Sample records for labeled rat renal

  1. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  2. Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.

    PubMed

    Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro

    2018-05-01

    Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuan; Fujigaki, Yoshihide, E-mail: yf0516@hama-med.ac.j; Sakakima, Masanori

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PTmore » cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.« less

  4. Chemical renal denervation in the rat.

    PubMed

    Consigny, Paul M; Davalian, Dariush; Donn, Rosy; Hu, Jie; Rieser, Matthew; Stolarik, Deanne

    2014-02-01

    The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose-response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography-mass spectrometry. Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10(-5) M through 10(-2) M paclitaxel. We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.

  5. THE ROLE OF LYMPHOCYTES IN THE SENSITIZATION OF RATS TO RENAL HOMOGRAFTS

    PubMed Central

    Strober, S.; Gowans, J. L.

    1965-01-01

    In order to study the role of blood-borne small lymphocytes in the sensitization of rats to renal homografts 2 techniques for the perfusion of isolated rat kidneys were employed: (a) the in vitro perfusion of kidneys with thoracic duct cells suspended in either an artificial medium or in blood; the perfusates were then injected into rats syngeneic with the lymphocyte donors; (b) the in vivo perfusion of kidneys with blood issuing from the femoral artery and returning to the femoral vein of living rats. The degree of sensitization conferred on the recipients by the perfusates was assessed by applying a skin homograft from the kidney donor and scoring the epithelial necrosis at 6 days. The in vitro experiments indicated that parental strain thoracic duct cells, which had passed through an F1 hybrid kidney could confer upon a parental rat sensitivity to an F1 skin graft. Several perfusions with radioactively labelled lymphocytes showed that the injected cells migrated to the lymph nodes and spleen of the recipients Labelled large pyroninophilic cells were occasionally seen in the spleen and lymph nodes of recipients, and it was suggested that these had arisen from the injected cells. Although the in vitro perfusions with blood indicated that renal homografts might sensitize their hosts within 1 hour, the in vivo perfusions suggested that about 5 to 12 hours were required. The more rapid sensitization in vitro was possibly due to the more frequent opportunity for contact between lymphocytes and kidney vascular endothelium which was afforded by the conditions in vitro. PMID:14316949

  6. Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease.

    PubMed

    Naito, Yoshiro; Fujii, Aya; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-07-01

    Iron accumulation is associated with the pathophysiology of chronic kidney disease (CKD). Renal fibrosis is a final common feature that contributes to the progression of CKD; however, little is known about the association between renal iron accumulation and renal interstitial fibrosis in CKD. Here we investigate the effects of iron chelation on renal interstitial fibrosis in a rat model of CKD. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. At 8 weeks after operation, 5/6 nephrectomized rats were administered an oral iron chelator, deferasirox (DFX), in chow for 8 weeks. Other CKD rats were given a normal diet. Sham-operative rats given a normal diet served as a control. CKD rats exhibited hypertension, glomerulosclerosis and renal interstitial fibrosis. Iron chelation with DFX did not change hypertension and glomerulosclerosis; however, renal interstitial fibrosis was attenuated in CKD rats. Consistent with these findings, renal gene expression of collagen type III and transforming growth factor-β was increased in CKD rats compared with the controls, while iron chelation suppressed these increments. In addition, a decrease in vimentin along an increase in E-cadherin in renal gene expression was observed in CKD rats with iron chelation. CKD rats also showed increased CD68-positive cells in the kidney, whereas its increase was attenuated by iron deprivation. Similarly, increased renal gene expression of CD68, tumor necrosis factor-α and monocyte chemoattractant protein-1 was suppressed in CKD rats with iron chelation. Renal iron accumulation seems to be associated with renal interstitial fibrosis in a rat model of CKD.

  7. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats.

    PubMed

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. 3 H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3 H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.

  8. Quantitative analysis of the renal aging in rats. Stereological study.

    PubMed

    Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de

    2016-05-01

    To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.

  9. Impaired renal function and development in Belgrade rats

    PubMed Central

    Veuthey, Tania; Hoffmann, Dana; Vaidya, Vishal S.

    2013-01-01

    Belgrade rats carry a disabling mutation in the iron transporter divalent metal transporter 1 (DMT1). Although DMT1 plays a major role in intestinal iron absorption, the transporter is also highly expressed in the kidney, where its function remains unknown. The goal of this study was to characterize renal physiology of Belgrade rats. Male Belgrade rats died prematurely with ∼50% survival at 20 wk of age. Necropsy results indicated marked glomerular nephritis and chronic end-stage renal disease. By 15 wk of age, Belgrade rats displayed altered renal morphology associated with sclerosis and fibrosis. Creatinine clearance was significantly lower compared with heterozygote littermates. Urinary biomarkers of kidney injury, including albumin, fibrinogen, and kidney injury molecule-1, were significantly elevated. Pilot morphological studies suggest that nephrogenesis is delayed in Belgrade rat pups due to their low iron status and fetal growth restriction. Such defects in renal development most likely underlie the compromised renal metabolism observed in adult b/b rats. Belgrade rat kidney nonheme iron levels were not different from controls but urinary iron and transferrin levels were higher. These results further implicate an important role for the transporter in kidney function not only in iron reabsorption but also in glomerular filtration of the serum protein. PMID:24226520

  10. Osthole ameliorates renal ischemia-reperfusion injury in rats.

    PubMed

    Zheng, Yi; Lu, Min; Ma, Lulin; Zhang, Shudong; Qiu, Min; Wang, Yunpeng

    2013-07-01

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying I/R injury involve oxidative stress and apoptosis. Osthole, a natural coumarin derivative, has been reported to possess antioxidant and antiapoptotic activities. This study aimed to investigate the potential effects of osthole on renal I/R injury in an in vivo rat model. We induced renal I/R injury by clamping the left renal artery for 45 min followed by reperfusion, along with a contralateral nephrectomy. We randomly assigned 54 rats to three groups (18 rats/group): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intraperitoneally with osthole (40 mg/kg) or vehicle (40 mg/kg) 30 min before renal ischemia. We harvested serum and kidneys at 1, 6, and 24 h after reperfusion. Renal function and histological changes were assessed. We also determined markers of oxidative stress and cell apoptosis in kidneys. Osthole treatment significantly attenuated renal dysfunction and histologic damage induced by I/R injury. The I/R-induced elevation in kidney malondialdehyde level decreased, whereas reduced kidney superoxide dismutase and catalase activities were markedly increased. Moreover, osthole-treated rats had a dramatic decrease in apoptotic tubular cells, along with a decrease in caspase-3 and an increase in the Bcl-2/Bax ratio. Osthole treatment protects murine kidney from renal I/R injury by suppressing oxidative stress and cell apoptosis. Thus, osthole may represent a novel practical strategy to prevent renal I/R injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Ulinastatin inhibits renal tubular epithelial apoptosis and interstitial fibrosis in rats with unilateral ureteral obstruction.

