Science.gov

Sample records for labeled nmr samples

  1. Modeling an in-register, parallel "iowa" aβ fibril structure using solid-state NMR data from labeled samples with rosetta.

    PubMed

    Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei

    2015-01-06

    Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features.

  2. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  3. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  4. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  5. Sample Pesticide Label for Label Review Training

    EPA Pesticide Factsheets

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  6. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  7. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  8. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  9. Selectively labeling the heterologous protein in Escherichia coli for NMR studies: a strategy to speed up NMR spectroscopy.

    PubMed

    Almeida, F C; Amorim, G C; Moreau, V H; Sousa, V O; Creazola, A T; Américo, T A; Pais, A P; Leite, A; Netto, L E; Giordano, R J; Valente, A P

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The (1)H/(15)N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective (15)N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good (1)H/(15)N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The (15)N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the (1)H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  10. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  11. Avoiding Problems with Suspensions in NMR Sample Tubes

    NASA Astrophysics Data System (ADS)

    Ali, Saqib; Danish, M.; Mazhar, M.

    1995-07-01

    Many times during the sample preparation for NMR studies solid samples form suspension due to low solubility in duterated solvents. We developed a technique to get rid of this problem easily. Just tighten the lid on the NMR sample tube and seal it with parafilm. Invert the tube and centrifuge it for five minutes. Now the suspension is collected in the lid and the clear sample is ready for NMR analysis in the tube.

  12. Neuronal Tracing with Magnetic Labels: NMR Imaging Methods, Preliminary Results, and New Optimized Coils.

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratik

    1992-01-01

    The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.

  13. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  14. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  15. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  16. Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

    PubMed Central

    Grage, Stephan L; Wang, Junfeng; Cross, Timothy A; Ulrich, Anne S

    2002-01-01

    The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR. PMID:12496101

  17. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  18. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  19. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FORMAT) ER19JY10.019 PROTOTYPE LABEL 7 LIGHTING FACTS LABEL FOR GENERAL SERVICE LAMPS CONTAINING MERCURY... MERCURY ER19JY10.021 SAMPLE LABEL 11 LIGHTING FACTS LABEL FOR GENERAL SERVICE LAMP CONTAINING MERCURY... MERCURY (TALL ORIENTATION) ER19JY10.023 SAMPLE LABEL 13 LIGHTING FACTS LABEL FOR GENERAL SERVICE...

  20. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  1. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-08

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells.

  2. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  3. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  4. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  5. Cysteine-Specific Labeling of Proteins with a Nitroxide Biradical for Dynamic Nuclear Polarization NMR.

    PubMed

    Voinov, Maxim A; Good, Daryl B; Ward, Meaghan E; Milikisiyants, Sergey; Marek, Antonin; Caporini, Marc A; Rosay, Melanie; Munro, Rachel A; Ljumovic, Milena; Brown, Leonid S; Ladizhansky, Vladimir; Smirnov, Alex I

    2015-08-13

    Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca. a factor of 4 in our experiments) and causes proportional NMR signal loss. Here we demonstrate an alternative approach that does not rely on dispersing the DNP agent in a glassy matrix. We synthesize a new biradical, ToSMTSL, which is based on the known DNP agent TOTAPOL, but also contains a thiol-specific methanethiosulfonate group to allow for incorporating this biradical into a protein in a site-directed manner. ToSMTSL was characterized by EPR and tested for DNP of a heptahelical transmembrane protein, Anabaena sensory rhodopsin (ASR), by covalent modification of solvent-exposed cysteine residues in two (15)N-labeled ASR mutants. DNP enhancements were measured at 400 MHz/263 GHz NMR/EPR frequencies for a series of samples prepared in deuterated and protonated buffers and with varied biradical/protein ratios. While the maximum DNP enhancement of 15 obtained in these samples is comparable to that observed for an ASR sample cosuspended with ~17 mM TOTAPOL in a glycerol-d8/D2O/H2O matrix, the achievable sensitivity would be 4-fold greater due to the gain in the filling factor. We anticipate that the DNP enhancements could be further improved by optimizing the biradical structure. The use of covalently attached biradicals would broaden the applicability of DNP NMR to structural studies of proteins.

  6. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    SciTech Connect

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George; Bentrop, Detlef; Spyroulias, Georgios A.

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.

  7. Preparation of uniformly isotope labeled KcsA for solid state NMR: Expression, purification, reconstitution into liposomes and functional assay

    PubMed Central

    Bhate, Manasi P.; Wylie, Benjamin J.; Thompson, Ameer; Tian, Lin; Nimigean, Crina; McDermott, Ann E.

    2013-01-01

    We report the expression, purification, liposome reconstitution and functional validation of uniformly 13C and 15N isotope labeled KcsA, a bacterial potassium channel that has high homology with mammalian channels, for solid-state NMR studies. The expression and purification is optimized for an average yield of ~ 35–40 milligrams per liter of M9 media in a time-efficient way. The protein purity is confirmed by gel electrophoresis and the protein concentration is quantified by UV-Vis absorption spectroscopy. Protocols to efficiently reconstitute KcsA into liposomes are also presented. The presence of liposomes is confirmed by cryo-electron microscopy images and the effect of magic angle spinning on liposome packing is shown. High-resolution solid-state NMR spectra of uniformly isotope labeled KcsA in these liposomes reveal that our protocol yields to a very homogenous KcsA sample with high signal to noise and several well-resolved residues in NMR spectra. Electrophysiology of our samples before and after solid-state NMR show that channel function and selectivity remain intact after the solid-state NMR. PMID:23916531

  8. Asymmetry of (13)C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.

    PubMed

    Thakur, Chandar S; Dayie, T Kwaku

    2011-12-01

    Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.

  9. Structural determination of larger proteins using stable isotope labeling and NMR spectroscopy

    SciTech Connect

    Unkefer, C.; Hernandez, G.; Springer, P.; Trewhella, J.; Blumenthal, D.; Lidstrom, M.

    1996-04-01

    The project sought to employ stable isotope labeling and NMR spectroscopy to study protein structures and provide insight into important biochemical problems. A methylotrophic bacterial expression system has been developed for uniform deuterium and carbon-13 labeling of proteins for structural studies. These organisms grow using methanol as the sole source of carbon and energy. Because isotopically labeled methanol is relatively inexpensive, the methylotrophs are ideal for expressing proteins labeled uniformly with deuterium and/or carbon-13. This expression system has been employed to prepare deuterated troponin C. NMR spectroscopy measurements have been made on the inhibitory peptide from troponin I (residues 96--115), both as the free peptide and the peptide complexed with deuterated troponin C. Proton-NMR spectroscopy resonance-signal assignments have been made for the free peptide.

  10. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  11. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  12. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  13. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  14. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  15. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  16. (19)F labelled glycosaminoglycan probes for solution NMR and non-linear (CARS) microscopy.

    PubMed

    Lima, Marcelo A; Cavalheiro, Renan P; M Viana, Gustavo; Meneghetti, Maria C Z; Rudd, Timothy R; Skidmore, Mark A; Powell, Andrew K; Yates, Edwin A

    2016-08-15

    Studying polysaccharide-protein interactions under physiological conditions by conventional techniques is challenging. Ideally, macromolecules could be followed by both in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a proper comparison of results over these different scales but, often, this is not feasible. The cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack groups that can be detected selectively in the biological milieu. The introduction of (19)F labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the heparin-binding protein, antithrombin, employing (19)F NMR spectroscopy is followed. Furthermore, the ability of (19)F labelled GAGs to be imaged using CARS microscopy is demonstrated. (19)F labelled GAGs enable both (19)F NMR protein-GAG binding studies in solution at the molecular level and non-linear microscopy at a microscopic scale to be conducted on the same material, essentially free of background signals.

  17. Tracing the human metabolism of stable isotope-labelled drugs by ex vivo NMR spectroscopy. A revision of S-carboxymethyl-L-cysteine biotransformation.

    PubMed

    Meese, C O; Fischer, P

    1990-01-01

    A direct structural identification, and quantitative assessment below the 50 nmol/ml level, of the full pattern of renally excreted metabolites is made possible by 13C NMR measurements of untreated urine samples when stable isotope-labelled (13C) drug analogues are administered to humans. The full potential of the new ex vivo NMR approach is exemplified by a study, for a group of volunteers, of S-carboxymethyl-L-cysteine metabolism. The metabolic sulphoxidation pathway of S-carboxymethyl-L-cysteine in man, accepted so far, needs to be profoundly revised on the basis of the 13C NMR results.

  18. Synthesis and NMR studies of (13)C-labeled vitamin D metabolites.

    PubMed

    Okamura, William H; Zhu, Gui-Dong; Hill, David K; Thomas, Richard J; Ringe, Kerstin; Borchardt, Daniel B; Norman, Anthony W; Mueller, Leonard J

    2002-03-08

    Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar

  19. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  20. Theory of mirrored time domain sampling for NMR spectroscopy.

    PubMed

    Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas

    2011-12-01

    A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t=0 to the maximal evolution time tmax, while the second is sampled backward from t=0 to -tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables

  1. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  2. Elucidation of the Cross-Link Structure of Nadic-End-Capped Polyimides Using NMR of C-13-Labeled Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.

    1997-01-01

    Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.

  3. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Sample Labels L Appendix L to Part 305... UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. L Appendix L to.... At 76 FR 79058, Dec. 21, 2011, appendix L was amended by redesignating samples 10, 11, 12, and...

  4. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Sample Labels L Appendix L to Part 305... RULEâ) Pt. 305, App. L Appendix L to Part 305—Sample Labels Link to a correction published at 78 FR... affecting appendix L, see the List of CFR Sections Affected, which appears in the Finding Aids section...

  5. Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: Aromatic substituents

    NASA Astrophysics Data System (ADS)

    Dürr, Ulrich H. N.; Grage, Stephan L.; Witter, Raiker; Ulrich, Anne S.

    2008-03-01

    Structural parameters of peptides and proteins in biomembranes can be directly measured by solid state NMR of selectively labeled amino acids. The 19F nucleus is a promising label to overcome the low sensitivity of 2H, 13C or 15N, and to serve as a background-free reporter group in biological compounds. To make the advantages of solid state 19F NMR fully available for structural studies of polypeptides, we have systematically measured the chemical shift anisotropies and relaxation properties of the most relevant aromatic and aliphatic 19F-labeled amino acids. In this first part of two consecutive contributions, six different 19F-substituents on representative aromatic side chains were characterized as polycrystalline powders by static and MAS experiments. The data are also compared with results on the same amino acids incorporated in synthetic peptides. The spectra show a wide variety of lineshapes, from which the principal values of the CSA tensors were extracted. In addition, temperature-dependent T1 and T2 relaxation times were determined by 19F NMR in the solid state, and isotropic chemical shifts and scalar couplings were obtained in solution.

  6. Sparse (13)C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins.

    PubMed

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A; Ladizhansky, Vladimir; Brown, Leonid S; Wang, Shenlin

    2016-05-01

    We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  7. Matching isotopic distributions from metabolically labeled samples

    PubMed Central

    McIlwain, Sean; Page, David; Huttlin, Edward L.; Sussman, Michael R.

    2008-01-01

    Motivation: In recent years stable isotopic labeling has become a standard approach for quantitative proteomic analyses. Among the many available isotopic labeling strategies, metabolic labeling is attractive for the excellent internal control it provides. However, analysis of data from metabolic labeling experiments can be complicated because the spacing between labeled and unlabeled forms of each peptide depends on its sequence, and is thus variable from analyte to analyte. As a result, one generally needs to know the sequence of a peptide to identify its matching isotopic distributions in an automated fashion. In some experimental situations it would be necessary or desirable to match pairs of labeled and unlabeled peaks from peptides of unknown sequence. This article addresses this largely overlooked problem in the analysis of quantitative mass spectrometry data by presenting an algorithm that not only identifies isotopic distributions within a mass spectrum, but also annotates matches between natural abundance light isotopic distributions and their metabolically labeled counterparts. This algorithm is designed in two stages: first we annotate the isotopic peaks using a modified version of the IDM algorithm described last year; then we use a probabilistic classifier that is supplemented by dynamic programming to find the metabolically labeled matched isotopic pairs. Such a method is needed for high-throughput quantitative proteomic metabolomic experiments measured via mass spectrometry. Results: The primary result of this article is that the dynamic programming approach performs well given perfect isotopic distribution annotations. Our algorithm achieves a true positive rate of 99% and a false positive rate of 1% using perfect isotopic distribution annotations. When the isotopic distributions are annotated given ‘expert’ selected peaks, the same algorithm gets a true positive rate of 77% and a false positive rate of 1%. Finally, when annotating using

  8. Mixing apparatus for preparing NMR samples under pressure

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Jin; Vidugiris, Gediminas; Mooberry, Ed S.; Westler, William M.; Markley, John L.

    2003-09-01

    The size limit for protein NMR spectroscopy in solution arises in large part from line broadening caused by slow molecular tumbling. One way to alleviate this problem is to increase the effective tumbling rate by reducing the viscosity of the solvent. Because proteins generally require an aqueous environment to remain folded, one approach has been to encapsulate hydrated proteins in reverse micelles formed by a detergent and to dissolve the encapsulated protein in a low-viscosity fluid. The high volatility of suitable low-viscosity fluids requires that the samples be prepared and maintained under pressure. We describe a novel apparatus used for the preparation of such samples. The apparatus includes a chamber for mixing the detergent with the low-viscosity solvent, a second chamber for mixing this with hydrated protein, and a 5-mm (o.d.) zirconium oxide NMR sample tube with shut-off valves designed to contain pressures on the order of 10 bar, sufficient for liquid propane. Liquids are moved from one location to another by introducing minor pressure differentials between two pressurization vessels. We discuss the operation of this apparatus and illustrate this with data on a 30-kDa protein complex (chymotrypsin:turkey ovomucoid third domain) encapsulated in reverse micelles of the detergent, sodium bis (2-ethylhexyl) sulfosuccinate, aerosol-ot (AOT), dissolved in liquid propane.

  9. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  10. Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy

    PubMed Central

    Bahrami, Arash; Assadi, Amir H.; Markley, John L.; Eghbalnia, Hamid R.

    2009-01-01

    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination. PMID

  11. Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy.

    PubMed

    Bahrami, Arash; Assadi, Amir H; Markley, John L; Eghbalnia, Hamid R

    2009-03-01

    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination.

  12. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  13. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Sample Labels L Appendix L to Part 305... UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. L Appendix L to.... For Federal Register citations affecting appendix L, see the List of CFR Sections Affected,...

  14. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Sample Labels L Appendix L to Part 305... UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. L Appendix L to... Register citations affecting appendix L, see the List of CFR Sections Affected, which appears in...

  15. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  16. NMR determination of photorespiration in intact leaves using in vivo 13CO 2 labeling

    NASA Astrophysics Data System (ADS)

    Cegelski, Lynette; Schaefer, Jacob

    2006-01-01

    Solid-state 13C NMR measurements of intact soybean leaves labeled by 13CO 2 lead to the conclusion that photorespiration is 17% of photosynthesis for a well-watered and fertilized plant. This is the first direct assessment of the level of photorespiration in a functioning plant. A 13C{ 31P} rotational-echo double-resonance (REDOR) measurement tracked the incorporation of 13C label into intermediates in the Calvin cycle as a function of time. For labeling times of 5 min or less, the isotopic enrichment of the Calvin cycle depends on the flux of labeled carbon from 13CO 2, relative to the flux of unlabeled carbon from glycerate returned from the photorespiratory cycle. Comparisons of these two rates for a fixed value of the 13CO 2 concentration indicate that the ratio of the rate of photosynthesis to the rate of photorespiration of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in soybean leaves is 5.7. This translates into a photorespiratory CO 2 loss that is 21% of net CO 2 assimilation, about 80% of the value estimated from Rubisco kinetics parameters. The ratio of rates is reduced at low external CO 2 concentrations, as measured by net carbon assimilation rates. The carbon assimilation was determined from 13C-label spin counts converted into total carbon by the REDOR-determined isotopic enrichments of the Calvin cycle. The net carbon assimilation rates indicate that the rate of decarboxylation of glycine is not directly proportional to the oxygenase activity of Rubisco as is commonly assumed.

  17. NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling.

    PubMed

    Cegelski, Lynette; Schaefer, Jacob

    2006-01-01

    Solid-state 13C NMR measurements of intact soybean leaves labeled by 13CO2 lead to the conclusion that photorespiration is 17% of photosynthesis for a well-watered and fertilized plant. This is the first direct assessment of the level of photorespiration in a functioning plant. A 13C{31P} rotational-echo double-resonance (REDOR) measurement tracked the incorporation of 13C label into intermediates in the Calvin cycle as a function of time. For labeling times of 5 min or less, the isotopic enrichment of the Calvin cycle depends on the flux of labeled carbon from 13CO2, relative to the flux of unlabeled carbon from glycerate returned from the photorespiratory cycle. Comparisons of these two rates for a fixed value of the 13CO2 concentration indicate that the ratio of the rate of photosynthesis to the rate of photorespiration of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in soybean leaves is 5.7. This translates into a photorespiratory CO2 loss that is 21% of net CO2 assimilation, about 80% of the value estimated from Rubisco kinetics parameters. The ratio of rates is reduced at low external CO2 concentrations, as measured by net carbon assimilation rates. The carbon assimilation was determined from 13C-label spin counts converted into total carbon by the REDOR-determined isotopic enrichments of the Calvin cycle. The net carbon assimilation rates indicate that the rate of decarboxylation of glycine is not directly proportional to the oxygenase activity of Rubisco as is commonly assumed.

  18. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  19. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.

  20. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  1. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  2. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  3. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  4. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  5. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  6. Susceptibility corrections in solid-state NMR experiments with oriented membrane samples. Part I: applications

    NASA Astrophysics Data System (ADS)

    Glaser, Ralf W.; Ulrich, Anne S.

    2003-09-01

    Chemical shift referencing of solid-state NMR experiments on oriented membranes has to compensate for bulk magnetic susceptibility effects that are associated with the non-spherical sample shape, as described in the accompanying paper [J. Magn. Reson. 164 (2003) 115-127]. The resulting frequency deviations can be on the order of 10 ppm, which is serious for nuclei with a narrow chemical shift anisotropy such as 1H or 13C, and in some cases even 19F. Two referencing schemes are proposed here to compensate for these effects: A flat (0.4 mm) glass container with an isotropic reference molecule dissolved in a thin film of liquid is stacked on top of the oriented membrane sample. Alternatively, the intrinsic proton signal of the hydrated lipid can be used for chemical shift referencing. Further aspects related to magnetic susceptibility are discussed, such as air gaps in susceptibility-matched probeheads, the benefits of shimming, and limitations in the accuracy of orientational constraints. A biological application is illustrated by a series of experiments on the antimicrobial peptide PGLa, aimed at understanding its concentration-dependent membranolytic effect. To address a wide range of molar peptide/lipid ratios between 1:3000 and 1:8, multilayers of hydrated DMPC containing a 19F-labeled peptide were oriented between stacked glass plates. Maintaining an approximately constant amount of peptide gives rise to thick samples (18 plates) at low, and thin samples (3 plates) at high peptide/lipid ratio. Accurate referencing was critical to reveal a small but significant change over 5 ppm in the anisotropic chemical shift of the 19F label on the peptide, indicative of a change in the orientation and/or dynamics of PGLa in the membrane.

  7. NMR studies of bent DNA using {sup 13}C-enriched samples

    SciTech Connect

    Zimmer, D.P.; Crothers, D.M.

    1994-12-01

    Bending of the DNA double helix can be brought about by introducing runs of adenines (A-tracts) in phase with the helical repeat of the DNA. The requirements for bending of DNA by A-tracts are that the length of the A-tract be greater than 3 base pairs and that the A-tracts must be in phase with the helical repeat (every 10 or 11 bp). Other factors, such as the number of adenines in the run, flanking sequences, and whether the A-tracts are phased with respect to the 5{prime}A or the 3{prime}A, have effects upon the degree of bending as assayed by electrophoretic mobility on native polyacrylamide gels. There are a number of models for bending A-tract DNA. The junction-bending model postulates that the structure of A-tracts is similar to the fiber diffraction structure of poly A, in which there is a significant degree of base pair tilt with respect to the helix axis. In this model, bending occurs at the junction between the A-tract and the B-form helix to allow favorable stacking interactions to occur. The bend of the helix could arise as a result of some other perturbation of B-form DNA by A-tracts, such as propeller twist; bending also could be due to a combination of factors. Our goal is to find the structural features of A-tracts responsible for bending of the helix by performing NMR on oligonucleotides containing A-tracts to obtain higher resolution structural data. One of the problems encountered in NMR structure determination of nucleic acids and other macromolecules is the assignment of resonances to nuclei. This procedure can be greatly facilitated through the use of {sup 13}C-enriched nucleic acid samples. We are developing a technique for the enzymatic synthesis of labeled DNA for NMR. The technique we are developing is similar to RNA labeling techniques already in use. The technique involves growth of methylotrophic bacteria on {sup 13}CH{sub 3}OH.

  8. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  9. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  10. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  11. Distance information for disordered proteins from NMR and ESR measurements using paramagnetic spin labels.

    PubMed

    Eliezer, David

    2012-01-01

    The growing recognition of the many roles that disordered protein states play in biology places an increasing importance on developing approaches to characterize the structural properties of this class of proteins and to clarify the links between these properties and the associated biological functions. Disordered proteins, when isolated in solution, do not adopt a fixed structure, but can and often do contain detectable and significant residual or transient structure, including both secondary and long-range structure. Such residual structure can play a role in nucleating local structural transitions as well as modulating intramolecular or intermolecular tertiary interactions, including those involved in ordered protein aggregation. An increasing array of tools has been recruited to help characterize the structural properties of disordered proteins. While a number of methods can report on residual secondary structure, detecting and quantifying transient long-range structure has proven to be more difficult. This chapter describes the use of paramagnetic spin labeling in combination with paramagnetic relaxation enhancement (PRE) in NMR spectroscopy and pulsed dipolar ESR spectroscopy (PDS) for this purpose.

  12. Non-uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination

    PubMed Central

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-01-01

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [1H,1H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. PMID:26227870

  13. Tissue targeted metabonomics: metabolic profiling by microdialysis sampling and microcoil NMR.

    PubMed

    Price, Kristin E; Vandaveer, Shannon S; Lunte, Craig E; Larive, Cynthia K

    2005-08-10

    The concentration of low molecular weight compounds in tissues can yield valuable information about the metabolic state of an organism. Studies of changes in the metabolic state or metabonomics can reflect disease pathways, drug action, or toxicity. This research aims to develop a new approach, tissue targeted metabonomics. Microdialysis sampling and microcoil NMR analysis are employed to compare basal and ischemic metabolic states of various tissues (blood, brain, and heart) of Sprague-Dawley rats. Microdialysis sampling is localized, making the metabolic profile tissue specific. Coupling to NMR analysis is highly advantageous, because a complete metabolic profile is obtained in a single spectrum. However, small sample volumes and low analyte concentrations make analysis of microdialysis samples challenging. Microcoil NMR uses low sample volumes and has improved mass sensitivity, relative to standard 5 mm probes. The coupling of these techniques is a potentially powerful tool for metabonomics analysis.

  14. Facilitated Visual Interpretation of Scores in Principal Component Analysis by Bioactivity-Labeling of 1H-NMR Spectra-Metabolomics Investigation and Identification of a New α-Glucosidase Inhibitor in Radix Astragali.

    PubMed

    Liu, Yueqiu; Nyberg, Nils T; Jäger, Anna K; Staerk, Dan

    2017-03-06

    Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract's bioactivity.

  15. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD....12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples of foreign canned or packaged products bearing on their immediate containers trade labels which have not...

  16. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD....12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples of foreign canned or packaged products bearing on their immediate containers trade labels which have not...

  17. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels.

    PubMed

    Glaser, Ralf W; Sachse, Carsten; Dürr, Ulrich H N; Wadhwani, Parvesh; Ulrich, Anne S

    2004-05-01

    A highly sensitive solid state (19)F-NMR strategy is described to determine the orientation and dynamics of membrane-associated peptides from specific fluorine labels. Several analogues of the antimicrobial peptide PGLa were synthesized with the non-natural amino acid 4-trifluoromethyl-phenylglycine (CF(3)-Phg) at different positions throughout the alpha-helical peptide chain. A simple 1-pulse (19)F experiment allows the simultaneous measurement of both the anisotropic chemical shift and the homonuclear dipolar coupling within the rotating CF(3)-group in a macroscopically oriented membrane sample. The value and sign of the dipolar splitting determines the tilt of the CF(3)-rotational axis, which is rigidly attached to the peptide backbone, with respect to the external magnetic field direction. Using four CF(3)-labeled peptide analogues (with L-CF(3)-Phg at Ile9, Ala10, Ile13, and Ala14) we confirmed that PGLa is aligned at the surface of lipid membranes with its helix axis perpendicular to the bilayer normal at a peptide:lipid ratio of 1:200. We also determined the azimuthal rotation angle of the helix, which agrees well with the orientation expected from its amphiphilic character. Peptide analogues with a D-CF(3)-Phg label resulting from racemization of the amino acid during synthesis were separately collected by HPLC. Their spectra provide additional information about the PGLa structure and orientation but allow only to discriminate qualitatively between multiple solutions. The structural and functional characterization of the individual CF(3)-labeled peptides by circular dichroism and antimicrobial assays showed only small effects for our four substitutions on the hydrophobic face of the helix, but a significant disturbance was observed in a fifth analogue where Ala8 on the hydrophilic face had been replaced. Even though the hydrophobic CF(3)-Phg side chain cannot be utilized in all positions, it allows highly sensitive NMR measurements over a wide range of

  18. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.

    PubMed

    Yan, B; Stark, R E

    2000-08-01

    Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorporation of site-specifically (13)C-enriched acetates and phenylalanines with one- and two-dimensional solid-state (13)C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin's phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.

  19. Using heat to control the sample spinning speed in MAS NMR.

    PubMed

    Mihaliuk, Eugene; Gullion, Terry

    2011-10-01

    A new approach using temperature to control the spinning speed of a sample rotor in magic-angle spinning NMR is presented. Instead of an electro-mechanical valve that regulates the flow of drive gas to control the spinning speed in traditional MAS NMR systems, we use a small heater wire located directly in the stator. The sample spinning speed is controlled very accurately with a surprisingly low heating power of 1 W. Results on a benchtop unit demonstrate the capability of the system.

  20. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.

    PubMed

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-12-16

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one

  1. HRJCOSY: A three-dimensional NMR method for measuring complex samples in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Zhang, Zhiyong; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-08-01

    Three-dimensional (3D) NMR plays an important role in structural elucidations of complex samples, whereas difficulty remains in its applications to inhomogeneous fields. Here, we propose an NMR approach based on intermolecular zero-quantum coherences (iZQCs) to obtain high-resolution 3D J-resolved-COSY spectra in inhomogeneous fields. Theoretical analyses are presented for verifying the proposed method. Experiments on a simple chemical solution and a complex brain phantom are performed under non-ideal field conditions to show the ability of the proposed method. This method is an application of iZQCs to high-resolution 3D NMR, and is useful for studies of complex samples in inhomogeneous fields.

  2. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  3. PQQ: Biosynthetic studies in Methylobacterium AM1 and Hyphomicrobium X using specific TC labeling and NMR. [Pyrroloquinoline quinones

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.; van Kleef, M.A.G.; Duine, J.A.

    1988-01-01

    Using TC labeling and NMR spectroscopy we have determined biosynthetic precursors of pyrroloquinoline quinone (PQQ) in two closely related serine-type methylotrophs, Methylobacterium AM1 and Hyphomicrobium X. Analysis of the TC-labeling data revealed that PQQ is constructed from two amino acids: the portion containing N-6, C-7,8,9 and the two carboxylic acid groups, C-7' and 9', is derived-intact-from glutamate. The remaining portion is derived from tyrosine; the phenol side chain provides the six carbons of the ring containing the orthoquinone, whereas internal cyclization of the amino acid backbone forms the pyrrole-2-carboxylic acid moiety. This is analogous to the cyclization of dopaquinone to form dopachrome. Dopaquinone is a product of the oxidation of tyrosine (via dopa) in reactions catalyzed by monophenol monooxygenase (EC 1.14.18.1). Starting with tyrosine and glutamate, we will discuss possible biosynthetic routes to PQQ. 29 refs., 4 figs., 2 tabs.

  4. Diffusion of Paramagnetically Labeled Proteins in Cartilage: Enhancement of the 1-D NMR Imaging Technique

    NASA Astrophysics Data System (ADS)

    Foy, Brent D.; Blake, Joseph

    2001-01-01

    Quantifying the diffusive transport of large molecules in avascular cartilage tissue is important both for planning potential pharamacological treatments and for gaining insight into the molecular-scale structure of cartilage. In this work, the diffusion coefficients of gadolinium-DTPA and Gd-labeled versions of four proteins-lysozyme, trypsinogen, ovalbumin, and bovine serum albumin (BSA) with molecular weights of 14,300, 24,000, 45,000, and 67,000, respectively-have been measured in healthy and degraded calf cartilage. The experimental technique relies on the effect of the paramagnetic on the relaxation properties of the surrounding water, combined with the time course of a 1-dimensional spatial profile of the water signal in the cartilage sample. The enhanced technique presented here does not require a prior measurement of the relaxivity of the paramagnetic compound in the sample of interest. The data are expressed as the ratio of the diffusion coefficient of a compound in cartilage to its diffusion coefficient in water. For healthy cartilage, this ratio was 0.34 ± 0.07 for Gd-DTPA, the smallest compound, and fell to 0.3 ± 0.1 for Gd-lysozyme, 0.08 ± 0.04 for Gd-trypsinogen, and 0.07 ± 0.04 for Gd-ovalbumin. Gd-BSA did not appear to enter healthy cartilage tissue beyond a surface layer. After the cartilage had been degraded by 24-h trypsinization, these ratios were 0.60 ± 0.03 for Gd-DTPA, 0.40 ± 0.08 for Gd-lysozyme, 0.42 ± 0.09 for Gd-trypsinogen, 0.16 ± 0.14 for Gd-ovalbumin, and 0.11 ± 0.05 for Gd-BSA. Thus, degradation of the cartilage led to increases in the diffusion coefficient of up to fivefold for the Gd-labeled proteins. These basic transport parameters yield insights on the nature of pore sizes and chemical-matrix interactions in the cartilage tissue and may prove diagnostically useful for identifying the degree and nature of damage to cartilage.

  5. Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR

    PubMed Central

    Palmer, Melissa R.; Wenrich, Broc R.; Stahlfeld, Phillip

    2014-01-01

    Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20–40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling 1H,15N-HSQC experiments on natural abundance protein samples and 1H,13C-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data. PMID:24682944

  6. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  7. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR.

  8. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  9. High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples.

