Science.gov

Sample records for labeled glucose investigations

  1. Photoaffinity labeling of the human erythrocyte glucose transporter with /sup 4/H-labelled forskolin

    SciTech Connect

    Shanahan, M.F.; Edwards, B.M.; Morris, D.P.

    1986-05-01

    Forskolin, a potent activator of adenylate cyclase, is also known to inhibit glucose transport in a number of cells. The authors have investigated photoincorporation of (/sup 3/H)forskolin into erythrocyte membrane proteins using a technique they previously developed for photolabeling the erythrocyte glucose transporter with cytochalasin B (CB). A 30-40s irradiation of erythrocyte ghosts in the presence of (/sup 3/H)forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into all of the major membrane protein bands. However, most of the incorporation occurred in only three regions of the gel. Peak 1 was a sharp peak near the top of the gel in the region corresponding to spectrin, peak 2 appeared to be associated with band 3 (approx. 90kDa), and the third region labeled was between 41-60 kDa which corresponds to the region of the glucose transporter. This region appeared to contain several overlapping peaks with the largest incorporation of label occurring around 45 kDa in the area of red cell actin. When photolabeling was performed in the presence of 400 ..mu..M cytochalasin B (8.0 ..mu..M forskolin) the labeling in the 41-60 kDa region was totally inhibited while labeling of the 90 kDa peak was partially blocked. CB had no effect on the photolabeling of peak 1 by forskolin.

  2. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    SciTech Connect

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increased in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.

  3. [Metabolism of labeled exogenous glucose in fiber flax tissues].

    PubMed

    Chikov, V I; Avvakumova, N Iu; Bakirova, G G; Khamidullina, L A

    2005-01-01

    A labeled glucose solution was introduced into cut fiber flax plants (45-50 cm high) using a special unit under a pressure of 0.1 atm for 30 min, 1, and 2 h. The highest quantities of labeled carbon were revealed in the woody tissue. Sucrose made up a considerable proportion in low molecular weight products of [ [2-14C]-glucose transformation (23.5%). Metabolism of labeled glucose in the leaves exposed to sunlight yielded a set of metabolites similar to products of 14CO2 photoassimilation. In the shade, the pattern of 14C distribution in labeled compounds of the water/alcohol soluble fraction remained similar in mature leaves, while in juvenile leaves, 14C content decreased in sucrose and increased in organic and amino acids. In the shade, the incorporation of 14C into starch and hot water soluble polysaccharides increased at the expense of the acetone fraction (lipids and pigments), water/salt soluble proteins, and cellulose. Low light conditions increased the radioactivity ratio of sparingly soluble (KOH and Triton X-100 soluble) proteins to albumins and globulins. We propose that the synthesis of components of the photosynthetic apparatus in juvenile leaves is directly powered by photosynthesis and the photosynthesis of glucose and the polymers compete for ATP energy. Appearance of sucrose in the woody tissue is due to its release from the phloem to the stem apoplast and the radial transfer to the xylem, where it is transported to the upper shoot with the transpiration flow.

  4. Radio frequency based label-free detection of glucose.

    PubMed

    Park, Hyunggoo; Seo Yoon, Hyung; Patil, Umakant; Anoop, Rani; Lee, Juho; Lim, Juhwan; Lee, Woonhyoung; Chan Jun, Seong

    2014-04-15

    We investigated the frequency based mediator-free glucose sensor in the radio-frequency (RF) range. Frequency dependent power signal showed clear dependence on the glucose concentration with free enzymatic condition. Also, the passive electrical components such as the resistance, inductance, shunt conductance, and capacitance were extracted based on the transmission line model for further analysis. These various parameters proposed by the signal processing provided more effective verification for instant multi-components in-situ readings without any added supporters. Additionally the residual signal (RS), impedance (Z), and propagation constant (γ) were also calculated from measured S-parameters for glucose analysis. These parameters basically showed amplitude variation and interestingly, some parameters such as inductance and impedance showed frequency shift of resonance dip. The results support that the frequency based sensing technique including the parameter based analysis can enable effective multi-dimensional detection of glucose. Moreover, this technique showed that glucose sensing is also possible over a diabetic patient's serum. © 2013 Published by Elsevier B.V.

  5. Modulation of (14) C-labeled glucose metabolism by zinc during aluminium induced neurodegeneration.

    PubMed

    Singla, Neha; Dhawan, D K

    2015-09-01

    Aluminium (Al) is one of the most prominent metals in the environment and is responsible for causing several neurological disorders, including Alzheimer's disease. On the other hand, zinc (Zn) is an essential micronutrient that is involved in regulating brain development and function. The present study investigates the protective potential of Zn in the uptake of (14) C-labeled amino acids and glucose and their turnover in rat brain slices during Al intoxication. Male Sprague Dawley rats (140-160 g) were divided into four different groups: normal control, Al treated (100 mg/kg body weight/day via oral gavage), Zn treated (227 mg/liter in drinking water), and Al + Zn treated. Radiorespirometric assay revealed an increase in glucose turnover after Al exposure that was attenuated after Zn treatment. Furthermore, the uptake of (14) C-labeled glucose was increased after Al treatment but was appreciably decreased upon Zn supplementation. In addition, the uptakes of (14) C-lysine, (14) C-leucine, and (14) C-aspartic acid were also found to be elevated following Al exposure but were decreased after Zn treatment. Al treatment also caused alterations in the neurohistoarchitecture of the brain, which were improved after Zn coadministration. Therefore, the present study suggests that Zn provides protection against Al-induced neurotoxicity by regulating glucose and amino acid uptake in rats, indicating that Zn could be a potential candidate for the treatment of various neurodegenerative disorders. © 2015 Wiley Periodicals, Inc.

  6. Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source.

    PubMed

    Kai, A; Ishino, T; Arashida, T; Hatanaka, K; Akaike, T; Matsuzaki, K; Kaneko, Y; Mimura, T

    1993-02-24

    13C-Labeled curdlans were biosynthesized by Agrobacterium sp. (ATCC 31749) from culture media containing D-(1-13C)glucose, D-(6-13C)glucose, or D-(2-13C)glucose as the carbon source, and their structures were analyzed by 13C NMR spectroscopy. The labeling was mainly found in the original position, that is, C-1, C-6, or C-2, indicating direct polymerization of introduced glucose. In addition, C-3 in curdlan obtained from D-(1-13C)glucose, C-1 in curdlan obtained from D-(6-13C)glucose, and C-1 and C-3 in curdlan obtained from D-(2-13)glucose were labeled. From analysis of this labeling, the biosynthesis of curdlan was interpreted as involving five routes: (1) direct synthesis from glucose; (2) rearrangement (1-13C-->3-13C); and (3) isomerization (6-13C-->1-13C) of cleaved trioses by the Embden-Meyerhof pathway, followed by neogenesis of glucose and formation of curdlan; (4) from fructose 6-phosphate formed in the pentose cycle (2-13C-->1-13C, 3-13C); and (5) neogenesis of glucose from fragments produced in various pathways of glycolysis. The 13C-labeling at C-6 and C-2 in the starting glucoses is well preserved in the C-6 carbon and the C-1 to C-3 carbons, respectively, in the curdlan produced.

  7. A New Substrate Cycle in Plants. Evidence for a High Glucose-Phosphate-to-Glucose Turnover from in Vivo Steady-State and Pulse-Labeling Experiments with [13C]Glucose and [14C]Glucose1

    PubMed Central

    Alonso, Ana Paula; Vigeolas, Hélène; Raymond, Philippe; Rolin, Dominique; Dieuaide-Noubhani, Martine

    2005-01-01

    Substrate (futile) cycling involving carbohydrate turnover has been widely reported in plant tissues, although its extent, mechanisms, and functions are not well known. In this study, two complementary approaches, short and steady-state labeling experiments, were used to analyze glucose metabolism in maize (Zea mays) root tips. Unidirectional rates of synthesis for storage compounds (starch, Suc, and cell wall polysaccharides) were determined by short labeling experiments using [U-14C]glucose and compared with net synthesis fluxes to determine the rate of glucose production from these storage compounds. Steady-state labeling with [1-13C]glucose and [U-13C]glucose showed that the redistribution of label between carbon C-1 and C-6 in glucose is close to that in cytosolic hexose-P. These results indicate a high resynthesis flux of glucose from hexose-P that is not accounted for by glucose recycling from storage compounds, thus suggesting the occurrence of a direct glucose-P-to-glucose conversion. An enzyme assay confirmed the presence of substantial glucose-6-phosphatase activity in maize root tips. This new glucose-P-to-glucose cycle was shown to consume around 40% of the ATP generated in the cell, whereas Suc cycling consumes at most 3% to 6% of the ATP produced. The rate of glucose-P cycling differs by a factor of 3 between a maize W22 line and the hybrid maize cv Dea, and is significantly decreased by a carbohydrate starvation pretreatment. PMID:16024683

  8. Glucose oxidase-doped magnetic silica nanostrutures as labels for localized signal amplification of electrochemical immunosensors

    NASA Astrophysics Data System (ADS)

    Ren, Jingjing; Tang, Dianping; Su, Biling; Tang, Juan; Chen, Guonan

    2010-07-01

    Herein, we report a novel glucose oxidase (GOD)-doped magnetic silica nanostructure and its possible application in the clinical immunoassays. The doped nanostructures were initially synthesized using the reverse micelle method, and ferritin antibodies (anti-Ft) were then labeled to the surface of the nanostructures, which were employed as signal antibodies for ultrasensitive detection of ferritin (Ft) in the sandwich-type electrochemical enzyme immunoassays. The doped nanostructures were characterized using transmission electron microscopy (TEM), UV-vis absorption spectrometry and vibrating sample magnetometer (VSM). The advantages of the doped nanostructures as labels were investigated in comparison with the conventional label method. Under the optimal conditions, the nanostructures-based immunoassay toward ferritin standards displays a wide dynamic range from 0.1 to 400 ng mL-1 with a low detection limit of 10 pg mL-1 ferritin (at 3σ), which is three-fold higher in the sensitivity than that of directly using GOD-labeled antibodies. The assay results for clinical serum samples with the developed method received in excellent accordance with results obtained from the referenced standard enzyme-linked immunosorbent assay (ELISA) method.

  9. Development new radiopharmaceutical based on 5-thio-d- glucose labeled technetium-99m

    NASA Astrophysics Data System (ADS)

    Stasyuk, E. S.; Skuridin, V. S.; Ilina, E. A.; Rogov, A. S.; Nesterov, E. A.; Sadkin, V. L.; Larionova, L. A.; Varlamova, N. V.; Zelchan, R.

    2016-06-01

    The article considers the obtaining and possibility of using 5-thio-D-glucose labeled technetium-99m for the diagnosis of malignant tumors by single photon emission computed tomography. The analysis of the level of international developments of radiopharmaceuticals based on derivatives of glucose has been carried out. Also the article provides information on of using experimental batches of lyophilisate on the basis of 5-thio-D-glucose for preliminary biomedical testing on the mice.

  10. The effect of pH on the glucose response of the glucose-galactose binding protein L255C labeled with Acrylodan.

    PubMed

    El-Sayed, Mayyada M H; Brown, Sheniqua R; Mupparapu, KarunaSri; Tolosa, Leah

    2016-05-01

    The glucose-galactose binding protein (GGBP) is used as an optical biosensor in medical and bioprocess applications. This paper investigates the effect of pH on the behavior of GGBP-L255C labeled with Acrylodan for the purpose of finding the optimum conditions for sensing purposes as well as for protein preparation, purification and storage. The Acrylodan-GGBP fluorescence response in absence and presence of glucose was measured under varying buffer and pH conditions. Dissociation constants (Kd) and Gibbs free energies (ΔG) for the protein-glucose binding were calculated. Binding was found to be energetically favored at slightly acidic to neutral conditions, specifically close to the pI of GBP (∼ 5.0). Minimal fluorescence response to glucose was exhibited at pH 3.0 accompanied by a blue shift in the steady state fluorescence spectrum. In contrast, an almost 45% response to glucose was shown at pH 4.5-9.0 with a 13-nm red shift. Frequency domain lifetime measurements and quenching with KI suggest that at highly acidic conditions both the glucose-free and the glucose-bound protein are in a conformation distinct from those observed at higher pH values.

  11. Derivativation of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label

    SciTech Connect

    Wadzinski, B.; Shanahan, M.; Ruoho, A.

    1987-05-01

    An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed with L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.

  12. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    SciTech Connect

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.; Sutkowski, E.M.; Seamon, K.B. )

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.

  13. /sup 3/H)forskolin. Direct photoaffinity labeling of the erythrocyte D-glucose transporter

    SciTech Connect

    Shanahan, M.F.; Morris, D.P.; Edwards, B.M.

    1987-05-05

    Irradiation of erythrocyte ghosts in the presence of (/sup 3/H)forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into several of the major membrane protein bands. Most of the incorporation occurred in four regions of the gel. Peak 1 (216 kDa) was a sharp peak near the top of the gel in the region corresponding to spectrin. Peak 2 appeared to be associated with band 3 (89 kDa), while a third peak occurred around the position of band 4.2 (76 kDa). The fourth region of labeling was a broad area between 43-75 kDa which corresponds to the region of the glucose transporter. Forskolin labeling of this region was inhibited by cytochalasin B and D-glucose, but not L-glucose. Extraction of extrinsic membrane proteins resulted in a loss of radiolabeled protein from the 216- and 76-kDa regions. Treatment of membranes labeled with either cytochalasin B or forskolin with endo-beta-galactosidase resulted in identical shifts of the 43 to 75-kDa peaks to 42 kDa. Similarly, trypsinization of membranes photolabeled with either cytochalasin B or forskolin resulted in the generation of a 17-kDa radiolabeled fragment in both cases. Photoincorporation of (/sup 3/H)cytochalasin B into the glucose transporter was blocked in a concentration-dependent manner by unlabeled forskolin.

  14. Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs.

    PubMed

    Yuan, Yinquan; Yang, Xi; Gong, Dejing; Liu, Fang; Hu, Wenbin; Cai, Weiquan; Huang, Jun; Yang, Minghong

    2017-02-20

    Glucose sensitive membrane (GSM) consists of glucose oxidases (GODs) and matrix material (for example, polyacrylamide gel). In this paper, we have investigated the optical property and adsorption isotherms of a GSM based on a terminal reflection optical fiber SPR sensor. Firstly, we reported the fabrication of one kind of GSM which was made of immobilized GODs on SiO2 nanoparticles and PAM gel. Then, we investigated the effects of GSM thickness, GOD content, solution pH and ambient temperature on the reflected spectrum of sensor, and the optimum parameters of the sensor, such as, GSM thickness of 12 times pulling, 4 mg/mL of GOD content in GSM, 7.0 of solution pH and 40 °C of measuring temperature were obtained. Thirdly, we measured the wavelength shifts of the optimized SPR sensor in the solutions with different glucose concentrations. As the glucose concentration increases from 0 to 80 mg/dL, the resonance wavelength decreases approximately linearly and the corresponding sensitivity is about 0.14 nm/(mg/dL). Finally, we investigated the RI of the GSM, the concentration of glucose into GSM and the adsorption isotherm of GSM by the combination of SPR experiment data, theoretical simulation and Gladstone-Dale mixing rule. As the glucose concentration is in the region of [0, 80] mg/dL, the adsorption of GSM for glucose can be explained by the Freundlich isotherm model. As the glucose concentration is in the region of [120, 500] mg/dL, the Langmuir isotherm model is more suitable to describe the adsorption process of GSM for glucose.

  15. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.; Dergilev, A.

    2016-06-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 minutes at room temperature. After centrifugation of the vials with cells, the supernatant was removed. Radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B 1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 minutes. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D- glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3±0.15MBq and 1.07±0.6MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio- D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  16. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.

    2016-08-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio-D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  17. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    SciTech Connect

    Zeltchan, R. Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il’ina, E.; Larionova, L.; Skuridin, V.

    2016-08-02

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with {sup 99m}Tc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of {sup 99m}Tc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with {sup 99m}Tc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of {sup 99m}Tc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with {sup 99m}Tc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of {sup 99m}Tc-1-thio-D-glucose at the tumor site. The accumulation of {sup 99m}Tc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that {sup 99m}Tc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of {sup 99m}Tc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  18. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    PubMed

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  19. Performance Evaluation and Labeling Comprehension of a New Blood Glucose Monitoring System with Integrated Information Management

    PubMed Central

    List, Susan M; Starks, Nykole; Baum, John; Greene, Carmine; Pardo, Scott; Parkes, Joan L; Schachner, Holly C; Cuddihy, Robert

    2011-01-01

    Background This study evaluated performance and product labeling of CONTOUR® USB, a new blood glucose monitoring system (BGMS) with integrated diabetes management software and a universal serial bus (USB) port, in the hands of untrained lay users and health care professionals (HCPs). Method Subjects and HCPs tested subject's finger stick capillary blood in parallel using CONTOUR USB meters; deep finger stick blood was tested on a Yellow Springs Instruments (YSI) glucose analyzer for reference. Duplicate results by both subjects and HCPs were obtained to assess system precision. System accuracy was assessed according to International Organization for Standardization (ISO) 15197:2003 guidelines [within ±15 mg/dl of mean YSI results (samples <75 mg/dl) and ±20% (samples ≥75 mg/dl)]. Clinical accuracy was determined by Parkes error grid analysis. Subject labeling comprehension was assessed by HCP ratings of subject proficiency. Key system features and ease-of-use were evaluated by subject questionnaires. Results All subjects who completed the study (N = 74) successfully performed blood glucose measurements, connected the meter to a laptop computer, and used key features of the system. The system was accurate; 98.6% (146/148) of subject results and 96.6% (143/148) of HCP results exceeded ISO 15197:2003 criteria. All subject and HCP results were clinically accurate (97.3%; zone A) or associated with benign errors (2.7%; zone B). The majority of subjects rated features of the BGMS as “very good” or “excellent.” Conclusions CONTOUR USB exceeded ISO 15197:2003 system performance criteria in the hands of untrained lay users. Subjects understood the product labeling, found the system easy to use, and successfully performed blood glucose testing. PMID:22027308

  20. Synthesis and biological evaluation of technetium-labeled D-glucose-MAG3 derivative as agent for tumor diagnosis.

    PubMed

    de Barros, André Luís Branco; Cardoso, Valbert Nascimento; Mota, Luciene das Graças; Leite, Elaine Amaral; Oliveira, Mônica Cristina de; Alves, Ricardo José

    2009-05-01

    A d-glucose-MAG(3) derivative was successfully synthesized and radiolabeled in high labeling yield. Biodistribution studies in Ehrlich tumor-bearing mice were performed. This compound showed high accumulation in tumor tissue with high tumor-to-muscle ratio and moderate tumor-to-blood ratio. Thus, d-glucose-MAG(3) is a potential agent for tumor diagnosis.

  1. 21 CFR 812.5 - Labeling of investigational devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... device is safe or effective for the purposes for which it is being investigated. (c) Animal research. An investigational device shipped solely for research on or with laboratory animals shall bear on its label the following statement: “CAUTION—Device for investigational use in laboratory animals or other tests that do...

  2. 21 CFR 812.5 - Labeling of investigational devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device is safe or effective for the purposes for which it is being investigated. (c) Animal research. An investigational device shipped solely for research on or with laboratory animals shall bear on its label the following statement: “CAUTION—Device for investigational use in laboratory animals or other tests that do...

  3. 21 CFR 812.5 - Labeling of investigational devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... device is safe or effective for the purposes for which it is being investigated. (c) Animal research. An investigational device shipped solely for research on or with laboratory animals shall bear on its label the following statement: “CAUTION—Device for investigational use in laboratory animals or other tests that do...

  4. 21 CFR 812.5 - Labeling of investigational devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... device is safe or effective for the purposes for which it is being investigated. (c) Animal research. An investigational device shipped solely for research on or with laboratory animals shall bear on its label the following statement: “CAUTION—Device for investigational use in laboratory animals or other tests that do...

  5. 21 CFR 812.5 - Labeling of investigational devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device is safe or effective for the purposes for which it is being investigated. (c) Animal research. An investigational device shipped solely for research on or with laboratory animals shall bear on its label the following statement: “CAUTION—Device for investigational use in laboratory animals or other tests that do...

  6. Disentangling the Origin of the Kok Effect Using Position Specific Glucose Labeling in Sunflower Leaves

    NASA Astrophysics Data System (ADS)

    Gauthier, P. P.; Bender, M. L.; Saenz, N.

    2015-12-01

    In plants, leaf mitochondrial respiratory CO2 release is inhibited by light. Bessel Kok first demonstrated this inhibition in 1948. Based on curves of CO2 assimilation vs irradiance, it is understood that respiration is maximal in the dark. It then frequently decreases linearly with irradiance until reaching some value around the compensation point, beyond which it is constant. CO2 released by mitochondrial respiration is the result of decarboxylation through pyruvate dehydrogenase (PDH), the tricarboxylic acid pathway (TCAP) and the oxydative pentose phosphate pathway (OPPP). The overall activity of these three reactions is reduced by light. However, their individual contributions to the Kok effect are unknown. We measured the rate of decarboxylation of glucose, position-specifically labeled with 13C, to evaluate the participation of PDH, TCAP and OPPP in the Kok effect of sunflower. Leaves were fed with labeled glucose through their transpiration stream. The δ13C of the CO2 released by the leaf was then measured as a function of irradiance. The results showed that the inhibition of the decarboxylation of carbon positions 3 and 4 in glucose is at the origin of the Kok effect. These are the positions of carbon atoms decarboxylated by PDH. In addition, the rate of decarboxylation of position 1 was not different in the light and in the dark. Thus OPPP plays no role in the Kok effect in sunflower leaves. This work improves our current understanding of leaf mitochondrial respiratory metabolism in the light. Invoking the Kok effect in plant physiology models should improve our ability to simulate carbon fluxes of terrestrial ecosystems.

  7. An investigation of spectral characteristics of water-glucose solutions

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2016-04-01

    One of the problems of modern medical device engineering is the development of an instrument for non-invasive monitoring of glucose levels in the blood. The urgency of this task is ensured by the following facts: the increase in the incidence of diabetes, the need for regular monitoring of blood sugar, and pain of modern methods of glycemia measurement. The problem can be solved with the help of a spectrophotometric method. This report is devoted to the investigation of spectral characteristics of glucose solution with various molar concentrations. The authors proposed the methodology of experimental research and data processing algorithm. The results of the experimental studies confirmed potential opportunity of blood sugar control by spectrophotometric method. Further research is expected to continue by the way of complication of the composition of the object from an aqueous solution of glucose to biological object.

  8. Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose

    PubMed Central

    Creek, Darren J.; Mazet, Muriel; Achcar, Fiona; Anderson, Jana; Kim, Dong-Hyun; Kamour, Ruwida; Morand, Pauline; Millerioux, Yoann; Biran, Marc; Kerkhoven, Eduard J.; Chokkathukalam, Achuthanunni; Weidt, Stefan K.; Burgess, Karl E. V.; Breitling, Rainer; Watson, David G.; Bringaud, Frédéric; Barrett, Michael P.

    2015-01-01

    Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. PMID:25775470

  9. Polychromatic labeling of otoconia for the investigation of calcium turnover.

    PubMed

    Takumida, M; Zhang, D M; Yajin, K; Harada, Y

    1997-01-01

    The calcium ion turnover into otoconia of adult guinea pigs was investigated by the use of different fluorochromes, i.e. tetracycline (TC), calcein (Cal) and alizarin complexone (AC). The administration of all fluorochromes induced yellow (TC), green (Cal) and red (AC) fluorescence on the outer surface of otoconia, respectively. Sequential polychromatic labeling with AC followed by TC induced only red fluorescence after 1 week administration of TC, combined fluorescence after 2 weeks administration of TC and only yellow fluorescence after more than 3 weeks of administration of TC. The otoconia labeled with both AC and TC showed red fluorescence on the side faces of otoconia and yellow fluorescence on the terminal faces. These results may indicate the existence of a dynamic exchange of calcium ions in the otoconia and this exchange is mainly restricted to the terminal faces. The sequential polychromatic labeling may thus be of great use for the further investigation of the calcium dynamics of otoconia.

  10. Gram-scale synthesis and efficient purification of 13C-labeled levoglucosan from 13C glucose.

    PubMed

    Alexander, Lisa; Hoyt, Caroline; Michalczyk, Ryszard; Wu, Ruilian; Thorn, Dave L; Silks, L A Pete

    2013-01-01

    (13)C-Labeled levoglucosan has been synthesized and purified in good yield, and on the gram scale in one step from commercially available (13)C glucose. This one-step protocol uses 2-chloro-1,3-dimethylimidazolinium chloride that serves to selectively activate the anomeric carbon toward substitution reactions. The labeled glucose is then smoothly converted to the anhydroglucose. Purification is efficiently achieved on large scale by chromatography on silica gel. Published 2012. This article is a US Government work and is in the public domain in the USA.

  11. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: A comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies

    SciTech Connect

    Khan, Faaizah; Gnudi, Luigi; Pickup, John C.

    2008-01-04

    Fluorescence-based glucose sensors using glucose-binding protein (GBP) as the receptor have employed fluorescence resonance energy transfer (FRET) and environmentally sensitive dyes, but with widely varying sensitivity. We therefore compared signal changes in (a) a FRET system constructed by transglutaminase-mediated N-terminal attachment of Alexa Fluor 488/555 as donor and QSY 7 as acceptor at Cys 152 or 182 mutations with (b) GBP labelled with the environmentally sensitive dye badan at C152 or 182. Both FRET systems had a small maximal fluorescence change at saturating glucose (7% and 16%), badan attached at C152 was associated with a 300% maximal fluorescence increase with glucose, though with badan at C182 there was no change. We conclude that glucose sensing based on GBP and FRET does not produce a larger enough signal change for clinical use; both the nature of the environmentally sensitive dye and its site of conjugation seem important for maximum signal change; badan-GBP152C has a large glucose-induced fluorescence change, suitable for development as a glucose sensor.

  12. 13C isotope effects on 1H chemical shifts: NMR spectral analysis of 13C-labelled D-glucose and some 13C-labelled amino acids.

    PubMed

    Tiainen, Mika; Maaheimo, Hannu; Soininen, Pasi; Laatikainen, Reino

    2010-02-01

    The one- and two-bond (13)C isotope shifts, typically -1.5 to -2.5 ppb and -0.7 ppb respectively, in non-cyclic aliphatic systems and up to -4.4 ppb and -1.0 ppb in glucose cause effects that need to be taken into account in the adaptive NMR spectral library-based quantification of the isotopomer mixtures. In this work, NMR spectral analyses of some (13)C-labelled amino acids, D-glucose and other small compounds were performed in order to obtain rules for prediction of the (13)C isotope effects on (1)H chemical shifts. It is proposed that using the additivity rules, the isotope effects can be predicted with a sufficient accuracy for amino acid isotopomer applications. For glucose the effects were found strongly non-additive. The complete spectral analysis of fully (13)C-labelled D-glucose made it also possible to assign the exocyclic proton signals of the glucose. Copyright 2009 John Wiley & Sons, Ltd.

  13. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose.

  14. Transfer of label from 3H-glucose in Digitaria eriantha leaves to the rust fungus Puccinia digitariae Pole Evans.

    PubMed

    Rey, M E; Garnett, H M

    1985-08-01

    Digitaria eriantha pentzii was fed 3H-glucose prior to inoculation with uredospores of Puccinia digitariae Pole Evans. Twenty-one hours after inoculation, uptake of label from 3H-glucose by the primary infection structures of P. digitariae was demonstrated employing autoradiography. These results indicate that an exchange of nutrients between host and pathogen occurs very early on in the infection process, during the formation of the primary infection structures. Despite contrary reports that obligate parasites receive no nutrition before establishment of haustoria, this study supports the work of Andrews (Can J Bot 53:1103, 1975), who demonstrated uptake of 3H-glucose label from lettuce cotyledons into the primary and secondary infection vesicles, appressoria, and germ tubes of Bremia lactucae.

  15. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose.

    PubMed

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-04-01

    Using (13)C-labeled glucose fed to the facultative alkalophilic Bacillus clausii producing the alkaline serine protease Savinase, the intracellular fluxes were quantified in continuous cultivation and in batch cultivation on a minimal medium. The flux through the pentose phosphate pathway was found to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch cultivations. It was found that leucine, isoleucine, and phenylalanine were taken up from the medium and not synthesized de novo from glucose. In contrast, serine and threonine were completely synthesized from other metabolites and not taken up from the medium. Valine, proline, and lysine were partly taken up from the medium and partly synthesized from glucose. The metabolic network analysis was extended to include analysis of growth on the semirich medium containing amino acids, and the metabolic flux distribution on this medium was estimated and compared with growth on minimal medium.

  16. Investigation of photochemical reaction products of glucose formed during direct UV detection in CE.

    PubMed

    Schmid, Thomas; Himmelsbach, Markus; Buchberger, Wolfgang W

    2016-04-01

    In CE, saccharides are accessible to direct UV detection due to a photochemical reaction in the detection window of the separation capillary resulting in the formation of UV absorbing substances. Employing a CE method that allows long in-capillary irradiation with subsequent UV and MS detection, the present study could identify several reaction products of glucose. Among these were UV absorbing substances so far unknown to be formed during direct UV detection with the chemical formulas C4 H6 O2 , C5 H6 O4 , C5 H8 O3, and C6 H8 O5 . Investigations of the impact of the irradiation time revealed differences between these reaction products suggesting differing reaction mechanisms especially for the smallest products. More detailed information could be obtained by experiments with isotope-labeled substrates performed to determine the parts of glucose that are converted to the particular reaction products. In addition, structural formulas for the reaction products were suggested based on HPLC-MS/MS measurements of off-line irradiated glucose solutions which revealed the existence of functional groups such as carboxylic acid or aldehyde groups.

  17. Mechanistic investigations aided by isotopic labeling. 10. Investigations of novel furan-2,3-dione rearrangements by oxygen-17 labeling

    SciTech Connect

    Kollenz, G.; Sterk, H.; Hutter, G. )

    1991-01-04

    The oxa 1,3-diene moiety in 4-benzoyl-5-phenylfuran-2,3-dione (1) adds aryl isocyanides or heterocumulenes via formal (4 + 1) or (4 + 2) cycloaddition processes. The unstable primary adducts undergo novel furandione rearrangements to intermediates in which the two oxygen atoms of the lactone moiety in (1) are equivalent. This equivalence was confirmed by {sup 17}O-labeling experiments using {sup 17}O NMR spectroscopic and mass spectroscopic measurements. Comparison of the {sup 17}O chemical shifts in (1), labeled either at the benzoyl and ring oxygens (1a-{sup 17}O) or at both exocyclic ring-carbonyl oxygens (1b-{sup 17}O), with those in the products (2-4) confirmed the proposed pathways of these rearrangements. Reactions involving carbodiimides, isocyanates, and ketene imines were investigated.

  18. Label-free assay for the detection of glucose mediated by the effects of narrowband absorption on quantum dot photoluminescence

    NASA Astrophysics Data System (ADS)

    Khan, Saara A.; Smith, Gennifer T.; Ellerbee, Audrey K.

    2014-03-01

    We present a novel strategy for label-free detection of glucose based on CdSe/ZnS core/shell quantum dots (QDs). We exploit the concentration-dependent, narrowband absorption of the hexokinase-glucose 6-phosphate dehydrogenase enzymatic assay to selectively filter a 365-nm excitation source, leading to a proportional decrease in the photoluminescence intensity of the QDs. The visible wavelength emission of the QDs enables quantitative readout using standard visible detectors (e.g., CCD). Experimental results show highly linear QD photoluminescence over the clinically relevant glucose concentration range of 1-25mM, in excellent agreement with detection methods demonstrated by others. The method has a demonstrated limit of detection of 3.5μM, also on par with the best proposed methods. A significant advantage of our strategy is the complete elimination of QDs as a consumable. In contrast with other methods of QD-based measurement of glucose, our system does not require the glucose solution to be mixed with the QDs, thereby decreasing its overall cost and making it an ideal strategy for point-of-care detection of glucose in low-resource areas. Furthermore, readout can be accomplished with low-cost, portable detectors such as cellular phones, eliminating the need for expensive and bulky spectrophotometers to output quantitative information. The general strategy we present is useful for other biosensing applications involving chemistries with unique absorption peaks falling within the excitation band of available QDs.

  19. Preparation and primary bioevaluation of 99mTc-labeled-1-thio-β-D-glucose as melanoma targeting agent.

    PubMed

    Castelli, Romina; Fernández, Marcelo; Porcal, Williams; Gambini, Juan Pablo; Alonso, Omar; Chabalgoity, Alejandro; Moreno, María; Cabral, Pablo

    2011-10-01

    The development of specific radiolabeled probes towards molecular markers in vivo has gained interest as targeted imaging agents for a more accurate detection of diseases. The aim of this study was to evaluate early detection of melanoma tumor based on 1-thio-β-D-glucose (1-TG) radiolabeled with technetium-99m. 99mTc-1-TG has been synthesized and evaluated in vitro and in vivo for melanoma uptake. Tumor-cell uptake of the 99mTc complex was performed with cultured B16F1 murine melanoma cells which were also used for the in vivo studies. The methodology consisted in radiopharmaceutical synthesis followed by intravenous administration of 99mTc-1-TG in melanoma bearing mice and scintigraphic imaging. 1-thio-β-D-glucose was labeled with 99mTc under reductive conditions using SnCl2. Radiolabeling efficiency was > 96%. 99mTc-1-TG showed high melanoma uptake in vitro. This was confirmed in vivo since a significant difference of 99mTc-1- TG uptake between melanoma model and the control joint was observed. General biodistribution showed renal uptake. The scintigraphic images showed tumor selective uptake of the 1-TG labeled, in tumor-bearing mice This study indicates effective labeling of 1-thio-β-D-glucose with 99mTc that shows potential as a new type of specific probe for melanoma detection.

  20. Urinary recovery of orally administered chromium 51-labeled EDTA, lactulose, rhamnose, d-xylose, 3-O-methyl-d-glucose, and sucrose in healthy adult male Beagles.

    PubMed

    Frias, Rafael; Steiner, Jörg M; Williams, David A; Sankari, Satu; Westermarck, Elias

    2012-05-01

    Objective-To provide values for gastrointestinal permeability and absorptive function tests (GIPFTs) with chromium 51 ((51)Cr)-labeled EDTA, lactulose, rhamnose, d-xylose, 3-O-methyl-d-glucose, and sucrose in Beagles and to evaluate potential correlations between markers. Animals-19 healthy adult male Beagles. Procedures-A test solution containing 3.7 MBq of (51)Cr-labeled EDTA, 2 g of lactulose, 2 g of rhamnose, 2 g of d-xylose, 1 g of 3-O-methyl-d-glucose, and 8 g of sucrose was administered intragastrically to each dog. Urinary recovery of each probe was determined 6 hours after administration. Results-Mean ± SD (range) percentage urinary recovery was 6.3 ± 1.6% (4.3% to 9.7%) for (51)Cr-labeled EDTA, 3.3 ± 1.1% (1.7% to 5.3%) for lactulose, 25.5 ± 5.0% (16.7% to 36.9%) for rhamnose, and 58.8% ± 11.0% (40.1% to 87.8%) for 3-O-methyl-d-glucose. Mean (range) recovery ratio was 0.25 ± 0.06 (0.17 to 0.37) for (51)Cr-labeled EDTA to rhamnose, 0.13 ± 0.04 (0.08 to 0.23) for lactulose to rhamnose, and 0.73 ± 0.09 (0.60 to 0.90) for d-xylose to 3-O-methyl-d-glucose. Median (range) percentage urinary recovery was 40.3% (31.6% to 62.7%) for d-xylose and 0% (0% to 0.8%) for sucrose. Conclusions and Clinical Relevance-Reference values in healthy adult male Beagles for 6 of the most commonly used GIPFT markers were determined. The correlation between results for (51)Cr-labeled EDTA and lactulose was not as prominent as that reported for humans and cats; thus, investigators should be cautious in the use and interpretation of GIPFTs performed with sugar probes in dogs with suspected intestinal dysbiosis.

  1. Capillary blood glucose screening for gestational diabetes: a preliminary investigation.

    PubMed

    Landon, M B; Cembrowski, G S; Gabbe, S G

    1986-10-01

    Home glucose monitoring with the use of reflectance meters is an important adjunct in the care of pregnant women with insulin-dependent diabetes. The accuracy of reflectance meters for the assay of capillary glucose specimens has been well documented. The present preliminary study was undertaken to determine the utility of outpatient screening for gestational diabetes mellitus with the use of a reflectance meter (Accu-Chek, Boehringer Mannheim Co.). One hundred twenty-five patients in our high-risk practice had a standard 50 gm glucose load at 26 to 28 weeks' gestation. Capillary glucose values were measured on site with the Accu-Chek. Venous plasma glucose levels were measured by the central laboratory chemistry analyzer. While the laboratory (x) and meter (y) glucose determinations between the two sets of values were highly correlated (R = 0.89, p less than 0.001), there was a significant difference in their average values (x = 111.74, y = 136.35, p less than 0.0001). With the use of a receiver operator characteristic curve, a meter value of 160 mg/dl was determined as the optimal threshold for performing a 3-hour glucose tolerance test. The sensitivity and specificity with the use of a meter value of 160 mg/dl were 93% and 96%, respectively, for detecting an abnormal screening test in venous plasma (greater than or equal to 135 mg/dl). A total of 32 glucose tolerance tests were performed, with four patients included who had venous values less than 135 mg/dl. All eight patients with gestational diabetes mellitus were correctly identified. These data suggest that a glucose reflectance meter can be used for accurate outpatient screening of gestational diabetes mellitus. The potential advantages of capillary blood glucose screening include both cost and efficiency. Patients with abnormal screening values can be promptly identified and scheduled for a follow-up 3-hour glucose tolerance test.

  2. Regulation of the GLUT1 glucose transporter in cultured myocytes: total number and subcellular distribution as determined by photoaffinity labelling.

    PubMed Central

    el-Kebbi, I M; Roser, S; Pollet, R J; Cushman, S W; Wilson, C M

    1994-01-01

    We have used the impermeant photoaffinity label 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-[2-3H] 1,3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-[2-3H]BMPA) to identify and quantify the glucose transporters on the surface of BC3H-1 cells, a continuously cultured skeletal-muscle cell line lacking the MyoD transcription factor required for cell fusion. ATB-[2-3H]BMPA was used in combination with immunoprecipitation of the GLUT1 glucose transporter, the only isoform expressed in these cells. The total cellular GLUT1 content was also determined by photolabelling and immunoprecipitation after cell permeabilization with digitonin (0.025%). In glucose-starved cells, 85% of the glucose transporters were present at the cell surface in the basal state, with little change in response to insulin (200 nM), correlating with lack of additional 2-deoxyglucose uptake in response to insulin. Feeding the cells with glucose (25 mM) for 24 h resulted in an 80% decrease in the total GLUT1 content relative to starved cells, of which only 25% were present on the cell surface. This was associated with an 85% decrease in 2-deoxyglucose uptake. In addition, acute stimulation of the fed cells with insulin or phorbol 12-myristate 13-acetate (PMA) led to an increase in GLUT1 at the cell surface, and, in correspondence, an increase in 2-deoxyglucose uptake by approx. 2- and 4-fold respectively. We conclude that exofacial photoaffinity labelling of glucose transporters with ATB-[2-3H]BMPA in the presence and absence of digitonin, followed by specific immunoprecipitation, provides an accurate measure of total and cell-surface glucose transporters in differentiated BC3H-1 muscle cells. This technique demonstrates that glucose pre-feeding (1) decreases the total number of GLUT1 and (2) redistributes the majority of the remaining transporters to an intracellular site, where they can now be translocated to the cell surface in response to insulin and PMA. PMID:8037688

  3. Investigation on the acute toxic effect of pyrethrum on the blood glucose and of glucose administration on the acute pyrethrum toxicity in Meriones hurrianae Jerdon (Rodentia).

    PubMed

    Karel, A K; Saxena, S C

    1975-02-01

    The effect of different doses of pyrethrum on the blood glucose level and glucose tolerance in pytethrum-administered gerbils, were investigated. Pyrethrum produces hyperglycemia and lowers the glucose tolerance indicating an impairment in the uptake and utilization of glucose. The possible reasons for these effects are discussed.

  4. Identification of the glucose transporter in mammalian cell membranes using an /sup 125/(I)-forskolin photoaffinity label

    SciTech Connect

    Ruoho, A.; Wadzinski, B.; Shanahan, M.

    1987-05-01

    The glucose transporter has been identified in a variety of mammlian cell membranes using a carrier-free photoactivatable radioiodinated derivative of forskolin, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin, (I-125)IAPS-Fsk, at 1-10 nM. The membranes which have been photolabeled with (I-125)IAPS-Fsk are: rat cardiac sarcolemmal membranes, rat cortex and cerebellum synaptic membranes, human placental membranes, and wild type S49 lymphoma cell membranes. The glucose transporter in rat cardiac sarcolemmal membranes and rat cortex and cerebellum synaptic membranes was determined to be 45 kDa by SDS-PAGE. Photolysis of human placental membranes and S49 lymphoma membranes with (I-125)IAPS-Fsk followed by SDS-PAGE indicated specific derivatization of a broad band (45-55 kDa) in placental membranes and a narrower band (45 kDa) in the S49 lymphoma membranes. Digestion of the (I-125)IPAS-Fsk labelled placental and S49 lymphoma membranes with endo-B-galactosidase showed a reduction in the apparent molecular weight of the radiolabelled band to 40 kDa. Trypsinization of labelled placental and lymphoma membranes produced an 18 kDa radiolabelled proteolytic fragment. (I-125)IAPS-Fsk is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues.

  5. Label-free glucose detection using cantilever sensor technology based on gravimetric detection principles.

    PubMed

    Hsieh, Shuchen; Hsieh, Shu-Ling; Hsieh, Chiung-Wen; Lin, Po-Chiao; Wu, Chun-Hsin

    2013-01-01

    Efficient maintenance of glucose homeostasis is a major challenge in diabetes therapy, where accurate and reliable glucose level detection is required. Though several methods are currently used, these suffer from impaired response and often unpredictable drift, making them unsuitable for long-term therapeutic practice. In this study, we demonstrate a method that uses a functionalized atomic force microscope (AFM) cantilever as the sensor for reliable glucose detection with sufficient sensitivity and selectivity for clinical use. We first modified the AFM tip with aminopropylsilatrane (APS) and then adsorbed glucose-specific lectin concanavalin A (Con A) onto the surface. The Con A/APS-modified probes were then used to detect glucose by monitoring shifts in the cantilever resonance frequency. To confirm the molecule-specific interaction, AFM topographical images were acquired of identically treated silicon substrates which indicated a specific attachment for glucose-Con A and not for galactose-Con A. These results demonstrate that by monitoring the frequency shift of the AFM cantilever, this sensing system can detect the interaction between Con A and glucose, one of the biomolecule recognition processes, and may assist in the detection and mass quantification of glucose for clinical applications with very high sensitivity.

  6. Spin Labeling ESR Investigation of Covalently Bound Residues in Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga; Steinhoff, Heinz-Juergen; Klasmeier, Joerg; Schulz, Marcus; Matthies, Michael

    2013-04-01

    Organic xenobiotic chemicals, such as pesticides, biocides and veterinary pharmaceuticals, interact with soil, which results in the simultaneous formations of metabolites, mineralization products, and bound or non-extractable residues (NER). Substances or metabolites with reactive functional groups, such as aniline or phenol, have a tendency to give a larger proportion of NER. Despite numerous studies on NER, the majority of their chemical structures is still unknown. Reversible sequestration and irreversible formation of NER were also observed for veterinary antibiotic pharmaceuticals, after their application to soil with and without manure. For this purpose, we hypothesized a key role of specific functional groups of soil contaminants, via which contaminants are covalently bound to soil constituents, and advance a method of spin labeling ESR investigation of reaction products using a membrane method. Spin labels (SL) represent chemically stable paramagnetic molecules used as molecular labels and molecular probes for testing the covalent binding, structural properties, and molecular mobility of different physical, chemical, and biological systems. In the case of covalent binding of SL, their ESR spectra become broadened. We used stable nitroxide radicals (NR) as SL. These radicals modeled organic chemical contaminants and differed only in one functional group. The paramagnetic SL 4-Amino Tempo (4-amino-2,2,6,6-tetramethyl-1-piperidinylox) differed from Tempo (2,2,6,6-Tetramethylpiperidinooxy) in a substituent at the para-position of the piperidine ring, whereas Aniline Tempo (1-Piperidinyloxy, 2,2,6,-tetramethyl, 6-Aniline) differed from Tempo in an Aniline substituting one CH3 functional group. Before experimental analysis, we tested temporal changes in the concentration of both NR incubated with soil and found that the life-times of them in soil exceeded 3 days. We contaminated and labeled soil samples with NR, adding to soil the aqueous solution, which already

  7. A theoretical and empirical investigation of nutritional label use.

    PubMed

    Drichoutis, Andreas C; Lazaridis, Panagiotis; Nayga, Rodolfo M; Kapsokefalou, Maria; Chryssochoidis, George

    2008-08-01

    Due in part to increasing diet-related health problems caused, among others, by obesity, nutritional labelling has been considered important, mainly because it can provide consumers with information that can be used to make informed and healthier food choices. Several studies have focused on the empirical perspective of nutritional label use. None of these studies, however, have focused on developing a theoretical economic model that would adequately describe nutritional label use based on a utility theoretic framework. We attempt to fill this void by developing a simple theoretical model of nutritional label use, incorporating the time a consumer spends reading labels as part of the food choice process. The demand equations of the model are then empirically tested. Results suggest the significant role of several variables that flow directly from the model which, to our knowledge, have not been used in any previous empirical work.

  8. A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and 13C-Labeled Glucose

    PubMed Central

    Amaral, Ana I.; Teixeira, Ana P.; Håkonsen, Bjørn I.; Sonnewald, Ursula; Alves, Paula M.

    2011-01-01

    Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C-labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time points were then analyzed by mass spectrometry and/or high performance liquid chromatography. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase [PC; PC/pyruvate dehydrogenase (PDH) ratio = 0.5], malic enzyme (5% of the total pyruvate production), and catabolism of branched-chained amino acids (contributing with ∼40% to total acetyl-CoA produced) confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate–aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (∼0.7 μmol mg prot−1 h−1) was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of

  9. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  10. 21 CFR 312.6 - Labeling of an investigational new drug.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of an investigational new drug. 312.6... (CONTINUED) DRUGS FOR HUMAN USE INVESTIGATIONAL NEW DRUG APPLICATION General Provisions § 312.6 Labeling of an investigational new drug. (a) The immediate package of an investigational new drug intended...

  11. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes.

  12. Carbon Dioxide Fixation by Lupin Root Nodules: II. Studies with C-labeled Glucose, the Pathway of Glucose Catabolism, and the Effects of Some Treatments That Inhibit Nitrogen Fixation.

    PubMed

    Laing, W A; Christeller, J T; Sutton, W D

    1979-03-01

    Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-(14)C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-(14)C]- and [6-(14)C]glucose, while with [U-(14)C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the "carbon skeletons" for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction.A comparison of (14)CO(2) release from nodules supplied with [1-(14)C]- and [6-(14)C]glucose indicated that the oxidative pentose phosphate pathway accounted for less than 6% of glucose metabolism. Several enzymes of the oxidative pentose phosphate and glycolytic pathways were assayed in vitro using the 12,000g supernatant fraction from nodule homogenates. In all cases, the specific activities were adequate to account for the calculated in vivo fluxes.Three out of four diverse treatments that inhibited nodule nitrogen fixation also inhibited nodule CO(2) fixation, and in the case of the fourth treatment, replacement of N(2) with He, it was shown that the normal entry of label from exogenous (14)CO(2) into the nodule amino acid pool was strongly inhibited.

  13. Probing metabolic processes of intact soil microbial communities using position-specific 13C-labeled glucose

    NASA Astrophysics Data System (ADS)

    Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.

    2012-12-01

    Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.

  14. Tracing metabolic pathways of lipid biosynthesis in ectomycorrhizal fungi from position-specific 13C-labelling in glucose.

    PubMed

    Scandellari, Francesca; Hobbie, Erik A; Ouimette, Andrew P; Stucker, Valerie K

    2009-12-01

    Six position-specific (13)C-labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of (13)C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid (13)C enrichment was: C6 (approximately 31%) > C5 (approximately 25%) > C1 (approximately 18%) > C2 (approximately 18%) > C3 (approximately 8%) > C4 (approximately 1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl-CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.

  15. EPR investigation of libration motion of spin labeled hemerythrin

    NASA Astrophysics Data System (ADS)

    Takacs, Istvan Mihaly; Mot, Augustin; Silaghi-Dumitrescu, Radu; Damian, Grigore

    2014-09-01

    Reported here are room-temperature continuous wave X-band Electron Paramagnetic Resonance (EPR) spectra of the non-heme di-iron protein hemerythrin (Hr), spin labeled at position 51C in different viscous media, illustrating the mobility and oligomeric recombination tendency of the Phascolopsis gouldii Hr. The mobility of a spin labeled Hr depends on the local viscosity and its connectivity to the nature of the molecular environment (glycerol, PEG4000 and BSA). This provides the basis for a tool useful in directly monitoring Hr in ex vivo samples upon injection within the bloodstream of test animals, for blood substitute research.

  16. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi.

    PubMed

    Werner, I; Bacher, A; Eisenreich, W

    1997-10-10

    The biosynthesis of gallic acid was studied in cultures of the fungus Phycomyces blakesleeanus and in leaves of the tree Rhus typhina. Fungal cultures were grown with [1-13C]glucose or with a mixture of unlabeled glucose and [U-13C6]glucose. Young leaves of R. typhina were kept in an incubation chamber and were supplied with a solution containing a mixture of unlabeled glucose and [U-13C6]glucose via the leaf stem. Isotope distributions in isolated gallic acid and aromatic amino acids were analyzed by one-dimensional 1H and 13C NMR spectroscopy. A quantitative analysis of the complex isotopomer composition of metabolites was obtained by deconvolution of the 13C13C coupling multiplets using numerical simulation methods. This approach required the accurate analysis of heavy isotope chemical shift effects in a variety of different isotopomers and the analysis of long range 13C13C coupling constants. The resulting isotopomer patterns were interpreted using a retrobiosynthetic approach based on a comparison between the isotopomer patterns of gallic acid and tyrosine. The data show that both in the fungus and in the plant all carbon atoms of gallic acid are biosynthetically equivalent to carbon atoms of shikimate. Notably, the carboxylic group of gallic acid is derived from the carboxylic group of an early intermediate of the shikimate pathway and not from the side chain of phenylalanine or tyrosine. It follows that the committed precursor of gallic acid is an intermediate of the shikimate pathway prior to prephenate or arogenate, most probably 5-dehydroshikimate. A formation of gallic acid via phenylalanine, the lignin precursor, caffeic acid, or 3,4, 5-trihydroxycinnamic acid can be ruled out as major pathways in the fungus and in young leaves of R. typhina. The incorporation of uniformly 13C-labeled glucose followed by quantitative NMR analysis of isotopomer patterns is suggested as a general method for biosynthetic studies. As shown by the plant experiment, this

  17. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode.

    PubMed

    Huang, Yinxi; Zhang, Wenjun; Xiao, Han; Li, Genxi

    2005-11-15

    The direct electrochemistry of glucose oxidase (GOD) adsorbed on a CdS nanoparticles modified pyrolytic graphite electrode was investigated, where the enzyme demonstrated significantly enhanced electron-transfer reactivity. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electro-catalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection. Performance and characteristics of the fabricated glucose biosensor were assessed with respect to detection limit, sensitivity, storage stability and interference exclusion. The results showed that the fabricated biosensor was sensitive and stable in detecting glucose, indicating that CdS nanoparticle was a good candidate material for the immobilization of enzyme in glucose biosensor construction.

  18. Radiocarbon labeled fully deuterated glucose: Preparation, chromatography and preliminary distribution studies

    SciTech Connect

    Gatley, S.J.; Wess, M.M.; Govoni, P.L.; Wagner, A.; Katz, J.J.; Friedman, A.M.

