plateau MM phase in the cohort of all patients (p=0.017 or 0.040); in the plateau phase after chemotherapy (p=0.008 or 0.024) but insignificant in comparison of MGUS and SMM and with the stable group examined at the time of MM diagnosis. Analysis of the apoptotic process revealed significant differences when comparing PC-AI of SMM but not MGUS group versus all cohort of stable/plateau MM patients (p=0.045); there were also insignificant differences in comparison of MGUS and SMM groupsand versus the stable form of MM measured at the time of MM diagnosis or plateau phase after

  19. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model.

    PubMed

    Hyoun Kim, Myoung; Kim, Seul-Gi; Guhn Kim, Chang; Kim, Dae-Weung

    2017-03-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αvβ3. We developed a Tc-99m and TAMRA labeled peptide, Tc-99m SDV-ECG-K-TAMRA for multimodal imaging of angiogenesis. Tc-99m SDV-ECG-K-TAMRA was prepared in high yield (>96%) and showed low cytotoxicity. Tc-99m tetrofosmin images 1 week after operation, revealed significantly decreased perfusion of the ischemic hindlimb, and the perfusion recovered gradually for 4 weeks. In contrast, Tc-99m SDV-ECG-K-TAMRA uptake was maximal 1 week after the operation (ischemic-to-non-ischemic uptake ratio =5.03±1.01) and decreased gradually. The ischemic-to-non-ischemic ratio of Tc-99m SDV-ECG-K-TAMRA and Tc-99m tetrofosmin was strongly negatively correlated (r =-0.94). A postmortem analysis revealed increased angiogenesis markers and uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Our in vivo and in vitro studies revealed substantial uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Tc-99m SDV-ECG-K-TAMRA could be a good candidate dual-modality imaging agent to assess angiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Imaging of the interaction of cancer cells and the lymphatic system.

    PubMed

    Tran Cao, Hop S; McElroy, Michele; Kaushal, Sharmeela; Hoffman, Robert M; Bouvet, Michael

    2011-09-10

    A thorough understanding of the lymphatic system and its interaction with cancer cells is crucial to our ability to fight cancer metastasis. Efforts to study the lymphatic system had previously been limited by the inability to visualize the lymphatic system in vivo in real time. Fluorescence imaging can address these limitations and allow for visualization of lymphatic delivery and trafficking of cancer cells and potentially therapeutic agents as well. Here, we review recent articles in which antibody-fluorophore conjugates are used to label the lymphatic network and fluorescent proteins to label cancer cells in the evaluation of lymphatic delivery and imaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Implementation of a Synchronized Oscillator Circuit for Fast Sensing and Labeling of Image Objects

    PubMed Central

    Kowalski, Jacek; Strzelecki, Michal; Kim, Hyongsuk

    2011-01-01

    We present an application-specific integrated circuit (ASIC) CMOS chip that implements a synchronized oscillator cellular neural network with a matrix size of 32 × 32 for object sensing and labeling in binary images. Networks of synchronized oscillators are a recently developed tool for image segmentation and analysis. Its parallel network operation is based on a “temporary correlation” theory that attempts to describe scene recognition as if performed by the human brain. The synchronized oscillations of neuron groups attract a person’s attention if he or she is focused on a coherent stimulus (image object). For more than one perceived stimulus, these synchronized patterns switch in time between different neuron groups, thus forming temporal maps that code several features of the analyzed scene. In this paper, a new oscillator circuit based on a mathematical model is proposed, and the network architecture and chip functional blocks are presented and discussed. The proposed chip is implemented in AMIS 0.35 μm C035M-D 5M/1P technology. An application of the proposed network chip for the segmentation of insulin-producing pancreatic islets in magnetic resonance liver images is presented. PMID:22163803

  2. Cross contrast multi-channel image registration using image synthesis for MR brain images.

    PubMed

    Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L

    2017-02-01

    Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images

    PubMed Central

    Dai, Weiying; Soman, Salil; Hackney, David B.; Wong, Eric T.; Robson, Philip M.; Alsop, David C.