    PubMed

    Olson, D L; Lacey, M E; Sweedler, J V

    1998-02-01

    An improved nanoliter-volume NMR probe design places the microcoil and capillary at the magic angle (57.7 degrees) with respect to the external magnetic field. Using an NMR probe which requires a total sample volume of just 200 nL, high-resolution 300-MHz 1H-NMR spectra (line width, 0.6 Hz) are presented of 10 mM alpha-bag cell peptide for an observe quantity of 45 ng (50 pmol in 5 nL). For the volume of sample inside the microcoil (the observe volume, Vobs), the 3 sigma limit of detection (LOD) is 9 ng (10 pmol, 2mM) for data obtained in 15 h. To reduce the data acquisition time, a probe with a greater Vobs is developed. As an example of a rapid, mass-limited analysis, a concentration corresponding to 400 ng of menthol dissolved in Vobs = 31 nL (82.6 mM) yields a spectrum in 9 min (LOD = 6.9 ng, 44 pmol, 1.4 mM). To illustrate improvements in concentration sensitivity, a spectrum is acquired in 45 min for 400 ng of menthol dissolved in a total sample volume of 200 nL (12.8 mM). Compared to a commercial nanoprobe for the same mass of menthol, these two examples reduce data acquisition time by at least 95%. Both model compounds demonstrate substantially improved concentration LODs compared to those obtained in previous high-resolution, microcoil NMR work. These advances illustrate the utility of enhanced sensitivity provided by NMR microcoils applied to nanoliter volumes of mass-limited samples.

  10. Optimization of sample preparation for accurate results in quantitative NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taichi; Nakamura, Satoe; Saito, Takeshi

    2017-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy has received high marks as an excellent measurement tool that does not require the same reference standard as the analyte. Measurement parameters have been discussed in detail and high-resolution balances have been used for sample preparation. However, the high-resolution balances, such as an ultra-microbalance, are not general-purpose analytical tools and many analysts may find those balances difficult to use, thereby hindering accurate sample preparation for qNMR measurement. In this study, we examined the relationship between the resolution of the balance and the amount of sample weighed during sample preparation. We were able to confirm the accuracy of the assay results for samples weighed on a high-resolution balance, such as the ultra-microbalance. Furthermore, when an appropriate tare and amount of sample was weighed on a given balance, accurate assay results were obtained with another high-resolution balance. Although this is a fundamental result, it offers important evidence that would enhance the versatility of the qNMR method.

  11. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  12. The use of 13C labeling to enhance the sensitivity of 13C solid-state CPMAS NMR to study polymorphism in low dose solid formulations.

    PubMed

    Booy, Kees-Jan; Wiegerinck, Peter; Vader, Jan; Kaspersen, Frans; Lambregts, Dorette; Vromans, Herman; Kellenbach, Edwin

    2005-02-01

    (13)C labeling was used to enhance the sensitivity of (13)C solid-state NMR to study the effect of tabletting on the polymorphism of a steroidal drug. The steroidal drug Org OD 14 was (13)C labeled and formulated into tablets containing only 0.5-2.5% active ingredient. The tablets were subsequently studied by solid-state (13)C CPMAS NMR. The crystalline form present in tablets could readily be analyzed in tablets. No change in crystalline form was observed as a result of formulation or in subsequent stability studies. Solid-state NMR in combination with (13)C labeling can, in suitable cases, be used as a strategy to study the effect of formulation on the polymorphism of low dose drugs.

  13. Sample-efficient learning with auxiliary class-label information

    PubMed Central

    Nguyen, Quang; Valizadegan, Hamed; Seybert, Amy; Hauskrecht, Milos

    2011-01-01

    Building classification models from clinical data collected for past patients often requires additional example labeling and annotation by a human expert. Since example labeling may require to review a complete electronic health record the process can be very time consuming and costly. To make the process more cost-efficient, the number of examples an expert needs to label should be reduced. We develop and test a new approach for the classification learning in which, in addition to class labels provided by an expert, the learner is provided with auxiliary information that reflects how strong the expert feels about the class label. We show that this information can be extremely useful for practical classification tasks based on human assessment and can lead to improved learning with a smaller number of examples. We develop a new classification approach based on the support vector machines and the learning to rank methodologies capable of utilizing the auxiliary information during the model learning process. We demonstrate the benefit of the approach on the problem of learning an alert model for Heparin Induced Thrombocytopenia (HIT) by showing an improved classification performance of the models that are trained on a smaller number of labeled examples. PMID:22195160

  14. The combined use of quantum chemical calculations and CP/MAS NMR spectroscopy to investigate soil bound residues of labeled xenobiotics

    NASA Astrophysics Data System (ADS)

    Lewandowski, Hans; Philipp, Herbert; Meier, Robert J.; Narres, Hans-Dieter; Berns, Anne E.

    2010-05-01

    Application of solid state Nuclear Magnetic Resonance (NMR) spectroscopy to 13C- and 15N-labeled compounds is a powerful tool to study the interactions of xenobiotics with soil and its components. The type of interaction with soil components, like organic matter or the mineral phase, influences binding and release of a xenobiotic and its metabolites in soil. As such interactions to the soil matrix cause shifts in the initial positions of the NMR signals of the investigated labeled compound, NMR can be used to elucidate the binding type of bound residues. Density functional theory (DFT) calculations are excellent suited to support such NMR studies of xenobiotics. In a first step, DFT calculations were used to support the interpretation of the spectra of labeled xenobiotics, their metabolites and reaction products synthesized through reaction with model substances (representing specific functionalities of humic substances). In a second step, they allow to evaluate the influence of possible bonds on the initial chemical shift (e.g. towards higher or lower field). This can be especially helpful in the case of bonds like van-der-Waals interactions, for which it is difficult to prepare defined model substances. CP/MAS-NMR spectroscopy and DFT calculations were applied to study the interactions of several labeled xenobiotics and soil organic matter.

  15. Tracing the origin of beer samples by NMR and chemometrics: Trappist beers as a case study.

    PubMed

    Mannina, Luisa; Marini, Federico; Antiochia, Riccarda; Cesa, Stefania; Magrì, Antonio; Capitani, Donatella; Sobolev, Anatoly P

    2016-10-01

    An NMR and chemometric analytical approach to classify beers according to their brand identity was developed within the European TRACE project (FP6-2003-FOOD-2-A, contract number: 0060942). Rochefort 8 Trappist beers (47 samples), other Trappist beers (76 samples) and non-Trappist beers (110 samples) were analyzed by (1) H NMR spectroscopy. Selected NMR signals were measured and used to build classification models. Three different classification problems were identified, namely Trappist versus non-Trappist, Rochefort versus Non-Rochefort, and Rochefort 8 versus non-Rochefort 8. In all the three cases, both a discriminant and a modeling approaches were followed, using partial least squares discriminant analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA), respectively, leading to very high classification accuracy as evaluated by external validation. Information regarding chemical composition was also obtained: Trappist beers contain a higher amount of formic and pyruvic acids and a lower amount of acetic acid and alanine with respect to non-Trappist ones. Rochefort beers turned out to have also a higher content of propanol and isopentanol with respect to non-Rochefort samples. Finally, Rochefort 8, shows the highest content of pyruvic acid and the lowest content of gallic, fumaric, acetic acids, adenosine, uridine, 2-phenylethanol, GABA, and alanine.

  16. Following macromolecular interactions and sugar metabolism using site specific /sup 3/H labelling and NMR spectroscopy

    SciTech Connect

    Williams, P.; Morimoto, Hiromi; Gehring, K.B.; Nikaido, Hiroshi; Carson, P.; Un, Sun; Klein, M.; Wemmer, D.E.

    1988-06-01

    In this paper we discuss the application of /sup 3/H NMR to biological problems. Two specific examples will be described; first, analysis of the binding of maltose to its transport protein from E. coli, called MBP; and second, following the glycolytic metabolism of glucose in erythrocytes. In both of these cases the unique properties of /sup 3/H for magnetic resonance make possible observations which are difficult with other methods. 4 refs., 2 figs.

  17. Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs.

    PubMed

    Baligand, C; Vauchez, K; Fiszman, M; Vilquin, J-T; Carlier, P G

    2009-06-01

    1H-NMR (nuclear magnetic resonance) imaging is regularly proposed to non-invasively monitor cell therapy protocols. Prior to transplantation, cells must be loaded with an NMR contrast agent (CA). Most studies performed so far make use of superparamagnetic iron oxide particles (SPIOs), mainly for favorable detection sensitivity. However, in the case of labeled cell death, SPIO recapture by inflammatory cells might introduce severe bias. We investigated whether NMR signal changes induced by preloading with SPIOs or the low molecular weight gadolinium (Gd)-DTPA accurately monitored the outcome of transplanted cells in a murine model of acute immunologic rejection. CA-loaded human myoblasts were grafted in the tibialis anterior of C57BL/6 mice. NMR imaging was repeated regularly until 3 months post-transplantation. Label outcome was evaluated by the size of the labeled area and its relative contrast to surrounding tissue. In parallel, immunohistochemistry assessed the presence of human cells. Data analysis revealed that CA-induced signal changes did not strictly reflect the graft status. Gd-DTPA label disappeared rapidly yet with a 2-week delay compared with immunohistochemical evaluation. More problematically, SPIO label was still visible after 3 months, grossly overestimating cell survival (<1 week). SPIOs should be used with extreme caution to evaluate the presence of grafted cells in vivo and could hardly be recommended for the long-term monitoring of cell transplantation protocols.

  18. Origin and correction of magnetic field inhomogeneity at the interface in biphasic NMR samples.

    PubMed

    Martin, Bryan T; Chingas, G C; McDougal, Owen M

    2012-05-01

    The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Linewidths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software.

  19. Saffron Samples of Different Origin: An NMR Study of Microwave-Assisted Extracts

    PubMed Central

    Sobolev, Anatoly P.; Carradori, Simone; Capitani, Donatella; Vista, Silvia; Trella, Agata; Marini, Federico; Mannina, Luisa

    2014-01-01

    An NMR analytical protocol is proposed to characterize saffron samples of different geographical origin (Greece, Spain, Hungary, Turkey and Italy). A microwave-assisted extraction procedure was developed to obtain a comparable recovery of metabolites with respect to the ISO specifications, reducing the solvent volume and the extraction time needed. Metabolite profiles of geographically different saffron extracts were compared showing significant differences in the content of some metabolites. PMID:28234327

  20. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.

    PubMed

    Mandal, Abhishek; Boatz, Jennifer C; Wheeler, Travis B; van der Wel, Patrick C A

    2017-02-22

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  1. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Label Calculation...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called...

  2. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  3. Quantitative, dynamic and noninvasive determination of skeletal muscle perfusion in mouse leg by NMR arterial spin-labeled imaging.

    PubMed

    Bertoldi, Didier; Loureiro de Sousa, Paulo; Fromes, Yves; Wary, Claire; Carlier, Pierre G

    2008-11-01

    Because mouse may relatively easily be genetically tailored to develop equivalent of human muscular diseases or to present controlled alterations of mechanisms involved in vasoregulation, it has become the prevalent species to explore such questions. However, the very small size of the animals represents a serious limitation when evaluating the functional consequences of these genetic manipulations. In this context, the recourse to arterial spin labeling (ASL) nuclear magnetic resonance (NMR) methods in which arterial water spins act as an endogenous and freely diffusible tracer of perfusion is tempting but challenging. This article shows that despite the small size of the animal, mouse muscle perfusion may be measured, at rest and in conditions of reactive hyperemia, using saturation inversion recovery sequence, a pulsed ASL variant, combined with NMR imaging. Baseline perfusion values in the mouse leg were 17+/-11 ml.min(-1).100 g(-1) (n=11) and were comparable to microsphere data from the literature. Under ischemia, leg perfusion was 1.2+/-9.3 ml.min(-1).100 g(-1) (n=11). The difference observed between basal and ischemic measurements was statistically different (P=.0001). The temporal pattern of hyperemia in mouse muscle was coherent with previously published measurements in humans and in rats. The mean peak perfusion was 62+/-24 ml.min(-1).100 g(-1) (n=6) occurring 48+/-27 s after the end of occlusion. In conclusion, this study demonstrated the ability of ASL combined to NMR imaging to quantify skeletal muscle perfusion in mice legs, both at rest and dynamically.

  4. Evaluation of Phosphorus Characterization in Broiler Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared t...

  5. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers.

    PubMed

    Lu, George J; Opella, Stanley J

    2013-08-28

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical π/2 Z-rotational symmetry that confers the "motion adapted" property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence "Motion-adapted SAMPI4" and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2π nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments.

  6. NIST-Traceable NMR Method to Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-1 Feedstock Samples

    DTIC Science & Technology

    2014-06-01

    ECBC-TR-1251 NIST-TRACEABLE NMR METHOD TO DETERMINE QUANTITATIVE WEIGHT PERCENTAGE PURITY OF NITROGEN MUSTARD HN-1 FEEDSTOCK SAMPLES David J...Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-1 Feedstock Samples 5a. CONTRACT NUMBER W911SR-10-D-0004 5b. GRANT NUMBER 5c...using NMR with proton detection is described to determine the weight percent purity of feedstock samples of nitrogen mustard , HN-1. 15. SUBJECT

  7. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the

  8. Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit

    PubMed Central

    Kurauskas, Vilius; Crublet, Elodie; Macek, Pavel; Kerfah, Rime; Gauto, Diego F.; Boisbouvier, Jérôme; Schanda, Paul

    2016-01-01

    Solid-state NMR spectroscopy allows the characterization of structure, interactions and dynamics of insoluble and/or very large proteins. Sensitivity and resolution are often major challenges for obtaining atomic-resolution information, in particular for very large protein complexes. Here we show that the use of deuterated, specifically CH3-labelled proteins result in significant sensitivity gains compared to previously employed CHD2 labelling, while line widths only marginally increase. We apply this labelling strategy to a 468 kDa-large dodecameric aminopeptidase, TET2, and the 1.6 MDa-large 50S ribosome subunit of Thermus thermophilus. PMID:27385633

  9. RF microcoil design for practical NMR of mass-limited samples.

    PubMed

    Subramanian, R; Lam, M M; Webb, A G

    1998-07-01

    This paper addresses practical issues involved in obtaining high resolution 1H NMR spectra from samples containing less than 10 nmol. Solenoidal microcoils have been constructed to: (a) assess the effects of magnetic susceptibility mismatches at 500 MHz, (b) increase the concentration sensitivity of microcoil probes, (c) incorporate a lock channel for 2D experiments and long 1D acquisitions, and (d) assess the total amount of the sample required (with respect to the coil length) to avoid line broadening due to edge effects. Compared to previously published microcoil results, sample volumes have been increased by a factor of 20 with a concomitant decrease in the required concentration (5-20 mM). Perfluorocarbon susceptibility matching remained effective at 500 MHz, allowing acquisition of high resolution NMR spectra. A lock channel has also been successfully incorporated in microcoil probes. The limits of detection for sucrose with a 10 min acquisition time were found to be 17.8 and 34.1 pmol for the single and double resonance coils, respectively. A sample length of approximately 10 times than that of the coil was required to avoid magnetic susceptibility artifacts.

  10. RF Microcoil Design for Practical NMR of Mass-Limited Samples

    NASA Astrophysics Data System (ADS)

    Subramanian, R.; Lam, M. M.; Webb, A. G.

    1998-07-01

    This paper addresses practical issues involved in obtaining high resolution1H NMR spectra from samples containing less than 10 nmol. Solenoidal microcoils have been constructed to: (a) assess the effects of magnetic susceptibility mismatches at 500 MHz, (b) increase the concentration sensitivity of microcoil probes, (c) incorporate a lock channel for 2D experiments and long 1D acquisitions, and (d) assess the total amount of the sample required (with respect to the coil length) to avoid line broadening due to edge effects. Compared to previously published microcoil results, sample volumes have been increased by a factor of 20 with a concomitant decrease in the required concentration (5-20 mM). Perfluorocarbon susceptibility matching remained effective at 500 MHz, allowing acquisition of high resolution NMR spectra. A lock channel has also been successfully incorporated in microcoil probes. The limits of detection for sucrose with a 10 min acquisition time were found to be 17.8 and 34.1 pmol for the single and double resonance coils, respectively. A sample length of approximately 10 times than that of the coil was required to avoid magnetic susceptibility artifacts.

  11. High-Resolution Microcoil ^1H-NMR for Mass-Limited, Nanoliter-Volume Samples

    NASA Astrophysics Data System (ADS)

    Olson, Dean L.; Peck, Timothy L.; Webb, Andrew G.; Magin, Richard L.; Sweedler, Jonathan V.

    1995-12-01

    High-resolution, proton nuclear magnetic resonance (NMR) spectra of 5-nanoliter samples have been obtained with much higher mass sensitivity [signal-to-noise ratio (S/N) per micromole] than with traditional methods. Arginine and sucrose show a mean sensitivity enhancement of 130 compared to 278-microliter samples run in a 5-millimeter tube in a conventional, commercial probe. This can reduce data acquisition time by a factor of >16,000 or reduce the needed sample mass by a factor of about 130. A linewidth of 0.6 hertz was achieved on a 300-megahertz spectrometer by matching the magnetic susceptibility of the medium that surrounds the detection cell to that of the copper coil. For sucrose, the limit of detection (defined at S/N = 3) was 19 nanograms (56 picomoles) for a 1-minute data acquisition. This technique should prove useful with mass-limited samples and for use as a detector in capillary separations.

  12. Synthesis, dynamic NMR characterization and XRD studies of novel N,N’-substituted piperazines for bioorthogonal labeling

    PubMed Central

    Pretze, Marc; Gott, Matthew; Köckerling, Martin

    2016-01-01

    Novel, functionalized piperazine derivatives were successfully synthesized and fully characterized by 1H/13C/19F NMR, MS, elemental analysis and lipophilicity. All piperazine compounds occur as conformers resulting from the partial amide double bond. Furthermore, a second conformational shape was observed for all nitro derivatives due to the limited change of the piperazine chair conformation. Therefore, two coalescence points were determined and their resulting activation energy barriers were calculated using 1H NMR. To support this result, single crystals of 1-(4-nitrobenzoyl)piperazine (3a, monoclinic, space group C2/c, a = 24.587(2), b = 7.0726(6), c = 14.171(1) Å, β = 119.257(8)°, V = 2149.9(4) Å3, Z = 4, D obs = 1.454 g/cm3) and the alkyne derivative 4-(but-3-yn-1-yl)-1-(4-fluorobenzoyl)piperazine (4b, monoclinic, space group P21/n, a = 10.5982(2), b = 8.4705(1), c = 14.8929(3) Å, β = 97.430(1)°, V = 1325.74(4) Å3, Z = 4, D obs = 1.304 g/cm3) were obtained from a saturated ethyl acetate solution. The rotational conformation of these compounds was also verified by XRD. As proof of concept for future labeling purposes, both nitropiperazines were reacted with [18F]F–. To test the applicability of these compounds as possible 18F-building blocks, two biomolecules were modified and chosen for conjugation either using the Huisgen-click reaction or the traceless Staudinger ligation. PMID:28144316

  13. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  14. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  15. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  16. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  17. Sample-Induced RF Perturbations in High-Field, High-Resolution NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Brereton, Ian M.; Zelaya, Fernando O.; Roffmann, Wolfgang U.; Doddrell, David M.

    1997-05-01

    Conducting dielectric samples are often used in high-resolution experiments at high field. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred. Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect.

  18. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables.

    PubMed

    Miglietta, M L; Lamanna, R

    2006-07-01

    Carotenoids are linear C40 tetraterpenoid hydrocarbons and represent a wide category of natural pigments. They are components of the pigment system of chloroplasts and are involved in the primary light absorption and the photon canalization of photosynthesis. Moreover, they also behave as quenchers of singlet oxygen, protecting cells and organisms against lipid peroxidation. Carotenoids have a strong lipophilic character and are usually analyzed in organic solvents. However, because of their biological activity, the characterization of these compounds in an aqueous environment or in the natural matrix is very important. One of the most important dietary carotenoids is beta-carotene, which has been extensively studied both in vivo and in model systems, but because of the low concentration and strong interaction with the biological matrix, beta-carotene has never been observed by NMR in solid aqueous samples.In the present work, a model system has been developed for the detection and identification of beta-carotene in solid aqueous samples by 1H HR-MAS NMR. The efficiency of the model has led to the identification of beta-carotene in a raw vegetable matrix.

  19. Development and characterization of an NMR microsensor for nanoliter sample volumes

    NASA Astrophysics Data System (ADS)

    Dechow, Joern; Forchel, Alfred W. B.; Lanz, Titus; Haase, Axel

    1999-11-01

    The fabrication and performance of a micro-sensor for NMR- spectroscopy of nanoliter-sample volumes is presented. On both glass and GaAs-substrate. Planar coils with inner diameter from 50 micrometers to 400 micrometers including a coplanar wave-guide leading to the bonding pads were fabricated. A chamber for the liquid samples of 200 - 500 micrometers diameter was etched isotropically on the backside of the substrate, located under the coil. In initial experiments, the spectrum of a 20 - 50 nl-volumes of pure silicon-oil is analyzed in a 1H-NMR experiment in a 11T spectrometer (500 MHz). The microcoil serves as a receiver, while the RF-power was transmitted by a macroscopic coil perpendicular to the receiver coil. We observe characteristic lines from the silicon-oil spectrum which clearly indicates the high sensitivity of the microcoil. Additional signal from different materials in the experiment are suppressed by gradient fields and an adequate design of the sensor.

  20. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    PubMed Central

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  1. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  2. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Mak-Jurkauskas, Melody L; Matsuki, Yoh; Bajaj, Vikram S; van der Wel, Patrick C A; Derocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R; Temkin, Richard J; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here-which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole-circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100K which shows 30 Hz linewidths.

  3. Evaluation of phosphorus characterization in broiler ileal digesta, manure, and litter samples: (31)P-NMR vs. HPLC.

    PubMed

    Leytem, A B; Kwanyuen, P; Plumstead, P W; Maguire, R O; Brake, J

    2008-01-01

    Using 31-phosphorus nuclear magnetic resonance spectroscopy ((31)P-NMR) to characterize phosphorus (P) in animal manures and litter has become a popular technique in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with (31)P-NMR compared to other accepted methods such as high performance liquid chromatography (HPLC). To evaluate the use of (31)P-NMR to quantify myo-inositol hexakisphosphate (phytate) in ileal digesta, manure, and litter from broilers, we compared results obtained from both (31)P-NMR and a more traditional HPLC method. The quantification of phytate in all samples was very consistent between the two methods, with linear regressions having slopes ranging from 0.94 to 1.07 and r(2) values of 0.84 to 0.98. We compared the concentration of total monoester P determined with (31)P-NMR with the total inositol P content determined with HPLC and found a strong linear relationship between the two measurements having slopes ranging from 0.91 to 1.08 and r(2) values of 0.73 to 0.95. This suggests that (31)P-NMR is a very reliable method for quantifying P compounds in manure/litter samples.

  4. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR

    PubMed Central

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H.; Blocker, Ariel J.

    2015-01-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. PMID:26439285

  5. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi.

    PubMed

    Werner, I; Bacher, A; Eisenreich, W

    1997-10-10

    The biosynthesis of gallic acid was studied in cultures of the fungus Phycomyces blakesleeanus and in leaves of the tree Rhus typhina. Fungal cultures were grown with [1-13C]glucose or with a mixture of unlabeled glucose and [U-13C6]glucose. Young leaves of R. typhina were kept in an incubation chamber and were supplied with a solution containing a mixture of unlabeled glucose and [U-13C6]glucose via the leaf stem. Isotope distributions in isolated gallic acid and aromatic amino acids were analyzed by one-dimensional 1H and 13C NMR spectroscopy. A quantitative analysis of the complex isotopomer composition of metabolites was obtained by deconvolution of the 13C13C coupling multiplets using numerical simulation methods. This approach required the accurate analysis of heavy isotope chemical shift effects in a variety of different isotopomers and the analysis of long range 13C13C coupling constants. The resulting isotopomer patterns were interpreted using a retrobiosynthetic approach based on a comparison between the isotopomer patterns of gallic acid and tyrosine. The data show that both in the fungus and in the plant all carbon atoms of gallic acid are biosynthetically equivalent to carbon atoms of shikimate. Notably, the carboxylic group of gallic acid is derived from the carboxylic group of an early intermediate of the shikimate pathway and not from the side chain of phenylalanine or tyrosine. It follows that the committed precursor of gallic acid is an intermediate of the shikimate pathway prior to prephenate or arogenate, most probably 5-dehydroshikimate. A formation of gallic acid via phenylalanine, the lignin precursor, caffeic acid, or 3,4, 5-trihydroxycinnamic acid can be ruled out as major pathways in the fungus and in young leaves of R. typhina. The incorporation of uniformly 13C-labeled glucose followed by quantitative NMR analysis of isotopomer patterns is suggested as a general method for biosynthetic studies. As shown by the plant experiment, this

  6. A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Tycko, Robert; Hu, Kan-Nian

    2010-08-01

    We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly 15N, 13C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of 15N/ 13C α crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly-labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomol. NMR, 34 (2006) 75-87) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal.

  7. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  8. Application of multiplexed cysteine-labeled complex protein sample for 2D electrophoretic gel alignment.

    PubMed

    Haimi, Perttu; Sikorskaite-Gudziuniene, Sidona; Baniulis, Danas

    2015-06-01

    The analysis of cellular subproteomes by 2DE is hampered by the difficulty of aligning gel images from samples that have very different protein composition. Here, we present a sensitive and cost-effective fluorescent labeling method for analyzing protein samples that is not dependent on their composition. The alignment is guided by inclusion of a complex mixture of proteins that is co-run with the sample. Maleimide-conjugated fluorescent dyes Dy-560 and Dy-635 are used to label the cysteine residues of the sample of interest and the alignment standard, respectively. The two differently labeled mixtures are then combined and separated on a 2D gel and, after selective fluorescence detection, an unsupervised image registration process is used to align the protein patters. In a pilot study, this protocol significantly improved the accuracy of alignment of nuclear proteins with total cellular proteins.

  9. The Effect of Inhomogeneous Sample Susceptibility on Measured Diffusion Anisotropy Using NMR Imaging

    NASA Astrophysics Data System (ADS)

    Trudeau, J. D.; Dixon, W. T.; Hawkins, J.

    1995-07-01

    Water diffusion measurements in white matter of freshly excised pig spinal cord and in parenchyma of fresh celery (excluding the fibers along the edge of the stalk) were performed using NMR at 200 MHz. In white matter of pig spinal cord, the measured diffusion coefficient is anisotropic and independent of sample orientation with respect to the magnetic field, In celery parenchyma, diffusion is isotropic and independent of orientation in the magnetic field when using a diffusion sequence that gives results independent of self-induced magnetic-held gradients. However, when the standard diffusion pulse sequence that gives results dependent upon self-induced magnetic-field gradients is used, diffusion in celery appears isotropic when the stalk is oriented parallel to the magnetic field but anisotropic when oriented perpendicular. Susceptibility variations leading to anisotropic self-induced magnetic-field gradients approximately 3 kHz/cm in magnitude when the celery is oriented perpendicular to the magnetic field can explain this apparent anisotropic diffusion. A study of the apparent diffusion coefficient (ADC) in celery as a function of diffusion times ranging from 8 to 22 ms indicates that the motion is at most only slightly restricted. Therefore, although the effect is not seen in all types of samples, one must be aware that self-induced gradients may affect the ADC and may cause isotropic diffusion to appear anisotropic. In addition, NMR experiments that change diffusion-sensitizing gradient timings to study restricted diffusion change the effects of the self-induced gradients as well as the effect of barriers on the ADC, complicating interpretation.

  10. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Foreign canned or packaged products... MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION IMPORTED PRODUCTS § 327.12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples...

  11. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle

    PubMed Central

    Thakur, Chandar S.; Sama, Jacob N.; Jackson, Melantha E.; Chen, Bin

    2010-01-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a 13C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4′ carbon position, such that the C2′ and C3′ positions suffer from multiplet splitting but the C5′ position remains singlet and the C1′ position shows a small amount of residual C1′–C2′ coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with 13C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5′ position (~90%) that makes it particularly attractive for NMR applications involving CH2-TROSY modules without the need for decoupling the C4′ carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed

  12. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  13. Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register.

    PubMed

    Frederick, Kendra K; Michaelis, Vladimir K; Caporini, Marc A; Andreas, Loren B; Debelouchina, Galia T; Griffin, Robert G; Lindquist, Susan

    2017-04-04

    The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a β-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often determined by experiments that probe long-range heteronuclear contacts for fibrils templated from a 1:1 mixture of (13)C- and (15)N-labeled monomers. However, for Sup35NM, like many large proteins, chemical shift degeneracy limits the usefulness of this approach. Segmental and specific isotopic labeling reduce degeneracy, but experiments to measure long-range interactions are often too insensitive. To limit degeneracy and increase experimental sensitivity, we combined specific and segmental isotopic labeling schemes with dynamic nuclear polarization (DNP) NMR. Using this combination, we examined an amyloid form of Sup35NM that does not have a parallel in-register structure. The combination of a small number of specific labels with DNP NMR enables determination of architectural information about polymeric protein systems.

  14. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  15. Chemo-enzymatic synthesis of selectively ¹³C/¹⁵N-labeled RNA for NMR structural and dynamics studies.

    PubMed

    Alvarado, Luigi J; Longhini, Andrew P; LeBlanc, Regan M; Chen, Bin; Kreutz, Christoph; Dayie, T Kwaku

    2014-01-01

    RNAs are an important class of cellular regulatory elements, and they are well characterized by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy in their folded or bound states. However, the apo or unfolded states are more difficult to characterize by either method. Particularly, effective NMR spectroscopy studies of RNAs in the past were hampered by chemical shift overlap of resonances and associated rapid signal loss due to line broadening for RNAs larger than the median size found in the PDB (~25 nt); most functional riboswitches are bigger than this median size. Incorporation of selective site-specific (13)C/(15)N-labeled nucleotides into RNAs promises to overcome this NMR size limitation. Unlike previous isotopic enrichment methods such as phosphoramidite, de novo, uniform-labeling, and selective-biomass approaches, this newer chemical-enzymatic selective method presents a number of advantages for producing labeled nucleotides over these other methods. For example, total chemical synthesis of nucleotides, followed by solid-phase synthesis of RNA using phosphoramidite chemistry, while versatile in incorporating isotope labels into RNA at any desired position, faces problems of low yields (<10%) that drop precipitously for oligonucleotides larger than 50 nt. The alternative method of de novo pyrimidine biosynthesis of NTPs is also a robust technique, with modest yields of up to 45%, but it comes at the cost of using 16 enzymes, expensive substrates, and difficulty in making some needed labeling patterns such as selective labeling of the ribose C1' and C5' and the pyrimidine nucleobase C2, C4, C5, or C6. Biomass-produced, uniformly or selectively labeled NTPs offer a third method, but suffer from low overall yield per labeled input metabolite and isotopic scrambling with only modest suppression of (13)C-(13)C couplings. In contrast to these four methods, our current chemo-enzymatic approach overcomes most of these shortcomings and allows

  16. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  17. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.