    1985-05-01

    Since carbon-deuterium bonds are harder to break than carbon-hydrogen bonds, substitution of deuterium into organic molecules often leads to alterations in metabolism; e.g. fully deuterated glucose (d/sup 7/-G or deuterioglucose) is a poorer substrate than (protio) glucose for the bacterial enzyme, glucose oxidase. Radiolabeled d/sup 7/-G was therefore prepared to search for a possible isotope effect in its biodistribution in mammals. Green algae grown in deuterium oxide for many generations were exposed to C-14 CO/sub 2/ in the light, and then boiled in 2N-HCl. After rotary evaporation of the HCl the residue was passed through H/sup +/-form and CO/sub 3//sup =/-form Dowex columns in water and then passed through silica gel and activated charcoal in ethanol. The major component of the final neutral fraction, d/sup 7/-G was further purified by HPLC on a Bio-Rad HPX-87P column eluted with water. The behavior of d/sup 7/-G on HPX-87P, on an NH-column (Alltech) and on 2D cellulose TLC, was identical with that of glucose. However, on silica gel TLC d/sup 7/-G ran more slowly (R/sub Glc./ = 0.93); this result was confirmed with authentic d/sup 7/-G. In later work, pure C-11 and C-14 d/sup 7/-G were rapidly and conveniently obtained by HPX-87P chromatography of an invertase-treated extract obtained by boiling algae in 80% EtOH. Preliminary tissue distributions and metabolite analyses suggest slow transport of d/sup 7/-G than G into the brain. Exploitation of deuterium isotope effects could become a useful aspect of radiopharmaceutical design.

  19. Vibrational spectral investigation of anhydrous glucose in the terahertz range

    NASA Astrophysics Data System (ADS)

    Wang, Wenai; Sun, Ping; Liu, Wei; Xie, Yijun

    2016-11-01

    As a powerful tool for the research of molecular structure, infrared absorption spectrum has been extensively studied in the field of biomedical photonics. The absorption spectrum of anhydrous glucose in terahertz region has been measured by Fourier transform infrared spectrometer (FTIR). The experimental results show that there are many characteristic absorption peaks. The origins of characteristic absorption are generally attributed to intermolecular vibrations and intramolecular torsions. CASTEP quantum chemical calculation software package was utilized to simulate the infrared spectroscopy of glucose crystal structure based on periodic boundary condition and plane wave pseudopotential method. Also, linear response approach and norm conserving pseudopotentials are essential. Besides, the performance of the generalized gradient approximation (GGA) functional has been commendably examined. The theoretical results show that the standard Perdew-Burke-Ernzerhof (PBE) approach along with its line Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm tends to be superior. We analyzed the vibration mode corresponding to each characteristic absorption peak with DFT theory. The agreement between theory and experiment indicates that the crystal simulation calculation based on solid-state density functional theory can identify absorption peaks of substance and vibration attribution accurately in terahertz region.

  20. Investigation of Bias in Continuous Medical Image Label Fusion

    PubMed Central

    2016-01-01

    Image labeling is essential for analyzing morphometric features in medical imaging data. Labels can be obtained by either human interaction or automated segmentation algorithms, both of which suffer from errors. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm for both discrete-valued and continuous-valued labels has been proposed to find the consensus fusion while simultaneously estimating rater performance. In this paper, we first show that the previously reported continuous STAPLE in which bias and variance are used to represent rater performance yields a maximum likelihood solution in which bias is indeterminate. We then analyze the major cause of the deficiency and evaluate two classes of auxiliary bias estimation processes, one that estimates the bias as part of the algorithm initialization and the other that uses a maximum a posteriori criterion with a priori probabilities on the rater bias. We compare the efficacy of six methods, three variants from each class, in simulations and through empirical human rater experiments. We comment on their properties, identify deficient methods, and propose effective methods as solution. PMID:27258158

  1. Hypothalamic neuron projection to autonomic preganglionic levels related with glucose metabolism: a fluorescent labelling study in the rat.

    PubMed

    Portillo, F; Carrasco, M; Vallo, J J

    1996-06-07

    The location of hypothalamic paraventricular neurons projecting to sympathetic preganglionic levels and related to the autonomic regulation of various organs involved in glucose metabolism (OGM) was determined by ipsilateral injections of two fluorescent tracers, Diamidino Yellow into the left dorsal motor nucleus of the vagus and Fast Blue into the left intermediolateral cell column of the T8-T9 spinal cord. Hypothalamospinal neurons were mainly located in the dorsal part of the paraventricular hypothalamic nucleus (PVH) and the hypothalamobulbar neurons were most abundant in the ventral, medial and extreme lateral parts of the PVH. No double-labelled neurons were found in the hypothalamus. These results can help the knowledge of the neural hypothalamic network related with the autonomic hypothalamic control.

  2. Labeled cells in the investigation of hematologic disorders

    SciTech Connect

    Alavi, J.B.; Hansell, J.

    1984-07-01

    Radiolabeling techniques for white cells, platelets, and erythrocytes are reviewed. The early studies using diisopropylfluoro-32P contributed to an understanding of the production and circulation of the blood elements, and 51Cr proved useful in localizing sites of cell migration or destruction. 111In-oxine has further improved the understanding of blood cell organ sequestration, and permitted combined kinetic and organ imaging studies. Radionuclide labels have been essential for the elucidation of various hematologic disorders, such as the neutropenias, thrombocytopenias, anemias, and polycythemia. Many new treatments, including monoclonal antibodies, have been evaluated with radionuclides.

  3. 21 CFR 312.6 - Labeling of an investigational new drug.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Labeling of an investigational new drug. 312.6 Section 312.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... human use shall bear a label with the statement “Caution: New Drug—Limited by Federal (or United...

  4. Predictors of nutrition label viewing during food purchase decision making: an eye tracking investigation

    PubMed Central

    Graham, Dan J; Jeffery, Robert W

    2015-01-01

    Objective Nutrition label use could help consumers eat healthfully. Despite consumers reporting label use, diets are not very healthful and obesity rates continue to rise. The present study investigated whether self-reported label use matches objectively measured label viewing by monitoring the gaze of individuals viewing labels. Design The present study monitored adults viewing sixty-four food items on a computer equipped with an eye-tracking camera as they made simulated food purchasing decisions. ANOVA and t tests were used to compare label viewing across various subgroups (e.g. normal weight υ. overweight υ. obese; married υ. unmarried) and also across various types of foods (e.g. snacks υ. fruits and vegetables). Setting Participants came to the University of Minnesota’s Epidemiology Clinical Research Center in spring 2010. Subjects The 203 participants were ≥18 years old and capable of reading English words on a computer 76 cm (30 in) away. Results Participants looked longer at labels for ‘meal’ items like pizza, soup and yoghurt compared with fruits and vegetables, snack items like crackers and nuts, and dessert items like ice cream and cookies. Participants spent longer looking at labels for foods they decided to purchase compared with foods they decided not to purchase. There were few between-group differences in nutrition label viewing across sex, race, age, BMI, marital status, income or educational attainment. Conclusions Nutrition label viewing is related to food purchasing, and labels are viewed more when a food’s healthfulness is ambiguous. Objectively measuring nutrition label viewing provides new insight into label use by various sociodemographic groups. PMID:21733280

  5. Predictors of nutrition label viewing during food purchase decision making: an eye tracking investigation.

    PubMed

    Graham, Dan J; Jeffery, Robert W

    2012-02-01

    Nutrition label use could help consumers eat healthfully. Despite consumers reporting label use, diets are not very healthful and obesity rates continue to rise. The present study investigated whether self-reported label use matches objectively measured label viewing by monitoring the gaze of individuals viewing labels. The present study monitored adults viewing sixty-four food items on a computer equipped with an eye-tracking camera as they made simulated food purchasing decisions. ANOVA and t tests were used to compare label viewing across various subgroups (e.g. normal weight v. overweight v. obese; married v. unmarried) and also across various types of foods (e.g. snacks v. fruits and vegetables). Participants came to the University of Minnesota's Epidemiology Clinical Research Center in spring 2010. The 203 participants were ≥18 years old and capable of reading English words on a computer 76 cm (30 in) away. Participants looked longer at labels for 'meal' items like pizza, soup and yoghurt compared with fruits and vegetables, snack items like crackers and nuts, and dessert items like ice cream and cookies. Participants spent longer looking at labels for foods they decided to purchase compared with foods they decided not to purchase. There were few between-group differences in nutrition label viewing across sex, race, age, BMI, marital status, income or educational attainment. Nutrition label viewing is related to food purchasing, and labels are viewed more when a food's healthfulness is ambiguous. Objectively measuring nutrition label viewing provides new insight into label use by various sociodemographic groups.

  6. Transfer of label from /sup 3/H-glucose in Digitaria eriantha leaves to the rust fungus Puccinia digitariae Pole Evans

    SciTech Connect

    Rey, M.E.; Garnett, H.M.

    1985-08-01

    Digitaria eriantha pentzii was fed /sup 3/H-glucose prior to inoculation with uredospores of Puccinia digitariae Pole Evans. Twenty-one hours after inoculation, uptake of label from /sup 3/H-glucose by the primary infection structures of P. digitariae was demonstrated employing autoradiography. These results indicate that an exchange of nutrients between host and pathogen occurs very early on in the infection process, during the formation of the primary infection structures. Despite contrary reports that obligate parasites receive no nutrition before establishment of haustoria, this study supports the work of Andrews, who demonstrated uptake of /sup 3/H-glucose label from lettuce cotyledons into the primary and secondary infection vesicles, appressoria, and germ tubes of Bremia lactucae.

  7. Properties of N-maleoylmethionine sulphone, a novel impermeant maleimide, and its use in the selective labelling of the erythrocyte glucose-transport system.

    PubMed Central

    Roberts, S J; Tanner, M J; Denton, R M

    1982-01-01

    1. The synthesis of N-maleoylmethionine sulphone (MMS), a membrane-impermeant protein-labelling reagent, is described. Radioactively labelled MMS can be readily prepared at high specific radioactivity from [35S]methionine. 2. The permeability of the erythrocyte membrane to the reagent was assessed by determining the extent of inactivation of glyceraldehyde 3-phosphate dehydrogenase after treatment of erythrocytes with MMS. Some inactivation of this enzyme was found when high concentrations (20mM) of the compound were used, but this could be prevented by pretreatment of the erythrocytes with 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid, suggesting that MMS slowly enters the cells via the anion-transport system. 3. Treatment of erythrocytes with [35S]MMS resulted in the labelling of six major components. Labelling of erythrocyte membranes resulted in the intense labelling of many additional components. 4. MMS inhibited erythrocyte glucose transport. Cytochalasin b protected glucose transport against inactivation by MMS. Labelling experiments in erythrocytes in the presence and in the absence of cytochalasin b showed that the cytochalasin b-protected material was a broad band in the band-4.5 region. Images Fig. 2. Fig. 3. Fig. 5. PMID:7126174

  8. Investigation of pH and temperature on optical rotatory dispersion for noninvasive glucose monitoring

    NASA Astrophysics Data System (ADS)

    Baba, Justin S.; Meledeo, Adam; Cameron, B. D.; Cote, Gerard L.

    2001-06-01

    The widespread occurrence of diabetes mellitus and the severity of its associated complications necessitate the development of non-invasive blood glucose measurement devices in an attempt to improve treatment regimens and curb the complications associated with this disease. One method showing promise in this endeavor utilizes optical polarimetry to monitor blood glucose levels indirectly by measuring glucose rotation of polarized light, which is a direct indication of glucose concentration, in the aqueous humor of the eye. The presence of other optically active (chiral) components in the aqueous humor of the eye have the potential to confound the glucose measurement of optical rotation when using a single wavelength polarimeter. Thus, this has led to the recent investigation of multispectral polarimetric systems which have the potential to enable the removal of confounder contributions to the net observed optical rotation, therefore, increasing glucose specificity and reducing glucose prediction errors. Such polarimetric systems take advantage of the uniqueness in the rotation of polarized light, as a function of wavelength, by the chiral molecule of interest. This is commonly referred to as the optical rotatory dispersion (ORD) spectra of the chiral molecule. ORD characterization of the chiral molecules within the aqueous humor is necessary for determining the optimum number of wavelengths needed to reduce glucose prediction errors; however, this information is often only given at the sodium-D line (589 nm) in the literature. This report describes the system we designed and built to measure ORD spectra for glucose and for albumin, the main optical confounder within the aqueous humor, as well as our investigation of the effects of temperature and pH on these ORD spectra.

  9. An Investigation of the Glucose Monitoring Practices of Nurses in Stroke Care: A Descriptive Cohort Study

    PubMed Central

    Laird, Elizabeth Ann; Coates, Vivien E.; Ryan, Assumpta A.; McCarron, Mark O.; Lyttle, Diane

    2013-01-01

    Glucose derangement is commonly observed among adults admitted to hospital with acute stroke. This paper presents the findings from a descriptive cohort study that investigated the glucose monitoring practices of nurses caring for adults admitted to hospital with stroke or transient ischaemic attack. We found that a history of diabetes mellitus was strongly associated with initiation of glucose monitoring and higher frequency of that monitoring. Glucose monitoring was continued for a significantly longer duration of days for adults with a history of diabetes mellitus, when compared to the remainder of the cohort. As glucose monitoring was not routine practice for adults with no history of diabetes mellitus, the detection and treatment of hyperglycaemia and hypoglycaemia events could be delayed. There was a significant positive association between the admission hospital that is most likely to offer stroke unit care and the opportunity for glucose monitoring. We concluded that adults with acute stroke, irrespective of their diabetes mellitus status prior to admission to hospital, are vulnerable to both hyperglycaemic and hypoglycaemic events. This study suggests that the full potential of nurses in the monitoring of glucose among hospitalised adults with stroke has yet to be realised. PMID:24062947

  10. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe.

    PubMed

    Gao, Zhong Feng; Chen, Dong Mei; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications.

  11. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  12. Investigations of ascorbate for direct labeling of antibodies with technetium-99m

    SciTech Connect

    Hnatowich, D.J.; Winnard, P. Jr.; Virzi, F.

    1994-01-01

    Recently, a method for the direct labeling of antibodies with {sup 99m}Tc was described in which sulfhydryls were reportedly generated by reduction of antibody disulfides with ascorbic acid. Thereafter, these proteins may be labeled at high efficiency with {sup 99m}Tc following reduction of pertechnetate with dithionite. This investigation was initially conducted to evaluate the mechanism of the increased stability towards cysteine challenge reported for the label and subsequently to determine the role of ascorbate in the labeling process. It was possible to reproduce the reported high labeling efficiencies by increasing the dithionite concentration fivefold, presumably because of variabilities among lots of commercial sodium dithionite. Despite success in labeling, it was not possible to confirm that antibody reduction followed the treatment with ascorbate. Using both Ellman`s reagent and 2,2`-dithiodipyridine as indicators, the authors were unable to detect sulfhydryls on one IgG antibody treated at ten times the suggested ascorbate-to-antibody molar ratio. It was estimated that the number of sulfhydryls generated could not have been more than 1% (dithiodipyridine) to 2% (Ellman`s). Furthermore, radiolabeling efficiencies for two IgG antibodies and stabilities of the label to cysteine challenge were unchanged when the ascorbate was eliminated. The number of sulfhydryls generated by treatment of the antibody with dithionite at 1-2 times the concentration required for adequate labeling was about 1% (dithiodipyridine) to 5% (Ellman`s). For the conditions of this investigation and for the antibodies employed, ascorbate apparently played no more than a minor role at best in the labeling process. If antibody reduction occurred, this most likely was a result of residual dithionite presented to the protein along with the reduced {sup 99m}Tc. 31 refs., 2 figs.

  13. Comparative Positron-Emission Tomography (PET) Imaging and Phototherapeutic Potential of 124I- Labeled Methyl- 3-(1′-iodobenzyloxyethyl) pyropheophorbide-a vs. the Corresponding Glucose- and Galactose-Conjugates

    PubMed Central

    Pandey, Suresh K.; Sajjad, Munawwar; Chen, Yihui; Zheng, Xiang; Yao, Rutao; Missert, Joseph R.; Batt, Carrie; Nabi, Hani A.; Oseroff, Allan R.; Pandey, Ravindra K.

    2009-01-01

    In our present study, 3-(1′-m-iodobenzyloxyethyl) pyropheophorbide-a methyl ester 1, 3-(1′-m-iodobenzyloxyethyl)-172-{(2-deoxy)glucose} pyropheophorbide-a 2, and 3-(1′-m-iodo benzyloxyethyl)-172-{(1-deoxy)galactose} pyropheophorbide-a 3 were synthesized and converted into the corresponding 124I- labeled analogs by reacting the intermediate trimethyltin analogs with Na124I. Photosensitizers 1–3 were evaluated for the PDT efficacy in C3H mice bearing RIF tumors at variable doses and showed a significant long-term tumor cure. Among the compounds investigated, the non-carbohydrate analog 1 was most effective. These results were in contrast to the in vitro data, where compared to the parent analog the corresponding galactose-and glucose derivatives showed enhanced cell kill. Among the corresponding 124I-labeled in analogs, excellent tumor images were obtained from compound 1 both tumor models (RIF and Colon-26) and the best tumor contrast was observed at 72 h post injection. Conjugating a glucose moiety to photosensitizer 1 diminished its tumor uptake, whereas with time the corresponding galactose analog showed improved tumor contrast. PMID:19090663

  14. Simultaneous immobilization of glucose oxidase on the surface and cavity of hollow gold nanospheres as labels for highly sensitive electrochemical immunoassay of tumor marker.

    PubMed

    Song, Zhongju; Yuan, Ruo; Chai, Yaqin; Jiang, Wen; Su, Huilan; Che, Xin; Ran, Xiaoqi

    2011-01-15

    A novel tracer, glucose oxidase (GOD)-functionalized hollow gold nanospheres encapsulating glucose oxidase (Au(shell)@GOD), was designed to label the ferrocenemonocarboxylic-grafted secondary antibodies (Fc@Ab(2)) for highly sensitive detection of tumor marker using carboxyl group functionalized multiwall carbon nanotubes as platform. Initially, Au(shell)@GOD was synthesized specially by reverse micelle approach, and then the labeling of antibody and the preparation of GOD-functionalized Au(shell)@GOD were performed by one-pot assembly of Fc@Ab(2) and GOD on the surface of Au(shell)@GOD. The ferrocene used to label antibodies acted as a mediator of electron transfer between GOD and electrode surface. The high-content glucose oxidase in the tracer (on the surface and in the cavity) could significantly amplify the amperometric signal for sandwich-type immunoassay. Using carcinoembryonic antigen (CEA) as model analyte, the designed tracer showed linear range from 0.02 to 5.0 ng mL(-1) with the detection limit down to 6.7 pg mL(-1). The assay results of serum samples with the proposed method were in an acceptable agreement with the reference values. The new protocol showed acceptable stability and reproducibility, high sensitivity, and good precision, which could provide a promising potential for clinical screening and diagnosis of tumor disease.

  15. An investigation of the effect of in vivo interferences on Raman glucose measurements

    NASA Astrophysics Data System (ADS)

    Shim, Bongchu; Oh, Hyunho; Oh, Jeankun; Yang, Yongju; Ku, Yunhee; Kim, Moosub; Kim, Dami; Eum, Hyejin; Cho, Seongmoon; Miller, David R.

    2011-03-01

    Raman spectroscopy is a promising technology for noninvasive blood glucose monitoring because of its good selectivity for the glucose molecule. The low sensitivity of the Raman signal however, makes it difficult to quantify the concentration of glucose directly from the Raman spectra. To solve this, statistical methods such as PCA (principle component analysis) and PLS (partial least square) are traditionally used. These statistical methods general work very well and give highly accurate results, provided there is no interference. In the in-vivo case however, there are many interferences such as the inhomogeneity of tissue, physiological changes, and denaturation of the tissue by the light source. This study investigates the affect of in-vivo interferences on Raman glucose measurements. In this study, a high throughput dispersive Raman system was constructed with an 830nm multimode laser, a multiple conductor optical fiber bundle, and a back-illuminated CCD spectrometer. A simply phantom was devised, which was comprised of a plastic cuvette fitted with a human fingernail window and glucose doped human serum used as the sample. To test the inhomogeneity of tissue samples, different sites of the phantom were exposed to the laser. In the case of denaturation, tests were conducted under two laser power densities: low (3.7mW/mm2) and high density (110mW/mm2). To simulate the physiological change, gelatin phantoms of varied concentration were investigated. The results of the study indicate that the dominant interferers for Raman in-vivo glucose measurements are the inhomogeneity of the tissue and the denaturation by the laser power density. The next phase for this study will be the design of a high SNR Raman system which affords a low power density laser sample illumination as well as larger volumetric illumination to mitigate the effects of tissue inhomogeneity.

  16. Synthesis, characterization and bioevaluation of technetium-99m labeled N-(2-Hydroxybenzyl)-2-amino-2-deoxy-D-glucose as a tumor imaging agent.

    PubMed

    Nadeem, Qaisar; Khan, Irfanullah; Javed, Muhammad; Mahmood, Zaid; Dar, Ume-Kalsoom; Ali, Muhammad; Hyder, Syed Waqar; Murad, Sohail

    2013-03-01

    N-(2-Hydroxybenzyl)-2-amino-2-deoxy-D-glucose (NHADG) was synthesized by conjugation of salicylaldehyde to glucosamine. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m ((99m)Tc) in pertechnetate form ((99m)Tc O4-) was carried out via chelation reaction in the presence of stannous chloride dihydrate. Maximum radiochemical yield of (99m)Tc-NHADG complex (99%) was obtained by using 1 mg NHADG, 200 μg SnCl2.2H2O, at pH 9.5 and reaction time of 15 min. The radiochemical purity of the (99m)Tc-NHADG complex was measured by instant thin layer chromatography (ITLC) and paper chromatography (PC), without any notable decomposition at room temperature over a period of 4h. The biological evaluation results show that the (99m)Tc labeled NHADG conjugate is able to specifically target mammary carcinoma in mice models, thus highlighting its potential as an effective (99m)Tc labeled glucose-derived agent for tumor imaging.

  17. Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Rea, I.; Caliò, A.; Giardina, P.; Gravagnuolo, A. M.; Funari, R.; Altucci, C.; Velotta, R.; De Stefano, L.

    2016-02-01

    Hydrophobins (HFBs) are peculiar proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, and some of them (class I HFB) are able to form much more stable amyloid-like layers. This feature makes them suitable for many purposes, particularly when stable surface functionalization is required, also in view of their versatility in binding different kinds of molecules. For instance, it has been shown that Vmh2 from Pleurotus ostreatus (a class I HFB) is able to bind molecules like glucose, thus offering the perspective of using Vmh2 as a surface functionalization tool in bio-hybrid devices. In this paper a quantitative analysis of glucose interaction with the Vmh2 layer is reported; in particular, it is shown that Vmh2 layer swells by almost doubling its thickness as a result of glucose diffusion and each Vmh2 monomer is able to bind approximately 30 glucose molecules. These results have been achieved by self-assembling multi-layers of Vmh2 on a gold substrate and, subsequently, measuring both the mass of the bound glucose and the thickness of the resulting layer through two different and complementary techniques: quartz crystal-microbalance and ellipsometry. The data provided by the two techniques are in a satisfactory agreement and offer a plausible description of the mechanisms underlying the interaction of glucose with Vmh2 layer. This facile and versatile coating is of interest for biomedical applications of gold surfaces and particles.

  18. What good is labeling what's good? A field experimental investigation of parental labeled praise and child compliance.

    PubMed

    Leijten, Patty; Thomaes, Sander; Orobio de Castro, Bram; Dishion, Thomas J; Matthys, Walter

    2016-12-01

    There is a need to identify the "effective ingredients" of evidence-based behavior therapies. We tested the effects of one of the most common ingredients in parenting interventions for preventing disruptive child behavior, referred to as labeled praise (e.g., "well done picking up your toys"), which is typically recommended in preference to unlabeled praise (e.g., "well done"). We compared the effects of labeled praise, unlabeled praise, and no praise on child compliance in two experiments. Experiment 1 included 161 4 to 8 year-old community sample children and tested immediate effects of praise. Experiment 2 included 132 3 to 9 year-old children with varying levels of disruptive behavior and tested immediate and two-week effects of praise. In Experiment 1, teaching parents to use labeled praise did not increase immediate child compliance, whereas teaching them to use unlabeled praise did. In Experiment 2, teaching parents to use labeled praise for two weeks reduced disruptive child behavior, but this effect was of a similar magnitude to that for unlabeled praise. Parents preferred the use of unlabeled over labeled praise. These findings suggest that parental praise promotes child compliance, but the addition of labeling the specific positive behavior may not be of incremental value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Resolution of 8-aminonaphthalene-1,3,6-trisulfonic acid-labeled glucose oligomers in polyacrylamide gel electrophoresis at low gel concentration.

    PubMed

    Cabanes-Macheteau, Marion; Chrambach, Andreas; Taverna, Myriam; Buzás, Zsuzsanna; Berna, Patrick

    2004-01-01

    A discontinuous Tris-Cl/acetate (OAc) buffer system, unprecedently containing OAc as the trailing constituent, and operative in polyacrylamide gel electrophoresis (PAGE) at low polyacrylamide concentration (T = 4.8%) is described in the paper. The characteristics of the electrophoretic system are illustrated by the resolution of fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)-labeled malto-oligosaccharides and dextran homopolymers. In this buffer system, the resolving phase is constituted by Tris-OAc behind a moving boundary formed between the leading chloride ion of Tris-HCl gel buffer and the trailing OAc ion provided by a catholyte of NH(4)OAc. In contrast with the results obtained with Tris-CI/glycinate buffer commonly used in electrophoresis, or with Tris-CI/borate, the best resolution of the glucose oligomers containing 1-4 glucose units in Tris-OAc, pH 8.8, ionic strength of 0.08, was obtained at 4.8% polyacrylamide concentration, using 0.5 M NH(4)OAc, pH 9.5 as the catholyte. Under those conditions, the ANTS-glucose oligomers were separated with mobilities decreasing from glucose to maltohexaose. The linear Ferguson plots (log relative mobility, R(f), vs.%T) of the glucose oligomers show that the surface net charge of those oligomers is inversely related to their sizes, given by the slopes, K(R), of the plots. The molecular weight of the oligomers is directly but nonlinearly related to K(R). The novel electrophoretic system illustrated here for separation of short ANTS-saccharides can be potentially applied to the resolution of other biomolecules such as rapidly migrating DNA, peptides or proteins.

  20. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    PubMed

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  1. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Mao, Li; Niu, Huan; Liu, Huijing; Zhuo, Ying

    2012-01-15

    In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    SciTech Connect

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation. That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.

  3. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors

    PubMed Central

    Fonin, Alexander V.; Stepanenko, Olga V.; Povarova, Olga I.; Volova, Catherine A.; Philippova, Elizaveta M.; Bublikov, Grigory S.; Kuznetsova, Irina M.; Demchenko, Alexander P.

    2014-01-01

    The mutant form GGBP/H152C of the D-glucose/D-galactose-binding protein with the solvatochromic dye BADAN linked to cysteine residue Cys 152 can be used as a potential base for a sensitive element of glucose biosensor system. We investigated the influence of various external factors on the physical-chemical properties of GGBP/H152C-BADAN and its complex with glucose. The high affinity (Kd = 8.5 µM) and high binding rate of glucose make GGBP/H152C-BADAN a good candidate to determine the sugar content in biological fluids extracted using transdermal techniques. It was shown that changes in the ionic strength and pH of solution within the physiological range did not have a significant influence on the fluorescent characteristics of GGBP/H152C-BADAN. The mutant form GGBP/H152C has relatively low resistance to denaturation action of GdnHCl and urea. This result emphasizes the need to find more stable proteins for the creation of a sensitive element for a glucose biosensor system. PMID:24711960

  4. The effect of federal and state off-label marketing investigations on drug prescribing: The case of olanzapine.

    PubMed

    Wang, Bo; Studdert, David M; Sarpatwari, Ameet; Franklin, Jessica M; Landon, Joan; Kesselheim, Aaron S

    2017-01-01

    In the past decade, the federal government has frequently investigated and prosecuted pharmaceutical manufacturers for illegal promotion of drugs for indications not approved by the Food and Drug Administration (FDA) ("off-label" uses). State governments can choose to coordinate with the federal investigation, or pursue their own independent state investigations. One of the largest-ever off-label prosecutions relates to the atypical antipsychotic drug olanzapine (Zyprexa). In a series of settlements between 2008 and 2010, Eli Lilly paid $1.4 billion to the federal government and over $290 million to state governments. We examined the effect of these settlements on off-label prescribing of this medication, taking advantage of geographical differences in states' involvement in the investigations and the timing of the settlements. However, we did not find a reduction in off-label prescribing; rather, there were no prescribing changes among states that joined the federal investigation, those that pursued independent state investigations, and states that pursued no investigations at all. Since the settlements of state investigations of off-label prescribing do not appear to significantly impact prescribing rates, policymakers should consider alternate ways of reducing the prevalence of non-evidence-based off-label use to complement their ongoing investigations.

  5. The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.

    PubMed

    Ma, Jing; Ji, Zhe; Chen, Jia C; Zhou, Xia; Kim, Yoon S; Xu, Feng

    2015-07-01

    Hydrothermal pretreatment initially removed the lignin-free xylan from the middle layer of secondary wall, followed by the lignin-bound xylan, but the cellulose-bound xylan was seldom removed by this pretreatment. An in-depth understanding of the mechanism of xylan removal during hydrothermal pretreatment (HTP) of wood is critical for cost-effective conversion of lignocellulosic biomass to biofuels. Several studies demonstrated the kinetics and mechanism of xylan removal during HTP on molecular scale, but the dissolution mechanism of xylan during HTP remains unclear at ultra-structural level. Our study investigated changes in the micro-distribution of xylan in poplar fiber cell walls during HTP by transmission electron microscopy (TEM) in combination with immunogold labeling. The study revealed that HTP caused greater decline in the density of xylan labeling in the S2 layer of fiber wall than in the S1 layer. There was a greater loss in the density of xylan labeling during HTP in the delignified and enzymatically treated fibers compared to untreated fibers. We propose that in the initial stages of HTP lignin-free xylan in the S2 layer was more readily hydrolyzed than in the S1 layer by hydronium ions. With increasing pretreatment time, the xylan covalently bound to lignin was also removed from the S2 layer due to the dissolution of lignin. The xylan tightly bound to cellulose was seldom removed during HTP, but was hydrolyzed in subsequent enzymatic treatment. This TEM-immunolabeling investigation reveals the manner in which different xylan fractions are removed from fiber cell wall during HTP, and we expect the information to be helpful in developing processes tailored for more effective conversion of cellulosic biomass into fermentable sugars.

  6. Consumers' knowledge of food label information: an exploratory investigation in Potchefstroom, South Africa.

    PubMed

    van der Merwe, Daleen; Bosman, Magdalena; Ellis, Suria; de Beer, Hanli; Mielmann, Annchen

    2013-03-01

    To determine the ability of consumers to: locate and manipulate food label information; assess the accuracy of nutrient content claims and which health/nutrient claims are allowed; and identify symbols on food labels. Associations pertaining to use and knowledge regarding food label information were also determined for consumers from different demographic and related groups. An exploratory descriptive study was undertaken, employing a face-to-face survey focusing on demographic information, shopping behaviour, nutrition is important beliefs, label use, label knowledge and label preference and information sources. Selected public locations in Potchefstroom in the North West Province of South Africa. Respondents (n 229) complying with set inclusion criteria were recruited through purposive sampling. The results indicated respondents' general health and label awareness, as most of them (>80%) could locate label information and identify symbols and specific nutrient content claims although only 53% were able to calculate the number of servings. Nevertheless, an inability was found to assess the accuracy of some nutrient content claims and permissible health/nutrient claims. More educated, younger, Afrikaans- and English-speaking respondents seemed to be more knowledgeable regarding food label information. Respondents who were informed about nutrition were also informed about label information, while label reading practices resulted in label-influenced purchasing decisions. Educational programmes on food labels should start with nutritional background that could be implemented by consumers during label reading and purchasing decisions.

  7. Biokinetic and dosimetric investigations of 14C-labeled substances in man using AMS

    NASA Astrophysics Data System (ADS)

    Mattsson, Sören; Gunnarsson, Mikael; Svegborn, Sigrid Leide; Nosslin, Bertil; Nilsson, Lars-Erik; Thorsson, Ola; Valind, Sven; Åberg, Magnus; Östberg, Henrik; Hellborg, Ragnar; Stenström, Kristina; Erlandsson, Bengt; Faarinen, Mikko; Kiisk, Madis; Magnusson, Carl-Erik; Persson, Per; Skog, Göran

    2001-07-01

    Up to now, radiation dose estimates from radiopharmaceuticals, labeled with pure β-emitting radionuclides, e.g., 14C or 3H have been very uncertain. Using accelerator mass spectrometry (AMS) we have derived new and improved data for 14C-triolein and 14C-urea and are currently running a program related to the biokinetics and dosimetry of 14C-glycocholic acid and 14C-xylose. The results of our investigations have made it possible to widen the indications for the clinical use of the 14C-urea test for Helicobacter pylori infection in children. The use of ultra-low activities, which is possible with AMS (down to 1/1000 of that used for liquid scintillation counting), has opened the possibility for metabolic investigations on children as well as on other sensitive patient groups like new-borns, and pregnant or breast-feeding women. Using the full potential of AMS, new 14C-labeled drugs could be tested on humans at a much earlier stage than today, avoiding uncertain extrapolations from animal models.

  8. Ultrastructural investigation of microcalcification and the role of oxygen-glucose deprivation in cultured rat hippocampal slices.

    PubMed

    Riew, Tae-Ryong; Kim, Hong Lim; Shin, Yoo-Jin; Park, Joo-Hee; Pak, Ha-Jin; Lee, Mun-Yong

    2015-10-05

    Intracellular calcium accumulation is associated with cell death in several neuropathological disorders including brain ischemia, but the exact mechanisms of calcification need to be clarified. We used organotypic hippocampal slice culture - cultures subjected to oxygen-glucose deprivation (OGD) mimicking the in vivo situation to investigate the events underlying ectopic calcification. Alizarin red staining indicating calcium deposition was observed in the cornu ammonis (CA)1 and dentate gyrus regions in control hippocampal slices despite no specific labeling for cell death markers. Electron microscopy using the osmium/potassium dichromate method revealed scattered degenerated cells throughout the normally appearing CA1 region. They contained electron-dense precipitates within mitochondria, and electron probe microanalysis confirmed that they were calcifying mitochondria. Selective calcium deposition was noted within, but not beyond, mitochondria in these mineralized cells. They showed ultrastructural features of non-necrotic, non-apoptotic cell death and retained their compact ultrastructure, even after the majority of mitochondria were calcified. Unexpectedly, no intracellular calcification was noted in necrotic CA1 pyramidal cells after OGD, and there was no progression of calcification in OGD-lesioned slices. In addition, mineralized cells in both control and OGD-lesioned slices were closely associated with or completely engulfed by astrocytes but not microglia. These astrocytes were laden with heterogeneous cytoplasmic inclusions that appeared to be related with their phagocytic activity. These data demonstrate that microcalcification specifically associated with mitochondria might lead to a novel type of cell death and suggest that astrocytes may be involved in the phagocytosis of these mineralized cells and possibly in the regulation of ectopic calcification. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein.

    PubMed

    Gao, Jian; Ma, Hongmin; Lv, Xiaohui; Yan, Tao; Li, Na; Cao, Wei; Wei, Qin

    2015-09-17

    In this work, a novel sandwich-type electrochemical immunosensor based on host-guest interaction was fabricated for the detection of alpha-fetoprotein (AFP). Due to the large specific surface area of multiwalled carbon nanotubes and the unique supramolecular recognition ability of β-cyclodextrins, ferrocenecarboxylic acid (Fc) was incorporated into this sensor platform by host-guest interaction to generate an electrochemical signal. And β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase (GOD-CD-Ag), was used as a label to improve the analytical performance of the immunosensor by the dual amplification strategy. The obtained GOD-CD-Ag conjugates could convert glucose into gluconic acid with the formation of hydrogen peroxide (H2O2). And then silver nanoparticles could in situ catalyze the reduction of the generated H2O2, dramatically improving the oxidation reaction of Fc. The developed immunosensor shows a wide linear calibration range from 0.001 to 5.0 ng/mL with a low detection limit (0.2 pg/mL) for the detection of AFP. The method, with ideal reproducibility and selectivity, has a wide application prospect in clinical research.

  10. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Liu, Huijing; Liao, Yuhong; Zhuo, Ying

    2013-09-15

    An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on an amplified cathodic ECL of luminol at low potential. Firstly, Au nanoparticles (AuNPs) were electrodeposited onto single walled carbon nanotube-graphene composites (CNTs-Gra) coated glass carbon electrode (GCE) with enhanced surface area and good biocompatibility to capture primary antibody (Ab1) and then bind the antigen analytes. Secondly, Pd and Pt nanoparticles (Pd&PtNPs) decorated reduced graphene oxide (Pd&PtNPs@rGO) and glucose oxidase (GOD) labeled secondary antibody (Pd&PtNPs@ rGO-GOD-Ab2) could be captured onto the electrode surface by a sandwich immunoassay protocol to generate amplified cathodic ECL signals of luminol in the presence of glucose. The Pd&PtNPs@rGO composites and loaded GOD promoted luminol cathodic ECL response by efficiently catalyzing glucose to in-situ produce amount of hydrogen peroxide (H2O2) working as a coreactant of luminol. Then in turn Pd&PtNPs catalyzed H2O2 to generate various reactive oxygen species (ROSs), which accelerated the cathodic ECL reaction of luminol, enhanced the cathodic ECL intensity of luminol and improved the sensitivity of the immunosensor. The as-proposed ECL immunosensor exhibited sensitive response on the detection of CEA ranging from 0.0001 ng mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (S/N=3). Moreover, the stability, specificity, lifetime and reproducibility tests demonstrated the feasibility of the developed immunoassay, which can be further extended to the detection of other disease biomarkers. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study.

    PubMed

    Gagnon, Dominique G; Holt, Andrea; Bourgeois, Francis; Wallendorff, Bernadette; Coady, Michael J; Lapointe, Jean-Yves

    2005-06-30

    The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(-) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the K(i)(Pz) and K(m)(alphaMG) for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher K(i)(Pz) values than wtSGLT1 with minimal changes in K(m)((alpha)MG), the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.

  12. An investigative model evaluating how consumers process pictorial information on nonprescription medication labels.

    PubMed

    Sansgiry, S S; Cady, P S

    1997-01-01

    Currently, marketed over-the-counter (OTC) medication labels were simulated and tested in a controlled environment to understand consumer evaluation of OTC label information. Two factors, consumers' age (younger and older adults) and label designs (picture-only, verbal-only, congruent picture-verbal, and noncongruent picture-verbal) were controlled and tested to evaluate consumer information processing. The effects exerted by the independent variables, namely, comprehension of label information (understanding) and product evaluations (satisfaction, certainty, and perceived confusion) were evaluated on the dependent variable purchase intention. Intention measured as purchase recommendation was significantly related to product evaluations and affected by the factor label design. Participants' level of perceived confusion was more important than actual understanding of information on OTC medication labels. A Label Evaluation Process Model was developed which could be used for future testing of OTC medication labels.

  13. Biokinetics of (13)C in the human body after oral administration of (13)C-labeled glucose as an index for the biokinetics of (14)C.

    PubMed

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of (13)C in the human body after oral administration of (13)C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for (13)C as an index of the committed dose of the radioisotope (14)C. After administration of (13)C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic (13)C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for (13)C/(12)C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the (13)C administered was excreted in breath, whereas  <2% was excreted in urine and feces. In the other pathway, the excretion rate constant in the compartment with the longest residence time stretched to hundreds of days but the rate constant for each subject was not statistically significant (P value  >  0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for (13)C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of (13)C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and

  14. Investigation of fluorescence spectra disturbances influencing the classification performance of fluorescently labeled plastic flakes

    NASA Astrophysics Data System (ADS)

    Fomin, Petr; Brunner, Siegfried; Kargel, Christian

    2013-04-01

    The recycling of plastic products becomes increasingly attractive not only from an environmental point of view, but also economically. For recycled (engineering) plastic products with the highest possible quality, plastic sorting technologies must provide clean and virtually mono-fractional compositions from a mixture of many different types of (shredded) plastics. In order to put this high quality sorting into practice, the labeling of virgin plastics with specific fluorescent markers at very low concentrations (ppm level or less) during their manufacturing process is proposed. The emitted fluorescence spectra represent "optical fingerprints" - each being unique for a particular plastic - which we use for plastic identification and classification purposes. In this study we quantify the classification performance using our prototype measurement system and 15 different plastic types when various influence factors most relevant in practice cause disturbances of the fluorescence spectra emitted from the labeled plastics. The results of these investigations help optimize the development and incorporation of appropriate fluorescent markers as well as the classification algorithms and overall measurement system in order to achieve the lowest possible classification error rates.

  15. (13)C glucose labelling studies using 2D NMR are a useful tool for determining ex vivo whole organ metabolism during hypothermic machine perfusion of kidneys.

    PubMed

    Nath, Jay; Smith, Tom; Hollis, Alex; Ebbs, Sam; Canbilen, Sefa W; Tennant, Daniel A; Ready, Andrew R; Ludwig, Christian

    2016-01-01

    The aim of this study is to determine the feasibility of using nuclear magnetic resonance (NMR) tracer studies ((13)C-enriched glucose) to detect ex vivo de novo metabolism in the perfusion fluid and cortical tissue of porcine kidneys during hypothermic machine perfusion (HMP). Porcine kidneys (n = 6) were subjected to 24 h of HMP using the Organ Recovery Systems LifePort Kidney perfusion device. Glucose, uniformly enriched with the stable isotope (13)C ([U-(13)C] glucose), was incorporated into KPS-1-like perfusion fluid at a concentration of 10 mM. Analysis of perfusate was performed using both 1D (1)H and 2D (1)H,(13)C heteronuclear single quantum coherence (HSQC) NMR spectroscopy. The metabolic activity was then studied by quantifying the proportion of key metabolites containing (13)C in both perfusate and tissue samples. There was significant enrichment of (13)C in a number of central metabolites present in both the perfusate and tissue extracts and was most pronounced for lactate and alanine. The total amount of enriched lactate (per sample) in perfusion fluid increased during HMP (31.1 ± 12.2 nmol at 6 h vs 93.4 ± 25.6 nmol at 24 h p < 0.01). The total amount of enriched alanine increased in a similar fashion (1.73 ± 0.89 nmol at 6 h vs 6.80 ± 2.56 nmol at 24 h p < 0.05). In addition, small amounts of enriched acetate and glutamic acid were evident in some samples. This study conclusively demonstrates that de novo metabolism occurs during HMP and highlights active metabolic pathways in this hypothermic, hypoxic environment. Whilst the majority of the (13)C-enriched glucose is metabolised into glycolytic endpoint metabolites such as lactate, the presence of non-glycolytic pathway derivatives suggests that metabolism during HMP is more complex than previously thought. Isotopic labelled ex vivo organ perfusion studies using 2D NMR are feasible and informative.

  16. Investigation of the stereochemical course of ene reductase-catalysed reactions by deuterium labelling.

    PubMed

    Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio; Parmeggiani, Fabio

    2015-01-01

    The stereoselective reduction of suitably substituted C═C bonds mediated by enzymes, called ene reductases, has received great attention in the last decade. Some successful applications of this biocatalysed procedure to the synthesis of chiral active pharmaceutical ingredients have been reported in the literature. The generation of suitable models to be used for predicting the stereochemical outcome of this kind of reductions is a challenging task. In the last years we have exploited deuterium labelling to investigate the stereochemical course of the enzyme-mediated reductions of a wide collection of substrates belonging to well-defined chemical classes. The results of this research have allowed us to draw conclusions on the relationship between the structural characteristics of the substrate and the binding mode it adopts in the enzyme active site. The collected data can be exploited to create an empirical model to rationalise and predict the stereoselectivity of old yellow enzyme (OYE)-catalysed reductions.

  17. Investigation of Metabolism of Exogenous Glucose at the Early Stage and Onset of Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats Using [1, 2, 3-13C]Glucose Breath Tests

    PubMed Central

    Kijima, Sho; Tanaka, Hideki

    2016-01-01

    This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6–12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22–25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats. PMID:27483133

  18. Investigation of Metabolism of Exogenous Glucose at the Early Stage and Onset of Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats Using [1, 2, 3-13C]Glucose Breath Tests.

    PubMed

    Kawagoe, Naoyuki; Kano, Osamu; Kijima, Sho; Tanaka, Hideki; Takayanagi, Masaaki; Urita, Yoshihisa

    2016-01-01

    This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6-12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22-25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats.

  19. Stabilization of glucose-C in microbial cell membranes (PLFA) and cell walls (amino sugars) evaluated by 13C-labelling in a field experiment

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Microorganisms control carbon (C) cycle and strongly contribute to formation of soil organic matter. Strong differences in the turnover of microbial groups and cellular compounds complicate the assessment of their contribution to microbial food webs and C sequestration in soil in situ. The uptake and incorporation of 13C labeled glucose by microbial groups were traced during 50 days after the labeling under field conditions. 13C was analysed: i) in the cytosolic pool by chloroform fumigation extraction, ii) in cell membranes by phospholipid fatty acids (PLFA), iii) in cell walls by amino sugars, and iv) remaining in bulk soil. This allowed tracing C in microbial groups as well as cellular compounds. Mean residence times (MRT) of C in PLFA and the cytosol were 47 and 150 days, respectively. Such long cytosol MRT depends on its heterogeneous composition, which includes high and low molecular weight organics. Amino sugars were mainly originated from microbial residues and thus, observation periods higher than 1 year are required for estimation of their MRT. Relative 13C incorporation (13C portion in total pool C) was the highest for PLFAs (~1.5% at day 3), whereas 13C content of the cytosol and amino sugars was one and two orders of magnitude less, respectively. Relative 13C incorporation into amino sugars of living microorganisms showed only 0.57% on day 3. Therefore, the turnover of cell membrane components is two times faster than that of cell walls, even in living microorganisms. Both PLFAs and amino sugars showed that glucose C was preferentially used by bacteria. 13C incorporation into bacterial cell walls and membranes decreased with time, but increased or remained constant for fungi, reflecting faster turnover of bacteria than fungi. Consequently, bacteria contribute more to the decomposition of low molecular weight organics, whereas fungi consume bacterial products or necromass and contribute more to long-term C stabilisation. Thus, tracing of 13C in cellular

  20. Investigation of Ethnic Self-Labeling in the Latina Population: Implications for Counselors and Counselor Educators

    ERIC Educational Resources Information Center

    Malott, Krista M.

    2009-01-01

    Using a qualitative approach, the author explored the process of ethnic label selection, change, and the meaning assigned to ethnic labels. Ten women of Mexican descent participated in semistructured, in-depth interviews. Phenomenological analysis of the data revealed several themes, including the importance of family, ancestral traditions, and…

  1. Being a Niuean or Being Niue? An Investigation into the Use of Identity Labels

    ERIC Educational Resources Information Center

    Starks, Donna

    2010-01-01

    Identity labels are used by in-group and out-group members to define themselves both referentially and socially. This article explores the use of identity labels in interview data from the Pasifika Languages of Manukau Project, a project that examined the language maintenance and use of Samoan, Tongan, Cook Island, and Niuean peoples in Auckland,…

  2. Changes in the distributions of fluorine-18-labelled fluoro-2-deoxy-d-glucose accumulation into tongue-related muscles after dissection in patients with tongue cancer.

    PubMed

    Kito, Shinji; Koga, Hirofumi; Oda, Masafumi; Tanaka, Tatsurou; Miyamoto, Ikuya; Kodama, Masaaki; Habu, Manabu; Kokuryo, Shinya; Osawa, Kenji; Yamamoto, Noriaki; Matsumoto-Takeda, Shinobu; Wakasugi-Sato, Nao; Kawanabe, Noriaki; Yoshiga, Daigo; Nishimura, Shun; Joujima, Takaaki; Kito-Shingaki, Ayae; Uehara, Masataka; Sasaguri, Masaaki; Morimoto, Yasuhiro

    2017-08-01

    To elucidate the changes in the distributions of fluorine-18-labelled fluoro-2-deoxy-d-glucose ((18)F-FDG) accumulation in the tongue muscles of patients following four kinds of surgical operations for tongue cancers. The changes in the distributions of (18)F-FDG accumulations in the tongue muscles on positron emission tomography (PET)-CT, in association with imaging findings on CT and MRI, were retrospectively analyzed before and after four kinds of surgical operations for 50 patients with tongue cancers. (18)F-FDG-PET-positive areas appeared at the back of the intrinsic muscles of the tongue after invasive surgery for tongue cancers despite the absence of abnormal findings on CT and MRI. A correlation between the standardized uptake value maximum of (18)F-FDG in the intrinsic muscles and the degree of invasiveness of the surgical procedures for tongue cancers (r = 0.539, p < 0.01) was found. It is important to pay attention to the changes in (18)F-FDG distributions in the intrinsic muscles of the tongue before and after invasive surgery despite the absence of abnormal findings on CT and MRI when evaluating the tongue on (18)F-FDG-PET.

  3. Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter

    PubMed Central

    Ismail, Nur Faezee; Lim, Theam Soon

    2016-01-01

    Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform. PMID:26782912

  4. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis.

    PubMed

    Grotz, V Lee; Pi-Sunyer, Xavier; Porte, Daniel; Roberts, Ashley; Richard Trout, J

    2017-08-01

    The discovery of gut sweet taste receptors has led to speculations that non-nutritive sweeteners, including sucralose, may affect glucose control. A double-blind, parallel, randomized clinical trial, reported here and previously submitted to regulatory agencies, helps to clarify the role of sucralose in this regard. This was primarily an out-patient study, with 4-week screening, 12-week test, and 4-week follow-up phases. Normoglycemic male volunteers (47) consumed ∼333.3 mg encapsulated sucralose or placebo 3x/day at mealtimes. HbA1c, fasting glucose, insulin, and C-peptide were measured weekly. OGTTs were conducted in-clinic overnight, following overnight fasting twice during screening phase, twice during test phase, and once at follow-up. Throughout the study, glucose, insulin, C-peptide and HbA1c levels were within normal range. No statistically significant differences between sucralose and placebo groups in change from baseline for fasting glucose, insulin, C-peptide and HbA1c, no clinically meaningful differences in time to peak levels or return towards basal levels in OGTTs, and no treatment group differences in mean glucose, insulin, or C-peptide AUC change from baseline were observed. The results of other relevant clinical trials and studies of gastrointestinal sweet taste receptors are compared to these findings. The collective evidence supports that sucralose has no effect on glycemic control. Copyright © 2017 Heartland Food Products Group. Published by Elsevier Inc. All rights reserved.

  5. In vivo investigation of homocysteine metabolism to polyamines by high-resolution accurate mass spectrometry and stable isotope labeling.

    PubMed

    Ruseva, Silviya; Lozanov, Valentin; Markova, Petia; Girchev, Radoslav; Mitev, Vanio

    2014-07-15

    Polyamines are essential polycations, playing important roles in mammalian physiology. Theoretically, the involvement of homocysteine in polyamine synthesis via S-adenosylmethionine is possible; however, to our knowledge, it has not been established experimentally. Here, we propose an original approach for investigation of homocysteine metabolites in an animal model. The method is based on the combination of isotope-labeled homocysteine supplementation and high-resolution accurate mass spectrometry analysis. Structural identity of the isotope-labeled metabolites was confirmed by accurate mass measurements of molecular and fragment ions and comparison of the retention times and tandem mass spectrometry fragmentation patterns. Isotope-labeled methionine, spermidine, and spermine were detected in all investigated plasma and tissue samples. The induction of moderate hyperhomocysteinemia leads to an alteration in polyamine levels in a different manner. The involvement of homocysteine in polyamine synthesis and modulation of polyamine levels could contribute to a better understanding of the mechanisms connected with homocysteine toxicity.

  6. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles

    PubMed Central

    2010-01-01

    Background For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Results Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under

  7. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles.

    PubMed

    Schäfer, Richard; Bantleon, Rüdiger; Kehlbach, Rainer; Siegel, Georg; Wiskirchen, Jakub; Wolburg, Hartwig; Kluba, Torsten; Eibofner, Frank; Northoff, Hinnak; Claussen, Claus D; Schlemmer, Heinz-Peter

    2010-04-06

    For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-gamma in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under osteogenic

  8. A preliminary investigation on the interaction between sol-gel immobilized glucose oxidase and freely diffusing glucose by means of two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Delfino, I.; Portaccio, M.; De Rosa, M.; Lepore, M.

    2013-02-01

    To study immobilized protein interactions with dissolved substrates is a very important topic both from a fundamental and technological standpoint. In the present report we illustrate the preliminary results obtained on sol-gel immobilized glucose oxidase (GOD) using a standard de-scanned two-photon microscope based on a modified confocal scanhead with internal detectors and a Ti:sapphire laser as a source. Data acquisition conditions were preliminary defined using functionalized beads of different dimensions. Various sol-gel supports were then investigated by monitoring endogeneous fluorescence due to the flavoadenine (FAD) molecules, present in GOD. Linear absorption and fluorescence spectroscopy along with Fourier Transform Infrared microscopy were employed for a full-optical characterization of the samples. The results show that GOD immobilization processes can be successfully monitored in some cases and also the interaction with glucose could be studied by this approach. This assessment holds potentials to better understand the characteristic of immobilized enzymes biocatalysis and to develop new biosensing schemes.