    PubMed

    Zhang, Qing-Fang

    2017-12-01

    The effect of ulinastatin (UTI) on renal tubular epithelial apoptosis and interstitial fibrosis in rats with unilateral ureteral obstruction (UUO) was investigated. A total of 18 male Wistar rats were randomly divided into the following 3 groups: The Sham group (n=6), the UUO group (n=6), and the UTI group (n=6). In the UUO and UTI groups, the left ureter was ligated to establish a UUO model. Starting from day 1 after surgery, an intervention treatment was performed using normal saline (1 ml/kg/d) and UTI (40,000 unit/kg/d). On day 7 after surgery, 6 rats from each group were sacrificed. In the Sham group, the left ureter was only freed, not ligated; after 7 days of abdominal closure, all of the rats were sacrificed. Blood samples were collected prior to sacrificing the animals to measure the blood urea nitrogen (BUN) and serum creatinine (Scr). The incidence of renal interstitial lesions on the obstruction side was observed by hematoxylin and eosin, and Masson staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemical detection of apoptosis regulator Bax (Bax), apoptosis regulator Bcl‑2 (Bcl‑2) and caspase‑3 were performed to observe the presence of renal tubular epithelial cell apoptosis. The UTI did not have a significant influence on the mouse BUN and Scr levels in any of the groups (P>0.05). Compared with that in the Sham group, renal tissue injury in the UUO group was significantly aggravated with renal tubular dilation, epithelial cell atrophy, renal interstitial inflammatory cell infiltration and fibrous tissue hyperplasia (P<0.01). Furthermore, the renal tubular epithelial TUNEL+ cell number and Bax and caspase‑3 levels were increased, and the expression of Bcl‑2 was decreased (P<0.01). Following the UTI treatment, the renal interstitial injury at the obstruction side was significantly attenuated (P<0.05), the renal tubular epithelial TUNEL+ cell number, and Bax and caspase‑3 levels

  12. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats

    PubMed Central

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Background and purpose Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. Experimental approach 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). Results In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. Conclusion/Implications The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal

  13. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    PubMed Central

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  14. Necrosis and apoptosis of renal tubular epithelial cells in rats exposed to 3-methyl-4-nitrophenol.

    PubMed

    Yue, Zhuo; She, Rui-Ping; Bao, Hui-Hui; Tian, Jijing; Yu, Pin; Zhu, Jinfeng; Chang, Lingling; Ding, Ye; Sun, Quan

    2012-11-01

    The 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) exists in diesel exhaust particles (DEP), and is also one of the degradation products of insecticide fenitrothion. To assess potential nephrotoxicity of PNMC, male Sprague-Dawley (SD) rats were subcutaneously dosed with PNMC at 1, 10, and 100 mg/kg/day for five consecutive days. No significant changes were detected in body weights and relative weights of kidneys by the treatment of PNMC. However, the extent of cellular necrosis was found to be severe in renal tubular epithelial cells of PNMC-treated rats. In addition, PNMC exposure significantly increased the number of terminal deoxynucleotidyle transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells compared to the control in renal tubule of PNMC-treated rats. Moreover, immunohistochemical results indicated that significant decrease in the B-cell lymphoma 2 (Bcl-2) expressions andincrease in the Bcl-2 associated × protein (Bax) expression were detected in PNMC-treated rats. The ratio of Bcl-2/Bax was also reduced significantly at PNMC-treated rats dosed at 10 or 100 mg kg(-1) . Furthermore, the significant increase of FAS (CD95/APO-1) expression was found in the groups dosed at 10 or 100 mg kg(-1) of PNMC. The expression of Caspase-3 was higher in PNMC-treated rats, compared to the control group. Our results indicated that activation of mitochondria and Caspase-3 protease may contribute to the PNMC-induced apoptosis, suggesting that PNMC could cause both necrosis and apoptosis resulting in cell death of renal epithelium cells and could induce renal toxicity. Copyright © 2011 Wiley Periodicals, Inc.

  15. Effects of early overnutrition on the renal response to Ang II and expression of RAAS components in rat renal tissue.

    PubMed

    Granado, M; Amor, S; Fernández, N; Carreño-Tarragona, G; Iglesias-Cruz, M C; Martín-Carro, B; Monge, L; García-Villalón, A L

    2017-10-01

    The aim of this study was to analyze the effects of early overnutrition (EON) on the expression of the renin angiotensin aldosterone system (RAAS) components in renal cortex, renal arteries and renal perivascular adipose tissue (PVAT), as well as the vascular response of renal arteries to Angiotensin II (Ang II). On birth day litters were adjusted to twelve (L12-control) or three (L3-overfed) pups per mother. Half of the animals were sacrificed at weaning (21 days old) and the other half at 5 months of age. Ang II-induced vasoconstriction of renal artery segments increased in young overfed rats and decreased in adult overfed rats. EON decreased the gene expression of angiotensinogen (Agt), Ang II receptors AT1 and AT2 and eNOS in renal arteries of young rats, while it increased the mRNA levels of AT-2 and ET-1 in adult rats. In renal PVAT EON up-regulated the gene expression of COX-2 and TNF-α in young rats and the mRNA levels of renin receptor both in young and in adult rats. On the contrary, Ang II receptors mRNA levels were downregulated at both ages. Renal cortex of overfed rats showed increased gene expression of Agt in adult rats and of AT1 in young rats. However the mRNA levels of AT1 were decreased in the renal cortex of overfed adult rats. EON is associated with alterations in the vascular response of renal arteries to Ang II and changes in the gene expression of RAAS components in renal tissue. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  16. Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y; Kopp, U C

    1999-01-01

    This study tested the hypothesis that decreased responsiveness of renal mechanosensitive neurons constitutes an intermediate phenotype in spontaneously hypertensive rats (SHR). Decreased responsiveness of these sensory neurons would contribute to increased renal sympathetic nerve activity and sodium retention, characteristic findings in hypertension. A backcross population, developed by mating borderline hypertensive rats with Wistar-Kyoto rats (WKY) (the F1 of a cross between an SHR and a normotensive WKY), was fed 8% NaCl food for 12 weeks from age 4 to 16 weeks. Responses to increases in ureteral pressure to 20 and 40 mm Hg in 80 backcross rats instrumented for measurement of mean arterial pressure and afferent renal nerve activity were determined. Mean arterial pressure ranged from 110 to 212 mm Hg and was inversely correlated with the magnitude of the increase in afferent renal nerve activity during increased ureteral pressure. Thus, decreased responsiveness of renal mechanosensitive neurons cosegregated with hypertension in this backcross population. This aspect of the complex quantitative trait of altered renal sympathetic neural control of renal function, ie, decreased renal mechanoreceptor responsiveness, is part of an intermediate phenotype in SHR.

  17. Reflex effects on renal nerve activity characteristics in spontaneously hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y; Sawin, L L

    1997-11-01

    The effects of arterial and cardiac baroreflex activation on the discharge characteristics of renal sympathetic nerve activity were evaluated in conscious spontaneously hypertensive and Wistar-Kyoto rats. In spontaneously hypertensive rats compared with Wistar-Kyoto rats, (1) arterial baroreflex regulation of renal sympathetic nerve activity was reset to a higher arterial pressure and the gain was decreased and (2) cardiac baroreflex regulation of renal sympathetic nerve activity exhibited a lower gain. With the use of sympathetic peak detection analysis, the inhibition of integrated renal sympathetic nerve activity, which occurred during both increased arterial pressure (arterial baroreflex) and right atrial pressure (cardiac baroreflex), was due to parallel decreases in peak height with little change in peak frequency in both spontaneously hypertensive and Wistar-Kyoto rats. Arterial and cardiac baroreflex inhibition of renal sympathetic nerve activity in Wistar-Kyoto and spontaneously hypertensive rats is due to a parallel reduction in the number of active renal sympathetic nerve fibers.

  18. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats.

    PubMed

    Romero, Cesar A; Cabral, Glauber; Knight, Robert A; Ding, Guangliang; Peterson, Edward L; Carretero, Oscar A

    2018-01-01

    Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min -1 ·100 g tissue -1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min -1 ·100 g tissue -1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min -1 ·100 g tissue -1 ; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.

  19. Age-related pathophysiological changes in rats with unilateral renal agenesis.

    PubMed

    Amakasu, Kohei; Suzuki, Katsushi; Katayama, Kentaro; Suzuki, Hiroetsu

    2011-06-01

    Affected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency.