    PubMed

    Wang, Jing; Zhang, Zhengfeng; Zhao, Weijing; Wang, Liying; Yang, Jun

    2016-05-09

    The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using (1) H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical (1) H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l(-1) of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of (1) H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  19. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App....

  20. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App....

  1. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA

    PubMed Central

    Oberg, Ann L.; Mahoney, Douglas W.; Eckel-Passow, Jeanette E.; Malone, Christopher J.; Wolfinger, Russell D.; Hill, Elizabeth G.; Cooper, Leslie T.; Onuma, Oyere K.; Spiro, Craig; Therneau, Terry M.; Bergen, H. Robert

    2008-01-01

    Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation and useful visualization tools are demonstrated via case study of complex biological samples assessed using the iTRAQ™ relative labeling protocol. PMID:18173221

  2. 40 CFR Appendix Vi to Part 600 - Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel Cell Vehicle Label ER06JY11.051 G. Natural Gas Vehicle Label ER06JY11.052 H. Plug-in Hybrid... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Labels and Style... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  3. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    SciTech Connect

    Pikulski, M. Shiroka, T.; Ott, H.-R.; Mesot, J.

    2014-09-15

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  4. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei.

  5. A facile method for expression and purification of 15N isotope-labeled human Alzheimer's β-amyloid peptides from E. coli for NMR-based structural analysis

    PubMed Central

    Armand, Tara; Ball, K. Aurelia; Chen, Anna; Pelton, Jeffrey G.; Wemmer, David E.; Head-Gordon, Teresa

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of people worldwide. AD is characterized by the presence of extracellular plaques composed of aggregated/oligomerized β-amyloid peptides with Aβ42 peptide representing a major isoform in the senile plaques. Given the pathological significance of Aβ42 in the progression of AD, there is considerable interest in understanding the structural ensembles for soluble monomer and oligomeric forms of Aβ42. This report describes an efficient method to express and purify high quality 15N isotope-labeled Aβ42 for structural studies by NMR. The protocol involves utilization of an auto induction system with 15N isotope labeled medium, for high-level expression of Aβ42 as a fusion with IFABP. After the over-expression of the 15N isotope-labeled IFABP-Aβ42 fusion protein in the inclusion bodies, pure 15N isotope-labeled Aβ42 peptide is obtained following a purification method that is streamlined and improved from the method originally developed for the isolation of unlabeled Aβ42 peptide (Garai et al., 2009). We obtain a final yield of ∼6 mg/L culture for 15N isotope-labeled Aβ42 peptide. Mass spectrometry and 1H–15N HSQC spectra of monomeric Aβ42 peptide validate the uniform incorporation of the isotopic label. The method described here is equally applicable for the uniform isotope labeling with 15N and 13C in Aβ42 peptide as well as its other variants including any Aβ42 peptide mutants. PMID:26231074

  6. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K

    PubMed Central

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H–13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H–13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H–13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr–Purcell experiments and numerical simulations of Carr–Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C–13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils. PMID:22743540

  7. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 and Later Model...

  8. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 Through 2012...

  9. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 and Later Model...

  10. Convergent Synthesis of a Deuterium Labeled Serine Dipeptide Lipid for Analysis of Biological Samples.

    PubMed

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-03-08

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-L-serine, (3S)-L-serine] isolated from Porphyromonas gingivalis,(1) in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria.

  11. Robust and low cost uniform (15)N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications.

    PubMed

    Meola, Annalisa; Deville, Célia; Jeffers, Scott A; Guardado-Calvo, Pablo; Vasiliauskaite, Ieva; Sizun, Christina; Girard-Blanc, Christine; Malosse, Christian; van Heijenoort, Carine; Chamot-Rooke, Julia; Krey, Thomas; Guittet, Eric; Pêtres, Stéphane; Rey, Félix A; Bontems, François

    2014-10-01

    Nuclear magnetic resonance spectroscopy is a powerful tool to study structural and functional properties of proteins, provided that they can be enriched in stable isotopes such as (15)N, (13)C and (2)H. This is usually easy and inexpensive when the proteins are expressed in Escherichiacoli, but many eukaryotic (human in particular) proteins cannot be produced this way. An alternative is to express them in insect cells. Labeled insect cell growth media are commercially available but at prohibitive prices, limiting the NMR studies to only a subset of biologically important proteins. Non-commercial solutions from academic institutions have been proposed, but none of them is really satisfying. We have developed a (15)N-labeling procedure based on the use of a commercial medium depleted of all amino acids and supplemented with a (15)N-labeled yeast autolysate for a total cost about five times lower than that of the currently available solutions. We have applied our procedure to the production of a non-polymerizable mutant of actin in Sf9 cells and of fragments of eukaryotic and viral membrane fusion proteins in S2 cells, which typically cannot be produced in E. coli, with production yields comparable to those obtained with standard commercial media. Our results support, in particular, the putative limits of a self-folding domain within a viral glycoprotein of unknown structure.

  12. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles.

    PubMed

    Guo, Yongming; Zhang, Yi; Shao, Huawu; Wang, Zhuo; Wang, Xuefei; Jiang, Xingyu

    2014-09-02

    A simple and label-free colorimetric method for cadmium ions (Cd(2+)) detection using unmodified gold nanoparticles (AuNPs) is reported. The unmodified AuNPs easily aggregate in a high concentration of NaCl solution, but the presence of glutathione (GSH) can prevent the salt-induced aggregation of AuNPs. When Cd(2+) is added to the stable mixture of AuNPs, GSH, and NaCl, Cd(2+) can coordinate with 4× GSH as a spherical shaped complex, which decreases the amount of free GSH on the surface of gold nanoparticles to weaken the stability of AuNPs, and AuNPs will easily aggregate in high-salt conditions. On the basis of the mechanism, we design a simple, label-free colorimetric method using AuNPs accompanied by GSH in a high-salt environment to detect Cd(2+) in water and digested rice samples.

  13. Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data.

    PubMed

    Ying, Jinfa; Delaglio, Frank; Torchia, Dennis A; Bax, Ad

    2016-11-19

    Implementation of a new algorithm, SMILE, is described for reconstruction of non-uniformly sampled two-, three- and four-dimensional NMR data, which takes advantage of the known phases of the NMR spectrum and the exponential decay of underlying time domain signals. The method is very robust with respect to the chosen sampling protocol and, in its default mode, also extends the truncated time domain signals by a modest amount of non-sampled zeros. SMILE can likewise be used to extend conventional uniformly sampled data, as an effective multidimensional alternative to linear prediction. The program is provided as a plug-in to the widely used NMRPipe software suite, and can be used with default parameters for mainstream application, or with user control over the iterative process to possibly further improve reconstruction quality and to lower the demand on computational resources. For large data sets, the method is robust and demonstrated for sparsities down to ca 1%, and final all-real spectral sizes as large as 300 Gb. Comparison between fully sampled, conventionally processed spectra and randomly selected NUS subsets of this data shows that the reconstruction quality approaches the theoretical limit in terms of peak position fidelity and intensity. SMILE essentially removes the noise-like appearance associated with the point-spread function of signals that are a default of five-fold above the noise level, but impacts the actual thermal noise in the NMR spectra only minimally. Therefore, the appearance and interpretation of SMILE-reconstructed spectra is very similar to that of fully sampled spectra generated by Fourier transformation.

  14. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.

  15. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms.

  16. Development of a dual cell, flow-injection sample holder, and NMR probe for comparative ligand-binding studies

    NASA Astrophysics Data System (ADS)

    Marquardsen, Thorsten; Hofmann, Martin; Hollander, Johan G.; Loch, Caroline M. P.; Kiihne, Suzanne R.; Engelke, Frank; Siegal, Gregg

    2006-09-01

    NMR based ligand screening is becoming increasingly important for the very early stages of drug discovery. We have proposed a method that makes highly efficient use of a single sample of a scarce target, or one with poor or limited solubility, to screen an entire compound library. This comparative method is based on immobilizing the target for the screening procedure. In order to support the method, a dual cell, flow injection probe with a single receiver coil has been constructed. The flow injection probe has been mated to a single high performance pump and sample handling system to enable the automated analysis of large numbers of compound mixes for binding to the target. The probe, having an 8 mm 1H/ 2H dual tuned coil and triple axis gradients, is easily shimmed and yields NMR spectra of comparable quality to a standard 5 mm high-resolution probe. The lineshape in the presence of a solid support is identical to that in glass NMR tubes in a 5 mm probe. Control spectra of each cell are identical and well separated, while ligand binding in a complex mixture can be readily detected in 20-30 min, thus paving the way for use of the probe for actual drug discovery efforts.

  17. Membrane position of a basic aromatic peptide that sequesters phosphatidylinositol 4,5 bisphosphate determined by site-directed spin labeling and high-resolution NMR.

    PubMed

    Ellena, Jeffrey F; Moulthrop, Jason; Wu, Jing; Rauch, Michelle; Jaysinghne, Sajith; Castle, J David; Cafiso, David S

    2004-11-01

    The membrane interactions and position of a positively charged and highly aromatic peptide derived from a secretory carrier membrane protein (SCAMP) are examined using magnetic resonance spectroscopy and several biochemical methods. This peptide (SCAMP-E) is shown to bind to membranes containing phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2, and sequester PI(4,5)P2 within the plane of the membrane. Site-directed spin labeling of the SCAMP-E peptide indicates that the position and structure of membrane bound SCAMP-E are not altered by the presence of PI(4,5)P2, and that the peptide backbone is positioned within the lipid interface below the level of the lipid phosphates. A second approach using high-resolution NMR was used to generate a model for SCAMP-E bound to bicelles. This approach combined oxygen enhancements of nuclear relaxation with a computational method to dock the SCAMP-E peptide at the lipid interface. The model for SCAMP generated by NMR is consistent with the results of site-directed spin labeling and places the peptide backbone in the bilayer interfacial region and the aromatic side chains within the lipid hydrocarbon region. The charged side chains of SCAMP-E lie well within the interface with two arginine residues lying deeper than a plane defined by the position of the lipid phosphates. These data suggest that SCAMP-E interacts with PI(4,5)P2 through an electrostatic mechanism that does not involve specific lipid-peptide contacts. This interaction may be facilitated by the position of the positively charged side chains on SCAMP-E within a low-dielectric region of the bilayer interface.

  18. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    PubMed

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

  19. Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data.

    PubMed

    Hyberts, Sven G; Takeuchi, Koh; Wagner, Gerhard

    2010-02-24

    The Fourier transform has been the gold standard for transforming data from the time domain to the frequency domain in many spectroscopic methods, including NMR spectroscopy. While reliable, it has the drawback that it requires a grid of uniformely sampled data points, which is not efficient for decaying signals, and it also suffers from artifacts when dealing with nondecaying signals. Over several decades, many alternative sampling and transformation schemes have been proposed. Their common problem is that relative signal amplitudes are not well-preserved. Here we demonstrate the superior performance of a sine-weighted Poisson-gap distribution sparse-sampling scheme combined with forward maximum entropy (FM) reconstruction. While the relative signal amplitudes are well-preserved, we also find that the signal-to-noise ratio is enhanced up to 4-fold per unit of data acquisition time relative to traditional linear sampling.

  20. Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled "universal" reference sample.

    PubMed

    Qian, Wei-Jun; Liu, Tao; Petyuk, Vladislav A; Gritsenko, Marina A; Petritis, Brianne O; Polpitiya, Ashoka D; Kaushal, Amit; Xiao, Wenzhong; Finnerty, Celeste C; Jeschke, Marc G; Jaitly, Navdeep; Monroe, Matthew E; Moore, Ronald J; Moldawer, Lyle L; Davis, Ronald W; Tompkins, Ronald G; Herndon, David N; Camp, David G; Smith, Richard D

    2009-01-01

    The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope (18)O-labeled "universal" reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the (18)O-labeled "universal" reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on (16)O/(18)O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free (16)O-MS intensity data extracted from the same data sets. The results showed that the (18)O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the (18)O-reference for accurate quantitation makes this

  1. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples.

    PubMed

    van Leeuwen, Sander S; Schoemaker, Ruud J W; Gerwig, Gerrit J; van Leusen-van Kan, Ellen J M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2014-08-01

    Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups.

  2. High-field ELDOR-detected NMR study of a nitroxide radical in disordered solids: Towards characterization of heterogeneity of microenvironments in spin-labeled systems

    NASA Astrophysics Data System (ADS)

    Nalepa, Anna; Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2014-05-01

    The combination of high-field EPR with site-directed spin-labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in probing the polarity and proticity characteristics of protein/matrix systems. This information is concluded from the principal components of the nitroxide Zeeman (g), nitrogen hyperfine (A) and quadrupole (P) tensors of the spin labels attached to specific sites. Recent multi-frequency high-field EPR studies underlined the complexity of the problem to treat the nitroxide microenvironment in proteins adequately due to inherent heterogeneities which result in several principal x-components of the nitroxide g-tensor. Concomitant, but distinctly different nitrogen hyperfine components could, however, not be determined from high-field cw EPR experiments owing to the large intrinsic EPR linewidth in fully protonated guest/host systems. It is shown in this work that, using the W-band (95 GHz) ELDOR- (electron-electron double resonance) detected NMR (EDNMR) method, different principal nitrogen hyperfine, Azz, and quadrupole, Pzz, tensor values of a nitroxide radical in glassy 2-propanol matrix can be measured with high accuracy. They belong to nitroxides with different hydrogen-bond situations. The satisfactory resolution and superior sensitivity of EDNMR as compared to the standard ENDOR (electron-nuclear double resonance) method are demonstrated.

  3. High-field ELDOR-detected NMR study of a nitroxide radical in disordered solids: towards characterization of heterogeneity of microenvironments in spin-labeled systems.

    PubMed

    Nalepa, Anna; Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2014-05-01

    The combination of high-field EPR with site-directed spin-labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in probing the polarity and proticity characteristics of protein/matrix systems. This information is concluded from the principal components of the nitroxide Zeeman (g), nitrogen hyperfine (A) and quadrupole (P) tensors of the spin labels attached to specific sites. Recent multi-frequency high-field EPR studies underlined the complexity of the problem to treat the nitroxide microenvironment in proteins adequately due to inherent heterogeneities which result in several principal x-components of the nitroxide g-tensor. Concomitant, but distinctly different nitrogen hyperfine components could, however, not be determined from high-field cw EPR experiments owing to the large intrinsic EPR linewidth in fully protonated guest/host systems. It is shown in this work that, using the W-band (95GHz) ELDOR- (electron-electron double resonance) detected NMR (EDNMR) method, different principal nitrogen hyperfine, Azz, and quadrupole, Pzz, tensor values of a nitroxide radical in glassy 2-propanol matrix can be measured with high accuracy. They belong to nitroxides with different hydrogen-bond situations. The satisfactory resolution and superior sensitivity of EDNMR as compared to the standard ENDOR (electron-nuclear double resonance) method are demonstrated.

  4. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  5. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids.

    PubMed

    Knief, Claudia; Altendorf, Karlheinz; Lipski, André

    2003-11-01

    A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.

  6. Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR.

    PubMed

    Louša, Petr; Nedozrálová, Hana; Župa, Erik; Nováček, Jiří; Hritz, Jozef

    2017-04-01

    Human tyrosine hydroxylase 1 (hTH1) activity is regulated by phosphorylation of its regulatory domain (RD-hTH1) and by an interaction with the 14-3-3 protein. The RD-hTH1 is composed of a structured region (66-169) preceded by an intrinsically disordered protein region (IDP, hTH1_65) containing two phosphorylation sites (S19 and S40) which are highly relevant for its increase in activity. The NMR signals of the IDP region in the non-phosphorylated, singly phosphorylated (pS40) and doubly phosphorylated states (pS19_pS40) were assigned by non-uniformly sampled spectra with increased dimensionality (5D). The structural changes induced by phosphorylation were analyzed by means of secondary structure propensities. The phosphorylation kinetics of the S40 and S19 by kinases PKA and PRAK respectively were monitored by non-uniformly sampled time-resolved NMR spectroscopy followed by their quantitative analysis.

  7. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    PubMed Central

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  8. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    NASA Astrophysics Data System (ADS)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  9. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor.

    PubMed

    Pagkali, Varvara; Petrou, Panagiota S; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E

    2017-02-05

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm(2)). The chip was transformed to biosensor by functionalizing the MZIs sensing arms with an OTA-ovalbumin conjugate. OTA determination was performed by pumping over the chip mixtures of calibrators or samples with anti-OTA antibody following a competitive immunoassay format. An external miniaturized spectrometer was employed to continuously record the transmission spectra of each interferometer. Spectral shifts obtained due to immunoreaction were transformed to phase shifts through Discrete Fourier Transform. The assay had a detection limit of 2.0ng/ml and a dynamic range 4.0-100ng/ml in beer samples, recoveries ranging from 90.6 to 116%, and intra- and inter-assay coefficients of variation of 9% and 14%, respectively. The results obtained with the sensor using OTA-spiked beer samples spiked were in good agreement with those obtained by an ELISA developed using the same antibody. The good analytical performance of the biosensor and the small size of the proposed chip provide for the development of a portable instrument for point-of-need determinations.

  10. Insights into cyclodextrin interactions during sample stacking using capillary isotachophoresis with on-line microcoil NMR detection.

    PubMed

    Almeida, Valentino K; Larive, Cynthia K

    2005-09-01

    On-line capillary isotachophoresis (cITP)-NMR experiments were used to probe the interactions of the pharmaceutical compounds S-alprenolol, S-atenolol, R-propranolol, R-salbutamol and S-terbutaline with beta-cyclodextrin (beta-CD) during cITP concentration. In cITP, ionic analytes are concentrated and separated on the basis of their electrophoretic mobility. Because neutral molecules have an electrophoretic mobility of zero, they are normally not concentrated or separated in electrophoretic experiments like cITP. Most of the analytes studied were concentrated by cITP sample stacking by a factor of around 300. For analytes that formed a strong inclusion complex, beta-CD co-concentrated during cITP sample stacking. However, once the focusing process was complete, a discrete diffusional boundary formed between the cITP-focused analyte band and the leading and trailing electrolyte, which restricted diffusion into and out of the analyte band.

  11. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Validation of a non-invasive blood-sampling technique for doubly-labelled water experiments.

    PubMed

    Voigt, Christian C; Helversen, Otto Von; Michener, Robert H; Kunz, Thomas H

    2003-04-01

    Two techniques for bleeding small mammals have been used in doubly-labeled water (DLW) studies, including vena puncture and the use of starved nymphal stages of hematophagous reduviid bugs (Reduviidae, Hemiptera). In this study, we tested the validity of using reduviid bugs in doubly-labeled water experiments. We found that the isotope enrichment in initial blood samples collected with bugs was significantly lower compared to isotope enrichment in blood samples obtained using vena puncture. We therefore used the desiccation method for estimating total body water (TBW) in DLW experiments because TBW calculated using the isotope dilution method was overestimated when blood samples were collected using reduviid bugs. In our validation experiment with nectar-feeding bats (Glossophaga soricina), we compared estimates of daily energy expenditure (DEE) using DLW with those derived from the energy balance method. We considered Speakman's equation (controlling for 25% fractionated water loss) as the most appropriate for our study animal and calculated DEE accordingly. On average, DEE estimated with DLW was not significantly different from the mean value obtained with the energy balance method (mean deviation 1.2%). We conclude that although bug hemolymph or intestinal liquids most likely contaminate the samples, estimates of DEE are still valid because the DLW method does not depend on absolute isotope enrichments but on the rate of isotope decrease over time. However, dilution of blood with intestinal liquids or hemolymph from a bug may lead to larger variation in DEE estimates. We also tested how the relative error of DLW estimates changed with varying assumptions about fractionation. We used three additional equations for calculating DEE in DLW experiments. The basic equation for DLW experiments published by Lifson and McClintock (LM-6) assumes no fractionation, resulted in an overestimate of DEE by 10%. Nagy's equation (N-2) controls for changes in body mass but not for

  13. NMR-Profiles of Protein Solutions

    PubMed Central

    Pedrini, Bill; Serrano, Pedro; Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt

    2014-01-01

    NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [15N,1H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly 15N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an “Assigned NMR-Profile” is generated, which visualizes the variation of the 15N–1H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions. PMID:23839514

  14. Profiling sulfation/epimerization pattern of full-length heparan sulfate by NMR following cell culture 13C-glucose metabolic labeling.

    PubMed

    Pegeot, Mathieu; Sadir, Rabia; Eriksson, Inger; Kjellen, Lena; Simorre, Jean-Pierre; Gans, Pierre; Lortat-Jacob, Hugues

    2015-02-01

    Through its ability to interact with proteins, heparan sulfate (HS) fulfills a large variety of functions. Protein binding depends on the level of HS sulfation and epimerization which are cell specific and dynamically regulated. Characterization of this molecule, however, has been restricted to oligosaccharide fragments available in large amount for structural investigation or to sulfate distribution through compositional analysis. Here we developed a (1)H-(13)C 2D NMR-based approach, directly performed on HS isolated from (13)C-labeled cells. By integrating the peak volumes measured at different chemical shifts, this non-destructive analysis allows us to determine both the sulfation and the iduronic/glucuronic profiles of the polysaccharide. Applied to wild-type and N-deacetylase/N-sulfotransferase-deficient fibroblasts as well as to epithelial cells differentiation, it also gives insights into the functional relationships existing between HS biosynthetic enzymes. This approach should be of significant interest to better understand HS changes that occur through physiologic regulations or during pathological development.

  15. Solid-State NMR Structure Determination from Diagonal-Compensated, Sparsely Nonuniform-Sampled 4D Proton–Proton Restraints

    PubMed Central

    2015-01-01

    We report acquisition of diagonal-compensated protein structural restraints from four-dimensional solid-state NMR spectra on extensively deuterated and 1H back-exchanged proteins. To achieve this, we use homonuclear 1H–1H correlations with diagonal suppression and nonuniform sampling (NUS). Suppression of the diagonal allows the accurate identification of cross-peaks which are otherwise obscured by the strong autocorrelation or whose intensity is biased due to partial overlap with the diagonal. The approach results in unambiguous spectral interpretation and relatively few but reliable restraints for structure calculation. In addition, the diagonal suppression produces a spectrum with low dynamic range for which ultrasparse NUS data sets can be readily reconstructed, allowing straightforward application of NUS with only 2% sampling density with the advantage of more heavily sampling time-domain regions of high signal intensity. The method is demonstrated here for two proteins, α-spectrin SH3 microcrystals and hydrophobin functional amyloids. For the case of SH3, suppression of the diagonal results in facilitated identification of unambiguous restraints and improvement of the quality of the calculated structural ensemble compared to nondiagonal-suppressed 4D spectra. For the only partly assigned hydrophobin rodlets, the structure is yet unknown. Applied to this protein of biological significance with large inhomogeneous broadening, the method allows identification of unambiguous crosspeaks that are otherwise obscured by the diagonal. PMID:24988008

  16. Dielectrophoretic label-free immunoassay for rare-analyte quantification in biological samples

    NASA Astrophysics Data System (ADS)

    Velmanickam, Logeeshan; Laudenbach, Darrin; Nawarathna, Dharmakeerthi

    2016-10-01

    The current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test. For example, Interleukin 6 (IL-6) levels of early oral cancer patients are <100 pg/ml and the prostate specific antigen level of the early stage of prostate cancer is about 1 ng/ml. Further, it has been reported that there are significantly less than 1 pg /mL of analytes in the early stage of tumors. Therefore, depending on the tumor type and the stage of the tumors, it is required to quantify various levels of analytes ranging from ng/ml to pg/ml. To accommodate these critical needs in the current diagnosis, there is a need for a technique that has a large dynamic range with an ability to detect extremely low levels of target analytes (label-free, high-throughput technique based on dielectrophoresis. This technique is capable of quantifying target analytes down to a few thousands of molecules (˜zmoles ).

  17. Evaluating real-time immunohistochemistry on multiple tissue samples, multiple targets and multiple antibody labeling methods

    PubMed Central

    2013-01-01

    Background Immunohistochemistry (IHC) is a well-established method for the analysis of protein expression in tissue specimens and constitutes one of the most common methods performed in pathology laboratories worldwide. However, IHC is a multi-layered method based on subjective estimations and differences in staining and interpretation has been observed between facilities, suggesting that the analysis of proteins on tissue would benefit from protocol optimization and standardization. Here we describe how the emerging and operator independent tool of real-time immunohistochemistry (RT-IHC) reveals a time resolved description of antibody interacting with target protein in formalin fixed paraffin embedded tissue. The aim was to understand the technical aspects of RT-IHC, regarding generalization of the concept and to what extent it can be considered a quantitative method. Results Three different antibodies labeled with fluorescent or radioactive labels were applied on nine different tissue samples from either human or mouse, and the results for all RT-IHC analyses distinctly show that the method is generally applicable. The collected binding curves showed that the majority of the antibody-antigen interactions did not reach equilibrium within 3 hours, suggesting that standardized protocols for immunohistochemistry are sometimes inadequately optimized. The impact of tissue size and thickness as well as the position of the section on the glass petri dish was assessed in order for practical details to be further elucidated for this emerging technique. Size and location was found to affect signal magnitude to a larger extent than thickness, but the signal from all measurements were still sufficient to trace the curvature. The curvature, representing the kinetics of the interaction, was independent of thickness, size and position and may be a promising parameter for the evaluation of e.g. biopsy sections of different sizes. Conclusions It was found that RT-IHC can be used

  18. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  19. 40 CFR Appendix Vi to Part 600 - Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years VI Appendix VI to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  20. 40 CFR Appendix Vi to Part 600 - Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years VI Appendix VI to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  1. One-step labeling of degenerative neurons in unfixed brain tissue samples using Fluoro-Jade C.

    PubMed

    Gu, Qiang; Schmued, Larry C; Sarkar, Sumit; Paule, Merle G; Raymick, Bryan

    2012-06-30

    Neurodegeneration is the underlying cause of a vast majority of neurological disorders and often a result of brain trauma, stroke, or neurotoxic insult. Here we describe a simple method for labeling degenerating neurons in unfixed brain tissue samples. This method could provide a new avenue for identifying and harvesting degenerative neurons from unfixed brain tissues for subsequent molecular analyses.

  2. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  3. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  4. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    PubMed

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  5. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion.

    PubMed

    Tuzi, S; Hasegawa, J; Kawaminami, R; Naito, A; Saitô, H

    2001-07-01

    13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.

  6. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    PubMed

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-03

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function.

  7. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics

    PubMed Central

    Campbell, Kate; Deery, Michael J.; Lilley, Kathryn S.; Ralser, Markus

    2014-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  8. Nuclear-labeling index analysis (NLIA), a software package used to perform accurate automation of cell nuclear-labeling index analysis on immunohistochemically stained rat liver samples.

    PubMed

    Xu, Y H; Sattler, G L; Edwards, H; Pitot, H C

    2000-08-01

    The nuclear labeling index (labeled nuclei/100 nuclei) and the apoptotic index (apoptotic cells/100 cells) are important parameters of cell growth and death. Automatic counting of labeled nuclei is desirable since manual counting is tedious, time-consuming, and with a greater potential for inaccuracies. A nuclear-labeling index analysis (NLIA) software package was developed in this laboratory to perform the counting process automatically and accurately. This software package consists of an application program NLIA and a set of macros for obtaining nuclear data that is used in Scion Image. It is designed to work cooperatively with Scion Image, Adobe Photoshop, and Microsoft Office. NLIA has two basic functions: building nuclear data files and analyzing nuclear data. A color image captured from an immunohistochemically stained or autoradiographic sample is loaded into NLIA. Nuclear data can be entered into the program manually, automatically, or in combination. In the manual data entering mode, NLIA acts as an object-counting tool, while in the automatic mode it acts as a data picker: picking up the data generated by Scion Image into memory. A method to enter nuclear data (both labeled nuclei and unlabeled nuclei) in the automatic mode is described. The color image is processed in Adobe Photoshop, where the interested color ranges are selected and separated. These are then analyzed in Scion Image with the help of the macros for obtaining nuclear data. Since the advanced particle analysis function is used, the counting process is automatic and rapid. Data from thousands of nuclei can be obtained within seconds. To ensure the accuracy of the analysis, a nuclear data checking and edit feature is employed in NLIA: results of computer-generated counting can be compared with the original color image by overlaying the plot of counting results onto the original color image. In this way any computer counting mistakes can be easily discovered and corrected by the operator

  9. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated.

  10. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR).

    PubMed

    Günther, M; Bock, M; Schad, L R

    2001-11-01

    Arterial spin labeling (ASL) permits quantification of tissue perfusion without the use of MR contrast agents. With standard ASL techniques such as flow-sensitive alternating inversion recovery (FAIR) the signal from arterial blood is measured at a fixed inversion delay after magnetic labeling. As no image information is sampled during this delay, FAIR measurements are inefficient and time-consuming. In this work the FAIR preparation was combined with a Look-Locker acquisition to sample not one but a series of images after each labeling pulse. This new method allows monitoring of the temporal dynamics of blood inflow. To quantify perfusion, a theoretical model for the signal dynamics during the Look-Locker readout was developed and applied. Also, the imaging parameters of the new ITS-FAIR technique were optimized using an expression for the variance of the calculated perfusion. For the given scanner hardware the parameters were: temporal resolution 100 ms, 23 images, flip-angle 25.4 degrees. In a normal volunteer experiment with these parameters an average perfusion value of 48.2 +/- 12.1 ml/100 g/min was measured in the brain. With the ability to obtain ITS-FAIR time series with high temporal resolution arterial transit times in the range of -138 - 1054 ms were measured, where nonphysical negative values were found in voxels containing large vessels.

  11. Deep UV generation and direct DNA photo-interaction by harmonic nanoparticles in labelled samples

    NASA Astrophysics Data System (ADS)

    Staedler, Davide; Magouroux, Thibaud; Passemard, Solène; Schwung, Sebastian; Dubled, Marc; Schneiter, Guillaume Stéphane; Rytz, Daniel; Gerber-Lemaire, Sandrine; Bonacina, Luigi; Wolf, Jean-Pierre

    2014-02-01

    A biophotonics approach based on the nonlinear optical process of second harmonic generation is presented and demonstrated on malignant human cell lines labelled by harmonic nanoparticles. The method enables independent imaging and therapeutic action, selecting each modality by simply tuning the excitation laser wavelength from infrared to visible. In particular, the generation of deep ultraviolet radiation at 270 nm allows direct interaction with nuclear DNA in the absence of photosensitizing molecules.

  12. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  13. A Modified Alderman-Grant Coil Makes Possible an Efficient Cross-Coil Probe for High Field Solid-state NMR of Lossy Biological Samples

    PubMed Central

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-01-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194 – 241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed. PMID:19733108

  14. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  15. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples.