  9. Technetium-99m labeled peptides--an investigation of multiple HPLC peaks.

    PubMed

    Hnatowich, D J; Chang, F; Qu, T; Rusckowski, M

    1999-05-01

    This laboratory, and others, have reported multiple radioactive peaks in the size exclusion high performance liquid chromatographic (HPLC) analysis of 99mTc-labeled peptides. In the case of one 99mTc-MAG3-labeled peptide studied in this laboratory, human neutrophil elastase inhibitor, all five radioactive peaks were shown to be due to active peptide rather than radiocontaminants. By a variety of experiments, the nature of these peaks have now been examined. A high molecular weight UV peak could be generated by heating the MAG3 coupled, but not the native, peptide. Furthermore, this UV peak did not appear upon heating the peptide if the sulfur within the MAG3 chelator was replaced with oxygen. This peak may therefore be due to polymers resulting from intermolecular disulfide bond formation between sulfurs in the MAG3 chelate and the peptide. Several peaks with apparent lower molecular weights were absent on analysis with a different size exclusion column with superior resolution in their molecular weight range. More importantly, they were also absent on analysis by SDS polyacrylamide gel electrophoresis. These "low" molecular weight radioactive peaks may therefore be due to interactions between the 99mTc-MAG3 chelate and the peptide which produce multiple molecular configurations of identical molecular weight but differing in shape, charge, isomerism or lipophilicity such that they are resolved under the conditions of certain analyses. In support of this possibility, lengthening the linker between MAG3 and the peptide reduced the number of radioactive peaks, while encouraging the interaction by replacing MAG3 with the shorter MAG2 seemed to increase the number of radioactive peaks. Finally, that the three "low" molecular weight radioactive peaks reappeared when a single peak fraction was reanalyzed suggests that the species responsible are in rapid equilibrium. One conclusion from this investigation is that the appearance of a single peak by any HPLC analysis offers

  10. Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Hosokawa, Hiroshi; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2013-01-01

    We investigated the effects of allyl isothiocyanate (AITC) on the blood glucose levels of mice using an intraperitoneal glucose tolerance test. The intragastric administration of 25 mg/kg body weight AITC reduced the increase in blood glucose level after 2 g/kg body weight glucose was given intraperitoneally, compared with that of control mice. To elucidate the mechanism responsible for the reduction, respiratory gas analysis employing (13)C-labeled glucose was performed. The intragastrically administering AITC increased (13)CO2 emission, compared to vehicle, after intraperitoneal administration of (13)C-labeled glucose. This indicated that AITC increased the utilization of exogenously administered glucose, which was excessive glucose in the blood. To examine whether transient receptor potential (TRP) channels mediated this reduction in the blood glucose levels, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastrically administering AITC reduced the increase in the blood glucose level in TRPA1 KO mice but not in TRPV1 KO mice. These findings suggest that dietary AITC might reduce the increases in blood glucose levels by increasing the utilization of excessive glucose in the blood by activating TRPV1.

  11. [Investigation on the nutrition labels of prepackaged traditional foods of Henan Province].

    PubMed

    Zhou, Shengsheng; Li, Lei; Sun, Jing; Ye, Bing; Fu, Pengyu; Li, Shan; Yuan, Pu; Chao, Feng; Yang, Li; Zhang, Ding; Zhang, Shufang

    2015-01-01

    To understand the current status of nutrition labeling on Henan province local traditional prepackaged food product. Purchasing the samplings according with the include criteria in the supermarket and retail stores within the scope of province, then taking photographs and logging nutrition labeling information to questionnaire, using Excel and SPSS 15.0 software to analyze. The .significance of difference rate was judged by chi-square test. The sum of meeting requirement samplings was 565 (including 5 major categories and 13 small classes) and the entire nutritional labeling signing rate was 91.9%. The signing rate of forced signing nutrients such as energy, protein, carbohydrates, fat and sodium was 98.8%. There were 7 kinds of mistakes of nutritional labeling signing. The nutrition labeling signing rate of optional nutrients was very low. The signing rate of nutrition claims and function claims was less than 4%. In the traditional local prepackaged food products made in Henan province, the forced signed nutrition labeling was well sighed but optional content was ignored.

  12. 78 FR 70306 - Distribution of In Vitro Diagnostic Products Labeled for Research Use Only or Investigational Use...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... HUMAN SERVICES Food and Drug Administration Distribution of In Vitro Diagnostic Products Labeled for Research Use Only or Investigational Use Only: Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and...

  13. Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation.

    PubMed

    Kim, Hyo Jin; Lee, Hyeong-Rho; Kim, Chang Sup; Jin, Yong-Su; Seo, Jin-Ho

    2013-08-15

    Protein expression patterns of an erythritol-producing yeast, Candida magnoliae, were analyzed to identify differentially expressed proteins in response to glucose perturbation. Specifically, wild type C. magnoliae was grown under high and low glucose conditions and the cells were harvested at both mid-exponential and erythritol production phases for proteomic studies. In order to analyze intracellular protein abundances from the harvested cells quantitatively, total intracellular proteins were extracted and applied to two-dimensional gel electrophoresis for separation and visualization of individual proteins. Among the proteins distributed in the range of pI 4-7 and molecular weight 29-97kDa, five osmo-responsive proteins were drastically changed in response to glucose perturbation. Hsp60 (Heat-shock protein 60), transaldolase and NADH:quinone oxidoreductase were down-regulated under the high glucose condition and Bro1 (BCK1-like Resistance to Osmotic shock) and Eno1 (enolase1) were up-regulated. These proteins are directly or indirectly related with cellular stress response. Importantly, protein expression patterns of Hsp60, Bro1 and Eno1 were strongly correlated with previous studies identifying the proteins perturbed by osmotic stress for other organisms including Saccharomyces cerevisiae. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Spin Labeling ESR Investigation of a Role of Humic Acids at Covalent Binding of Xenobiotics to Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2014-05-01

    The environmental risk of organic xenobiotic chemicals released into soils is controlled by their sorption and binding processes. However, the molecular mechanisms of reversible and irreversible interactions of xenobiotics with soil constituents and an influence of humic substances on this interaction are only partly understood. New methods and approaches aimed at understanding of molecular mechanisms in the soil environment and a role of humic substances in the sorption and binding processes are today required to manage and keep the quality of soil used and fertilized in agricultural industry. The paper presents a new approach of using stable ESR spin labels to investigate a role of humic substances in the interactions of organic xenobiotic chemicals with constituents of natural soil via the typical functional groups of xenobiotics, such as Amines. At the experiment, the nitroxide spin labels, such as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl), Amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and Aniline spin labels (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), were added to samples of different natural soils, such luvisol, cambisol and chernozem. Amino-TEMPO and Aniline spin labels include the aliphatic amino and aromatic amino functional groups, respectively. A significant broadening of the ESR spectrum of Aniline spin labels incubated in different soils indicated a stable effect of covalent binding of the spin labels to soil constituents via the aromatic amino, whereas the ESR spectra of the other two spin labels were not broadened that pointed at the absence of covalent binding of spin labels via the aliphatic amino. As shown, a part of bound spin labels via the aromatic amino increased with increasing of the concentration of humic acids in soil. The same broadened signals were also be detected with the humic acids extracted from the investigated soils. A strong covalent binding of spin labels to humic substances via the aromatic amines was

  15. Serial investigation of continuous glucose monitoring in a very low birth weight infant with transient late-onset hyperglycemia.

    PubMed

    Nakamura, Toshihiko; Hatanaka, Daisuke; Nakamura, Mari; Kusakari, Michiko; Takahashi, Hidehiro; Kamohara, Takashi

    2016-12-16

    Transient late-onset hyperglycemia was detected in a very low birth weight (VLBW) infant (gestational age 28 weeks, birth weight 1,082 g) by routine point-of-care glucose monitoring. The infant had no clinical symptom. Serial continuous glucose monitoring (CGM) was conducted for 3 days at 31, 35, and 39 weeks' post conceptual age. The difference values between the maximum and minimum blood glucose levels during the interval from one enteral feeding to the next enteral feeding were 32.3±14.3 mg/dL, 47.5±22.9 mg/dL, and 27.5±12.9 mg/dL for the 1(st), 2(nd), and 3(rd) CGM, respectively. The serial change in the values was statistically significant (p<0.01).CGM is widely used as a routine clinical practice, which is true even in VLBW infants. Hyperglycemic events detected by only once of CGM in otherwise healthy preterm infants have already been reported on larger numbers of patients. To our knowledge, this is the first report that the change of glucose intolerance in a VLBW infant with transient late-onset hyperglycemia was investigated by serial CGM.

  16. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    SciTech Connect

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  17. Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation

    PubMed Central

    CIMAROSTI, HELENA; HENLEY, JEREMY M.

    2012-01-01

    It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060

  18. Investigation of stability in a two-delay model of the ultradian oscillations in glucose-insulin regulation

    NASA Astrophysics Data System (ADS)

    Huard, B.; Easton, J. F.; Angelova, M.

    2015-09-01

    In this paper, a two-delay model for the ultradian oscillatory behaviour of the glucose-insulin regulation system is studied. Hill functions are introduced to model nonlinear physiological interactions within this system and ranges on parameters reproducing biological oscillations are determined on the basis of analytical and numerical considerations. Local and global stability are investigated and delay-dependent conditions are obtained through the construction of Lyapunov-Krasovskii functionals. The effect of Hill parameters on these conditions, as well as the boundary of the stability region in the delay domain, are established for the first time. Numerical simulations demonstrate that the model with Hill functions represents well the oscillatory behaviour of the system with the advantage of incorporating new meaningful parameters. The influence of the time delays on the period of oscillations and the sensitivity of the latter to model parameters, in particular glucose infusion, are investigated. The model can contribute to the better understanding and treatment of diabetes.

  19. Safety and feasibiLIty of Metformin in patients with Impaired glucose Tolerance and a recent TIA or minor ischemic stroke (LIMIT) trial - a multicenter, randomized, open-label phase II trial.

    PubMed

    den Hertog, Heleen M; Vermeer, S E; Zandbergen, A A M; Achterberg, Sefanja; Dippel, Diederik W J; Algra, Ale; Kappelle, L J; Koudstaal, Peter J

    2015-01-01

    We aimed to assess the safety, feasibility, and effects on glucose metabolism of treatment with metformin in patients with TIA or minor ischemic stroke and impaired glucose tolerance. We performed a multicenter, randomized, controlled, open-label phase II trial with blinded outcome assessment. Patients with TIA or minor ischemic stroke in the previous six months and impaired glucose tolerance (2-hour post-load glucose levels of 7.8-11.0 mmol/l) were randomized to metformin, in a daily dose of 2 g, or no metformin, for three months. Primary outcome measures were safety and feasibility of metformin, and the adjusted difference in 2-hour post-load glucose levels at three months. This trial is registered as an International Standard Randomized Controlled Trial Number 54960762. Forty patients were enrolled; 19 patients were randomly assigned metformin. Nine patients in the metformin group had side effects, mostly gastrointestinal, leading to permanent discontinuation in four patients after 3-10 weeks. Treatment with metformin was associated with a significant reduction in 2-hour post-load glucose levels of 0·97 mmol/l (95% CI 0·11-1·83) in the on-treatment analysis, but not in the intention-to-treat analysis (0·71 mmol/l; 95% CI -0·36 to 1·78). Treatment with metformin in patients with TIA or minor ischemic stroke and impaired glucose tolerance is safe, but leads to minor side effects. If tolerated, it may lead to a significant reduction in post-load glucose levels. This suggests that the role of metformin as potential therapeutic agent for secondary stroke prevention should be further explored. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  20. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  1. Investigation on the role of consumer health orientation in the use of food labels.

    PubMed

    Cavaliere, A; De Marchi, E; Banterle, A

    2017-06-01

    This study explored the relationship between health orientation (i.e. individual motivation to engage in healthy attitudes, beliefs and behaviours) and consumers' use of nutritional information on food labels. Specifically, this study analysed the relationship between a number of direct investments in health (namely those behaviours that can contribute directly to maintain a good health status) and use of nutritional information on food labels. Data for the analysis were collected through face-to-face interviews with a sample of 540 Italian consumers in charge of their grocery shopping. Forty grocery stores, including supermarkets and hypermarkets, were selected using a systematic sampling technique. Data were analysed using three equations and accounting for endogeneity issues. This study found that those consumer groups with low health orientation (specifically smokers, those who do not exercise regularly, and those with an unhealthy body weight) show little interest in nutritional labels. Nutritional labels as a tool to promote healthier food choices have a limited effect on those consumers in greatest need of pursuing healthier lifestyle habits. Alternative policy intervention should be undertaken to reach these consumer groups. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. INVESTIGATION OF ARSINE-GENERATING REACTIONS USING DEUTERIUM-LABELED REAGENTS AND MASS SPECTROMETRY

    EPA Science Inventory

    Mass spectrometry was used to detect transfer of deuterium from labeled reagents to arsines following hydride-generation reactions. The arsine gases liberated from the reactions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid with HC1 and NaBD4 in H2O, or with...

  3. Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yasuhiro; Matsumura, Kenta; Yamakoshi, Takehiro; Lee, Jihyoung; Rolfe, Peter; Kato, Yuji; Shimizu, Koichi; Yamakoshi, Ken-ichi

    2017-06-01

    The aim of this study was to discover a simple/convenient geometrical arrangement of radiation sources and detector to acquire finger-photoplethysmograms (PPGs) with wavelength regions of blood glucose (BGL) absorption, toward practical noninvasive BGL measurement. First, we compared PPGs with three wavelengths: 808 nm (without water absorption), 1160 nm (with weak water absorption), and 1600 nm (with nearly peak BGL absorption and strong water absorption), while the source-detector spacing was successively increased circumferentially around a fingertip. In 10 healthy subjects, we observed clear cardiac-related pulsatile components of PPG signals at 808 and 1160 nm in any incident positions with more than 15 dB of signal-to-noise ratio (S/N), but reliable PPG detections at 1600 nm with more than 10 dB of S/N was only possible when the source-detector distance was less than 3 mm around the fingertip circumference. Second, with this arrangement, an experiment was performed using six wavelengths to cover glucose absorption bands (from 1550 to 1749 nm), obtaining pulsatile PPG signals with more or less 15 dB of S/N. Through the present experiments, this orthogonal arrangement of the source and detector to detect forward- and side-scattered radiation through the tissue is appropriate for PPG measurements with wavelength regions where there is potential for BGL measurement.

  4. Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors.

    PubMed

    Ott, A; Germond, J E; Chaintreau, A

    2000-05-01

    Acetaldehyde formation by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus during fermentation of cow's milk was investigated using (13)C-labeled glucose, L-threonine, and pyruvate with a recent static-and-trapped-headspace technique that does not require derivatization of acetaldehyde prior to gas chromatography-mass spectrometry. Over 90% and almost 100% of acetaldehyde originated from glucose during fermentation by L. delbrueckii subsp. bulgaricus and S. thermophilus, respectively, taking into account both singly and doubly labeled acetaldehyde. As both microorganisms showed threonine aldolase activity and formed labeled acetaldehyde from (13)C-labeled threonine during the fermentation of milk, this amino acid should also contribute to the acetaldehyde produced.

  5. Investigation of the correlation between 100 gram oral glucose tolerance test results and maternal leptin levels during pregnancy

    PubMed Central

    Şengül, Özlem Baykara; Mungan, Tamer; Erdemoğlu, Evrim; İslamoğlu, Göksel; Kıyak, Nuran

    2009-01-01

    Objective To investigate the correlation between maternal leptin levels and 100 gram oral glucose test (OGTT) results as well as the correlation between leptin levels and the development of gestational diabetes mellitus (GDM) and glucose intolerance during pregnancy. Material and Method: 104 subjects with gestational weeks ranging from 24 to 32 weeks who had increased 50 gr OGTT values (>140) were included in this study. After the screening test, 100 gr OGTT was administered to the subjects. Sixty cases were selected from these subjects; twenty patients with one abnormal test result were identified as “glucose intolerant” group (Group 1), 20 patients with two abnormal test values were diagnosed with GDM (Group 2) and 20 patients with normal test results constituted the control group. The serum leptin levels of the groups were measured with enzyme linked immunosorbent assay (ELISA). Results The serum leptin level was 8.4±5.1 ng/ml for group 1, 9.1±5.3 ng/ml for group 2 and 6.3±4.6 ng/ml for the control group. Although serum leptin levels for group 1 and 2 was observed to be higher than the control group, the result was not statistically significant (p>0.05). This result did not change after adjusting for body mass index (BMI). Conclusion There is no statistically significant difference between leptin levels among three groups. PMID:24591860

  6. Analysis of D-glucose metabolism of wood decay fungi using 13C-NMR and 13C-labeled substrates

    Treesearch

    Theodorus H. de Koker; Michael D. Mozuch; Philip J. Kersten

    2003-01-01

    D-Glucose metabolism is thought to be important during wood decay by fungi, not only for anabolic and catabolic purposes of central metabolism, but also as a potential source of peroxide required by extracellular peroxidases. There has been some confusion in the literature as to whether this peroxide-generating activity is of the glucose 1-oxidase or pyranose 2-oxidase...

  7. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose.

    PubMed

    Shimizu, Nobuhiro; Naito, Michiya; Mori, Naoki; Kuwahara, Yasumasa

    2014-02-01

    De novo biosynthesis of linoleic acid (LA) and its conversion to (Z,Z)-6,9-heptadecadiene were examined in Carpoglyphus lactis (Acarina, Carpoglyphidae). Experiments involving (13)C-administration using [1-(13)C]-d-glucose revealed that (13)C atoms were incorporated into LA of total lipid extracted from the mite, resulting in labeling of all even-numbered carbons. This result demonstrated that LA was produced from (13)C-labeled acetyl-CoA, which is indicative of direct de novo biosynthesis. In these feeding experiments involving [1-(13)C]-D-glucose, (13)C atoms were also incorporated into (Z,Z)-6,9-heptadecadiene, which is one of the major secretory components in the mite. The labeling pattern of (Z,Z)-6,9-heptadecadiene at odd-numbered carbons agreed well with that of LA after loss of the carboxyl carbon. It was concluded that the mites could stably convert LA into (Z,Z)-6,9-heptadecadiene without the dietary requirement of this essential fatty acid.

  8. Purification and investigation of some kinetic properties of glucose-6-phosphate dehydrogenase from parsley (Petroselinum hortense) leaves.

    PubMed

    Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2002-05-01

    In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.

  9. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  10. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kästner, Matthias

    2014-05-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amounts of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 25 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  11. [A preparation technique for quantitative investigation of SPIO-containing solutions and SPIO-labelled cells by MRI].

    PubMed

    Pintaske, J; Helms, G; Bantleon, R; Kehlbach, R; Wiskirchen, J; Claussen, C D; Schick, F

    2005-06-01

    PURPOSE. This work aims to present a preparation technique for ex-vivo MR examination of SPIO (superparamagnetic iron oxide) containing solutions or SPIO labeled cells. Accumulations of SPIO particles and labeled cells were prepared in different concentrations using agar gel phantoms. Signal extinction around accumulations of magnetic material was examined systematically by gradient echo sequences with variable echo times and spatial resolution. The correlation between local iron concentration and diameter of signal extinction in MR gradient echo images was investigated. Resovist, (SHU 555A) was used as superparamagnetic contrast medium. Different concentrations of SPIO-containing solutions (0.75 - 15 mg Fe/10 ml) and magnetically labeled SK-Mel28 cells (25,000-1,000,000 cells/10 ml) were accommodated inside a defined volume in an agar matrix. Diameters of signal void were assessed in dependence on local iron concentration, echo time (5-25 ms) and isotropic spatial resolution (length of voxel 0.25 - 0.60 mm). Measurements were performed on a clinical MR whole body scanner (3 Tesla) using a spoiled gradient echo sequence (FLASH). For the present experimental conditions sensitivity to detect the magnetic label was maximized using TE 25 ms. In contrast, the area of signal cancellation was minimized using TE 5 ms and isotropic resolution of 0.25 mm. In the latter case the image indicated the area of magnetic material most precisely. Diameter of signal cancellation was a logarithmic function on local iron concentration. In the presented set-up detection of concentrations as low as 0.75 mg Fe/10 ml in SPIO-containing solution or 1.25 mg Fe/10 ml in SPIO-labeled SK-Mel28 cells was certainly possible. The proposed preparation strategy with a well defined spatial distribution of the magnetic material in an agar gel phantom produced reliable results and appears clearly superior compared to set-ups with randomly distributed material in glass tubes. The diameter of the signal

  12. Mass spectrometry-based microassay of 2H and 13C plasma glucose labeling to quantify liver metabolic fluxes in vivo

    PubMed Central

    Hasenour, Clinton M.; Wall, Martha L.; Ridley, D. Emerson; Hughey, Curtis C.; James, Freyja D.; Wasserman, David H.

    2015-01-01

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [13C3]propionate, [2H2]water, and [6,6-2H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  13. Investigation of Adaptive Responses in Bystander Cells in 3D Cultures Containing Tritium-Labeled and Unlabeled Normal Human Fibroblasts

    PubMed Central

    Pinto, Massimo; Azzam, Edouard I.; Howell, Roger W.

    2010-01-01

    The study of radiation-induced bystander effects in normal human cells maintained in three-dimensional (3D) architecture provides more in vivo-like conditions and is relevant to human risk assessment. Linear energy transfer, dose and dose rate have been considered as critical factors in propagating radiation-induced effects. This investigation uses an in vitro 3D tissue culture model in which normal AG1522 human fibroblasts are grown in a carbon scaffold to investigate induction of a G1 arrest in bystander cells that neighbor radiolabeled cells. Cell cultures were co-pulse-labeled with [3H]deoxycytidine (3HdC) to selectively irradiate a minor fraction of cells with 1–5 keV/μm β particles and bromodeoxyuridine (BrdU) to identify the radiolabeled cells using immunofluorescence. The induction of a G1 arrest was measured specifically in unlabeled cells (i.e. bystander cells) using a flow cytometry-based version of the cumulative labeling index assay. To investigate the relationship between bystander effects and adaptive responses, cells were challenged with an acute 4 Gy γ-radiation dose after they had been kept under the bystander conditions described above for several hours, and the regulation of the radiation-induced G1 arrest was measured selectively in bystander cells. When the average dose rate in 3HdC-labeled cells (<16% of population) was 0.04–0.37 Gy/h (average accumulated dose 0.14–10 Gy), no statistically significant stressful bystander effects or adaptive bystander effects were observed as measured by magnitude of the G1 arrest, micronucleus formation, or changes in mitochondrial membrane potential. Higher dose rates and/or higher LET may be required to observe stressful bystander effects in this experimental system, whereas lower dose rates and challenge doses may be required to detect adaptive bystander responses. PMID:20681788

  14. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts

    USDA-ARS?s Scientific Manuscript database

    Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 US and European cohort studies comprising 51,289 persons without diabetes to test whether...

  15. Structural investigations of DNA-histone complexes. A spin label study.

    PubMed Central

    Sinha, B K; Chignell, C F; Wee, V T

    1979-01-01

    We have prepared two acridine spin labels, 6-chloro-9-[4-(2,2,6,6-tetramethyl-1-piperidinyloxy)amino]-2-methoxyacridine (I) and 9-[4-(2,2,6,6-tetramethyl-1-piperidinyloxy)amino]-acridine (II) and have used them to study the binding of lysine-rich histone (H1) to DNA using electron spin resonance (ESR). ESR spectra of I in the presence of DNA, polydA-polydT and polydG-polydC were characteristic of highly immobilized radicals with maximum hyperfine splitting (2T11) of 59G, 62.5G and 59G respectively. However, the 2T11 values for II in the same systems were 55.5G, 55.5G and 62.5G respectively. Addition of H1 at a low P/D released ionically bound I and II from DNA. In the presence of 0.1 M NaCl, which prevents ionic binding, H1 still caused a significant release of bound II but not I from DNA. At a high P/D (with or without NaCl) H1 caused no displacement of either I or II. Our findings suggest that H1 does not affect the intercalating sites and probably binds to one of the grooves of DNA, most probably the major groove, and specifically in the A-T-rich regions. PMID:226941

  16. Comprehensive investigation of postmortem glucose levels in blood and body fluids with regard to the cause of death in forensic autopsy cases.

    PubMed

    Chen, Jian-Hua; Michiue, Tomomi; Inamori-Kawamoto, Osamu; Ikeda, Sayuko; Ishikawa, Takaki; Maeda, Hitoshi

    2015-11-01

    The serum glucose level is regulated within a narrow range by multiple factors under physiological conditions, but is greatly modified in the death process and after death. The present study comprehensively investigated glucose levels in blood and body fluids, including pericardial fluid (PCF), cerebrospinal fluid (CSF) and vitreous humor, reviewing forensic autopsy cases (n=672). Right heart blood glucose level was often higher than at other sites, and the CSF glucose level was the lowest, showing greater dissociation in acute/subacute death cases. The glucose level was higher in the diabetic (high HbA1c) than in the non-diabetic (low HbA1c) group at each site (p<0.01-0.0001). Fatal diabetic ketoacidosis cases had evidently high glucose levels at each site; whereas in the non-diabetic group, blood glucose level was higher in fatal alcohol abuse, saltwater drowning, electrocution, cerebrovascular disease and sudden cardiac death due to ischemic heart disease. Fatal methamphetamine (MA) abuse, sepsis, malnutrition (starvation) and hypoglycemia due to antidiabetics showed markedly lower blood glucose levels. Ketones in bilateral cardiac blood and PCF were increased in diabetic ketoacidosis and fatal alcohol abuse as well as in most cases of hyperthermia (heatstroke), hypothermia (cold exposure) and malnutrition. These findings suggest that combined analysis of glucose, HbA1c and ketones in blood and body fluids is useful to investigate not only fatal diabetic metabolic disorders but also death processes due to other causes, including alcohol and MA abuse, as well as thermal disorders, sepsis and malnutrition.

  17. Raman spectroscopic investigation of 13CO 2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech).

    PubMed

    Keiner, Robert; Gruselle, Marie-Cécile; Michalzik, Beate; Popp, Jürgen; Frosch, Torsten

    2015-03-01

    An important issue, in times of climate change and more extreme weather events, is the investigation of forest ecosystem reactions to these events. Longer drought periods stress the vitality of trees and promote mass insect outbreaks, which strongly affect ecosystem processes and services. Cavity-enhanced Raman gas spectrometry was applied for online multi-gas analysis of the gas exchange rates of O2 and CO2 and the labeling of Fagus sylvatica L. (European beech) seedlings with (13)CO2. The rapid monitoring of all these gases simultaneously allowed for the separation of photosynthetic uptake of CO2 by the beech seedlings and a constant (12)CO2 efflux via respiration and thus for a correction of the measured (12)CO2 concentrations in course of the labeling experiment. The effects of aphid infestation with the woolly beech aphid (Phyllaphis fagi L.) as well as the effect of a drought period on the respirational gas exchange were investigated. A slightly decreased respirational activity of drought-stressed seedlings in comparison to normally watered seedlings was found already for a low drought intensity. Cavity-enhanced Raman gas monitoring of O2, (12)CO2, and (13)CO2 was proven to be a powerful new tool for studying the effect of drought stress and aphid infestation on the respirational activity of European beech seedlings as an example of important forest species in Central Europe.

  18. A class of novel nitronyl nitroxide labeling basic and acidic amino acids: synthesis, application for preparing ESR optionally labeling peptides, and bioactivity investigations.

    PubMed

    Zhang, Jianwei; Zhao, Ming; Cui, Guohui; Peng, Shiqi

    2008-04-01

    Aimed at optional ESR label 2-(4'-hydroxyl)phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl was introduced into the guanido of L-Arg-OH, the omega-amino group of L-Lys-OH with methylcarboxyl as a linker, and into the beta-carboxyl of L-Asp-OH and the gamma-carboxyl of L-Glu-OH with ethylamino as a linker. It was explored that the synthetic 30 novel ESR labeling amino acid derivatives were stable enough to the reaction conditions of peptide synthesis. Their incorporation led to 12 novel ESR optionally labeling PAK, RGDS, RGDV, and ECG. A series of NO related chemical tests, the in vitro and in vivo assays of these peptides confirmed that this strategy was practical.

  19. Can the combined administration of labelled fluoro-2 deoxy d glucose and insulin or chrome increase the diagnostic sensitivity of Positron Emission Tomography (PET)?

    PubMed

    Aydin, Suleyman

    2017-07-01

    In this letter to editor I hypothesize that administering insulin or chrome along with fluoro-2 deoxy d-glucose (FDG) to enhance its uptake in malignant lesions that are known to have low levels of tumor glycolysis, and therefore, improve the sensitivity of PET imaging in this setting. The logic behind this idea stems from the known fact that there is substantial increase in uptake of d-glucose following administration of insülin/chrome in many tissues, and as such, the same pattern would apply to FDG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Label-free versus conventional cellular assays: Functional investigations on the human histamine H1 receptor.

    PubMed

    Lieb, S; Littmann, T; Plank, N; Felixberger, J; Tanaka, M; Schäfer, T; Krief, S; Elz, S; Friedland, K; Bernhardt, G; Wegener, J; Ozawa, T; Buschauer, A

    2016-12-01

    A set of histamine H1 receptor (H1R) agonists and antagonists was characterized in functional assays, using dynamic mass redistribution (DMR), electric cell-substrate impedance sensing (ECIS) and various signaling pathway specific readouts (Fura-2 and aequorin calcium assays, arrestin recruitment (luciferase fragment complementation) assay, luciferase gene reporter assay). Data were gained from genetically engineered HEK293T cells and compared with reference data from GTPase assays and radioligand binding. Histamine and the other H1R agonists gave different assay-related pEC50 values, however, the order of potency was maintained. In the luciferase fragment complementation assay, the H1R preferred β-arrestin2 over β-arrestin1. The calcium and the impedimetric assay depended on Gq coupling of the H1R, as demonstrated by complete inhibition of the histamine-induced signals in the presence of the Gq inhibitor FR900359 (UBO-QIC). Whereas partial inhibition by FR900359 was observed in DMR and the gene reporter assay, pertussis toxin substantially decreased the response in DMR, but increased the luciferase signal, reflecting the contribution of both, Gq and Gi, to signaling in these assays. For antagonists, the results from DMR were essentially compatible with those from conventional readouts, whereas the impedance-based data revealed a trend towards higher pKb values. ECIS and calcium assays apparently only reflect Gq signaling, whereas DMR and gene reporter assays appear to integrate both, Gq and Gi mediated signaling. The results confirm the value of the label-free methods, DMR and ECIS, for the characterization of H1R ligands. Both noninvasive techniques are complementary to each other, but cannot fully replace reductionist signaling pathway focused assays.

  1. Isotope labeling studies on the formation of multiple addition products of alanine in the pyrolysis residue of glucose/alanine mixtures by high-resolution ESI-TOF-MS.

    PubMed

    Chu, Fong Lam; Sleno, Lekha; Yaylayan, Varoujan A

    2011-11-09

    Pyrolysis was used as a microscale sample preparation tool to generate glucose/alanine reaction products to minimize the use of expensive labeled precursors in isotope labeling studies. The residue remaining after the pyrolysis at 250 °C was analyzed by electrospray time-of-flight mass spectrometry (ESI-TOF-MS). It was observed that a peak at m/z 199.1445 in the ESI-TOF-MS spectrum appeared only when the model system contained at least 2-fold excess alanine. The accurate mass determination indeed indicated the presence of two nitrogen atoms in the molecular formula (C(10)H(18)N(2)O(2)). To verify the origin of the carbon atoms in this unknown compound, model studies with [(13)U(6)]glucose, [(13)C-1]alanine, [(13)C-2]alanine, [(13)C-3]alanine, and [(15)N]alanine were also performed. Glucose furnished six carbon atoms, and alanine provides four carbon (2 × C-2 and 2 × C-3) and two nitrogen atoms. When commercially available fructosylalanine (N-attached to C-1) was reacted with only 1 mol of alanine, a peak at m/z 199.1445 was once again observed. In addition, when 3-deoxyglucosone (3-DG) was reacted with a 2-fold excess of alanine, a peak at m/z 199.1433 was also generated, confirming the points of attachment of the two amino acids at C-1 and C-2 atoms of 3-DG. These studies have indicated that amino acids can undergo multiple addition reactions with 1,2-dicarbonyl compounds such as 3-deoxyglucosone and eventually form a tetrahydropyrazine moiety.

  2. Investigation of biosynthetic pathways to hydroxycoumarins during post-harvest physiological deterioration in Cassava roots by using stable isotope labelling.

    PubMed

    Bayoumi, Soad A L; Rowan, Michael G; Beeching, John R; Blagbrough, Ian S

    2008-12-15

    Cassava (Manihot esculenta Crantz) is an important starch-rich crop, but the storage roots only have a short shelf-life due to post-harvest physiological deterioration (PPD), which includes the over-production and polymerisation of hydroxycoumarins. Key aspects of coumarin secondary-metabolite biosynthesis remain unresolved. Here we exploit the accumulation of hydroxycoumarins to test alternative pathways for their biosynthesis. Using isotopically labelled intermediates (p-coumarate-2-(13)C, caffeate-2-(13)C, ferulate-2-(13)C, umbelliferone-2-(18)O and esculetin-2-(18)O), we show that the major biosynthetic pathway to scopoletin and its glucoside, scopolin, in cassava roots during PPD is through p-coumaric, caffeic and then ferulic acids. An alternate pathway through 2',4'-dihydroxycinnamate and umbelliferone leads to esculetin and esculin. We have used C(18)O(2)-carboxylate-labelled cinnamic and ferulic acids, and feeding experiments under an atmosphere of (18)O(2), to investigate the o-hydroxylation and cyclisation steps. We demonstrate that the major pathway is through o-hydroxylation and not via a proposed spirolactone-dienone intermediate.

  3. Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling

    NASA Astrophysics Data System (ADS)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Cretaio, E.; Marinello, F.; Schiavuta, P.; Parma, A.; Riello, P.; Benedetti, A.

    2010-10-01

    DNA microarray is a high-throughput technology used for detection and quantification of nucleic acid molecules and others of biological interest. The analysis is resulting by specific hybridization between probe sequences deposited in array and a target ss-DNA usually functionalized by a luminescent dye. These organic labels have well known disadvantages like photobleaching and limited sensitivity. Therefore in this work we investigate a different strategy, based on the use of inorganic silica nanospheres incorporating standard luminescent dyes or rare earth ions. The synthesis and characterization of these biomarkers is reported and their application to the DNA microarray technology in comparison to the use of standard molecular fluorophores or commercial quantum dots is discussed. We show that dye doped silica spheres provides a significant increase of the optical emission signal with respect to the use of free dyes, while rare earth doped silica spheres allow reducing or completely avoiding the background noise. These aspects, together with their cheap and easy synthesis, stability in water, easy surface functionalization and bio-compatibility makes them very promising for present and future applications in bio-labelling and bio-imaging.

  4. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis

    PubMed Central

    Hsu, Jen-Fang; Hsieh, Pei-Ying; Hsu, Hsin-Yun; Shigeto, Shinsuke

    2015-01-01

    In vivo, molecular-level investigation of cytokinesis, the climax of the cell cycle, not only deepens our understanding of how life continues, but it will also open up new possibilities of diagnosis/prognosis of cancer cells. Although fluorescence-based methods have been widely employed to address this challenge, they require a fluorophore to be designed for a specific known biomolecule and introduced into the cell. Here, we present a label-free spectral imaging approach based on multivariate curve resolution analysis of Raman hyperspectral data that enables exploratory untargeted studies of mammalian cell cytokinesis. We derived intrinsic vibrational spectra and intracellular distributions of major biomolecular components (lipids and proteins) in dividing and nondividing human colon cancer cells. In addition, we discovered an unusual autofluorescent lipid component that appears predominantly in the vicinity of the cleavage furrow during cytokinesis. This autofluorescence signal could be utilized as an endogenous probe for monitoring and visualizing cytokinesis in vivo. PMID:26632877

  5. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Fang; Hsieh, Pei-Ying; Hsu, Hsin-Yun; Shigeto, Shinsuke

    2015-12-01

    In vivo, molecular-level investigation of cytokinesis, the climax of the cell cycle, not only deepens our understanding of how life continues, but it will also open up new possibilities of diagnosis/prognosis of cancer cells. Although fluorescence-based methods have been widely employed to address this challenge, they require a fluorophore to be designed for a specific known biomolecule and introduced into the cell. Here, we present a label-free spectral imaging approach based on multivariate curve resolution analysis of Raman hyperspectral data that enables exploratory untargeted studies of mammalian cell cytokinesis. We derived intrinsic vibrational spectra and intracellular distributions of major biomolecular components (lipids and proteins) in dividing and nondividing human colon cancer cells. In addition, we discovered an unusual autofluorescent lipid component that appears predominantly in the vicinity of the cleavage furrow during cytokinesis. This autofluorescence signal could be utilized as an endogenous probe for monitoring and visualizing cytokinesis in vivo.

  6. [A non-invasive glucose measurement method based on orthogonal twin-polarized light and its pilot experimental investigation].

    PubMed

    Wang, Hong; Wu, Baoming; Liu, Ding

    2010-04-01

    In order to overcome the existing shortcomings of the non-invasive blood glucose polarized light measurement methods of optical heterodyne detection and direct detection, we present in this paper a new orthogonal twin-polarized light (OTPL) non-invasive blood glucose measurement method, which converts the micro-angle rotated by an optical active substance such as glucose to the energy difference of OTPL, amplifies the signals by the high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate the changes in deflection angle caused by blood glucose, and makes use of the linear relationship between blood glucose concentration and Faraday coil current to calculate blood glucose concentration. In our comparative experiment using the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9777 correlation coefficient is obtained in glucose concentration experiment, and a 0.952 in serum experiment. The result shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.

  7. Investigation of the Blood Glucose Lowering Potential of the Jamaican Momordica charantia (Cerasee) Fruit in Sprague-Dawley Rats

    PubMed Central

    Burnett, A; McKoy, M-L; Singh, P

    2015-01-01

    ABSTRACT The Momordica charantia (MC) fruit has been documented to possess antidiabetic properties. However, these studies were not without controversy surrounding the blood glucose-lowering ability and the mechanism of action in diabetes therapy. In an effort to evaluate such claims in the Jamaican MC species known as cerasee, aqueous extracts of the unripe fruit were studied in normal and diabetic rats. Normal male Sprague-Dawley rats were divided into groups (n = 6) orally administered distilled water, 10% dimethyl sulfoxide (DMSO) solution, the aqueous extract (400 mg/kg body weight) and glibenclamide (15 mg/kg body weight), respectively prior to assessment of fasting blood glucose (FBG) concentration. The oral glucose tolerance test (OGTT) was conducted in normoglycaemic rats orally administered distilled water, 10% DMSO solution, glibenclamide (15 mg/kg body weight) or aqueous extracts of the fruit (200 and 400 mg/kg body weight). Blood glucose concentration was also monitored in streptozotocin-induced diabetic rats administered the aqueous extract (250 mg/kg body weight) or water vehicle after an overnight fast. The aqueous extracts showed no hypoglycaemic or antidiabetic activity. However, the administration of the aqueous extracts (200 and 400 mg/kg body weight) resulted in significant improvement in glucose tolerance of glucose-primed normoglycaemic rats during the OGTT. These data suggest that the glucose-lowering mechanism of the Jamaican MC fruit species likely involves altered glucose absorption across the gastrointestinal tract. PMID:26624580

  8. Investigations of redox-labeled silica and gold nanoparticles in solution and as films on electrodes

    NASA Astrophysics Data System (ADS)

    Beasley, Christopher A.

    Chapter One serves as a background for Au nanoparticles (AuNP) and silica nanoparticles (SiNP). A brief history of the synthesis and characterization of AuNPs will be followed by a discussion on the recent application of the particles in sensing and energy-related applications. The second portion of the chapter will be a discussion on the functionalization of SiNPs and their application in a variety of sensing systems. Chapter Two discusses the irreversible adsorption onto electrode surfaces of highly ionic, mixed-monolayer AuNPs containing an N,N,N-triethylammonium terminated thiol and an 6-(ferrocenylhexane) thiol. The AuNP films are entropically stabilized due to the multidentate nature of the particles and can be transferred to NP-free electrolyte solutions for further investigation. The most interesting aspect of the film is the ability to monitor ion and accompanying solvent transfer between the film and electrolyte solution despite the films being one to two monolayers thick. Comparisons will be drawn to ion transfer between two immiscible electrolyte solutions. Chapter Three will discuss the controlled growth of films of highly ionic, mixed monolayer AuNPs containing deprotonated mercaptoundecanoic acid and 6-(ferrocenylhexane) thiol. The controlled deposition of films of AuNPs without the addition of a metal ion to facilitate binding between particles provides a new route to controlling film thicknesses for applications in Surface Enhanced Raman Spectroscopy and energy storage. Electrochemical quartz crystal microbalance studies, impedance spectroscopy and theoretical modeling show that the large peak-to-peak separation for the ferrocene/ferrocenium couple in cyclic voltammograms arises solely from uncompensated resistance effects within the film, i.e., the rates of ion permeation. Chapter Four examines ferrocenated SiNPs as charge storage devices. Focus is initially on the surface functionalization. Spectroscopic characterizations are used to estimate the

  9. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations.

    PubMed

    Henning, Tobias D; Gawande, Rakhee; Khurana, Aman; Tavri, Sidhartha; Mandrussow, Lydia; Golovko, Daniel; Horvai, Andrew; Sennino, Barbara; McDonald, Donald; Meier, Reinhard; Wendland, Michael; Derugin, Nikita; Link, Thomas M; Daldrup-Link, Heike E

    2012-06-01

    The purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and apoptotic MSCs. MSCs labeled with ferumoxide by simple incubation, protamine transfection, or Lipofectin transfection were evaluated with MRI and histopathology. Ferumoxide-labeled and unlabeled viable and apoptotic MSCs in osteochondral defects of rat knee joints were evaluated over 12 weeks with MRI. Signal to noise ratios (SNRs) of viable and apoptotic labeled MASIs were tested for significant differences using t-tests. A simple incubation labeling protocol demonstrated the best compromise between significant magnetic resonance signal effects and preserved cell viability and potential for immediate clinical translation. Labeled viable and apoptotic MASIs did not show significant differences in SNR. Labeled viable but not apoptotic MSCs demonstrated an increasing area of T2 signal loss over time, which correlated to stem cell proliferation at the transplantation site. Histopathology confirmed successful engraftment of viable MSCs. The engraftment of iron oxide-labeled MASIs by simple incubation can be monitored over several weeks with MRI. Viable and apoptotic MASIs can be distinguished via imaging signs of cell proliferation at the transplantation site.

  10. Determination of trace glucose and forecast of human diseases by affinity adsorption solid substrate room temperature phosphorimetry based on Triticum valgaris lectin labeled with 4.0-generation dendrimers

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Zhu, Guohui; Liu, Jiaming; Lu, Qiaomei; Yang, Minlan; Wu, Hong; Shi, Xiumei; Chen, Xinhua

    2007-08-01

    A new phosphorescence labeling reagent Triton-100X-4.0G-D (4.0G-D refers to 4.0-generation dendrimers) was found. Quantitative specific affinity adsorption (AA) reaction between Triton-100X-4.0G-D-WGA and glucose (G) was carried out on the surface of nitrocellulose membrane (NCM), and the Δ Ip of the product of AA reaction was linear correlation to the content of G. Based on the facts above, a new method for the determination of trace G was established by WGA labeled with Triton-100X-4.0G-D affinity adsorption solid substrate room temperature phosphorimetry (Triton-100X-4.0G-D-WGA-AA-SS-RTP). This research showed that AA-SS-RTP for either direct method or sandwich method could combine very well the characteristics of both the high sensitivity of SS-RTP and the specificity of the AA reaction. Detection limits (LD) were 0.24 fg spot -1 for direct method and 0.18 fg spot -1 for sandwich method, indicating both of them were of high sensitivity. The method has been applied to the determination of the content of G in human serum, and the results were coincided with those obtained by glucose oxidize enzyme method. It can also be applied to forecast accurately some human diseases, such as primary hepatic carcinoma, cirrhosis, acute and chronic hepatitis, transfer hepatocellular, etc. Meanwhile, the mechanism for the determination of G with AA-SS-RTP was discussed.

  11. Determination of trace glucose and forecast of human diseases by affinity adsorption solid substrate room temperature phosphorimetry based on Triticum valgaris lectin labeled with 4.0-generation dendrimers.

    PubMed

    Li, Zhiming; Zhu, Guohui; Liu, Jiaming; Lu, Qiaomei; Yang, Minlan; Wu, Hong; Shi, Xiumei; Chen, Xinhua

    2007-08-01

    A new phosphorescence labeling reagent Triton-100X-4.0G-D (4.0G-D refers to 4.0-generation dendrimers) was found. Quantitative specific affinity adsorption (AA) reaction between Triton-100X-4.0G-D-WGA and glucose (G) was carried out on the surface of nitrocellulose membrane (NCM), and the DeltaI(p) of the product of AA reaction was linear correlation to the content of G. Based on the facts above, a new method for the determination of trace G was established by WGA labeled with Triton-100X-4.0G-D affinity adsorption solid substrate room temperature phosphorimetry (Triton-100X-4.0G-D-WGA-AA-SS-RTP). This research showed that AA-SS-RTP for either direct method or sandwich method could combine very well the characteristics of both the high sensitivity of SS-RTP and the specificity of the AA reaction. Detection limits (LD) were 0.24 fg spot(-1) for direct method and 0.18 fg spot(-1) for sandwich method, indicating both of them were of high sensitivity. The method has been applied to the determination of the content of G in human serum, and the results were coincided with those obtained by glucose oxidize enzyme method. It can also be applied to forecast accurately some human diseases, such as primary hepatic carcinoma, cirrhosis, acute and chronic hepatitis, transfer hepatocellular, etc. Meanwhile, the mechanism for the determination of G with AA-SS-RTP was discussed.

  12. Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages.

    PubMed

    Li, Li; Song, Jun; Kalt, Wilhelmina; Forney, Charles; Tsao, Rong; Pinto, Devanand; Chisholm, Kenneth; Campbell, Leslie; Fillmore, Sherry; Li, Xihong

    2013-12-06

    A quantitative proteomic investigation of strawberry fruit ripening employing stable isotope labeling by peptide dimethylation was conducted on 'Mira' and 'Honeoye' strawberry fruit. Postharvest physiological quality indices, including volatile production, total phenolics, total anthocyanins, antioxidant capacity, soluble solids and titratable acidity, were also characterized in white, pink and red fruit. More than 892 and 848 proteins were identified and quantified in the 'Mira' and 'Honeoye' fruit, respectively, using at least two peptides for each protein identification. Using the normalized ratio of protein abundance changes, proteins that changed two-fold or more were identified as proteins that are up- or down-regulated during fruit ripening. Among the quantified proteins, 111 proteins were common to both cultivars and represented five significant clusters based on quantitative changes. Among the up-regulated proteins were proteins involved in metabolic pathways including flavonoid/anthocyanin biosynthesis, volatile biosynthesis, antioxidant metabolism, stress responses and allergen formation. Proteins that decreased during fruit ripening were found to be responsible for methionine metabolism, antioxidant-redox, energy metabolism and protein synthesis. Our results show that strawberry ripening is a highly complex system involving multi-physiological processes made possible through changes in protein expression. This study provides new insights on the regulation of proteins during strawberry fruit ripening that lay the foundation for further targeted studies. Research on the postharvest physiology and biochemistry of strawberry fruit as a model of non-climacteric fruit ripening has been conducted for many years. However, the mechanism(s) for the initiation and metabolic regulation of non-climacteric fruit ripening remains unknown. Little information on strawberry fruit ripening is available at the proteome level. This paper is the first report of a

  13. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage.

    PubMed

    Li, Li; Luo, Zisheng; Huang, Xinhong; Zhang, Lu; Zhao, Pengyu; Ma, Hongyuan; Li, Xihong; Ban, Zhaojun; Liu, Xia

    2015-04-29

    To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT) and controlled atmosphere (CA) storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. 'Akihime'). Postharvest physiological quality traits including firmness, total soluble solids, total acidity, ascorbic acid and volatile production were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis. The proteins spanned a range of functions in various metabolic pathways and networks involved in carbohydrate and energy metabolism, volatile biosynthesis, phenylpropanoid activity, stress response and protein synthesis, degradation and folding. After CA and LT storage, 16 (13) and 11 (17) proteins, respectively, were significantly increased (decreased) in abundance, while expression profile of 12 proteins was significantly changed by both CA and LT. To summarize, the differential variability of abundance in strawberry proteome, working in a cooperative manner, provided an overview of the biological processes that occurred during CA and LT storage. Controlled atmosphere storage at an optimal temperature is regarded to be an effective postharvest technology to delay fruit senescence and maintain fruit quality during shelf life. Nonetheless, little information on fruit proteomic changes under controlled atmosphere and/or low temperature storage is available. The significance of this paper is that it is the first study employing a label-free approach in the investigation of strawberry fruit response to

  14. Meta-Analysis Investigating Associations Between Healthy Diet and Fasting Glucose and Insulin Levels and Modification by Loci Associated With Glucose Homeostasis in Data From 15 Cohorts

    PubMed Central

    Nettleton, Jennifer A.; Hivert, Marie-France; Lemaitre, Rozenn N.; McKeown, Nicola M.; Mozaffarian, Dariush; Tanaka, Toshiko; Wojczynski, Mary K.; Hruby, Adela; Djoussé, Luc; Ngwa, Julius S.; Follis, Jack L.; Dimitriou, Maria; Ganna, Andrea; Houston, Denise K.; Kanoni, Stavroula; Mikkilä, Vera; Manichaikul, Ani; Ntalla, Ioanna; Renström, Frida; Sonestedt, Emily; van Rooij, Frank J. A.; Bandinelli, Stefania; de Koning, Lawrence; Ericson, Ulrika; Hassanali, Neelam; Kiefte-de Jong, Jessica C.; Lohman, Kurt K.; Raitakari, Olli; Papoutsakis, Constantina; Sjogren, Per; Stirrups, Kathleen; Ax, Erika; Deloukas, Panos; Groves, Christopher J.; Jacques, Paul F.; Johansson, Ingegerd; Liu, Yongmei; McCarthy, Mark I.; North, Kari; Viikari, Jorma; Zillikens, M. Carola; Dupuis, Josée; Hofman, Albert; Kolovou, Genovefa; Mukamal, Kenneth; Prokopenko, Inga; Rolandsson, Olov; Seppälä, Ilkka; Cupples, L. Adrienne; Hu, Frank B.; Kähönen, Mika; Uitterlinden, André G.; Borecki, Ingrid B.; Ferrucci, Luigi; Jacobs, David R.; Kritchevsky, Stephen B.; Orho-Melander, Marju; Pankow, James S.; Lehtimäki, Terho; Witteman, Jacqueline C. M.; Ingelsson, Erik; Siscovick, David S.; Dedoussis, George; Meigs, James B.; Franks, Paul W.

    2013-01-01

    Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 US and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (β = −0.004 mmol/L, 95% confidence interval: −0.005, −0.003) and FI (β = −0.008 ln-pmol/L, 95% confidence interval: −0.009, −0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions. PMID:23255780

  15. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts.

    PubMed

    Nettleton, Jennifer A; Hivert, Marie-France; Lemaitre, Rozenn N; McKeown, Nicola M; Mozaffarian, Dariush; Tanaka, Toshiko; Wojczynski, Mary K; Hruby, Adela; Djoussé, Luc; Ngwa, Julius S; Follis, Jack L; Dimitriou, Maria; Ganna, Andrea; Houston, Denise K; Kanoni, Stavroula; Mikkilä, Vera; Manichaikul, Ani; Ntalla, Ioanna; Renström, Frida; Sonestedt, Emily; van Rooij, Frank J A; Bandinelli, Stefania; de Koning, Lawrence; Ericson, Ulrika; Hassanali, Neelam; Kiefte-de Jong, Jessica C; Lohman, Kurt K; Raitakari, Olli; Papoutsakis, Constantina; Sjogren, Per; Stirrups, Kathleen; Ax, Erika; Deloukas, Panos; Groves, Christopher J; Jacques, Paul F; Johansson, Ingegerd; Liu, Yongmei; McCarthy, Mark I; North, Kari; Viikari, Jorma; Zillikens, M Carola; Dupuis, Josée; Hofman, Albert; Kolovou, Genovefa; Mukamal, Kenneth; Prokopenko, Inga; Rolandsson, Olov; Seppälä, Ilkka; Cupples, L Adrienne; Hu, Frank B; Kähönen, Mika; Uitterlinden, André G; Borecki, Ingrid B; Ferrucci, Luigi; Jacobs, David R; Kritchevsky, Stephen B; Orho-Melander, Marju; Pankow, James S; Lehtimäki, Terho; Witteman, Jacqueline C M; Ingelsson, Erik; Siscovick, David S; Dedoussis, George; Meigs, James B; Franks, Paul W

    2013-01-15

    Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 U.S. and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (β = -0.004 mmol/L, 95% confidence interval: -0.005, -0.003) and FI (β = -0.008 ln-pmol/L, 95% confidence interval: -0.009, -0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.