    2017-01-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, non-subsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%–98% of the other methods with simulated data and 64%–86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%–133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic

  4. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic

    PubMed Central

    Wang, Xiaobo; Feng, Han; Zhao, Shichao; Xu, Junling; Wu, Xinyu; Cui, Jing; Zhang, Ying; Qin, Yuhua; Liu, Zhiguo; Gao, Tang; Gao, Yongju; Zeng, Wenbin

    2017-01-01

    Owing to the central role of apoptosis in many human diseases and the wide-spread application of apoptosis-based therapeutics, molecular imaging of apoptosis in clinical practice is of great interest for clinicians, and holds great promises. Based on the well-defined biochemical changes for apoptosis, a rich assortment of probes and approaches have been developed for molecular imaging of apoptosis with various imaging modalities. Among these imaging techniques, nuclear imaging (including single photon emission computed tomography and positron emission tomography) remains the premier clinical method owing to their high specificity and sensitivity. Therefore, the corresponding radiopharmaceuticals have been a major focus, and some of them like 99mTc-Annexin V, 18F-ML-10, 18F-CP18, and 18F-ICMT-11 are currently under clinical investigations in Phase I/II or Phase II/III clinical trials on a wide scope of diseases. In this review, we summarize these radiopharmaceuticals that have been widely used in clinical trials and elaborate them in terms of radiosynthesis, pharmacokinetics and dosimetry, and their applications in different clinical stages. We also explore the unique features required to qualify a desirable radiopharmaceutical for imaging apoptosis in clinical practice. Particularly, a perspective of the impact of these clinical efforts, namely, apoptosis imaging as predictive and prognostic markers, early-response indicators and surrogate endpoints, is also the highlight of this review. PMID:28108738

  5. Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs.

    PubMed

    Deng, Huaifu; Wang, Hui; Zhang, He; Wang, Mengzhe; Giglio, Ben; Ma, Xiaofen; Jiang, Guihua; Yuan, Hong; Wu, Zhanhong; Li, Zibo

    2017-01-01

    Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. Three 64 Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR + HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64 Cu-NOTA-NT and 64 Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64 Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. Our results demonstrated that 64 Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.

  6. Automatic face naming by learning discriminative affinity matrices from weakly labeled images.

    PubMed

    Xiao, Shijie; Xu, Dong; Wu, Jianxin

    2015-10-01

    Given a collection of images, where each image contains several faces and is associated with a few names in the corresponding caption, the goal of face naming is to infer the correct name for each face. In this paper, we propose two new methods to effectively solve this problem by learning two discriminative affinity matrices from these weakly labeled images. We first propose a new method called regularized low-rank representation by effectively utilizing weakly supervised information to learn a low-rank reconstruction coefficient matrix while exploring multiple subspace structures of the data. Specifically, by introducing a specially designed regularizer to the low-rank representation method, we penalize the corresponding reconstruction coefficients related to the situations where a face is reconstructed by using face images from other subjects or by using itself. With the inferred reconstruction coefficient matrix, a discriminative affinity matrix can be obtained. Moreover, we also develop a new distance metric learning method called ambiguously supervised structural metric learning by using weakly supervised information to seek a discriminative distance metric. Hence, another discriminative affinity matrix can be obtained using the similarity matrix (i.e., the kernel matrix) based on the Mahalanobis distances of the data. Observing that these two affinity matrices contain complementary information, we further combine them to obtain a fused affinity matrix, based on which we develop a new iterative scheme to infer the name of each face. Comprehensive experiments demonstrate the effectiveness of our approach.

  7. Detection and tracking of dual-labeled HIV particles using wide-field live cell imaging to follow viral core integrity

    PubMed Central

    Mamede, Joao I.; Hope, Thomas J.

    2016-01-01

    Summary Live cell imaging is a valuable technique that allows the characterization of the dynamic processes of the HIV-1 life-cycle. Here, we present a method of production and imaging of dual-labeled HIV viral particles that allows the visualization of two events. Varying release of the intravirion fluid phase marker reveals virion fusion and the loss of the integrity of HIV viral cores with the use of live wide-field fluorescent microscopy. PMID:26714704

  8. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities.

    PubMed

    Massa, Sam; Vikani, Niravkumar; Betti, Cecilia; Ballet, Steven; Vanderhaegen, Saskia; Steyaert, Jan; Descamps, Benedicte; Vanhove, Christian; Bunschoten, Anton; van Leeuwen, Fijs W B; Hernot, Sophie; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Xavier, Catarina; Devoogdt, Nick

    2016-09-01

    A generic site-specific conjugation method that generates a homogeneous product is of utmost importance in tracer development for molecular imaging and therapy. We explored the protein-ligation capacity of the enzyme Sortase A to label camelid single-domain antibody-fragments, also known as nanobodies. The versatility of the approach was demonstrated by conjugating independently three different imaging probes: the chelating agents CHX-A"-DTPA and NOTA for single-photon emission computed tomography (SPECT) with indium-111 and positron emission tomography (PET) with gallium-68, respectively, and the fluorescent dye Cy5 for fluorescence reflectance imaging (FRI). After a straightforward purification process, homogeneous single-conjugated tracer populations were obtained in high yield (30-50%). The enzymatic conjugation did not affect the affinity of the tracers, nor the radiolabeling efficiency or spectral characteristics. In vivo, the tracers enabled the visualization of human epidermal growth factor receptor 2 (HER2) expressing BT474M1-tumors with high contrast and specificity as soon as 1 h post injection in all three imaging modalities. These data demonstrate Sortase A-mediated conjugation as a valuable strategy for the development of site-specifically labeled camelid single-domain antibody-fragments for use in multiple molecular imaging modalities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Synthesis and evaluation of a 99mTc-labeled tubulin-binding agent for tumor imaging.