  20. Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats

    PubMed Central

    Huang, Baorui; Cheng, Yuan; Usa, Kristie; Liu, Yong; Baker, Maria Angeles; Mattson, David L.; He, Yongcheng; Wang, Niansong; Liang, Mingyu

    2016-01-01

    Tumor necrosis factor α (TNFα) is a major proinflammatory cytokine and its level is elevated in hypertensive states. Inflammation occurs in the kidneys during the development of hypertension. We hypothesized that TNFα specifically in the kidney contributes to the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats, a widely used model of human salt-sensitive hypertension and renal injury. SS rats were chronically instrumented for renal interstitial infusion and blood pressure measurement in conscious, freely moving state. Gene expression was measured using real-time PCR and renal injury assessed with histological analysis. The abundance of TNFα in the renal medulla of SS rats, but not the salt-insensitive congenic SS.13BN26 rats, was significantly increased when rats had been fed a high-salt diet for 7 days (n = 6 or 9, p < 0.01). The abundance of TNFα receptors in the renal medulla was significantly higher in SS rats than SS.13BN26 rats. Renal interstitial administration of Etanercept, an inhibitor of TNFα, significantly attenuated the development of hypertension in SS rats on a high-salt diet (n = 7–8, p < 0.05). Glomerulosclerosis and interstitial fibrosis were also significantly ameliorated. These findings indicate intrarenal TNFα contributes to the development of hypertension and renal injury in SS rats. PMID:26916681

  1. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats.

    PubMed

    Tojo, Akihiro; Kinugasa, Satoshi; Fujita, Toshiro; Wilcox, Christopher S

    2016-01-01

    The mechanism of activation of local renal renin-angiotensin system (RAS) has not been clarified in diabetes mellitus (DM). We hypothesized that the local renal RAS will be activated via increased glomerular filtration and tubular uptake of prorenin and angiotensinogen in diabetic kidney with microalbuminuria. Streptozotocin (STZ)-induced DM and control rats were injected with human prorenin and subsequently with human angiotensinogen. Human prorenin uptake was increased in podocytes, proximal tubules, macula densa, and cortical collecting ducts of DM rats where prorenin receptor (PRR) was expressed. Co-immunoprecipitation of kidney homogenates in DM rats revealed binding of human prorenin to the PRR and to megalin. The renal uptake of human angiotensinogen was increased in DM rats at the same nephron sites as prorenin. Angiotensin-converting enzyme was increased in podocytes, but decreased in the proximal tubules in DM rats, which may have contributed to unchanged renal levels of angiotensin despite increased angiotensinogen. The systolic blood pressure increased more after the injection of 20 μg of angiotensinogen in DM rats than in controls, accompanied by an increased uptake of human angiotensinogen in the vascular endothelium. In conclusion, endocytic uptake of prorenin and angiotensinogen in the kidney and vasculature in DM rats was contributed to increased tissue RAS and their pressor response to angiotensinogen.

  2. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  3. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    PubMed

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  4. Osthole Preconditioning Protects Rats Against Renal Ischemia-Reperfusion Injury.

    PubMed

    Xie, D-Q; Sun, G-Y; Zhang, X-G; Gan, H

    2015-01-01

    Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms of renal I/R injury involve inflammation, oxidative stress, and apoptosis. Osthole, a natural coumarin derivative, has potential anti-inflammatory effects. This study investigated the effect of osthole on renal I/R injury and its potential mechanism. We induced renal I/R injury by clamping the left renal artery for 45 min followed by reperfusion, along with a contralateral nephrectomy. We randomly assigned 30 rats to 3 groups (n = 10): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intra-peritoneally with osthole (40 mg/kg) or vehicle (40 mg/kg) 45 min before renal ischemia. We harvested serum and kidneys at 24 h after reperfusion. Renal function and histological changes were assessed. The expression of tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and interleukin-6 (IL-6) in renal tissue and serum were examined by means of RT-PCR and ELISA, respectively. The expression of p-p85, p85, p-Akt, Akt, p-p65, and p65 were measured by means of Western blotting. Osthole pre-treatment significantly attenuated renal dysfunction, renal histological changes, NF-κB activation, and the expression of TNF-α, IL-8, and IL-6 induced by I/R injury, but the activation of PI3K/Akt signaling was further increased. Osthole pre-treatment protects rats against renal I/R injury by suppressing NF-κB activation, which is involved in PI3K/Akt signaling activation. Thus, osthole may be a novel practical strategy to prevent renal I/R injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Review of Surgical Techniques of Experimental Renal Transplantation in Rats.

    PubMed

    Shrestha, Badri; Haylor, John

    2017-08-01

    Microvascular surgical techniques of renal transplant in rats have evolved over the past 5 decades to achieve successful rat renal transplant; these modifications have included surgical techniques to address the anatomic variations in the renal blood vessels and those to reduce ischemic and operation durations. Here, we review the surgical techniques of renal transplant in rats and evaluate the advantages and disadvantages of individual techniques of vascular and ureteric anastomoses. For this review, we performed a systematic literature search using relevant medical subject heading terms and included appropriate publications in the review. Since the first description of a rat model of renal transplant by Bernard Fisher and his colleagues in 1965, which used end-to-side anastomosis between the renal vein and renal artery to the recipient inferior vena cava and aorta, several vascular and ureteric anastomosis techniques have been modified. Vascular anastomosis techniques now include end-to-end anastomosis, use of donor aortic and inferior vena cava conduits, sleeve and cuff anastomoses, and application of fibrin glue. Likewise, restoration of the urinary tract can now be achieved by direct anastomosis of the donor ureter to the recipient bladder, end-to-end anastomosis between the donor and recipient ureters, and donor bladder cuff to the recipient bladder. There are advantages and disadvantages attributable to individual techniques. The range of vascular and ureteric anastomosis techniques that has emerged reflects the need for mastering more than one technique to suit the vascular anatomy of individual animals and to reduce operating time for achieving successful outcomes after renal transplant.

  6. Role of angiotensin in renal sympathetic activation in cirrhotic rats.

    PubMed

    Voigt, M D; Jones, S Y; DiBona, G F

    1999-08-01

    Central nervous system (CNS) renin-angiotensin activity influences the basal level of renal sympathetic nerve activity (RSNA) and its reflex regulation. The effect of type 1 angiotensin II (ANG II)-receptor antagonist treatment (losartan) on cardiac baroreflex regulation of RSNA and renal sodium handling was examined in rats with cirrhosis due to common bile duct ligation (CBDL). Basal levels of heart rate, mean arterial pressure (MAP), RSNA, and urinary sodium excretion were not affected by intracerebroventricular administration of either losartan or vehicle to CBDL rats. After acute intravenous isotonic saline loading (10% body wt) in vehicle-treated CBDL rats, MAP was unchanged and the decrease in RSNA seen in normal rats did not occur. However, in losartan-treated CBDL rats, there were significant concurrent but transient decreases in MAP (-20 +/- 2 mmHg) and RSNA (-25 +/- 3%). The natriuretic response to acute volume loading in losartan-treated CBDL rats was significantly less than that in vehicle-treated CBDL rats only at those time points where there were significant decreases in MAP. Antagonism of CNS ANG II type 1 receptors augments the renal sympathoinhibitory response to acute volume loading in CBDL. However, the natriuretic response to the acute volume loading is not improved, likely due to the strong antinatriuretic influence of the concomitant marked decrease in MAP (renal perfusion pressure) mediated by widespread sympathetic withdrawal from the systemic vasculature.