  16. Glucose Tests

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Glucose Tests Share this page: Was this page helpful? ... the meaning of other test results. Fasting Blood Glucose Glucose Level Indication From 70 to 99 mg/ ...

  17. What is the value given by consumers to nutritional label information? Results from a large investigation in Europe.

    PubMed

    Gregori, Dario; Ballali, Simonetta; Vögele, Claus; Galasso, Francesca; Widhalm, Kurt; Berchialla, Paola; Baldi, Ileana

    2015-01-01

    Nutrition labels on prepackaged foods have been widely advocated as a medium to foster healthier eating habits in the general population. The study is aimed at understanding how people value nutritional information on food labels, in particular for front-of-pack labeling. A phone-assisted survey of 7550 consumers in 16 European countries was conducted. People were asked about their opinion on nutritional information provided at different levels, from the media to public institutions, and their commitment to healthy behavior. The value of pack labeling was estimated using a willingness-to-pay (WTP) elicitation technique. Older age groups (>45 years old), members of a larger family, people of low income or low education, and those who perceived themselves to be obese valued front-of-pack nutritional labeling. WTP estimates across all countries provided an average accepted added price of $4.32 to the overall yearly food expenditure (95% confidence interval, 3.33-3.68). Overall, perceived value of labeling is low. However, factors affecting the value for consumer of nutritional labeling appear to be strictly linked to the socioeconomic and health status of the respondents.

  18. Retrospective investigation of patients exposed to possible transmission of hepatitis C virus by a capillary blood glucose meter.

    PubMed

    Kadi, Z; Saint-Laurent, P; Cadranel, J F; Joly, C; Dumouchel, P; Jeanne, S; Thiers, V; Ciurana, O; Astagneau, P

    2006-05-01

    A 75-year-old female with no known risk factors for hepatitis C virus (HCV) infection was hospitalized and a diagnosis of HCV seroconversion was established (HCV immunoblot and a positive quantitative viral load). An epidemiological investigation revealed that, during a previous hospitalization resulting in a diagnosis of diabetes, she had shared a Glucotrend capillary blood glucose meter (CBGM; Roche Diagnostics, France) with a known HCV-positive diabetic patient. Poor hygiene practices were observed when using this device. Since the Glucotrend CBGM had been purchased, the suspected source patient had been hospitalized eight times and another 19 diabetic patients with known anti-HCV antibodies also regularly attended the same hospital. Consequently, 35 diabetic patients who had been hospitalized at the same time as the suspected source patient and 1305 patients who had used the Glucotrend CBGM were invited to undergo serum anti-hepatitis B virus, anti-HCV and anti-human immunodeficiency virus testing. Among the 35 diabetic patients, none of the 24 subjects tested were positive. Among the 1305 other patients, 995 were tested and 19 (2%) were anti-HCV positive. Although this prevalence is higher than that reported in the general French population, this excess risk cannot be attributed to use of the CBGM. Furthermore, molecular analysis showed that the two HCV strains isolated did not belong to the same phylogenetic cluster. However, as a result of this incident, measures were taken to minimize the transmission of bloodborne viruses in the hospital concerned. Other French hospitals were informed by a national alert message from the French Agency for the Safety of Health Products.

  19. Wheat bran biorefinery: an investigation on the starch derived glucose extraction accompanied by pre- and post-treatment steps.

    PubMed

    Tirpanalan, Özge; Reisinger, Michael; Huber, Florian; Kneifel, Wolfgang; Novalin, Senad

    2014-07-01

    Wheat bran, a side product of the milling industry, can be considered as a feedstock for biorefineries. Unlike other lignocellulosic feedstock, wheat bran contains a reasonable amount of starch, which is not of recalcitrant nature. Therefore, it can be extracted without a costly pretreatment process. The present work evaluates the extraction of starch derived glucose in relation to a wheat bran biorefinery. The purity of free glucose extracted quantitatively was 44%. The extract was concentrated by threefold via nanofiltration, thereby reaching a glucose concentration of 49 g/L. Hydrothermal treatment (180°C - 20 min) of the starch-free bran did not induce the formation of hydroxymethylfurfural and levulinic acid. Interestingly, the furfural level increased compared to the process, in which bran was treated hydrothermally without a preceding starch extraction. By separation of water-extractables prior to enzymatic hydrolysis, the free glucose purity was increased to 58%, however the yield of glucose decreased to 61%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

    NASA Astrophysics Data System (ADS)

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M.; Hunter, Robert I.; Hill, Stephen; Smith, Graham M.; Fanucci, Gail E.

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.

  1. Attention to Physical Activity-Equivalent Calorie Information on Nutrition Facts Labels: An Eye-Tracking Investigation.

    PubMed

    Wolfson, Julia A; Graham, Dan J; Bleich, Sara N

    2017-01-01

    Investigate attention to Nutrition Facts Labels (NFLs) with numeric only vs both numeric and activity-equivalent calorie information, and attitudes toward activity-equivalent calories. An eye-tracking camera monitored participants' viewing of NFLs for 64 packaged foods with either standard NFLs or modified NFLs. Participants self-reported demographic information and diet-related attitudes and behaviors. Participants came to the Behavioral Medicine Lab at Colorado State University in spring, 2015. The researchers randomized 234 participants to view NFLs with numeric calorie information only (n = 108) or numeric and activity-equivalent calorie information (n = 126). Attention to and attitudes about activity-equivalent calorie information. Differences by experimental condition and weight loss intention (overall and within experimental condition) were assessed using t tests and Pearson's chi-square tests of independence. Overall, participants viewed numeric calorie information on 20% of NFLs for 249 ms. Participants in the modified NFL condition viewed activity-equivalent information on 17% of NFLs for 231 ms. Most participants indicated that activity-equivalent calorie information would help them decide whether to eat a food (69%) and that they preferred both numeric and activity-equivalent calorie information on NFLs (70%). Participants used activity-equivalent calorie information on NFLs and found this information helpful for making food decisions. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  2. Dual Label Stable Isotope Incubations Followed By Single Cell Nanosims Analyses To Investigate Microscale Phototroph-Heterotroph Interactions

    NASA Astrophysics Data System (ADS)

    Mayali, X.; Samo, T. J.; Nilson, D.; Arandia Gorostidi, N.; alonso Saez, L.; Moran, X. A.; Weber, P. K.

    2015-12-01

    In natural ecosystems such as lakes and oceans as well as human-engineered systems for sunlight-regulated biomass production (such as algal biofuel ponds), the interaction between autotrophic and heterotrophic processes are critical to determine whether such systems are net autotrophic or heterotrophic. Traditional methods to quantify autotrophy and heterotrophy include primary productivity and bacterial production measurements using radiolabeled substrates that quantify these processes on the bulk scale. To examine the microscale interactions between individual autotrophic and heterotrophic cells, we incubate mixed microbial assemblages with 13C-bicarbonate and 15N-leucine to label individual autotrophs and heterotrophs, respectively. We use nano imaging secondary ion mass spectrometry (with a Cameca NanoSIMS 50) to quantify the incorporation of the rare isotopes by single cells. We will present results from experiments examining the impact of warming on the exchange of C and N between algal and bacterial cells from the coastal Atlantic Ocean, which suggest that increased temperature may strengthen physical interactions and exchange. We will also present data from experiments examining the influence of attached bacteria on the cell-specific inorganic carbon fixation rates of biofuel-producing algal cultures which suggest that certain algal-attached bacterial groups grow faster than when free-living and influence algal growth. We conclude that the examination of individual cells uncover interactions that would be difficult, if not impossible, to investigate with bulk methods.

  3. A systematic investigation into the recovery of radioactively labeled proteins from sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Zhou, Shaobo; Bailey, Matthew J; Dunn, Michael J; Preedy, Victor R; Emery, Peter W

    2004-01-01

    We report the results of a systematic investigation designed to optimize a method for quantifying radioactivity in proteins in sodium dodecyl sulfate-polyacrylamide gels. The method involves dissolving appropriately sized pieces of gel in hydrogen peroxide and heating to 70 degrees C overnight followed by liquid scintillation counting. H(2)O(2) had no effect on the count rates of [(14)C]bovine serum albumin (BSA) when counted in a conventional liquid scintillation system, and the count rates remained stable for several days. Temperatures below 70 degrees C resulted in incomplete extraction of radioactivity from gels containing [(14)C]BSA, but there was also a significant reduction in count rates in samples incubated at 80 degrees C. At 70 degrees C recovery was not affected by the amount of sample loaded onto the gel or by the staining procedure (Coomassie Brilliant Blue or SYPRO Ruby). Recoveries were in the range of 89-94%, and the coefficient of variation for five replicate samples was 5-10%. This method offers a reliable way of measuring the amount of radioactivity in proteins that have been separated by electrophoresis. It may be useful, for example, in quantitative metabolic labeling experiments when it is necessary to know precisely how much tracer has been incorporated into a particular protein.

  4. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury.

  5. Determination of the transient period of the EIS complex and investigation of the suppression of blood glucose levels by L-arabinose in healthy adults.

    PubMed

    Shibanuma, Kiyoshi; Degawa, Yoko; Houda, Koichi

    2011-09-01

    L-Arabinose uncompetitively inhibits intestinal sucrase by forming an enzyme-inhibitor-substrate (EIS) complex. The transient period of the EIS complex affects the time span of inhibition. We determined the apparent transient period of the EIS complex of sucrase, L-arabinose, and sucrose both in vitro and in humans. Intestinal acetone powder (a source of sucrase), L-arabinose, and sucrose were mixed and injected into a dialysis membrane that was placed in a sucrose solution. The production rate of D-glucose and the release rate of L-arabinose from sucrase were determined. We also investigated the suppression of blood glucose levels by L-arabinose in 21 healthy volunteers. Sucrose (40 g) was ingested with or without L-arabinose (2 g), then blood glucose values were measured, which returned to steady-state conditions within 2 h. Volunteers were then given 90 g of commercial adzuki bean jelly containing 40 g sucrose as the sucrose load, and blood glucose values were measured again. Addition of L-arabinose reduced the production rate of D -glucose compared to the rates measured in the absence of L-arabinose for several hours in vitro. L-Arabinose was released at a lower rate in the presence of sucrose than in its absence. Blood glucose values measured 2 h after sucrose was given with L -arabinose were significantly lower than those measured when L-arabinose was not given (Δ change in maximum value: with L-arabinose, 53.8 ± 19.7 mg/dL; without L-arabinose, 65.0 ± 17.7 mg/dL). The EIS complex of sucrase-L -arabinose-sucrose was maintained for several hours both in vitro and in humans.

  6. [Uptake and phosphorylation of exogenous substrates in Ankistrodesmus braunii : I. Participation of polyphosphates in the uptake of glucose and 2-desoxy-glucose in dark and in light].

    PubMed

    Lysek, G; Simonis, W

    1968-06-01

    1. Like other photosynthesizing organisms which have been investigated, Ankistrodesmus braunii absorbs more glucose from the surrounding medium in the light than in the dark. 2. When the algae are incubated with glucose and (32)P-labelled orthophosphate in short-time-experiments, the TCA-soluble organic phosphate fraction is markedly increased. No such effect is seen when 2-desoxy-glucose is administered to the algae instead of glucose. 3. In pre-labelled algae glucose causes an increase in the TCA-soluble acid-stable organic P-fraction which shows light-dependent saturation kinetics. In such experiments 2-desoxyglucose causes a linear increase in the acid-stable organic P-fraction which shows no light dependence. 4. DCMU and Antimycin A when given together block oxidative as well as light phosphorylation. These compounds do not, however inhibit the increase in the sugar-P-fraction caused by 2-desoxy-glucose in (32)P-labelled algae. 5. The increase in the sugar-(32)P after administration of substrates to the algae is accompanied by a decrease in the fraction of the polyphosphates "C" and/or "D". 6. These results are explained by assuming that an inorganic polyphosphate-glucose-phosphotransferase is active in Ankistrodesmus braunii.

  7. Conformational change of helix G in the bacteriorhodopsin photocycle: investigation with heavy atom labeling and x-ray diffraction.

    PubMed Central

    Oka, T; Kamikubo, H; Tokunaga, F; Lanyi, J K; Needleman, R; Kataoka, M

    1999-01-01

    According to the current structural model of bacteriorhodopsin, Ile222 is located at the cytoplasmic end of helix G. We labeled the single cysteine of the site-directed mutant Ile222 --> Cys with p-chloromercuribenzoic acid and determined the position of the labeled mercury by x-ray diffraction in the unphotolyzed state, and in the MN photointermediate accumulated in the presence of guanidine hydrochloride at pH 9.5. According to the difference Fourier maps between the MN intermediate and the unphotolyzed state, the structural change in the MN intermediate was not affected by mercury labeling. The difference Fourier map between the labeled and the unlabeled I222C gave the position of the mercury label. This information was obtained for both the unphotolyzed state and the MN intermediate. We found that the position of the mercury at residue 222 is shifted by 2.1 +/- 0.8 A in the MN intermediate. This agrees with earlier results that suggested a structural change in the G helix. The movement of the mercury label is so large that it must originate from a cooperative conformational change in the helix G at its cytoplasmic end, rather than from displacement of residue 222. Because Ile222 is located at the same level on the z coordinate as Asp96, the structural change in the G helix could have the functional role of perturbing the environment and therefore the pKa of this functionally important aspartate. PMID:9916033

  8. Measurement of insulin sensitivity indices using 13C-glucose and gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Clapperton, Allan T; Coward, W Andrew; Bluck, Leslie J C

    2002-01-01

    Important aspects of glucose metabolism can be quantified by using the minimal model of glucose kinetics to interpret the results of intravenous glucose tolerance tests. The power of this methodology can be greatly increased by the addition of stable isotopically labelled tracer to the glucose bolus dose. This allows the separation of glucose disposal from endogenous glucose production and also increases the precision of the estimates of the physiological parameters measured. Until now the tracer of choice has been deuteriated glucose and the analytical technique has been gas chromatography/mass spectrometry (GC/MS). The consequence of this choice is that nearly 2 g of labelled material are needed and this makes the test expensive. We have investigated the use of (13)C-labelled glucose as the tracer in combination with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as the analytical technique. This methodology offers superior analytical precision when compared with the conventional method and so the amount of tracer used, and hence the cost, can be reduced considerably. Healthy non-obese male volunteers were recruited for a standard intravenous glucose tolerance test (IVGTT) protocol but 6,6-(2)H-glucose and 1-(13)C-glucose were administered simultaneously. Tracer/tracee ratios were derived from isotope ratio measurements of plasma glucose using both GC/MS and GC/C/IRMS. The results of these determinations indicated that the two tracers behaved identically under the test protocol. The combination of these results with plasma glucose and insulin concentration data allowed determination of the minimal model parameters S*g and S*i. The parameter relating to insulin-assisted glucose disposal, S*i, was found to be the same in the two techniques, but this was not the case for the non-insulin-dependent parameter S*g.

  9. Investigation on how to choose measurement sites for non-invasive near-infrared blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Zou, Da; Min, Xiaolin; Ma, Zhenhe; Xu, Kexin

    2012-03-01

    With the changing of human diet and the future of an aging society, the number of diabetic patients is growing rapidly and steadily. The major therapeutic method to that disease is monitoring the blood glucose concentration frequently to adjust the dose of the drugs and insulin. In order to avoid the painful finger prick, we choose the ear lobe as a measurement site with finger as a reference. Firstly, we compare the blood glucose concentration results of ear lobe and finger during an oral glucose tolerance test, the results showed a good correlation of the two sites. Secondly, the three-layered skin structure of finger and ear lobe has been studied by using optical coherence tomography (OCT) technique. The result shows that the thickness of each layer at ear lobe is thinner. Finally, the difference between reflectance spectra of finger and ear lobe is compared due to the diverse skin thickness. The results still show a higher absorbance value for ear lobe. In conclusion, the ear lobe is an ideal measurement site for noninvasive blood glucose sensing.

  10. (18)F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats.

    PubMed

    Matsusaka, Yohji; Nakahara, Tadaki; Takahashi, Kazuhiro; Iwabuchi, Yu; Nishime, Chiyoko; Kajimura, Mayumi; Jinzaki, Masahiro

    2017-12-01

    Red blood cells (RBCs) labeled with single-photon emitters have been clinically used for blood-pool imaging. Although some PET tracers have been introduced for blood-pool imaging, they have not yet been widely used. The present study investigated the feasibility of labeling RBCs with (18)F-2-deoxy-2-fluoro-D-glucose ((18)F-FDG) for blood-pool imaging with PET. RBCs isolated from venous blood of rats were washed with glucose-free phosphate-buffered saline and labeled with (18)F-FDG. To optimize labeling efficiency, the effects of glucose deprivation time and incubation (labeling) time with (18)F-FDG were investigated. Post-labeling stability was assessed by calculating the release fraction of radioactivity and identifying the chemical forms of (18)F in the released and intracellular components of (18)F-FDG-labeled RBCs incubated in plasma. Just after intravenous injection of the optimized autologous (18)F-FDG-labeled RBCs, dynamic PET scans were performed to evaluate in vivo imaging in normal rats and intraabdominal bleeding models (temporary and persistent bleeding). The optimal durations of glucose deprivation and incubation (labeling) with (18)F-FDG were 60 and 30 min, respectively. As low as 10% of (18)F was released as the form of (18)F-FDG from (18)F-FDG-labeled RBCs after a 60-min incubation. Dynamic PET images of normal rats showed strong persistence in the cardiovascular system for at least 120 min. In the intraabdominal bleeding models, (18)F-FDG-labeled RBC PET visualized the extravascular blood clearly and revealed the dynamic changes of the extravascular radioactivity in the temporary and persistent bleeding. RBCs can be effectively labeled with (18)F-FDG and used for blood-pool imaging with PET in rats.

  11. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  12. Evaluation of Impedance-Based Label-Free Technology as a Tool for Pharmacology and Toxicology Investigations

    PubMed Central

    Atienzar, Franck André; Gerets, Helga; Tilmant, Karen; Toussaint, Gaëlle; Dhalluin, Stéphane

    2013-01-01

    The use of label-free technologies based on electrical impedance is becoming more and more popular in drug discovery. Indeed, such a methodology allows the continuous monitoring of diverse cellular processes, including proliferation, migration, cytotoxicity and receptor-mediated signaling. The objective of the present study was to further assess the usefulness of the real-time cell analyzer (RTCA) and, in particular, the xCELLigence platform, in the context of early drug development for pharmacology and toxicology investigations. In the present manuscript, four cellular models were exposed to 50 compounds to compare the cell index generated by RTCA and cell viability measured with a traditional viability assay. The data revealed an acceptable correlation (ca. 80%) for both cell lines (i.e., HepG2 and HepaRG), but a lack of correlation (ca. 55%) for the primary human and rat hepatocytes. In addition, specific RTCA profiles (signatures) were generated when HepG2 and HepaRG cells were exposed to calcium modulators, antimitotics, DNA damaging and nuclear receptor agents, with a percentage of prediction close to 80% for both cellular models. In a subsequent experiment, HepG2 cells were exposed to 81 proprietary UCB compounds known to be genotoxic or not. Based on the DNA damaging signatures, the RTCA technology allowed the detection of ca. 50% of the genotoxic compounds (n = 29) and nearly 100% of the non-genotoxic compounds (n = 52). Overall, despite some limitations, the xCELLigence platform is a powerful and reliable tool that can be used in drug discovery for toxicity and pharmacology studies. PMID:25587404

  13. Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea).

    PubMed

    Kurilich, Anne C; Britz, Steven J; Clevidence, Beverly A; Novotny, Janet A

    2003-08-13

    The ability to study bioavailability of nutrients from foods is an important step in determining the health impact of those nutrients. This work describes a method for studying the bioavailability of nutrients from kale (Brassica oleracea var. Acephala) by labeling the nutrients with carbon-13, feeding the kale to an adult volunteer, and analyzing plasma samples for labeled nutrients. Results showed that conditions for producing atmospheric intrinsically labeled kale had no detrimental effect on plant growth. Lutein, beta-carotene, retinol, and phylloquinone were analyzed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analysis of plasma samples showed that labeled lutein peaked in plasma at 11 h (0.23 microM), beta-carotene peaked at 8 (0.058 microM) and 24 h (0.062 microM), retinol peaked at 24 h (0.10 microM), and phylloquinone peaked at 7 h (3.0 nM). This method of labeling kale with (13)C was successful for producing clearly defined kinetic curves for (13)C-lutein,(13)C-beta-carotene, (13)C-retinol, and (13)C-phylloquinone.

  14. First application of mass spectrometry and gas chromatography in investigation of α-cellulose hydrolysates: the influence of climate changes on glucose molecules in pine tree-rings.

    PubMed

    Sensuła, Barbara M; Pazdur, Anna; Marais, Marie-France

    2011-02-28

    We present the first results of the quantitative and qualitative gas chromatographic and isotope ratio mass spectrometric analysis of monosaccharides derived from acid hydrolysis of α-cellulose extracted from annual pine tree-rings. The conifers investigated in this study grew in the Niepolomice Forest in Poland, and the annual rings covered the time span from 1940 to 2000 AD. The main components of the α-cellulose samples were two saccharides: glucose and mannose. The amount of glucose in the annual rings varied between 17 and 44%. The δ(13)C of glucose was found to be less negative than that of α-cellulose and the δ(18)O values in glucose were less positive than those in α-cellulose. The content of monosaccharides in the α-cellulose samples has an influence on the isotope fractionation factors. The values of the carbon isotope fractionation factor increase with an increase in the monosaccharides concentration in α-cellulose, while the values of the oxygen isotope fractionation factor decrease with an increase in monosaccharides concentration in α-cellulose. The challenge is to establish, with respect to climate changes and environmental conditions, the significance of the interannual variations in the observed monosaccharide concentration.

  15. Sodium-glucose co-transporter-2 inhibitor use and dietary carbohydrate intake in Japanese individuals with type 2 diabetes: A randomized, open-label, 3-arm parallel comparative, exploratory study.

    PubMed

    Yabe, Daisuke; Iwasaki, Masahiro; Kuwata, Hitoshi; Haraguchi, Takuya; Hamamoto, Yoshiyuki; Kurose, Takeshi; Sumita, Kiminobu; Yamazato, Hitoshi; Kanada, Shigeto; Seino, Yutaka

    2016-12-19

    This study investigated the safety and efficacy of the sodium-glucose co-transporter-2 (SGLT2) inhibitor luseogliflozin with differing carbohydrate intakes in Japanese individuals with type 2 diabetes (T2D). Participants were randomly assigned to 3 carbohydrate-adjusted meals for 14 days (days 1-14; a high carbohydrate [HC; 55% total energy carbohydrate] and high glycaemic index [HGI] meal; an HC [55% total energy carbohydrate] and low glycaemic index [LGI] meal; or a low carbohydrate [LC; 40% total energy carbohydrate] and HGI meal). All participants received luseogliflozin for the last 7 days (days 8-14), continuous glucose monitoring (CGM) before and after luseogliflozin treatment (days 5-8 and days 12-15) and blood tests on days 1, 8 and 15. Luseogliflozin significantly decreased the area under the curve and mean of CGM values in all 3 groups similarly. Fasting plasma glucose, insulin and glucagon were similar at all time points. Ketone bodies on day 15 were significantly higher in the LC-HGI group compared with the HC-HGI and HC-LGI groups. In conclusion, luseogliflozin has similar efficacy and safety in Japanese people with T2D when meals contain 40% to 55% total energy carbohydrate, but a strict LC diet on this class of drug should be avoided to prevent SGLT2 inhibitor-associated diabetic ketoacidosis.

  16. Food Labels

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Food Labels KidsHealth > For Teens > Food Labels Print A ... have at least 95% organic ingredients. continue Making Food Labels Work for You The first step in ...

  17. Carbohydrate and Amino Acid Metabolism in the Ectomycorrhizal Ascomycete Sphaerosporella brunnea during Glucose Utilization 1

    PubMed Central

    Martin, Francis; Ramstedt, Mauritz; Söderhäll, Kenneth; Canet, Daniel

    1988-01-01

    Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO

  18. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation.

    PubMed

    Unser, Sarah; Campbell, Ian; Jana, Debrina; Sagle, Laura

    2015-01-21

    Development of improved glucose detection has vast significance in both clinical and point of care settings. Herein, we present a novel, label-free, enzyme-free, colorimetric method of glucose detection that relies on the reduction of a gold salt precursor facilitated by physiological concentrations of glucose (1.25-50 mM). The concentration of glucose present during the reduction process results in nanoparticles of different size, which in turn change the color of solution. Through transmission electron microscopy (TEM), it was found that the nanoparticle size decreases as the glucose concentration increases. Kinetic characterization of nanoparticle formation shows rate constants change 5-8 orders of magnitude when comparing normal versus diabetic glucose concentrations. Assay versatility was also investigated through incorporation onto solid substrates as well as the addition of a filtering step, which produced relatively clear samples below the diabetic cut-off (10 mM glucose) and colored samples above. The colorimetric sensor was then found to also show similar color changes with glucose solutions containing biological interfering agents as well as samples with 20% serum. Last, the sensor was tested in solution containing 100% mouse serum and 100% bovine urine spiked with varying glucose concentrations, which resulted in smaller nanoparticle formation whose intensities were dependent on glucose concentration. The resulting color changes observed for this sensor in urine samples are directly compared with Benedict's reagent and are shown to be significantly more sensitive to lower concentrations of glucose in the diabetic relevant range.

  19. Meal related glucose monitoring is a method of diagnosing glucose intolerance in pregnancies with high probability of gestational diabetes but normal glucose tolerance by oral glucose tolerance test.

    PubMed

    John, Mathew; Gopinath, Deepa

    2013-06-01

    Gestational diabetes mellitus diagnosed by classical oral glucose tolerance test can result in fetal complications like macrosomia and polyhydramnios. Guidelines exist on management of patients diagnose by abnormal oral glucose tolerance test with diet modification followed by insulin. Even patients with abnormal oral glucose tolerance test maintaining apparently normal blood sugars with diet are advised insulin if there is accelerated fetal growth. But patients with normal oral glucose tolerance test can present with macrosomia and polyhydramnios. These patients are labelled as not having gestational diabetes mellitus and are followed up with repeat oral glucose tolerance test. We hypothesise that these patients may have an altered placental threshold to glucose or abnormal sensitivity of fetal tissues to glucose. Meal related glucose monitoring in these patients can identify minor abnormalities in glucose disturbance and should be treated to targets similar to physiological levels of glucose in non pregnant adults.

  20. The elevated preoperative fasting blood glucose predicts a poor prognosis in patients with esophageal squamous cell carcinoma: The Fujian prospective investigation of cancer (FIESTA) study

    PubMed Central

    Hu, Dan; Peng, Feng; Lin, Xiandong; Chen, Gang; Liang, Binying; Li, Chao; Zhang, Hejun; Liao, Xuehong; Lin, Jinxiu; Zheng, Xiongwei; Niu, Wenquan

    2016-01-01

    Diabetes as a latent risk factor for cancer has been extensively investigated, while its postoperative prognosis for esophageal cancer is rarely reported. We therefore sought to assess whether the elevated fasting blood glucose before surgery was associated with poor survival in esophageal cancer patients by eliciting a subset of data from the ongoing Fujian prospective investigation of cancer (FIESTA) study. Over 15-year follow-up, 2535 patients receiving three-field lymphadenectomy were assessable. Only patients with esophageal squamous cell carcinoma (ESCC) (n=2396) were analyzed due to the lower prevalence of the other histological types. In ESCC patients, the follow-up duration ranged from 0.5 to 180 months (median 38.2 months). The median survival time (MST) was remarkably shorter in males than in females (80.7 vs. 180+ months, Log-rank test: P<0.001). In males, the survival was worse in patients with diabetes than those without (MST: 27.9 vs. 111.1 months, Log-rank test: P<0.001). In females, the survivor was improved in patients with diabetes (MST: 71.5 months), but was still worse than patients without diabetes (MST: 180+ months, Log-rank test: P<0.001). The overall multivariate hazard ratio for per unit increment in fasting blood glucose was 1.11 (95% confidence interval or CI: 1.09-1.14, P<0.001) and 1.08 (95% CI: 1.03-1.13, P=0.002) in males and females, respectively. Further survival tree analysis consolidated the discrimination ability of fasting blood glucose for the survival of ESCC patients. Taken together, our findings convincingly demonstrated that the elevated preoperative fasting blood glucose can predict poor survival of ESCC patients, especially in males. PMID:27533454

  1. The elevated preoperative fasting blood glucose predicts a poor prognosis in patients with esophageal squamous cell carcinoma: The Fujian prospective investigation of cancer (FIESTA) study.

    PubMed

    Hu, Dan; Peng, Feng; Lin, Xiandong; Chen, Gang; Liang, Binying; Li, Chao; Zhang, Hejun; Liao, Xuehong; Lin, Jinxiu; Zheng, Xiongwei; Niu, Wenquan

    2016-10-04

    Diabetes as a latent risk factor for cancer has been extensively investigated, while its postoperative prognosis for esophageal cancer is rarely reported. We therefore sought to assess whether the elevated fasting blood glucose before surgery was associated with poor survival in esophageal cancer patients by eliciting a subset of data from the ongoing Fujian prospective investigation of cancer (FIESTA) study. Over 15-year follow-up, 2535 patients receiving three-field lymphadenectomy were assessable. Only patients with esophageal squamous cell carcinoma (ESCC) (n=2396) were analyzed due to the lower prevalence of the other histological types. In ESCC patients, the follow-up duration ranged from 0.5 to 180 months (median 38.2 months). The median survival time (MST) was remarkably shorter in males than in females (80.7 vs. 180+ months, Log-rank test: P<0.001). In males, the survival was worse in patients with diabetes than those without (MST: 27.9 vs. 111.1 months, Log-rank test: P<0.001). In females, the survivor was improved in patients with diabetes (MST: 71.5 months), but was still worse than patients without diabetes (MST: 180+ months, Log-rank test: P<0.001). The overall multivariate hazard ratio for per unit increment in fasting blood glucose was 1.11 (95% confidence interval or CI: 1.09-1.14, P<0.001) and 1.08 (95% CI: 1.03-1.13, P=0.002) in males and females, respectively. Further survival tree analysis consolidated the discrimination ability of fasting blood glucose for the survival of ESCC patients. Taken together, our findings convincingly demonstrated that the elevated preoperative fasting blood glucose can predict poor survival of ESCC patients, especially in males.

  2. Label-free NIR reflectance imaging as a complimentary tool for two-photon fluorescence microscopy: multimodal investigation of stroke (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2016-03-01

    Two-photon imaging combined with targeted fluorescent indicators is extensively used for visualizing critical features of brain functionality and structural plasticity. Back-scattered photons from the NIR laser provide complimentary information without introducing any exogenous labelling. Here, we describe a versatile approach that, by collecting the reflected NIR light, provides structural details on the myelinated axons and blood vessels in the brain, both in fixed samples and in live animals. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from Thy1-GFPm mice, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Label-free detection of axonal elongations over the layer 2/3 of mouse cortex under a cranial window was also possible in live brain. Finally, blood flow could be measured in vivo, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated simultaneously.

  3. The combined use of quantum chemical calculations and CP/MAS NMR spectroscopy to investigate soil bound residues of labeled xenobiotics

    NASA Astrophysics Data System (ADS)

    Lewandowski, Hans; Philipp, Herbert; Meier, Robert J.; Narres, Hans-Dieter; Berns, Anne E.

    2010-05-01

    Application of solid state Nuclear Magnetic Resonance (NMR) spectroscopy to 13C- and 15N-labeled compounds is a powerful tool to study the interactions of xenobiotics with soil and its components. The type of interaction with soil components, like organic matter or the mineral phase, influences binding and release of a xenobiotic and its metabolites in soil. As such interactions to the soil matrix cause shifts in the initial positions of the NMR signals of the investigated labeled compound, NMR can be used to elucidate the binding type of bound residues. Density functional theory (DFT) calculations are excellent suited to support such NMR studies of xenobiotics. In a first step, DFT calculations were used to support the interpretation of the spectra of labeled xenobiotics, their metabolites and reaction products synthesized through reaction with model substances (representing specific functionalities of humic substances). In a second step, they allow to evaluate the influence of possible bonds on the initial chemical shift (e.g. towards higher or lower field). This can be especially helpful in the case of bonds like van-der-Waals interactions, for which it is difficult to prepare defined model substances. CP/MAS-NMR spectroscopy and DFT calculations were applied to study the interactions of several labeled xenobiotics and soil organic matter.

  4. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  5. Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water

    NASA Astrophysics Data System (ADS)

    Nolan, Gary S.; Bindeman, Ilya N.

    2013-06-01

    The hydrogen and oxygen isotope ratios in hydrous minerals and volcanic glass are routinely used as paleo-proxies to infer the isotopic values of meteoric waters and thus paleo-climatic conditions. We report a series of long-term exposure experiments of distal 7700 BP Mt. Mazama ash (-149‰ δ2H, +7‰ δ18O, 3.8 wt.% H2O) with isotopically-labeled water (+650‰ δ2H, +56‰ δ18O). Experiments were done at 70, 40 and 20 °C, and ranged in duration from 1 to 14454 h (˜20 months), to evaluate the rates of deuterium and 18O exchange, and investigate the relative role of exchange and diffusion. We also investigate the effect of drying on H2Otot and δ2H in native and reacted ash that can be used in defining the protocols for natural sample preparation. We employ Thermal Conversion Elemental Analyzer (TCEA) mass spectrometry, thermogravimetric analysis and a KBr pellet technique with infrared spectroscopy to measure the evolution of δ2H, total water, and OH water peaks in the course of exposure experiments, and in varying lengths of vacuum drying. Time series experiments aided by infrared measurements demonstrate the following new results: (i) It wasobserved that from 5 to >100‰ δ2H increases with time, with faster deuterium exchange at higher temperatures. Times at 15% of theoretical "full δ2H exchange" are: 15.8 years at 20 °C, 5.2 years at 40 °C, and 0.4 years at 70 °C. (ii) Even at extended exposure durations experiments show no net increase in water weight percent nor in δ18O in ash; water released from ash rapidly by thermal decomposition is not enriched in δ18O. This observation clearly suggests that it is hydrogen exchange, and not water addition or oxygen exchange that characterizes the process. (iii) Our time series drying, Fourier transform infrared (FTIR)-KBr and Thermogravimetric Analyzer (TGA) analyses collectively suggest a simple mechanistic view that there are three kinds of "water" in ash: water (mostly H2O) that is less strongly bonded

  6. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer.

    PubMed

    Skajaa, Torjus; Zhao, Yiming; van den Heuvel, Dave J; Gerritsen, Hans C; Cormode, David P; Koole, Rolf; van Schooneveld, Matti M; Post, Jan Andries; Fisher, Edward A; Fayad, Zahi A; de Mello Donega, Celso; Meijerink, Andries; Mulder, Willem J M

    2010-12-08

    The study of lipoproteins, natural nanoparticles comprised of lipids and apolipoproteins that transport fats throughout the body, is of key importance to better understand, treat, and prevent cardiovascular disease. In the current study, we have developed a lipoprotein-based nanoparticle that consists of a quantum dot (QD) core and Cy5.5 labeled lipidic coating. The methodology allows judicious tuning of the QD/Cy5.5 ratio, which enabled us to optimize Förster resonance energy transfer (FRET) between the QD core and the Cy5.5-labeled coating. This phenomenon allowed us to study lipoprotein-lipoprotein interactions, lipid exchange dynamics, and the influence of apolipoproteins on these processes. Moreover, we were able to study HDL-cell interactions and exploit FRET to visualize HDL association with live macrophage cells.

  7. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  8. Metabolism of D-glucose in a wall-less mutant of Neurospora crassa examined by /sup 13/C and /sup 31/P nuclear magnetic resonances: effects of insulin

    SciTech Connect

    Greenfield, N.J.; McKenzie, M.A.; Adebodun, F.; Jordan, F.; Lenard, J.

    1988-11-15

    /sup 13/C NMR and /sup 31/P NMR have been used to investigate the metabolism of glucose by a wall-less strain of Neurospora crassa (slime), grown in a supplemented nutritionally defined medium and harvested in the early stationary stage of growth. With D-(1-/sup 13/C)- or D-(6-/sup 13/C)glucose as substrates, the major metabolic products identified from /sup 13/C NMR spectra were (2-/sup 13/C)ethanol, (3-/sup 13/C)alanine, and C/sub 1/- and C/sub 6/-labeled trehalose. Several observations suggested the existence of a substantial hexose monophosphate (HMP) shunt: (i) a 70% greater yield of ethanol from C/sub 6/- than from C/sub 1/-labeled glucose; (ii) C/sub 1/-labeled glucose yielded 19% C/sub 6/-labeled trehalose, while C/sub 6/-labeled glucose yielded only 4% C/sub 1/-labeled trehalose; (iii) a substantial transfer of /sup 13/C from C/sub 2/-labeled glucose to the C/sub 2/-position of ethanol. /sup 31/P NMR spectra showed millimolar levels of intracellular inorganic phosphate (P/sub i/), phosphodiesters, and diphosphates including sugar diphosphates and polyphosphate. Addition of glucose resulted in a decrease in cytoplasmic P/sub i/ and an increase in sugar monophosphates, which continued for at least 30 min. Phosphate resonances corresponding to metabolic intermediates of both the glycolytic and HMP pathways were identified in cell extracts. Addition of insulin (100 nM) with the glucose had the following effects relative to glucose alone: (i) a 24% increase in the rate of ethanol production; (ii) a 38% increase in the rate of alanine production; (iii) a 27% increase in the rate of glucose disappearance. Insulin thus increases the rates of production of ethanol and alanine in these cells, in addition to increasing production of CO/sub 2/ and glycogen, as previously shown.

  9. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Zheng, Yuting; Quinn, Andrew H; Sriram, Ganesh

    2013-11-14

    Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-(13)C glucose and naturally abundant (~99% (12)C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-(13)C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-(13)C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but insensitive to

  10. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    2013-01-01

    Background Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Results Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-13C glucose and naturally abundant (~99% 12C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-13C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-13C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but

  11. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    PubMed

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms.

  12. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  13. Investigation of Methane Oxidation Reactions Over a Dual-Bed Catalyst System using (18) O Labelled DRIFTS coupling.

    PubMed

    Richard, Melissandre; Duprez, Daniel; Bion, Nicolas; Can, Fabien

    2017-01-10

    Low loading Pd-supported (0.2 wt % Pd) Y-stabilized zirconia (YSZ) and LaMnO3 (LM) perovskite were associated to study the partial oxidation of methane using labelled (18) O2 in the gas phase. Synthesis gas production was demonstrated to occur through an indirect reaction in which oxygen is first consumed in the total methane combustion. A Mars-van Krevelen mechanism was observed over Pd/YSZ at 425 °C to yield C(16) O2 and C(16) O. A significant enhancement of the Pd/YSZ catalyst activity was achieved by the association of LM-Pd/YSZ in a dual catalyst bed, resulting in a significant increase of the oxidation rate. Vibration bands of adsorbed formate species, assumed to be intermediates to the gas production, were observed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) coupling experiments. It was proposed that LM enables the generation of highly active singlet O2 , which is activated on the YSZ oxygen vacancies to assist a rapid recovery of surface PdO and increase formate decomposition into CO and H2 in Pd-supported catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of Labeled Aflatoxins with High Specific Activities

    PubMed Central

    Hsieh, D. P. H.; Mateles, R. I.

    1971-01-01

    Resting cells of Aspergillus parasiticus ATCC 15517 were used to prepare highly labeled aflatoxins from labeled acetate. High synthetic activity in growing cells was evidenced only during 40 to 70 hr of incubation. Glucose was required for high incorporation efficiency, whereas the concentration of the labeled acetate determined the specific activity of the product. When labeled acetate was continuously added to maintain a concentration near but not exceeding 10 mm, in a culture containing 30 g of glucose per liter, 2% of its labels could be recovered in the purified aflatoxins which have a specific activity more than three times that of the labeled acetate. PMID:4329435

  15. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis

    PubMed Central

    Lansey, Melissa N.; Walker, Natalie N.; Hargett, Stefan R.; Stevens, Joseph R.

    2012-01-01

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160−/−) mice. We observed increased and normal basal glucose uptake in isolated AS160−/− adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160−/− extensor digitorum longus muscles. In plasma membranes isolated from AS160−/− adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160−/− adipocytes and normal in AS160−/− soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160−/− skeletal muscles and liver but not in AS160−/− adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis. PMID:23011063

  16. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis.

    PubMed

    Lansey, Melissa N; Walker, Natalie N; Hargett, Stefan R; Stevens, Joseph R; Keller, Susanna R

    2012-11-15

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.

  17. What Is Happening when the Blue Bottle Bleaches: An Investigation of the Methylene Blue-Catalyzed Air Oxidation of Glucose

    ERIC Educational Resources Information Center

    Anderson, Laurens; Wittkopp, Stacy M.; Painter, Christopher J.; Liegel, Jessica J.; Schreiner, Rodney; Bell, Jerry A.; Shakhashiri, Bassam Z.

    2012-01-01

    An investigation of the Blue Bottle Experiment, a well-known lecture demonstration reaction involving the dye-catalyzed air oxidation of a reducing sugar in alkaline solution, has delineated the sequence of reactions leading to the bleaching of the dye, the regeneration of color, and so forth. Enolization of the sugar is proposed as a key step in…

  18. What Is Happening when the Blue Bottle Bleaches: An Investigation of the Methylene Blue-Catalyzed Air Oxidation of Glucose

    ERIC Educational Resources Information Center

    Anderson, Laurens; Wittkopp, Stacy M.; Painter, Christopher J.; Liegel, Jessica J.; Schreiner, Rodney; Bell, Jerry A.; Shakhashiri, Bassam Z.

    2012-01-01

    An investigation of the Blue Bottle Experiment, a well-known lecture demonstration reaction involving the dye-catalyzed air oxidation of a reducing sugar in alkaline solution, has delineated the sequence of reactions leading to the bleaching of the dye, the regeneration of color, and so forth. Enolization of the sugar is proposed as a key step in…

  19. Nutrition Labeling

    NASA Astrophysics Data System (ADS)

    Metzger, Lloyd E.

    Nutrition labeling regulations differ in countries around the world. The focus of this chapter is on nutrition labeling regulations in the USA, as specified by the Food and Drug Administration (FDA) and the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA). A major reason for analyzing the chemical components of foods in the USA is nutrition labeling regulations. Nutrition label information is not only legally required in many countries, but also is of increasing importance to consumers as they focus more on health and wellness.

  20. Utility of 111In-labelled leucocyte scintigraphy in patients with fever of unknown origin in an era of changing disease spectrum and investigational techniques.

    PubMed

    Seshadri, Nagabhushan; Solanki, Chandra K; Balan, Kottekkattu

    2008-03-01

    (111)In-labelled leucocyte, imaging is often used to investigate patients with fever of unknown origin (FUO). Its diagnostic performance, however, has been variable and a broad range of sensitivities and specificities have been reported. The purpose of this investigation was to evaluate the usefulness of (111)In-labelled leucocytes scintigraphy in the detection of a cause of FUO in the light of a changing spectrum of diseases causing it and advances in investigational techniques. Sixty-one patients with a clinical diagnosis of FUO underwent whole-body (111)In-troponolate-labelled leucocyte scintigraphy in our department over a 2-year period between February 2004 and February 2006. Of these, 54 patients were retrospectively reviewed to identify a cause of FUO. Other parameters such as C-reactive protein (CRP), leucocyte count and radiological findings were also evaluated. Leucocyte scintigraphy was found to be true positive in 12 patients, true negative in 24 patients, false positive in 10 patients and false negative in eight patients. The overall sensitivity of scintigraphy was 60%, specificity 71%, positive predictive value 55%, and negative predictive value 75%. There was no difference in the scintigraphic sensitivity between patients with spontaneous FUO and those with post-operative FUO although the latter showed a higher specificity and PPV. CRP and leucocyte count did not differ significantly between patients with true positive and true negative scintigrams. Overall, 83% of patients with abnormal radiological examinations had positive findings on scintigraphy and 87% of patients with negative findings on radiology had normal scintigraphy. Despite changes in disease spectrum and advances in investigational techniques, our results suggest that (111)In-leucocyte scintigraphy is still a useful technique in establishing the cause of FUO. A higher PPV of this test in post-operative situations makes it especially applicable in this category of patients. Equally, the

  1. Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance investigation of deuterium-labelled N-hexadeconoylgalactosylceramides (cerebrosides).

    PubMed

    Skarjune, R; Oldfield, E

    1979-09-21

    1. Deuterium Fourier transform nuclear magnetic resonance spectra of a series of N-palmitoylgalactosylceramides (cerebrosides) specifically labelled with deuterium at one of positions 2', 6', 10' and 16' of the acyl chain, or in the C-6 hydroxymethyl group of the galactose residue, have been obtained using a spin-echo technique at 34.1 MHz with a homebuilt superconducting magnet spectrometer. 2. The effects of temperature and cholesterol on the deuterium spectra have been investigated. The results indicate, when compared at the same reduced temperature, that the hydrocarbon chain organization in the liquid crystalline phase of palmitoylgalactosylceramide is essentially identical to that seen in similar chain length glycerophospholipids. In particular, two sets of quadrupole splittings are seen for a 2'-labelled N-palmitoylgalactosylceramide, indicating non-equivalent deuterons as noted previously for phospholipids. 3. Two sets of quadrupole splittings are observed for the headgroup C-6-labelled N-palmitoylgalactosylceramide. It is proposed that these signals arise from the enantiomeric R and S lipids, and that motion of the hydroxymethyl group is slow (greater than 10(-5) S). These results suggest the presence of a hydrogen bond network in the polar headgroup region. 4. The effects of cholesterol on the deuterium spectra of N-palmitoylgalactosylceramide-labelled as C2H3 in the terminal methyl group, at 1:1 mol ratios and in excess water below the crystal to liquid-crystal phase transition temperature (Tc) of the pure lipid (82 degrees C), are different to the effects seen with the phosphatidylcholine-cholesterol system. The spectra below Tc are characterised by two overlapping powder patterns, one with a quadrupole splitting of approx. 6 kHz (fluid liquid-crystalline phase) and one with a quadrupole splitting of about 20--25 kHz (crystal or gel-state lipid). Exchange between these two environments is therefore slow, leading to the possibility of characterising the

  2. Labeling of the pathogenic bacterium Staphylococcus aureus with gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions.

    PubMed

    Depke, Maren; Surmann, Kristin; Hildebrandt, Petra; Jehmlich, Nico; Michalik, Stephan; Stanca, Sarmiza E; Fritzsche, Wolfgang; Völker, Uwe; Schmidt, Frank

    2014-02-01

    Throughout the world, infections caused by bacteria such as Staphylococcus aureus are a major cause of morbidity and mortality. In order to gain some understanding of the complicated physiological link between host and pathogen, modern techniques such as confocal microscopy and sophisticated OMICs technologies are suitable. However, labeling of pathogens such as S. aureus with green fluorescent protein, for example, or the generation of a reliable antibody, which are prerequisites for the application of reproducible isolation techniques, does not always succeed. Here, we present a universal approach for monitoring pathogen traffic after internalization into host cells by fluorescence microscopy and for isolation of bacteria from host-pathogen interaction assays using gold or ferric oxide-core, poly(vinyl alcohol) coated, and fluorescence-labeled nanoparticles (NP). The incubation of S. aureus HG001 with those NP had only minor effects on the bacterial growth in vitro. Quantitative proteome analysis after 24 h of NP incubation revealed that presence of NP provoked only marginal changes in the proteome pattern. The method presented enabled us to investigate the behavior of S. aureus HG001 during infection of S9 human epithelial cells by means of fluorescence microscopy and proteomics using magnetic separation or cell sorting.

  3. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme

    NASA Astrophysics Data System (ADS)

    Lv, Guohua; Faßhuber, Hannes Klaus; Loquet, Antoine; Demers, Jean-Philippe; Vijayan, Vinesh; Giller, Karin; Becker, Stefan; Lange, Adam

    2013-03-01

    The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-13C]Glucose ([2-13C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-13C]pyruvate produced mainly by glycolysis and [3-13C]/[1,3-13C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs 13Cβ-13Cγ2 and 13Cα-13Cγ1 in Val, and 13Cγ-13Cδ2 and 13Cβ-13Cδ1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.

  4. Effects of 2-(3-methyl-cinnamyl-hydrazono)-propionate on fatty acid and glucose oxidation in the isolated rat diaphragm using 14C-labelled substrates. Hydrazonopropionic acids, a new class of hypoglycaemic substances, VIII.

    PubMed

    Binder, L; Oellerich, M; Haeckel, R; Beneking, M

    1988-12-01

    The influence of 2-(3-methyl-cinnamyl-hydrazono)-propionate on the utilization of various substrates in isolated rat hemidiaphragms was investigated in comparison with other hypoglycaemic compounds. The effect of 2-(3-methyl-cinnamyl-hydrazono)-propionate was concentration-dependent. At a concentration of 0.5 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate, glucose utilization increased from 0.276 +/- 0.043 mumol.g-1.l-1 to 0.894 +/- 0.303 mumol.g-1.l-1 (p less than 0.05). Pyruvate and lactate utilization were stimulated to a lesser extent, while acetate utilization remained nearly constant. At a concentration of 2 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate, the oxidation of palmitate decreased from 0.214 +/- 0.017 mumol.g-1.l-1 to 0.060 +/- 0.005 mumol.g-1.l-1, while the oxidation of octanoate was not decreased. These findings point to a stimulation of the glycolytic flux by inhibition of long-chain fatty acid oxidation.

  5. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  6. Thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole. Characterization and investigation of the mechanism by mass spectrometry and isotope labeling

    SciTech Connect

    Bulusu, S.; Damavarapu, R.; Autera, J.R.; Behrens, R. Jr.; Minier, L.M.; Villanueva, J.; Jayasuriya, K.; Axenrod, T.

    1995-04-06

    The thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole has been investigated by differential scanning calorimetry and mass spectrometry techniques. When mixtures of independently prepared deuterium-and {sup 15}N-labeled samples of the 1,4-isomer were subjected to thermal rearrangement, the resulting 2,4-dinitroimidazole failed to show isotope-scrambled molecular ions in its mass spectrum, suggesting that the reaction was intramolecular in nature. This was interpreted to mean that the mechanism was of the (1,5)-sigmatropic type rearrangement. Extensive NMR measurements were used to obtain unequivocal evidence for the identity of the assumed structures of the isomeric dinitroimidazoles. Two byproducts (4-nitroimidazole and a trinitroimidazole), formed during the rearrangement reaction, have also been identified. Plausible mechanisms for their formation are discussed. 15 refs., 3 figs., 3 tabs.

  7. Vibrational energy relaxation of isotopically labeled amide I modes in cytochrome c: theoretical investigation of vibrational energy relaxation rates and pathways.

    PubMed

    Fujisaki, Hiroshi; Straub, John E

    2007-10-18

    With use of a time-dependent perturbation theory, vibrational energy relaxation (VER) of isotopically labeled amide I modes in cytochrome c solvated with water is investigated. Contributions to the VER are decomposed into two contributions from the protein and water. The VER pathways are visualized by using radial and angular excitation functions for resonant normal modes. Key differences of VER among different amide I modes are demonstrated, leading to a detailed picture of the spatial anisotropy of the VER. The results support the experimental observation that amide I modes in proteins relax with subpicosecond time scales, while the relaxation mechanism turns out to be sensitive to the environment of the amide I mode.

  8. Astaxanthin alleviates oxidative stress insults-related derangements in human vascular endothelial cells exposed to glucose fluctuations.