    PubMed

    Grant, Christopher V; Yang, Yuan; Glibowicka, Mira; Wu, Chin H; Park, Sang Ho; Deber, Charles M; Opella, Stanley J

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the (1)H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B(1) field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the (1)H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  16. Aβ Monomers Transiently Sample Oligomer and Fibril-like Configurations: Ensemble Characterization Using a Combined MD/NMR Approach

    PubMed Central

    Rosenman, David J.; Connors, Christopher; Chen, Wen; Wang, Chunyu; García, Angel E.

    2013-01-01

    Amyloid β (Aβ) peptides are a primary component of fibrils and oligomers implicated in the etiology of Alzheimer’s disease (AD). However, the intrinsic flexibility of these peptides has frustrated efforts to investigate the secondary and tertiary structure of Aβ monomers, whose conformational landscapes directly contribute to the kinetics and thermodynamics of Aβ aggregation. In this work, de novo replica exchange molecular dynamics (REMD) simulations on the μs/replica timescale are used to characterize the structural ensembles of Aβ42, Aβ40, and M35-oxidized Aβ42, three physiologically relevant isoforms with substantially different aggregation properties. J-coupling data calculated from the REMD trajectories were compared to corresponding NMR-derived values acquired through two different pulse sequences, revealing that all simulations converge on the order of hundreds of ns/replica toward ensembles that yield good agreement with experiment. Though all three Aβ species adopt highly heterogeneous ensembles, these are considerably more structured compared to simulations on shorter timescales. Prominent in the C-terminus are antiparallel β-hairpins between L17-A21, A30-L36, and V39-I41, similar to oligomer and fibril intrapeptide models, that expose these hydrophobic side chains to solvent and may serve as hotspots for self-association. Compared to reduced Aβ42, the absence of a second β-hairpin in Aβ40 and the sampling of alternate β topologies by M35-oxidized Aβ42 may explain the reduced aggregation rates of these forms. A persistent V24-K28 bend motif, observed in all three species, is stabilized by buried backbone to side chain hydrogen bonds with D23 and a cross-region salt bridge between E22 and K28, highlighting the role of the familial AD-linked E22 and D23 residues in Aβ monomer folding. These characterizations help illustrate the conformational landscapes of Aβ monomers at atomic resolution and provide insight into the early stages of A

  17. Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and 19F NMR.

    PubMed

    Moody, C A; Kwan, W C; Martin, J W; Muir, D C; Mabury, S A

    2001-05-15

    Perfluorinated surfactants are an important class of specialty chemicals that have received recent attention as a result of their persistence in the environment. Two analytical methods for the determination of perfluorinated surfactants in aqueous samples were developed in order to investigate a spill of 22000 L of fire retardant foam containing perfluorinated surfactants into Etobicoke Creek (Toronto, Ontario). With the first method, aliquots of surface water (0.2-200 mL) were preconcentrated using solid-phase extraction. Liquid chromatography/tandem mass spectrometry was employed for identification and quantification of each perfluorinated surfactant. Total perfluorinated surfactant concentrations in surface water samples ranged from 0.011 to 2270 microg/L, and perfluorooctanesulfonate was the predominant surfactant observed. Interestingly, perfluorooctanoate was detected in surface water sampled upstream of the spill. A second method employing 19F NMR was developed for the determination of total perfluorinated surfactant concentrations in aqueous samples (2-100 mL). By 19F NMR, the surface water concentrations ranged from nondetect (method detection limit, 10 microg/L for a 100-mL sample) to 17000 microg/L. These methods permit comprehensive evaluation of aqueous samples for the presence of perfluorinated surfactants and have applicability to other sample matrixes.

  18. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.

    PubMed

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-02-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273-6279 (1982)), types of amino acids are labeled with (13)C or/and (15)N such that cross peaks between (13)CO(i - 1) and (15)NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with (13)C and the second with (15)N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B(2)R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  19. Use of {sup 13}C NMR to assess the biodegradation of 1-{sup 13}C-labeled acenaphthene in the presence of creosote polynuclear hydrocarbons (PAHs) and naphthalene by mixed bacterial cultures

    SciTech Connect

    Selifonov, S.A.; Bortiatynski, J.M.; Nanny, M.A.; Hatcher, P.G.

    1996-10-01

    1-{sup 13}C-acenaphthene mixed with creosote PAH`s or naphthalene was incubated with bacterial strains known to degrade naphthalene, phenanthrene and acenaphthene. After incubation, the reaction mixtures were extracted with organic solvent, and the biodegradation products were identified by {sup 13}C NMR. An accumulation of intermediate degradation products was identified and attributed to the non-specific action of naphthalene catabolic pathways of the mixed bacterial cultures. An acenaphthene degrading strain, Pseudomonas sp. strain A2279 was added to the nixed bacterial cultures to minimize the formation of the observed dead-end products. The {sup 13}C NMR spectra obtained from the experiments in which strain A2279 was present clearly showed the complete biodegradation of 1-{sup 13}C-acenaphthene without the accumulation of {sup 13}C-labeled products. This set of experiments clearly demonstrates the utility of {sup 13}C NMR as an effective tool for the assessment of the biodegradation of PAH`s such as 1-{sup 13}C-acenaphthene by various microbial strains.

  20. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples.

    PubMed

    Li, Y S; Zhou, Y; Meng, X Y; Zhang, Y Y; Liu, J Q; Zhang, Y; Wang, N N; Hu, P; Lu, S Y; Ren, H L; Liu, Z S

    2014-11-15

    A dual labeled probe was synthesized by coating gold nanoparticles (AuNPs) with anti-κ-CN monoclonal antibody (McAb) and horseradish peroxidase (HRP) enzyme on their surface. The McAb was used as detector and HRP was used as label for signal amplification catalytically oxidize the substrate. AuNPs were used as bridges between the McAb and HRP. Based on the probe, an immunoassay was developed for ultrasensitive detection of κ-CN in bovine milk samples. The assay has a linear response range within 4.2-560 ng mL(-1). The limit of detection (LOD) was 4.2 ng mL(-1) which was 10 times lower than that of traditional McAb-HRP based ELISA. The recoveries of κ-CN from three brand bovine milk samples were from 95.8% to 111.0% that had a good correlation (R(2)=0.998) with those obtained by official standard Kjeldahl method. For higher sensitivity and as simple as the traditional ELISA, the developed immunoassay could provide an alternative approach for ultrasensitive detection of κ-CN in bovine milk sample.

  1. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  2. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  3. Improving mid stream urine sampling: reducing labelling error and laboratory rejection.

    PubMed

    Jakes, Adam; McCue, Eleanor; Cracknell, Alison

    2014-01-01

    A urine sample is vital in older patients with pyrexia or acute confusion, and commonly directs clinicians towards a source of infection. Not only can the organism be identified, but sensitivities to antibiotics can also guide prescribing. A high number of urine samples were not being processed on the medicine for older people wards at St. James's Hospital due to incomplete hand-written request forms not complying with trust policy. Previous attempts to re-educate staff had failed to improve acceptance rates. Rejected samples delay diagnosis, identification of organisms and subsequent sensitivities, as well as increasing staff workload. A total of 72 urine samples were audited from our wards in March 2013; 12 (17%) rejected. Clinicians were notified of rejected samples within one to four days. An electronic-requesting system was implemented in April 2013. Once implemented, a further two data collection cycles of 72 urine samples were completed from the same wards. In December 2013, 55 (76%) were electronically requested and 17 (24%) hand-written. Four (5%) samples were rejected and were all hand-written. In August 2014, 61 (85%) were electronically requested and 11 (15%) hand-written. No samples were rejected. The electronic-requesting system has effectively reduced the number of rejected urine samples. No electronically requested samples were rejected, therefore 100% sample acceptance is achievable. It is more effective than re-educating staff alone and ensures requests meet trust policy. Clinicians were notified of a samples rejection after one to four days. By this time patients may have started antibiotic therapy, decreasing the likelihood of isolating the causative organism in subsequent samples. All urine samples requested must meet a high standard and comply with trust policy in order to be processed. An electronic-requesting system removes errors of omission and ensures policy compliance, ultimately leading to improved patient care. Now our processes are

  4. High-Resolution NMR Studies of Human Tissue Factor

    PubMed Central

    Nuzzio, Kristin M.; Watt, Eric D.; Boettcher, John M.; Gajsiewicz, Joshua M.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    In normal hemostasis, the blood clotting cascade is initiated when factor VIIa (fVIIa, other clotting factors are named similarly) binds to the integral membrane protein, human tissue factor (TF). The TF/fVIIa complex in turn activates fX and fIX, eventually concluding with clot formation. Several X-ray crystal structures of the soluble extracellular domain of TF (sTF) exist; however, these structures are missing electron density in functionally relevant regions of the protein. In this context, NMR can provide complementary structural information as well as dynamic insights into enzyme activity. The resolution and sensitivity for NMR studies are greatly enhanced by the ability to prepare multiple milligrams of protein with various isotopic labeling patterns. Here, we demonstrate high-yield production of several isotopically labeled forms of recombinant sTF, allowing for high-resolution NMR studies both in the solid and solution state. We also report solution NMR spectra at sub-mM concentrations of sTF, ensuring the presence of dispersed monomer, as well as the first solid-state NMR spectra of sTF. Our improved sample preparation and precipitation conditions have enabled the acquisition of multidimensional NMR data sets for TF chemical shift assignment and provide a benchmark for TF structure elucidation. PMID:27657719

  5. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  6. Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm

    PubMed Central

    Bayer, Immanuel; Groth, Philip; Schneckener, Sebastian

    2013-01-01

    Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment. PMID:23894636

  7. Prediction errors in learning drug response from gene expression data - influence of labeling, sample size, and machine learning algorithm.

    PubMed

    Bayer, Immanuel; Groth, Philip; Schneckener, Sebastian

    2013-01-01

    Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.

  8. Development of an Alu-based, QSY 7-labeled primer PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2003-03-01

    Determining the amount of human DNA extracted from a crime scene sample is an important step in DNA profiling. The forensic community relies almost entirely upon a technique (slot blot) to quantitate human DNA that is imprecise, time consuming, and labor intensive. This paper describes the development of a new technique based on PCR amplification of a repetitive Alu sequence. Specific primers were used to amplify a 124-bp fragment of Alu sequence; amplification was detected by SYBR Green I staining in a fluorescent plate reader. To reduce background in the plate reader assay, QSY-7 labeled primers were utilized. The assay was tested on animal DNAs, human blood spots, mock crime samples, and degraded DNA in comparison with the slot blot technique. The QSY Alu assay has a dynamic range of 10 ng to 10 pg, and is sensitive, specific, fast, quantitative, and comparable in cost to the slot blot assay.

  9. Slow magic angle sample spinning: a non- or minimally invasive method for high-resolution 1H nuclear magnetic resonance (NMR) metabolic profiling.

    PubMed

    Hu, Jian Zhi

    2011-01-01

    High-resolution (1)H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kilohertz or more (i.e., high-resolution magic angle spinning (hr-MAS)), is a well-established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow MAS, using the concept of two-dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimally invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow sample spinning used. Although slow MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in-depth evaluation of the principles associated with slow MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H(2)O, where an unusually large magnetic susceptibility field gradient is obtained.

  10. 77 FR 72205 - Testing and Labeling Pertaining to Product Certification Regarding Representative Samples for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... periodic testing purposes. If the source of component parts changes (either a new supplier of a currently... be regarded as a representative sample. (Response 9)--We are not sure what the commenter means by..., determining compliance to the use and abuse testing of toys described in Sec. Sec. 1500.50, 1500.51,...

  11. 40 CFR 600.211-08 - Sample calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample calculation of fuel economy... AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later...

  12. 40 CFR 600.211-08 - Sample calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample calculation of fuel economy... AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel...

  13. Does the time of the sampling matter in 13C pulse labeling and chasing experiments? A case study on beech seedlings

    NASA Astrophysics Data System (ADS)

    Gavrichkova, Olga; Thoms, Ronny; Muhr, Jan; Karlowsky, Stefan; Keitel, Claudia; Kayler, Zachary; Calfapietra, Carlo; Gessler, Arthur; Brugnoli, Enrico; Gleixner, Gerd

    2016-04-01

    13C pulse labeling and chasing is a valuable and very popular tool for determination of the fate and turnover rates of C in plant-soil systems. Continuous isoflux measurements became an accessible reality allowing to cover completely the diurnal variation in label assimilation and respiration fluxes. Label turnover in multiple pools, especially of those located belowground, is more often assessed instead by isolated day-time samplings. By increasing the sampling frequency of belowground compartments we aimed to catch the short-term diurnal variations in label allocation and to link these processes with label dynamics in the aboveground biomass. For these purposes we labeled 3-m height soil-grown European beech seedlings with 13C enriched CO2 and traced the flow of 13C within belowground plant-soil continuum. Continuous soil isoflux measurements were accompanied by a 3-h-frequency sampling of root and soil material during the first 48 h, followed by a daily sampling in the successive 5 days. The amount of label found in microbial biomass depended partially on the amount of roots in the sample. Microbial biomass C (MBC) and microbial respiration showed very strong correlation, suggesting the possibility to use one as a proxy of the other. MBC enrichment showed a clear diurnal pattern with night-time and early morning peaks. These peaks were similar in shape and shifted by one sampling when compared to root sugars enrichment. Soil respiration showed instead a single bell-shape peak in 13C, likely due to a sequence of peaks of root and microbial origin. 13C flow into soil microbial functional groups was assessed less frequently through phospholipid fatty acid analyses (PLFA). The microorganisms were separated into two distinct groups by the time of the appearance of the label in the single PLFAs. The first group was characterized by a fast appearance of the label and higher enrichment and was composed of Gram negative bacteria and saprotrophic fungi likely living in

  14. Separation of high-resolution samples of overlapping latent fingerprints using relaxation labeling

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Schott, Maik; Schöne, Werner; Hildebrandt, Mario

    2012-06-01

    The analysis of latent fingerprint patterns generally requires clearly recognizable friction ridge patterns. Currently, overlapping latent fingerprints pose a major problem for traditional crime scene investigation. This is due to the fact that these fingerprints usually have very similar optical properties. Consequently, the distinction of two or more overlapping fingerprints from each other is not trivially possible. While it is possible to employ chemical imaging to separate overlapping fingerprints, the corresponding methods require sophisticated fingerprint acquisition methods and are not compatible with conventional forensic fingerprint data. A separation technique that is purely based on the local orientation of the ridge patterns of overlapping fingerprints is proposed by Chen et al. and quantitatively evaluated using off-the-shelf fingerprint matching software with mostly artificially composed overlapping fingerprint samples, which is motivated by the scarce availability of authentic test samples. The work described in this paper adapts the approach presented by Chen et al. for its application on authentic high resolution fingerprint samples acquired by a contactless measurement device based on a Chromatic White Light (CWL) sensor. An evaluation of the work is also given, with the analysis of all adapted parameters. Additionally, the separability requirement proposed by Chen et al. is also evaluated for practical feasibility. Our results show promising tendencies for the application of this approach on high-resolution data, yet the separability requirement still poses a further challenge.

  15. Determination of thiophenols with a novel fluorescence labelling reagent: analysis of industrial wastewater samples with SPE extraction coupled with HPLC.

    PubMed

    Sun, Yanan; Lv, Zhengxian; Sun, Zhiwei; Wu, Chuanxiang; Ji, Zhongyin; You, Jinmao

    2016-05-01

    A simple, sensitive, and selective high-performance liquid chromatography (HPLC) method using 9-(2-iodoethyl)acridone (IEA) as a novel fluorescence derivatizing agent for the simultaneous determination of six thiophenols has been developed. An efficient Pb(2+)-modified OASIS-MCX cartridge was used and could get good recoveries. IEA was successfully used to label thiophenols with high sensitivity and excellent selectivity. The effects of different solvents, pH, and surfactants on fluorescence properties of derivatives were investigated. To obtain the best labeling efficiency, derivatizing parameters including pH value, temperature, and concentration of IEA, as well as types of catalysts were also evaluated in detail. Under the optimal conditions, the separation could be achieved within 12 min with limits of detection (LODs) in the range of 0.6-5.8 μg L(-1) and relative standard deviations (RSDs) < 3.9%. This is the first time that IEA was applied to the analysis of thiophenols, and the established method has been successfully applied to the trace level detection of thiophenols in industrial wastewater samples.

  16. Direct competitive fluoroimmunoassays for detection of imidaclothiz in environmental and agricultural samples using quantum dots and europium as labels.

    PubMed

    Hua, Xiude; Ding, Yuan; Yang, Jiachuan; Ma, Ming; Shi, Haiyan; Wang, Minghua

    2017-04-01

    A direct quantum dots-based fluoroimmunoassay (QDFIA) and a time-resolved fluoroimmunoassay (TRFIA) for imidaclothiz (IMI) were developed by using the quantum dots (QDs)-labeled antibody and the europium (Eu(3+))-labeled antibody, respectively. After optimization, the half-maximal inhibition concentration (IC50) and the limit of detection (LOD, IC10) are 20.41 and 0.52μgL(-1) for the QDFIA, while 6.91 and 0.018μgL(-1) for the TRFIA, respectively. The cross-reactivities (CRs) with the analogues are negligible except for imidacloprid with CRs of 29.0% for the QDFIA and 26.6% for the TRFIA. The spiked recoveries of IMI in paddy water, soil, pear, tomato, rice, apple, cabbage and cucumber are 72.7-117.6% with a standard deviation (RSD) of 2.4-13.5% for the QDFIA, and 81.3-117.7% with a RSD of 1.6-7.5% for TRFIA. The detection results of the analyses for the real paddy water and pear samples are markedly correlated with these of high-performance liquid chromatography (HPLC).

  17. Efficient Blind Spectral Unmixing of Fluorescently Labeled Samples Using Multi-Layer Non-Negative Matrix Factorization

    PubMed Central

    Zudaire, Isabel; Ortiz-de-Solorzano, Carlos

    2013-01-01

    The ample variety of labeling dyes and staining methods available in fluorescence microscopy has enabled biologists to advance in the understanding of living organisms at cellular and molecular level. When two or more fluorescent dyes are used in the same preparation, or one dye is used in the presence of autofluorescence, the separation of the fluorescent emissions can become problematic. Various approaches have been recently proposed to solve this problem. Among them, blind non-negative matrix factorization is gaining interest since it requires little assumptions about the spectra and concentration of the fluorochromes. In this paper, we propose a novel algorithm for blind spectral separation that addresses some of the shortcomings of existing solutions: namely, their dependency on the initialization and their slow convergence. We apply this new algorithm to two relevant problems in fluorescence microscopy: autofluorescence elimination and spectral unmixing of multi-labeled samples. Our results show that our new algorithm performs well when compared with the state-of-the-art approaches for a much faster implementation. PMID:24260120

  18. Can NMR solve some significant challenges in metabolomics?

    NASA Astrophysics Data System (ADS)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  19. Can NMR solve some significant challenges in metabolomics?

    PubMed Central

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  20. In vitro (31)P NMR studies on biopsy skeletal muscle samples compared with meat quality of normal and heterozygous malignant hyperthermia pigs.

    PubMed

    Lahucky, R; Baulain, U; Henning, M; Demo, P; Krska, P; Liptaj, T

    2002-07-01

    Phosphorus nuclear magnetic resonance ((31)P NMR) measurements were made to determine muscle energetic metabolism on muscle biopsy samples of heterozygote malignant hyperthermia (Nn) and normal (NN) pigs DNA tested on occurrence of mutation in RYR 1 gene. Biopsy samples (approx. 1 g) were obtained by spring-loaded biopsy instrument (Biotech, Slovakia) from Longissimus dorsi (LD) muscle at 80 kg live weight. The spectra were recorded at 121 MHz on a VXR 300 (Varian) spectrometer in 10 mm diameter tube (maintained at 39 °C) for 50 min. pH of bioptates after NMR measurements were also measured at 60 min. The changes in inorganic phosphate (Pi), phosophocreatine (PCr) and adenosine triphosphate (ATP) were faster in heterozygote malignant hyperthermia (MH; 29 crossbred White Meaty×Pietrain) than in normal (13 Duroc, Yorkshire and White Meaty). The values of PCr at 20 min and pH at 60 min after taking biopsy allowed discrimination between NN and Nn pigs and significant (P<0.05) differences were also found between two subgroups in heterozygote MH pigs with different rate of post mortem muscle metabolism. The values of PCr and pH as measured at definite time on the biopsies, were significantly (P<0.05) correlated with the rate of post mortem metabolism (pH) and with meat quality traits (r approx. 0.4-0.6). The (31)P NMR measurements pointed to impaired muscle energetic metabolism connected with the occurrence of mutation on the RYR 1 gene in heterozygote MH pigs.

  1. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  2. Label-free imaging of fatty acid content within yeast samples

    NASA Astrophysics Data System (ADS)

    Garrett, N.; Moger, J.

    2013-02-01

    Fungi have been found to be an underlying cause of 70% of all plant and animal extinctions caused by infectious diseases. Fungal infections are a growing problem affecting global health, food production and ecosystems. Lipid metabolism is a promising target for antifungal drugs and since effective treatment of fungal infections requires a better understanding of the effects of antifungal agents at the cellular level, new techniques are needed to investigate this problem. Recent advances in nonlinear microscopy allow chemically-specific contrast to be obtained non-invasively from intrinsic chemical bonds within live samples using advanced spectroscopy techniques probing Raman-active resonances. We present preliminary data using Stimulated Raman Scattering (SRS) microscopy as a means to visualise lipid droplets within individual living fungi by probing Raman resonances of the CH stretching region between 2825cm-1 and 3030cm-1.

  3. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    NASA Astrophysics Data System (ADS)

    Ali, M. E.; Hashim, U.; Mustafa, S.; Che Man, Y. B.; Yusop, M. H. M.; Bari, M. F.; Islam, Kh N.; Hasan, M. F.

    2011-05-01

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml - 1 swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  4. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples.

    PubMed

    Ali, M E; Hashim, U; Mustafa, S; Man, Y B Che; Yusop, M H M; Bari, M F; Islam, Kh N; Hasan, M F

    2011-05-13

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  5. Solution NMR structure of putidaredoxin-cytochrome P450cam complex via a combined residual dipolar coupling-spin labeling approach suggests a role for Trp106 of putidaredoxin in complex formation

    PubMed Central

    Zhang, Wei; Pochapsky, Susan S.; Pochapsky, Thomas C.; Jain, Nitin U.

    2017-01-01

    The 58 kDa complex formed between the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), and cytochrome P450cam (CYP101) from the bacterium Pseudomonas putida has been investigated by high-resolution solution NMR spectroscopy. Pdx serves as both the physiological reductant and effector for CYP101 in the enzymatic reaction involving conversion of substrate camphor to 5-exo-hydroxy-camphor. In order to obtain an experimental structure for the oxidized Pdx-CYP101 complex, a combined approach using orientational data on the two proteins derived from residual dipolar couplings and distance restraints from site-specific spin labeling of Pdx has been applied. Spectral changes for residues in and near the paramagnetic metal cluster region of Pdx in complex with CYP101 have also been mapped for the first time using 15N and 13C NMR spectroscopy, leading to direct identification of the residues strongly affected by CYP101 binding. The new NMR structure of the Pdx-CYP101 complex agrees well with results from previous mutagenesis and biophysical studies involving residues at the binding interface such as formation of salt bridge between Asp38 of Pdx and Arg112 of CYP101, while at the same time identifying key features different from earlier modeling studies. Analysis of the binding interface of the complex reveals that the side-chain of Trp106, the C-terminal residue of Pdx and critical for binding to CYP101, is located across from the heme-binding loop of CYP101 and forms non-polar contacts with several residues in the vicinity of heme group on CYP101, pointing to a potentially important role in complex formation. PMID:18835276

  6. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    PubMed

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells.

  7. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples.

    PubMed

    Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok

    2015-08-04

    Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.

  8. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach

    NASA Astrophysics Data System (ADS)

    Vincent, Benoit; Fleury, Marc; Santerre, Yannick; Brigaud, Benjamin

    2011-05-01

    A set of carbonate outcrop samples, covering a wide range of the sedimentary textures and depositional environments existing on carbonate systems, was studied through an integrated petrographical and petrophysical approach. With the aim of improving the understanding of the NMR (Nuclear Magnetic Resonance) signal of carbonates, this work is: 1) providing an atlas for various carbonate reservoir rock-types, 2) providing a workflow for integrating geological and petrophysical data and, 3) documenting common shortfalls in NMR/MICP analyses in carbonates. The petrographical investigation includes thin section and SEM (Secondary Electron Microscope) observations, whereas petrophysical investigation includes porosity (Φ), permeability (K), NMR, MICP (Mercury Injection Capillary Pressure), and specific surface area (BET) measurements. On the basis of NMR and MICP data, 4 groups of samples were identified: (1) microporous samples, (2) micro-mesoporous samples, (3) wide multimodal samples, and (4) atypical samples. The microporous samples allow us to define a maximum NMR threshold for microporosity at a T 2 of 200 ms. NMR and MICP response of the investigated carbonates are often comparable in terms of modal distribution (microporous, micro-mesoporous and wide multimodal samples). In particular, micritization, a well known but underestimated early diagenetic process, tends to homogenize the NMR signal of primarily different sedimentary facies. A grainstone with heavily micritized grains can display well sorted unimodal NMR and MICP signatures very similar, even identical, to a mudstone-wackestone. Their signatures are comparable to that of a simple sphere packing model. On the contrary, several samples (labeled atypical samples) show a discrepancy between NMR and MICP response. This discrepancy is explained by the fact that MICP can be affected by the physical connectivity of the pore network, in case of disseminated and isolated molds in a micrite matrix for instance

  9. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.

    2013-01-01

    Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T1-1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R⊥ and R||) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R⊥. T1-1, R⊥, and R|| profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1-1, R⊥, and R||, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ˜30 n

  10. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume

    PubMed Central

    Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.

    2012-01-01

    Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoyl-phosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski J. Magn. Reson. 212:418-425 [2011]). Profiles of the spin-lattice relaxation rate (T1−1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed’s MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88:4995-5004 [1984]) provided rotational diffusion coefficients (R⊥ and R∥) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R. T1−1, R⊥, and R∥ profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1−1, R⊥, and R∥, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipids headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume

  11. NIST-Traceable NMR Method to Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-3 Feedstock Samples

    DTIC Science & Technology

    2013-08-01

    Analyte (agent) Area of Standard ( TEP ) Wt. Of Standard Sample Weight Found Z 1.5380 80.9512 53.5569 16.4000 38.4500 1.5110 1.5880 85.9070...Area of Analyte (agent) Area of Standard ( TEP ) Wt. Of Standard Sample Weight Found Z 1.4360 84.9107 56.0931 15.9800 35.9000 1.4745 1.5956...agent) Area of Standard ( TEP ) Wt. Of Standard Sample Weight Found Z 1.6268 98.8407 55.1482 14.7000 40.6700 1.6060 1.4780 85.2285 58.9585

  12. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample.

    PubMed

    Bagheryan, Zahra; Raoof, Jahan-Bakhsh; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio

    2016-06-15

    Fast and accurate detection of microorganisms is of key importance in clinical analysis and in food and water quality monitoring. Salmonella typhimurium is responsible for about a third of all cases of foodborne diseases and consequently, its fast detection is of great importance for ensuring the safety of foodstuffs. We report the development of a label-free impedimetric aptamer-based biosensor for S. typhimurium detection. The aptamer biosensor was fabricated by grafting a diazonium-supporting layer onto screen-printed carbon electrodes (SPEs), via electrochemical or chemical approaches, followed by chemical immobilisation of aminated-aptamer. FTIR-ATR, contact angle and electrochemical measurements were used to monitor the fabrication process. Results showed that electrochemical immobilisation of the diazonium-grafting layer allowed the formation of a denser aptamer layer, which resulted in higher sensitivity. The developed aptamer-biosensor responded linearly, on a logarithm scale, over the concentration range 1 × 10(1) to 1 × 10(8)CFU mL(-1), with a limit of quantification (LOQ) of 1 × 10(1) CFU mL(-1) and a limit of detection (LOD) of 6 CFU mL(-1). Selectivity studies showed that the aptamer biosensor could discriminate S. typhimurium from 6 other model bacteria strains. Finally, recovery studies demonstrated its suitability for the detection of S. typhimurium in spiked (1 × 10(2), 1 × 10(4) and 1 × 10(6) CFU mL(-1)) apple juice samples.

  13. 16 CFR 305.17 - Television labeling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... manufacturer may include the ENERGY STAR logo on the label as illustrated in Sample Labels 10, 11, and 12 in... labeled may add the ENERGY STAR logo to those labels. (g) Distribution of labels. For each...

  14. A Deuterium NMR Study of Bent-Core Liquid Crystals. 1; Synthesis and Characterization of Deuterium-Labeled Oxadiazole-Containing Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo J.; Madsen, Louis A.; Samulski, Edward T.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We have synthesized two deuterated boomerang-shaped liquid crystals based on 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (ODBP). Deuterium was introduced in the rigid 2,5-diphenyl-1,3,4-oxadiazole core and in the aromatic ring of the terminal 4-dodecyloxyphenyl moiety using standard acid catalyzed deuterium exchange conditions. Both compounds, ([4,4'(1,3,4-oxadiazole-2,5-diyl-d4)] di-4-dodecyloxybenzoate: ODBP-d4-Ph-O-C12) and ([4,4'(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxy-benzoate-d4; ODBP-Ph-d4-O-C12) were investigated by nuclear magnetic resonance, optical microscopy and differential scanning calorimetry. The optical textures and thermal behavior of both compounds were found to be identical to the non-deuterated analog [4,4(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxybenzoate (ODBP-Ph-O-C12) which we reported earlier. These compounds exhibit behavior indicative of a biaxial nematic liquid crystal phase, which we hope to confirm using deuterium NMR spectroscopy in the next phase of this study.

  15. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  16. H-1 Relaxation Times of Metabolites in Biological Samples Obtained with Nondestructive Ex-vivo Slow-MAS NMR

    SciTech Connect

    Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.

    2006-03-01

    Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.

  17. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  18. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  19. Measurement of Internuclear Distances in Solids Using Variations of Rotational-Echo Double-Resonance NMR.