  7. Protein disulfide isomerase regulates renal AT1 receptor function and blood pressure in rats.

    PubMed

    Wang, Xitao; Asghar, Mohammad

    2017-08-01

    The role and mechanism of renal protein disulfide isomerase (PDI) in blood pressure regulation has not been tested before. Here, we test this possibility in Sprague-Dawley rats. Rats were treated with PDI inhibitor bacitracin (100 mg·kg -1 ip·day -1 for 14 days), and then blood pressure and renal angiotensin II type 1 (AT 1 ) receptor function were determined in anesthetized rats. Renal AT 1 receptor function was determined as the ability of candesartan (an AT 1 receptor blocker) to increase diuresis and natriuresis. A second set of vehicle- and bacitracin-treated rats was used to determine biochemical parameters. Systolic blood pressure as well as diastolic blood pressure increased in bacitracin-treated compared with vehicle-treated rats. Compared with vehicle, bacitracin-treated rats showed increased diuresis and natriuresis in response to candesartan (10-µg iv bolus dose) suggesting higher AT 1 receptor function in these rats. These were associated with higher renin activities in the plasma and renal tissues. Furthermore, urinary 8-isoprostane and kidney injury molecule-1 levels were higher and urinary antioxidant capacity was lower in bacitracin-treated rats. Renal protein carbonyl and nitrotyrosine levels also were higher in bacitracin- compared with vehicle-treated rats, suggesting oxidative stress burden in bacitracin-treated rats. Moreover, PDI activity decreased and its protein levels increased in renal tissues of bacitracin-treated rats. Also, nuclear levels of Nrf2 transcription factor, which regulates redox homeostasis, were decreased in bacitracin-treated rats. Furthermore, tissue levels of Keap1, an Nrf2 inhibitory molecule, and tyrosine 216-phosphorylated GSK3β protein, an Nrf2 nuclear export protein, were increased in bacitracin-treated rats. These results suggest that renal PDI by regulating Keap1-Nrf2 pathway acts as an antioxidant, maintaining redox balance, renal AT 1 receptor function, and blood pressure in rats. Copyright © 2017 the

  8. Early life stress sensitizes the renal and systemic sympathetic system in rats.

    PubMed

    Loria, Analia S; Brands, Michael W; Pollock, David M; Pollock, Jennifer S

    2013-08-01

    We hypothesized that maternal separation (MS), an early life stress model, induces a sensitization of the sympathetic system. To test this hypothesis, we evaluated the renal and systemic sympathetic system in 12- to 14-wk-old male control or MS rats with the following parameters: 1) effect of renal denervation on conscious renal filtration capacity, 2) norepinephrine (NE) content in key organs involved in blood pressure control, and 3) acute systemic pressor responses to adrenergic stimulation or ganglion blockade. MS was performed by separating pups from their mothers for 3 h/day from day 2 to 14; controls were nonhandled littermates. Glomerular filtration rate (GFR) was examined in renal denervated (DnX; within 2 wk) or sham rats using I¹²⁵-iothalamate plasma clearance. MS-DnX rats showed significantly increased GFR compared with MS-SHAM rats (3.8 ± 0.4 vs. 2.4 ± 0.2 ml/min, respectively, P < 0.05), whereas DnX had no effect in controls, indicating that renal nerves regulate GFR in MS rats. NE content was significantly increased in organ tissues from MS rats (P < 0.05, n = 6-8), suggesting a sensitization of the renal and systemic sympathetic system. Conscious MS rats displayed a significantly greater increase in mean arterial pressure (MAP) in response to NE (2 μg/kg ip) and a greater reduction in MAP in response to mecamylamine (2 mg/kg ip, P < 0.05, n = 4) monitored by telemetry, indicating that MS rats exhibit exaggerated responses to sympathetic stimulation. In conclusion, these data indicate that MS sensitizes the renal and systemic sympathetic system ultimately impairing blood pressure regulation.

  9. Influence of the renal endothelin system on the autoregulation of renal blood flow in spontaneously hypertensive rats.

    PubMed

    Braun, C; Lang, C; Hocher, B; Gretz, N; van der Woude, F J; Rohmeiss, P

    1997-01-01

    The renal endothelin (ET) system has been claimed to play an important role in the regulation of renal blood flow (RBF) and sodium excretion in primary hypertension. The aim of the present study was to investigate the contribution of the endogenous ET system in the autoregulation of total RBF, cortical blood flow (CBF), pressure-dependent plasma renin activity (PRA) and pressure natriuresis in spontaneously hypertensive rats (SHR) by means of the combined (A/B) ET-receptor antagonist, bosentan. In anesthetized rats, RBF was measured by transit-time flow probes and CBF by laser flow probes. During the experiments, the rats received an intrarenal infusion of either bosentan (1 mg/kg/h) or vehicle. Renal perfusion pressure (RPP) was lowered in pressure steps of 5 mm Hg with a servo-controlled electropneumatic device via an inflatable suprarenal cuff. Bosentan had no effect on resting RPP, CBF, PRA and renal sodium excretion, whereas RBF was lowered by 30% (p < 0.05). Furthermore after bosentan the rats revealed a complete loss of RBF autoregulation. In contrast no changes in autoregulation of CBF, pressure-dependent PRA and pressure natriuresis were observed. Our findings demonstrate a significant impairment in total RBF autoregulatory ability during renal ET-receptor blockade which is not confined to the cortical vessels. These data suggest that the renal ET system plays an important role in the dynamic regulation of renal blood flow in SHR.

  10. Morphological characteristics of renal artery and kidney in rats.

    PubMed

    Yoldas, Atilla; Dayan, Mustafa Orhun

    2014-01-01

    The gross anatomy and morphometry of the kidney and renal arteries were studied in the strains of laboratory rat: Sprague-Dawley (Sp) and Wistar (W) rats. Total of 106 three-dimensional endocasts of the intrarenal arteries of kidney that were prepared using standard injection-corrosion techniques were examined. A single renal artery was observed in 100% of the cases. The renal arteries were divided into a dorsal and a ventral branch. The dorsal and ventral branches were divided into two branches, the cranial and caudal branch. Renal arteries were classified into types I and II, depending on the cranial and caudal branches and their made of branching. The present study also showed that the right kidney was slightly heavier than the left one and that the kidney of the male was generally larger than that of the female. The mean live weights of the Sprague-Dawley and Wistar rats were found to be 258.26 ± 5.9 and 182.4 ± 19.05 g, respectively. The kidney weights were significantly correlated (P < 0.01) with body weights. The kidney weights were not found significantly correlated (P > 0.01) with the length of renal arteries.

  11. Morphological Characteristics of Renal Artery and Kidney in Rats

    PubMed Central

    Yoldas, Atilla; Dayan, Mustafa Orhun

    2014-01-01

    The gross anatomy and morphometry of the kidney and renal arteries were studied in the strains of laboratory rat: Sprague-Dawley (Sp) and Wistar (W) rats. Total of 106 three-dimensional endocasts of the intrarenal arteries of kidney that were prepared using standard injection-corrosion techniques were examined. A single renal artery was observed in 100% of the cases. The renal arteries were divided into a dorsal and a ventral branch. The dorsal and ventral branches were divided into two branches, the cranial and caudal branch. Renal arteries were classified into types I and II, depending on the cranial and caudal branches and their made of branching. The present study also showed that the right kidney was slightly heavier than the left one and that the kidney of the male was generally larger than that of the female. The mean live weights of the Sprague-Dawley and Wistar rats were found to be 258.26 ± 5.9 and 182.4 ± 19.05 g, respectively. The kidney weights were significantly correlated (P < 0.01) with body weights. The kidney weights were not found significantly correlated (P > 0.01) with the length of renal arteries. PMID:24737971

  12. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats.