    PubMed

    Abdelzaher, Lobna A; Imaizumi, Takahiro; Suzuki, Tokiko; Tomita, Kengo; Takashina, Michinori; Hattori, Yuichi

    2016-04-01

    Glycemic fluctuations may play a critical role in the pathogenesis of diabetic complications, such as cardiovascular disease. We investigated whether the oxycarotenoid astaxanthin can reduce the detrimental effects of fluctuating glucose on vascular endothelial cells. Human umbilical venous endothelial cells were incubated for 3 days in media containing 5.5mM glucose, 22 mM glucose, or 5.5mM glucose alternating with 22 mM glucose in the absence or presence of astaxanthin or N-acetyl-L-cysteine (NAC). Constant high glucose increased reactive oxygen species (ROS) generation, but such an effect was more pronounced in fluctuating glucose. This was associated with up-regulated p22(phox) expression and down-regulated peroxisome proliferator activated receptor-γ coactivator (PGC-1α) expression. Astaxanthin inhibited ROS generation, p22(phox) up-regulation, and PGC-1α down-regulation by the stimuli of glucose fluctuation. Fluctuating glucose, but not constant high glucose, significantly decreased the endothelial nitric oxide synthase (eNOS) phosphorylation level at Ser-1177 without affecting total eNOS expression, which was prevented by astaxanthin as well as by the anti-oxidant NAC. Transferase-mediated dUTP nick end labeling (TUNEL) showed increased cell apoptosis in fluctuating glucose. Glucose fluctuation also resulted in up-regulating gene expression of pro-inflammatory mediators, interleukin-6 and intercellular adhesion molecule-1. These adverse changes were subdued by astaxanthin. The phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 were significantly increased by glucose fluctuations, and astaxanthin significantly inhibited the increase in JNK and p38 phosphorylation. Taken together, our results suggest that astaxanthin can protect vascular endothelial cells against glucose fluctuation by reducing ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres

    NASA Astrophysics Data System (ADS)

    Stevanović, Magdalena; Maksin, Tatjana; Petković, Jana; Filipič, Metka; Uskoković, Dragan

    2009-08-01

    Nanoparticles of poly(DL-lactide-co-glycolide) (PLGA) in the size range 90-150 nm were produced using the physicochemical method with solvent/non-solvent systems. The encapsulation of the ascorbic acid in the polymer matrix was performed by homogenization of the water and organic phases. In vitro degradation and release tests of PLGA nanoparticles with and without encapsulated ascorbic acid were studied for more than 60 days in PBS and it has been determined that PLGA completely degrades within this period, fully releasing all encapsulated ascorbic acid. The cytotoxicity of PLGA and PLGA/ascorbic acid 85/15% nanoparticles was examined with human hepatoma cell lines (HepG2 ECACC), in vitro. The obtained results indicate that neither PLGA nanospheres nor PLGA/ascorbic acid 85/15% nanoparticles significantly affected the viability of the HepG2 cells. The investigation of the distribution and pharmacokinetics of PLGA is crucial for the effective prediction of host responses to PLGA in particular applications. Thus we present a method of labeling PLGA nanospheres and PLGA/ascorbic acid 85/15 wt% nanoparticles by 99mTc which binds outside, leaving the cage intact. This enables a quick and convenient investigation of the pharmacological behavior and metabolism of PLGA. The biodistribution of 99mTc-labeled PLGA particles with and without encapsulated ascorbic acid after different periods of time of their installation into rats was examined. PLGA nanospheres with encapsulated ascorbic acid exhibit prolonged blood circulation accompanied by time-dependent reduction in the lungs, liver and spleen, and addition in the kidney, stomach and intestine. The samples were characterized by x-ray diffraction, scanning electron microscopy, stereological analysis, transmission electron microscopy, ultraviolet spectroscopy and instant thin layer chromatography.

  10. Gliotransmission and Brain Glucose Sensing

    PubMed Central

    Lanfray, Damien; Arthaud, Sébastien; Ouellet, Johanne; Compère, Vincent; Do Rego, Jean-Luc; Leprince, Jérôme; Lefranc, Benjamin; Castel, Hélène; Bouchard, Cynthia; Monge-Roffarello, Boris; Richard, Denis; Pelletier, Georges; Vaudry, Hubert; Tonon, Marie-Christine; Morin, Fabrice

    2013-01-01

    Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders. PMID:23160530

  11. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter.

    PubMed

    Ståhlberg, Tim; Rodriguez-Rodriguez, Sergio; Fristrup, Peter; Riisager, Anders

    2011-02-01

    The dehydration of glucose and other hexose carbohydrates to 5-(hydroxymethyl)furfural (HMF) was investigated in imidazolium-based ionic liquids with boric acid as a promoter. A yield of up to 42% from glucose and as much as 66% from sucrose was obtained. The yield of HMF decreased as the concentration of boric acid exceeded one equivalent, most likely as a consequence of stronger fructose-borate chelate complexes being formed. Computational modeling with DFT calculations confirmed that the formation of 1:1 glucose-borate complexes facilitated the conversion pathway from glucose to fructose. Deuterium-labeling studies elucidated that the isomerization proceeded via an ene-diol mechanism, which is different to that of the enzyme-catalyzed isomerization of glucose to fructose. The introduced non-metal system containing boric acid provides a new direction in the search for catalyst systems allowing efficient HMF formation from biorenewable sources.

  12. Pancreatic perfusion and subsequent response to glucose in healthy individuals and patients with type 1 diabetes.

    PubMed

    Carlbom, Lina; Espes, Daniel; Lubberink, Mark; Eriksson, Olof; Johansson, Lars; Jansson, Leif; Korsgren, Olle; Ahlström, Håkan; Carlsson, Per-Ola

    2016-09-01

    The aim of this study was to investigate pancreatic perfusion and its response to a glucose load in patients with type 1 diabetes mellitus compared with non-diabetic ('healthy') individuals. Eight individuals with longstanding type 1 diabetes and ten sex-, age- and BMI-matched healthy controls underwent dynamic positron emission tomography scanning with (15)O-labelled water before and after intravenous administration of glucose. Perfusion in the pancreas was measured. Portal and arterial hepatic perfusion were recorded as references. Under fasting conditions, total pancreatic perfusion was on average 23% lower in the individuals with diabetes compared with healthy individuals. Glucose increased total pancreatic and portal hepatic blood perfusion in healthy individuals by 48% and 38%, respectively. In individuals with diabetes there was no significant increase in either total pancreatic or portal hepatic perfusion. Individuals with type 1 diabetes have reduced basal pancreatic perfusion and a severely impaired pancreatic and splanchnic perfusion response to intravenous glucose stimulation.

  13. Non-invasive label-free investigation and typing of head and neck cancers by multimodal nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Meyer, Tobias; Vogler, Nadine; Dietzek, Benjamin; Akimov, Denis; Inhestern, Johanna; Guntinas-Lichius, Orlando; Popp, Jürgen

    2012-06-01

    Early detection and typing of tumors is pressing matter in clinical research with important impacts for prognosis and successful treatment. Currently, staining is the golden standard in histopathology but requires surgical removal of tissue. In order to avoid resection of non-diseased tissue a non-invasive real-time imaging method is required which can be applied ideally intrasurgically. In this proceeding a combination of second harmonic generation (SHG), two photon excited fluorescence (TPEF) and coherent anti-Stokes Raman (CARS) imaging has been employed to investigate tissue sections of head and neck carcinomas focussing on laryngeal carcinoma. Primary laryngeal and other head and neck carcinomas consist to 99% of squamous cell carcinoma. By fusing the various imaging methods it is possible to measure the thickness of the epithelial cell layer as a marker for dysplastic or cancerous tissue degradation and to differentiate keratinizing and nonkeratininzing squamous cell carcinomas (SCC). As nonkeratinizing SCCs of the oropharynx correlate with a human papillomavirus (HPV) infection as a subentity of head and neck cancer, and HPV related tumors are associated with a better clinical prognosis, the differentiation between keratinizing and non-keratinizing forms of SCCs is of high diagnostic value. TPEF is capable of displaying cell nuclei, therefore, morphologic information as cell density, cell to cytoplasm ratio, size and shape of cell nuclei can be obtained. SHG - on the other hand - selectively reveals the collagen matrix of the connective tissue, which is useful for determination of tumor-islets boundaries within epithelial tissue - a prerequisite for precise resection. Finally CARS in the CH-stretching region visualizes the lipid content of the tissue, which can be correlated with the dysplastic grade of the tissue.

  14. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    SciTech Connect

    Carter-Su, C.; Okamoto, K.

    1987-04-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1-/sup 3/H(N))glucose and D-(/sup 14/C-U)glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in /sup 125/I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with (/sup 3/H)cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of (/sup 3/H)cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions.

  15. Phosphorus cycling in the Sargasso Sea: Investigation using the oxygen isotopic composition of phosphate, enzyme-labeled fluorescence, and turnover times

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Sohm, Jill A.; Cutter, Gregory A.; Lomas, Michael W.; Paytan, Adina

    2013-04-01

    Dissolved inorganic phosphorus (DIP) concentrations in surface water of vast areas of the ocean are extremely low (<10 nM) and phosphorus (P) availability could limit primary productivity in these regions. We explore the use of oxygen isotopic signature of dissolved phosphate (δ18OPO4) to investigate biogeochemical cycling of P in the Sargasso Sea, Atlantic Ocean. Additional techniques for studying P dynamics including 33P-based DIP turnover time estimates and percent of cells expressing alkaline phosphatase (AP) activity as measured by enzyme-labeling fluorescence are also used. In surface waters, δ18OPO4 values were lower than equilibrium by 3-6‰, indicative of dissolved organic phosphorous (DOP) remineralization by extracellular enzymes. An isotope mass balance model using a variety of possible combinations of enzymatic pathways and substrates indicates that DOP remineralization in the euphotic zone can account for a large proportion on P utilized by phytoplankton (as much as 82%). Relatively short DIP turnover times (4-8 h) and high expression of AP (38-77% of the cells labeled) are consistent with extensive DOP utilization and low DIP availability in the euphotoc zone. In deep water where DOP utilization rates are lower, δ18OPO4 values approach isotopic equilibrium and DIP turnover times are longer. Our data suggests that in the euphotic zone of the Sargasso Sea, DOP may be appreciably remineralized and utilized by phytoplankton and bacteria to supplement cellular requirements. A substantial fraction of photosynthesis in this region is supported by DOP uptake.

  16. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma.

    PubMed

    Newman, Erik N; Jones, Robin L; Hawkins, Douglas S

    2013-07-01

    Staging investigations following the diagnosis of Ewing sarcoma may include chest computerized tomography (CT), technetium bone scintigraphy (bone scan), [F-18]-fluorodeoxy-D-glucose positron emission tomography (FDG-PET) scan, and bone marrow biopsy and aspiration (BMA/Bx). Each of these staging investigations provides complementary prognostic information, however the optimal combination of staging investigations is not clear. We conducted a retrospective study of 91 patients diagnosed with Ewing sarcoma and consecutively treated at our medical facilities between January 1, 2001 and December 31, 2011. We compared the radiologist's interpretations of staging FDG-PET and bone scans. We additionally compared the results of imaging evaluations to bilateral and unilateral BMA/Bx. We found FDG-PET and bone scan to have an examination-based concordance rate of 98% (one discordant case with a positive FDG-PET and negative bone scan). The region-based concordance rate for the imaging modalities was 97% for all cases and 63% for metastatic cases. The ipsilateral concordance rate for BMA/Bx was 98% with BMBx detecting metastases in seven cases and BMA detecting metastases in four cases. The left versus right concordance rates for BMBx and BMA were 98% and 97%, respectively. In all cases where bone marrow metastases were detected by BMA or BMBx, FDG-PET and bone scan detected osseous metastases. Our study indicates FDG-PET may be sufficient for initial screening for osseous metastases and identified all patients who also have bone marrow metastases. If osseous metastases are detected, a bone scan can detect additional osseous lesions and BMBx may indicate prognostic bone marrow metastases. Copyright © 2012 Wiley Periodicals, Inc.

  17. Investigating CH4 production in an oxic plant-soil system -a new approach combining isotopic labelling (13C) and inhibitors

    NASA Astrophysics Data System (ADS)

    Lenhart, Katharina; Keppler, Frank

    2017-04-01

    Typically, aerated soil are net sinks of atmospheric methane (CH4), being highest in native ecosystems (pristine forests > managed forests > grasslands > crop fields). However, this does not exclude a simultaneous endogenic CH4 production in the plant-soil system, which cannot be detected simply via CH4 flux measurements. Methanogenic archaea producing CH4 under anoxic conditions were thought to be the only biotic source of CH4 in the soil. However, until recently a non-archaeal pathway of CH4 formation is known where CH4 is produced under oxic conditions in plants (Keppler et al. 2006) and fungi (Lenhart et al. 2012). Additionally, abiotic formation of CH4 from soil organic matter was reported (Jugold et al. 2012) and may be ubiquitous in terrestrial ecosystems. The major goal of this project was to determine soil endogenic CH4 sources and to estimate their contribution to the endogenic CH4 production. Especially the effect of plants and fungi on soil CH4 production was investigated. Therefore, a series of experiments was carried out on field fresh soil collected in a grassland and a forest ecosystem under controlled laboratory conditions. By combining selective inhibitors and 13C labelling, CH4 production rates of several CH4 sources were quantified. The major difficulty was to detect the comparatively small flux of CH4 production against the background of the high CH4 consumption rates due to methanotrophic bacteria. Therefore, we supplemented bare soil and soil with vegetation with selective inhibitors and 13C labelled substrates in a closed chamber system. In a first step, CH4 production was determined by the inhibition of CH4 oxidizing bacteria with Difluoromethane (DFM, 2ml l-1). In the following, a 13C labelled substrate (either CO2, Acetate, or Methionine -S-CH3 labelled) was added in combination with a specific inhibitor -either for archaeal methanogenesis (Bromoethanesulfonate), bacteria (Streptomycin), or fungi (Captan, Cycloheximide). Gas samples were

  18. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.

    PubMed

    Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-02-23

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.

  19. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  20. Investigating the Relationship between Transverse Relaxation Rate (R2) and Interecho Time in MagA-Expressing, Iron-Labeled Cells.

    PubMed

    Lee, Casey Y; Thompson, R Terry; Prato, Frank S; Goldhawk, Donna E; Gelman, Neil

    2015-01-01

    Reporter gene-based labeling of cells with iron is an emerging method of providing magnetic resonance imaging contrast for long-term cell tracking and monitoring cellular activities. This report investigates 9.4 T nuclear magnetic resonance properties of mammalian cells overexpressing MagA, a putative iron transport protein from magnetotactic bacteria. MagA-expressing MDA-MB-435 cells were cultured in the presence and absence of iron supplementation and compared to the untransfected control. The relationship between the transverse relaxation rate (R2) and interecho time was investigated using the Carr-Purcell-Meiboom-Gill sequence. This relationship was analyzed using a model based on water diffusion in weak magnetic field inhomogeneities (Jensen-Chandra model) as well as a fast-exchange model (Luz-Meiboom model). Increases in R2 with increasing interecho time were larger in the iron-supplemented, MagA-expressing cells compared to other cells. The dependence of R2 on interecho time in these iron-supplemented, MagA-expressing cells was better represented by the Jensen-Chandra model compared to the Luz-Meiboom model, whereas the Luz-Meiboom model performed better for the remaining cell types. Our findings provide an estimate of the distance scale of microscopic magnetic field variations in MagA-expressing cells, which is thought to be related to the size of iron-containing vesicles.

  1. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  2. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  3. Subject-driven titration of biphasic insulin aspart 30 twice daily is non-inferior to investigator-driven titration in Chinese patients with type 2 diabetes inadequately controlled with premixed human insulin: A randomized, open-label, parallel-group, multicenter trial.

    PubMed

    Yang, Wenying; Zhu, Lvyun; Meng, Bangzhu; Liu, Yu; Wang, Wenhui; Ye, Shandong; Sun, Li; Miao, Heng; Guo, Lian; Wang, Zhanjian; Lv, Xiaofeng; Li, Quanmin; Ji, Qiuhe; Zhao, Weigang; Yang, Gangyi

    2016-01-01

    The present study was to compare the efficacy and safety of subject-driven and investigator-driven titration of biphasic insulin aspart 30 (BIAsp 30) twice daily (BID). In this 20-week, randomized, open-label, two-group parallel, multicenter trial, Chinese patients with type 2 diabetes inadequately controlled by premixed/self-mixed human insulin were randomized 1:1 to subject-driven or investigator-driven titration of BIAsp 30 BID, in combination with metformin and/or α-glucosidase inhibitors. Dose adjustment was decided by patients in the subject-driven group after training, and by investigators in the investigator-driven group. Eligible adults (n = 344) were randomized in the study. The estimated glycated hemoglobin (HbA1c) reduction was 14.5 mmol/mol (1.33%) in the subject-driven group and 14.3 mmol/mol (1.31%) in the investigator-driven group. Non-inferiority of subject-titration vs investigator-titration in reducing HbA1c was confirmed, with estimated treatment difference -0.26 mmol/mol (95% confidence interval -2.05, 1.53) (-0.02%, 95% confidence interval -0.19, 0.14). Fasting plasma glucose, postprandial glucose increment and self-measured plasma glucose were improved in both groups without statistically significant differences. One severe hypoglycemic event was experienced by one subject in each group. A similar rate of nocturnal hypoglycemia (events/patient-year) was reported in the subject-driven (1.10) and investigator-driven (1.32) groups. There were 64.5 and 58.1% patients achieving HbA1c <53.0 mmol/mol (7.0%), and 51.2 and 45.9% patients achieving the HbA1c target without confirmed hypoglycemia throughout the trial in the subject-driven and investigator-driven groups, respectively. Subject-titration of BIAsp 30 BID was as efficacious and well-tolerated as investigator-titration. The present study supported patients to self-titrate BIAsp 30 BID under physicians' supervision.

  4. Facilitated Visual Interpretation of Scores in Principal Component Analysis by Bioactivity-Labeling of 1H-NMR Spectra-Metabolomics Investigation and Identification of a New α-Glucosidase Inhibitor in Radix Astragali.

    PubMed

    Liu, Yueqiu; Nyberg, Nils T; Jäger, Anna K; Staerk, Dan

    2017-03-06

    Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract's bioactivity.

  5. 2D Gel Electrophoresis of Insulin Secretory Granule Proteins from Biosynthetically Labelled Pancreatic Islets.

    PubMed

    Guest, Paul C

    2017-01-01

    Pulse radiolabelling of cells with radioactive amino acids such is a common method for investigating the biosynthetic rates of proteins. In this way, the abundance of newly synthesized proteins can be determined by several proteomic techniques including 2D gel electrophoresis (2DE). This chapter describes a protocol for labelling pancreatic islets with (35)S-methionine in the presence of low and high concentrations of glucose, followed by subcellular fractionation enrichment of secretory granule proteins and analysis of the granule protein contents by 2DE. This demonstrated that the biosynthetic rates of most of the granule proteins are co-ordinately regulated in the presence of stimulatory glucose concentrations.

  6. 13C Nuclear Magnetic Resonance Studies of Citrate and Glucose Cometabolism by Lactococcus lactis

    PubMed Central

    Ramos, Ana; Jordan, Kieran N.; Cogan, Timothy M.; Santos, Helena

    1994-01-01

    13C nuclear magnetic resonance (13C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-13C]citrate, [3-13C]pyruvate, and [2-13C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. α-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the α-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented. PMID:16349269

  7. Dietary Proteins Contribute Little to Glucose Production, Even Under Optimal Gluconeogenic Conditions in Healthy Humans

    PubMed Central

    Fromentin, Claire; Tomé, Daniel; Nau, Françoise; Flet, Laurent; Luengo, Catherine; Azzout-Marniche, Dalila; Sanders, Pascal; Fromentin, Gilles; Gaudichon, Claire

    2013-01-01

    Dietary proteins are believed to participate significantly in maintaining blood glucose levels, but their contribution to endogenous glucose production (EGP) remains unclear. We investigated this question using multiple stable isotopes. After overnight fasting, eight healthy volunteers received an intravenous infusion of [6,6-2H2]-glucose. Two hours later, they ingested four eggs containing 23 g of intrinsically, uniformly, and doubly [15N]-[13C]–labeled proteins. Gas exchanges, expired CO2, blood, and urine were collected over the 8 h following egg ingestion. The cumulative amount of dietary amino acids (AAs) deaminated over this 8-h period was 18.1 ± 3.5%, 17.5% of them being oxidized. The EGP remained stable for 6 h but fell thereafter, concomitantly with blood glucose levels. During the 8 h after egg ingestion, 50.4 ± 7.7 g of glucose was produced, but only 3.9 ± 0.7 g originated from dietary AA. Our results show that the total postprandial contribution of dietary AA to EGP was small in humans habituated to a diet medium-rich in proteins, even after an overnight fast and in the absence of carbohydrates from the meal. These findings question the respective roles of dietary proteins and endogenous sources in generating significant amounts of glucose in order to maintain blood glucose levels in healthy subjects. PMID:23274906

  8. Noninterventional Open-Label Trial Investigating the Efficacy and Safety of Ectoine Containing Nasal Spray in Comparison with Beclomethasone Nasal Spray in Patients with Allergic Rhinitis

    PubMed Central

    Sonnemann, Uwe; Möller, Marcus

    2014-01-01

    Objectives. The current study aimed to compare the efficacy and safety of a classical anti-inflammatory beclomethasone nasal spray in comparison to a physic-chemical stabilizing ectoine containing nasal spray in the treatment of allergic rhinitis. Design and Methods. This was a noninterventional, open-label, observational trial investigating the effects of beclomethasone or ectoine nasal spray on nasal symptoms and quality of life. Over a period of 14 days, patients were asked to daily document their symptoms. Efficacy and tolerability were assessed by both physicians and patients. Results. Both treatments resulted in a significant decrease of TNSS values. An equivalence test could not confirm the noninferiority of ectoine treatment in comparison with beclomethasone treatment. Although clear symptom reduction was achieved with the ectoine products, the efficacy judgment showed possible advantages for the beclomethasone group. Importantly, tolerability results were comparably good in both groups, and a very low number of adverse events supported this observation. Both treatments resulted in a clear improvement in the quality of life as assessed by a questionnaire answered at the beginning and at the end of the trial. Conclusion. Taken together, it was shown that allergic rhinitis can be safely and successfully treated with beclomethasone and also efficacy and safety were shown for ectoine nasal spray. PMID:24976831

  9. Noninterventional open-label trial investigating the efficacy and safety of ectoine containing nasal spray in comparison with beclomethasone nasal spray in patients with allergic rhinitis.

    PubMed

    Sonnemann, Uwe; Möller, Marcus; Bilstein, Andreas

    2014-01-01

    Objectives. The current study aimed to compare the efficacy and safety of a classical anti-inflammatory beclomethasone nasal spray in comparison to a physic-chemical stabilizing ectoine containing nasal spray in the treatment of allergic rhinitis. Design and Methods. This was a noninterventional, open-label, observational trial investigating the effects of beclomethasone or ectoine nasal spray on nasal symptoms and quality of life. Over a period of 14 days, patients were asked to daily document their symptoms. Efficacy and tolerability were assessed by both physicians and patients. Results. Both treatments resulted in a significant decrease of TNSS values. An equivalence test could not confirm the noninferiority of ectoine treatment in comparison with beclomethasone treatment. Although clear symptom reduction was achieved with the ectoine products, the efficacy judgment showed possible advantages for the beclomethasone group. Importantly, tolerability results were comparably good in both groups, and a very low number of adverse events supported this observation. Both treatments resulted in a clear improvement in the quality of life as assessed by a questionnaire answered at the beginning and at the end of the trial. Conclusion. Taken together, it was shown that allergic rhinitis can be safely and successfully treated with beclomethasone and also efficacy and safety were shown for ectoine nasal spray.

  10. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  11. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the

  12. Shell-Less Chick Embryo Culture as an Alternative in vitro Model to Investigate Glucose-Induced Malformations in Mammalian Embryos

    PubMed Central

    Datar, Savita; Bhonde, Ramesh R.

    2005-01-01

    We have developed a simple shell-less chick embryo culture system to study glucose-induced malformations. This system involves the culturing of chick embryos from the second day to the fifth day of incubation, with associated yolk and thick and thin albumen outside the egg shell. The system allows the observation of embryonic development of chicks in a glass bowl. Developing embryos at 24 h, 48 h and 72 h incubation, corresponding to the Hamberger Hamilton (HH) stages from 7 to 21, were treated with two concentrations of glucose (50 mM and 100 mM) for 24 h. Glucose treatment resulted in a mortality rate of over 70% in younger embryos. Furthermore, a variety of malformations such as retarded growth, abnormal heart development, macrosomia, exencephaly, etc. were observed in older embryos, which were similar to those reported in mammalian embryos as a consequence of diabetic pregnancy. The glucose-induced malformations were found to be concentration- and stage-dependent, thus emphasizing the roles of the degree of hyperglycemia and the stage of embryonic development in diabetic growth anomalies. Here we demonstrate for the first time that the present system can be used (i) for experiments at early stages of chick embryo development and (ii) for assessing the effects of acute glucose toxicity similar to those reported for mammalian embryos in a hyperglycemic environment. PMID:17491698

  13. Food labeling

    MedlinePlus

    ... States Food and Drug Administration (FDA) has proposed making changes to the food labels that may correct these problems. AMOUNTS PER SERVING The total calories and the calories from fat are listed. These numbers help consumers make decisions about fat intake. The list of nutrients includes ...

  14. Glycogen synthase can use glucose as an acceptor.

    PubMed

    Salsas, E; Larner, J

    1975-03-10

    Glycogen synthase purified to homogeneity from rabbit skeletal muscle is essentially free of carbohydrate and shows no activity in the absence of added acceptor. It can use glucose as a substrate converting it to a glucose disaccharide in the presence of UDP-glucose as cosubstrate. The reaction is dependent on time, and on UDP-glucose, glucose, and enzyme concentrations. The product of the single step reaction co-chromatographs in two solvent systems with maltose. The glucose disaccharide produced in the reaction with UDP-[14-C]glucose and nonradioactive glucose as well as with nonradioactive UDP-glucoes and [14-C]glucose is labeled asymmetrically. The linkage is characterized as alpha-1,4 and therefore the disaccharide is identified as maltose.

  15. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit.

    PubMed

    Kosiborod, Mikhail; Gottlieb, Rebecca K; Sekella, Julie A; Peterman, Diane; Grodzinsky, Anna; Kennedy, Paul; Borkon, Michael A

    2014-01-01

    Maintaining glucose in the target range, while avoiding hypoglycemia, is challenging in critically ill patients. We investigated the performance and safety of Medtronic Sentrino, a newly developed continuous glucose management (CGM) system for critically ill adults. This was a prospective, single-center, single-arm, open-label study in adult patients with cardiac ICU admission. Sentrino subcutaneous glucose sensors were inserted into patients' thigh with planned study participation of 72 h. Sensor glucose results were displayed, and the system's alerts and alarms fully enabled. Reference blood glucose was collected from central venous catheter and analyzed with a blood gas analyzer. Treatment decisions were made independently of sensor glucose values, according to the existing standard of care. A total of 21 patients were enrolled; all successfully completed the study. Sensor glucose values were displayed 96% of the time, and 870 paired blood glucose-sensor glucose points were analyzed. Overall mean absolute relative difference (MARD) was 12.8% (95% CI 11.9% to 13.6%). No clinically significant differences in accuracy were seen within subgroups of hemodynamic status (MARD 12.3% and 13.1% for compromised vs stable hemodynamics). Consensus grid analysis showed >99% of sensor glucose values within A/B zones. No device or study-related adverse events were reported. 100% of clinicians found Sentrino easy to use after two patients. In our single-center experience, Sentrino CGM system demonstrated good accuracy and reliability, with no device-related adverse events in critically ill cardiac patients, and was easy to use and integrate in the cardiac ICU. NCT01763567.

  16. Outpatient overnight glucose control with dual-hormone artificial pancreas, single-hormone artificial pancreas, or conventional insulin pump therapy in children and adolescents with type 1 diabetes: an open-label, randomised controlled trial.

    PubMed

    Haidar, Ahmad; Legault, Laurent; Matteau-Pelletier, Laurence; Messier, Virginie; Dallaire, Maryse; Ladouceur, Martin; Rabasa-Lhoret, Rémi

    2015-08-01

    Additional benefits of the dual-hormone (insulin and glucagon) artificial pancreas compared with the single-hormone (insulin alone) artificial pancreas have not been assessed in young people in outpatient unrestricted conditions. We evaluated the efficacy of three systems for nocturnal glucose control in children and adolescents with type 1 diabetes. We did a randomised, three-way, crossover trial in children aged 9-17 years with type 1 diabetes attending a diabetes camp in Canada. With use of sealed envelopes, children were randomly assigned in a 1:1:1:1:1:1 ratio with blocks of six to different sequences of the three interventions (single-hormone artificial pancreas, dual-hormone artificial pancreas, and conventional continuous subcutaneous insulin pump therapy). Each intervention was applied for 3 consecutive nights. Participants, study staff, and endpoint assessors were not masked. The primary outcome was the percentage of time spent with glucose concentrations lower than 4·0 mmol/L from 2300 h to 0700 h. Analysis was by intention to treat. A p value of less than 0·0167 was regarded as significant. This study is registered with ClinicalTrials.gov, number NCT02189694. Between June 30, 2014, and Aug 9, 2014, we enrolled 33 children of mean age 13·3 years (SD 2·3; range 9-17). The time spent at a glucose concentration lower than 4·0 mmol/L was median 0% (IQR 0·0-2·4) during nights with the dual-hormone artificial pancreas, 3·1% (0·0-6·9) during nights with the single-hormone artificial pancreas (p=0·032), and 3·4% (0-11·0) during nights with conventional pump therapy (p=0·0048 compared with dual-hormone artificial pancreas and p=0·32 compared with single-hormone artificial pancreas). 15 hypoglycaemic events (<3·1 mmol/L for 20 min measured by sensor then confirmed with capillary glucose <4·0 mmol/L) were noted during nights with conventional pump therapy compared with four events with the single-hormone system and no events with the dual

  17. Quantitative measurement of the L-type pentose phosphate cycle with [2-14C]glucose and [5-14C]glucose in isolated hepatocytes.

    PubMed Central

    Longenecker, J P; Williams, J F

    1980-01-01

    1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells. PMID:7470039

  18. A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments

    NASA Astrophysics Data System (ADS)

    Beyer, M.; Koeniger, P.; Gaj, M.; Hamutoko, J. T.; Wanke, H.; Himmelsbach, T.

    2016-02-01

    Non- or minimum-invasive methods for the quantification of rooting depths of plants are rare, in particular in (semi-)arid regions; yet, this information is crucial for the parameterization of SVAT (Soil-Vegetation-Atmosphere Transfer) models and understanding of processes within the hydrological cycle. We present a technique utilizing the stable isotope deuterium (2H) applied as artificial tracer to investigate the vertical extent of the root zone, characterize water uptake dynamics of trees and shrubs at different depths and monitor transport of water through the unsaturated zone of dry environments. One liter of 35% deuterated water (2H2O) was punctually applied at several depths (0.5 m, 1 m, 2 m, 2.5 m and 4 m) at six different plots at a natural forested site in the Cuvelai-Etosha Basin (CEB), Namibia/Angola. Subsequently, uptake of the tracer was monitored by collecting plant samples (xylem and transpired water) up to seven days after tracer injection. Soil profiles at the plots were taken after the campaign and again after six months in order to evaluate the transport and distribution of 2H within the unsaturated zone. Of 162 plant samples taken, 31 samples showed clear signals of artificially introduced 2H, of which all originate from the plots labeled up to 2 m depth. No artificially injected 2H was found in plants when tracer application occurred deeper than 2 m. Results further indicate a sharing of water resources between the investigated shrubs and trees in the upper 1 m whilst tree roots seem to have better access to deeper layers of the unsaturated zone. The soil profiles taken after six months reveal elevated 2H-concentrations from depths as great as 4 m up to 1 m below surface indicating upward transport of water vapor. Purely diffuse transport towards the soil surface yielded an estimated 0.4 mm over the dry season. Results are of particular significance for a more precise parameterization of SVAT models and the formulation of water balances in

  19. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

    PubMed

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Angielski, Stefan; Stepinski, Jan

    2005-02-01

    Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading to impairment of kidney glomerular function. In the present study, we examined the effects of glucose concentration and mechanical stress on glucose uptake in podocytes. Following a 24 h pre-incubation in low (2.5 mM, LG), normal (5.6 mM, NG) or high (30 mM, HG) glucose media, cultured rat podocytes were exposed to 4 h mechanical stress. We used the labelled glucose analogue, [3H]2-deoxy-D-glucose, to measure glucose uptake. The distribution of facilitative glucose transporters GLUT2 and GLUT4 was assessed by flow cytometry. In the control (static) cells, glucose uptake was similar in the three glucose groups. In mechanically stressed podocytes, glucose uptake increased 2-fold in the LG and NG groups but increased 3-fold in the HG group. In the NG cells, mechanical load increased the membrane expression of GLUT2 and reduced the membrane-bound GLUT4. In stretched HG cells, the membrane expression of both GLUT2 and GLUT4 was decreased. High glucose decreased the plasma membrane GLUT2 content in the stretched cells, whereas both static and stretched podocytes showed an elevation in GLUT4. Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.

  20. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD–severe combined immunodeficiency (SCID) mice

    PubMed Central

    Levitt, H. E.; Cyphert, T. J.; Pascoe, J. L.; Hollern, D. A.; Abraham, N.; Lundell, R. J.; Rosa, T.; Romano, L. C.; Zou, B.; O’Donnell, C. P.; Stewart, A. F.; Garcia-Ocaña, A.; Alonso, L. C.

    2011-01-01

    Aims/hypothesis We determined whether hyperglycaemia stimulates human beta cell replication in vivo in an islet transplant model Methods Human islets were transplanted into streptozotocin-induced diabetic NOD–severe combined immunodeficiency mice. Blood glucose was measured serially during a 2 week graft revascularisation period. Engrafted mice were then catheterised in the femoral artery and vein, and infused intravenously with BrdU for 4 days to label replicating beta cells. Mice with restored normoglycaemia were co-infused with either 0.9% (wt/vol.) saline or 50% (wt/vol.) glucose to generate glycaemic differences among grafts from the same donors. During infusions, blood glucose was measured daily. After infusion, human beta cell replication and apoptosis were measured in graft sections using immunofluorescence for insulin, and BrdU or TUNEL. Results Human islet grafts corrected diabetes in the majority of cases. Among grafts from the same donor, human beta cell proliferation doubled in those exposed to higher glucose relative to lower glucose. Across the entire cohort of grafts, higher blood glucose was strongly correlated with increased beta cell replication. Beta cell replication rates were unrelated to circulating human insulin levels or donor age, but tended to correlate with donor BMI. Beta cell TUNEL reactivity was not measurably increased in grafts exposed to elevated blood glucose. Conclusions/interpretation Glucose is a mitogenic stimulus for transplanted human beta cells in vivo. Investigating the underlying pathways may point to mechanisms capable of expanding human beta cell mass in vivo. PMID:20936253

  1. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. © 2016 by The American Society of Hematology.

  2. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  3. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  4. DNA fluorescent labeling with naphtho[1,2,3-cd]indol-6(2H)-one for investigation of protein-DNA interactions.

    PubMed

    Vasilyeva, Svetlana V; Kuznetsov, Nikita A; Kuznetsova, Anastasya S; Khalyavina, Juliya G; Tropina, Darya A; Lavrikova, Tatyana I; Kargina, Olga I; Gornostaev, Leonid M

    2017-06-01

    Fluorescently labeled DNA to study protein-DNA interactions was synthesized using the Cu(I)-catalysed cycloaddition (CuAAC) reaction. For this purpose, a new azido-containing fluorophore based on the naphtho[1,2,3-cd]indol-6(2H)-one derivative was obtained. The fluorescent properties of naphtho[1,2,3-cd]indol-6(2H)-one derivatives and labeled DNA were studied. The new fluorescent DNA conjugate was shown to be a useful tool to study complex mechanisms of protein-DNA interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Introduction to Pesticide Labels

    EPA Pesticide Factsheets

    Pesticide product labels provide critical information about how to safely and legally handle and use pesticide products. Unlike most other types of product labels, pesticide labels are legally enforceable. Learn about pesticide product labels.

  6. Isotope Label-Aided Mass Spectrometry Reveals the Influence of Environmental Factors on Metabolism in Single Eggs of Fruit Fly

    PubMed Central

    Tseng, Te-Wei; Wu, June-Tai; Chen, Yu-Chie; Urban, Pawel L.

    2012-01-01

    In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster). First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar (13C6-glucose) for 12 h – either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS): this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose) in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate – possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism. PMID:23185587

  7. Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation.

    PubMed

    Baldini, Steffi F; Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Mir, Anne-Marie; Mortuaire, Marlène; Lefebvre, Tony; Guinez, Céline

    2016-09-16

    Blood glucose fluctuates with the fasting-feeding cycle. One of the liver's functions is to maintain blood glucose concentrations within a physiological range. Glucokinase (GCK) or hexokinase IV, is the main enzyme that regulates the flux and the use of glucose in the liver leading to a compensation of hyperglycemia. In hepatocytes, GCK catalyzes the phosphorylation of glucose into glucose-6-phosphate. This critical enzymatic reaction is determinant for the metabolism of glucose in the liver which includes glycogen synthesis, glycolysis, lipogenesis and gluconeogenesis. In liver, simultaneous increase of glucose and insulin enhances GCK activity and gene expression, changes its subcellular location and interaction with regulatory proteins. The post-translational O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) acts as a glucose-sensitive modification and is believed to take part in hepatic glucose sensing by modifying key regulatory proteins. Therefore, we aimed to determine whether GCK is modified by O-GlcNAcylation in the liver of mice and investigated the role that this modification plays in regulating GCK protein expression. We demonstrated that endogenous GCK expression correlated with O-GlcNAc levels in the pathophysiological model ob/ob mice. More specifically, in response to the pharmacological inhibition of O-GlcNAcase (OGA) contents of GCK increased. Using the GlcNAc specific lectin succinylated-WGA and click chemistry labeling approaches, we demonstrated that GCK is modified by O-GlcNAcylation. Further, we demonstrated that siRNA-mediated Ogt knock-down not only decreases O-GlcNAc content but also GCK protein level. Altogether, our in vivo and in vitro results demonstrate that GCK expression is regulated by nutrient-sensing O-GlcNAc cycling in liver.

  8. Exposure to High Glucose Concentration Decreases Cell Surface ABCA1 and HDL Biogenesis in Hepatocytes.

    PubMed

    Tsujita, Maki; Hossain, Mohammad Anwar; Lu, Rui; Tsuboi, Tomoe; Okumura-Noji, Kuniko; Yokoyama, Shinji

    2017-04-19

    To study atherosclerosis risk in diabetes, we investigated ATP-binding cassette transporter A1 (ABCA1) expression and high-density lipoprotein (HDL) biogenesis in the liver and hepatocytes under hyperglycemic conditions. In streptozotocin-induced diabetic mice, plasma HDL decreased while ABCA1 protein increased without changing its mRNA in the liver, only in the animals that responded to the treatment to show hypoinsulinemia and fasting hyperglycemia but not in the poor responders not showing those. To study the mechanism for this finding, hepatocytes were isolated from the control and diabetic mice, and they showed no difference in expression of ABCA1 protein, its mRNA, and HDL biogenesis in 1 g/l d-glucose but showed decreased HDL biogenesis in 4.5 g/l d-glucose although ABCA1 protein increased without change in its mRNA. Similar findings were confirmed in HepG2 cells with d-glucose but not with l-glucose. Thus, these cell models reproduced the in vivo findings in hyperglycemia. Labeling of cell surface protein revealed that surface ABCA1 decreased in high concentration of d-glucose in HepG2 cells despite the increase of cellular ABCA1 while not with l-glucose. Immunostaining of ABCA1 in HepG2 cells demonstrated the decrease of surface ABCA1 but increase of intracellular ABCA1 with high d-glucose. Clearance of ABCA1 was retarded both in primary hepatocytes and HepG2 cells exposed to high d-glucose but not to l-glucose, being consistent with the decrease of surface ABCA1. It is suggested that localization of ABCA1 to the cell surface is decreased in hepatocytes in hyperglycemic condition to cause decrease of HDL biogenesis.

  9. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium

    SciTech Connect

    Schwaiger, M.; Neese, R.A.; Araujo, L.; Wyns, W.; Wisneski, J.A.; Sochor, H.; Swank, S.; Kulber, D.; Selin, C.; Phelps, M.

    1989-03-01

    Ischemically injured reperfused myocardium is characterized by increased 18F-fluorodeoxyglucose uptake as demonstrated by positron emission tomography. To elucidate the metabolic fate of exogenous glucose entering reperfused myocardium, D-(6-14C) glucose and L-(U-13C) lactate were used to determine glucose uptake, glucose oxidation and the contribution of exogenous glucose to lactate production. The pathologic model under investigation consisted of a 3 h balloon occlusion of the left anterior descending coronary artery followed by 24 h of reperfusion in canine myocardium. The extent and severity of myocardial injury after the ischemia and reperfusion were assessed by histochemical evaluation (triphenyltetrazolium chloride and periodic acid-Schiff stains). Thirteen intervention and four control dogs were studied. The glucose uptake in the occluded/reperfused area was significantly enhanced compared with that in control dogs (0.40 +/- 0.14 versus 0.15 +/- 0.10 mumol/ml, respectively). In addition, a significantly greater portion of the glucose extracted immediately entered glycolysis in the intervention group (75%) than in the control dogs (33%). The activity of the nonoxidative glycolytic pathway was markedly increased in the ischemically injured reperfused area, as evidenced by the four times greater lactate release in this area compared with the control value. The dual carbon-labeled isotopes showed that 57% of the exogenous glucose entering glycolysis was being converted to lactate. Exogenous glucose contributed to greater than 90% of the observed lactate production. This finding was confirmed by the histochemical finding of sustained glycogen depletion in the occlusion/reperfusion area. The average area of glycogen depletion (37%) significantly exceeded the average area of necrosis (17%).

  10. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture.

    PubMed

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Lund, Anne Mathilde; Sen, Jette Wagtberg; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Baycin-Hizal, Deniz; Betenbaugh, Michael J; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-10-01

    In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary phase of the fed-batch culture. Higher degree of glucose starvation reduced intracellular concentrations of UDP-GlcNAc and UDP-GalNAc, but increased the levels of UDP-Glc and UDP-Gal. Increased GlcNAc and Gal occupancy correlated well with increased degree of glucose starvation, which can be attributed to the interplay between the dilution effect associated with change in specific productivity of mAbs and the changed nucleotide sugar metabolism. Herein, we also show and discuss that increased cell culture duration negatively affect the maturation of glycans. In addition, comparative proteomics analysis of cells was conducted to observe differences in protein abundance between early growth and early stationary phases. Generally higher expression of proteins involved in regulating cellular metabolism, extracellular matrix, apoptosis, protein secretion and glycosylation was found in early stationary phase. These analyses offered a systematic view of the intrinsic properties of these cells and allowed us to explore the root causes correlating culture duration with variations in the productivity and glycosylation quality of monoclonal antibodies produced with CHO cells.

  11. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography.

    PubMed

    Danila, Delia; Partha, Ranga; Elrod, Don B; Lackey, Melinda; Casscells, S Ward; Conyers, Jodie L

    2009-01-01

    We evaluated the specific binding of anti-intercellular adhesion molecule 1 (ICAM-1) conjugated liposomes (immunoliposomes, or ILs) to activated human coronary artery endothelial cells (HCAEC) with the purpose of designing a computed tomographic imaging agent for early detection of atherosclerotic plaques. Covalent attachment of anti-ICAM-1 monoclonal antibodies to pre-formed liposomes stabilized with polyethylene glycol yielded ILs, with a coupling efficiency of the ICAM-1 to the liposomes of 10% to 24%. The anti-ICAM-1-labeled ILs had an average diameter of 136 nm as determined by dynamic light-scattering and cryogenic electron microscopy. The ILs' encapsulation of 5-[N-acetyl-(2,3-dihydroxypropyl)-amino)-N, N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-benzene-1,3-dicarboxamide (iohexol) was determined to be 18% to 19% by a dialysis technique coupled with ultraviolet detection of free iohexol. This encapsulation corresponded to 30 to 38 mg iodine per mL IL solution, and the ILs exhibited 91% to 98.5% iohexol retention at room temperature and under physiologic conditions. The specific binding of the ILs to cultured, activated HCAEC was measured using flow cytometry, enzyme-linked immunosorbent assays, and fluorescence microscopy. The immunosorbent assays demonstrated the specificity of binding of anti-ICAM-1 to ICAM-1 compared with control studies using nonspecific immunoglobulin G-labeled ILs. Flow cytometry and fluorescence microscopy experiments demonstrated the expression of ICAM-1 on the surface of activated HCAEC. Therefore, our iohexol-filled ILs demonstrated potential for implementation in computed tomographic angiography to noninvasively detect atherosclerotic plaques that are prone to rupture.

  12. Synthesis of no carrier added F-18 16-fluorohexadecanoic acid (FHDA) and investigation of its labeled metabolites and its kinetics in the heart

    SciTech Connect

    DeGrado, T.R.; Bernstein, D.R.; Gatley, S.J.; Ng, C.K.; Holden, J.E.

    1984-01-01

    No carrier added FHDA was prepared via saponification of the product of silver oxide assisted reaction of near-anhydrous tetraethylammonium fluoride with methyl 16-iodohexadecanoate. The labeled fatty acid was injected into isolated perfused rat hearts. Coronary perfusate was collected for 4-9 minutes, when hearts were chilled and homogenized. F-18 in perfusate was analysed by HPLC (NH column; 50mM amm. acetate in 50% acetonitrile). Material with the same retention time as F-18 fluoroacetate (prepared by F-for-I exchange with ethyl iodoacetate) was found. Some F-18 stuck permanently to the column and was assigned as fluoride since the same fraction of label in perfusate was retained on alumina columns eluted with water. Anion exchange HPLC (SAX column; 20mM pot. phosphate, pH 7) of homogenates gave peaks corresponding to fluoroacetate plus fluoride and minor peaks which could be fluoroacetylCoA and fluorocitrate. The authors interpret their data as follows. Beta-oxidation of FHDA results in fluoroacetylCoA which either undergoes ''lethal synthesis'' to fluorocitrate or is hydrolysed to fluoroacetate which diffuses out of the heart. The source of the fluoride is not yet clear, but could complicate interpretation of FHDA kinetics measured in vivo with positron tomography. Clearance of label from FHDA in isolated perfused hearts was faster than for labeled 16-iodohexadecanoic acid, indicating that the F-18 tracer may be a more sensitive probe of myocardial fatty acid metabolism.

  13. An open-label clinical trial to investigate the efficacy and safety of corifollitropin alfa combined with hCG in adult men with hypogonadotropic hypogonadism.

    PubMed

    Nieschlag, Eberhard; Bouloux, Pierre-Marc G; Stegmann, Barbara J; Shankar, R Ravi; Guan, Yanfen; Tzontcheva, Anjela; McCrary Sisk, Christine; Behre, Hermann M

    2017-03-07

    Hypogonadotropic hypogonadism (HH) in men results in insufficient testicular function and deficiencies in testosterone and spermatogenesis. Combinations of human chorionic gonadotropin (hCG) and recombinant follicle-stimulating hormone (recFSH) have been successful in the treatment of HH. Corifollitropin alfa is a long-acting FSH-analog with demonstrated action in women seeking infertility care. The aim of this study was to investigate the efficacy and safety of corifollitropin alfa combined with hCG to increase testicular volume and induce spermatogenesis in men with HH. This was a Phase III, multi-center, open-label, single-arm trial of corifollitropin alfa in azoospermic men aged 18 to 50 years with HH. After 16 weeks of pretreatment of 23 subjects with hCG alone, 18 subjects with normalized testosterone (T) levels who remained azoospermic entered the 52-week combined treatment phase with hCG twice-weekly and 150 μg corifollitropin alfa every other week. The increase in testicular volume (primary efficacy endpoint) and induction of spermatogenesis resulting in a sperm count ≥1 × 10(6)/mL (key secondary efficacy endpoint) during 52 weeks of combined treatment were assessed. Safety was evaluated by the presence of anti-corifollitropin alfa antibodies and the occurrence of adverse events (AEs). Mean (±SD) testicular volume increased from 8.6 (±6.09) mL to 17.8 (±8.93) mL (geometric mean fold increase, 2.30 [95% CI: 2.03, 2.62]); 14 (77.8%) subjects reached a sperm count ≥1 × 10(6)/mL. No subject developed confirmed anti-corifollitropin alfa antibodies during the trial. Treatment was generally well tolerated. Corifollitropin alfa 150 μg administrated every other week combined with twice-weekly hCG for 52 weeks increased testicular volume significantly, and induced spermatogenesis in >75% of men with HH who had remained azoospermic after hCG treatment alone. ClinicalTrials.gov: NCT01709331 .

  14. Auricular acupuncture for drug dependence: an open-label randomized investigation on clinical outcomes, health-related quality of life, and patient acceptability.

    PubMed

    Lua, Pei Lin; Talib, Nor Samira

    2013-01-01

    Substance abuse has been prevalent in Malaysia for many years and currently represents one of the main concerns to its society. The limitations of conventional therapies have resulted in efforts to explore the potentia of complementary therapies in the management of drug addiction. The evidence for auricular acupuncture (AA) as a potential complementary therapy for drug addiction is still limited and inconclusive. The study intended (1) to compare the clinical outcomes of methadone maintenance treatment (MMT) alone and MMT plus AA (MMT+AA) with regard to the daily methadone dose, number of cigarettes smoked/wk, relapse rates, and withdrawal symptoms; (2) to evaluate health-related quality of life (HR QoL) pre- and postintervention; and (3) to determine participants' acceptance of AA therapy. The research team designed this study to be prospective, longitudinal, open-labeled, and randomized, with one intervention group (AA group) and one control group. The settings were three MMT centers in Terengganu, Malaysia: (1) the Methadone Maintenance Treatment (MMT) Center, Hospital Sultanah Nur Zahirah; (2) the MMT Center, Marang Health Clinic; and (3) the MMT Center, Seberang Takir Health Clinic. Participants were individuals who were enrolled in the three MMT programs. After randomization, the intervention group received MMT+AA while the control group received MMT only. Participants in the AA group underwent concurrent AA sessions for 8 wk. All outcomes were evaluated using questionnaires that the research team developed and WHOQOL-BREF. Data were analysed employing descriptive and nonparametric statistics (SPSS v16). A total of 97, eligible, male patients consented to participation (MMT = 42; MMT+AA = 55; median age = 36.0 y; Malay ethnicity = 97.9%). After screening for dropouts, the data from only 69 participants were considered for postintervention analysis (MMT = 40; MMT+AA = 29). At preintervention, participants differed significantly by HR QoL profile and the

  15. 177Lu-labeled HPMA Copolymers Utilizing Cathepsin B and S Cleavable Linkers: Synthesis, Characterization and Preliminary In Vivo Investigation in a Pancreatic Cancer Model

    PubMed Central

    Ogbomo, Sunny M.; Shi, Wen; Wagh, Nilesh K; Zhou, Zhengyuan; Brusnahan, Susan K.; Garrison, Jered C.

    2013-01-01

    Introduction A major barrier to the advancement of therapeutic nanomedicines has been the non-target toxicity caused by the accumulation of the drug delivery systems in organs associated with the reticuloendothelial system, particularly the liver and spleen. Herein, we report the development of peptide based metabolically active linkers (MALs) that are enzymatically cleaved by cysteine cathepsin B and S, two proteases highly expressed in the liver and spleen. The overall goal of this approach is to utilize the MALs to lower the non-target retention and toxicity of radiolabeled drug delivery systems, thus resulting in higher diagnostic and radiotherapeutic efficacy. Methods In this study three MALs (MAL0, MAL1 and MAL2) were investigated. MAL1 and MAL2 are composed of known substrates of cathepsin B and S, respectively, while MAL0 is a non-cleavable control. Both MAL1 and MAL2 were shown to undergo enzymatic cleavage with the appropriate cathepsin protease. Subsequent to conjugation to the HPMA copolymer and radiolabeling with 177Lu, the peptide-polymer conjugates were renamed 177Lu- metabolically active copolymers (177Lu-MACs) with the corresponding designation 177Lu-MAC0, 177Lu-MAC1 and 177Lu-MAC2. Results In vivo evaluation of the 177Lu-MACs was performed in a HPAC human pancreatic cancer xenograft mouse model. 177Lu-MAC1 and 177Lu-MAC2 demonstrated 3.1 and 2.1 fold lower liver retention, respectively, compared to control (177Lu-MAC0) at 72 h post-injection. With regard to spleen retention, 177Lu-MAC1 and 177Lu-MAC2 each exhibited a nearly fourfold lower retention, relative to control, at the 72 h time point. However, the tumor accumulation of the 177Lu-MAC0 was two to three times greater than 177Lu-MAC1 and 177Lu-MAC2 at the same time point. The MAL approach demonstrated the capability of substantially reducing the non-target retention of the 177Lu-labeled HPMA copolymers. Conclusions While further studies are needed to optimize the pharmacokinetics of the 177Lu

  16. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Dental Problems Diabetes & Sexual & Urologic Problems Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  17. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  18. Outpatient 60-hour day-and-night glucose control with dual-hormone artificial pancreas, single-hormone artificial pancreas, or sensor-augmented pump therapy in adults with type 1 diabetes: An open-label, randomised, crossover, controlled trial.