    NASA Astrophysics Data System (ADS)

    Holl, Susan Mueller

    Rotational-echo, double-resonance (REDOR) nuclear magnetic resonance (NMR) has been used to measure internuclear distances in solids in many isotopically labeled biological solids. The goals of my research have been to adapt this technique to make it suitable for some special systems, such as samples with low isotopic label concentrations, samples with NMR resonances that have large chemical shift anisotropies, non-biological samples with high NMR-active spin concentrations but no isotopic spin labels, and samples having interactions between a nuclear spin and an electron. This work has included the development of multiple-resonance, background suppression techniques, such as double REDOR, rotational-echo, triple-resonance (RETRO) and transferred -echo, double-resonance (TEDOR), to be used in conjunction with REDOR on labeled biological solids. These methods have enabled the determination of a ^{13 }C-^{15}N one-bond distance of 1.48 A in glyphosate by double REDOR, and a ^{13}C- ^{19}F internuclear distance of 8.0 A in emerimicin using TEDOR-REDOR. Semiconductor materials are more difficult to specifically label than biological samples because they are made by solid-state, high-temperature methods. Using REDOR and a simple statistical model, accurate one-bond internuclear distances in cadmium phosphide ranging from 2.55 to 2.58 A were measured. The lattice contractions of crystalline domains in a mixed-phase (part amorphous, part crystalline) sample were measured to be four to five percent using REDOR. The multiple resonance, magic-angle spinning, solid-state NMR techniques described in this dissertation require up to four radiofrequency channels in the same experiment.

  20. NMR studies on /sup 15/N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    SciTech Connect

    Kenyon, G.L.; Reddick, R.E.

    1986-05-01

    Recently, the authors have synthesized /sup 15/N-2-Cr, /sup 15/N-3-Crn, /sup 15/N-2-Crn, /sup 15/N-3-PCrn, /sup 15/N-3-PCr, and /sup 15/N-2-PCr. /sup 1/H, /sup 15/N, /sup 31/P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the /sup 31/P-/sup 15/N one-bond coupling constant in /sup 15/N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the /sup 14/N//sup 15/N positional isotope exchange of 3-/sup 15/N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity.

  1. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    PubMed

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  2. Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: application to recycle delays.

    PubMed

    Farooq, Hashim; Courtier-Murias, Denis; Soong, Ronald; Masoom, Hussain; Maas, Werner; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry; Simpson, Myrna J; Simpson, André J

    2013-03-01

    A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T(1) determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional (13)C IR experiment is compared with the selective (13)C IR-RCPMG sequence and yields the same T(1) values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.

  3. 19F solid-state NMR spectroscopic investigation of crystalline and amorphous forms of a selective muscarinic M3 receptor antagonist, in both bulk and pharmaceutical dosage form samples.

    PubMed

    Wenslow, Robert M

    2002-05-01

    The purpose of the following investigation was to display the utility of 19F solid-state nuclear magnetic resonance (NMR) in both distinguishing between solid forms of a selective muscarinic M3 receptor antagonist and characterizing the active pharmaceutical ingredient in low-dose tablets. Ambient- and elevated-temperature solid-state 19F fast (15 kHz) magic-angle spinning (MAS) NMR experiments were employed to obtain desired spectral resolution in this system. Ambient sample temperature combined with rotor frequencies of 15 kHz provided adequate 19F peak resolution to successfully distinguish crystalline and amorphous forms in this system. Additionally, elevated-temperature 19F MAS NMR further characterized solid forms through 19F resonance narrowing brought about by the phenomenon of solvent escape. Similar solvent dynamics at elevated temperatures were utilized in combination with ambient-temperature 19F MAS NMR analysis to provide excipient-free spectra to unambiguously identify the active pharmaceutical ingredient (API) conversion from crystalline Form I to the amorphous form in low-dose tablets. It is shown that 19F solid-state NMR is exceptionally powerful in distinguishing amorphous and crystalline forms in both bulk and formulation samples.

  4. 13C Metabolomics: NMR and IROA for Unknown Identification

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Wang, Bing; Garrett, Timothy J.; Edison, Arthur S.

    2016-01-01

    Abstract: Background Isotopic Ratio Outlier Analysis (IROA) is an untargeted metabolomics method that uses stable isotopic labeling and LC-HRMS for identification and relative quantification of metabolites in a biological sample under varying experimental conditions. Objective We demonstrate a method using high-sensitivity 13C NMR to identify an unknown metabolite isolated from fractionated material from an IROA LC-HRMS experiment. Methods IROA samples from the nematode Caenorhabditis elegans were fractionated using LC-HRMS using 5 repeated injections and collecting 30 sec fractions. These were concentrated and analyzed by 13C NMR. Results We isotopically labeled samples of C. elegans and collected 2 adjacent LC fractions. By HRMS, one contained at least 2 known metabolites, phenylalanine and inosine, and the other contained tryptophan and an unknown feature with a monoisotopic mass of m/z 380.0742 [M+H]+. With NMR, we were able to easily verify the known compounds, and we then identified the spin system networks responsible for the unknown resonances. After searching the BMRB database and comparing the molecular formula from LC-HRMS, we determined that the fragments were a modified anthranilate and a glucose modified by a phosphate. We then performed quantum chemical NMR chemical shift calculations to determine the most likely isomer, which was 3’-O-phospho-β-D-glucopyranosyl-anthranilate. This compound had previously been found in the same organism, validating our approach. Conclusion We were able to dereplicate previously known metabolites and identify a metabolite that was not in databases by matching resonances to NMR databases and using chemical shift calculations to determine the correct isomer. This approach is efficient and can be used to identify unknown compounds of interest using the same material used for IROA. PMID:28090435

  5. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  6. The elusive structure of Pd2(dba)3. Examination by isotopic labeling, NMR spectroscopy, and X-ray diffraction analysis: synthesis and characterization of Pd2(dba-Z)3 complexes.

    PubMed

    Kapdi, Anant R; Whitwood, Adrian C; Williamson, David C; Lynam, Jason M; Burns, Michael J; Williams, Thomas J; Reay, Alan J; Holmes, Jordan; Fairlamb, Ian J S

    2013-06-05

    Pd(0)2(dba)3 (dba = E,E-dibenzylidene acetone) is the most widely used Pd(0) source in Pd-mediated transformations. Pd(0)2(dba-Z)3 (Z = dba aryl substituents) complexes exhibit remarkable and differential catalytic performance in an eclectic array of cross-coupling reactions. The precise structure of these types of complexes has been confounding, since early studies in 1970s to the present day. In this study the solution and solid-state structures of Pd(0)2(dba)3 and Pd(0)2(dba-Z)3 have been determined. Isotopic labeling ((2)H and (13)C) has allowed the solution structures of the freely exchanging major and minor isomers of Pd(0)2(dba)3 to be determined at high field (700 MHz). DFT calculations support the experimentally determined major and minor isomeric structures, which show that the major isomer of Pd(0)2(dba)3 possesses bridging dba ligands found exclusively in a s-cis,s-trans conformation. For the minor isomer one of the dba ligands is found exclusively in a s-trans,s-trans conformation. Single crystal X-ray diffraction analysis of Pd(0)2(dba)3·CHCl3 (high-quality data) shows that all three dba ligands are found over two positions. NMR spectroscopic analysis of Pd(0)2(dba-Z)3 reveals that the aryl substituent has a profound effect on the rate of Pd-olefin exchange and the global stability of the complexes in solution. Complexes containing the aryl substituents, 4-CF3, 4-F, 4-t-Bu, 4-hexoxy, 4-OMe, exhibit well-resolved (1)H NMR spectra at 298 K, whereas those containing 3,5-OMe and 3,4,5-OMe exhibit broad spectra. The solid-state structures of three Pd(0)2(dba-Z)3 complexes (4-F, 4-OMe, 3,5-OMe) have been determined by single crystal X-ray diffraction methods, which have been compared with Goodson's X-ray structure of Pd(0)2(dba-4-OH)3.

  7. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  8. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips.

    PubMed

    Spengler, Nils; Höfflin, Jens; Moazenzadeh, Ali; Mager, Dario; MacKinnon, Neil; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G

    2016-01-01

    We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5 nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC experiments.

  9. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips

    PubMed Central

    Spengler, Nils; Höfflin, Jens; Moazenzadeh, Ali; Mager, Dario; MacKinnon, Neil; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G.

    2016-01-01

    We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC experiments. PMID

  10. Label-free detection of Cu(II) in a human serum sample by using a prion protein-immobilized FET sensor.

    PubMed

    Wustoni, Shofarul; Hideshima, Sho; Kuroiwa, Shigeki; Nakanishi, Takuya; Mori, Yasuro; Osaka, Tetsuya

    2015-10-07

    We have developed a field effect transistor (FET) sensor to sensitively detect copper ions (Cu(2+)) in a human serum (HS) sample for promising health-care diagnosis. By utilizing a Cu(2+)-binding prion protein that was immobilized on the FET gate surface, such an FET sensor can provide a simple, label free and highly selective performance, even in HS samples. We demonstrated the sensitivity of the sensor at the nanomolar level, 0-100 nM, which is very useful for the detection range of Cu(2+) deficiency in practical applications.

  11. Detection of 5α-androst-2-en-17-one and variants: Identification of main urinary metabolites in human urine samples by GC-MS and NMR.

    PubMed

    Ayotte, Christiane; Sylvestre, Alexandre; Charlebois, Alain; Poirier, Donald

    2016-11-01

    Two steroids were identified in a supplement named D-2 following the detection of unknown compounds during the routine testing of an athlete's sample. The main glucuroconjugated metabolites were isolated from this urine by high performance liquid chromatography (HPLC) following enzymatic hydrolysis and identified by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses as being 2α-hydroxy-5α-androst-3-en-17-one (M1) and 2β,3α-dihydroxy-5α-androstan-17-one (M2). A third metabolite, 3α,4β-dihydroxy-5α-androstan-17-one (M3) was also detected, however in lower amounts. The precursor steroids, 5α-androst-2-en-17-one (1) and 5α-androst-3-en-17-one (2) were present in the first D-2 products offered on the Internet. Later, the corresponding 17-hydroxyl compounds were offered as such or as esters (acetate, cypionate) in different relative ratios. Both M2 and M3 were synthesized from the trans-diaxial hydrolysis of the corresponding 2α,3α- and 3α,4α-epoxides (3). These were excreted in the hours following the controlled administration of the commercial product called D-2 R to a male volunteer and were also produced from the incubation of 1 and 2 with S9 liver fractions. Some preparations contain predominantly the alkene in C-2 and, therefore, an efficient detection method must include both primary metabolites M1 and M2. The latter was found equally in the fractions extracted following the enzymatic hydrolysis with β-glucuronidase and the chemical solvolysis, which may ease its identification. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  13. Capture antibody targeted fluorescence in situ hybridization (CAT-FISH): dual labeling allows for increased specificity in complex samples.

    PubMed

    Stroot, Joyce M; Leach, Kelly M; Stroot, Peter G; Lim, Daniel V

    2012-02-01

    Pathogen detection using biosensors is commonly limited due to the need for sensitivity and specificity in detecting targets within mixed populations. These issues were addressed through development of a dual labeling method that allows for both liquid-phase fluorescence in situ hybridization (FISH) and capture antibody targeted detection (CAT-FISH). CAT-FISH was developed using Escherichia coli O157:H7 and Staphylococcus aureus as representative bacteria, and processing techniques were evaluated with regard to FISH intensities and antibody recognition. The alternative fixative solution, methacarn, proved to be superior to standard solid-phase paraformaldehyde fixation procedures, allowing both FISH labeling and antibody recognition. CAT-FISH treated cells were successfully labeled with FISH probes, captured by immunomagnetic separation using fluorescent cytometric array beads, and detected using a cytometric array biosensor. CAT-FISH treated cells were detectable with LODs comparable to the standard antibody-based technique, (~10(3)cells/ml in PBS), and the technique was also successfully applied to two complex matrices. Although immunomagnetic capture and detection using cytometric arrays were demonstrated, CAT-FISH is readily applicable to any antibody-based fluorescence detection platform, and further optimization for sensitivity is possible via inclusion of fluorescently tagged antibodies. Since the confidence level needed for positive identification of a detected target is often paramount, CAT-FISH was developed to allow two separate levels of specificity, namely nucleic acid and protein signatures. With proper selection of FISH probes and capture antibodies, CAT-FISH may be used to provide rapid detection of target pathogens from within complex matrices with high levels of confidence.

  14. A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis.

    PubMed

    Wang, Fangjun; Chen, Rui; Zhu, Jun; Sun, Deguang; Song, Chunxia; Wu, Yifeng; Ye, Mingliang; Wang, Liming; Zou, Hanfa

    2010-04-01

    Multidimensional separation is often applied for large-scale qualitative and quantitative proteome analysis. A fully automated system with integration of a reversed phase-strong cation exchange (RP-SCX) biphasic trap column into vented sample injection system was developed to realize online sample loading, isotope dimethyl labeling and online multidimensional separation of the proteome samples. Comparing to conventionally manual isotope labeling and off-line fractionation technologies, this system is fully automated and time-saving, which is benefit for improving the quantification reproducibility and accuracy. As phosphate SCX monolith was integrated into the biphasic trap column, high sample injection flow rate and high-resolution stepwise fractionation could be easily achieved. Approximately 1000 proteins could be quantified in approximately 30 h proteome analysis, and the proteome coverage of quantitative analysis can be further greatly improved by prolong the multidimensional separation time. This system was applied to analyze the different protein expression level of HCC and normal human liver tissues. After three times replicated analysis, finally 94 up-regulated and 249 down-regulated (HCC/Normal) proteins were successfully obtained. These significantly regulated proteins are widely validated by both gene and proteins expression studies previously. Such as some enzymes involved in urea cycle, methylation cycle and fatty acids catabolism in liver were all observed down-regulated.

  15. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  16. An efficient on-column expressed protein ligation strategy: Application to segmental triple labeling of human apolipoprotein E3

    PubMed Central

    Zhao, Wentao; Zhang, Yonghong; Cui, Chunxian; Li, Qianqian; Wang, Jianjun

    2008-01-01

    Expressed protein ligation (EPL) is an intein-based approach that has been used for protein engineering and biophysical studies of protein structures. One major problem of the EPL is the low yield of final ligation product, primarily due to the complex procedure of the EPL, preventing EPL from gaining popularity in the research community. Here we report an efficient on-column EPL strategy, which focuses on enhancing the expression level of the intein-fusion protein that generates thioester for the EPL. We applied this EPL strategy to human apolipoprotein E (apoE) and routinely obtained 25–30 mg segmental, triple-labeled apoE from 1-L cell culture. The approaches reported here are general approaches that are not specific for apoE, thus providing a general strategy for a highly efficient EPL. In addition, we also report an isotopic labeling scheme that double-labels one domain and keeps the other domain of apoE deuterated. Such an isotopic labeling scheme can only be achieved using the EPL strategy. Our data indicated that the segmental triple-labeled apoEs using this labeling scheme produced high-quality, simplified NMR spectra, facilitating NMR spectral assignment. For large proteins, such as apoE, perdeuterated protein samples have to be used to reduce the linewidth of NMR signals, causing a major problem for the NOE-based NMR method, since perdeuterated proteins lack protons for NOE measurement. The new labeling strategy solves this problem and provides 13C/15N double-labeled, protonated protein domains, allowing for determination of high-resolution NMR structure of these large proteins. PMID:18305193

  17. Simple sensitive rapid detection of Escherichia coli O157:H7 in food samples by label-free immunofluorescence strip sensor.

    PubMed

    Song, Chunmei; Li, Jianwu; Liu, Jinxin; Liu, Qing

    2016-08-15

    A simple, one-step, rapid method to detect Escherichia coli O157: H7 (E. coli O157: H7) using a label-free immunofluorescence strip sensor is presented. Fluorescein isothiocyanate (FITC) was added to the sample culture medium to prepare the fluorescent probe for the label-free strip sensor. With the presence of E. coli O157: H7 in the samples, the bacteria could emit a yellow-green fluorescence after incubation and maintain good affinity to the monoclonal antibodies (McAb) against E. coli O157: H7. The direct-type immunofluorescence strip sensor was based on the binding between fluorescent bacteria and the unlabeled McAb immobilized at the test line in nitrocellulose membrane (NC membrane) reaction zone. The visual limit of detection (LOD) of the strip for qualitative detection was 10(6)cells/mL while the LOD for semi-quantitative detection could go down to 10(5)cells/mL by using scanning reader. The LOD was substantially improved to 1cells/mL of the original bacterial content after pre-incubation of the bread, milk and jelly samples in broth for 10, 10 and 8h respectively, which was competitive to some current rapid E. coli O157: H7 detection methods. Besides the obvious advantages, including reduced detection time and operation procedures, the results of this method meet the various detection requirements for E. coli O157: H7 and are comparable to the traditional enzyme-linked immunosorbent assay (ELISA) and double antibody sandwich gold-labeled strips. This is the first report of semi-quantitative immunofluorescence strip for directly detecting foodborne pathogen using only one unlabeled antibody. All detections could be achieved in less than 5min. In addition, this simple, low-cost and easy to be popularized method served as a significant step towards the development of monitoring foodborne pathogens in food-safety testing.

  18. A novel label-free fluorescence assay for one-step sensitive detection of Hg(2+) in environmental drinking water samples.

    PubMed

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-04-05

    A novel label-free fluorescence assay for detection of Hg(2+) was developed based on the Hg(2+)-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg(2+)-T complex and folded into a stable hairpin structure in the presence of Hg(2+) in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg(2+) was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg(2+) without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg(2+) spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.

  19. Measurement of unlabeled and stable isotope-labeled homoarginine, arginine and their metabolites in biological samples by GC-MS and GC-MS/MS.

    PubMed

    Kayacelebi, Arslan Arinc; Knöfel, Ann-Kathrin; Beckmann, Bibiana; Hanff, Erik; Warnecke, Gregor; Tsikas, Dimitrios

    2015-09-01

    Circulating and excretory L-homoarginine (hArg) and asymmetric dimethylarginine (ADMA) are cardiovascular risk factors. L-Arginine (Arg) is the common precursor of hArg and ADMA. This protocol describes gas chromatography-mass spectrometry (GC-MS) and gas chromatography-mass spectrometry-mass spectrometry (GC-MS/MS) methods for the quantitative determination of hArg, Arg and ADMA in biological samples, including human plasma, urine and sputum. Aliquots (10 µL) of native urine, plasma or serum ultrafiltrate (cutoff, 10 kDa), and acetone-deproteinized sputum samples are evaporated to dryness. Then, amino acids are derivatized to their methyl ester N-pentafluoropropionyl derivatives. In parallel, trideuteromethyl ester N-pentafluoropropionyl derivatives of hArg, Arg and ADMA are de novo synthesized from the unlabelled amino acids and used as internal standards. Alternatively, commercially available stable isotope-labeled analogs of hArg, Arg and ADMA are used as internal standards, and they are added to the native biological samples. Quantification is performed by selected ion monitoring in GC-MS and selected reaction monitoring in GC-MS/MS. By these protocols, unlabelled and stable isotope-labeled hArg, Arg and their metabolites including ADMA and ornithine can be measured equally accurately and precisely by GC-MS and GC-MS/MS in several different biological fluids in experimental and clinical settings.

  20. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples

    PubMed Central

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-01-01

    A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5–1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05–103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management. PMID:28378768

  1. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [(2)H, (15)N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [(15)N, (1)H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  2. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology

    PubMed Central

    Horst, Reto; Wüthrich, Kurt

    2016-01-01

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [2H, 15N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [15N, 1H]-correlation maps are used as “fingerprints” to assess the foldedness of the IMP in solution. For promising samples, these “inexpensive” data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer. PMID:27077076

  3. 1H-13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies with a diverse array of 22 condensed tannin (CT) fractions from 9 plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans flavan-3-ol ratios can be appraised by 1H-13C HSQC NMR. The method was developed from fractions containing 44 to ~100% CT, PC/PD ratios ranging f...

  4. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  5. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  6. Isotope Labeling in Insect Cells

    PubMed Central

    Saxena, Krishna; Dutta, Arpana; Klein-Seetharaman, Judith

    2011-01-01

    Recent years have seen remarkable progress in applying nuclear magnetic resonance (NMR) spectroscopy to proteins that have traditionally been difficult to study due to issues with folding, posttranslational modification, and expression levels or combinations thereof. In particular, insect cells have proved useful in allowing large quantities of isotope-labeled, functional proteins to be obtained and purified to homogeneity, allowing study of their structures and dynamics by using NMR. Here, we provide protocols that have proven successful in such endeavors. PMID:22167667

  7. Cell-free protein production for NMR studies.

    PubMed

    Takeda, Mitsuhiro; Kainosho, Masatsune

    2012-01-01

    The cell-free expression system using an Escherichia coli extract is a practical method for producing isotope-labeled proteins. The advantage of the cell-free system over cellular expression is that any isotope-labeled amino acid can be incorporated into the target protein with minimal scrambling, thus providing opportunities for advanced isotope labeling of proteins. We have modified the standard protocol for E. coli cell-free expression to cope with two problems specific to NMR sample preparation. First, endogenous amino acids present in the E. coli S30 extract lead to dilution of the added isotope. To minimize the content of the remaining amino acids, a gel filtration step is included in the preparation of the E. coli extract. Second, proteins produced by the cell-free system are not necessarily homogeneous due to incomplete processing of the N-terminal formyl-methionine residue, which complicates NMR spectra. Therefore, the protein of interest is engineered to contain a cleavable N-terminal histidine-tag, which generates a homogeneous protein after the digestion of the tag. Here, we describe the protocol for modified E. coli cell-free expression.

  8. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  9. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy.

    PubMed

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research

  10. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  11. 3D correlation NMR spectrum between three distinct heteronuclei for the characterization of inorganic samples: Application on sodium alumino-phosphate materials.

    PubMed

    Nagashima, Hiroki; Tricot, Grégory; Trébosc, Julien; Lafon, Olivier; Amoureux, Jean-Paul; Pourpoint, Frédérique

    2017-03-22

    We report here an original NMR sequence allowing the acquisition of 3D correlation NMR spectra between three distinct heteronuclei, among which two are half-integer spin quadrupolar nuclei. Furthermore, as two of them exhibit close Larmor frequency, this experiment was acquired using a standard triple-resonance probe equipped with a commercial frequency splitter. This NMR technique was tested and applied to sodium alumino-phosphate compounds with (31)P as the spin-1/2 nucleus and (23)Na and (27)Al as the close Larmor frequencies isotopes. To the best of our knowledge, such experiment with direct (31)P and indirect (27)Al and (23)Na detection is the first example of 3D NMR experiment in solids involving three distinct heteronuclei. This sequence has first been demonstrated on a mixture of Al(PO3)3 and NaAlP2O7 crystalline phases, for which a selective observation of NaAlP2O7 is possible through the 3D map edition. This 3D correlation experiment is then applied to characterize mixing and phase segregation in a partially devitrified glass that has been proposed as a material for the sequestration of radioactive waste. The (31)P-{(23)Na,(27)Al} 3D experiment conducted on the partially devitrified glass material conclusively demonstrates that the amorphous component of the material does not contain aluminum. The as-synthesized material thus presents a poor resistance against water, which is a severe limitation for its application in the radioactive waste encapsulation domain.

  12. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples.

    PubMed

    Gilbert, Alexis; Silvestre, Virginie; Robins, Richard J; Tcherkez, Guillaume; Remaud, Gérald S

    2011-07-01

    Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.

  13. Relative, label-free protein quantitation: spectral counting error statistics from nine replicate MudPIT samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine replicate samples of peptides from soybean leaves, each spiked with a different concentration of bovine apotransferrin peptides, were analyzed on a mass spectrometer using multidimensional protein identification technology (MudPIT). Proteins were detected from the peptide tandem mass spectra a...

  14. Probing Metal Carbonation Reactions of CO2 in a Model System Containing Forsterite and H2O Using Si-29, C-13 Magic Angle Sample Spinning NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, J.; Kwak, J.; Hoyt, D. W.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.

    2009-12-01

    Ex situ solid state NMR have been used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration using a model silicate mineral forsterite (Mg2SiO4)+scCO2 with and without H2O. Run conditions were 80C and 96 bar. Si-29 NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce Mg2+, and mono- and oligomeric hydroxylated silica species. The surface hydrolysis products contain only Q0 (Si(OH)4) and Q1 (Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. Si-29 NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. C-13 MAS NMR identified a possible reaction intermediates as (MgCO3)4*Mg(OH)2*5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed. This research is part of a broader effort at PNNL to develop experimental tools and fundamental insights into chemical transformations affecting subsurface CO2 reactive transport. Si-29 (left) and C-13 (right) MAS NMR spectra of Mg2SiO4 under various reaction conditions. Si-29 NMR reveals that in scCO2 without H2O, no reaction is

  15. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong

    2017-01-15

    A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples.

  16. C4'/H4' selective, non-uniformly sampled 4D HC(P)CH experiment for sequential assignments of (13)C-labeled RNAs.

    PubMed

    Saxena, Saurabh; Stanek, Jan; Cevec, Mirko; Plavec, Janez; Koźmiński, Wiktor

    2014-11-01

    A through bond, C4'/H4' selective, "out and stay" type 4D HC(P)CH experiment is introduced which provides sequential connectivity via H4'(i)-C4'(i)-C4'(i-1)-H4'(i-1) correlations. The (31)P dimension (used in the conventional 3D HCP experiment) is replaced with evolution of better dispersed C4' dimension. The experiment fully utilizes (13)C-labeling of RNA by inclusion of two C4' evolution periods. An additional evolution of H4' is included to further enhance peak resolution. Band selective (13)C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the of C4'-C3' and C4'-C5' homonuclear couplings. For reasonable resolution, non-uniform sampling is employed in all indirect dimensions. To reduce sensitivity losses, multiple quantum coherences are preserved during shared-time evolution and coherence transfer delays. In the experiment the intra-nucleotide peaks are suppressed whereas inter-nucleotide peaks are enhanced to reduce the ambiguities. The performance of the experiment is verified on a fully (13)C, (15)N-labeled 34-nt hairpin RNA comprising typical structure elements.

  17. One-pot synthesis of quantum dot-labeled hydrophilic molecularly imprinted polymer nanoparticles for direct optosensing of folic acid in real, undiluted biological samples.

    PubMed

    Yang, Yaqiong; Wang, Zhengzheng; Niu, Hui; Zhang, Huiqi

    2016-12-15

    A facile and efficient one-pot approach for the synthesis of quantum dot (QD)-labeled hydrophilic molecularly imprinted polymer (MIP) nanoparticles for direct optosensing of folic acid (FA) in the undiluted bovine and porcine serums is described. Hydrophilic macromolecular chain transfer agent-mediated reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization was used to implement the molecular imprinting of FA in the presence of CdTe quantum dots (QDs). The resulting FA-imprinted polymer nanoparticles with surface-grafted hydrophilic poly(glyceryl monomethacrylate) brushes and QDs labeling not only showed outstanding specific molecular recognition toward FA in biological samples, but also exhibited good photostability, rapid binding kinetics, and obvious template binding-induced fluorescence quenching. These characteristics make them a useful fluorescent chemosensor for directly and selectively optosensing FA in the undiluted bovine and porcine serums, with its limit of detection being 0.025μM and average recoveries ranging from 98% to 102%, even in the presence of several interfering compounds. This advanced fluorescent MIP chemosensor is highly promising for rapid quantification of FA in such applications as clinical diagnostics and food analysis.

  18. Applications of high resolution /sup 3/H NMR spectroscopy

    SciTech Connect

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of ..beta..-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs. (DLC)

  19. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  20. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  1. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  2. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  3. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  4. Electrochemical detection of magnetically-entrapped DNA sequences from complex samples by multiplexed enzymatic labelling: Application to a transgenic food/feed quantitative survey.

    PubMed

    Manzanares-Palenzuela, C L; Martín-Clemente, J P; Lobo-Castañón, M J; López-Ruiz, B

    2017-03-01

    Monitoring of genetically modified organisms in food and feed demands molecular techniques that deliver accurate quantitative results. Electrochemical DNA detection has been widely described in this field, yet most reports convey qualitative data and application in processed food and feed samples is limited. Herein, the applicability of an electrochemical multiplex assay for DNA quantification in complex samples is assessed. The method consists of the simultaneous magnetic entrapment via sandwich hybridisation of two DNA sequences (event-specific and taxon-specific) onto the surface of magnetic microparticles, followed by bienzymatic labelling. As proof-of-concept, we report its application in a transgenic food/feed survey where relative quantification (two-target approach) of Roundup Ready Soybean® (RRS) was performed in food and feed. Quantitative coupling to end-point PCR was performed and calibration was achieved from 22 and 243 DNA copies spanning two orders of magnitude for the event and taxon-specific sequences, respectively. We collected a total of 33 soybean-containing samples acquired in local supermarkets, four out of which were found to contain undeclared presence of genetically modified soybean. A real-time PCR method was used to verify these findings. High correlation was found between results, indicating the suitability of the proposed multiplex method for food and feed monitoring.

  5. Solid-state NMR of inorganic semiconductors.

    PubMed

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  6. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  7. Solid-state NMR of proteins sedimented by ultracentrifugation

    PubMed Central

    Bertini, Ivano; Luchinat, Claudio; Parigi, Giacomo; Ravera, Enrico; Reif, Bernd; Turano, Paola

    2011-01-01

    Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when spinning is stopped, allowing one to study them in both conditions. Transiently sedimented proteins can be considered a novel phase as far as NMR is concerned. NMR of transiently sedimented molecules under fast magic angle spinning has the advantage of overcoming protein size limitations of solution NMR without the need of sample crystallization/precipitation required by solid-state NMR. PMID:21670262

  8. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  9. 16 CFR 305.17 - Television labeling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STAR logo on the label as illustrated in Sample Labels in appendix L. The logo must be 0.375″ wide... Environmental Protection Agency covering the televisions to be labeled may add the ENERGY STAR logo to...

  10. SAIL--stereo-array isotope labeling.

    PubMed

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  11. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform.

    PubMed

    Zhu, Debin; Zhang, Lan; Ma, Wenge; Lu, Suqin; Xing, Xiaobo

    2015-03-15

    MicroRNAs (miRNAs) are a kind of small molecules that involve in many important life activities. They have higher expression levels in many kinds of cancers. In this study, we developed an isothermal enzyme-free amplification (EFA) and label-free graphene oxide (GO)-based SYBR Green I fluorescence platform for detection of miRNA. MiRNA-21 was used as an example to demonstrate the feasibility of the method. Results show that the sensitivity of miRNA-21 is 1pM, and the linearity range is from 1pM to 1nM. The method can specifically discriminate miRNA-21 from miRNA-210 and miRNA-214. Three tumor cell lines of A549, HepG2 and MCF7 were detected by the method. The sensitivities of them were 10(2) cells, 10(3) cells and 10(3) cells respectively. Clinical tumor samples were also tested by this method, and 29 of 40 samples gave out positive signals. The method holds great promise in miRNA detection due to its convenience, rapidness, inexpensive and specificity.

  12. Expression, purification, and solid-state NMR characterization of the membrane binding heme protein nitrophorin 7 in two electronic spin states.