    PubMed

    Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D

    2007-02-01

    We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.

  13. NGAL attenuates renal ischemia/reperfusion injury through autophagy activation and apoptosis inhibition in rats.

    PubMed

    Zhang, Ya-Li; Qiao, Shu-Kai; Wang, Rong-Ying; Guo, Xiao-Nan

    2018-06-01

    Ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI), and currently lacks effective therapies. This study is to investigate the level of Neutrophil gelatinase-associated lipocalin (NGAL) and autophagy status during renal I/R injury, so as to determine whether the exogenous NGAL protein could exert a protective effect for I/R injury and explore the potential mechanisms. Forty male Wistar rats were randomly divided into the following four groups: Sham, I/R, pre-treated with NGAL before I/R (I/R + pre-N), treated with NGAL after I/R (I/R + post-N). All rats were subjected to clamping the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. Serum creatinine (SCr) and blood urea nitrogen (BUN) were used for renal function, tubular cell apoptosis and autophagy were measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method, histological examination and electron microscope, respectively. The tubular cell proliferation was assessed by the protein expression of proliferating cell nuclear antigen (PCNA). Western blotting was used to quantitate the levels of LC3, Beclin-1, Bcl-2 and Bax in kidney tissues. Exogenous NGAL protein intervention significantly improved renal function, reduced tubular cell apoptosis, increased tubular cell proliferation and promoted autophagy activation after renal I/R injury. Further, the efficacy in pre-N was significantly better than post-N. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Our study demonstrated that exogenous NGAL protein play a protective role during I/R injury, which may offer a novel may for prevention and treatment of renal I/R injury. Copyright © 2018. Published by Elsevier B.V.

  14. Renal inflammatory response to urinary tract infection in rat neonates.

    PubMed

    Zarepour, M; Moradpoor, H; Emamghorashi, F; Owji, S M; Roodaki, M; Khamoushi, M

    2015-09-01

    Urinary tract infection (UTI) is one of the most common bacterial infections. Maternal UTI is a risk factor for neonatal UTI. The aim of the present study was to determine the severity of renal inflammation in neonate rats born from mothers with induced UTI. Twelve pregnant rats (Sprague-Dawley) were included in study. The rats were divided into two groups (six rats in each group). In the first group, pyelonephritis was induced in the third trimester of pregnancy and the second group was used as a control group. After delivery, the neonates were divided into three groups based on days after birth (the 1 st, 3 rd and 7 th days after birth). In each group, two neonates of each mother were killed and a midline abdominal incision was made and both kidneys were aseptically removed. On the 7 th day, rat mothers were killed and their kidneys were removed. The preparations were evaluated with a bright field microscope for inflammatory response. Renal pathology showed inflammation in all UTI-induced mothers, but only two cases of neonates (2.1%) showed inflammation in the renal parenchyma. There was no relation between the positive renal culture and the pathological changes. We conclude that neonates with UTI born to UTI-induced mothers showed a lesser inflammatory response.

  15. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  16. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    PubMed

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  17. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  18. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  19. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    PubMed

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates

  20. Obesity depresses baroreflex control of renal sympathetic nerve activity and heart rate in Sprague Dawley rats: role of the renal innervation.

    PubMed

    Khan, S A; Sattar, M Z A; Abdullah, N A; Rathore, H A; Abdulla, M H; Ahmad, A; Johns, E J

    2015-07-01

    This study investigated the role of the renal innervation in arterial and cardiopulmonary baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) in rats fed a high-fat diet to induce obesity. Rats received either a normal (12% kcal) or high (45% kcal) fat diet for 60 days. On day 61, rats were anesthetized and prepared for recording left RSNA. In one group, the renal nerves remained intact, while in the other, both kidneys were denervated. Baroreflex gain curves for RSNA and HR were generated by increasing and decreasing blood pressure. Low-pressure baroreceptors were challenged by infusing a saline load. Mean blood pressure was 135 mmHg in the fat-fed and 105 mmHg (P < 0.05) in normal rats. Weight gain, adiposity index and creatinine clearance were 37, 82 and 55% higher (P < 0.05-0.001), but urine flow rate and fractional sodium excretions were 53 and 65% (both P < 0.001) lower, respectively, in the fat-fed compared to normal rats. In fat-fed rats with innervated kidneys, RSNA and HR arterial baroreflex sensitivities were reduced by 73 and 72% (both P < 0.05) but were normal in renally denervated rats. Volume expansion decreased RSNA by 66% (P < 0.001) in normal rats, but not in the intact fat-fed rats and by 51% (P < 0.01) in renally denervated fat-fed rats. Feeding a high-fat diet caused hypertension associated with dysregulation of the arterial and cardiopulmonary baroreflexes which was dependent on an intact renal innervation. This suggests that in obese states neural signals arising from the kidney contribute to a deranged autonomic control. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. NTP Renal Toxicity Studies of Selected Halogenated Ethanes Administered by Gavage to F344/N Rats.

    PubMed

    1996-02-01

    replicative DNA synthesis by staining for proliferating cell nuclear antigen. For most groups, survival was not affected by chemical treatment; however, all rats administered either dose of 1,1,2,2-tetrabromoethane died by Day 11, and all rats administered 1.24 mmol/kg pentabromoethane, 1,1,1,2-tetrabromoethane, or 1,1,2,2-tetrachloroethane died before the end of the study. Rats receiving 0.62 mmol/kg pentabromoethane gained less weight than the controls, and rats in the 0.62 mmol/kg 1,1,1,2-tetrabromoethane group lost weight during the study. Increased kidney weights and signs of renal toxicity, indicated by urinalysis results, were noted in rats in many of the groups administered halogenated ethanes, but these observations were not always coincident with a diagnosis of hyaline droplet nephropathy. Hyaline droplet nephropathy was observed only in rats receiving penta-, hexa-, or 1,1,1,2-tetrachloroethane. The renal tubule cell labeling index was increased, indicating replicative DNA synthesis, in male rats receiving chemicals that induced hyaline droplet nephropathy as well as in males receiving pentabromoethane or 1,1,2,2-tetrachloroethane and in female negative control rats administered pentachloroethane; thus some of the halogenated ethanes appeared to cause significant renal toxicity not associated with hyaline droplet nephropathy. In summary, of the halogenated ethanes studied, the capacity to induce hyaline droplet nephropathy in male rats was restricted to ethanes containing four or more halogens, and only the chlorinated ethanes were active. If the ability to induce hyaline droplet nephropathy is the determining factor in the induction of renal tubule cell neoplasms by halogenated ethanes, then an absence of kidney neoplasms in male rats would be predicted in the event that 2-year studies were performed with the bromo- or chlorofluoroethanes.

  2. Protective effect of agmatine on ischemia/reperfusion-induced renal injury in rats.

    PubMed

    Sugiura, Takahiro; Tsutsui, Hidenobu; Takaoka, Masanori; Kobuchi, Shuhei; Hayashi, Kentaro; Fujii, Toshihide; Matsumura, Yasuo

    2008-03-01

    Enhanced renal sympathetic nerve activity (RSNA) during ischemic period and the renal venous norepinephrine (NE) overflow after reperfusion play important roles in the development of ischemic/reperfusion (I/R)-induced acute renal failure (ARF) in rats. This study evaluated whether agmatine, which is known to reduce sympathetic nerve activity and NE overflow by electrical stimulation, would prevent the I/R-induced renal dysfunction. Ischemic ARF was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion 2 weeks after the contralateral nephrectomy. Intravenous (IV) injection of agmatine (100 and 300 micromol/kg) to ischemic ARF rats dose-dependently suppressed the enhanced RSNA and attenuated the I/R-induced renal dysfunction and histological damage. Intracerebroventricular (ICV) injection of agmatine (600 nmol/kg) to ischemic ARF rats suppressed the enhanced RSNA during the ischemic period and attenuated the I/R-induced renal injury. Furthermore, both IV and ICV injection of agmatine significantly suppressed the renal venous NE overflow after the reperfusion. These results indicate that agmatine prevents the development of I/R-induced renal injury, and the effect is accompanied by suppression of the enhanced RSNA during ischemic period and NE overflow from renal sympathetic nerve endings.