    PubMed

    Haidar, Ahmad; Messier, Virginie; Legault, Laurent; Ladouceur, Martin; Rabasa-Lhoret, Rémi

    2017-05-01

    To assess whether the dual-hormone (insulin and glucagon) artificial pancreas reduces hypoglycaemia compared to the single-hormone (insulin alone) artificial pancreas in outpatient settings during the day and night. In a randomized, three-way, crossover trial we compared the dual-hormone artificial pancreas, the single-hormone artificial pancreas and sensor-augmented pump therapy (control) in 23 adults with type 1 diabetes. Each intervention was applied from 8 AM Day 1 to 8 PM Day 3 (60 hours) in outpatient free-living conditions. The primary outcome was time spent with sensor glucose levels below 4.0 mmol/L. A P value of less than .017 was regarded as significant. The median difference between the dual-hormone system and the single-hormone system was -2.3% (P = .072) for time spent below 4.0 mmol/L, -1.3% (P = .017) for time below 3.5 mmol/L, and -0.7% (P = .031) for time below 3.3 mmol/L. Both systems reduced (P < .017) hypoglycaemia below 4.0, 3.5 and 3.3 mmol/L compared to control therapy, but reductions were larger with the dual-hormone system than with the single-hormone system (medians -4.0% vs -3.4% for 4.0 mmol/L; -2.7% vs -2.2% for 3.5 mmol/L; and -2.2% vs -1.2% for 3.3 mmol/L). There were 34 hypoglycaemic events (<3.0 mmol/L for 20 minutes) with control therapy, 14 with the single-hormone system and 6 with the dual-hormone system. These differences in hypoglycaemia were observed while mean glucose level was low and comparable in all interventions (P = NS). The dual-hormone artificial pancreas had the lowest risk of hypoglycaemia, but the differences were not statistically significant. Larger studies are needed. © 2017 John Wiley & Sons Ltd.

  19. Quantitative metabolism using AMS: Choosing a labeled precursor

    PubMed Central

    Links, Jennifer; Palmblad, Magnus; Ognibene, Ted; Turteltaub, Ken; Bench, Graham

    2009-01-01

    Biological radioisotope studies suffer from a lack of sensitive measurement techniques and therefore traditionally require large amounts of labeled material to produce a measurable signal. Such quantities of materials are often significantly higher than naturally-occurring levels preventing these studies from replicating physiological conditions. AMS affords the sensitivity necessary to perform biological radioisotope studies with low levels of labeled material that preserve physiological conditions. The choice of labeled material can substantially affect the ease of interpretation and comprehensiveness of these studies. Here, the benefits and limitations of whole-cell labeling with 14C-glucose and targeted pathway labeling with 14C-nicotinic acid are discussed and compared. PMID:20368758

  20. Investigation of mean platelet volume in patients with type 2 diabetes mellitus and in subjects with impaired fasting glucose: a cost-effective tool in primary health care?

    PubMed Central

    Ozder, Aclan; Eker, Hasan Huseyin

    2014-01-01

    The aim of this study was to compare mean platelet volume (MPV) in patients with type 2 diabetes mellitus (T2DM), in subjects with impaired fasting glucose (IFG), and in non-diabetic controls. A total of 201 adults with T2DM and 201 subjects with IFG from the Family Medicine out-patient clinic as well as 201 healthy controls were included in the study. We measured blood fasting glucose, complete blood count and LDL-cholesterol and compared the results between the groups enrolled. In the patients with diabetes and subjects with IFG, MPV was significantly higher (10.66 ± 0.94 fL and 10.49 ± 0.96 fL, respectively ) as compared to the non-diabetic group (10.04 ± 1.01 fL) (p = 0.000). Among the diabetic subjects, a positive statistical Pearson correlation was seen between MPV and HbA1c levels (r = 0.357; p = 0.000) and fasting blood glucose (FBG) levels (r = 0.306; p = 0.000). The mean MPV in patients having HbA1C < 7.5% was 10.17 ± 0.83 fL and significantly lower than that of patients with HbA1c ≥ 7.5% (10.80 ± 0.92 fL) (p = 0.001). MPV could be used as a simple and cost-effective tool to monitor the progression and control of T2DM and thereby in preventing vascular events in primary health care. PMID:25232423

  1. Plasma kinetics of an LDL-like nanoemulsion and lipid transfer to HDL in subjects with glucose intolerance

    PubMed Central

    Bertato, Marina P; Oliveira, Carolina P; Wajchenberg, Bernardo L; Lerario, Antonio C; Maranhão, Raul C

    2012-01-01

    OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with 14C-cholesteryl ester and 3H-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the 3H-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic

  2. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors.

    PubMed

    Aristilde, Ludmilla

    2017-01-01

    Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography-mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl-coenzyme A and butyryl-coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long-term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose-phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate-dependent. Kinetic labelling of hexose-phosphates and triose-phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed-sugar utilization. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. An investigation of microtubule organization and functions in living Drosophila embryos by injection of a fluorescently labeled antibody against tyrosinated alpha-tubulin

    PubMed Central

    1987-01-01

    Rhodamine-labeled monoclonal antibodies, which react with tyrosinated alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) and label microtubules in vivo (Wehland, J., M. C. Willingham, and I. Sandoval, 1983, J. Cell Biol., 97:1467-1475) were microinjected into syncytial stage Drosophila embryos. At 1 mg/ml antibody concentration, the microtubule arrays of the surface caps became labeled by YL 1/2 but normal development was found to continue. The results are compared with the data from fixed material particularly with regard to interphase microtubules, centrosome separation, and spindle and midbody formation. At 5 mg/ml antibody concentration the microtubules took up larger quantities of antibodies and clumped around the nuclei. Nuclei with clumped microtubules lost their position in the surface layer and moved into the interior. As a result, the F-actin cap meshwork associated with such nuclei either failed to form or subsided. It is concluded that microtubule activity is required to maintain the nuclei in the surface layer and organize the F-actin meshwork of the caps. PMID:3117804

  4. A New Strategy for Early Diagnosis of Type 2 Diabetes by Standard-Free, Label-Free LC-MS/MS Quantification of Glycated Peptides

    PubMed Central

    Zhang, Mei; Xu, Wei; Deng, Yulin

    2013-01-01

    The early diagnosis of diabetes, one of the top three chronic incurable diseases, is becoming increasingly important. Here, we investigated the applicability of an 18O-labeling technique for the development of a standard-free, label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the early diagnosis of type 2 diabetes mellitus (T2DM). Rather than attempting to identify quantitative differences in proteins as biomarkers, glycation of the highest abundance protein in human plasma, human serum albumin (HSA), was monitored through quantitative analysis of HSA characteristic peptides using the 18O-labeling technique. Eight glucose-sensitive peptides and one glucose-insensitive peptide were discovered. The glucose-insensitive peptide served as the internal standard, and a standard-free, label-free LC-MS/MS method was developed. This method was then used to select putative biomarkers for T2DM in a clinical trial with 389 human plasma samples. As a result, three of the eight glucose-sensitive peptides (FKDLGEENFK, LDELRDEGK, and KVPQVSTPTLVEVSR) were selected and could be used as potential biomarkers for the early diagnosis of T2DM. PMID:23894188

  5. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    NASA Astrophysics Data System (ADS)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  6. Purification and characterization of glucose 6-phosphate dehydrogenase enzyme from rainbow trout (Oncorhynchus mykiss) liver and investigation of the effects of some metal ions on enzyme activity.

    PubMed

    Comakli, Veysel; Akkemik, Ebru; Ciftci, Mehmet; Kufrevioglu, Omer Irfan

    2015-05-01

    Glucose 6-phosphate dehydrogenase (d-glucose 6-phosphate: NADP(+) oxidoreductase, EC 1.1.1.49; G6PD) is a key enzyme that is localized in all mammal tissues, especially in cytoplasmic sections and that catalyzes the first step of pentose phosphate metabolic pathway. In this study, G6PD enzyme was purified 1444-fold with a yield of 77% from rainbow trout liver using 2',5'-ADP-sepharose-4B affinity chromatography. Moreover, a purity check of the enzyme was performed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Some characteristic features like optimal pH, stable pH, optimal temperature and optimal ionic strength were determined for the purified enzyme. In addition to this, in vitro effects of ions like silver nitrate (Ag(+)), thallium sulphate (TI(+)), cobalt (II) nitrate (Co(2+)) and arsenic (V) oxide (As(5+)) on enzyme activity were researched. Half-maximal inhibitory concentration (IC50) values of Ag(+), Co(2+) and As(5+) metal ions, which showed an inhibitory effect, were found to be 0.0044, 0.084 and 4.058 mM, respectively; and their inhibition constants (K i) were found to be 0.0052 ± 0.00042, 0.087 ± 0.015700 and 4.833 ± 1.753207 mM, respectively. Tl(+) not exhibited inhibitory effect on the enzyme activity. © The Author(s) 2013.

  7. 1-/sup 11/C-2-deoxy-D-glucose and process for the preparation thereof

    DOEpatents

    MacGregor, R.R.; Wolf, A.P.; Shiue, C.Y.; Wan, C.N.

    1980-02-08

    The novel labelled compound 1-/sup 11/C-2-deoxy-D-glucose, and a process for its preparation from 2,3:4,5-di-O-isopropylidene-D-arabinitol derivatives of relatively high reactivity are disclosed. 1-/sup 11/C-2-deoxy-D-glucose is useful for measuring regional brain glucose metabolism in vivo.

  8. Long-term safety and efficacy of linagliptin as monotherapy or in combination with other oral glucose-lowering agents in 2121 subjects with type 2 diabetes: up to 2 years exposure in 24-week phase III trials followed by a 78-week open-label extension.

    PubMed

    Gomis, R; Owens, D R; Taskinen, M-R; Del Prato, S; Patel, S; Pivovarova, A; Schlosser, A; Woerle, H-J

    2012-08-01

    Aim:  The aim of this study was to evaluate the long-term safety, tolerability and efficacy of the dipeptidyl peptidase-4 inhibitor linagliptin given either alone or in combination with other oral glucose-lowering agents in persons with type 2 diabetes. Methods:  A 78-week open-label extension study evaluated subjects who participated in one of four preceding 24-week, randomised, double-blind, placebo-controlled parent trials and who received linagliptin, linagliptin + metformin, linagliptin + metformin + a sulphonylurea or linagliptin + pioglitazone (all with linagliptin administered orally once daily). Individuals receiving one of these treatments during a previous trial continued the same treatment (n = 1532) for up to a total of 102 weeks, whereas those previously receiving placebo were switched to linagliptin (n = 589). All 2121 participants received at least one dose of the trial medication and were included in the primary safety analysis. Results:  In subjects previously receiving active treatment, the glycosylated haemoglobin A(1c) reduction achieved during the 24-week parent trials was sustained through the 78-week extension period (change from baseline to week 102: -0.8%). Drug-related adverse events were experienced by 14.3% of participants. Hypoglycaemia occurred in 13.9% of participants and was similar between those previously receiving treatment (13.6%) and those switching from placebo to linagliptin (14.6%). Hypoglycaemia occurred most frequently with the use of metformin + a sulphonylurea background therapy (11%). Overall, no clinically relevant changes in body weight were observed. Conclusion:  Long-term treatment with linagliptin was well tolerated with no change in the safety profile observed during the extension study. Sustained long-term glycaemic control was maintained for up to 102 weeks with either linagliptin monotherapy or linagliptin in combination with other oral glucose-lowering agents. © 2012

  9. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  10. Blood Test: Glucose

    MedlinePlus

    ... TV, Video Games, and the Internet Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A What's in this article? ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  11. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  12. Effect of intermittent PTH treatment on plasma glucose in osteoporosis: A randomized trial.

    PubMed

    D'Amelio, Patrizia; Sassi, Francesca; Buondonno, Ilaria; Spertino, Elena; Tamone, Cristina; Piano, Simonetta; Zugna, Daniela; Richiardi, Lorenzo; Isaia, Giovanni Carlo

    2015-07-01

    We investigated the effect of bone turnover on glucose homeostasis, fat distribution and adipokine production during anabolic treatment with PTH. This is a parallel, randomized controlled, open label, trial. The randomization was done by computer generated tables to allocate treatments. Forty-six postmenopausal osteoporotic non-diabetic women were assigned to treatment with calcium and colecalcipherol with (24) or without (22) PTH 1-84. Patients were recalled after 3, 6, 12 and 18 months of treatment and markers of bone turnover, glucose metabolism, adipokine secretion and fat distribution were analyzed. Markers of bone turnover and adipokines were measured by ELISA. Glucose metabolism was evaluated by an oral glucose load test and insulin resistance and secretion were calculated. Fat and lean mass were evaluated by anthropometric measures. The effect of treatment on measured variables was analyzed by repeated measure test, and its effect on glucose was also evaluated by mediation analysis after correction for possible confounders. Twenty patients in the calcium and vitamin D groups and 19 in the group treated with PTH 1-84 completed the study. There were no significance adverse events. Treatment with PTH increases osteocalcin, both total (OC) and undercarboxylated (uOC), and decreases blood glucose, without influence on insulin secretion, resistance and pancreatic β cell function. Treatment with PTH does not influence fat distribution and adipokine production. The results of the mediation analyses suggest a total effect of PTH on blood glucose, moderately mediated by OC and to a less extent by uOC. Here we suggest that treatment with PTH influences glucose metabolism partially through its effect on bone turnover, without influence on insulin secretion, resistance, pancreatic β cell function and fat mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase.

    PubMed

    Norris, Matthew G S; Malys, Naglis

    2011-02-18

    Enzyme kinetic parameters for rate equations are vital in metabolic network simulation, a major part of systems biology research efforts. Measurements of Michaelis-Menten kinetic parameters Km and Kcat have been performed for enzymes glucose-6-phosphate dehydrogenase (G6P DH) under crowded conditions using molecular crowding agents bovine serum albumin (BSA) and polyethylene glycol (PEG) of 8000 Da molecular weight. An increase in Kcat was observed at very low concentrations of crowding agent, and also at high crowder concentrations when the experiment was performed at 45 °C with PEG. The observed pattern in Kcat for G6P DH at high crowder concentrations has been explained via modelling using excluded volume theory. An increase in rate was observed at 45 °C for G6P DH versus 30 °C; this has been modelled via the Arrhenius equation.

  14. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  15. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  16. Isotope-labeled aspartate sidechain as a non-perturbing infrared probe: Application to investigate the dynamics of a carboxylate buried inside a protein

    NASA Astrophysics Data System (ADS)

    Abaskharon, Rachel M.; Brown, Stephen P.; Zhang, Wenkai; Chen, Jianxin; Smith, Amos B.; Gai, Feng

    2017-09-01

    Because of their negatively charged carboxylates, aspartate and glutamate are frequently found at the active or binding site of proteins. However, studying a specific carboxylate in proteins that contain multiple aspartates and/or glutamates via infrared spectroscopy is difficult due to spectral overlap. We show, herein, that isotopic-labeling of the aspartate sidechain can overcome this limitation as the resultant 13COO- asymmetric stretching vibration resides in a transparent region of the protein IR spectrum. Applicability of this site-specific vibrational probe is demonstrated by using it to assess the dynamics of an aspartate ion buried inside a small protein via two-dimensional infrared spectroscopy.

  17. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.

    PubMed

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2014-11-07

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054.

  18. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    PubMed Central

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054. PMID:25181601

  19. Pesticide Label Review Training

    EPA Pesticide Factsheets

    This training will help ensure that reviewers evaluate labels according to four core principles. It also will help pesticide registrants developing labels understand what EPA expects of pesticide labels, and what the Agency generally finds acceptable.

  20. Glucose starvation-induced turnover of the yeast glucose transporter Hxt1.

    PubMed

    Roy, Adhiraj; Kim, Yong-Bae; Cho, Kyu Hong; Kim, Jeong-Ho

    2014-09-01

    The budding yeast Saccharomyces cerevisiae possesses multiple glucose transporters with different affinities for glucose that enable it to respond to a wide range of glucose concentrations. The steady-state levels of glucose transporters are regulated in response to changes in the availability of glucose. This study investigates the glucose regulation of the low affinity, high capacity glucose transporter Hxt1. Western blotting and confocal microscopy were performed to evaluate glucose regulation of the stability of Hxt1. Our results show that glucose starvation induces endocytosis and degradation of Hxt1 and that this event requires End3, a protein required for endocytosis, and the Doa4 deubiquitination enzyme. Mutational analysis of the lysine residues in the Hxt1 N-terminal domain demonstrates that the two lysine residues, K12 and K39, serve as the putative ubiquitin-acceptor sites by the Rsp5 ubiquitin ligase. We also demonstrate that inactivation of PKA (cAMP-dependent protein kinase A) is needed for Hxt1 turnover, implicating the role of the Ras/cAMP-PKA glucose signaling pathway in the stability of Hxt1. Hxt1, most useful when glucose is abundant, is internalized and degraded when glucose becomes depleted. Of note, the stability of Hxt1 is regulated by PKA, known as a positive regulator for glucose induction of HXT1 gene expression, demonstrating a dual role of PKA in regulation of Hxt1. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Glucose turnover and recycling in colorectal carcinoma.

    PubMed

    Kokal, W A; McCulloch, A; Wright, P D; Johnston, I D

    1983-11-01

    Glucose metabolism is affected by various pathologic states including tumors. In this project, glucose turnover and recycling rates in 11 patients with colorectal carcinoma were measured using a double-labelled 3-3H and 1-14C glucose injection technique. Fasting blood glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate, acetoacetate, plasma cortisol, and plasma insulin concentrations were also measured. No patient in the study had a history of diabetes mellitus or endocrine disorders, nor any abnormal liver function tests. The findings demonstrated a significantly elevated glucose turnover rate in patients with Dukes C and D lesions in comparison to patients with Dukes B lesions. Cori recycling rates were not significantly different between Dukes B vs. Dukes C and D patients. There were no differences between Dukes B and Dukes C and D patients in any of the metabolites measured. Furthermore, there were no significant differences in glucose turnover or recycling rates as a function of pre-illness weight loss. These data suggest that, when colorectal carcinoma extends beyond the limits of the bowel wall, glucose metabolism is significantly altered.

  2. Physiologically Based Simulations of Deuterated Glucose for Quantifying Cell Turnover in Humans

    PubMed Central

    Lahoz-Beneytez, Julio; Schaller, Stephan; Macallan, Derek; Eissing, Thomas; Niederalt, Christoph; Asquith, Becca

    2017-01-01

    In vivo [6,6-2H2]-glucose labeling is a state-of-the-art technique for quantifying cell proliferation and cell disappearance in humans. However, there are discrepancies between estimates of T cell proliferation reported in short (1-day) versus long (7-day) 2H2-glucose studies and very-long (9-week) 2H2O studies. It has been suggested that these discrepancies arise from underestimation of true glucose exposure from intermittent blood sampling in the 1-day study. Label availability in glucose studies is normally approximated by a “square pulse” (Sq pulse). Since the body glucose pool is small and turns over rapidly, the availability of labeled glucose can be subject to large fluctuations and the Sq pulse approximation may be very inaccurate. Here, we model the pharmacokinetics of exogenous labeled glucose using a physiologically based pharmacokinetic (PBPK) model to assess the impact of a more complete description of label availability as a function of time on estimates of CD4+ and CD8+ T cell proliferation and disappearance. The model enabled us to predict the exposure to labeled glucose during the fasting and de-labeling phases, to capture the fluctuations of labeled glucose availability caused by the intake of food or high-glucose beverages, and to recalculate the proliferation and death rates of immune cells. The PBPK model was used to reanalyze experimental data from three previously published studies using different labeling protocols. Although using the PBPK enrichment profile decreased the 1-day proliferation estimates by about 4 and 7% for CD4 and CD8+ T cells, respectively, differences with the 7-day and 9-week studies remained significant. We conclude that the approximations underlying the “square pulse” approach—recently suggested as the most plausible hypothesis—only explain a component of the discrepancy in published T cell proliferation rate estimates. PMID:28487698

  3. Syntheses of isotope-labeled SGLT2 inhibitor canagliflozin (JNJ-28431754).

    PubMed

    Lin, Ronghui; Hoerr, David C; Weaner, Larry E; Salter, Rhys

    2017-08-18

    Canagliflozin (Invokana, JNJ-28431754) is an orally bioavailable and selective SGLT2 (subtype 2 sodium-glucose transport protein) inhibitor approved for the treatment of type 2 diabetes. Herein, we report the synthesis of (13) C and (14) C-labeled canagliflozin. Stable isotope-labeled [(13) C6 ]canagliflozin was synthesized in 4 steps starting from [(13) C6 ]-labeled glucose. The [(14) C]-Labeled canagliflozin was synthesized by incorporation of [(14) C] into the benzylic position between the thiophene and benzene rings of the compound. Detailed synthesis of the isotope-labeled compounds is reported. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  5. Comparison between a multiple daily insulin injection regimen (basal once-daily glargine plus mealtime lispro) and continuous subcutaneous insulin infusion (lispro) using continuous glucose monitoring in metabolically optimized type 1 diabetes patients: A randomized open-labelled parallel study.

    PubMed

    Ruiz-de-Adana, María Soledad; Dominguez-Lopez, Marta-Elena; Gonzalez-Molero, Inmaculada; Machado, Alberto; Martin, Victor; Cardona, Isabel; de-la-Higuera, Magdalena; Tapia, María-José; Soriguer, Federico; Anarte, María Teresa; Rojo-Martínez, Gemma

    2016-03-18

    Advantages of continuous subcutaneous insulin infusion (CSII) over multiple daily injections with glargine (MDI/G) are still uncertain. We compared CSII vs. MDI/G therapy in unselected patients with type 1 diabetes using continuous glucose monitoring (CGSM). The primary end-points were glycaemic control and quality of life (QOL). A total of 45 patients with long-term diabetes and mean HbA1c values of 8.6±1.8% (70.5±15.4mmol/mol), previously treated with MDI/NPH, were switched to MDI/G for 6 months and then, unfulfilling therapy CSII indication, were randomly assigned to CSII or MDI/G for another six months. We evaluated QOL (EsDqol) and glycaemic control by measuring HbA1c levels, rate of hypoglycaemia, ketoacidosis and CGSM data. After the first phase (MDI/NPH to MDI/G) there was a significant improvement in total EsDQOL (99.72±18.38 vs. 92.07±17.65; p<0.028), a 0.5% decrease in HbA1c values (8.4±1.2 vs. 7.9±0.7% [68±9.7 vs. 63±5.5mmol/mol]; p<0.032), an improvement in glycaemic variability (standard deviation 66.9±14 vs. 59.4±16mg/dl; p<0.05), a decrease in insulin requirements (0.87±0.29 vs. 0.80±0.25U/kg; p<0.049), a decrease in number of severe hypoglycaemia episodes (0.44±0.9 vs. 0.05±0.2; p<0.014), and an increase in periods of normoglycaemia measured with CGSM (15.8±10.9% vs. 23±18.4%; p<0.003). Six months after randomization, significant improvements were seen in the HbA1c (7.9±0.7 vs. 7±0.6% [63±5.5 vs. 53±4.5mmol/mol]; p<0.001) and EsQOL (91.66±22 vs. 84.53±1.63; p<0.045) only in the CSII group. The HbA1c value was significantly lower when compared with the MDI/G group (CSII 7±0.6% [53±4.5mmol/mol] vs. MDI/G 7.6±0.9% [59.6±7.7mmol/mol]; p<0.03). Intensive insulin therapy with CSII vs. MDI/G was associated with better levels of HbA1c in patients with long-term type 1 diabetes. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  6. The Kidney's role in glucose balance following partial hepatectomy.

    PubMed

    Jones, C E; Koshibu, K; DeCambre, M; Gerich, J E; Bessey, P Q; Krusch, D A

    1998-10-01

    It has long been believed that the liver is the major contributor to glucose balance during fasting and stressful situations. Recently, investigators have implicated the kidney as having a significant contribution to systemic glucose appearance. We studied the relative contributions of the kidney and liver to glucose homeostasis in fasted nonoperated, sham-operated, and 70% hepatectomized rats. Systemic glucose appearance, renal glucose release and uptake, and hepatic glucose release were determined by glucose balance and isotopic dilution techniques. Systemic glucose appearance remained unchanged following hepatectomy. There was a significant output of glucose by the kidney in all groups, accounting for >50% of total glucose appearance. Despite the kidney's appreciable contribution to circulating glucose in the postabsorptive state, renal glucose release was not increased in the hepatectomized rats compared to controls. Total glucose appearance was maintained following hepatectomy by an increase in hepatic glucogenesis. There was a significant increase in the rate of hepatic glucose release from resected rats when normalized to gram of remaining liver (P < 0.001). Despite the substantial amount of renal glucose output in the postabsorptive state, preservation of glucose balance following 70% hepatectomy is accomplished by adaptation in hepatic glucose output.

  7. Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes.

    PubMed

    Kuppusamy, Umah Rani; Arumugam, Bavani; Azaman, Nooriza; Jen Wai, Chai

    2014-01-01

    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro "insulin-like" activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.

  8. Leucaena leucocephala Fruit Aqueous Extract Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in Primary Rat Adipocytes

    PubMed Central

    Kuppusamy, Umah Rani; Azaman, Nooriza; Jen Wai, Chai

    2014-01-01

    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties. PMID:25180205

  9. Incorporation of labeled small molecules into rubratoxin.

    PubMed

    Emeh, C O; Marth, E H

    1978-07-01

    A sterile glucose-mineral salts broth was inoculated with conidia of Penicillium rubrum P-13 and P-3290. Radiolabeled compounds were added to some cultures, these being incubated quiescently at 28 degrees C for 14 days. Other stationary cultures were grown for 21 days, received labeled compounds, and were then grown for 5 more days. The remaining cultures were inoculated with 72-h-old mycelial pellets, received labeled materials and were incubated with shaking for 60 h. Rubratoxin was resolved by thin-layer chromatography. Labeled [1(14)C]acetate, [1,5(14)C]citrate, [2(14)C]malonate, [1(14)C]glucose, [U14C]glucose or [1(14)C]hexanoate were incorporated into rubratoxins A and B by P. rubrum 3290 and into rubratoxin B by P. rubrum 13. Incorporation of [1(14)C]acetate and [2(14)C]malonate increased when exogenous unlabeled acetate, malonate, pyruvate, or phosphoenol-pyruvate was added. Acetate incorporation was influenced by cultural conditions, attaining maximum amounts in quiescent cultures which received labeled acetate after 21 days of incubation. Acetate incorporation in shake cultures was enhanced by reduced nicotinamide adenine dinucleotide phosphate (NADPH) and by unlabeled exogenous citrate.

  10. Effect of Portal Glucose Sensing on Systemic Glucose Levels in SD and ZDF Rats

    PubMed Central

    Pal, Atanu; Rhoads, David B.; Tavakkoli, Ali

    2016-01-01

    Background The global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor. Methods Systemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured. Results αMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions. Conclusions The portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery. PMID:27806092

  11. Deep Label Distribution Learning With Label Ambiguity

    NASA Astrophysics Data System (ADS)

    Gao, Bin-Bin; Xing, Chao; Xie, Chen-Wei; Wu, Jianxin; Geng, Xin

    2017-06-01

    Convolutional Neural Networks (ConvNets) have achieved excellent recognition performance in various visual recognition tasks. A large labeled training set is one of the most important factors for its success. However, it is difficult to collect sufficient training images with precise labels in some domains such as apparent age estimation, head pose estimation, multi-label classification and semantic segmentation. Fortunately, there is ambiguous information among labels, which makes these tasks different from traditional classification. Based on this observation, we convert the label of each image into a discrete label distribution, and learn the label distribution by minimizing a Kullback-Leibler divergence between the predicted and ground-truth label distributions using deep ConvNets. The proposed DLDL (Deep Label Distribution Learning) method effectively utilizes the label ambiguity in both feature learning and classifier learning, which help prevent the network from over-fitting even when the training set is small. Experimental results show that the proposed approach produces significantly better results than state-of-the-art methods for age estimation and head pose estimation. At the same time, it also improves recognition performance for multi-label classification and semantic segmentation tasks.

  12. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I).

    PubMed

    Lee, Joo Won; Thomas, Leonard C; Schmidt, Shelly J

    2011-01-26

    Thermodynamic melting occurs at a single, time-independent temperature with a constant enthalpy value. However, substantial variation in the melting parameters (T(m onset), T(m peak), and ΔH) for sucrose, glucose, and fructose has been reported in the literature. Although a number of explanations have been put forth, they do not completely account for the observed variation. Thus, this research was performed to elucidate the fundamental mechanism underlying the loss of crystalline structure in the sugars using both thermal (Part I) and chemical (Part II) analysis approaches. A strong heating rate dependency observed in the melting parameters for the sugars implies the occurrence of a kinetic process during the loss of crystalline structure. The difference in heat capacity and modulated heat flow amplitude in the stepwise quasi-isothermal modulated differential scanning calorimetry experiments for the sugars compared to indium and mannitol (thermodynamic melting comparison materials) strongly suggests thermal decomposition as the kinetic process responsible for the loss of crystalline structure, which is the critical difference between our conclusion and others. We propose the term "apparent melting" to distinguish the loss of crystalline structure due to a kinetic process, such as thermal decomposition, from thermodynamic melting.

  13. A study on the biosynthesis of hygrophorone B(12) in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety.

    PubMed

    Otto, Alexander; Porzel, Andrea; Schmidt, Jürgen; Wessjohann, Ludger; Arnold, Norbert

    2015-10-01

    The hitherto unknown natural formation of hygrophorones, antibacterial and antifungal cyclopentenone derivatives from mushrooms, was investigated for hygrophorone B(12) in Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky by feeding experiments in the field using (13)C labelled samples of D-glucose and sodium acetate. The incorporation of (13)C isotopes was extensively studied using 1D and 2D NMR spectroscopy as well as ESI-HRMS analyses. In the experiment with [U-(13)C6]-glucose, six different (13)C2 labelled isotopomers were observed in the 2D INADEQUATE spectrum due to incorporation of [1,2-(13)C2]-acetyl-CoA. This labelling pattern demonstrated that hygrophorone B(12) is derived from a fatty acid-polyketide route instead of a 1,4-α-D-glucan derived anhydrofructose pathway. The experiment with [2-(13)C]-acetate revealed an unexpected incorporation pattern in the cyclopentenone functionality of hygrophorone B(12). Four single-labelled isotopomers, in particular [1-(13)C]-, [2-(13)C]-, [3-(13)C]-, and [4-(13)C]-hygrophorone B(12), were detected that showed only half enrichment in comparison to the respective labelled alkyl side chain carbons. This labelling pattern indicates the formation of a symmetrical intermediate during hygrophorone B(12) biosynthesis. Based on these observations, a biogenetic route via a 4-oxo fatty acid and a chrysotrione B homologue is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Algorithms for Labeling Focus Regions.

    PubMed

    Fink, M; Haunert, Jan-Henrik; Schulz, A; Spoerhase, J; Wolff, A

    2012-12-01

    In this paper, we investigate the problem of labeling point sites in focus regions of maps or diagrams. This problem occurs, for example, when the user of a mapping service wants to see the names of restaurants or other POIs in a crowded downtown area but keep the overview over a larger area. Our approach is to place the labels at the boundary of the focus region and connect each site with its label by a linear connection, which is called a leader. In this way, we move labels from the focus region to the less valuable context region surrounding it. In order to make the leader layout well readable, we present algorithms that rule out crossings between leaders and optimize other characteristics such as total leader length and distance between labels. This yields a new variant of the boundary labeling problem, which has been studied in the literature. Other than in traditional boundary labeling, where leaders are usually schematized polylines, we focus on leaders that are either straight-line segments or Bezier curves. Further, we present algorithms that, given the sites, find a position of the focus region that optimizes the above characteristics. We also consider a variant of the problem where we have more sites than space for labels. In this situation, we assume that the sites are prioritized by the user. Alternatively, we take a new facility-location perspective which yields a clustering of the sites. We label one representative of each cluster. If the user wishes, we apply our approach to the sites within a cluster, giving details on demand.

  15. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.

    PubMed

    Zhang, Bo; Jiang, Biao; Chen, Ying; Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Hui; Zhai, Chuanxin; Wu, Yulian

    2012-01-01

    Islets can be visualized on MRI by labeling with superparamagnetic contrast agent during the transplantation procedure. However, whether the signal intensity reflects the cell number and cellular viability has not been determined. We used a self-synthesized novel superparamagnetic contrast agent -polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) - to label β-TC-6 cells (a mouse insulinoma cell line) or primary islets with commercial Feridex as a control. The labeling efficiency of two agents was compared by Prussian blue staining, intracellular iron content determination and MR scanning. Cells were exposed to hypoxia, high-glucose or exogenous H₂O₂ stimulation before/after PVP-SPIO labeling. Normal and injured cells were also transplanted into renal subcapsule. A clinically used 3.0 T MR scan was performed in vitro and 24 h post-transplantation to investigate the correlation between cellular viability and signal. Our PVP-SPIO displayed superior biocompatibility and magnetic properties. All of the cells could be labeled at 100 µg/ml iron concentration after 24 h incubation. At 100 µg/ml iron concentration, 1 × 10⁵ β cells labeled with PVP-SPIO could already be visualized in vitro by MRI, less than the detection threshold of Feridex. There existed a linear correlation between the number of labeled cells and R₂ value on the T₂ -weighted images. The signal intensity and the intracellular iron content declined along with the decreased viability of labeled cells. There was also a significant difference in signal intensity between injured and normal labeled cells after transplantation. From these results, we concluded that PVP-SPIO possessed superior cell labeling efficiency, and β cells could be labeled without compromising viability and function. The signal intensity on MRI might be a useful predictor to evaluate the number and the viability of PVP-SPIO-labeled cells.

  16. Your Glucose Meter

    MedlinePlus

    ... Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing options ... Testing Your Blood Sugar and Caring for Your Meter Glucose meters test and record how much sugar ( ...

  17. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  18. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  19. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes.

    PubMed

    Li, Yiming; Tran, Van H; Duke, Colin C; Roufogalis, Basil D

    2012-09-01

    In this study we investigate the active constituents of the rhizome of Zingiber officinale, Roscoe (ginger) and determine their activity on glucose uptake in cultured L6 myotubes and the molecular mechanism underlying this action. Freeze-dried ginger powder was extracted with ethyl acetate (1 kg/3 L) to give the total ginger extract, which was then separated into seven fractions, consisting of nonpolar to moderately polar compounds, using a short-column vacuum chromatographic method. The most active fraction (F7) was further purified for identification of its active components. The effect of the extract, fractions, and purified compounds on glucose uptake was evaluated using radioactive labelled 2-[1,2-³H]-deoxy-D-glucose in L6 myotubes. The pungent phenolic gingerol constituents were identified as the major active compounds in the ginger extract enhancing glucose uptake. (S)-[6]-Gingerol was the most abundant component among the gingerols, however, (S)-[8]-gingerol was the most potent on glucose uptake. The activity of (S)-[8]-gingerol was found to be associated primarily with an increase in surface distribution of GLUT4 protein on the L6 myotube plasma membrane, as detected by expression of hemagglutinin epitope-tagged GLUT4 in L6 muscle cells. The enhancement of glucose uptake in L6 rat skeletal muscle cells by the gingerol pungent principles of the ginger extract supports the potential of ginger and its pungent components for the prevention and management of hyperglycemia and type 2 diabetes.

  20. Acute blood glucose fluctuation induces myocardial apoptosis through oxidative stress and nuclear factor-ĸB activation.

    PubMed

    Zhang, Wei; Zhao, Sheng; Li, Yan; Peng, Guanjing; Han, Ping

    2013-01-01

    It was the aim of this study to investigate whether acute blood glucose fluctuation induces myocardial apoptosis and to examine the potential mechanisms. Wistar rats were infused intermittently or continually with 50% glucose solution for 48 h. Serum and myocardium were taken to measure the levels of malondialdehyde and glutathione peroxidase. The expression of nuclear factor (NF)-ĸB and apoptosis in myocardial cells was determined with immunohistochemisty and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Expressions of B-cell lymphoma/leukemia-2-associated X protein and B-cell lymphoma/leukemia 2 in myocardium were tested with Western blot analysis. The levels of malondialdehyde and B-cell lymphoma/leukemia-2-associated X protein in the acute blood glucose fluctuation group (AFG) were enhanced, but glutathione peroxidase and B-cell lymphoma/leukemia-2 were reduced compared with levels in the continually high blood glucose group (p < 0.05). The expression of NF-ĸB in the nuclei of myocardial cells in the AFG was significantly higher than that in the continually high blood glucose group (p < 0.05). Apoptotic myocytes were observed in myocardium of the AFG. Acute blood glucose fluctuation induces myocardial apoptosis, apparently associated with enhanced oxidative stress and activation of NF-ĸB. Copyright © 2012 S. Karger AG, Basel.

  1. The trehalose/maltose-binding protein as the sensitive element of a glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fonin, A. V.; Povarova, O. I.; Staiano, M.; D'Auria, S.; Turoverov, K. K.; Kuznetsova, I. M.

    2014-08-01

    The promising direction of the development of a modern glucometer is the construction of sensing element on the basis of stained (dyed) protein which changes its fluorescence upon glucose binding. One of the proteins that can be used for this purpose is the D-trehalose/D-maltose-binding protein (TMBP) from the thermophilic bacteria Thermococcus litoralis. We investigated the physical-chemical properties of the protein and evaluated its stability to the denaturing action of GdnHCl and heating. It was confirmed that TMBP is an extremely stable protein. In vivo, the intrinsic ligands of TMBP are trehalose and maltose, but TMBP can also bind glucose. The dissociation constant of the TMBP-glucose complex is in the range of 3-8 mM. The binding of glucose does not noticeably change the intrinsic fluorescence of the TMBP. To register protein-glucose binding, we used the fluorescence of the thiol-reactive dye BADAN attached to TMBP. Because the fluorescence of BADAN attached to the cysteine Cys182 of TMBP does not change upon glucose binding, the mutant forms ТМВР/C182S/X_Cys were created. In these mutant proteins, Cys182 is replaced by Ser, removing intrinsic binding site of BADAN and a new dye binding sites were introduced. The largest increase (by 1.4 times) in the intensity of the dye fluorescence was observed upon TMBP/C182S/A14C-BADAN-Glc complex formation. The dissociation constant of this complex is 3.4 ± 0.1 mM. We consider TMBP/C182S/A14C mutant form with attached fluorescent dye BADAN as a good basis for further research aimed to develop of series of TMBP mutant forms with different affinities to glucose labeled with fluorescent dyes.

  2. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    SciTech Connect

    Kowalski, Greg M.; De Souza, David P.; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-06-19

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-{sup 13}C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT.

  3. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  4. Position specific labeling: a new tool to trace the fate of C in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Dippold, Michaela

    2013-04-01

    Understanding and managing organic C in soil is one of the most important issues not only in the scope of climate change and C sequestration, but also for maintenance of soil fertility and ecosystem sustainability. To trace C in soil, 13C and 14C labeling were applied since 1946. In the first studies the labeled plant residues were used, later - after the 70ties the individual organic substances such as sugars, amino acids, carboxylic acids etc. as well as dimers and polymers of these monomers were applied. The application of the 13C and 14C labeling allowed huge progress in understanding the sources, transformation, translocation, sequestration and losses of C in/from soil. This progress would be not possible without the labeling and not based on the natural abundance of 13C or 14C. Nearly all previous studies used uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow to conclude whether the labeled substances were involved in any processes as initial substances, or whether they were transformed to metabolites, and the metabolites and not the initial substances were investigated. Here we introduce and overview the unique feature of isotope applications - position-specific labeling - to trace the fate of individual C atoms in the molecules and consequently to reflect the specifics of functional groups in the transformations in soil. We show the advantages of position-specific 13C and 14C labeling to investigate sorption, microbial uptake and utilization, decomposition as well as plant uptake of representatives of sugars, amino acids and carboxylic acids. The position-specific labeling allowed always to clarify differences between the fate of initial substance and its metabolites. Such metabolite tracing allowed to evaluate contribution of individual functional groups of one substance to various processes in soil. Furthermore, we coupled position-specific 13C labeling with

  5. [Depth-dependent investigation of the apolar zone of lipid membranes using a series of fluorescent probes, Me4-BODIPY-8-labeled phosphatidylcholines].

    PubMed

    Omel'kov, A V; Pavlova, Iu B; Boldyrev, I A; Molotkovskiĭ, Iu G

    2007-01-01

    A series of lipid probes, phosphatidylcholines labeled with Me4-BODIPY-8 (4,4-difluoro-1,3,5,7- tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl) fluorophore attached to the end of an acyl residue at different distances from the polar head, were used as depth-dependent probes for the apolar zone of model membrane systems, large unilamellar vesicles (LUVs). Data on the anisotropy of probe fluorescence demonstrated different mobility profiles for the fluorophore microenvironment in LUVs of different composition at various temperatures, which indicates a high sensitivity of these probes as tools for studying membrane systems. An interesting anomaly was observed for LUVs from dimiristoylphosphatidylcholine (DMPC) or from a DMPC-cholesterol mixture: the anisotropy of the fluorophore located near the bilayer center is larger than that of the fluorophore located further from the center; i.e., the mobility of the microenvironment is lower in the first case. This anomaly is supposed to result from the penetration of the unlabeled long chain of the probes into the opposite bilayer leaflet. Such a possibility should be taken into account in constructing fluorescent probes and interpreting the results.

  6. Investigation of a possible interaction between quetiapine and armodafinil in patients with schizophrenia: an open-label, multiple-dose study.

    PubMed

    Darwish, Mona; Bond, Mary; Hellriegel, Edward T; Youakim, James M; Yang, Ronghua; Robertson, Philmore

    2012-09-01

    The wakefulness-promoting medication armodafinil (R-modafinil) is being studied as an adjunctive treatment for patients with schizophrenia receiving antipsychotic therapy. This open-label study in 37 adults with schizophrenia evaluated whether a drug-drug interaction occurs between armodafinil (a moderate CYP3A4 inducer) and the atypical antipsychotic quetiapine (primarily metabolized by CYP3A4). Patients were required to be on a stable dose of quetiapine ≥300 mg once daily in the evening before enrollment. Steady-state quetiapine pharmacokinetics were determined following daily administration of quetiapine alone in the evening (day 5) and then following concomitant armodafinil administration (titrated to 250 mg) daily in the morning (day 38). In 25 evaluable patients, concomitant armodafinil resulted in a statistically significant decrease in mean AUC(0-24) and C(max) values of quetiapine by 42% and 45%, respectively, versus quetiapine alone. Adverse events occurred more frequently with combination therapy and were consistent with the known profiles of the 2 drugs. No significant changes in mean PANSS negative, positive, and total scores or SANS scores were observed. Although the data do not suggest that the observed decrease in systemic exposure to quetiapine was associated with a change in disease state, patients with schizophrenia should be monitored during combination therapy with quetiapine and armodafinil.

  7. D-glucose transfer rates derived from single-injection and steady state tracer experiments in the isolated guinea-pig placenta.

    PubMed

    Schröder, H; Hatano, H; Leichtweiss, H P

    1991-01-01

    In isolated guinea-pig placentae the transfer of D-[3H]glucose and L-[14C]glucose was investigated in single injection (SIE) and steady state (SSE, n = 11, placental weight 4.5 +/- 1.14 g) experiments at constant perfusion flow rates (3 ml/min). In SIE, a mixture of D- and L-glucose was injected as a bolus into either the fetal or maternal side of the placenta, uptake curves were obtained and the maximal extraction values Umax were derived. From these the membrane rate constants Kmc and Kfc of either the maternal or fetal side of the trophoblast membrane were calculated. The specific placental transfer rate constants were computed for the maternal-fetal (Kspec,mf) and fetal-maternal (Kspec,fm) direction from the amount of label transferred to the acceptor side in either SIE or in SSE (where labelled D- and L-glucose had been added to the stock solution). The chemical concentration of D-glucose was changed (5, 50 and 100 mmol/l, n = 11) and it was found that all rate constants decreased with increasing D-glucose concentration. At a D-glucose concentration of 5 mmol/l, Kmc was 3.11 +/- 1.59 ml/min (n = 6) and Kfc 2.69 +/- 0.5 ml/min (n = 5), the combined membrane rate constant (which determines the total placental transfer) was estimated to be 1.44 ml/min. This value was not significantly smaller than the mean (both directions) transfer rate constant Kspec in SIE (1.51 +/- 0.89 ml/min) or SSE (1.52 +/- 0.56 ml/min). Thus the results from uptake and transfer experiments are consistent. From the rate constants D-glucose fluxes at different chemical D-glucose concentrations were estimated. Whereas the mean Km values for all fluxes based on the various rate constants were about 30 mmol/l, the maximal flux Vmax was highest at the maternal trophoblast membrane (159.1 +/- 70.2 mumol/min), it was 107.9 +/- 11.6 mumol/min at the fetal side and 67.3 +/- 7.9 mumol/min in SIE or SSE for placental transfer in both directions. It is concluded that D-glucose carriers predominate at

  8. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain.

    PubMed

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A

    2015-02-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.

  9. Laboratory diagnosis of gestational diabetes: An in silico investigation into the effects of pre-analytical processing on the diagnostic sensitivity and specificity of the oral glucose tolerance test.

    PubMed

    Mansell, Erin; Lunt, Helen; Docherty, Paul

    2017-06-01

    Delayed separation of red cells from plasma causes pre analytical glucose loss, which in turn results in an under-diagnosis of GDM (gestational diabetes) based on the OGTT (oral glucose tolerance test). In silico investigations may help laboratory decision making, when exploring pragmatic improvements to sample processing. Late pregnancy 0, 1 and 2h 75g OGTT values were obtained from two distinct populations of pregnant women: 1. Values derived from the HAPO (Hyperglycemia and Adverse Pregnancy Outcome) Study and 2. New Zealand women identified as at higher risk of GDM by their caregivers, undergoing OGTT during routine antenatal care. In both populations studied, in silico modelling focussed on the effects of pre-analytical delays in plasma separation, when using fluoride collection tubes. Using a model that 'batched' samples from the three OGTT collection times, diagnostic sensitivity was estimated as follows: 66.1% for HAPO research population and 48.4% for the 1305 women receiving routine antenatal care. If samples were not batched, but processed shortly after each blood sample was collected, then sensitivity increased to 81%. Exploration of a range of clinical and laboratory scenarios using in silico modelling, showed that delaying the processing of pregnancy OGTT samples, using batched sample collection into fluoride tubes, causes unacceptable loss of GDM diagnostic sensitivity across two distinct population groups. This modelling approach will hopefully provide information that helps with final decision making around improved laboratory processing techniques. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals.

    PubMed

    Moniz, Tânia; Amorim, M João; Ferreira, Rita; Nunes, Ana; Silva, Ana; Queirós, Carla; Leite, Andreia; Gameiro, Paula; Sarmento, Bruno; Remião, Fernando; Yoshikawa, Yutaka; Sakurai, Hiromu; Rangel, Maria

    2011-12-01

    Results from an investigation in an in vivo model of STZ-induced diabetic rats demonstrate that compound bis(1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate)zinc(II), Zn(dmpp)(2), significantly lowers the blood glucose levels of individuals, thus showing evidence of glucose lowering activity. The compound was selected from a set of eight zinc(II) complexes of 3-hydroxy-4-pyridinones with diverse lipophilicity that were prepared and characterized in our laboratory. Assessment of insulin-like activity of the complexes was firstly performed in vitro by measuring the inhibition of FFA release in isolated rat adipocytes. The results indicate that compounds bis(2-methyl-3-hydroxy-4-pyridinonate)zinc(II), Zn(mpp)(2) and Zn(dmpp)(2) display significantly higher activity than that of the respective positive control thus suggesting its selection for in vivo tests. Safety evaluation of the active zinc(II) compounds was performed in freshly isolated rat hepatocytes. The results support that cell viability is not significantly different from the control set after 1 and 2h of incubation with both zinc(II) complexes.

  11. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media.

    PubMed

    Choudhary, Vinit; Pinar, Ana B; Lobo, Raul F; Vlachos, Dionisios G; Sandler, Stanley I

    2013-12-01

    Herein, the first comparison of the mechanisms of glucose-to-fructose isomerization in aqueous media enabled by homogeneous (CrCl3 and AlCl3 ) and heterogeneous catalysts (Sn-beta) by using isotopic-labeling studies is reported. A pronounced kinetic isotope effect (KIE) was observed if the deuterium label was at the C2 position, thus suggesting that a hydrogen shift from the C2 to C1 positions was the rate-limiting step with the three catalysts. (13) C and (1) H NMR spectroscopic investigations confirmed that an intra-hydride-transfer reaction pathway was the predominant reaction channel for all three catalysts in aqueous media. Furthermore, the deuterium atom in the labeled glucose could be mapped onto hydroxymethylfurfural and formic acid through reactions that followed the isomerization step in the presence of Brønsted acids. In all three catalysts, the active site appeared to be a bifunctional Lewis-acidic/Brønsted-basic site, based on a speciation model and first-principles calculations. For the first time, a mechanistic similarities between the homogeneous and heterogeneous catalysis of aldose-to-ketose isomerization is established and it is suggested that learning from homogeneous catalysis could assist in the development of improved heterogeneous catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  13. Microdetermination of glucose content of plasma and its isotopic enrichment using capillary gas chromatography/ammonia chemical-ionization mass spectrometry.

    PubMed

    Lepetit, N; Rocchiccioli, F

    1989-05-01

    A new sensitive and precise method for the determination of the isotopic enrichment of [6,6-D2]glucose and concentration of glucose in plasma microsamples (20 microL) has been developed. Glucose was extracted from plasma samples by anion-cation column-exchange with absolute ethanol, derivatized as 1,2:3,5-bis(butylboronate)-6-acetyl-alpha-D-glucofuranose, and analysed by capillary gas chromatography/ammonia chemical-ionization mass spectrometry. This method gives a better reproducibility and precision (variation coefficient below 1%) than methods using isobutane chemical ionization. Stable isotopes are being used increasingly to investigate energy metabolism in vivo. Recent work has involved the development of methodologies, especially mass spectrometry, to perform tracer experiments using the stable isotopes 3H, 13C, or 13N(1-4). Chemical-ionization mass spectrometry is extensively used for the analysis of isotopically labelled amino acids. In neonates and children, "true" glucose production can be measured by the continuous infusion of the stable isotopically labelled tracer 6,6-dideutero-glucose (6,6-D2-glucose), and analytical measurement is performed using gas chromatography/electron-ionization mass spectrometry (GC/EIMS). Herein, we present a new, simple and sensitive method for the determination of the isotopic enrichment of [6,6-D2]glucose and measurement of the concentration of glucose in plasma microsamples (20 microL), based on the use of capillary gas-chromatography/ammonia chemical-ionization mass spectrometry of 1,2:3,5-bis(butylboronate)-6-acetyl-alpha-D-glucofuranose.