    PubMed

    Varghese, Sabu; Yang, Fei; Pacheco, Victor; Wrede, Kathrin; Medvedev, Alexander; Ogata, Hideaki; Knipp, Markus; Heise, Henrike

    2013-10-08

    The nitrophorins (NPs) comprise a group of NO transporting ferriheme b proteins found in the saliva of the blood sucking insect Rhodnius prolixus . In contrast to other nitrophorins (NP1-4), the recently identified membrane binding isoform NP7 tends to form oligomers and precipitates at higher concentrations in solution. Hence, solid-state NMR (ssNMR) was employed as an alternative method to gain structural insights on the precipitated protein. We report the expression and purification of (13)C,(15)N isotopically labeled protein together with the first ssNMR characterization of NP7. Because the size of NP7 (21 kDa) still provides a challenge for ssNMR, the samples were reverse labeled with Lys and Val to reduce the number of crosspeaks in two-dimensional spectra. The two electronic spin states with S = 1/2 and S = 0 at the ferriheme iron were generated by the complexation with imidazole and NO, respectively. ssNMR spectra of both forms are well resolved, which allows for sequential resonance assignments of 22 residues. Importantly, the ssNMR spectra demonstrate that aggregation does not affect the protein fold. Comparison of the spectra of the two electronic spin states allows the determination of paramagnetically shifted cross peaks due to pseudocontact shifts, which assists the assignment of residues close to the heme center.

  13. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  14. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  15. Design and construction of a versatile dual volume heteronuclear double resonance microcoil NMR probe

    NASA Astrophysics Data System (ADS)

    Kc, Ravi; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2009-04-01

    Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at 1H- 2D (upper coil) and 1H- 13C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8-1.1 Hz with good mass sensitivity for both 1H and 13C NMR detection. 13C-directly detected 2D HETCOR spectra of 5% v/v 13C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.

  16. Design and construction of a versatile dual volume heteronuclear double resonance microcoil NMR probe.

    PubMed

    Kc, Ravi; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2009-04-01

    Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at (1)H-(2)D (upper coil) and (1)H-(13)C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8-1.1 Hz with good mass sensitivity for both (1)H and (13)C NMR detection. (13)C-directly detected (2)D HETCOR spectra of 5% v/v (13)C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.

  17. Separation and quantitative determination of cinacalcet metabolites in urine sample using RP-HPLC after derivation with a fluorescent labeling reagent.

    PubMed

    Farnoudian-Habibi, Amir; Jaymand, Mehdi

    2016-08-01

    In this investigation, a novel strategy for separation and quantitative determination of four metabolites of cinacalcet (M2a-Glu, M2b-Glu, M7-Gly, and M8-Gly) in human urine is suggested. The analytical assay is based on a pre-column derivation procedure of cinacalcet metabolites with 1-pyrenyldiazomethane (PDAM) as a fluorescent labeling reagent, and subsequently separation and quantitative determination with reverse-phase high-performance liquid chromatography (RP-HPLC) coupled with a fluorescence detector. Metabolites were separated on a Microsorb-MV 100-5 C18 chromatography column (250×4.6mm, 5μm) using acetate buffer (pH 3.5):methanol (30:70 v/v) as mobile phase at a flow rate of 1.0mLmin(-1). The method was fully validated in terms of linearity (r(2)>0.996; 1-10ngmL(-1)), precision (both intra-day and inter-day; RSD<6.2%), accuracy (92-110%), specificity, robustness (0.15%samples.

  18. Label-free optical biosensor for detection and quantification of the non-steroidal anti-inflammatory drug diclofenac in milk without any sample pretreatment.

    PubMed

    Rau, Sabrina; Hilbig, Urs; Gauglitz, Günter

    2014-05-01

    A label-free optical biosensor for detection and quantification of diclofenac in bovine milk has been developed. This was achieved by using reflectometric interference spectroscopy as detection method. In a first step, the immunosensor was developed and optimised in buffer concerning sensitivity, selectivity, stability and reproducibility. By comparing recovery rates—not only the good intra- but also the good inter-chip—reproducibility could be proven. Consequently, the assay was transferred in the more complex matrix milk. By utilising an optimised surface modification and evaluation method, matrix effects could successfully be prevented or circumvented. As a result, the developed immunosensor does not need sample pretreatment at all. By obtaining a limit of detection of 0.112 μg L(−1) (0.108 μg kg(−1)), the capability of the developed biosensor is comparable or better than those of standard detection methods. Moreover, the presented biosensor reaches the range of the maximum residue limit (0.1 μg kg(−1)) set by the European Union. Thus, for the first time, diclofenac was successfully quantified at relevant levels in milk by using an optical biosensor.

  19. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  20. A novel graphene-based label-free fluorescence `turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells

    NASA Astrophysics Data System (ADS)

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-01

    A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions

  1. Application of the two-sample doubly labelled water method alters behaviour and affects estimates of energy expenditure in black-legged kittiwakes.

    PubMed

    Schultner, Jannik; Welcker, Jorg; Speakman, John R; Nordøy, Erling S; Gabrielsen, Geir W

    2010-09-01

    Despite the widespread use of the doubly labelled water (DLW) method in energetic studies of free-ranging animals, effects of the method on study animals are rarely assessed. We studied behavioural effects of two alternative DLW protocols. During two consecutive breeding seasons, 42 parent black-legged kittiwakes received either the commonly used two-sample (TS) or the less invasive single-sample (SS) DLW treatment. A third group served as a non-treated control. We evaluated the effect of treatment with respect to the time birds took to return to their nest after treatment and recaptures, and the nest attendance during DLW measurement periods. We found that TS kittiwakes took on average 20 times longer to return to their nest than SS kittiwakes after initial treatment, and nest attendance was reduced by about 40% relative to control birds. In contrast, nest attendance did not differ between control and SS kittiwakes. Estimates of energy expenditure of SS kittiwakes exceeded those of TS kittiwakes by 15%. This difference was probably caused by TS birds remaining inactive for extended time periods while at sea. Our results demonstrate that the common assumption that the TS DLW method has little impact on the behaviour of study subjects is in some circumstances fallacious. Estimates of energy expenditure derived by the SS approach may thus more accurately reflect unbiased rates of energy expenditure. However, the choice of protocol may be a trade-off between their impact on behaviour, and hence accuracy, and their differences in precision. Adopting procedures that minimize the impact of TS protocols may be useful.

  2. Evaluation of ¹³C- and ²H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Berg, Thomas; Karlsen, Morten; Oiestad, Ase Marit Leere; Johansen, Jon Eigill; Liu, Huiling; Strand, Dag Helge

    2014-05-30

    Stable isotope-labeled internal standards (SIL-ISs) are often used when applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze for legal and illegal drugs. ISs labeled with (13)C, (15)N, and (18)O are expected to behave more closely to their corresponding unlabeled analytes, compared with that of the more classically used (2)H-labeled ISs. This study has investigated the behavior of amphetamine, (2)H3-, (2)H5, (2)H6-, (2)H8-, (2)H11-, and (13)C6-labeled amphetamine, during sample preparation by liquid-liquid extraction and LC-MS/MS analyses. None or only minor differences in liquid-liquid extraction recoveries of amphetamine and the SIL-ISs were observed. The chromatographic resolution between amphetamine and the (2)H-labeled amphetamines increased with the number of (2)H-substitutes. For chromatographic studies we also included seven additional (13)C6-amphetamines and their analytes. All the (13)C6-labeled ISs were co-eluting with their analytes, both when a basic and when an acidic mobile phase were used. MS/MS analyses of amphetamine and its SIL-ISs showed that the ISs with the highest number of (2)H-substitutes required more energy for fragmentation in the collision cell compared with that of the ISs with a lower number. The findings, in this study, support those of previous studies, showing that (13)C-labeled ISs are superior to (2)H-labeled ISs, for analytical purposes.

  3. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  4. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  5. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme

    NASA Astrophysics Data System (ADS)

    Lv, Guohua; Faßhuber, Hannes Klaus; Loquet, Antoine; Demers, Jean-Philippe; Vijayan, Vinesh; Giller, Karin; Becker, Stefan; Lange, Adam

    2013-03-01

    The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-13C]Glucose ([2-13C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-13C]pyruvate produced mainly by glycolysis and [3-13C]/[1,3-13C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs 13Cβ-13Cγ2 and 13Cα-13Cγ1 in Val, and 13Cγ-13Cδ2 and 13Cβ-13Cδ1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.

  6. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  7. An Inversion Recovery NMR Kinetics Experiment.

    PubMed

    Williams, Travis J; Kershaw, Allan D; Li, Vincent; Wu, Xinping

    2011-05-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples.

  8. An Inversion Recovery NMR Kinetics Experiment

    PubMed Central

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples. PMID:21552343

  9. Structure and dynamics of retinal in rhodopsin elucidated by deuterium solid state NMR

    NASA Astrophysics Data System (ADS)

    Salgado, Gilmar Fernandes De Jesus

    Rhodopsin is a seven transmembrane helix GPCR found which mediates dim light vision, in which the binding pocket is occupied by the ligand 11- cis-retinal. A site-directed 2H-labeling approach utilizing solid-state 2H NMR spectroscopy was used to investigate the structure and dynamics of retinal within its binding pocket in the dark state of rhodopsin, and as well the MetaI and MetaII. 11-cis-[5-C 2H3]-, 11-cis-[9-C 2H3]-, and 11-cis-[13-C2H 3]-retinal were used to regenerate bleached rhodopsin. Recombinant membranes comprising purified rhodopsin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared (1:50 molar ratio). Solid-state 2H NMR spectra were obtained for the aligned rhodopsin/POPC recombinant membranes at temperatures below the order-disorder phase transition temperature of POPC. The solid-state NMR studies of aligned samples, give the orientations of the 2H nuclear coupling tensor relative to the membrane frame, which involve both the conformation and orientation of the bound retinal chromophore. Theoretical simulations of the experimental 2H NMR spectra employed a new lineshape treatment for a semi-random distribution due to static uniaxial disorder. The analysis gives the orientation of the 2H-labeled C-C2H3 methyl bond axes relative to the membrane plane as well as the extent of three-dimensional alignment disorder (mosaic spread). These results clearly demonstrate the applicability of site-directed 2H NMR methods for investigating conformational changes and dynamics of ligands bound to rhodopsin and other GPCRs in relation to their characteristic mechanisms of action.

  10. Ki-67 labeling index of neuroendocrine tumors of the lung has a high level of correspondence between biopsy samples and surgical specimens when strict counting guidelines are applied.

    PubMed

    Fabbri, Alessandra; Cossa, Mara; Sonzogni, Angelica; Papotti, Mauro; Righi, Luisella; Gatti, Gaia; Maisonneuve, Patrick; Valeri, Barbara; Pastorino, Ugo; Pelosi, Giuseppe

    2017-02-01

    Optimal histopathological analysis of biopsies from metastases of neuroendocrine tumor (NET) of the lung requires more than morphology only. Additional parameters such as Ki-67 labeling index are required for adequate diagnosis, but few studies have compared reproducibility of different counting protocols and modalities of reporting on biopsies of lung NET. We compared the results of four different manual counting techniques to establish Ki-67 LI. On 47 paired biopsies and surgical specimens from 22 typical carcinoids (TCs), 14 atypical carcinoids (ACs), six large cell neuroendocrine carcinomas (LCNECs), and five small cell carcinomas (SCCs) immunohistochemical staining of Ki-67 antigen was performed. We counted, in regions of highest nuclear staining (HSR), a full ×40-high-power field (diameter = 0.55 mm), 500 or 2000 cells, or 2 mm(2) surface area, including the HSR or the entire biopsy fragment(s). Mitoses and necrosis were evaluated in an area of 2 mm(2) or the entire biopsy fragment(s). Between the four counting methods, no differences in Ki-67 LI were observed. However, a Ki-67 LI higher than 5% was found in only four cases when in an HSR, 500 cells were counted (18%), five (23%) when in an HSR 2000 cells were counted, four (18%) when 2 mm(2) were counted, and one (5%) TC case when the entire biopsy was counted. A 20% cutoff distinguished TC and AC from LCNEC and SCC with 100% specificity and sensitivity, while mitoses and necrosis failed to a large extent. Ki-67 LI in biopsy samples was concordant with that in resection specimens when 2000 cells, 2 mm(2), or the entire biopsy fragment(s) were counted. Our results are important for clinical management of patients with metastases of a lung NET.

  11. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  12. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  13. Challenges and perspectives in quantitative NMR.

    PubMed

    Giraudeau, Patrick

    2017-01-01

    This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd.

  14. 1H–13C hetero-nuclear dipole–dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins

    PubMed Central

    Wu, Chin H.; Das, Bibhuti B.; Opella, Stanley J.

    2010-01-01

    13C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure 1H–13C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the 1H–13C hetero-nuclear dipolar interactions of 13C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of 13C3 labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. PMID:19896874

  15. Food Labeling

    MedlinePlus

    ... in the U.S. have food labels. On every food label you will see Serving size, number of servings, and number of calories per serving Information on the amount of dietary fat, cholesterol, dietary fiber, dietary sodium, carbohydrates, dietary proteins, vitamins, ...

  16. Broadband excitation in solid-state NMR of paramagnetic samples using Delays Alternating with Nutation for Tailored Excitation ('Para-DANTE')

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Vitzthum, Veronika; Lafon, Olivier; Trébosc, Julien; Amoureux, Jean-Paul; Bodenhausen, Geoffrey

    2012-11-01

    This Letter shows that interleaved sequences of short pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) with N = 1, 2, 3 … equidistant pulses per rotor period extending over K rotor periods can be used to excite, invert or refocus a large number of spinning sidebands of spin-1/2 nuclei in paramagnetic samples where hyperfine couplings lead to very broad spectra that extend over more than 1 MHz. The breadth of the response is maintained for rf-field amplitudes as low as 30 kHz since it results from cumulative effects of individual pulses with very short durations.

  17. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations.

    PubMed

    Geiger, Matthew; Bowser, Michael T

    2016-02-16

    Multidimensional separations present a unique opportunity for generating the high peak capacities necessary for the analysis of complex biological mixtures. We have coupled nano liquid chromatography with micro free flow electrophoresis (nLC × μFFE) to produce high peak capacity separations of peptide and amino acid mixtures. Currently, μFFE largely relies on laser-induced fluorescence (LIF) detection. We have demonstrated that the choice of fluorescent label significantly affects the fractional coverage and peak capacity of nLC × μFFE separations of peptides and amino acids. Of the labeling reagents assessed, Chromeo P503 performed the best for nLC × μFFE separations of peptides. A nLC × μFFE analysis of a Chromeo P503-labeled BSA tryptic digest produced a 2D separation that made effective use of the available separation space (48%), generating a corrected peak capacity of 521 in a 5 min separation window (104 peaks/min). nLC × μFFE separations of NBD-F-labeled peptides produced similar fractional coverage and peak capacity, but this reagent was able to react with multiple reaction sites, producing an unnecessarily complex analyte mixture. NBD-F performed the best for nLC × μFFE separations of amino acids. NBD-F-labeled amino acids produced a 2D separation that covered 36% of the available separation space, generating a corrected peak capacity of 95 in a 75 s separation window (76 peaks/min). Chromeo P503 and Alexa Fluor 488-labeled amino acids were not effectively separated in the μFFE dimension, giving 2D separations with poor fractional coverage and peak capacity.

  18. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  19. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  20. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  1. Automated structure determination of proteins with the SAIL-FLYA NMR method.

    PubMed

    Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune

    2007-01-01

    The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.

  2. Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR.

    PubMed

    de Graaf, Albert A; Maathuis, Annet; de Waard, Pieter; Deutz, Nicolaas E P; Dijkema, Cor; de Vos, Willem M; Venema, Koen

    2010-01-01

    This study introduces a stable-isotope metabolic approach employing [U-(13)C]glucose that, as a novelty, allows selective profiling of the human intestinal microbial metabolic products of carbohydrate food components, as well as the measurement of the kinetics of their formation pathways, in a single experiment. A well-established, validated in vitro model of human intestinal fermentation was inoculated with standardized gastrointestinal microbiota from volunteers. After culture stabilization, [U-(13)C]glucose was added as an isotopically labeled metabolic precursor. System lumen and dialysate samples were taken at regular intervals. Metabolite concentrations and isotopic labeling were determined by NMR, GC, and enzymatic methods. The main microbial metabolites were lactate, acetate, butyrate, formate, ethanol, and glycerol. They together accounted for a (13)C recovery rate as high as 91.2%. Using an NMR chemical shift prediction approach, several minor products that showed (13)C incorporation were identified as organic acids, amino acids, and various alcohols. Using computer modeling of the (12)C contents and (13)C labeling kinetics, the metabolic fluxes in the gut microbial pathways for synthesis of lactate, formate, acetate, and butyrate were determined separately for glucose and unlabeled background substrates. This novel approach enables the study of the modulation of human intestinal function by single nutrients, providing a new rational basis for achieving control of the short-chain fatty acids profile by manipulating substrate and microbiota composition in a purposeful manner.

  3. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.

    PubMed

    Yazawa, Koji; Yamaguchi, Erika; Knight, David; Asakura, Tetsuo

    2012-06-01

    We prepared the water soluble model peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG, to throw light on the local structure of spidroin 1 (MaSpl) protein in spider dragline silk of Nephila clavipes before and after spinning. Solution (13) C NMR showed that the conformation of the peptide in aqueous solution was essentially random coil. Solid-state NMR was used to follow conformation-dependent (13) C chemical shifts in (13) C selectively labeled versions of the peptide. The peptide lyophilized from an aqueous solution at neutral pH (hereafter referred to as "without acid treatment)"was used to mimic the state of the spidroin stored in the spider's silk gland while the peptide precipitated from the acidic solution ("with acid treatment") was used to simulate the role of acid treatment in inducing conformation change in the natural spinning process. In without acid treatment, the fraction of random coil conformation was lowest in the N-terminal region (residues 15-18) when compared with the C-terminus. The conformational change produced by the acid treatment occurred in the sequence, G(15) AG(A)(6) GGAG(27), interposed between pairs of Gly residues pairs, Gly(12,13), and Gly(29,30). The acid treated peptide showed a remarkable decrease in the fraction of random coil conformation from A(20) to A(23) in the poly-Ala region when compared with the peptide without acid treatment. These observations taken together suggest that the peptide can be used as a model for studying the localization of the conformation change in spider silk fibroin in the natural spinning and the role of acid treatment in this process.

  4. Food Labels

    MedlinePlus

    ... the food came from, whether the food is organic, and certain health claims. So who decides what ... make that claim. Foods that are labeled "USDA organic" are required to have at least 95% organic ...

  5. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  6. Principles of protein labeling techniques.

    PubMed

    Obermaier, Christian; Griebel, Anja; Westermeier, Reiner

    2015-01-01

    Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  8. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  9. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  10. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  11. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  12. Radiation damping in microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Krishnan, V. V.

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-μL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  13. Radiation damping in microcoil NMR probes.

    PubMed

    Krishnan, V V

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  14. Extending the scope of NMR spectroscopy with microcoil probes.

    PubMed

    Schroeder, Frank C; Gronquist, Matthew

    2006-11-06

    Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.

  15. Fluorine-Labeling as a Diagnostic for Thiol-Ligand and Gold Nanocluster Self-Assembly

    DTIC Science & Technology

    2009-01-01

    characterized by NMR and IR spectroscopies as well as elemental analysis (see Experimental and ESI†). The 19F NMR spectrum of the fluorine terminated...cluster and free fluorine-labeled thiol 1 as reported in the Experimental. The degree of substitution was quantified by NMR analyses of displaced...the displaced ligands. This cluster was characterized by NMR and IR spectroscopies (see ESI†) for comparison of spectral features with those of the

  16. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  17. Simulation of NMR data from oriented membrane proteins: practical information for experimental design.

    PubMed Central

    Sanders, C R; Schwonek, J P

    1993-01-01

    Several hundred solid state NMR dipolar couplings and chemical shift anisotropies were simulated for the polytopic membrane protein, bacteriorhodopsin, and for an idealized transmembrane peptide conforming to several different secondary structures (alpha- and 3(10)-helices and parallel and antiparallel beta-sheets), each at several tilt angles with respect to the bilayer normal. The use of macroscopically oriented samples was assumed. The results of these simulations suggest: (i) Because of the r-3 dependence of dipolar coupling, it is likely to prove difficult to successfully execute uniform isotopic enrichment strategies to generate large numbers of quantitatively interpretable structural measurements in oriented sample NMR studies of membrane proteins. (ii) There are a number of readily implementable specific isotopic labeling schemes which can yield data patterns sufficient to identify local secondary structure for transmembrane segments of idealized proteins which are tilted by < 10 degrees with respect to the bilayer normal. (iii) The measurement of dipolar coupling constants between 13C-, 19F-, and/or 3H-labeled side chains of proximal residues may prove effective as routes to long range tertiary structural data constraints. PMID:8274640

  18. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  19. Portable microcoil NMR detection coupled to capillary electrophoresis.

    PubMed

    Diekmann, Joana; Adams, Kristl L; Klunder, Gregory L; Evans, Lee; Steele, Paul; Vogt, Carla; Herberg, Julie L

    2011-02-15

    High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system.

  20. Application and Reliability of Solid-State NMR in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2010-05-01

    technique increases the sensitivity of 13C by magnetization transfer from the 1H to the 13C spin system during a contact time tc. However, one has to bear in mind that some molecular properties may obscure quantification. Thus, for carbons with large C-H internuclear distances (bigger than four bonds, i.e in graphite structures) and for C in groups with high molecular mobility (i.e. gas) the proton-dipolar interactions are weakened and the polarization transfer may be incomplete. The observed intensity can also be affected by interactions of the protons with paramagnetic compounds. To circumvent this problem, the samples are often demineralized with hydrofluoric acid. Alternatively, the Bloch decay, a technique in which the 13C is directly excited is used. Here, on the other hand, one has to consider long relaxation times which may lead to saturation effects. Nevertheless, as it will be discussed within the presentation those quantification problems can be solved for most soil samples and then solid-state NMR spectroscopy represents a powerful tool for qualitative and quantitative analysis. Special techniques, such as dipolar dephasing or the proton spin relaxation editing can be used to extract additional information about chemical properties or mobility. A more detailed examination of the cross polarization behavior can be used to analyze the interaction of organic matter and paramagnetics but also for obtaining revealing properties on a molecular level. Applications involving isotopic labeling combined with both 13C and/or 15N NMR allows to follow the fate of a specific compound i.e. in a natural matrix and- if the enrichment is high enough - the use of 2D solid-state NMR techniques. In particular with respect to environmental chemistry, this combination of isotopic labeling with the use of corresponding NMR spectroscopy shows great potential for a better understanding of the kind of interaction between pollutants and natural organic matter.

  1. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  2. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  3. NMR assignment method for amide signals with cell-free protein synthesis system.

    PubMed

    Kohno, Toshiyuki

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used to determine the three-dimensional structures of proteins, to estimate protein folding, and to discover high-affinity ligands for proteins. However, one of the problems to apply such NMR methods to proteins is that we should obtain mg quantities of (15)N and/or (13)C labeled pure proteins of interest. Here, we describe the method to produce dual amino acid-selective (13)C-(15)N labeled proteins for NMR study using the improved wheat germ cell-free system, which enables sequence-specific assignments of amide signals simply even for very large protein.

  4. 16 CFR 305.17 - Television labeling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Required Disclosures § 305.17... manufacturer may include the ENERGY STAR logo on the label as illustrated in Sample Labels 10, 11, and 12...

  5. Rapid determination of coenzyme Q10 in food supplements using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Ingrid; Kuballa, Thomas; Lerch, Christiane; Lachenmeier, Dirk W

    2013-01-01

    A methodology utilizing 1H NMR spectroscopy has been developed to measure the concentration of coenzyme Q10 (CoQ10) in dietary supplements. For sample preparation, a very simple dilution with deuterated chloroform and addition of internal standard is sufficient. CoQ10 produces a distinct peak of the CH groups in the isoprene side chain of the molecule in the δ 5.15 - 5.05 ppm range, where it can be distinguished from other matrix compounds. The method was shown to be of adequate sensitivity with a limit of detection (LOD) of 7.8 mg/L, to control the CoQ10 content in the majority of the products. The precision expressed as relative standard deviation was around 5 %; linearity was observed from 14 to 2000 mg/L (R = 0.99). The developed methodology was applied for the analysis of 21 food supplements (capsules, tablets, and liquid products). On the basis of the labeled amounts, only two products contained substantially lower concentrations of CoQ10 (57 % and 51 %). All other concentrations varied between 83 % and 190 % with respect to labeling. The developed NMR method may be used by quality assurance laboratories for routine control of CoQ10 products.

  6. Microgram-scale protein structure determination by NMR.

    PubMed

    Aramini, James M; Rossi, Paolo; Anklin, Clemens; Xiao, Rong; Montelione, Gaetano T

    2007-06-01

    Using conventional triple-resonance nuclear magnetic resonance (NMR) experiments with a 1 mm triple-resonance microcoil NMR probe, we determined near complete resonance assignments and three-dimensional (3D) structure of the 68-residue Methanosarcina mazei TRAM protein using only 72 mug (6 microl, 1.4 mM) of protein. This first example of a complete solution NMR structure determined using microgram quantities of protein demonstrates the utility of microcoil-probe NMR technologies for protein samples that can be produced in only limited quantities.

  7. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  8. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  9. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    PubMed

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity.

  10. A paired ions scoring algorithm based on Morpheus for simultaneous identification and quantification of proteome samples prepared by isobaric peptide termini labeling strategies.

    PubMed

    Zhang, Shen; Wu, Qi; Shan, Yichu; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2015-06-01

    The isobaric peptide termini labeling (IPTL) method is a promising strategy in quantitative proteomics for its high accuracy, while the increased complexity of MS2 spectra originated from the paired b, y ions has adverse effect on the identification and the coverage of quantification. Here, a paired ions scoring algorithm (PISA) based on Morpheus, a database searching algorithm specifically designed for high-resolution MS2 spectra, was proposed to address this issue. PISA was first tested on two 1:1 mixed IPTL datasets, and increases in peptide to spectrum matchings, distinct peptides and protein groups compared to Morpheus itself and MASCOT were shown. Furthermore, the quantification is simultaneously performed and 100% quantification coverage is achieved by PISA since each of the identified peptide to spectrum matchings has several pairs of fragment ions which could be used for quantification. Then the PISA was applied to the relative quantification of human hepatocellular carcinoma cell lines with high and low metastatic potentials prepared by an IPTL strategy.

  11. Determination of D-amino acids labeled with fluorescent chiral reagents, R(-)- and S(+)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles, in biological and food samples by liquid chromatography.

    PubMed

    Jin, D; Miyahara, T; Oe, T; Toyo'oka, T

    1999-04-10

    D-Amino acids in food and biological samples labeled with R(-)- and S(+)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles (DBD-PyNCS) were separated by reversed-phase chromatography and detected fluorometrically at 550 nm (excitation at 460 nm). DL-Amino acids were efficiently labeled at 55 degrees C for 20 min in basic medium. The resulting thiocarbamoyl-amino acids were resolved by an isocratic elution using water:30% methanol in acetonitrile (72:28) containing 0.1% trifluoracetic acid as mobile phase for hydrophilic amino acids and gradient elutions using sodium acetate buffer (pH 5. 2)/acetonitrile as gradient solvent mixture for hydrophobic amino acids, respectively. The detection limits (S/N = 3) of DL-amino acids tested were in the range of 0.16-0.75 pmol. The proposed method was applied to determine the D-amino acid(s) in milk, cream, fermented dairy products (yogurt and yakult), tomato products (juice, puree, and catchup), fermented beverages (beer and red wine), and human urine. The existence of D-amino acid(s) was demonstrated in all the samples tested. Furthermore, the identification of the D-amino acid(s) was performed using both isomers of DBD-PyNCS and by on-line HPLC-electrospray ionization-MS.

  12. NMR observation of Tau in Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Bodart, Jean-François; Wieruszeski, Jean-Michel; Amniai, Laziza; Leroy, Arnaud; Landrieu, Isabelle; Rousseau-Lescuyer, Arlette; Vilain, Jean-Pierre; Lippens, Guy

    2008-06-01

    The observation by NMR spectroscopy of microinjected 15N-labelled proteins into Xenopus laevis oocytes might open the way to link structural and cellular biology. We show here that embedding the oocytes into a 20% Ficoll solution maintains their structural integrity over extended periods of time, allowing for the detection of nearly physiological protein concentrations. We use these novel conditions to study the neuronal Tau protein inside the oocytes. Spectral reproducibility and careful comparison of the spectra of Tau before and after cell homogenization is presented. When injecting Tau protein into immature oocytes, we show that both its microtubule association and different phosphorylation events can be detected.

  13. Introduction to Pesticide Labels

    EPA Pesticide Factsheets

    Pesticide product labels provide critical information about how to safely and legally handle and use pesticide products. Unlike most other types of product labels, pesticide labels are legally enforceable. Learn about pesticide product labels.

  14. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  15. Solid-state 17O NMR of pharmaceutical compounds: salicylic acid and aspirin.

    PubMed

    Kong, Xianqi; Shan, Melissa; Terskikh, Victor; Hung, Ivan; Gan, Zhehong; Wu, Gang

    2013-08-22

    We report solid-state NMR characterization of the (17)O quadrupole coupling (QC) and chemical shift (CS) tensors in five site-specifically (17)O-labeled samples of salicylic acid and o-acetylsalicylic acid (Aspirin). High-quality (17)O NMR spectra were obtained for these important pharmaceutical compounds under both static and magic angle spinning (MAS) conditions at two magnetic fields, 14.0 and 21.1 T. A total of 14 (17)O QC and CS tensors were experimentally determined for the seven oxygen sites in salicylic acid and Aspirin. Although both salicylic acid and Aspirin form hydrogen bonded cyclic dimers in the solid state, we found that the potential curves for the concerted double proton transfer in these two compounds are significantly different. In particular, while the double-well potential curve in Aspirin is nearly symmetrical, it is highly asymmetrical in salicylic acid. This difference results in quite different temperature dependencies in (17)O MAS spectra of the two compounds. A careful analysis of variable-temperature (17)O MAS NMR spectra of Aspirin allowed us to obtain the energy asymmetry (ΔE) of the double-well potential, ΔE = 3.0 ± 0.5 kJ/mol. We were also able to determine a lower limit of ΔE for salicylic acid, ΔE > 10 kJ/mol. These asymmetrical features in potential energy curves were confirmed by plane-wave DFT computations, which yielded ΔE = 3.7 and 17.8 kJ/mol for Aspirin and salicylic acid, respectively. To complement the solid-state (17)O NMR data, we also obtained solid-state (1)H and (13)C NMR spectra for salicylic acid and Aspirin. Using experimental NMR parameters obtained for all magnetic nuclei present in salicylic acid and Aspirin, we found that plane-wave DFT computations can produce highly accurate NMR parameters in well-defined crystalline organic compounds.

  16. Structural biology applications of solid state MAS DNP NMR.

    PubMed

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  17. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  18. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  19. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    NASA Astrophysics Data System (ADS)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  20. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  1. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    SciTech Connect

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  2. Synthesis and applications of selectively {sup 13}C-labeled RNA

    SciTech Connect

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr.