  3. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  4. Dynamic analysis of renal nerve activity responses to baroreceptor denervation in hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y

    2001-04-01

    Sinoaortic and cardiac baroreflexes exert important control over renal sympathetic nerve activity. Alterations in these reflex mechanisms contribute to renal sympathoexcitation in hypertension. Nonlinear dynamic analysis was used to examine the chaotic behavior of renal sympathetic nerve activity in normotensive Sprague-Dawley and Wistar-Kyoto rats and spontaneously hypertensive rats before and after complete baroreceptor denervation (sinoaortic and cardiac baroreceptor denervation). The peak interval sequence of synchronized renal sympathetic nerve discharge was extracted and used for analysis. In all rat strains, this yielded systems whose correlation dimensions converged to similar low values over the embedding dimension range of 10 to 15 and whose greatest Lyapunov exponents were positive. In Sprague-Dawley and Wistar-Kyoto rats, compete baroreceptor denervation was associated with decreases in the correlation dimensions (Sprague-DAWLEY: 2.42+/-0.04 to 2.16+/-0.04; Wistar-KYOTO: 2.44+/-0.04 to 2.34+/-0.04) and in the greatest Lyapunov exponents (Sprague-DAWLEY: 0.199+/-0.004 to 0.130+/-0.015; Wistar-KYOTO: 0.196+/-0.002 to 0.136+/-0.010). Spontaneously hypertensive rats had a similar correlation dimension, which was unaffected by complete baroreceptor denervation (2.42+/-0.02 versus 2.42+/-0.03), and a lower value for the greatest Lyapunov exponent, which decreased to a lesser extent after complete baroreceptor denervation (0.183+/-0.006 versus 0.158+/-0.006). These results indicate that removal of sinoaortic and cardiac baroreceptor regulation of renal sympathetic nerve activity is associated with a greater decrease in the chaotic behavior of renal sympathetic nerve activity in normotensive compared with hypertensive rats. This suggests that the central neural mechanisms that regulate renal sympathetic nerve activity in response to alterations in cardiovascular reflex inputs are different in spontaneously hypertensive rats from those in Sprague-Dawley and

  5. The effect of zinc on healing of renal damage in rats.

    PubMed

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-07-01

    Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Overall, Zinc can contribute to better healing of the rat's kidneys after a traumatic injury.

  6. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats.

    PubMed

    Coutinho, João V S; Freitas-Lima, Leandro C; Freitas, Frederico F C T; Freitas, Flávia P S; Podratz, Priscila L; Magnago, Rafaella P L; Porto, Marcella L; Meyrelles, Silvana S; Vasquez, Elisardo C; Brandão, Poliane A A; Carneiro, Maria T W D; Paiva-Melo, Francisca D; Miranda-Alves, Leandro; Silva, Ian V; Gava, Agata L; Graceli, Jones B

    2016-10-17

    Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  8. Effect of sulfasalazine on renal ischemia/reperfusion injury in rats.

    PubMed

    Cámara-Lemarroy, Carlos Rodrigo; Guzmán-de la Garza, Francisco Javier; Alarcón-Galván, Gabriela; Cordero-Pérez, Paula; Fernández-Garza, Nancy Esthela

    2009-01-01

    Renal ischemia/reperfusion (I/R) occurs during shock and transplant procedures, greatly affecting outcome. A definitive treatment has not been found. One of the pathophysiological bases of renal I/R injury is the activation of the transcription factor nuclear factor-kappaB (NF-KappaB). We studied the effects of sulfasalazine (SFZ), a NF-kappaB inhibitor, over renal injury in a bilateral renal I/R model in rats. Ten male Wistar rats were subjected to bilateral renal I/R for 45 min followed by 24 h of reperfusion. Half of these received 100 mg/kg SFZ orally before the induction of I/R, while the others received only saline. Five rats served as sham-operated controls. At the end of the reperfusion period, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), P-selectin, tumor necrosis factor-alpha (TNF-alpha), intracellular adhesion molecule-1 (ICAM-1), and endothelin-1 (ET-1) concentrations were determined in serum, and renal samples were taken for histological evaluation. After renal I/R, AST, LDH, BUN, TNF-alpha, ICAM-1, and ET-1 serum levels were significantly increased, and tubules were severely damaged on histological analysis, compared to sham controls. SFZ treatment reduced the AST, LDH, BUN, TNF-alpha, and ET-1 elevations, as well as the tubular damage, induced by renal I/R. Serum ICAM-1 and P-selectin were unchanged. These results show that SFZ has a protective effect over renal IR injury. The modulation of adhesion molecules probably does not play a part in these effects, but TNF-alpha and ET-1 modulation could be partly responsible for the effects we observed.

  9. [Effect of fluorofenidone on renal interstitial fibrosis in rats with unilateral ureteral obstruction].

    PubMed

    Tan, Wenqing; Wang, Wei; Zheng, Xuan; Chen, Jiying; Yuan, Xiangning; Zhang, Fangfang; Wang, Shuting; Tao, Lijian

    2018-05-28

    To investigate the effect of fluorofenidone on renal interstitial fibrosis in rats with unilateral ureteral obstruction (UUO) and to observe the effect of fluorofenidone on the expressions of collagen type I (Col I), collagen type III (Col III), α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), platelet derived growth factor (PDGF) in the renal tissues of UUO rats.
 Methods: Male Sprague-Dawley (SD) rats were randomly divided into a sham-operated group, a UUO group, and a flurofenidone group (n=5). UUO model was induced by ligating the left ureter in rats. The rats were treated with 125 mg/(kg.d) fluorofenidone by gastric gavage in the fluorofenidone group at 24 h before the operation, and the rats were treated with the identical dose of 0.5% sodium carboxyl methyl cellulose (CMC-Na) in the other 2 groups. The rats were sacrificed at 14 days after UUO. Pathological changes of the renal tissue were observed by HE and Masson staining, the mRNA expressions of Col I, Col III, α-SMA, PDGF and CTGF were detected by real-time PCR, and the protein expressions of Col I, Col III, PDGF and CTGF were detected by immunohistochemical staining.
 Results: The renal interstitial damage index, relative collagen area and mRNA and protein expressions of Col I and Col III in the renal tissues of the rats in the UUO group significantly increased (P<0.05), and fluorofenidone could reduce these indexes (P<0.05). Compared with the sham-operated group, the protein expressions of α-SMA, PDGF, CTGF and the mRNA expressions of PDGF and CTGF in the renal tissues of the rats in the UUO group were increased, but fluorofenidone could decrease the protein expressions of α-SMA, PDGF, CTGF and the mRNA expressions of PDGF and CTGF (P<0.05).
 Conclusion: Fluorofenidone (125 mg/kg.d) could attenuate renal interstitial fibrosis through inhibition of fibroblast proliferation, myofibroblastic activation, PDGF and CTGF expression.

  10. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats.

    PubMed

    Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2017-10-19

    Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.

  11. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats.