  14. Glucose metabolism in cultured trophoblasts from human placenta

    SciTech Connect

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. )

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  15. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  16. Tetrabenazine as anti-chorea therapy in Huntington Disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators

    PubMed Central

    2009-01-01

    Background Tetrabenazine (TBZ) selectively depletes central monoamines by reversibly binding to the type-2 vesicular monoamine transporter. A previous double blind study in Huntington disease (HD) demonstrated that TBZ effectively suppressed chorea, with a favorable short-term safety profile (Neurology 2006;66:366-372). The objective of this study was to assess the long-term safety and effectiveness of TBZ for chorea in HD. Methods Subjects who completed the 13-week, double blind protocol were invited to participate in this open label extension study for up to 80 weeks. Subjects were titrated to the best individual dose or a maximum of 200 mg/day. Chorea was assessed using the Total Maximal Chorea (TMC) score from the Unified Huntington Disease Rating Scale. Results Of the 75 participants, 45 subjects completed 80 weeks. Three participants terminated due to adverse events (AEs) including depression, delusions with associated previous suicidal behavior, and vocal tics. One subject died due to breast cancer. The other 26 subjects chose not to continue on with each ensuing extension for various reasons. When mild and unrelated AEs were excluded, the most commonly reported AEs (number of subjects) were sedation/somnolence (18), depressed mood (17), anxiety (13), insomnia (10), and akathisia (9). Parkinsonism and dysphagia scores were significantly increased at week 80 compared to baseline. At week 80, chorea had significantly improved from baseline with a mean reduction in the TMC score of 4.6 (SD 5.5) units. The mean dosage at week 80 was 63.4 mg (range 12.5-175 mg). Conclusions TBZ effectively suppresses HD-related chorea for up to 80 weeks. Patients treated chronically with TBZ should be monitored for parkinsonism, dysphagia and other side effects including sleep disturbance, depression, anxiety, and akathisia. Trial Registration Clinicaltrials.gov registration number (initial study): NCT00219804 PMID:20021666

  17. Label-free LC-MS/MS shotgun proteomics to investigate the anti-inflammatory effect of rCC16

    PubMed Central

    Pang, Min; Bai, Xin-Yan; Li, Yan; Bai, Ji-Zhong; Yuan, Li-Rong; Ren, Shou-An; Hu, Xiao-Yun; Zhang, Xin-Ri; Yu, Bao-Feng; Guo, Rui; Wang, Hai-Long

    2016-01-01

    Clara cell protein (CC16) is an anti-inflammatory protein, which is expressed in the airway epithelium. It is involved in the development of airway inflammatory diseases, including chronic obstructive pulmonary disease and asthma. However, the exact molecular mechanism underlying its anti-inflammatory action remains to be fully elucidated. The aim of the present study was to define the protein profiles of the anti-inflammatory effect of CC16 in lipopolysaccharide (LPS)-treated rat tracheal epithelial (RTE) cells using shotgun proteomics. Protein extracts were obtained from control RTE cells, RTE cells treated with LPS and RTE cells treated with LPS and recombinant CC16 (rCC16). Subsequent label-free quantification and bioinformatics analyses identified 12 proteins that were differentially expressed in the three treatment groups as a cluster of five distinct groups according to their molecular functions. Five of the twelve proteins were revealed to be associated with the cytoskeleton: Matrix metalloproteinase-9, myosin heavy chain 10, actin-related protein-3 homolog, elongation factor 1-α-1 (EF-1-α-1), and acidic ribosomal phosphoprotein P0. Five of the twelve proteins were associated with cellular proliferation: DNA-dependent protein kinase catalytic subunit, EF-1-α-1, tyrosine 3-monooxygenase, caspase recruitment domain (CARD) protein 12 and adenosylhomocysteinase (SAHH) 3. Three proteins were associated with gene regulation: EF-1-α-1, SAHH 3 and acidic ribosomal phosphoprotein P0. Three proteins were associated with inflammation: Tyrosine 3-monooxygenase, CARD protein 12 and statin-related protein. ATPase (H+-transporting, V1 subunit A, isoform 1) was revealed to be associated with energy metabolism, and uridine diphosphate glycosyltransferase 1 family polypeptide A8 with drug metabolism and detoxification. The identified proteins were further validated using reverse transcription-quantitative polymerase chain reaction. These protein profiles, and their

  18. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A (13)C Stable Isotope-Resolved Metabolomic Study.

    PubMed

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, (13)C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite (13)C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers (13)C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate (13)C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  19. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study

    PubMed Central

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Mayo, Juan C.

    2017-01-01

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. PMID:28933733

  20. Glucose Kinetics in the Collagen-Induced Arthritis Model: An All-in-One Model to Assess Both Efficacy and Metabolic Side Effects of Glucocorticoids

    PubMed Central

    van Dijk, Theo H.; Bleeker, Aycha; Grefhorst, Aldo; Schouten, Annelies E.; Bastiaanssen, Ellen A. J.; Ballak, Dov B.; Koenders, Marije I.; van Doorn, Cindy; van der Vleuten, Monique A. J.; van Lierop, Marie-Jose C.; Groen, Albert K.; Dokter, Wim H. A.

    2014-01-01

    Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory drugs, but chronic use is hampered by metabolic side effects. Therefore, there is an urgent medical need for improved GCs that are as effective as classical GCs but have a better safety profile. A well-established model to assess anti-inflammatory efficacy is the chronic collagen-induced arthritis (CIA) model in mice, a model with features resembling rheumatoid arthritis. Models to quantify undesired effects of glucocorticoids on glucose kinetics are less well-established. Recently, we have described a model to quantify basal blood glucose kinetics using stably-labeled glucose. In the present study, we have integrated this blood glucose kinetic model in the CIA model to enable quantification of both efficacy and adverse effects in one animal model. Arthritis scores were decreased after treatment with prednisolone, confirming the anti-inflammatory properties of GCs. Both inflammation and prednisolone induced insulin resistance as insulin secretion was strongly increased whereas blood glucose concentrations and hepatic glucose production were only slightly decreased. This insulin resistance did not directly resulted in hyperglycemia, indicating a highly adaptive compensatory mechanism in these mice. In conclusion, this ‘all-in-one’ model allows for studying effects of (novel) GC compounds on the development of arthritis and glucose kinetics in a single animal. This integrative model provides a valuable tool for investigating (drug-induced) metabolic dysregulation in an inflammatory setting. PMID:25181348

  1. Glucose kinetics in the collagen-induced arthritis model: an all-in-one model to assess both efficacy and metabolic side effects of glucocorticoids.

    PubMed

    Toonen, Erik J M; Laskewitz, Anke J; van Dijk, Theo H; Bleeker, Aycha; Grefhorst, Aldo; Schouten, Annelies E; Bastiaanssen, Ellen A J; Ballak, Dov B; Koenders, Marije I; van Doorn, Cindy; van der Vleuten, Monique A J; van Lierop, Marie-Jose C; Groen, Albert K; Dokter, Wim H A

    2014-01-01

    Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory drugs, but chronic use is hampered by metabolic side effects. Therefore, there is an urgent medical need for improved GCs that are as effective as classical GCs but have a better safety profile. A well-established model to assess anti-inflammatory efficacy is the chronic collagen-induced arthritis (CIA) model in mice, a model with features resembling rheumatoid arthritis. Models to quantify undesired effects of glucocorticoids on glucose kinetics are less well-established. Recently, we have described a model to quantify basal blood glucose kinetics using stably-labeled glucose. In the present study, we have integrated this blood glucose kinetic model in the CIA model to enable quantification of both efficacy and adverse effects in one animal model. Arthritis scores were decreased after treatment with prednisolone, confirming the anti-inflammatory properties of GCs. Both inflammation and prednisolone induced insulin resistance as insulin secretion was strongly increased whereas blood glucose concentrations and hepatic glucose production were only slightly decreased. This insulin resistance did not directly resulted in hyperglycemia, indicating a highly adaptive compensatory mechanism in these mice. In conclusion, this 'all-in-one' model allows for studying effects of (novel) GC compounds on the development of arthritis and glucose kinetics in a single animal. This integrative model provides a valuable tool for investigating (drug-induced) metabolic dysregulation in an inflammatory setting.

  2. A UDP-glucose:glycoprotein glucose-1-phosphotransferase in embryonic chicken neural retina

    SciTech Connect

    Koro, L.A.; Marchase, R.B.

    1982-12-01

    A subclass of cell-surface glycoproteins from embryonic chicken neural retina contains a high mannose-type oligosaccharide that terminates with glucose linked via a phosphodiester bond to penultimate mannose. This unusual oligosaccharide seems responsible for the glycoprotein attachments to the cell-surface baseplate ligatin. Using beta-/sup 32/P-UDP-/sup 3/H-glucose, we demonstrate in retinal homogenates the existence of a UDP-glucose:glycoprotein glucose-1-phosphotransferase (GlcPTase) that catalyzes the synthesis of such a linkage. Characterization of the doubly labeled product resulting from activity of the transferase reveals a family of endoglycosidase H-sensitive oligosaccharides displaying a cation-exchange profile similar to that of oligosaccharides derived from ligatin-associated proteins synthesized in vivo. Further analysis confirms that the incorporation of label is due to a terminal /sup 3/H-glucose joined via a /sup 32/P-phosphodiester linkage to carbon 6 of a penultimate mannose. We propose that GlcPTase may be a controlling enzyme for the targeting of certain newly synthesized proteins to the cell surface.

  3. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC50 = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU50 = 2.68 ± 0.75 %) or without (GU50 = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  4. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  5. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose.

  6. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    PubMed

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mental Labels and Tattoos

    ERIC Educational Resources Information Center

    Hyatt, I. Ralph

    1977-01-01

    Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)

  8. Pesticide Labeling Questions & Answers

    EPA Pesticide Factsheets

    Pesticide manufacturers, applicators, state regulatory agencies, and other stakeholders raise questions or issues about pesticide labels. The questions on this page are those that apply to multiple products or address inconsistencies among product labels.

  9. Soil Fumigant Labels - Chloropicrin

    EPA Pesticide Factsheets

    Search by EPA registration number, product name, or company name, and follow the link to the Pesticide Product Label System (PPLS) for details on each fumigant. Updated labels include new safety requirements for buffer zones and related measures.

  10. Soil Fumigant Labels - Dazomet

    EPA Pesticide Factsheets

    Updated labels include new safety requirements for buffer zones and related measures. Find information from the Pesticide Product Labeling System (PPLS) for products such as Basamid G, manufactured by Amvac.

  11. Mental Labels and Tattoos

    ERIC Educational Resources Information Center

    Hyatt, I. Ralph

    1977-01-01

    Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)

  12. Soil Fumigant Labels

    EPA Pesticide Factsheets

    The 2012 updated pesticide labels include new safety requirements for buffer zones and related measures. Find labels for each different type of fumigant: chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  13. Electronic Submission of Labels

    EPA Pesticide Factsheets

    Pesticide registrants can provide draft and final labels to EPA electronically for our review as part of the pesticide registration process. The electronic submission of labels by registrants is voluntary but strongly encouraged.

  14. The Labelling of Chemicals.

    ERIC Educational Resources Information Center

    Education in Science, 1979

    1979-01-01

    Describes the impact on chemistry laboratories and teachers in the United Kingdom of the Packaging and Labelling of Dangerous Substances Regulations 1978. These regulations require suppliers to label containers in particular ways. (HM)

  15. Semiotic labelled deductive systems

    SciTech Connect

    Nossum, R.T.

    1996-12-31

    We review the class of Semiotic Models put forward by Pospelov, as well as the Labelled Deductive Systems developed by Gabbay, and construct an embedding of Semiotic Models into Labelled Deductive Systems.

  16. The reappropriation of stigmatizing labels: the reciprocal relationship between power and self-labeling.

    PubMed

    Galinsky, Adam D; Wang, Cynthia S; Whitson, Jennifer A; Anicich, Eric M; Hugenberg, Kurt; Bodenhausen, Galen V

    2013-10-01

    We present a theoretical model of reappropriation--taking possession of a slur previously used exclusively by dominant groups to reinforce another group's lesser status. Ten experiments tested this model and established a reciprocal relationship between power and self-labeling with a derogatory group term. We first investigated precursors to self-labeling: Group, but not individual, power increased participants' willingness to label themselves with a derogatory term for their group. We then examined the consequences of such self-labeling for both the self and observers. Self-labelers felt more powerful after self-labeling, and observers perceived them and their group as more powerful. Finally, these labels were evaluated less negatively after self-labeling, and this attenuation of stigma was mediated by perceived power. These effects occurred only for derogatory terms (e.g., queer, bitch), and not for descriptive (e.g., woman) or majority-group (e.g., straight) labels. These results suggest that self-labeling with a derogatory label can weaken the label's stigmatizing force.

  17. K⁺-dependent ³H-D-glucose transport by hepatopancreatic brush border membrane vesicles of a marine shrimp.

    PubMed

    Obi, Ijeoma E; Sterling, Kenneth M; Ahearn, Gregory A

    2013-01-01

    The effects of sodium, potassium, sugar inhibitors, and membrane potential on ³H-D-glucose uptake by hepatopancreatic epithelial brush border membrane vesicles (BBMV) of the Atlantic marine shrimp, Litopenaeus setiferus, were investigated. Brush border membrane vesicles were prepared using a MgCl₂/EGTA precipitation method and uptake experiments were conducted using a high speed filtration technique. ³H-D-Glucose uptake was stimulated by both sodium and potassium and these transport rates were almost doubled in the presence of an inside-negative-induced membrane potential. Kinetics of ³H-D-glucose influx were hyperbolic functions of both external Na⁺ or K⁺, and an induced membrane potential increased influx J(max) and lowered K(m) in both salts. ³H-D-Glucose influx versus [glucose] in both Na⁺ or K⁺ media also displayed Michaelis-Menten properties that were only slightly affected by induced membrane potential. Phloridzin was a poor inhibitor of 0.5 mM ³H-D-glucose influx, requiring at least 5 mM in NaCl and 10 mM in KCl to significantly reduce hexose transport. Several sugars (D-galactose, α-methyl-D-gluco-pyranoside, unlabeled D-glucose, D-fructose, and D-mannose) were used at 75 mM as potential inhibitors of 0.1 mM ³H-D-glucose influx. Only unlabeled D-glucose, D-fructose, and D-mannose significantly (p < 0.05) reduced labeled glucose transport. An additional experiment using increasing concentrations of D-mannose (0, 10, 25, 75, and 100 mM) showed this hexose to be an effective inhibitor of 0.1 mM ³H-D-glucose uptake at concentrations of 75 mM and higher. As a whole these results suggest that ³H-D-glucose transport by hepatopancreatic BBMV occurs by a carrier system that is able to use both Na⁺ and K⁺ as drivers, is enhanced by membrane potential, is relatively refractory to phloridzin, and is only inhibited by itself, D-fructose, and D-mannose. These properties are similar to those exhibited by the mammalian SLC5A9/SGLT4 transporter

  18. Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite.

    PubMed

    Guo, Chun Xian; Li, Chang Ming

    2010-10-14

    A hollow sphere-nanostructured conductive polymer/metal oxide composite was synthesized and used to investigate the electrochemical behavior of glucose oxidase, demonstrating a significantly enhanced direct electron transfer ability of glucose oxidase. In particular, the long-standing puzzle of whether enzymatic glucose sensing involves an enzyme direct electron transfer process was studied. The results indicate the mechanism is indeed a glucose oxidase direct electron transfer process with competitive glucose oxidation and oxygen reduction to detect glucose. A glucose biosensor with the glucose oxidase-immobilized nanomaterial was further constructed, demonstrating superior sensitivity and reliability, and providing great potential in clinical applications.

  19. Screening for Inhibitors of Essential Leishmania Glucose Transporters

    DTIC Science & Technology

    2012-07-01

    Leishmania Glucose Transporters PRINCIPAL INVESTIGATOR: Scott M. Landfear, Ph.D. CONTRACTING ORGANIZATION: Oregon Health & Science...3. DATES COVERED 1 JUL 2011 - 30 JUN 2012 4. TITLE AND SUBTITLE Screening for Inhibitors of Essential Leishmania Glucose Transporters...function as selective inhibitors of the essential glucose transporters of the parasite Leishmania mexicana. To identify such compounds, a cell growth

  20. 1-/sup 11/C-D-glucose and related compounds

    SciTech Connect

    Shiue, C.Y.; Wolf, A.P.

    1982-01-26

    The novel compounds 1-/sup 11/C-D-glucose, 1-/sup 11/C-D-mannose, 1-/sup 11/C-D-galactose, 2-/sup 11/C-D-glucose, 2-/sup 11/C-D-mannose and 2-/sup 11/C-D-galactose which can be used in nuclear medicine to monitor the metabolism of glucose and galactose can be rapidly prepared by reaction of the appropriate aldose substrate with an alkali metal /sup 11/C-labeled cyanide followed by reduction with a Raney alloy in formic acid.

  1. 1-.sup.11 C-D-Glucose and related compounds

    DOEpatents

    Shiue, Chyng-Yann; Wolf, Alfred P.

    1984-03-27

    The novel compounds 1-.sup.11 C-D-glucose, 1-.sup.11 C-D-mannose, 1-.sup.11 C-D-galactose, 2-.sup.11 C-D-glucose, 2-.sup.11 C-D-mannose and 2-.sup.11 C-D-galactose which can be used in nuclear medicine to monitor the metabolism of glucose and galactose can be rapidly prepared by reaction of the appropriate aldose substrate with an alkali metal .sup.11 C-labeled cyanide followed by reduction with a Raney alloy in formic acid.

  2. Osteopontin Upregulates the Expression of Glucose Transporters in Osteosarcoma Cells

    PubMed Central

    Hsieh, I-Shan; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients. PMID:25310823

  3. Organic labeling influences food valuation and choice.

    PubMed

    Linder, N S; Uhl, G; Fliessbach, K; Trautner, P; Elger, C E; Weber, B

    2010-10-15

    Everyday we choose between a variety of different food items trying to reach a decision that fits best our needs. These decisions are highly dependent on the context in which the alternatives are presented (e.g. labeling). We investigate the influence of cognition on food evaluation, using an fMRI experiment in which subjects saw and bid on different foods labeled with (or without) a widely known German emblem for organically produced food. Increased activity in the ventral striatum was found for foods labeled "organic" in comparison to conventionally labeled food. Between-subject differences in activity were related to actual everyday consumption behavior of organic food.

  4. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro.

    PubMed

    Klepper, Jörg; Flörcken, Anne; Fischbarg, Jorge; Voit, Thomas

    2003-02-01

    Facilitative type-1 glucose transporter (GLUT1) deficiency syndrome is caused by a defect of glucose transport into brain, resulting in an epileptic encephalopathy. Seizures respond effectively to a ketogenic diet, but a subgroup of patients require add-on anticonvulsant therapy or do not tolerate the diet. With the exception of barbiturates, which have been shown to inhibit GLUT1 function, no anticonvulsants have been investigated for possible interactions with GLUT1. Kinetic analyses of (14)C-labeled 3-O-methyl glucose (3OMG) uptake into erythroctes were performed in 11 patients and 30 controls. For in vitro inhibition studies, zero-trans influx of 3OMG (5 mmol/L) into erythrocytes was determined following preincubation with diazepam, carbamazepine, phenytoin, and chloralhydrate. In addition, the effects of ethanol on cell lysis and 3OMG transport into erythrocytes were determined. In patients, mean 3OMG influx was 53% of controls. Ethanol, diazepam, and chloralhydrate significantly inhibited GLUT1 function. Erythrocyte cell lysis was evident at concentrations of 2.5% ethanol. Diazepam, chloralhydrate, and ethanol are inhibitors of GLUT1 function in vitro and might potentiate the effects of GLUT1-mediated glucose transport in patients with GLUT1 deficiency syndrome. In contrast, no inhibitory effects were observed for carbamazepine and phenytoin, indicating that these substances might be preferable for additional seizure control in this disorder.

  5. Isoform-selective Inhibition of Facilitative Glucose Transporters

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Tzekov, Anatoly; Wildman, Scott A.; Hruz, Paul W.

    2014-01-01

    Pharmacologic HIV protease inhibitors (PIs) and structurally related oligopeptides are known to reversibly bind and inactivate the insulin-responsive facilitative glucose transporter 4 (GLUT4). Several PIs exhibit isoform selectivity with little effect on GLUT1. The ability to target individual GLUT isoforms in an acute and reversible manner provides novel means both to investigate the contribution of individual GLUTs to health and disease and to develop targeted treatment of glucose-dependent diseases. To determine the molecular basis of transport inhibition, a series of chimeric proteins containing transmembrane and cytosolic domains from GLUT1 and GLUT4 and/or point mutations were generated and expressed in HEK293 cells. Structural integrity was confirmed via measurement of N-[2-[2-[2-[(N-biotinylcaproylamino)ethoxy)ethoxyl]-4-[2-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-4-yloxy)-2-propylamine (ATB-BMPA) labeling of the chimeric proteins in low density microsome fractions isolated from stably transfected 293 cells. Functional integrity was assessed via measurement of zero-trans 2-deoxyglucose (2-DOG) uptake. ATB-BMPA labeling studies and 2-DOG uptake revealed that transmembrane helices 1 and 5 contain amino acid residues that influence inhibitor access to the transporter binding domain. Substitution of Thr-30 and His-160 in GLUT1 to the corresponding positions in GLUT4 is sufficient to completely transform GLUT1 into GLUT4 with respect to indinavir inhibition of 2-DOG uptake and ATB-BMPA binding. These data provide a structural basis for the selectivity of PIs toward GLUT4 over GLUT1 that can be used in ongoing novel drug design. PMID:24706759

  6. Connotative Meanings of Student Performance Labels Used in Standard Setting

    ERIC Educational Resources Information Center

    Burt, Winona M.; Stapleton, Laura M.

    2010-01-01

    The purpose of this study was to investigate the connotation of performance labels used in standard setting. For example, do the performance labels "basic," "proficient," and "advanced" hold different connotations than "limited knowledge," "satisfactory," and "distinguished"? If these…

  7. Connotative Meanings of Student Performance Labels Used in Standard Setting

    ERIC Educational Resources Information Center

    Burt, Winona M.; Stapleton, Laura M.

    2010-01-01

    The purpose of this study was to investigate the connotation of performance labels used in standard setting. For example, do the performance labels "basic," "proficient," and "advanced" hold different connotations than "limited knowledge," "satisfactory," and "distinguished"? If these…

  8. Label Review Training: Module 1: Label Basics, Page 16

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the importance of labels and the role in enforcement.

  9. Label Review Training: Module 1: Label Basics, Page 14

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about positive effects from proper labeling.

  10. Label Review Training: Module 1: Label Basics, Page 15

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the consequences of improper labeling.

  11. Label Review Training: Module 1: Label Basics, Page 21

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about types of labels.

  12. Label Review Training: Module 1: Label Basics, Page 19

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section covers supplemental distributor labeling.

  13. Label Review Training: Module 1: Label Basics, Page 17

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See an overview of the importance of labels.

  14. Label Review Training: Module 1: Label Basics, Page 22

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about what labels require review.

  15. Label Review Training: Module 1: Label Basics, Page 27

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See examples of mandatory and advisory label statements.

  16. Label Review Training: Module 1: Label Basics, Page 26

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about mandatory and advisory label statements.

  17. Label Review Training: Module 1: Label Basics, Page 24

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is about which labels require review.

  18. Label Review Training: Module 1: Label Basics, Page 18

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section discusses the types of labels.

  19. Label Review Training: Module 1: Label Basics, Page 23

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Lists types of labels that do not require review.

  20. RADIOAUTOGRAPHIC COMPARISON OF THE UPTAKE OF GALACTOSE-H3 AND GLUCOSE-H3 IN THE GOLGI REGION OF VARIOUS CELLS SECRETING GLYCOPROTEINS OR MUCOPOLYSACCHARIDES

    PubMed Central

    Neutra, Marian; Leblond, C. P.

    1966-01-01

    The radioautographic distribution of the label of galactose-H3 was compared with that of glucose-H3 in a series of secretory cells of the rat. Whereas the glucose label appeared in all mucous cells, the galactose label was incorporated only into certain mucous cells. Whenever either label was incorporated, however, it was located first in the Golgi region and later in the secretion product, mucus. Several lines of evidence, including extraction of glucose label with peracetic acid—beta glucuronidase, indicated that the material synthesized in the Golgi region was glycoprotein in nature. In chondrocytes, both the galactose and the glucose label appeared first in the Golgi region and later in cartilage matrix; extraction of glucose label with hyaluronidase indicated that much of it consisted of mucopolysaccharide. In all secretory cells, the extraction of glycogen by amylase had no effect on Golgi radioactivity. Such extraction did not eliminate the scattered cytoplasmic label also seen after glucose-H3 injection, but completely eliminated that seen after galactose-H3. Consequently, the galactose-H3 label in the Golgi region stood out more clearly, and was detected in many cells: pancreas, liver, epididymis, and intestinal columnar cells. In the latter, label later appeared in the surface coat. Thus, radioautography after injection of galactose-H3, as after glucose-H3, indicates that synthesis of complex carbohydrates takes place in the Golgi region of many secretory cells. PMID:4226008

  1. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  2. Glucose Metabolism in Sediments of a Eutrophic Lake: Tracer Analysis of Uptake and Product Formation †

    PubMed Central

    King, Gary M.; Klug, M. J.

    1982-01-01

    The uptake of glucose and the formation of end products from glucose catabolism have been measured for sediments of eutrophic Wintergreen Lake with a combination of tritiated and 14C-labeled tracers. Time course analyses of the loss of [3H]glucose from sediments were used to establish rate constants for glucose uptake at natural substrate concentrations. Turnover times from these analyses were about 1 min for littoral and profundal sediments. No seasonal or site differences were noted in turnover times. Time course analyses of [U-14C]glucose uptake and 14C-labeled end product formation indicated that glucose mass flow could not be calculated from end product formation since the specific activity of added [14C]glucose was significantly diluted by pools of intracellular glucose and glucose metabolites. Mass flow could only be accurately estimated by use of rates of uptake from tracer studies. Intermediate fermentation end products included acetate (71%), propionate (15%), lactate (9%), and only minor amounts of butyrates or valerates. Addition of H2 to sediments resulted in greater production of lactate (28%) and decreased formation of acetate (50%), but did not affect glucose turnover. Depth profiles of glucose uptake indicated that rates of uptake decreased with depth over the 0- to 18-cm interval and that glucose uptake accounted for 30 to 40% of methanogenesis in profundal sediments. PMID:16346148

  3. The Effect of Insulin on the Distribution of Glucose between the Blood Plasma and the Liver

    PubMed Central

    Hetenyi, G.; Arbus, G. S.

    1962-01-01

    In normal fasted rats whole liver tissue contains as much glucose as the blood plasma, i.e., the ratio of the concentrations is about unity. The concentration of glucose in hepatic intracellular water is about 1.2 times higher than in plasma water. In rats injected with insulin the concentration of glucose in the liver falls to a lesser extent than in the plasma: resulting in a ratio of concentrations higher than unity. If insulin hypoglycemia is prevented by the ingestion of glucose the concentration ratio is less than in hypoglycemic rats but still significantly above unity. In normal rats the specific activities of plasma and hepatic glucose do not differ significantly at 7.5, 15, and 30 minutes after the intravenous injection of C14-labeled glucose. In rats injected with insulin the specific activity of glucose is higher in the plasma than in the liver at 7.5 and 15 minutes, but not at 30 minutes following the injection of tracer. In insulin-treated hypoglycemic rats considerably higher concentrations of labeled glucose are found in hepatic intracellular than in plasma water. The penetration of C14-glucose from plasma into hepatic intracellular water is found to be fast. Excess insulin causes an accumulation of glucose within the liver cells by retaining newly formed glucose and by the taking up of glucose from the plasma against an existing concentration gradient. PMID:13907027

  4. Fate of Carbon Passing Through the Glucose Pool of Rumen Digesta

    PubMed Central

    Walker, D. J.; Monk, P. R.

    1971-01-01

    The metabolism of the free glucose pool in rumen digesta from sheep fed roughage rations was studied by adding an insignificant quantity of glucose as uniformly labeled 14C-glucose of high specific activity to in vitro incubation systems. In all experiments wherein only trace quantities of glucose were added to digesta, most of the 14C-glucose entered acetate. This was true whether label was presented either as a single dose or by continuous addition over a period of 2 hr. Digesta collected at all times after feeding either once daily or at hourly intervals gave similar glucose dissimilation patterns. If, however, a relatively large quantity of carrier glucose was added together with the tracer, the 14C-acetate: 14C-propionate ratio was reduced by a factor of about 10. Physical removal of most of the protozoa from digesta generally had little effect on the dissimilation of 14C-glucose added in tracer amounts, but in one experiment there was a decreased turnover of the free glucose pool and a marked reduction in 14C entering butyrate. The paucity of 14C entering propionate when only trace amounts of glucose were added to digesta suggests that this acid was largely formed from substrates whose carbon did not equilibrate with that in free glucose or with that in intermediates of free glucose metabolism. PMID:5132090

  5. Consumption of nitrate-containing vegetables is inversely associated with hypertension in adults: a prospective investigation from the Tehran Lipid and Glucose Study.

    PubMed

    Golzarand, Mahdieh; Bahadoran, Zahra; Mirmiran, Parvin; Zadeh-Vakili, Azita; Azizi, Fereidoun

    2016-06-01

    There is growing evidence of the potential properties of nitrate-rich foods against development of hypertension (HTN) and vascular disease. In this study, we investigated the association of nitrate-containing vegetables (NCVs) with risk of HTN after 3 years of follow-up. This prospective study was conducted on 1546 non-hypertensive subjects, aged 20-70 years. Blood pressure was measured at baseline and after 3 years and HTN was defined by the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure criteria. Dietary intake was collected using a validated semi-quantitative food frequency questionnaire (FFQ). NCVs and high-, medium- and low-NCV subcategories were defined, and the odds of HTN after 3 years according to tertiles of NCV and NCV-category intake were estimated by logistic regression and adjusted for potential variables. Mean age of participants was 38.0 ± 12.0 years at baseline and 57.0 % were women. Mean dietary intake of energy-adjusted NCV was 298.0 ± 177.3 g/day. After adjustment for total energy intake, fiber, sodium, potassium and processed meat, a significant inverse association was observed between NCV and the risk of HTN in the highest tertile category (odds ratio 0.63, 95 % confidence interval: 0.41-0.98, p for trend = 0.05). There was no significant association of 3 year risk of HTN across tertiles of low nitrate-, medium nitrate- and high-nitrate vegetables. Higher dietary nitrate intake from vegetables sources may have a protective effect against development of HTN.

  6. The glucose oxidase-peroxidase assay for glucose

    USDA-ARS?s Scientific Manuscript database

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  7. Sample Pesticide Label for Label Review Training

    EPA Pesticide Factsheets

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  8. Evidence that humans can taste glucose polymers.

    PubMed

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2014-11-01

    The sense of taste is essential for identifying potential nutrients and poisons. Accordingly, specialized taste receptor cells are activated by food-derived chemicals. Because of its importance in the human diet, oral detection of starch, or its degradation products, would presumably be highly beneficial. Yet, it has long been assumed that simple sugars are the only class of carbohydrates that humans can taste. There is, however, considerable evidence that rodents can taste starch degradation products (i.e., glucose polymers composed of maltooligosaccharides with 3-10 glucose units and maltopolysaccharides with >10 glucose units) and that their detection is independent of the sweet taste receptor, T1R2/T1R3. The present study was designed 1) to measure individual differences in human taste perception of glucose polymers, 2) to understand individual differences in the activity of salivary α-amylase, and 3) to investigate the role that salivary α-amylase may play in the taste perception of glucose polymers. In the first experiment, subjects rated taste intensity of glucose, sucrose, NaCl, and glucose polymers of various chain lengths, while their noses were clamped. Saliva samples from the subjects were also collected and their salivary α-amylase activity was assayed. Results showed that the perceived intensities of glucose, sucrose, and NaCl were significantly correlated (r = 0.75-0.85, P < 0.001), but not with the longer chain glucose polymers, whereas intensity ratings of all glucose polymers were highly correlated with one another (r = 0.69-0.82, P < 0.001). Importantly, despite large individual differences in α-amylase activity among subjects, responsiveness to glucose polymers did not significantly differ between individuals with high and low α-amylase activity. A follow up experiment was conducted to quantify the concentrations of glucose and maltose that were inherently present in the glucose polymer stimuli and to determine whether the amounts were

  9. Pesticide Product Label System

    EPA Pesticide Factsheets

    The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). New labels were added to PPLS on November 21, 2014. Pesticide product labels provide critical information about how to safely handle and use registered pesticide products. An approved pesticide product label represents the full content of EPAs registration decision regarding that product. Pesticide labels contain detailed information on the use, storage, and handling of a product. This information will be found on EPA stamped-approved labels and, in some cases, in subsequent related correspondence, which is also included in PPLS. You may need to review several PDF files for a single product to determine the complete current terms of registration.

  10. On effect of chlordane on the blood glucose and of glucose administration on the acute chlordane toxicity in Meriones hurrianae Jerdon, the indian desert gerbil.

    PubMed

    Saxena, S C; Karel, A K

    1976-05-01

    The effect of 25, 50 and 75 mg/kg body wt. chlordane on the blood glucose level and of glucose administration in chlordane intoxicated Indian desert gerbils are investigated. Chlordane produces hyperglycemia and lowers the glucose tolerance indicating an impairment in the uptake and utilization of glucose in intoxicated gerbils. The possible reasons for these effects are discussed.

  11. High environmental temperature increases glucose requirement in the developing chicken embryo.

    PubMed

    Molenaar, Roos; van den Borne, Joost J G C; Hazejager, Ewoud; Kristensen, Niels B; Heetkamp, Marcel J W; Meijerhof, Ron; Kemp, Bas; van den Brand, Henry

    2013-01-01

    Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST) on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C) or normal (37.8°C) EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13)C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13)C]glucose administration, (13)C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13)CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C) increased (13)C enrichment in plasma lactate at day 17.8 of incubation and (13)C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g) and 21.7 (-3.81 g) of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g) and 18.8 (-4.59 mg/g) of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43%) at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  12. High Environmental Temperature Increases Glucose Requirement in the Developing Chicken Embryo

    PubMed Central

    Molenaar, Roos; van den Borne, Joost J. G. C.; Hazejager, Ewoud; Kristensen, Niels B.; Heetkamp, Marcel J. W.; Meijerhof, Ron; Kemp, Bas; van den Brand, Henry

    2013-01-01

    Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST) on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C) or normal (37.8°C) EST from day 10.5 of incubation onward and were injected with a bolus of [U-13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-13C]glucose administration, 13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of 13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C) increased 13C enrichment in plasma lactate at day 17.8 of incubation and 13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (−2.74 g) and 21.7 (−3.81 g) of incubation, a lower hepatic glycogen concentration at day 18.2 (−4.37 mg/g) and 18.8 (−4.59 mg/g) of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43%) at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis. PMID:23560054

  13. Glucose: detection and analysis

    USDA-ARS?s Scientific Manuscript database

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  14. Capillary blood glucose monitoring.

    PubMed

    Wallymahmed, M

    This article, the first in a series of articles relating to clinical skills in nursing, outlines the procedure of capillary blood glucose monitoring. This is a convenient way of monitoring blood glucose patterns and can be a useful aid in guiding treatment changes in patients with type 1 and type 2 diabetes, especially during periods of illness or frequent hypoglycaemia.

  15. Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant Meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy.

    PubMed

    Findlow, Jamie; Borrow, Ray; Snape, Matthew D; Dawson, Tom; Holland, Ann; John, Tessa M; Evans, Anita; Telford, Karen L; Ypma, Ellen; Toneatto, Daniela; Oster, Philipp; Miller, Elizabeth; Pollard, Andrew J

    2010-11-15

    In the absence of an efficacious broadly protective vaccine, serogroup B Neisseria meningitidis (MenB) is the leading cause of bacterial meningitis and septicemia in many industrialized countries. An investigational recombinant vaccine that contains 3 central proteins; Neisserial adhesin A (NadA), factor H binding protein (fHBP) and Neisserial heparin binding antigen (NHBA) has been developed. These antigens have been formulated with and without outer membrane vesicles (rMenB+OMV and rMenB, respectively) from the New Zealand epidemic strain (B:4:P1.7-2,4). In this trial, we assessed the immunogenicity of these formulations in infants, who are at greatest risk of contracting MenB disease. A total of 147 infants from the United Kingdom were enrolled and randomly assigned to receive rMenB or rMenB+OMV at 2, 4, 6, and 12 months of age or a single dose at 12 months of age. Serum samples taken before and after vaccination were assayed in a standardized serum bactericidal antibody assay against 7 MenB strains. Local and systemic reactogenicity were recorded for 7 days after each vaccination. Analysis was according to protocol. After 3 doses, both vaccines were immunogenic against strains expressing homologous or related NadA and fHBP. rMenB+OMV demonstrated greater immunogenicity than did rMenB and was immunogenic against strains expressing homologous PorA. Both vaccines elicited anamnestic responses after the fourth dose. For both vaccines, responses were lower against strains expressing heterologous fHBP variants and after a single dose at 12 months. The rMenB+OMV vaccine has the potential to protect infants from MenB disease, although the breadth of protection afforded to heterologous antigens requires additional investigation.

  16. Effect of the label of oligosaccharide acceptors on the kinetic parameters of nasturtium seed xyloglucan endotransglycosylase (XET).

    PubMed

    Kosík, Ondřej; Garajová, Soňa; Matulová, Mária; Rehulka, Pavel; Stratilová, Eva; Farkaš, Vladimír

    2011-02-01

    Fluorescently labeled derivatives of a xyloglucan (XG) nonasaccharide Glc(4)Xyl(3)Gal(2) (XLLG) were used as glycosyl acceptors in assays of xyloglucan endotransglycosylase (XET) from germinated nasturtium (Tropaeolum majus) seeds. We have investigated how the type of the oligosaccharide label influences the kinetic parameters of the reaction. The fluorescent probes used to label XLLG were anthranilic acid (AA), 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS), fluorescein isothiocyanate (FITC), and sulforhodamine (SR), respectively. The obtained data were compared with those of the reactions where aldose and/or alditol forms of tritium-labeled xyloglucan-derived nonasaccharide served as the respective acceptors. Modification at C-1 of the reducing-end glucose in XLLG by substitution with the fluorophore markedly affected the kinetic parameters of the reaction. The Michaelis constants K(m) for individual acceptors increased in the order [1-(3)H]XLLGXLLG-SR>XLLG-ANTS>[1-(3)H]XLLGol>[1-(3)H]XLLG>XLLG-AA. Catalytic efficiency (expressed as k(cat)/K(m)) with XLLG labeled with SR or FITC was 15 and 28 times, respectively, higher than with the tritium-labeled natural substrate [1-(3)H]XLLG. Comparison of the kinetic parameters found with acceptors labeled with different types of labels enables to select the most effective substrates for the high-throughput assays of XET. 2010 Elsevier Ltd. All rights reserved.

  17. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide.

    USDA-ARS?s Scientific Manuscript database

    We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluc...

  18. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  19. Optimal design of isotope labeling experiments.

    PubMed

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  20. Investigating the effects of TTS-fentanyl for cancer pain on the psychological status of patients naïve to strong opioids: an open label study.

    PubMed

    Mystakidou, Kyriaki; Tsilika, Eleni; Parpa, Efi; Papageorgiou, Charalambos; Georgaki, Stavroula; Vlahos, Lambros

    2004-01-01

    Few studies have investigated the effect of fentanyl delivered via the transdermal route with regard to the patient's psychological status. Patients who were naive to strong opioids and were attending a palliative care unit for pain relief from advanced cancer participated in this study to determine the effect of transdermal therapeutic system fentanyl (TTS-F) on their psychological condition. Spielberger State-Trait Anxiety Inventory (STAI), Zung Self-Rating Depression Scale (SDS), the Karnofsky Performance Scale (100-0, optimum-death), and a Visual Analogue Scale (VAS) (0: no pain; 10: worst pain) were used to measure the level of pain. Data were collected at baseline (T0), on the 7th day (T1), and on the 14th day (T2) of TTS-F application in order to determine changes in correlation to TTS-F dose. Patients' status improved according to the Zung SDS questionnaire (P < .0005) and with each of its subscales (P < .05). A similar improvement was observed according to the Spielberger STAI questionnaire (P = .002). Moreover, VAS measures demonstrated that patients achieved significant pain relief (P < .0005), while patients' performance status did not alter significantly over the study period. Furthermore, the Zung SDS showed a statistically significant correlation when compared with the Spielberger STAI (P < .01). These data provide some evidence that the psychological status, as measured with respect to depression and anxiety in patients with advanced cancer, is improved in patients receiving TTS-fentanyl. Future research should use a broad range of psychological measurements in order to assist the development of practices, which are aimed at the improvement of quality of life in these patients.

  1. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    SciTech Connect

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  2. Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol.

    PubMed

    Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R

    2016-01-01

    Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste

  3. Overall Survival in Patients With Advanced Melanoma Who Received Nivolumab Versus Investigator's Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial.

    PubMed

    Larkin, James; Minor, David; D'Angelo, Sandra; Neyns, Bart; Smylie, Michael; Miller, Wilson H; Gutzmer, Ralf; Linette, Gerald; Chmielowski, Bartosz; Lao, Christopher D; Lorigan, Paul; Grossmann, Kenneth; Hassel, Jessica C; Sznol, Mario; Daud, Adil; Sosman, Jeffrey; Khushalani, Nikhil; Schadendorf, Dirk; Hoeller, Christoph; Walker, Dana; Kong, George; Horak, Christine; Weber, Jeffrey

    2017-07-03

    Purpose Until recently, limited options existed for patients with advanced melanoma who experienced disease progression while receiving treatment with ipilimumab. Here, we report the coprimary overall survival (OS) end point of CheckMate 037, which has previously shown that nivolumab resulted in more patients achieving an objective response compared with chemotherapy regimens in ipilimumab-refractory patients with advanced melanoma. Patients and Methods Patients were stratified by programmed death-ligand 1 expression, BRAF status, and best prior cytotoxic T-lymphocyte antigen-4 therapy response, then randomly assigned 2:1 to nivolumab 3 mg/kg intravenously every 2 weeks or investigator's choice chemotherapy (ICC; dacarbazine 1,000 mg/m(2) every 3 weeks or carboplatin area under the curve 6 plus paclitaxel 175 mg/m(2) every 3 weeks). Patients were treated until they experienced progression or unacceptable toxicity, with follow-up of approximately 2 years. Results Two hundred seventy-two patients were randomly assigned to nivolumab (99% treated) and 133 to ICC (77% treated). More nivolumab-treated patients had brain metastases (20% v 14%) and increased lactate dehydrogenase levels (52% v 38%) at baseline; 41% of patients treated with ICC versus 11% of patients treated with nivolumab received anti-programmed death 1 agents after randomly assigned therapy. Median OS was 16 months for nivolumab versus 14 months for ICC (hazard ratio, 0.95; 95.54% CI, 0.73 to 1.24); median progression-free survival was 3.1 months versus 3.7 months, respectively (hazard ratio, 1.0; 95.1% CI, 0.78 to 1.436). Overall response rate (27% v 10%) and median duration of response (32 months v 13 months) were notably higher for nivolumab versus ICC. Fewer grade 3 and 4 treatment-related adverse events were observed in patients on nivolumab (14% v 34%). Conclusion Nivolumab demonstrated higher, more durable responses but no difference in survival compared with ICC. OS should be interpreted with

  4. Open-label, Prospective, Investigator Initiated Study to Assess the Clinical Role of Oral Natural or Synthetic Progesterone During Stimulated IUI Cycles for Unexplained Infertility

    PubMed Central

    Malhotra, Jaideep

    2016-01-01

    Background Unexplained infertility remains as one of the important subtype of infertility that follows expectant management with Intrauterine Insemination (IUI) in most cases. Aim To evaluate the clinical role of progesterone supplement as luteal phase support for women with unexplained infertility following stimulation protocol with Clomiphene Citrate (CC)/Human Menopausal Gonadotropin (HMG). Materials and Methods An investigator initiated study to survey the success rate for first cycle of IUI following stimulation protocol with CC/HMG & luteal phase support with oral natural or synthetic progesterone was conducted. 120 patient records between observation period of Jan to May ’14 were retrieved especially for subjects undergoing IUI procedure for Unexplained infertility. Patients with baseline Serum (Sr). progesterone records who received Oral Natural Micronized Progesterone Sustained Release (Oral NMP SR) (N=45) or Dydrogesterone (n=33) following CC/HMG induction protocol and human Chorionic Gonadotropin(HCG) Inj., were further analysed following Luteal Phase Support(LPS) with oral natural or synthetic progesterone. Results Baseline demographics showed 78 patients with mean age, weight and cycle duration of 29.5 yrs, 57.3 kg & 28.6 days respectively. Progesterone was supplemented as Oral NMP SR 200/300 mg OD or Dydrogesterone 10 mg bid in 22, 23 and 33 patients respectively. In all cases ovulation was triggered with HCG inj., followed by IUI within the next 48 hours while baseline sr. progesterone levels were being assessed. Medicines and Healthcare Products Regulatory Agency (MHRA) UK recommended therapeutic compliance to suggest sr. progesterone levels of ≥14ng/ml were recorded as Mid-luteal levels in all of these patients. This therapeutic compliance was noted in 82.2% & 78.8% of the patients treated with oral NMP SR or Dydrogesterone respectively. Pregnancy was observed amongst 5 and 10 patients treated with oral NMP SR and Dydrogesterone respectively at

  5. Elevated Fibroblast Growth Factor-2 Increases Tumor Necrosis Factor-α Induced Endothelial Cell Death in High Glucose

    PubMed Central

    Clyne, Alisa Morss; Zhu, Han; Edelman, Elazer R.

    2010-01-01

    Glucose and tumor necrosis factor-α (TNFα) concentrations are elevated in diabetes. Both of these factors correlate with diabetic vasculopathy and endothelial cell apoptosis, yet their combined effects have not been measured. We have previously shown that the angiogenic growth factor fibroblast growth factor-2 (FGF-2), which is generally protective against endothelial cell death, is similarly elevated in high glucose conditions. We therefore investigated the effect of TNFα on endothelial cell death under normal and elevated glucose conditions, with a particular focus on FGF-2. Porcine aortic endothelial cells were cultured in 5 and 30 mM glucose and stimulated with TNFα, together with FGF-2 or a neutralizing FGF-2 antibody. Cell death was measured via cell counts or an annexin apoptotic assay, and cell cycle phase was determined by propidium iodide labeling. TNFα-induced endothelial cell death increased for cells in high glucose, and cell death was enhanced with increasing FGF-2 exposure and negated by a neutralizing FGF-2 antibody. Endothelial cells were most susceptible to TNFα-induced cell death when stimulated with FGF-2 18 h prior to TNFα, corresponding to cell entry into S phase of the proliferative cycle. The FGF-2 associated increase in TNFα-induced cell death was negated by blocking cell entry into S phase. Endothelial cell release of FGF-2 in high glucose leads to cell cycle progression, which makes cells more susceptible to TNFα-induced cell death. These data suggest that growth factor outcomes in high glucose depend on secondary mediators such as cytokines and stimulation cell cycle timing. PMID:18446810

  6. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... screening test between 24 and 28 weeks of pregnancy. The test may be done earlier if you ...

  7. Contribution of galactose and fructose to glucose homeostasis.

    PubMed

    Coss-Bu, Jorge A; Sunehag, Agneta L; Haymond, Morey W

    2009-08-01

    To determine the contributions of galactose and fructose to glucose formation, 6 subjects (26 +/- 2 years old; body mass index, 22.4 +/- 0.2 kg/m(2)) (mean +/- SE) were studied during fasting conditions. Three subjects received a primed constant intravenous infusion of [6,6-(2)H(2)]glucose for 3 hours followed by oral bolus ingestion of galactose labeled to 2% with [U-(13)C]galactose (0.72 g/kg); the other 3 subjects received a primed constant intravenous infusion of [6,6-(2)H(2)]glucose followed by either a bolus ingestion of fructose alone (0.72 g/kg) (labeled to 2% with [U-(13)C]fructose) or coingestion of fructose (labeled with [U-(13)C]fructose) (0.72 g/kg) and unlabeled glucose (0.72 g/kg). Four hours after ingestion, subjects received 1 mg of glucagon intravenously to stimulate glycogenolysis. When galactose was ingested alone, the area under the curve (AUC) of [(13)C(6)]glucose and [(13)C(3)]glucose was 7.28 +/- 0.39 and 3.52 +/- 0.05 mmol/L per 4 hours, respectively. When [U-(13)C]fructose was ingested with unlabeled fructose or unlabeled fructose plus glucose, no [(13)C(6)]glucose was detected in plasma. The AUC of [(13)C(3)]glucose after fructose and fructose plus glucose ingestion was 20.21 +/- 2.41 and 6.25 +/- 0.34 mmol/L per 4 hours, respectively. Comparing the AUC for the (13)C(3) vs (13)C(6) enrichments, 67% of oral galactose enters the systemic circulation via a direct route and 33% via an indirect route. In contrast, fructose only enters the systemic circulation via the indirect route. Finally, when ingested alone, fructose and galactose contribute little to glycogen synthesis. After the coingestion of fructose and glucose with the resultant insulin response from the glucose, fructose is a significant contributor to glycogen synthesis.

  8. Wireless glucose monitoring watch enabled by an implantable self-sustaining glucose sensor system

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2012-10-01

    Implantable glucose sensors can measure real time blood glucose as compared to conventional techniques involving drawing blood samples and in-vitro processing. An implantable sensor requires energy source for operation with wire inout provision for power and sending signals. Implants capable of generation-transmission of sensory signals, with minimal or no power requirement, can solve this problem. An implantable nanosensor design has been presented here, which can passively detect glucose concentration in blood stream and transmit data to a wearable receiver-recorder system or a watch. The glucose sensitive component is a redox pair of electrodes that generates voltage proportional to glucose concentration. The bio-electrode, made of carbon nanotubes-enzyme nanocluster, has been investigated because of the large surface area for taping electrical signals. This glucose sensor can charge a capacitor, which can be a part of a LCR resonance/inductive coupling based radio frequency (RF) sensor telemetry. Such a system can measure change in glucose concentration by the induced frequency shift in the LCR circuit. A simultaneous power transmission and signal transmission can be achieved by employing two separate LCR oscillating loops, one for each operation. The corresponding coupling LCR circuits can be housed in the wearable receiving watch unit. The data logged in this glucose monitoring watch can be instrumental in managing blood glucose as trigger for an insulin dispensing payload worn on person or implanted.

  9. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.

    PubMed

    Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo

    2017-10-03

    Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.

  10. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells

    SciTech Connect

    Gerritsen, M.E.; Burke, T.M.; Allen, L.A.

    1988-03-01

    In the present study we determined the uptake and disposition of glucose in serum-deprived rabbit coronary microvessel endothelial (RCME) cells. RCME cells exhibited stereospecific hexose uptake inhibited by cytochalasin B. Pretreatment of the RCME cells with potassium cyanide or 2,4-dinitrophenol inhibited 2-deoxyglucose uptake but not 3-O-methylglucose transport. A major proportion (30-60%) of the 2-deoxyglucose present in the RCME cells was not phosphorylated. These two observations suggested that the rate-limiting step in the uptake of 2-deoxyglucose was not transport but rather the phosphorylation of 2-deoxyglucose to 2-deoxyglucose 6-phosphate. When glucose-deprived cells were incubated 2 hr with (U-14C)glucose the disposition of the label was as follows: glycogen 60%, acid-soluble fraction 30%, and lipid less than 5%. In contrast glucose-fed cells exhibited lower overall glucose incorporation, and a slightly different disposition: glycogen 45%, acid-soluble fraction 50%, and lipid 5%. Glucose-deprived RCME cells also exhibited greater basal levels of 2-deoxyglucose uptake compared to glucose-fed cells. RCME cells incubated in the absence of glucose and serum for 16 hr exhibited dose-dependent insulin stimulation of hexose uptake and subsequent metabolism to macromolecules (i.e., glycogen and the acid-soluble fraction). Significant effects of insulin were observed with concentrations as low as 2 x 10(-10) M, well within the physiological range. In contrast, cells preincubated in serum-free culture medium containing 5.5 mM glucose did not exhibit insulin-enhanced hexose uptake or glucose metabolism (even at doses as high as 10(-7) M). These studies indicate that the effects of insulin on rabbit coronary microvascular endothelial cell glucose uptake and metabolism require both serum and glucose deprivation.

  11. Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat.

    PubMed

    Serres, Sébastien; Bezancon, Eric; Franconi, Jean-Michel; Merle, Michel

    2007-06-01

    The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.

  12. Warning labels formulated as questions positively influence smoking-related risk perception.

    PubMed

    Glock, Sabine; Müller, Barbara C N; Ritter, Simone M

    2013-02-01

    Research on warning labels printed on cigarette packages has shown that fear inducing health warnings might provoke defensive responses. This study investigated whether reformulating statements into questions could avoid defensive reactions. Smokers were presented with either warning labels formulated as questions, textual warning labels, graphic warning labels, or no warning labels. Participants' smoking-related risk perception was higher after exposure to warning labels formulated as questions or no warning labels than after exposure to textual or graphic warning labels. These results indicate that reformulating statements into questions can avoid defensive responses elicited by textual- and graphic warning labels.

  13. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

    PubMed

    Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S

    2010-03-01

    Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.

  14. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  15. A role for glucose in hypothermic hamsters

    NASA Technical Reports Server (NTRS)

    Resch, G. E.; Musacchia, X. J.

    1976-01-01

    Hypothermic hamsters at a rectal temperature of 7 C showed a fivefold increase in survival times from 20 to 100.5 hr when infused with glucose which maintained a blood level at about 45 mg/100 ml. A potential role for osmotic effects of the infusion was tested and eliminated. There was no improvement in survival of 3-O-methylglucose or dextran 40-infused animals. The fact that death eventually occurs even in the glucose-infused animal after about 4 days and that oxygen consumption undergoes a slow decrement in that period suggests that hypothermic survival is not wholly substrate limited. Radioactive tracer showed that localization of the C-14 was greatest in brain tissue and diaphragm, intermediate in heart and kidney, and lowest in skeletal muscle and liver. The significance of the label at sites important to respiration and circulation was presented.

  16. A role for glucose in hypothermic hamsters

    NASA Technical Reports Server (NTRS)

    Resch, G. E.; Musacchia, X. J.