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  3. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy.

  4. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  5. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Magic angle spinning NMR of paramagnetic proteins.

    PubMed

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  7. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  8. Advanced NMR characterization of zeolite catalysts. Third quarterly report, March 1-May 31, 1984

    SciTech Connect

    Welsh, L.B.

    1984-06-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by majic angle sample spinning NMR (MASS NMR) and variable angle sample spinning NMR (VASS NMR) on 500 and 360 MHz (Proton frequency) NMR spectrometers. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of /sup 17/O enriched Na-Y faujasites. The effort in each phase is broken into four tasks: (1) zeolite preparation. (2) standard zeolite characterization; (3) measurement of zeolite NMR properties; and (4) analysis of NMR data. The main efforts during the third three month period of the program have been the characterization of the /sup 17/O enriched zeolites, particularly X and Y zeolites, by high resolution sample spinning /sup 17/O NMR, and the preparation of additional /sup 17/O enriched zeolites. X and Y zeolites with Si/Al framework ratios from 1.22 to 7.6 have been prepared in either the Na, NH/sub 4/ or Ba form. MASS NMR and VASS NMR as well as static NMR measurements have been made on these materials for /sup 17/O NMR frequencies from 20.4 to 67.8 MHz. Computer simulations of the experimental NMR lineshapes are in progress. Results to date indicate that the observed spectra arise from two different types of oxygen sites, possibly O in Al-O-Si links and chemically bound OH groups. 2 references, 1 figure, 1 table.

  9. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  10. TAAR6 variation effect on clinic presentation and outcome in a sample of schizophrenic in-patients: an open label study.

    PubMed

    Pae, Chi-Un; Drago, Antonio; Kim, Jung-Jin; Patkar, Ashwin A; Jun, Tae-Youn; Lee, Chul; Mandelli, Laura; De Ronchi, Diana; Paik, In-Ho; Serretti, Alessandro

    2008-09-01

    We recently reported an association between TAAR6 (trace amine associated receptor 6 gene) variations and schizophrenia (SZ). We now report an association of a set of TAAR6 variations and clinical presentation and outcome in a sample of 240 SZ Korean patients. Patients were selected by a Structured Clinical Interview, DSM-IV Axis I disorders - Clinical Version (SCID-CV). Other psychiatric or neurologic disorders, as well as medical diseases, were exclusion criteria. To assess symptom severity, patients were administered the CGI scale and the PANSS at baseline and at the moment of discharge, 1 month later on average. TAAR6 variations rs6903874, rs7452939, rs8192625 and rs4305745 were investigated; rs6903874, rs7452939 and rs8192625 entered the statistical investigation after LD analysis. Rs8192625 G/G homozygosis was found to be significantly associated both with a worse clinical presentation at PANSS total and positive scores and with a shorter period of illness before hospitalization. No haplotype significant findings were found. The present study stands for a role of the TAAR6 in the clinical presentation of SZ. Moreover, our results show that this genetic effect may be counteracted by a correct treatment. Haplotype analysis was not informative in our sample, probably also because of the incomplete SNPs' coverage of the gene we performed. Further studies in this direction are warranted.

  11. Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens.

    PubMed

    Min, Xuehong; Zhuang, Yuan; Zhang, Zhenyu; Jia, Yongmei; Hakeem, Abdul; Zheng, Fuxin; Cheng, Yong; Tang, Ben Zhong; Lou, Xiaoding; Xia, Fan

    2015-08-05

    We demonstrate an ultrasensitive microRNA detection method based on an extremely simple probe with only fluorogens but without quencher groups. It avoids complex and difficult steps to accurately design the relative distance between the fluorogens and quencher groups in the probes. Furthermore, the assay could accomplish various detection limits by tuning the reaction temperature due to the different activity of exonuclease III corresponding to the diverse temperature. Specifically, 1 pM miR-21 can be detected in 40 min at 37 °C, and 10 aM (about 300 molecules in 50 μL) miR-21 could be discriminated in 7 days at 4 °C. The great specificity of the assay guarantees that the real 21 urine samples from the bladder cancer patients are successfully detected by our method.

  12. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  13. Determination of histamine in microdialysis samples from rat brain by microbore column liquid chromatography following intramolecular excimer-forming derivatization with pyrene-labeling reagent.

    PubMed

    Yoshitake, Takashi; Yamaguchi, Masatoshi; Nohta, Hitoshi; Ichinose, Fumio; Yoshida, Hideyuki; Yoshitake, Shimako; Fuxe, Kjell; Kehr, Jan

    2003-07-15

    This paper describes a sensitive and selective liquid chromatographic method with fluorescence detection for determination of histamine in brain microdialysis samples from awake rats. Samples containing histamine (10 microl) were derivatized with 20 microl of the reagent consisting of 3 mM 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), 3 mM potassium carbonate and acetonitrile (1:1:18, v/v), thereafter 20 microl volume was injected onto the microbore column packed with C18 silica gel. The histamine derivative contained two pyrene moieties, which generated intramolecular excimer fluorescence (450-540 nm) and allowed clear discrimination from the monomer fluorescence (360-420 nm) emitted by PSE itself. The separation of histamine-pyrene derivative was achieved within 25 min, the detection limit (S/N=3) was 0.3 fmol histamine in 20 microl injected. The basal extracellular levels of histamine collected in 10-min fractions (fmol per 10 microl, mean+/-S.D., not corrected for recovery, n=10 rats) were 35.45+/-4.56 (hypothalamus), 9.05+/-1.56 (prefrontal cortex), 7.83+/-0.86 (hippocampus) and 6.54+/-0.66 (striatum). The voltage-sensitive release of histamine was evaluated by perfusing the probes with high (100 mM) concentration of potassium ions or with sodium channel blocker tetrodotoxin (1 microM), and the calcium-dependent release was tested by perfusion with calcium-free Ringer solution. These data, together with physiologically induced increase of extracellular histamine in four examined brain regions during forced swimming demonstrate that this method is suitable for high-sensitive determination of neuronally released histamine under various pharmacological and physiological conditions.

  14. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  15. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  16. Characterization of D-glucaric acid using NMR, x-ray crystal structure, and MM3 molecular modeling analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-glucaric acid was characterized in solution by comparing NMR spectra from the isotopically unlabeled molecule with those from D-glucaric acid labeled with deuterium or carbon-13 atoms. The NMR studies provided unequivocal assignments for all carbon atoms and non-hydroxyl protons of the molecule. ...

  17. New Designs for NMR Core Scanning

    NASA Astrophysics Data System (ADS)

    Bluemich, B.; Anferova, S.; Talnishnikh, E.; Arnold, J.; Clauser, C.

    2006-12-01

    Within the last ten years, mobile magnetic resonance has moved from the oil field to many new areas of application. While the focus of mobile NMR in the past was on single-sided or inside-out NMR, the advent of tube-shaped Halbach magnets has introduced the conventional outside-in NMR concept to mobile NMR where the object is inside a magnet. Our Halbach magnet is constructed from small magnet blocks at light weight and low cost with a magnetic field sufficiently homogeneous. To automatize NMR measurements, the Halbach magnet is mounted on a sliding table to scan long core sections without human interaction. In homogeneous magnetic fields, the longitudinal relaxation time T1 and even the transverse relaxation time T2 are proportional to the pore diameters of rocks. Hence, the T1 and T2 signals map the pore-size distribution of the studied rock cores. For fully saturated samples the integral of the distribution curve is proportional to porosity. The porosity values from NMR measurements with the Halbach magnet are used to estimate permability. The Halbach magnet can be used for certain sample geometries in combination with exchangeable radio frequency (rf) coils with different diameters from 24 mm up to 80 mm. To measure standard Ocean Drilling Program (ODP)/Integrated Ocean Drilling Program (IODP) cores, which have a standard diameter of 60 mm and are split lengthwise after recovery, we use a surface figure-8 rf coil with an inner diameter of 60 mm. Besides 1D T2 measurements, we perform relaxation-relaxation correlation experiments, where T1 and T2 are measured in parallel. In this way, the influence of diffusion on the shape of the T2 distribution function is probed. A gradient coil system was designed to perform Pulsed Field Gradients (PFG) experiments. As the gradient coils restrict the axial access to the magnet, only cylindrical core plugs with 20 mm in diameter can be analysed by PFG NMR methods. The homogeneity of the magnetic field in the sensitive volume

  18. 3D NMR Experiments for Measuring 15N Relaxation Data of Large Proteins: Application to the 44 kDa Ectodomain of SIV gp41

    NASA Astrophysics Data System (ADS)

    Caffrey, Michael; Kaufman, Joshua; Stahl, Stephen J.; Wingfield, Paul T.; Gronenborn, Angela M.; Clore, G. Marius

    1998-12-01

    A suite of 3D NMR experiments for measuring15N-{1H} NOE,15NT1, and15NT1ρvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H-15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.

  19. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  20. Biologically green synthesized silver nanoparticles as a facile and rapid label-free colorimetric probe for determination of Cu2 + in water samples

    NASA Astrophysics Data System (ADS)

    Basiri, Sedigheh; Mehdinia, Ali; Jabbari, Ali

    2017-01-01

    A highly sensitive and cost-effective colorimetric sensing platform for the selective trace analysis of Cu2 + ions was developed based on the accelerated etching of Riboflavin stabilized silver nanoparticles (R/AgNPs). The R/AgNPs were prepared from the Cucumis melo juice by a green chemistry approach. The bio-synthesized AgNPs were studied by UV-Vis spectroscopy and showed an intense absorption band at 404 nm that were further confirmed by FTIR and EDS analysis. Simultaneous presence of Cu2 + and thiosulfate decreased the absorption intensity of green synthesized AgNPs which resulted in sensitive and selective determination of Cu2 +. The selectivity of R/AgNPs detection system for Cu2 + was excellent. Furthermore, the method offered a wide linear detection range from 5 nM to 100 nM with a detection limit of 1.12 nM. Surprisingly, it was a quick approach and the decolorization of the R/AgNPs solutions occurred only within 5 min. Our results clearly indicate these R/AgNPs could be used as an efficient probe for the colorimetric sensing of Cu2 + in environmental water samples.

  1. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  2. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  3. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  4. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  5. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  6. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  7. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor.

    PubMed

    Kalverda, Arnout P; Gowdy, James; Thompson, Gary S; Homans, Steve W; Henderson, Peter J F; Patching, Simon G

    2014-06-01

    Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution [(15)N-(1)H]- and [(13)C-(1)H]-methyl-TROSY NMR spectra with a 52 kDa membrane protein that putatively has 12 transmembrane-spanning α-helices and used the spectra to detect inhibitor binding. The protein reconstituted in DDM detergent micelles retained structural and functional integrity for at least 48 h at a temperature of 25 °C as demonstrated by circular dichroism spectroscopy and fluorescence measurements of ligand binding, respectively. Selective labelling of tryptophan residues reproducibly gave 12 resolved signals for tryptophan (15)N backbone positions and also resolved signals for (15)N side-chain positions. For improved sensitivity isoleucine, leucine and valine (ILV) methyl-labelled protein was prepared, which produced unexpectedly well resolved [(13)C-(1)H]-methyl-TROSY spectra showing clear signals for the majority of methyl groups. The GalP/GLUT inhibitor forskolin was added to the ILV-labelled sample inducing a pronounced chemical shift change in one Ile residue and more subtle changes in other methyl groups. This work demonstrates that high-resolution TROSY NMR spectra can be achieved with large complex α-helical membrane proteins without the use of elevated temperatures. This is a prerequisite to applying further labelling strategies and NMR experiments for measurement of dynamics, structure elucidation and use of the spectra to screen ligand binding.

  8. Dynamics of Antibody Domains Studied by Solution NMR

    PubMed Central

    Vu, Bang K.; Walsh, Joseph D.; Dimitrov, Dimiter S.; Ishima, Rieko

    2012-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  9. Determination of the Structural Basis of Antibody Diversity Using NMR

    DTIC Science & Technology

    1988-09-15

    1): 290. "Distances of tyruzsnc residues from a spin-label hapten in the combining site of a specific monoclonal antibody," Jacob Anglister, Tom Frey...anti-spin-label antibody," Tom Frey, Jacob Anglister and Harden M. McConnell, Biochemistry 23, 6470-6473 (1984). 298. "NMR technique for assessing...contributions of heavy and light chains to an antibody combining site," Jacob Anglister, Tom Frey and Harden M. McConnell, Nature 315, 65-67 (1985). 305

  10. Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3

    PubMed Central

    Ling, Shenglong; Zhang, Chengwei; Wang, Wei; Cai, Xiaoying; Yu, Lu; Wu, Fangming; Zhang, Longhua; Tian, Changlin

    2016-01-01

    Interferon-inducible transmembrane protein IFITM3 was known to restrict the entry of a wide spectrum of viruses to the cytosol of the host. The mechanism used by the protein to restrict viral entry is unclear given the unavailability of the membrane topology and structures of the IFITM family proteins. Systematic site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) studies of IFITM3 in detergent micelles identified a single, long transmembrane helix in the C-terminus and an intramembrane segment in the N-terminal hydrophobic region. Solution NMR studies of the same sample verified the secondary structure distribution and demonstrated two rigid regions interacting with the micellar surface. The resulting membrane topology of IFITM3 supports the mechanism of an enhanced restricted membrane hemi-fusion. PMID:27046158

  11. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  12. A community resource of experimental data for NMR / X-ray crystal structure pairs.

    PubMed

    Everett, John K; Tejero, Roberto; Murthy, Sarath B K; Acton, Thomas B; Aramini, James M; Baran, Michael C; Benach, Jordi; Cort, John R; Eletsky, Alexander; Forouhar, Farhad; Guan, Rongjin; Kuzin, Alexandre P; Lee, Hsiau-Wei; Liu, Gaohua; Mani, Rajeswari; Mao, Binchen; Mills, Jeffrey L; Montelione, Alexander F; Pederson, Kari; Powers, Robert; Ramelot, Theresa; Rossi, Paolo; Seetharaman, Jayaraman; Snyder, David; Swapna, G V T; Vorobiev, Sergey M; Wu, Yibing; Xiao, Rong; Yang, Yunhuang; Arrowsmith, Cheryl H; Hunt, John F; Kennedy, Michael A; Prestegard, James H; Szyperski, Thomas; Tong, Liang; Montelione, Gaetano T

    2016-01-01

    We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development.

  13. Chromatographic Separation and NMR An Integrated Approach in Pharmaceutical Development.

    PubMed

    Gonnella, Nina C

    2012-01-01

    structural elucidation of complete unknowns on a microgram scale. To enable significant future downscaling beyond the current capabilities, improved performance of the LC-NMR interface and improved SPE cartridge retention need to be addressed. In addition, the active volume of the NMR flow cell or capillary tube will have to shrink along with the corresponding detection coils in order not to lose filling factor. As the size of the NMR probes become more efficient with respect to mass sensitivity, techniques such as CE or capillary electrochromatography (CEC) may be interfaced more successfully with NMR spectroscopy. Overall, the current state of the art in LC-NMR has demonstrated proven utility in a variety of applications. When combined with SPE and cryotechnology, LC-NMR has become an extremely valuable tool for mass limited samples, enabling structure elucidation without the need for laborious serial isolation and purification procedures.

  14. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  15. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  16. Review of Methods to Assign the NMR Peaks of Reductively Methylated Proteins

    PubMed Central

    Roberson, Kevin J.; Macnaughtan, Megan A.

    2014-01-01

    Reductive methylation of lysyl side-chain amines has been a successful tool in the advancement of high resolution structural biology. The utility of this method has continuously gained ground as a protein chemical modification; first, as a tool to aid protein crystallization and later, as a probe in protein nuclear magnetic resonance (NMR) spectroscopy. As an isotope-labeling strategy for NMR studies, reductive methylation has contributed to the study of protein-protein interactions and global conformational changes. While more detailed structural studies using this labeling strategy are possible, the hurdle of assigning the NMR peaks to the corresponding reductively methylated amine hinders its use. In this review, we discuss and compare strategies used to assign the NMR peaks of reductively methylated protein-amines. PMID:25175010

  17. Planar microcoil-based microfluidic NMR probes

    NASA Astrophysics Data System (ADS)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N. F.; Popovic, R. S.

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 μg sucrose in D 2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  18. Planar microcoil-based microfluidic NMR probes.

    PubMed

    Massin, C; Vincent, F; Homsy, A; Ehrmann, K; Boero, G; Besse, P-A; Daridon, A; Verpoorte, E; de Rooij, N F; Popovic, R S

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 microg sucrose in D2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  19. Homo- and Heteronuclear Multiple-Quantum Filters for Measurement of NMR Isotope Shifts

    NASA Astrophysics Data System (ADS)

    Wooten, E. W.; Dua, R. K.; Dotson, G. D.; Woodard, R. W.

    The measurement of NMR isotope shifts as mechanistic probes can be complicated by mixtures of isotopomers. Homo- and heteronuclear NMR techniques based on multiple-quantum filtration are presented and shown to be a useful aid in measuring such shifts. The effects of 1H/ 2H substitution and 16O/ 18O substitution on the nuclear shielding of 1H, 13C, and 31P in a multiply labeled phosphoenolpyruvate are measured and interpreted qualitatively in terms of their rovibrational origins.

  20. Metabolite analysis of Cannabis sativa L. by NMR spectroscopy.

    PubMed

    Flores-Sanchez, Isvett Josefina; Choi, Young Hae; Verpoorte, Robert

    2012-01-01

    NMR-based metabolomics is an analytical platform, which has been used to classify and analyze Cannabis sativa L. cell suspension cultures and plants. Diverse groups of primary and secondary metabolites were identified by comparing NMR data with reference compounds and/or by structure elucidation using ¹H-NMR, J-resolved, ¹H-¹H COSY, and ¹H-¹³C HMBC spectroscopy. The direct extraction and the extraction by indirect fractionation are two suitable methods for the C. sativa sample preparation. Quantitative analyses could be performed without requiring fractionation or isolation procedures.

  1. NMR imaging of components and materials for DOE application

    SciTech Connect

    Richardson, B.R.

    1993-12-01

    The suitability for using NMR imaging to characterize liquid, polymeric, and solid materials was reviewed. The most attractive applications for NMR imaging appear to be liquid-filled porous samples, partially cured polymers, adhesives, and potting compounds, and composite polymers/high explosives containing components with widely varying thermal properties. Solid-state NMR line-narrowing and signal-enhancing markedly improve the imaging possibilities of true solid and materials. These techniques provide unique elemental and chemical shift information for highly complex materials and complement images with similar spatial resolution, such as X-ray computed tomography (CT).

  2. A method for direct in vivo measurement of drug concentrations from a single 2H NMR spectrum.

    PubMed

    Evelhoch, J L; McCoy, C L; Giri, B P

    1989-03-01

    The use of 2H-labeled drugs provides a measure of drug concentration in situ directly from a single 2H NMR spectrum obtained with any antenna by correcting only for differential saturation effects. The limit of detection for a drug labeled with three equivalent deuterons is roughly 0.5 mM.

  3. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  4. Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy.

    PubMed

    Jones, Christopher J; Larive, Cynthia K

    2012-01-01

    NMR is an invaluable analytical technique that provides structural and chemical information about a molecule without destroying the sample. However, NMR suffers from an inherent lack of sensitivity compared to other popular analytical techniques. This trends article focuses on strategies to increase the sensitivity of NMR using solenoidal microcoil, microstrip, and microslot probes. The role of these reduced-volume receiver coils for detection in hyphenated capillary electrophoresis (CE) and capillary isotachophoresis (cITP) NMR experiments is discussed. Future directions will likely build on work to develop probes containing multiple coils for high-throughput NMR and field-portable instruments.

  5. Critical behaviour in DOPC/DPPC/cholesterol mixtures: static (2)H NMR line shapes near the critical point.

    PubMed

    Davis, James H; Schmidt, Miranda L

    2014-05-06

    Static (2)H NMR spectroscopy is used to study the critical behavior of mixtures of 1,2-dioleoyl-phosphatidylcholine/1,2-dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol in molar proportion 37.5:37.5:25 using either chain perdeuterated DPPC-d62 or chain methyl deuterated DPPC-d6. The temperature dependence of the first moment of the (2)H spectrum of the sample made with DPPC-d62 and of the quadrupolar splittings of the chain-methyl-labeled DPPC-d6 sample are directly related to the temperature dependence of the critical order parameter η, which scales as [Formula: see text] near the critical temperature. Analysis of the data reveals that for the chain perdeuterated sample, the value of Tc is 301.51 ± 0.1 K, and that of the critical exponent, βc = 0.391 ± 0.02. The line shape analysis of the methyl labeled (d6) sample gives Tc = 303.74 ± 0.07 K and βc = 0.338 ± 0.009. These values obtained for βc are in good agreement with the predictions of a three-dimensional Ising model. The difference in critical temperature between the two samples having nominally the same molar composition arises because of the lowering of the phase transition temperature that occurs due to the perdeuteration of the DPPC.

  6. Robust and Discriminative Labeling for Multi-Label Active Learning Based on Maximum Correntropy Criterion.

    PubMed

    Du, Bo; Wang, Zengmao; Zhang, Lefei; Zhang, Liangpei; Tao, Dacheng

    2017-04-01

    Multi-label learning draws great interests in many real world applications. It is a highly costly task to assign many labels by the oracle for one instance. Meanwhile, it is also hard to build a good model without diagnosing discriminative labels. Can we reduce the label costs and improve the ability to train a good model for multi-label learning simultaneously? Active learning addresses the less training samples problem by querying the most valuable samples to achieve a better performance with little costs. In multi-label active learning, some researches have been done for querying the relevant labels with less training samples or querying all labels without diagnosing the discriminative information. They all cannot effectively handle the outlier labels for the measurement of uncertainty. Since maximum correntropy criterion (MCC) provides a robust analysis for outliers in many machine learning and data mining algorithms, in this paper, we derive a robust multi-label active learning algorithm based on an MCC by merging uncertainty and representativeness, and propose an efficient alternating optimization method to solve it. With MCC, our method can eliminate the influence of outlier labels that are not discriminative to measure the uncertainty. To make further improvement on the ability of information measurement, we merge uncertainty and representativeness with the prediction labels of unknown data. It cannot only enhance the uncertainty but also improve the similarity measurement of multi-label data with labels information. Experiments on benchmark multi-label data sets have shown a superior performance than the state-of-the-art methods.

  7. NMR metabolite profiling of Greek grape marc spirits.

    PubMed

    Fotakis, Charalambos; Christodouleas, Dionysis; Kokkotou, Katerina; Zervou, Maria; Zoumpoulakis, Panagiotis; Moulos, Panagiotis; Liouni, Maria; Calokerinos, Antony

    2013-06-01

    This (1)H NMR based study profiles metabolites in Greek grape marc distillates, tsipouro and tsikoudia. Eightysix samples of indigenous and international varieties, stemming from major vine growing regions of Greece were investigated. The monitoring protocol addressed the global metabolic profile of untreated samples and accomplished the unambiguous assignment of 35 metabolites. NMR spectra were acquired by applying the robust, sensitive and rapid WET1D NMR pulse sequence, which succeeded to unveil the presence of minor compounds in a high ethanol matrix. PCA classified the samples according to their provenance, incorporating also information related to the variety, vintage year and production process within each formed regional assembly. Metabolites such as fusel alcohols, polyols, ethyl esters, mono- and di-saccharides were associated with the classification of samples. OPLS-DA ascribed to samples of common regional entity characteristic genotypic metabolites and probed to the potential influence of the vintage effect. Finally, metabolite profiling underlined the influence of the fermentation and distillation procedures.

  8. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  9. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  10. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-08-01

    The goal was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. When cells were perfused with glucose-free medium the rate of glycolysis decreased, the amplitudes of the ATP resonances decreased, and the P/sub i/ intensity increased. The quantity of NMR-detectable P/sub i/ produced was significantly greater than the quantity of NMR-detectable ATP which was lost. Experiments with /sup 32/P labeled P/sub i/ showed that as the concentration of glucose in the medium was increase, the amount of phosphate sequestered in the cells increased. We conclude that there is a pool of P/sub i/ which is not detected by high resolution NMR and that the size of this pool increases as the rate of glycolysis increase. Longtitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured. The results demonstrate that relaxation times of phosphates are sensitive to structural and metabolic changes which occur when cells are grown in culture. 59 references. 31 figures.

  11. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  12. A DECODER NMR study of backbone orientation in Nephila clavipes dragline silk under varying strain and draw rate.

    PubMed

    Eles, Philip T; Michal, Carl A

    2004-01-01

    Using DECODER (direction exchange with correlation for orientation distribution evaluation and reconstruction) NMR, we probe the orientations of carbonyl carbons in [1-(13)C]glycine-labeled dragline silk under conditions of varying strain and fiber draw rate. A model-specific reconstruction of the molecular orientation distribution incorporating beta sheets and polyglycine II helices indicates that the structures' alignment along the fiber can be described by a pair of Gaussian distributions with full width at half-maxima of 20 and 68 degrees and approximately 45 and approximately 55% relative contributions to the signal intensity. The alignment along the fiber was found to change appreciably when the drawing tension on the fiber was relaxed in a sample drawn at 4 cm/s while little change was observed in a sample drawn at 2 cm/s. The degree of alignment along the fiber was found to increase with fiber draw rate.

  13. Sensitive and robust electrophoretic NMR: Instrumentation and experiments

    NASA Astrophysics Data System (ADS)

    Hallberg, Fredrik; Furó, István; Yushmanov, Pavel V.; Stilbs, Peter

    2008-05-01

    Although simple as a concept, electrophoretic NMR (eNMR) has so far failed to find wider application. Problems encountered are mainly due to disturbing and partly irreproducible convection-like bulk flow effects from both electro-osmosis and thermal convection. Additionally, bubble formation at the electrodes and rf noise pickup has constrained the typical sample geometry to U-tube-like arrangements with a small filling factor and a low resulting NMR sensitivity. Furthermore, the sign of the electrophoretic mobility cancels out in U-tube geometries. We present here a new electrophoretic sample cell based on a vertically placed conventional NMR sample tube with bubble-suppressing palladium metal as electrode material. A suitable radiofrequency filter design prevents noise pickup by the NMR sample coil from the high-voltage leads which extend into the sensitive sample volume. Hence, the obtained signal-to-noise ratio of this cell is one order of magnitude higher than that of our previous U-tube cells. Permitted by the retention of the sign of the displacement-related signal phase in the new cell design, an experimental approach is described where bulk flow effects by electro-osmosis and/or thermal convection are compensated through parallel monitoring of a reference signal from a non-charged species in the sample. This approach, together with a CPMG-like pulse train scheme provides a superior first-order cancellation of non-electrophoretic bulk flow effects.

  14. Detection of chiral defects in crystalline organic solids using solid-state NMR spectroscopy.

    PubMed

    Berendt, Robert T; Munson, Eric J

    2011-05-01

    The marketing of enantiopure pharmaceuticals has become more common due to regulatory and safety concerns surrounding the potential differences in biological activity of opposite enantiomers. However, achieving the desired enantiopurity can be a challenge, and low levels of the undesired enantiomer (chiral impurity) may be present in the final product. The location and nature of this impurity can potentially alter pharmaceutically relevant properties. In this article, we show that it is possible to identify and quantitate the crystallographic locations of small amounts of one enantiomer (l) in the presence of predominantly the opposite D-enantiomer using solid-state nuclear magnetic resonance (NMR) spectroscopy. Proline was used as a model compound, and crystalline samples containing both D- and L-proline were prepared by solvent evaporation, lyophilization, spray drying, and cryogrinding. Isotopic labeling, (13)C cross polarization-magic angle spinning NMR spectral subtractions, and (1)H T(1) spin-lattice relaxation measurements allowed selective observation and characterization of the crystal environments into which the L-proline impurity was incorporated upon concurrent crystallization with D-proline. Results show that L-proline was incorporated in up to four different crystalline forms, including L-proline as a kinetically trapped substitutional chiral defect in the D-proline host crystal lattice.

  15. 75 FR 49818 - APPLIANCE LABELING RULE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office FEDERAL TRADE COMMISSION 16 CFR Part 305 APPLIANCE LABELING RULE AGENCY: Federal Trade Commission. ACTION: Final rule; correction... Notice contains a technical correction to Sample Label 13 in Appendix L in 16 CFR Part 305 published...

  16. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  17. A study on the biosynthesis of hygrophorone B(12) in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety.

    PubMed

    Otto, Alexander; Porzel, Andrea; Schmidt, Jürgen; Wessjohann, Ludger; Arnold, Norbert

    2015-10-01

    The hitherto unknown natural formation of hygrophorones, antibacterial and antifungal cyclopentenone derivatives from mushrooms, was investigated for hygrophorone B(12) in Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky by feeding experiments in the field using (13)C labelled samples of D-glucose and sodium acetate. The incorporation of (13)C isotopes was extensively studied using 1D and 2D NMR spectroscopy as well as ESI-HRMS analyses. In the experiment with [U-(13)C6]-glucose, six different (13)C2 labelled isotopomers were observed in the 2D INADEQUATE spectrum due to incorporation of [1,2-(13)C2]-acetyl-CoA. This labelling pattern demonstrated that hygrophorone B(12) is derived from a fatty acid-polyketide route instead of a 1,4-α-D-glucan derived anhydrofructose pathway. The experiment with [2-(13)C]-acetate revealed an unexpected incorporation pattern in the cyclopentenone functionality of hygrophorone B(12). Four single-labelled isotopomers, in particular [1-(13)C]-, [2-(13)C]-, [3-(13)C]-, and [4-(13)C]-hygrophorone B(12), were detected that showed only half enrichment in comparison to the respective labelled alkyl side chain carbons. This labelling pattern indicates the formation of a symmetrical intermediate during hygrophorone B(12) biosynthesis. Based on these observations, a biogenetic route via a 4-oxo fatty acid and a chrysotrione B homologue is discussed.

  18. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR.

  19. A Set of Efficient nD NMR Protocols for Resonance Assignments of Intrinsically Disordered Proteins.

    PubMed

    Wiedemann, Christoph; Bellstedt, Peter; Häfner, Sabine; Herbst, Christian; Bordusa, Frank; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2016-07-04

    The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined.

  20. Detection of free chloride in concrete by NMR

    SciTech Connect

    Yun Haebum; Patton, Mark E.; Garrett, James H.; Fedder, Gary K.; Frederick, Kevin M.; Hsu, J.-J.; Lowe, Irving J.; Oppenheim, Irving J.; Sides, Paul J

    2004-03-01

    Laboratory experiments to detect chloride in a cement matrix using pulse nuclear magnetic resonance (NMR) were conducted. The coils were in the centimeter scale and the magnetic field was 2.35 T. NMR signals were obtained from both aqueous chloride solution and samples of both regular and white Portland cement (WPC). A concrete sample from a sidewalk that had been in the field for 20 years was also tested. The experiments demonstrated that the signal-to-noise ratio (SNR) for a centimeter-scale cement sample volume is so small, even after averaging, that sample volumes much lower than that are unlikely to produce measurable signals at fields of 1 T or below. The consequence is that the potential for realizing an embedded NMR-based sensor including the magnet is low. Parametric studies identify feasible alternative coil diameters and magnetic field strengths for detecting chloride ion concentrations in hardened concrete.