    PubMed

    Zhu, Xia; Cheng, Ya-Qin; Du, Lei; Li, Yu; Zhang, Fan; Guo, Hao; Liu, Yao-Wu; Yin, Xiao-Xing

    2015-02-01

    This study was designed to investigate the effects of mangiferin on renal fibrosis, osteopontin production, and inflammation in the kidney of diabetic rats. Diabetes was induced through the single administration of streptozotocin (55 mg/kg, i.p.). Diabetic rats were treated with mangiferin (15, 30, and 60 mg/kg/day, i.g.) for 9 weeks. The kidney was fixed in 10% formalin for glomerulus fibrosis examination using Masson trichrome staining. Kidney and blood were obtained for assays of the associated biochemical parameters. Chronic mangiferin treatment prevented renal glomerulus fibrosis evidenced by decreases in Mason-stained positive area of glomeruli, protein expression of type IV collagen, and α-smooth muscle actin in the kidney of diabetic rats, in comparison with decreases in mRNA and protein expression of osteopontin as well as protein expression of cyclooxygenase 2 and NF-кB p65 subunit in the renal cortex of diabetic rats. Moreover, mangiferin reduced the levels of interleukin 1β in both the serum and the kidney of diabetic rats. Our findings demonstrate that mangiferin prevents the renal glomerulus fibrosis of diabetic rats, which is realized through the suppression of osteopontin overproduction and inflammation likely via inactivation of NF-кB. Copyright © 2014 John Wiley & Sons, Ltd.

  12. MUTATIONS IN THE VHL GENE FRIOM POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMORS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a rat renal carcinogen and a major drinking water disinfection by-product in water disinfected with ozone. Clear cell renal tumors, the most common form of human renal epithelial neoplasm, are rare in animals but are inducible by KBrO3 in F344 rats. ...

  13. Choline pathways during normal and stimulated renal growth in rats.

    PubMed Central

    Bean, G H; Lowenstein, L M

    1978-01-01

    Cellular membrane synthesis occurs during normal and stimulated renal growth. Choline in the kidney is utilized as a precursor for membrane synthesis via the choline kinase reaction. We investigated choline phosphorylation during normal and stimulated renal growth. Rapidly growing neonatal rat kidneys contained relatively high levels of choline kinase activity (61 pmol phosphorylcholine/min per mg protein). Choline kinase activity and phosphorylcholine production then fell gradually over the 1st mo of life; by 1 mo phosphorylcholine production was 34 pmol phosphorylcholine/min per mg protein. Choline kinase activity increased by 27% (P less than 0.001) in 28-day-old rats when renal growth was stimulated by contralateral nephrectomy; the increase occurred within 2 h after surgery. Thus, changes in the activity of this important enzyme in the initiation of membrane synthesis is associated both with normal renal development and with adaptation to nephron loss. The findings further suggest that the cell membrane may be involved in the initiation of compensatory renal growth. PMID:659614

  14. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.

    PubMed

    Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub

    2011-01-01

    The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.

  15. The effect of dehydroepiandrosterone (DHEA) on renal function and metabolism in diabetic rats.

    PubMed

    Jahn, Matheus Parmegiani; Gomes, Luana Ferreira; Jacob, Maria Helena Vianna Metello; da Rocha Janner, Daiane; Araújo, Alex Sander da Rosa; Belló-Klein, Adriane; Ribeiro, Maria Flávia Marques; Kucharski, Luiz Carlos

    2011-05-01

    Dehydroepiandrosterone (DHEA) is an endogenous steroid hormone involved in a number of biological actions in humans and rodents, but its effects on renal tissue have not yet been fully understood. The aim of this study is to assess the effect of DHEA treatment on diabetic rats, mainly in relation to renal function and metabolism. Diabetic rats were treated with subcutaneous injections of a 10mg/kg dose of DHEA diluted in oil. Plasma glucose and creatinine, in addition to urine creatinine, were quantified espectophotometrically. Glucose uptake and oxidation were quantified using radioactive glucose, the urinary Transforming Growth Factor β(1) (TGF-β(1)) was assessed by enzyme immunoassay, and the total glutathione in the renal tissue was also measured. The diabetic rats displayed higher levels of glycemia, and DHEA treatment reduced hyperglycemia. Plasmatic creatinine levels were higher in the diabetic rats treated with DHEA, while creatinine clearance was lower. Glucose uptake and oxidation were lower in the renal medulla of the diabetic rats treated with DHEA, and urinary TGF-β(1), as well as total gluthatione levels, were higher in the diabetic rats treated with DHEA. DHEA treatment was not beneficial to renal tissue, since it reduced the glomerular filtration rate and renal medulla metabolism, while increasing the urinary excretion of TGF-β(1) and the compensatory response by the glutathione system, probably due to a mechanism involving a pro-oxidant action or a pro-fibrotic effect of this androgen or its derivatives. In conclusion, this study reports that DHEA treatment may be harmful to renal tissue, but the mechanisms of this action have not yet been fully understood. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction

    PubMed Central

    Bank, Norman; Yarger, William E.; Aynedjian, Hagop S.

    1971-01-01

    Constriction of the renal vein has been shown to inhibit net sodium and water reabsorption by the rat proximal tubule. The mechanism is unknown but might be the result of inhibition of the active sodium pump induced by changes in the interstitial fluid compartment of the kidney, or to enhanced passive backflux of sodium and water into the cell or directly into the tubular lumen. Since passive movement of solutes across epithelial membranes is determined in part by the permeability characteristics of the epithelium, an increase in the permeability of the proximal tubule during venous constriction would suggest that enhanced passive flux is involved in the inhibition of reabsorption. In the present experiments, isolated segments of rat proximal convoluted tubules were microperfused in vivo with saline while the animals were receiving 14C-labeled sucrose intravenously. In normal control animals, no sucrose was detected in the majority of the collected tubular perfusates. In rats with renal vein constriction (RVC), however, sucrose consistently appeared in the tubular perfusates. The rate of inflow of sucrose correlated with the length of the perfused segment, estimated by fractional water reabsorption. In another group of animals with renal vein constriction, inulin-14C was given intravenously and the proximal tubules similarly microperfused. Inulin did not appear in the majority of collected perfusates in these animals. These observations indicate that a physiological alteration in the permeability of the proximal tubule occurs during RVC. Such an increase in permeability is consistent with the view that enhanced passive extracellular back-flux plays a role in the reduction of net sodium and water reabsorption in this experimental condition. PMID:5540167

  17. Renal accumulation of pentosidine in non-diabetic proteinuria-induced renal damage in rats.

    PubMed

    Waanders, Femke; Greven, Wendela L; Baynes, John W; Thorpe, Suzanne R; Kramer, Andrea B; Nagai, Ryoji; Sakata, Noriyuki; van Goor, Harry; Navis, Gerjan