    1976-01-01

    Hypothermic hamsters at a rectal temperature of 7 C showed a fivefold increase in survival times from 20 to 100.5 hr when infused with glucose which maintained a blood level at about 45 mg/100 ml. A potential role for osmotic effects of the infusion was tested and eliminated. There was no improvement in survival of 3-O-methylglucose or dextran 40-infused animals. The fact that death eventually occurs even in the glucose-infused animal after about 4 days and that oxygen consumption undergoes a slow decrement in that period suggests that hypothermic survival is not wholly substrate limited. Radioactive tracer showed that localization of the C-14 was greatest in brain tissue and diaphragm, intermediate in heart and kidney, and lowest in skeletal muscle and liver. The significance of the label at sites important to respiration and circulation was presented.

  17. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.

    PubMed

    Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J

    2015-10-01

    Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  19. Phosphoinositide hydrolysis and insulin release from isolated perifused rat islets. Studies with glucose.

    PubMed

    Zawalich, W S; Zawalich, K C

    1988-09-01

    The ability of glucose to promote the hydrolysis of prelabeled [2-3H]inositol-containing phosphoinositides (PI) was assessed by measuring the efflux of 3H in response to glucose and the accumulation of labeled inositol phosphates. The inclusion of nonradioactive inositol (1 mM) in the perifusion medium dramatically improved our ability to monitor glucose-induced increases in 3H efflux. Efflux studies with this method revealed the following. 1) 3H efflux is significantly greater at 7 than at 2.75 mM glucose, and this parallels a small but significant increase in insulin secretion. 2) D-manno-Heptulose reduces 3H efflux with 7 mM glucose to a level approximating that seen in the presence of 2.75 mM glucose and has no effect on 3H efflux with 2.75 mM glucose. 3) In the presence of 20 mM glucose plus 1 mM inositol, 3H efflux is rapid and biphasic, a response that parallels the timing and amplitude of the biphasic pattern of insulin secretion. Direct measurements of labeled inositol and inositol phosphate levels in islets revealed the following. 4) After 50 min of perifusion with 2.75 or 7 mM glucose, labeled inositol phosphates were significantly greater with 7 mM glucose. 5) In response to 20 mM glucose alone, islet levels of free inositol, inositol monophosphate (IP1), and inositol bisphosphate (IP2) increased. 6) In response to 20 mM glucose plus 1 mM cold inositol, islet levels of free inositol increased, whereas islet levels of IP1, IP2, and inositol trisphosphate (IP3) were reduced compared with values obtained with 20 mM glucose alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    SciTech Connect

    Khan, Faaizah; Pickup, John C.

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  1. Optimal tracers for parallel labeling experiments and (13)C metabolic flux analysis: A new precision and synergy scoring system.

    PubMed

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2016-11-01

    (13)C-Metabolic flux analysis ((13)C-MFA) is a widely used approach in metabolic engineering for quantifying intracellular metabolic fluxes. The precision of fluxes determined by (13)C-MFA depends largely on the choice of isotopic tracers and the specific set of labeling measurements. A recent advance in the field is the use of parallel labeling experiments for improved flux precision and accuracy. However, as of today, no systemic methods exist for identifying optimal tracers for parallel labeling experiments. In this contribution, we have addressed this problem by introducing a new scoring system and evaluating thousands of different isotopic tracer schemes. Based on this extensive analysis we have identified optimal tracers for (13)C-MFA. The best single tracers were doubly (13)C-labeled glucose tracers, including [1,6-(13)C]glucose, [5,6-(13)C]glucose and [1,2-(13)C]glucose, which consistently produced the highest flux precision independent of the metabolic flux map (here, 100 random flux maps were evaluated). Moreover, we demonstrate that pure glucose tracers perform better overall than mixtures of glucose tracers. For parallel labeling experiments the optimal isotopic tracers were [1,6-(13)C]glucose and [1,2-(13)C]glucose. Combined analysis of [1,6-(13)C]glucose and [1,2-(13)C]glucose labeling data improved the flux precision score by nearly 20-fold compared to widely use tracer mixture 80% [1-(13)C]glucose +20% [U-(13)C]glucose.

  2. Monitor blood glucose - slideshow

    MedlinePlus

    ... Series—Monitoring blood glucose: Using a self-test meter To use the sharing features on this page, ... 5 out of 5 Overview Set up the meter according to the specific directions that come with ...

  3. Hyperglycemia (High Blood Glucose)

    MedlinePlus

    ... Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health Insurance Health ... glucose happens when the body has too little insulin or when the body can't use insulin ...

  4. Glucose urine test

    MedlinePlus

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  5. Continuous Glucose Monitoring

    MedlinePlus

    ... to download data from the devices to a computer for tracking and analysis of patterns and trends, ... use CGM systems can download data to a computer to see patterns and trends in their glucose ...

  6. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  7. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  8. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  9. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine.

    PubMed

    Khan, Faaizah; Pickup, John C

    2013-08-30

    Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  10. Glucose metabolism and hyperglycemia.

    PubMed

    Giugliano, Dario; Ceriello, Antonio; Esposito, Katherine

    2008-01-01

    Islet dysfunction and peripheral insulin resistance are both present in type 2 diabetes and are both necessary for the development of hyperglycemia. In both type 1 and type 2 diabetes, large, prospective clinical studies have shown a strong relation between time-averaged mean values of glycemia, measured as glycated hemoglobin (HbA1c), and vascular diabetic complications. These studies are the basis for the American Diabetes Association's current recommended treatment goal that HbA1c should be <7%. The measurement of the HbA1c concentration is considered the gold standard for assessing long-term glycemia; however, it does not reveal any information on the extent or frequency of blood glucose excursions, but provides an overall mean value only. Postprandial hyperglycemia occurs frequently in patients with diabetes receiving active treatment and can occur even when metabolic control is apparently good. Interventional studies indicate that reducing postmeal glucose excursions is as important as controlling fasting plasma glucose in persons with diabetes and impaired glucose tolerance. Evidence exists for a causal relation between postmeal glucose increases and microvascular and macrovascular outcomes; therefore, it is not surprising that treatment with different compounds that have specific effects on postprandial glucose regulation is accompanied by a significant improvement of many pathways supposed to be involved in diabetic complications, including oxidative stress, endothelial dysfunction, inflammation, and nuclear factor-kappaB activation. The goal of therapy should be to achieve glycemic status as near to normal as safely possible in all 3 components of glycemic control: HbA1c, fasting glucose, and postmeal glucose peak.

  11. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in “smart materials” for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases. PMID:26257458

  12. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    PubMed

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  13. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  14. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    SciTech Connect

    Mojsilovic, L.P.; Standaert, M.L.; Rosic, N.K.; Pollet, R.J.

    1986-05-01

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K ..beta..-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect ..beta..-subunits in the same dose dependent manner (0-5 ..mu..M). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the /sup 32/P-labeled ..beta..-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport.

  15. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells

    PubMed Central

    Rogers, G. J.; Gribble, F. M.; Reimann, F.

    2015-01-01

    Aims/hypothesis Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with anti-apoptotic effects on the pancreatic beta cell. The aim of this study was to generate transgenic mice with fluorescently labelled GIP-secreting K cells and to use these to investigate pathways by which K cells detect nutrients. Methods Transgenic mice were generated in which the GIP promoter drives the expression of the yellow fluorescent protein Venus. Fluorescent cells were purified by flow cytometry and analysed by quantitative RT-PCR. GIP secretion was assayed in primary cultures of small intestine. Results Expression of Venus in transgenic mice was restricted to K cells, as assessed by immunofluorescence and measurements of the Gip mRNA and GIP protein contents of purified cells. K cells expressed high levels of mRNA for Kir6.2 (also known as Kcnj11), Sur1 (also known as Abcc8), 1 Sglt1 (also known as Slc5a1), and of the G-protein-coupled lipid receptors Gpr40 (also known as Ffar1), Gpr119 and Gpr120. In primary cultures, GIP release was stimulated by glucose, glutamine and linoleic acid, and potentiated by forskolin plus 3-isobutyl-1-methylxanthine (IBMX), but was unaffected by the artificial sweetener sucralose. Secretion was half-maximal at 0.6 mmol/l glucose and partially mimicked by α-methylglucopyranoside, suggesting the involvement of SGLT1. Tolbutamide triggered secretion under basal conditions, whereas diazoxide suppressed responses in forskolin/IBMX. Conclusions/interpretation These transgenic mouse and primary culture techniques provide novel opportunities to interrogate the mechanisms of GIP secretion. Glucose-triggered GIP secretion was SGLT1-dependent and modulated by KATP channel activity but not determined by sweet taste receptors. Synergistic stimulation by elevated cAMP and glucose suggests that targeting appropriate G-protein-coupled receptors may provide opportunities to modulate GIP release in vivo. PMID:19082577

  16. Labeling of Patient Specimens

    DTIC Science & Technology

    2011-01-26

    printers in each clinic to print labels .JDI Capt Cutter Research compatible printer, Cost, Time Frame Develop standard training for all clinics...Standardize label content, automate with inkless printers once process is proven c . Place visual reminders for providers and support staff 2. Event

  17. Labeling and Delinquency.

    ERIC Educational Resources Information Center

    Adams, Mike S.; Robertson, Craig T.; Gray-Ray, Phyllis; Ray, Melvin C.

    2003-01-01

    Index comprised of six contrasting descriptive adjectives was used to measure incarcerated youths' perceived negative labeling from the perspective of parents, teachers, and peers. Results provided partial support for hypothesis that juveniles who choose a greater number of negative labels will report more frequent delinquent involvement. Labeling…

  18. Labeling and Delinquency.

    ERIC Educational Resources Information Center

    Adams, Mike S.; Robertson, Craig T.; Gray-Ray, Phyllis; Ray, Melvin C.

    2003-01-01

    Index comprised of six contrasting descriptive adjectives was used to measure incarcerated youths' perceived negative labeling from the perspective of parents, teachers, and peers. Results provided partial support for hypothesis that juveniles who choose a greater number of negative labels will report more frequent delinquent involvement. Labeling…

  19. [Glucose metabolism in the basal ganglia].

    PubMed

    Yamada, Katsuya

    2009-04-01

    GABAergic neurons in the substantia nigra pars reticulata (SNr) -a major output nucleus of the basal ganglia- are involved in sensing severe hypoglycemic and hypoxic conditions in the brain via the ATP-sensitive potassium (KATP) channels that are abundantly expressed in these neurons. However, these neurons are also sensitive to mild changes in extracellular glucose concentrations through KATP channel-independent, yet unknown mechanisms. Lenard et al. reported that globus pallidus (GP) -another output nucleus of the basal ganglia- also senses glucose concentrations in the brain. It is unclear why these two major output nuclei sense glucose concentrations. It has been reported that some SNr and GP neurons respond to feeding-related, jaw or hand movement. Interestingly, Nishino demonstrated that SNr neurons responded oppositely, i.e., increased or decreased in their firings, to the same sweet food depending on blood glucose levels. Thus, glucose levels might influence feeding-related information processing in the basal ganglia through SNr and GP. Other issues reviewed are regarding associations between glucose metabolism and motor diseases in the basal ganglia. These include mutation in glucose transporter (GLUT) 1 causing paroxysmal kinesigenic choreoarthetosis, abnormal glycolysis in Huntington's disease, and a study showing increased glucose metabolism in SNr and GP in Parkinson's disease using high-resolution research positron emission tomography (HRRT). Although glucose is the sole energy source for the brain, its utilization at the single-cell level remains elusive. Modern methods for investigating intercellular metabolic communication might help understanding the selective vulnerability seen in the basal ganglia of patients suffering from such neurodegenerative disorders in near future.

  20. Continuous Glucose Monitoring: Impact on Hypoglycemia.

    PubMed

    van Beers, Cornelis A J; DeVries, J Hans

    2016-11-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia.

  1. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: novel mechanism for selective activation of GLUT1 glucose transporters.

    PubMed Central

    Shimizu, Y; Satoh, S; Yano, H; Minokoshi, Y; Cushman, S W; Shimazu, T

    1998-01-01

    Glucose transport into rat brown adipocytes has been shown to be stimulated directly by the sympathetic neurotransmitter, noradrenaline, without a significant increase in the protein content of either GLUT1 or GLUT4 glucose transporter in the plasma membrane [Shimizu, Kielar, Minokoshi and Shimazu (1996) Biochem. J. 314, 485-490]. In the present study, we labelled the exofacial glucose-binding sites of GLUT1 and GLUT4 with a membrane-impermeant photoaffinity reagent, 2-N-[4-(1-azitrifluoroethyl)benzoyl]-[2-3H]1,3-bis- (D-mannos-4-yloxy)-2-propylamine (ATB-[3H]BMPA), to determine which isoform is responsible for the noradrenaline-induced increase in glucose transport into intact brown adipocytes in culture. Insulin stimulated the rate of hexose transport by increasing ATB-[3H]BMPA-labelled cell-surface GLUT4. In contrast, the noradrenaline-induced increase in glucose transport was not accompanied by an increased ATB-[3H]BMPA labelling of GLUT4, nor with an increased amount of GLUT4 in the plasma membrane fraction as assessed by Western blotting, indicating that noradrenaline does not promote the translocation of GLUT4. However, noradrenaline induced an increase in photoaffinity labelling of cell-surface GLUT1 without an apparent increase in the immunoreactive GLUT1 protein in the plasma membrane. This is suggestive of an increased affinity of GLUT1 for the ligand. In fact, the Ki value of non-radioactive ATB-BMPA for 2-deoxy-D-glucose uptake was significantly decreased after treatment of the cells with noradrenaline. The increased photoaffinity labelling of GLUT1 and increased glucose transport caused by noradrenaline were inhibited by a cAMP antagonist, cAMP-S Rp-isomer. These results demonstrate that noradrenaline stimulates glucose transport in brown adipocytes by enhancing the functional activity of GLUT1 through a cAMP-dependent mechanism. PMID:9461536

  2. The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum

    PubMed Central

    Knudsen, Sine H.; Karstoft, Kristian; Pedersen, Bente K.; van Hall, Gerrit; Solomon, Thomas P. J.

    2014-01-01

    Abstract We investigated glucose tolerance and postprandial glucose fluxes immediately after a single bout of aerobic exercise in subjects representing the entire glucose tolerance continuum. Twenty‐four men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D; age: 56 ± 1 years; body mass index: 27.8 ± 0.7 kg/m2, P > 0.05) underwent a 180‐min oral glucose tolerance test (OGTT) combined with constant intravenous infusion of [6,6‐2H2]glucose and ingestion of [U‐13C]glucose, following 1 h of exercise (50% of peak aerobic power) or rest. In both trials, plasma glucose concentrations and kinetics, insulin, C‐peptide, and glucagon were measured. Rates (mg kg−1 min−1) of glucose appearance from endogenous (RaEndo) and exogenous (oral glucose; RaOGTT) sources, and glucose disappearance (Rd) were determined. We found that exercise increased RaEndo, RaOGTT, and Rd (all P < 0.0001) in all groups with a tendency for a greater (~20%) peak RaOGTT value in NGT subjects when compared to IGT and T2D subjects. Accordingly, following exercise, the plasma glucose concentration during the OGTT was increased in NGT subjects (P < 0.05), while unchanged in subjects with IGT and T2D. In conclusion, while a single bout of moderate‐intensity exercise increased the postprandial glucose response in NGT subjects, glucose tolerance following exercise was preserved in the two hyperglycemic groups. Thus, postprandial plasma glucose responses immediately following exercise are dependent on the underlying degree of glycemic control. PMID:25168869

  3. Government perspective: food labeling.

    PubMed

    Philipson, Tomas

    2005-07-01

    The Food and Drug Administration acknowledges the severity of the obesity epidemic. The Food and Drug Administration recognizes the importance of food labeling as a vehicle for dietary messages and, thus, enforces stringent guidelines to maintain the integrity of the food label. As food labels await another upgrade to make them more effective and easier to understand, the Food and Drug Administration considers what information will be most useful for consumers to make healthy choices. The causal relationship between food labels and subsequent diet choice is not well understood; more research in this area is needed. The Commissioner of the Food and Drug Administration has recently appointed an Obesity Working Group to develop proposals on pertinent topics of obesity, including the role of food labeling as a dietary guide.

  4. Brain Glucose Sensors Play a Significant Role in the Regulation of Pancreatic Glucose-Stimulated Insulin Secretion

    PubMed Central

    Osundiji, Mayowa A.; Lam, Daniel D.; Shaw, Jill; Yueh, Chen-Yu; Markkula, S. Pauliina; Hurst, Paul; Colliva, Carolina; Roda, Aldo; Heisler, Lora K.; Evans, Mark L.

    2012-01-01

    As patients decline from health to type 2 diabetes, glucose-stimulated insulin secretion (GSIS) typically becomes impaired. Although GSIS is driven predominantly by direct sensing of a rise in blood glucose by pancreatic β-cells, there is growing evidence that hypothalamic neurons control other aspects of peripheral glucose metabolism. Here we investigated the role of the brain in the modulation of GSIS. To examine the effects of increasing or decreasing hypothalamic glucose sensing on glucose tolerance and insulin secretion, glucose or inhibitors of glucokinase, respectively, were infused into the third ventricle during intravenous glucose tolerance tests (IVGTTs). Glucose-infused rats displayed improved glucose handling, particularly within the first few minutes of the IVGTT, with a significantly lower area under the excursion curve within the first 10 min (AUC0-10). This was explained by increased insulin secretion. In contrast, infusion of the glucokinase inhibitors glucosamine or mannoheptulose worsened glucose tolerance and decreased GSIS in the first few minutes of IVGTT. Our data suggest a role for brain glucose sensors in the regulation of GSIS, particularly during the early phase. We propose that pharmacological agents targeting hypothalamic glucose-sensing pathways may represent novel therapeutic strategies for enhancing early phase insulin secretion in type 2 diabetes. PMID:22210318

  5. Glucose-dependent and Glucose-sensitizing Insulinotropic Effect of Nateglinide: Comparison to Sulfonylureas and Repaglinide

    PubMed Central

    Wang, Shuya; Dunning, Beth E.

    2001-01-01

    Nateglinide, a novel D-phenylalanine derivative, stimulates insulin release via closure of KATP channels in pancreatic β-cell, a primary mechanism of action it shares with sulfonylureas (SUs) and repaglinide. This study investigated (1) the influence of ambient glucose levels on the insulinotropic effects of nateglinide, glyburide and repaglinide, and (2) the influence of the antidiabetic agents on glucose-stimulated insulin secretion (GSIS) in vitro from isolated rat islets. The EC50 of nateglinide to stimulate insulin secretion was 14 μM in the presence of 3mM glucose and was reduced by 6-fold in 8mM glucose and by 16-fold in 16mM glucose, indicating a glucose-dependent insulinotropic effect. The actions of glyburide and repaglinide failed to demonstrate such a glucose concentration-dependent sensitization. When tested at fixed and equipotent concentrations (~2x EC50 in the presence of 8mM glucose) nateglinide and repaglinide shifted the EC50s for GSIS to the left by 1.7mM suggesting an enhancement of islet glucose sensitivity, while glimepiride and glyburide caused, respectively, no change and a right shift of the EC50. These data demonstrate that despite a common basic mechanism of action, the insulinotropic effects of different agents can be influenced differentially by ambient glucose and can differentially influence the islet responsiveness to glucose. Further, the present findings suggest that nateglinide may exert a more physiologic effect on insulin secretion than comparator agents and thereby have less propensity to elicit hypoglycemia in vivo. PMID:12369728

  6. [Artificial pancreas for automated glucose control].

    PubMed

    Blauw, Helga; van Bon, Arianne C; de Vries, J H Hans

    2013-01-01

    Strict glucose control is important for patients with diabetes mellitus in order to prevent complications. However, many patients find it difficult to achieve the recommended HbA1c level. The possibility of hypoglycaemia plays an important role in this. The artificial pancreas automates glucose control, improving glucose levels without increasing hypoglycaemic events. The required insulin dose is calculated and administered on the basis of continuous glucose measurements, taking over a large part of the treatment from the patient. Several research groups are working on making this technique suitable for home use. It is expected that the artificial pancreas will become available in the near future. However, effectiveness and safety will have to be investigated in long-term studies. A large number of insulin-dependent patients with diabetes could be eligible for this treatment.

  7. Mining Multi-label Data

    NASA Astrophysics Data System (ADS)

    Tsoumakas, Grigorios; Katakis, Ioannis; Vlahavas, Ioannis

    A large body of research in supervised learning deals with the analysis of single-label data, where training examples are associated with a single label λ from a set of disjoint labels L. However, training examples in several application domains are often associated with a set of labels Y ⊆ L. Such data are called multi-label.

  8. Label Review Training: Module 1: Label Basics, Page 29

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is a quiz on Module 1.

  9. Label Review Training: Module 1: Label Basics, Page 25

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review: clarity, accuracy, consistency with EPA policy, and enforceability.

  10. Effects of oral glucose on systemic glucose metabolism during hyperinsulinemic hypoglycemia in normal man.

    PubMed

    Poulsen, P L; Orskov, L; Grøfte, T; Møller, J; Holst, J J; Schmitz, O; Møller, N

    2000-12-01

    The widespread use of oral glucose in the treatment of hypoglycemia is mainly empirically based, and little is known about the time lag and subsequent magnitude of effects following its administration. To define the systemic impact and time course of effects following oral glucose during hypoglycemia, we investigated 7 healthy young men twice. On both occasions, a 6-hour hyperinsulinemic (1.5 mU/kg/min)-hypoglycemic clamp was performed to ensure similar plasma glucose profiles during a stepwise decrease toward a nadir less than 50 mg/100 mL after 3 hours. On the first occasion, subjects ingested 40 g glucose and 4 g 3-ortho-methylglucose ([3-OMG] to trace glucose absorption) dissolved in 400 mL tap water after 3.5 hours. The second examination was identical except for the omission of 40 g oral glucose, and glucose levels were clamped at hypoglycemic concentrations similar to those recorded on the first examination. Plasma glucose curves were superimposable, and all participants reached a nadir less than 50 mg/100 mL. Similar increases in growth hormone (GH) and glucagon were observed in both situations. The glucose infusion rates (GIRs) were lower after oral glucose, with the difference starting after 5 to 10 minutes, being statistically significant after 20 minutes, and reaching a maximum of 8.5 +/- 1.6 mg/kg/min after 40 minutes. Circulating 3-OMG increased after 20 minutes. In both situations, infusion of insulin resulted in insulin levels of approximately 150 microU/mL and a suppression of C-peptide levels from 2.0 to 1.1 nmol/L (P < .01). After glucose ingestion, both serum C-peptide and glucagon-like peptide-1 (GLP-1) increased (C-peptide from 1.1 +/- 0.05 to 1.4 +/- 0.05 nmol/L and GLP-1 from 3.2 +/- 0.8 to 18.1 +/- 3.3 pmol/L), in contrast to the situation without oral glucose (P < .05). Isotopically determined glucose turnover was similar. In conclusion, our data suggest that oral glucose affects systemic glucose metabolism rapidly after 5 to 10 minutes

  11. Specificity of noninvasive blood glucose monitoring with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-07-01

    Management of diabetic disease requires frequent monitoring of blood glucose concentration. Development of a noninvasive technique capable of reliable and sensitive monitoring of blood glucose concentration would considerably improve quality of life of diabetic patients and reduce mortality associated with this disease. Recently, we proposed to use Optical Coherence Tomography (OCT) technique for noninvasive glucose monitoring. In this paper, we tested in animals several aspects of specificity of noninvasive blood glucose monitoring with the OCT technique. Influence of temperature and tissue heterogeneity on the OCT signal profile is experimentally studied in this paper. We also theoretically investigated the changes in tissue scattering induced by variation of concentration of glucose and other osmolytes. Obtained results suggest that although several physical and chemical agents could potentially interfere with blood glucose concentration measurements using the OCT technique, their effect is smaller compared to that of glucose under normal physiological conditions.

  12. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition.

    PubMed

    Hidalgo, J; Flores, C; Hidalgo, M A; Perez, M; Yañez, A; Quiñones, L; Caceres, D D; Burgos, R A

    2014-06-01

    The impetus of our study was to investigate the effects of a nutritional supplement Delphinol®, an extract of maqui berries (Aristotelia chilensis) standardised to ≥25% delphinidins and ≥35% total anthocyanins, on postprandial blood glucose and insulin levels and identify the physiologic mechanism involved. Postprandial blood glucose and insulin were investigated in double-blind, placebo-controlled, cross-over fashion in ten volunteers with moderate glucose intolerance. Longer term effects on blood sugar levels were investigated in streptozotocin-diabetic rats over a four months period. Effects of maqui berry delphinidins on sodium-glucose symport were examined in rodent jejenum of the small intestine. Delphinol® intake prior to rice consumption statistical significantly lowered post prandial blood glucose and insulin as compared to placebo. We identified an inhibition of Na+-dependant glucose transport by delphinidin, the principal polyphenol to which Delphinol® is standardised. In a diabetic rat model the daily oral application of Delphinol® over a period of four months significantly lowered fasting blood glucose levels and reached values indistinguishable from healthy non-diabetic rats. Our results suggest a potential use of Delphinol® for naturally controlling post-prandial blood glucose owed to inhibition of sodium glucose co-transporter in small intestine.

  13. Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    PubMed Central

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Antoniewicz, Maciek R.; Palsson, Bernhard O.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth. PMID:26964043

  14. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus.

    PubMed

    van den Top, Marco; Zhao, Fei-Yue; Pattaranit, Ratchada; Michael, Natalie J; Munder, Astrid; Pryor, Jack T; Renaud, Leo P; Spanswick, David

    2017-08-23

    Obesity and aging are risk factors for diabetes. Here we investigated effects of aging, obesity and fasting on central and peripheral glucose tolerance and on glucose-sensing neuronal function in the arcuate nucleus of rats, with a view to providing insight into central mechanisms regulating glucose homeostasis and how they change or are subject to dysfunction with aging and obesity. We show that following a glucose load, central glucose tolerance at the level of the cerebrospinal fluid (CSF) and plasma is significantly reduced in rats maintained on high fat diet (HFD). With aging, up to 2 years, central glucose tolerance was impaired in an age-dependent manner whilst peripheral glucose tolerance remained unaffected. Aging-induced peripheral glucose intolerance was improved by a 24 hour fast, whilst central glucose tolerance was not corrected. Pre-wean, immature animals have elevated basal plasma glucose levels and a delayed increase in central glucose levels following peripheral glucose injection compared to mature animals. Electrophysiological recording techniques revealed an energy-status-dependent role for glucose excited, inhibited and adapting neurons along with glucose-induced changes in synaptic transmission. We conclude that aging affects central whilst HFD profoundly affects central and peripheral glucose tolerance, and glucose-sensing neurons adapt function in an energy-status-dependent manner. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Highly sensitive detection of glucose concentration with opto-fluidics ring resonator

    NASA Astrophysics Data System (ADS)

    Luo, Yunhan; Khaing Oo, Maung Kyaw; Ge, Jia; Chen, Zhe; Fan, Xudong

    2012-06-01

    Noninvasive detection of glucose has been heavily researched in their roles of offering cost-effective, painless, and bloodless monitoring of glucose concentration. In this work, we describe a novel, label-free, and sensitive approach for detecting the glucose concentration in human interstitial fluid samples using the opto-fluidic ring resonator (OFRR). The OFRR incorporates microfluidics and optical ring resonator sensing technology to achieve rapid label-free detection in a small and low-cost platform. In this study, bulk refractive index measurements are presented. Results show that the OFRR is able to detect glucose at medically relevant concentrations in interstitial fluid ranging from 0 to 25 mM, with a detection limit of 0.32 mM, which is lower than clinical requirement by one order of magnitude. Our work is believed to lead to a device that can be used to frequently monitor glucose concentration in a low-cost and painless manner.

  16. Putative Delays in Interstitial Fluid (ISF) Glucose Kinetics Can Be Attributed to the Glucose Sensing Systems Used to Measure Them Rather Than the Delay in ISF Glucose Itself

    PubMed Central

    Voskanyan, Gayane; Barry Keenan, D.; Mastrototaro, John J.; Steil, Garry M.

    2007-01-01

    Background Since the advent of subcutaneous glucose sensors, there has been intense focus on characterizing the delay in the interstitial fluid (ISF) glucose response and the effect of insulin to alter the plasma-to-ISF glucose gradient. The Medtronic MiniMed continuous glucose monitoring system (CGMS) has often been used for this purpose; however, many of the studies have used experimental conditions that fall outside its intended use, for example, studies that have assessed the delay during rapid glucose excursions brought about by intravenous infusion of glucose or insulin. Under these conditions, it is possible that the rate of glucose change may exceed that allowed by CGMS filtering routines. If so, the estimated delay may be because of the filter rather than the ISF. Also, sensor characteristics, such as nonspecific offset current or stability, may have been inadvertently attributed to changes in the plasma-to-ISF gradient. The potential for these issues to have confounded the understanding of ISF glucose delay and gradient is investigated. Methods An in vitro preparation in which no delay or gradient exists between sensor and measurement solution was used to recreate a rapidly changing glucose profile from a previously published in vivo study. The CGMS system (N = 6 sensors) was then used to estimate any artifactual delay and gradient introduced by the system per se. Results One-point calibration resulted in an apparent change in gradient as glucose was lowered from ∼100 to 50 mg/dl. After a two-point calibration, sensor glucose followed the glucose profile as it was decreased slowly from ∼100 to ∼60 mg/dl; however, when the glucose level was subsequently increased rapidly to ∼150 mg/dl, CGMS filtering routines limited the rate of change of sensor glucose and introduced a delay similar to that previously attributed to ISF glucose equilibration delay. Conclusions Studies that have previously used the Medtronic MiniMed CGMS system to assess changes in

  17. Gallium arsenide based surface plasmon resonance for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  18. Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo

    PubMed Central

    Nyman, Lara R.; Ford, Eric

    2010-01-01

    Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas. PMID:20071562

  19. Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study.

    PubMed

    Idbaih, Ahmed; Burlet, Arlette; Adle-Biassette, Homa; Boisgard, Raphaël; Coulon, Christine; Paris, Sophie; Marie, Yannick; Donadieu, Jean; Hoang-Xuan, Khê; Ribeiro, Maria-Joao

    2007-07-16

    The Brattleboro rat is an animal model of genetically induced central diabetes insipidus. These rats show cognitive and behavioral disorders, but no neurodegenerative disease has been observed. We studied brain glucose uptake, a marker of neuronal activity, in 6 Brattleboro rats, in comparison with 6 matched Long-Evans (LE) control rats. A group of 3 Brattleboro rats and 3 Long-Evans rats was studied in vivo and another group of animals was studied ex vivo. In vivo studies were performed using fluorodeoxyglucose labeled with fluorine 18 ((18)F-FDG) and a dedicated small-animal PET device. At 30 min and 60 min p.i., (18)F-FDG uptake was significantly higher in the frontal cortex, striatum, thalamus and cerebellum of Brattleboro rats than in LE rats when measured by PET in vivo (p<0.05), but only a trend towards higher values was found ex vivo. Our results show for the first time that brain glucose metabolism is modified in Brattleboro rats. This altered brain glucose metabolism in Brattleboro rats may be related to the observed cognitive and behavioral disorders. Functional analyses of brain metabolism are promising to investigate cognitive behavioral disturbances observed in Brattleboro rats and their link to diabetes insipidus.

  20. Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo.

    PubMed

    Nyman, Lara R; Ford, Eric; Powers, Alvin C; Piston, David W

    2010-04-01

    Pancreatic islets are highly vascularized and arranged so that regions containing beta-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic ( approximately 300 mg/dl or 16.8 mM) and hypoglycemic ( approximately 50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the beta-cells or yellow fluorescent protein in the alpha-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of beta-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas.

  1. Soil Fumigant Labels - Methyl Bromide

    EPA Pesticide Factsheets

    Search soil fumigant pesticide labels by EPA registration number, product name, or company, and follow the link to The Pesticide Product Label System (PPLS) for details. Updated labels include new safety requirements for buffer zones and related measures.

  2. Off-Label Drug Use

    MedlinePlus

    ... their drugs for off-label uses. Off-label marketing is very different from off-label use. Why ... Employment Become a Supplier Report Fraud or Abuse Global Health ACS CAN Sign Up for Email Policies ...

  3. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1983-07-15

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  4. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1985-11-12

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.

  5. Capacitive label reader

    DOEpatents

    Arlowe, H. Duane

    1985-01-01

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  6. A glucose sensor protein for continuous glucose monitoring.

    PubMed

    Veetil, Jithesh V; Jin, Sha; Ye, Kaiming

    2010-12-15

    In vivo continuous glucose monitoring has posed a significant challenge to glucose sensor development due to the lack of reliable techniques that are non- or at least minimally-invasive. In this proof-of-concept study, we demonstrated the development of a new glucose sensor protein, AcGFP1-GBPcys-mCherry, and an optical sensor assembly, capable of generating quantifiable FRET (fluorescence resonance energy transfer) signals for glucose monitoring. Our experimental data showed that the engineered glucose sensor protein can generate measurable FRET signals in response to glucose concentrations varying from 25 to 800 μM. The sensor developed based on this protein had a shelf-life of up to 3 weeks. The sensor response was devoid of interference from compounds like galactose, fructose, lactose, mannose, and mannitol when tested at physiologically significant concentrations of these compounds. This new glucose sensor protein can potentially be used to develop implantable glucose sensors for continuous glucose monitoring.

  7. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    PubMed

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases.

  8. Interaction of free arginine and guanidine with glucose under thermal processing conditions and formation of Amadori-derived imidazolones.

    PubMed

    Zhu, Yuchen; Yaylayan, Varoujan A

    2017-04-01

    To investigate the reactivity of free guanidine and arginine in the formation of imidazolinone derivatives, model systems of guanidine or arginine/glucose or (13)[C-6]-glucose were heated in aqueous solutions at110°C for 3h and the residues were analyzed by ESI/qTOF/MS using MS/MS and isotope labeling techniques. The analysis of the data indicated that guanidine and arginine formed both covalent and non-covalent interaction products. Covalent interactions included Amadori rearrangement at the α-nitrogen with glucose and imidazolinone formation with 3-deoxy-glucosone at the guanidine side-chain. Non-covalent interactions, such as self-interaction and interaction with free guanidine or arginine and glucose, were also observed. Guanidine underwent three sequential Amadori rearrangements and the free and mono-glycated guanidine also formed imidazolinone derivatives and their corresponding dehydration products and at the same time exhibiting various non-covalent interactions. On the other hand, arginine formed free Amadori product, free imidazolinone and Amadori-derived imidazolinone derivative in addition to methylglyoxal-derived hydroimidazolones.

  9. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation

    PubMed Central

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  10. Gliotransmission and brain glucose sensing: critical role of endozepines.

    PubMed

    Lanfray, Damien; Arthaud, Sébastien; Ouellet, Johanne; Compère, Vincent; Do Rego, Jean-Luc; Leprince, Jérôme; Lefranc, Benjamin; Castel, Hélène; Bouchard, Cynthia; Monge-Roffarello, Boris; Richard, Denis; Pelletier, Georges; Vaudry, Hubert; Tonon, Marie-Christine; Morin, Fabrice

    2013-03-01

    Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.

  11. "I rarely read the label": Factors that Influence Thai Consumer Responses to Nutrition Labels.

    PubMed

    Rimpeekool, Wimalin; Banwell, Cathy; Seubsman, Sam-ang; Kirk, Martyn; Yiengprugsawan, Vasoontara; Sleigh, Adrian

    2015-05-14

    This qualitative study employed the Knowledge-Attitude-Behaviour (KAB) model and Health Belief Model (HBM) to investigate factors influencing Thai consumer decision making about use of nutrition labels. Labels include both Nutrition Information Panels (1998-) and Guideline Daily Amounts labels (2011-). In-depth interviews were conducted with 34 participants representing two socio-demographic extremes in Thailand--"urban Bangkok" (university educated consumers) and "provincial Ranong" (non-university educated consumers). An integrated KAB-HBM model was used to devise in-depth interviews for a qualitative study using 20 open-ended questions and samples of food package labels. Additional questions arose from the interviews and they lasted 30-45 minutes and were video recorded. The analysis identified recurring themes using Atlas.ti software. Most participants (n=25) were aware of nutrition labels but a much smaller number (n=10) used and derived any benefit from them. Nutrition label users were classified into 4 groups: A) competent user; B) confused user; C) aware non-user; D) unaware non-user. Better educated participants were better at understanding nutrition labels but not more likely to use labels. Belief that nutrition influences health increased likelihood of using nutrition labels to make decisions about food. Being well-educated and motivated by health concerns increased likelihood of attention to nutrition labels. Results are discussed with a view to increasing the use of nutrition labels by Thai consumers. Our findings, drawing on a combination of the KAB and HBM models, can contribute to strategies motivating consumers to use nutrition labels and can provide useful insights for developing promotional strategies.

  12. Role of Adrenergic Receptors in Glucose, Fructose and Galactose-Induced Increases in Intestinal Glucose Uptake in Dogs.

    PubMed

    Salman, T M; Alada, A R A; Oyebola, D D O

    2014-12-29

    The study investigated the role of adrenergic receptors in glucose, fructose-, and galactose- induced increases in intestinal glucose uptake. Experiments were carried out on fasted male anaesthetized Nigerian local dogs divided into seven groups (with five dogs per group). Group I dogs were administered normal saline and served as control. Dogs in groups II, III and IV were intravenously infused with glucose (1.1 mg/kg/min), fructose (1.1 mg/kg/min) and galactose (1.1 mg/kg/min) respectively. Another three groups, V, VI and VII were pretreated with prazosin (0.2mg/kg), propranolol (0.5mg/kg) or a combination of prazosin (0.2mg/kg) and propranolol (0.5mg/kg) followed by glucose infusion, frutose infusion or galactose infusion respectively. Through a midline laparatomy, the upper jejunum was cannulated for blood flow measurement and blood samples were obtained for measurement of glucose content of the arterial blood and venous blood from the upper jejunal segment. Glucose uptake was calculated as the product of jejunal blood flow and the difference between arterial and venous glucose levels (A-V glucose). The results showed that pretreatment of the animal with prazosin had no effect on glucose and galactose induced increases in glucose uptake. However, pretreatment with propranolol completely abolished glucose, fructose and galactose-induced increases in intestinal glucose uptake. Prazosin also significantly reduced galactose-induced increase in intestinal glucose uptake. The results suggest that the increases in intestinal glucose uptake induced by glucose and fructose are mediated mostly by beta adrenergic receptors while that of galactose is mediated by both alpha and beta adrenergic receptors.

  13. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  14. Continuous Glucose Monitoring

    PubMed Central

    Fritschi, Cynthia; Quinn, Laurie; Penckofer, Sue; Surdyk, Patricia M.

    2010-01-01

    Purpose The purpose of this descriptive study was to document the experience of wearing a continuous glucose monitoring (CGM) device in women with type 2 diabetes (T2DM). The availability of CGM has provided patients and clinicians with the opportunity to describe the immediate effects of diet, exercise, and medications on blood glucose levels; however, there are few data examining patients’ experiences and acceptability of using CGM. Methods Thirty-five women with T2DM wore a CGM for 3 days. Semistructured interviews were conducted to capture the self-described experience of wearing a CGM. Three open-ended questions were used to guide the participants’ self-reflection. Interviews were transcribed and analyzed. Results The women verbalized both positive and negative aspects of needing to check their blood glucose more frequently and wearing the monitor. After viewing the results, most women were surprised by the magnitude and frequency of blood glucose excursions. They immediately examined their behaviors during the time they wore the CGM. Independent problem-solving skills became apparent as they attempted to identify reasons for hyperglycemia by retracing food intake, physical activity, and stress experiences during the period of CGM. Most important, the majority of women stated they were interested in changing their diabetes-related self-care behaviors, especially eating and exercise behaviors, after reviewing their CGM results. Conclusions CGM is generally acceptable to women with T2DM and offers patients and their health care practitioners a possible alternative to routine glucose monitoring for assessing the effects of real-life events on blood glucose levels. PMID:20016057

  15. The science on front-of-package food labels.

    PubMed

    Hawley, Kristy L; Roberto, Christina A; Bragg, Marie A; Liu, Peggy J; Schwartz, Marlene B; Brownell, Kelly D

    2013-03-01

    The U.S. Food and Drug Administration and Institute of Medicine are currently investigating front-of-package (FOP) food labelling systems to provide science-based guidance to the food industry. The present paper reviews the literature on FOP labelling and supermarket shelf-labelling systems published or under review by February 2011 to inform current investigations and identify areas of future research. A structured search was undertaken of research studies on consumer use, understanding of, preference for, perception of and behaviours relating to FOP/shelf labelling published between January 2004 and February 2011. Twenty-eight studies from a structured search met inclusion criteria. Reviewed studies examined consumer preferences, understanding and use of different labelling systems as well as label impact on purchasing patterns and industry product reformulation. The findings indicate that the Multiple Traffic Light system has most consistently helped consumers identify healthier products; however, additional research on different labelling systems' abilities to influence consumer behaviour is needed.

  16. Redundancy in Glucose Sensing

    PubMed Central

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C.; McAuley, Sybil A.; Krishnamurthy, Balasubramanian; Jenkins, Alicia J.; Colman, Peter G.; Ward, Glenn M.; MacIsaac, Richard J.; Shah, Rajiv; O’Neal, David N.

    2015-01-01

    Background: Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Methods: Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Results: Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Conclusions: Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with ‘best-in-class’ of non-redundant sensors. PMID:26499476

  17. New insights into the organisation and intracellular localisation of the two subunits of glucose-6-phosphatase.

    PubMed

    Soty, Maud; Chilloux, Julien; Casteras, Sylvie; Grichine, Alexeï; Mithieux, Gilles; Gautier-Stein, Amandine

    2012-03-01

    Glucose-6 phosphatase (G6Pase), a key enzyme of glucose homeostasis, catalyses the hydrolysis of glucose-6 phosphate (G6P) to glucose and inorganic phosphate. A deficiency in G6Pase activity causes type 1 glycogen storage disease (GSD-1), mainly characterised by hypoglycaemia. Genetic analyses of the two forms of this rare disease have shown that the G6Pase system consists of two proteins, a catalytic subunit (G6PC) responsible for GSD-1a, and a G6P translocase (G6PT), responsible for GSD-1b. However, since their identification, few investigations concerning their structural relationship have been made. In this study, we investigated the localisation and membrane organisation of the G6Pase complex. To this aim, we developed chimera proteins by adding a fluorescent protein to the C-terminal ends of both subunits. The G6PC and G6PT fluorescent chimeras were both addressed to perinuclear membranes as previously suggested, but also to vesicles throughout the cytoplasm. We demonstrated that both proteins strongly colocalised in perinuclear membranes. Then, we studied G6PT organisation in the membrane. We highlighted FRET between the labelled C and N termini of G6PT. The intramolecular FRET of this G6PT chimera was 27%. The coexpression of unlabelled G6PC did not modify this FRET intensity. Finally, the chimera constructs generated in this work enabled us for the first time to analyze the relationship between GSD-1 mutations and the intracellular localisation of both G6Pase subunits. We showed that GSD1 mutations did neither alter the G6PC or G6PT chimera localisation, nor the interaction between G6PT termini. In conclusion, our results provide novel information on the intracellular distribution and organisation of the G6Pase complex.

  18. Like your labels?

    PubMed

    Field, Michele

    2010-01-01

    The descriptive “conventions” used on food labels are always evolving. Today, however, the changes are so complicated (partly driven by legislation requiring disclosures about environmental impacts, health issues, and geographical provenance) that these labels more often baffle buyers than enlighten them. In a light-handed manner, the article points to how sometimes reading label language can be like deciphering runes—and how if we are familiar with the technical terms, we can find a literal meaning, but still not see the implications. The article could be ten times longer because food labels vary according to cultures—but all food-exporting cultures now take advantage of our short attention-span when faced with these texts. The question is whether less is more—and if so, in this contest for our attention, what “contestant” is voted off.

  19. Label Review Training - Resources

    EPA Pesticide Factsheets

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  20. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Nitsche, Benjamin M.; de Lima, Pollyne Borborema Almeida; de Assis, Leandro José; Mellado, Laura; Harris, Steven D.; Meyer, Vera; dos Santos, Renato A. Corrêa; Riaño-Pachón, Diego M.; Ries, Laure Nicolas Annick; Goldman, Gustavo H.

    2017-01-01

    One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose. PMID:28361917

  1. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans.

    PubMed

    Dos Reis, Thaila Fernanda; Nitsche, Benjamin M; de Lima, Pollyne Borborema Almeida; de Assis, Leandro José; Mellado, Laura; Harris, Steven D; Meyer, Vera; Dos Santos, Renato A Corrêa; Riaño-Pachón, Diego M; Ries, Laure Nicolas Annick; Goldman, Gustavo H

    2017-03-31

    One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.

  2. Multiclass Learning With Partially Corrupted Labels.

    PubMed

    Wang, Ruxin; Liu, Tongliang; Tao, Dacheng

    2017-05-16

    Traditional classification systems rely heavily on sufficient training data with accurate labels. However, the quality of the collected data depends on the labelers, among which inexperienced labelers may exist and produce unexpected labels that may degrade the performance of a learning system. In this paper, we investigate the multiclass classification problem where a certain amount of training examples are randomly labeled. Specifically, we show that this issue can be formulated as a label noise problem. To perform multiclass classification, we employ the widely used importance reweighting strategy to enable the learning on noisy data to more closely reflect the results on noise-free data. We illustrate the applicability of this strategy to any surrogate loss functions and to different classification settings. The proportion of randomly labeled examples is proved to be upper bounded and can be estimated under a mild condition. The convergence analysis ensures the consistency of the learned classifier to the optimal classifier with respect to clean data. Two instantiations of the proposed strategy are also introduced. Experiments on synthetic and real data verify that our approach yields improvements over the traditional classifiers as well as the robust classifiers. Moreover, we empirically demonstrate that the proposed strategy is effective even on asymmetrically noisy data.

  3. Thrombin-induced translocation of GLUT3 glucose transporters in human platelets.

    PubMed Central

    Sorbara, L R; Davies-Hill, T M; Koehler-Stec, E M; Vannucci, S J; Horne, M K; Simpson, I A

    1997-01-01

    Platelets derive most of their energy from anaerobic glycolysis; during activation this requirement rises approx. 3-fold. To accommodate the high glucose flux, platelets express extremely high concentrations (155+/-18 pmol/mg of membrane protein) of the most active glucose transporter isoform, GLUT3. Thrombin, a potent platelet activator, was found to stimulate 2-deoxyglucose transport activity 3-5-fold within 10 min at 25 degrees C, with a half-time of 1-2 min. To determine the mechanism underlying the increase in glucose transport activity, an impermeant photolabel, [2-3H]2N-4-(1-azi-2,2,2-trifluoethyl)benzoyl-1,3, -bis-(d-mannose-4-ylozy)-2-propylamine, was used to covalently bind glucose transporters accessible to the extracellular milieu. In response to thrombin, the level of transporter labelling increased 2.7-fold with a half-time of 1-2 min. This suggests a translocation of GLUT3 transporters from an intracellular site to the plasma membrane in a manner analogous to that seen for the translocation of GLUT4 in insulin-stimulated rat adipose cells. To investigate whether a similar signalling pathway was involved in both systems, platelets and adipose cells were exposed to staurosporin and wortmannin, two inhibitors of GLUT4 translocation in adipose cells. Thrombin stimulation of glucose transport activity in platelets was more sensitive to staurosporin inhibition than was insulin-stimulated transport activity in adipose cells, but it was totally insensitive to wortmannin. This indicates that the GLUT3 translocation in platelets is mediated by a protein kinase C not by a phosphatidylinositol 3-kinase mechanism. In support of this contention, the phorbol ester PMA, which specifically activates protein kinase C, fully stimulated glucose transport activity in platelets and was equally sensitive to inhibition by staurosporin. This study provides a cellular mechanism by which platelets enhance their capacity to import glucose to fulfil the increased energy demands

  4. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H(+) symporter.

    PubMed

    Babkin, Petr; George Thompson, Alayna M; Iancu, Cristina V; Walters, D Eric; Choe, Jun-Yong

    2015-01-01

    The antipsychotic drug olanzapine is widely prescribed to treat schizophrenia and other psychotic disorders. However, it often causes unwanted side effects, including diabetes, due to disruption of insulin-dependant glucose metabolism through a mechanism yet to be elucidated. To determine if olanzapine can affect the first step in glucose metabolism - glucose transport inside cells - we investigated the effect of this drug on the transport activity of a model glucose transporter. The glucose transporter from Staphylococcus epidermidis (GlcPSe) is specific for glucose, inhibited by various human glucose transporter (GLUT) inhibitors, has high sequence and structure homology to GLUTs, and is readily amenable to transport assay, mutagenesis, and computational modeling. We found that olanzapine inhibits glucose transport of GlcPSe with an IC50 0.9 ± 0.1 mM. Computational docking of olanzapine to the GlcPSe structure revealed potential binding sites that were further examined through mutagenesis and transport assay to identify residues important for olanzapine inhibition. These investigations suggest that olanzapine binds in a polar region of the cytosolic part of the transporter, and interacts with residues R129, strictly conserved in all GLUTs, and N136, conserved in only a few GLUTs, including the insulin-responsive GLUT4. We propose that olanzapine inhibits GlcPSe by impeding the alternating opening and closing of the substrate cavity necessary for glucose transport. It accomplishes this by disrupting a key salt bridge formed by conserved residues R129 and E362, that stabilizes the outward-facing conformation of the transporter.

  5. Afatinib alone or afatinib plus vinorelbine versus investigator's choice of treatment for HER2-positive breast cancer with progressive brain metastases after trastuzumab, lapatinib, or both (LUX-Breast 3): a randomised, open-label, multicentre, phase 2 trial.

    PubMed

    Cortés, Javier; Dieras, Véronique; Ro, Jungsil; Barriere, Jérôme; Bachelot, Thomas; Hurvitz, Sara; Le Rhun, Emilie; Espié, Marc; Kim, Sung-Bae; Schneeweiss, Andreas; Sohn, Joo Hyuk; Nabholtz, Jean-Marc; Kellokumpu-Lehtinen, Pirkko-Liisa; Taguchi, Julie; Piacentini, Federico; Ciruelos, Eva; Bono, Petri; Ould-Kaci, Mahmoud; Roux, Flavien; Joensuu, Heikki

    2015-12-01

    Patients with advanced HER2-positive breast cancer frequently develop CNS metastases. The metastases that progress after brain radiotherapy and HER2-targeted systemic therapy are a difficult therapeutic challenge. We aimed to assess the efficacy and safety of afatinib, an irreversible blocker of the ErbB protein family, alone or combined with vinorelbine, compared with treatment of the investigator's choice in women with HER2-positive breast cancer with progressive brain metastases during or after treatment with trastuzumab, lapatinib, or both. We did this randomised, open-label, multicentre, phase 2 trial in 40 hospitals in Canada, Finland, France, Germany, Italy, Spain, South Korea, and the USA. Women older than 18 years with histologically confirmed HER2-overexpressing breast cancer and CNS recurrence or progression as determined by Response Evaluation Criteria in Solid Tumors (RECIST version 1.1) during or after treatment with trastuzumab, lapatinib, or both, were eligible. We randomly assigned patients (1:1:1) centrally to afatinib 40 mg orally once per day, afatinib 40 mg per day plus intravenous vinorelbine 25 mg/m(2) once per week, or investigator's choice of treatment in cycles of 3 weeks until disease progression, patient withdrawal, or unacceptable toxicity. Treatment assignment was not masked for clinicians or patients, but the trial team was masked until database lock to reduce bias. The primary endpoint, assessed in the intention-to-treat population, was patient benefit at 12 weeks, defined by an absence of CNS or extra-CNS disease progression, no tumour-related worsening of neurological signs or symptoms, and no increase in corticosteroid dose. Safety was assessed in all patients who received at least one dose of a study drug. This completed trial is registered with ClinicalTrials.gov, number NCT01441596. Between Dec 22, 2011, and Feb 12, 2013, we screened 132 patients, of whom 121 were eligible and randomly assigned to treatment: 40 to afatinib

  6. In vivo 13CNMR spectroscopy of glucose metabolism of RIF-1 tumors.

    PubMed

    Constantinidis, I; Chatham, J C; Wehrle, J P; Glickson, J D

    1991-07-01

    An efficient method for measuring in vivo 13C NMR spectra of tumors has been developed and employed to monitor glucose metabolism in radiation-induced fibrosarcomas (RIF-1) subcutaneously implanted in C3H/HeN mice. [1-13C]Glucose was injected directly into the tumors at a dose of 1 g/kg body wt. Spectra were obtained with a Bruker AM 360-WB spectrometer (8.4 T/8.9 cm bore) employing a homebuilt probe equipped with a four-turn solenoidal coil (1.5 cm outer diameter) for detection of 13C signals and a Helmholtz coil (two 3-cm turns separated by a 3-cm gap, oriented orthogonally to the 13C coil) for 1H decoupling. In addition to the natural abundance 13C resonances of the tumors, signals were detected from the alpha- and beta-anomers of labeled glucose. Within 15 min following injection of labeled