  1. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  2. An optimized Npro-based method for the expression and purification of intrinsically disordered proteins for an NMR study

    PubMed Central

    Goda, Natsuko; Matsuo, Naoki; Tenno, Takeshi; Ishino, Sonoko; Ishino, Yoshizumi; Fukuchi, Satoshi; Ota, Motonori; Hiroaki, Hidekazu

    2015-01-01

    Intrinsically disordered proteins (IDPs) are an emerging concept. IDPs have high flexibility in their polypeptide chains, lacking a stable 3-dimensional structure. Because of the difficulty in performing X-ray crystallography for IDPs, nuclear magnetic resonance (NMR) spectroscopy is the first choice for atomic-level investigation of their nature. Given that isotopically labeled IDP samples are necessary for NMR study, a robust and cost-effective protocol for bacterial expression and purification of IDP is also needed. We employed the Npro (EDDIE)-autoprotease fusion protein system. Although IDPs are believed to be readily degraded by endogenous proteases when expressed in Escherichia coli, Npro-fused IDPs showed excellent resistance to degradation. Seven IDPs of uncharacterized function sampled from the human genome as well as 3 constructs from IDP regions derived from human FancM and Thermococcus kodakarensis Hef were prepared. We improved the protocol of refolding of Npro (EDDIE) to use dialysis, which is convenient for subsequent purification using reversed-phase (RP) HPLC. The method is robust and widely applicable to any IDP sample, promoting the acquisition of experimental data for IDPs in a high-throughput manner.

  3. An optimized N(pro)-based method for the expression and purification of intrinsically disordered proteins for an NMR study.

    PubMed

    Goda, Natsuko; Matsuo, Naoki; Tenno, Takeshi; Ishino, Sonoko; Ishino, Yoshizumi; Fukuchi, Satoshi; Ota, Motonori; Hiroaki, Hidekazu

    2015-01-01

    Intrinsically disordered proteins (IDPs) are an emerging concept. IDPs have high flexibility in their polypeptide chains, lacking a stable 3-dimensional structure. Because of the difficulty in performing X-ray crystallography for IDPs, nuclear magnetic resonance (NMR) spectroscopy is the first choice for atomic-level investigation of their nature. Given that isotopically labeled IDP samples are necessary for NMR study, a robust and cost-effective protocol for bacterial expression and purification of IDP is also needed. We employed the N(pro) (EDDIE)-autoprotease fusion protein system. Although IDPs are believed to be readily degraded by endogenous proteases when expressed in Escherichia coli, N(pro)-fused IDPs showed excellent resistance to degradation. Seven IDPs of uncharacterized function sampled from the human genome as well as 3 constructs from IDP regions derived from human FancM and Thermococcus kodakarensis Hef were prepared. We improved the protocol of refolding of N(pro) (EDDIE) to use dialysis, which is convenient for subsequent purification using reversed-phase (RP) HPLC. The method is robust and widely applicable to any IDP sample, promoting the acquisition of experimental data for IDPs in a high-throughput manner.

  4. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  5. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  6. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  7. (129)Xe NMR of Mesoporous Silicas

    SciTech Connect

    Anderson, M.T.; Asink, R.A.; Kneller, J.M.; Pietrass, T.

    1999-04-23

    The porosities of three mesoporous silica materials were characterized with {sup 129}Xe NMR spectroscopy. The materials were synthesized by a sol-gel process with r = 0, 25, and 70% methanol by weight in an aqueous cetyltrimethylammonium bromide solution. Temperature dependent chemical shifts and spin lattice relaxation times reveal that xenon does not penetrate the pores of the largely disordered (r= 70%) silica. For both r = 0 and 25%, temperature dependent resonances corresponding to physisorbed xenon were observed. An additional resonance for the r = 25% sample was attributed to xenon between the disordered cylindrical pores. 2D NMR exchange experiments corroborate the spin lattice relaxation data which show that xenon is in rapid exchange between the adsorbed and the gas phase.

  8. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  9. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  10. A high-pressure NMR probe for aqueous geochemistry.

    PubMed

    Pautler, Brent G; Colla, Christopher A; Johnson, Rene L; Klavins, Peter; Harley, Stephen J; Ohlin, C André; Sverjensky, Dimitri A; Walton, Jeffrey H; Casey, William H

    2014-09-08

    A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 μL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry.

  11. Semiotic labelled deductive systems

    SciTech Connect

    Nossum, R.T.

    1996-12-31

    We review the class of Semiotic Models put forward by Pospelov, as well as the Labelled Deductive Systems developed by Gabbay, and construct an embedding of Semiotic Models into Labelled Deductive Systems.

  12. Soil Fumigant Labels

    EPA Pesticide Factsheets

    The 2012 updated pesticide labels include new safety requirements for buffer zones and related measures. Find labels for each different type of fumigant: chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  13. Electronic Submission of Labels

    EPA Pesticide Factsheets

    Pesticide registrants can provide draft and final labels to EPA electronically for our review as part of the pesticide registration process. The electronic submission of labels by registrants is voluntary but strongly encouraged.

  14. Soil Fumigant Labels - Dazomet

    EPA Pesticide Factsheets

    Updated labels include new safety requirements for buffer zones and related measures. Find information from the Pesticide Product Labeling System (PPLS) for products such as Basamid G, manufactured by Amvac.

  15. Mental Labels and Tattoos

    ERIC Educational Resources Information Center

    Hyatt, I. Ralph

    1977-01-01

    Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)

  16. Pesticide Labeling Questions & Answers

    EPA Pesticide Factsheets

    Pesticide manufacturers, applicators, state regulatory agencies, and other stakeholders raise questions or issues about pesticide labels. The questions on this page are those that apply to multiple products or address inconsistencies among product labels.

  17. Soil Fumigant Labels - Chloropicrin

    EPA Pesticide Factsheets

    Search by EPA registration number, product name, or company name, and follow the link to the Pesticide Product Label System (PPLS) for details on each fumigant. Updated labels include new safety requirements for buffer zones and related measures.

  18. Susceptibility-matched plugs for microcoil NMR probes.

    PubMed

    Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2010-07-01

    For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.

  19. Susceptibility-matched plugs for microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2010-07-01

    For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.

  20. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  1. 46. VIEW OF SAMPLING ROOM FROM SOUTHEAST. TO LEFT, SAMPLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. VIEW OF SAMPLING ROOM FROM SOUTHEAST. TO LEFT, SAMPLING ELEVATOR AND IN CENTER, SAMPLE BINS WITH DISCHARGE CHUTE AND THREE LABELS. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  2. Low Cost CE-NMR with Microcoils for Chemical Detection

    SciTech Connect

    Adams, K; Klunder, G; Demas, V; Malba, V; Bernhardt, A; Evan, L; Harvey, C; Maxwell, R; Herberg, J L

    2009-01-08

    Understanding speciation in solids and solutions is important for environmental and toxicological purposes. Capillary electrophoresis (CE) is a simple rapid separation technique that can be used to identify species in solution. CE is particularly is well suited for rapid separations of metal containing samples. Direct on-capillary measurement of metal compound speciation can be obtained with nuclear magnetic resonance (NMR). The development of a low-cost microcoil CE-NMR system for in situ characterization of samples of interest is discussed. High precision laser lithography is used to produce copper sputtered microcoils that have comparable resistivity and quality factors to that of hand wound microcoils. A portable NMR system coupled with a CE system has the potential to identify chemical species in aqueous solutions. In addition, transient isotachophoresis can separate and pre-concentrate samples of interest to obtain separate chemical peaks for speciation by online NMR analysis. We are developing separation assays to determine the speciation of chemical complexes in solutions with minimal perturbation to the original sample equilibrium. On-line NMR measurements will be made downstream of the UV detector.

  3. Low Cost CE-NMR with Microcoils for Chemical Detection

    SciTech Connect

    Adams, K L; Klunder, G; Demas, V; Malba, V; Bernhardt, A; Evan, L; Harvey, C; Maxwell, R; Herberg, J

    2008-07-25

    Understanding speciation in solids and solutions is important for environmental and toxicological purposes. Capillary electrophoresis (CE) is a simple rapid separation technique that can be used to identify species in solution. CE is particularly is well suited for rapid separations of metal containing samples. Direct on-capillary measurement of metal compound speciation can be obtained with nuclear magnetic resonance (NMR). The development of a low-cost microcoil CE-NMR system for in situ characterization of samples of interest is discussed. High precision laser lithography is used to produce copper sputtered microcoils that have comparable resistivity and quality factors to that of hand wound microcoils. A portable NMR system coupled with a CE system has the potential to identify chemical species in aqueous solutions. In addition, transient isotachophoresis can separate and pre-concentrate samples of interest to obtain separate chemical peaks for speciation by online NMR analysis. We are developing separation assays to determine the speciation of chemical complexes in solutions with minimal perturbation to the original sample equilibrium. On-line NMR measurements will be made downstream of the UV detector.

  4. Protein NMR Studies of substrate binding to human blood group A and B glycosyltransferases.

    PubMed

    Peters, Thomas; Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica

    2017-03-03

    Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies have shown these enzymes to adopt an open conformation in the absence of substrates. Binding of either the donor substrate UDP-Gal, or of UDP induces a semi-closed conformation. In the presence of both, donor- and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical shift titrations of uniformly 2H,15N labeled GTA or GTB with UDP affected about 20% of all cross peaks in 1H,15N-TROSY-HSQC spectra reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical shift perturbation experiments using 1-13C-methyl Ile labeled samples revealed two Ile residues, Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY based relaxation dispersion experiments do not reveal s to ms time scale motions. Although this study reveals substantial conformational plasticity of GTA and GTB it remains enigmatic how binding of substrates shifts the enzymes into catalytically competent states.

  5. Combining insights from solid-state NMR and first principles calculation: applications to the 19F NMR of octafluoronaphthalene.

    PubMed

    Robbins, Andrew J; Ng, William T K; Jochym, Dominik; Keal, Thomas W; Clark, Stewart J; Tozer, David J; Hodgkinson, Paul

    2007-05-21

    Advances in solid-state NMR methodology and computational chemistry are applied to the (19)F NMR of solid octafluoronaphthalene. It is demonstrated experimentally, and confirmed by density functional theory (DFT) calculations, that the spectral resolution in the magic-angle spinning spectrum is limited by the anisotropy of the bulk magnetic susceptibility (ABMS). This leads to the unusual observation that the resolution improves as the sample is diluted. DFT calculations provide assignments of each of the peaks in the (19)F spectrum, but the predictions are close to the limits of accuracy and correlation information from 2-D NMR is invaluable in confirming the assignments. The effects of non-Gaussian lineshapes on the use of 2-D NMR for mapping correlations of spectral frequencies (e.g. due to the ABMS) are also discussed.

  6. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  8. Toroid cavity/coil NMR multi-detector

    DOEpatents

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  9. Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Rademann, K.; Panne, U.; Maiwald, M.

    2017-02-01

    Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures.

  10. Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures.

    PubMed

    Meyer, K; Rademann, K; Panne, U; Maiwald, M

    2017-02-01

    Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures.

  11. 3D-printed RF probeheads for low-cost, high-throughput NMR.

    PubMed

    Horch, R Adam; Gore, John C

    2017-01-12

    3D printing has been exploited as a means to fabricate complete NMR probeheads containing arrays of miniature RF circuits for high-throughput solution-state NMR spectroscopy and potentially other purposes. 3D-printed NMR circuits of millimeter scale were constructed consisting of RF coils, variable tuning/matching capacitors, and liquid NMR sample cavities. Channels and cavities capable of being addressed using microfluidics are included in the probehead structure, providing a means for hydraulically-controlled RF tuning/matching and liquid NMR sample loading/unloading. Electrically conductive RF circuitry is defined within the 3D-printed polymer bodies by metallizing relevant channels and structures with silver. The unique properties of 3D printing enable facile construction of potentially thousands of coils at low cost, giving way to dense coil arrays for high-throughput NMR and novel coil geometries.

  12. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  13. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  14. Label Review Training: Module 1: Label Basics, Page 22

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about what labels require review.

  15. Label Review Training: Module 1: Label Basics, Page 27

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See examples of mandatory and advisory label statements.

  16. Label Review Training: Module 1: Label Basics, Page 21

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about types of labels.

  17. Label Review Training: Module 1: Label Basics, Page 24

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is about which labels require review.

  18. Label Review Training: Module 1: Label Basics, Page 17

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See an overview of the importance of labels.

  19. Label Review Training: Module 1: Label Basics, Page 23

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Lists types of labels that do not require review.

  20. Label Review Training: Module 1: Label Basics, Page 16

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the importance of labels and the role in enforcement.

  1. Label Review Training: Module 1: Label Basics, Page 15

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the consequences of improper labeling.

  2. Earth's field NMR; a surface moisture detector?

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng

    2012-10-01

    Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.

  3. Consumer Perceptions of Health Claims in Advertisements and Food Labels.

    ERIC Educational Resources Information Center

    Mazis, Michael B.; Raymond, Mary Anne

    1997-01-01

    Of sample of 180 women, 60 received information from ads, 60 from product labels, and 60 from labels with nutrition information. Beliefs about products did not differ whether health claims appeared in ads or on labels. Nutrition information influenced beliefs. Health claims challenged by the Federal Trade Commission or consumer groups were less…

  4. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  5. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  6. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  7. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  8. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-01-01

    The goal of this thesis was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. Because glycolysis is regulated differently in normal and virally transformed CEFs, NMR experiments were performed on both types of cells. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. However, experiments with /sup 32/P labelled P/sub i/ showed that as the concentration of glucose in the medium was increased, the amount of phosphate sequestered in the cells increased. They conclude that there is a pool of P/sub i/ which is not detected by high resolution of NMR and that the size of this pool increases as the rate of glycolysis increases. These effects were found only in cultured cells; the data for transformed and normal cells were similar. Longitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured.

  9. Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR.

    PubMed

    Peti, Wolfgang; Page, Rebecca; Moy, Kin; O'Neil-Johnson, Mark; Wilson, Ian A; Stevens, Raymond C; Wüthrich, Kurt

    2005-12-01

    In structural genomics centers, nuclear magnetic resonance (NMR) screening is in increasing use as a tool to identify folded proteins that are promising targets for three-dimensional structure determination by X-ray crystallography or NMR spectroscopy. The use of 1D 1H NMR spectra or 2D [1H,15N]-correlation spectroscopy (COSY) typically requires milligram quantities of unlabeled or isotope-labeled protein, respectively. Here, we outline ways towards miniaturization of a structural genomics pipeline with NMR screening for folded globular proteins, using a high-density micro-fermentation device and a microcoil NMR probe. The proteins are micro-expressed in unlabeled or isotope-labeled media, purified, and then subjected to 1D 1H NMR and/or 2D [1H,15N]-COSY screening. To demonstrate that the miniaturization is functioning effectively, we processed nine mouse homologue protein targets and compared the results with those from the "macro-scale" Joint Center of Structural Genomics (JCSG) high-throughput pipeline. The results from the two pipelines were comparable, illustrating that the data were not compromised in the miniaturized approach.

  10. Pesticide Product Label System

    EPA Pesticide Factsheets

    The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). New labels were added to PPLS on November 21, 2014. Pesticide product labels provide critical information about how to safely handle and use registered pesticide products. An approved pesticide product label represents the full content of EPAs registration decision regarding that product. Pesticide labels contain detailed information on the use, storage, and handling of a product. This information will be found on EPA stamped-approved labels and, in some cases, in subsequent related correspondence, which is also included in PPLS. You may need to review several PDF files for a single product to determine the complete current terms of registration.

  11. [NMR radiofrequency microcoil design: usefulness of electromagnetic simulation].

    PubMed

    Armenean, Mircea; Briguet, André; Saint-Jalmes, Hervé

    2002-04-01

    The extraction of the Nuclear Magnetic Resonance (NMR) spectra of samples having smaller and smaller volumes is a real challenge. Either these reductions of volume are dictated by the difficulties of production of sufficiently large samples or by necessities of miniaturisation of the analysing system, in both cases a careful design of the radiofrequency coil, ensuring an optimum reception of the NMR signal, is required. We have also evaluated the usefulness of electromagnetic simulation software for the design and optimisation of these radio-frequency coils, which are more and more used in biology and health research projects.

  12. Determination of the solution-bound conformation of an amino acid binding protein by NMR paramagnetic relaxation enhancement: use of a single flexible paramagnetic probe with improved estimation of its sampling space.

    PubMed

    Bermejo, Guillermo A; Strub, Marie-Paule; Ho, Chien; Tjandra, Nico

    2009-07-15

    We demonstrate the feasibility of elucidating the bound ("closed") conformation of a periplasmic binding protein, the glutamine-binding protein (GlnBP), in solution, using paramagnetic relaxation enhancements (PREs) arising from a single paramagnetic group. GlnBP consists of two globular domains connected by a hinge. Using the ligand-free ("open") conformation as a starting point, conjoined rigid-body/torsion-angle simulated annealing calculations were performed using backbone (1)H(N)-PREs as a major source of distance information. Paramagnetic probe flexibility was accounted for via a multiple-conformer representation. A conventional approach where the entire PRE data set is enforced at once during simulated annealing yielded poor results due to inappropriate conformational sampling of the probe. On the other hand, significant improvements in coordinate accuracy were obtained by estimating the probe sampling space prior to structure calculation. Such sampling is achieved by refining the ensemble of probe conformers with intradomain PREs only, keeping the protein backbone fixed in the open form. Subsequently, while constraining the probe to the previously found conformations, the domains are allowed to move relative to each other under the influence of the non-intradomain PREs, giving the hinge region torsional degrees of freedom. Thus, by partitioning the protocol into "probe sampling" and "backbone sampling" stages, structures significantly closer to the X-ray structure of ligand-bound GlnBP were obtained.

  13. Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites.

    PubMed

    Lacy, Paige; McKay, Ryan T; Finkel, Michael; Karnovsky, Alla; Woehler, Scott; Lewis, Michael J; Chang, David; Stringer, Kathleen A

    2014-01-01

    We discovered that serious issues could arise that may complicate interpretation of metabolomic data when identical samples are analyzed at more than one NMR facility, or using slightly different NMR parameters on the same instrument. This is important because cross-center validation metabolomics studies are essential for the reliable application of metabolomics to clinical biomarker discovery. To test the reproducibility of quantified metabolite data at multiple sites, technical replicates of urine samples were assayed by 1D-(1)H-NMR at the University of Alberta and the University of Michigan. Urine samples were obtained from healthy controls under a standard operating procedure for collection and processing. Subsequent analysis using standard statistical techniques revealed that quantitative data across sites can be achieved, but also that previously unrecognized NMR parameter differences can dramatically and widely perturb results. We present here a confirmed validation of NMR analysis at two sites, and report the range and magnitude that common NMR parameters involved in solvent suppression can have on quantitated metabolomics data. Specifically, saturation power levels greatly influenced peak height intensities in a frequency-dependent manner for a number of metabolites, which markedly impacted the quantification of metabolites. We also investigated other NMR parameters to determine their effects on further quantitative accuracy and precision. Collectively, these findings highlight the importance of and need for consistent use of NMR parameter settings within and across centers in order to generate reliable, reproducible quantified NMR metabolomics data.

  14. Conditions for 13C NMR Detection of 2-Hydroxyglutarate in Tissue Extracts from IDH-Mutated Gliomas

    PubMed Central

    Pichumani, Kumar; Mashimo, Tomoyuki; Baek, Hyeon-Man; Ratnakar, James; Mickey, Bruce; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Bachoo, Robert M.; Malloy, Craig R.; Kovacs, Zoltan

    2015-01-01

    13C NMR spectroscopy of extracts from patient tumor samples provides rich information about metabolism. However, in IDH-mutant gliomas 13C labeling is obscured in glutamate and glutamine by the oncometabolite, 2-hydroxyglutaric acid (2HG), prompting development of a simple method to resolve the metabolites. J-coupled multiplets in 2HG were similar to glutamate and glutamine and could be clearly resolved at pH 6. A cryogenically-cooled 13C probe but not J-resolved heteronuclear single quantum coherence spectroscopy significantly improved detection of 2HG. These methods enable the monitoring of 13C-13C spin-spin couplings in 2HG expressing IDH mutant gliomas. PMID:25908561

  15. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.

  16. Food Label Use and Food Label Skills among Immigrants from the Former Soviet Union

    ERIC Educational Resources Information Center

    Lubman, Nadia; Doak, Colleen; Jasti, Sunitha

    2012-01-01

    Objective: To assess food label use and skills and to identify their correlates among immigrants from the former Soviet Union (FSU). Design/Setting/Participants: Cross-sectional survey of a convenience sample of 200 FSU immigrants residing in New York City. Variables Measured: Food label use and skills; acculturation; and socioeconomic and…

  17. Uniaxial plastic deformation of isotactic polypropylene studied by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Kang, Jia

    At alleviated temperatures, some semicrystralline polymers can be stretched to very large deformation ratios. Such deformations of semicrystalline polymers have been extensively studied since 1960s. Based on experimental observations and theoretical investigations, solid-state transformation (three stage model) proposed in 1971 and local melting and recrystallization in 1978 have been considered two major mechanisms to explain the deformations of polymer crystals. With the elucidation of molecular dynamics in the last two decades, it was proposed in 1999 that helical jump motion plays an important role in crystal deformation. On the other hand, the new structures induced by deformation also influence the molecular motions and resultant properties of deformed polymers. Such processing-structure-property relationship is very important to understand the polymer behaviors as well as to inform the polymer industry. In this dissertation, using the advanced tool of solid-state NMR (ss-NMR), we achieve three goals: Firstly, we investigate the hierarchical crystalline structural changes of isotactic polypropylene (i PP) upon high temperature stretching to understand the deformation process. Secondly, we evaluate the roles of local packing structure and crystal thickness in determining the stem motions and thermal properties of deformed alpha-form iPP. Thirdly, we utilize 13C-labeled isotactic polypropylene (iPP) to trace the change of chain folding number as a function of e to conclude molecular-level deformation mechanism. To realize the first and second goals, the chain packing, crystal thickness, molecular dynamics, and melting temperature (Tm) of a-form iPP drawn uniaxially at high temperatures of 100 - 150 °C were investigated using solid-state (SS) NMR and DSC. Two types of iPP samples with disordered (alpha1) and relatively ordered (alpha2-rich) packing structures were prepared via different thermal treatments and drawn up to an engineering strain ( e) of

  18. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study.

    PubMed

    Hellmich, Ute A; Mönkemeyer, Leonie; Velamakanni, Saroj; van Veen, Hendrik W; Glaubitz, Clemens

    2015-12-01

    ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.

  19. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Uh, Jinsoo; Phan, Jack; Xue, Dong; Watson, A. Ted

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. During this reporting period, the determination of surface relaxivity from NMR data was investigated. A new method for determining the surface relaxivity from measured data was developed and tested with data obtained from an Exxon sample. The new method avoids the use of a certain mathematical short-time approximation in the data analysis, which has been shown to be unsuitable.

  20. Protein structure determination with paramagnetic solid-state NMR spectroscopy.

    PubMed

    Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

    2013-09-17

    Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2

  1. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  2. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations.

    PubMed

    Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka

    2010-04-28

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.

  3. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples.

    PubMed

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  4. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    PubMed Central

    Dullin, Christian; dal Monego, Simeone; Larsson, Emanuel; Mohammadi, Sara; Krenkel, Martin; Garrovo, Chiara; Biffi, Stefania; Lorenzon, Andrea; Markus, Andrea; Napp, Joanna; Salditt, Tim; Accardo, Agostino; Alves, Frauke; Tromba, Giuliana

    2015-01-01

    Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites. PMID:25537601

  5. Efficient polarization transfer between spin-1/2 and ¹⁴N nuclei in solid-state MAS NMR spectroscopy.

    PubMed

    Basse, Kristoffer; Jain, Sheetal Kumar; Bakharev, Oleg; Nielsen, Niels Chr

    2014-07-01

    Polarization transfer between spin-1/2 nuclei and quadrupolar spin-1 nuclei such as (14)N in solid-state NMR is severely challenged by the typical presence of large quadrupole coupling interactions. This has effectively prevented the use of the abundant (14)N spin as a probe to structural information and its use as an element in multi-dimensional solid-state NMR correlation experiments for assignment and structural characterization. In turn, this has been a contributing factor to the extensive use of isotope labeling in biological solid-state NMR, where (14)N is replaced with (15)N. The alternative strategy of using the abundant (14)N spins calls for methods enabling efficient polarization transfer between (14)N and its binding partners. This work demonstrates that the recently introduced (RESPIRATION)CP transfer method can be optimized to achieve efficient (1)H ↔(14)N polarization transfer under magic angle spinning conditions. The method is demonstrated numerically and experimentally on powder samples of NH4NO3 and L-alanine.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  8. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    SciTech Connect

    Gann, Sheryl Lee

    1995-11-01

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized π-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0° $\\parallel$ with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCP), is presented, along with experimental work on adamantane and polycarbonate.

  9. Functional binding surface of a β-hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells.

    PubMed

    Diana, Donatella; Russomanno, Anna; De Rosa, Lucia; Di Stasi, Rossella; Capasso, Domenica; Di Gaetano, Sonia; Romanelli, Alessandra; Russo, Luigi; D'Andrea, Luca D; Fattorusso, Roberto

    2015-01-02

    In this study, the functional interaction of HPLW peptide with VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) was determined by using fast (15)N-edited NMR spectroscopic experiments. To this aim, (15)N uniformly labelled HPLW has been added to Porcine Aortic Endothelial Cells. The acquisition of isotope-edited NMR spectroscopic experiments, including (15)N relaxation measurements, allowed a precise characterization of the in-cell HPLW epitope recognized by VEGFR2.

  10. Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma

    PubMed Central

    2013-01-01

    Nuclear magnetic resonance spectroscopy (NMR) provides robust readouts of many metabolic parameters in one experiment. However, identification of clinically relevant markers in 1H NMR spectra is a major challenge. Association of NMR-derived quantities with genetic variants can uncover biologically relevant metabolic traits. Using NMR data of plasma samples from 1,757 individuals from the KORA study together with 655,658 genetic variants, we show that ratios between NMR intensities at two chemical shift positions can provide informative and robust biomarkers. We report seven loci of genetic association with NMR-derived traits (APOA1, CETP, CPS1, GCKR, FADS1, LIPC, PYROXD2) and characterize these traits biochemically using mass spectrometry. These ratios may now be used in clinical studies. PMID:23414815

  11. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  12. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  13. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  14. High-throughput quantification of the levels and labeling abundance of free amino acids by liquid chromatography tandem mass spectrometry.

    PubMed

    Cocuron, Jean-Christophe; Tsogtbaatar, Enkhtuul; Alonso, Ana P

    2017-03-24

    Accurate assessment of mass isotopomer distributions (MIDs) of intracellular metabolites, such as free amino acids (AAs), is crucial for quantifying in vivo fluxes. To date, the majority of studies that measured AA MIDs have relied on the analysis of proteinogenic rather than free AAs by: i) GC-MS, which involved cumbersome process of derivatization, or ii) NMR, which requires large quantities of biological sample. In this work, the development and validation of a high-throughput LC-MS/MS method allowing the quantification of the levels and labeling of free AAs is described. Sensitivity in the order of the femtomol was achieved using multiple reaction monitoring mode (MRM). The MIDs of all free AAs were assessed without the need of derivatization, and were validated (except for Trp) on a mixture of unlabeled AA standards. Finally, this method was applied to the determination of the (13)C-labeling abundance in free AAs extracted from maize embryos cultured with (13)C-glutamine or (13)C-glucose. Although Cys was below the limit of detection in these biological samples, the MIDs of a total of 18 free AAs were successfully determined. Due to the increased application of tandem mass spectrometry for (13)C-Metabolic Flux Analysis, this novel method will enable the assessment of more complete and accurate labeling information of intracellular AAs, and therefore a better definition of the fluxes.

  15. 1H AND 13C Fourier Transform NMR Characterization of Jet Fuels Derived from Alternated Energy Sources.

    DTIC Science & Technology

    1979-08-30

    Sample # 1 Sample VI/NR-77-01 Modified JP-4 This sample was blended especially for a combution test program, which had as its purpose the definition of...NMR as the detector (LC- HNMR). Non chromatographic applications of flow NMR have previously been reported. Rapid irreversible chemical reactions as... reactions by FT-NMR has also been reported.3 An apparatus for continuous-flow FT-NMR has previously been described by Fyfe et.al.4 The effect of

  16. Synthesis of the isotope-labeled derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)], and its application to the quantification and the determination of relative amount of fatty acids in rat plasma samples by high-performance liquid chromatography/mass spectrometry.

    PubMed

    Tsukamoto, Yuhki; Santa, Tomofumi; Yoshida, Hiroo; Miyano, Hiroshi; Fukushima, Takeshi; Hirayama, Kazuo; Imai, Kazuhiro; Funatsu, Takashi

    2006-04-01

    The isotope-labeled benzofurazan derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)] was synthesized. DBD-PZ-NH2 (D) was used for the accurate quantification of fatty acids by liquid chromatography/mass spectrometry (LC/MS). The standard fatty acids were derivatized with DBD-PZ-NH2 (D) to the stable isotope-labeled compounds for the fatty acids derivatives of DBD-PZ-NH2 and used for the internal standards. The obtained calibration curves for fatty acids were linear over the range 0.1-200 microM (r2 > 0.999). Fatty acids in plasma samples were determined after derivatization with DBD-PZ-NH2 and analyzed by LC/MS using standard fatty acid DBD-PZ-NH2 (D) derivatives as internal standards. Furthermore, the relative amounts of fatty acids in two plasma samples were determined after derivatization with DBD-PZ-NH2 and DBD-PZ-NH2) (D). The isotope-labeled derivatization reagent was useful for accurate quantification and the determination of relative amounts of the metabolites in biological samples having the target functional group.

  17. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  18. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  19. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1mm microcoil MAS NMR probehead.

    PubMed

    Yamauchi, Kazuo; Yamasaki, Shizuo; Takahashi, Rui; Asakura, Tetsuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1mg and therefore we used a home-built 1mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed.

  20. Labeling Cells with Silver/Dendrimer Nanocomposites

    DTIC Science & Technology

    2005-01-01

    labeling. A PAMAME5.NH 2 dendrimer was used as a template to prepare first a silver -dendrimer complex in an aqueous solution at biologic pH=7.4...electron microscope operating at 200 kV. Samples were prepared by mounting a drop of aqueous solutions of nanoparticles on carbon-coated copper grids...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP019741 TITLE: Labeling Cells with Silver /Dendrimer Nanocomposites