    PubMed

    Erfani, Mostafa; Shamsaei, Mojtaba; Mohammadbaghery, Faiyaz; Shirmardi, Seyed Pezhman

    2014-05-30

    Cholchicine and its derivatives are very potent tubulin-binding compounds and can be used as a potential tumor targeting agents. In this study, colchicine was labeled with (99m) Tc via hydrazinonicotinic acid (HYNIC) and was investigated further. HYNIC/cholchicine was synthesized and labeling with (99m)Tc was performed at 95 °C for 15 min and radiochemical analysis included HPLC method. The stability of radiconjugate was checked in the presence of human serum at 37 °C up to 24 h. Biodistribution was studied in breast tumor-bearing mice. Labeling yield of 95.8 ± 0.54% was obtained corresponding to a specific activity of 54 MBq/µmol. Radioconjugate showed good stability in the presence of human serum. Biodistribution studies in tumor-bearing mice showed that (99m) Tc/HYNIC/colchicine conjugate accumulated in tumor with good uptake (3.17 ± 0.14% g/g at 1 h post-injection). The radioconjugate was cleared fast from normal organs and showed clearance through urinary and hepatobiliary systems with accumulation of activity in kidneys and intestine. This radioconjugate may be useful to assess the presence of tumor by imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Optimized molecular design of ADAPT-based HER2-imaging probes labelled with 111In and 68Ga.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Mitran, Bogdan; Vorobyeva, Anzhelika; Oroujeni, Maryam; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2018-06-04

    Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111 In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE) 3 DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C 59 - DEAVDANS-ADAPT6-GSSC and DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC) were stably labeled with 111 In for SPECT and 68 Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111 In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68 Ga-labeled counterparts. The best performing variant was DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC, providing tumor-to-blood ratios of 208±36 and 109±17 at 3 h for 111 In and 68 Ga labels, respectively.

  11. Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats.

    PubMed

    Oliveira, Bruno L; Blasi, Francesco; Rietz, Tyson A; Rotile, Nicholas J; Day, Helen; Caravan, Peter

    2015-10-01

    We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F PET probes for noninvasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and SPECT. In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in 2 animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. Radiotracers were synthesized using a known fibrin-binding peptide conjugated to 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DOTA-MA), or a diethylenetriamine ligand (DETA-propanoic acid [PA]), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA), or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics, and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a nonbinding control probe using SPECT/PET/CT imaging. All 3 radiotracers showed affinity similar to soluble fibrin fragment DD(E) (inhibition constant=0.53-0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0±0.2 percentage injected dose per gram), with low off-target accumulation. Both radiotracers underwent fast systemic elimination (half-life, 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation or degradation. Triple-isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu

  12. A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.

    PubMed

    Mignotte, Max

    2010-06-01

    This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.

  13. Label inspection of approximate cylinder based on adverse cylinder panorama

    NASA Astrophysics Data System (ADS)

    Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo

    2013-12-01

    This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.

  14. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in situ Based on Dual-Labeled DNAzyme.

    PubMed

    Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi

    2018-01-01

    Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.

  15. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria

    PubMed Central

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E.; Reading, Nicola C.; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H.; Kasper, Dennis L.

    2015-01-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but our understanding of host–commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click-chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis following acute peritonitis, and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. The distribution and colonization of labeled B. fragilis along the intestine can be assessed, as well as niche competition following coadministration of multiple species of the microbiota. Nine additional anaerobic commensals (both gram-negative and gram-positive) from three phyla common in the gut—Bacteroidetes, Firmicutes, and Proteobacteria—and five families and one aerobic pathogen (Staphylococcus aureus) were also fluorescently labeled. This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and an approach to study microbial colonization and host–microbe interactions in real-time. PMID:26280120

  16. Synthesis of 68Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers.

    PubMed

    Hoigebazar, Lathika; Jeong, Jae Min; Hong, Mee Kyung; Kim, Young Ju; Lee, Ji Youn; Shetty, Dinesh; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2011-04-01

    The imaging of hypoxia is important for therapeutic decision making in various diseases. (68)Ga is an important radionuclide for positron emission tomography (PET), and its usage is increasing, due to the development of the (68)Ge/(68)Ga-generator. In the present study, the authors synthesized two nitroimidazole derivatives by conjugating nitroimidazole and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via an amide bond (4) and a thiourea bond (5). Both derivatives were labeled with (68)Ga with high labeling efficiency and were stable after labeling. The low partition coefficients (logP) of (68)Ga-4 (-4.6) and (68)Ga-5 (-4.5) demonstrated the hydrophilic natures of the derivatives, and both showed higher uptake in cancer cell lines cultured under hypoxic condition than under normoxic condition. However, (68)Ga-5 showed higher liver uptake than (68)Ga-4 in a biodistribution study due to higher lipophilicity. In an animal PET study, (68)Ga-4 showed higher standard uptake values (SUV) in tumors than (68)Ga-5 in mice xenografted with CT-26 mouse colon cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, D.A.; Wu, C.Y.; Blaszczak, L.C.

    Radiolabeled penicillin G is widely used as the imaging agent in penicillin-binding protein (PBP) assays. The disadvantages of most forms of labeled penicillin G are instability on storage and the long exposure times usually required for autoradiography or fluorography of electrophoretic gels. We investigated the utility of radioiodinated penicillin V as an alternative reagent. Radioiodination of p-(trimethylstannyl)penicillin V with ({sup 125}I)Na, using a modification of the chloramine-T method, is simple, high yielding, and site specific. We demonstrated the general equivalence of commercially obtained ({sup 3}H)penicillin G and locally synthesized ({sup 125}I)penicillin V (IPV) in their recognition of bacterial PBPs. Profilesmore » of PBPs in membranes from Bacteroides fragilis, Escherichia coli, Providencia rettgeri, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and Enterococcus faecium labeled with IPV or (3H)penicillin G were virtually identical. Use of IPV as the imaging agent in competition experiments for determination of the affinities of various beta-lactam antibiotics for the PBPs of E. coli yielded results similar to those obtained in experiments with ({sup 3}H)penicillin G. Dried electrophoretic gels from typical PBP experiments, using IPV at 37.3 Ci/mmol and 30 micrograms/ml, exposed X-ray film in 8 to 24 h. The stability of IPV on storage at 4{degrees}C was inversely proportional to specific activity. At 37.3 Ci/mmol and 60 micrograms/ml, IPV retained useful activity for at least 60 days at 4{degrees}C. IPV represents a practical and stable reagent for rapid PBP assays.« less

  18. A comparative study of dietary curcumin, nanocurcumin, and other classical amyloid-binding dyes for labeling and imaging of amyloid plaques in brain tissue of 5×-familial Alzheimer's disease mice.

    PubMed

    Maiti, Panchanan; Hall, Tia C; Paladugu, Leela; Kolli, Nivya; Learman, Cameron; Rossignol, Julien; Dunbar, Gary L

    2016-11-01

    Deposition of amyloid beta protein (Aβ) is a key component in the pathogenesis of Alzheimer's disease (AD). As an anti-amyloid natural polyphenol, curcumin (Cur) has been used as a therapy for AD. Its fluorescent activity, preferential binding to Aβ, as well as structural similarities with other traditional amyloid-binding dyes, make it a promising candidate for labeling and imaging of Aβ plaques in vivo. The present study was designed to test whether dietary Cur and nanocurcumin (NC) provide more sensitivity for labeling and imaging of Aβ plaques in brain tissues from the 5×-familial AD (5×FAD) mice than the classical Aβ-binding dyes, such as Congo red and Thioflavin-S. These comparisons were made in postmortem brain tissues from the 5×FAD mice. We observed that Cur and NC labeled Aβ plaques to the same degree as Aβ-specific antibody and to a greater extent than those of the classical amyloid-binding dyes. Cur and NC also labeled Aβ plaques in 5×FAD brain tissues when injected intraperitoneally. Nanomolar concentrations of Cur or NC are sufficient for labeling and imaging of Aβ plaques in 5×FAD brain tissue. Cur and NC also labeled different types of Aβ plaques, including core, neuritic, diffuse, and burned-out, to a greater degree than other amyloid-binding dyes. Therefore, Cur and or NC can be used as an alternative to Aβ-specific antibody for labeling and imaging of Aβ plaques ex vivo and in vivo. It can provide an easy and inexpensive means of detecting Aβ-plaque load in postmortem brain tissue of animal models of AD after anti-amyloid therapy.

  19. Shape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation

    PubMed Central

    Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.

    2016-01-01

    Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937

  20. An automatic graph-based approach for artery/vein classification in retinal images.

    PubMed

    Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio

    2014-03-01

    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.