    2005-10-01

    Advanced glycation end-products (AGEs) contribute to the pathogenesis of diabetic glomerulopathy. The role of AGEs in non-diabetic renal damage is not well characterized. First, we studied whether renal AGE accumulation occurs in non-diabetic proteinuria-induced renal damage and whether this is ameliorated by renoprotective treatment. Secondly, we investigated whether renal AGE accumulation was due to intrarenal effects of local protein trafficking. Pentosidine was measured (by high-performance liquid chromatography) in rats with chronic bilateral adriamycin nephropathy (AN), untreated and treated with lisinopril. Age-matched healthy rats served as negative controls. Secondly, we compared renal pentosidine in mild proteinuric and non-proteinuric kidneys of unilateral AN and in age-matched controls at 12 and 30 weeks. Intrarenal localization of pentosidine was studied by immunohistochemistry. Renal pentosidine was elevated in untreated AN (0.14+/-0.04 micromol/mol valine) vs healthy controls (0.04+/-0.01 micromol/mol valine, P<0.01). In lisinopril-treated AN, pentosidine was lower (0.09+/-0.02 micromol/mol valine) than in untreated AN (P<0.05). In unilateral proteinuria, pentosidine was similar in non-proteinuric and proteinuric kidneys. After 30 weeks of unilateral proteinuria, pentosidine was increased in both kidneys (0.26+/-0.10 micromol/mol valine) compared with controls (0.18+/-0.06 micromol/mol valine, P<0.05). Pentosidine (AN, week 30) was also increased compared with AN at week 12 (0.16+/-0.06 micromol/mol valine, P<0.01). In control and diseased kidneys, pentosidine was present in the collecting ducts. In proteinuric kidneys, in addition, pentosidine was present in the brush border and cytoplasm of dilated tubular structures, i.e. at sites of proteinuria-induced tubular damage. Pentosidine accumulates in non-diabetic proteinuric kidneys in damaged tubules, and renoprotective treatment by angiotensin-converting enzyme (ACE) inhibitors inhibits AGE

  18. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model.

    PubMed

    Lee, Hong-Joo; Jeong, Kyung Hwan; Kim, Yang Gyun; Moon, Joo Young; Lee, Sang Ho; Ihm, Chun Gyoo; Sung, Ji Youn; Lee, Tae Won

    2014-01-01

    Oxidative stress and inflammation are known to play central roles in the development of diabetic nephropathy (DN). Febuxostat is a novel non-purine xanthine oxidase (XO)-specific inhibitor developed to treat hyperuricemia. In this study, we investigated whether febuxostat could ameliorate DN via renoprotective mechanisms such as alleviation of oxidative stress and anti-inflammatory actions. Male Sprague-Dawley rats were divided into three groups: a normal group, a diabetes group (DM group), and a febuxostat-treated diabetes group (DM+Fx group). We administered 5 mg/kg of febuxostat to experimental rats for 7 weeks and evaluated clinical and biochemical parameters and XO and xanthine dehydrogenase (XDH) activity in hepatic tissue. The degree of oxidative stress and extent of inflammation were evaluated from urine samples and renal tissue collected from each group. Diabetic rats (DM and DM+Fx groups) had higher blood glucose and kidney weight relative to body weight than normal rats. Albuminuria was significantly reduced in febuxostat-treated diabetic rats compared with untreated diabetic rats. Quantitative analysis showed that hepatic XO and XDH activities were higher in the DM groups, but decreased after treatment with febuxostat. Urinary 8-OHdG concentrations and renal cortical nitrotyrosine also indicated reduced oxidative stress in the DM+Fx group relative to the DM group. The number of ED-1-stained cells in the glomerulus and tubule of diabetic renal tissue decreased in febuxostat-treated diabetic rats relative to that of non-treated diabetic rats. Diabetic rats also expressed higher transcript levels of inflammatory genes (E-selectin and VCAM-1), an inflammation-induced enzyme (COX-2), and inflammatory mediators (ED-1 and NF-κB) than control rats; expression of these genes was significantly reduced by treatment with febuxostat. Febuxostat prevents diabetic renal injury such as albuminuria. This renoprotective effect appears to be due to attenuation of the

  19. Long-term nebivolol administration reduces renal fibrosis and prevents endothelial dysfunction in rats with hypertension induced by renal mass reduction.

    PubMed

    Pires, María J; Rodríguez-Peña, Ana B; Arévalo, Miguel; Cenador, Begoña; Evangelista, Stefano; Esteller, Alejandro; Sánchez-Rodríguez, Angel; Colaço, Aura; López-Novoa, José M

    2007-12-01

    D/L-Nebivolol is a lypophilic beta1-adrenergic antagonist which is devoid of intrinsic sympathomimetic activity and can increase nitric oxide (NO) bioavailability with its subsequent vasodilating properties. The purpose of the present work was to assess the effect of long-term nebivolol administration on both renal damage and endothelial dysfunction induced by renal mass reduction (RMR) in rats. Atenolol, which does not increase NO bioavailability, was included in the study as a comparative beta-adrenoceptor antagonist. Rats were subjected to both right nephrectomy and surgical removal of two-thirds of the left kidney in order to retain approximately one-sixth of the total renal mass. One week after ablation, rats were distributed randomly according to the following experimental groups: control group containing RMR rats without treatment; RMR rats treated daily with nebivolol for 6 months (drinking water, 8 mg/kg per day); and RMR rats treated daily with atenolol for 6 months (drinking water, 80 mg/kg per day). A group of sham-operated animals was also included. Administration of either nebivolol or atenolol similarly reduced arterial pressure in comparison with RMR untreated animals; however, animals receiving nebivolol presented lower levels of collagen type I expression as well as lower glomerular and interstitial fibrosis than those receiving atenolol. Urinary excretion of oxidative stress markers were also lower in animals receiving nebivolol than in rats treated with atenolol. Furthermore, nebivolol prevented RMR-induced endothelial dysfunction more efficiently than atenolol. Nebivolol protects against renal fibrosis, oxidative stress and endothelial dysfunction better than equivalent doses, in terms of arterial pressure reduction, of atenolol in a hypertensive model of renal damage induced by RMR.

  20. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  1. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    PubMed

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  2. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    PubMed

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  3. Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats.

    PubMed

    Liu, Wen-Jun; Tang, Hong-Tai; Jia, Yi-Tao; Ma, Bing; Fu, Jin-Feng; Wang, Yu; Lv, Kai-Yang; Xia, Zhao-Fan

    2010-09-01

    Ischemia-reperfusion (I/R) injury of the kidney is a complex pathophysiological process and a major cause of acute renal failure. It has been shown that I/R injury is related to inflammatory responses and activation of apoptotic pathways. Inhibition of certain elements of inflammatory responses and apoptotic pathway seemed to ameliorate renal I/R injury. As an effective element of Panax notoginseng, NR1 has antioxidant, anti-inflammatory, antiapoptotic, and immune-stimulatory activities. Therefore, we speculate that NR1 can attenuate renal I/R injury. Ischemia-reperfusion injury was induced by renal pedicle ligation followed by reperfusion along with a contralateral nephrectomy. Male Sprague-Dawley rats were randomized to four groups: sham group, I/R control group, NR1-1 group (rats treated with NR1, 20 mg.kg.d) and NR1-2 group (rats treated with NR1, 40 mg.kg.d). All animals were killed 72 h after I/R induction. Blood and renal tissues were collected. Renal dysfunction was observed by the level of serum creatinine and histological evaluation. Apoptosis and inflammatory response in the tissue of kidney were detected mainly with molecular biological methods. NR1 attenuated I/R-induced renal dysfunction as indicated by the level of serum creatinine and histological evaluation. It prevented the I/R-induced increases in the levels of proinflammatory cytokine TNF-alpha, myeloperoxidase activity, phosphorylation of p38, and activation of nuclear factor kappaB with cell apoptosis in the kidney and enhanced expression of antiapoptosis cytokine bcl-2. Treatment with NR1 improves renal function after I/R associated with a significant reduction in cell apoptosis and inflammatory responses, which may be related to p38 and nuclear factor kappaB inhibition.

  4. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    PubMed

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  5. Dialysis in rats with acute renal failure: evaluation of three different dialyzer membranes.

    PubMed

    Kränzlin, B; Gretz, N; Kirschfink, M; Mujais, S K

    1996-11-01

    Exposure to complement-activating cellulosic dialysis membranes has been claimed to adversely affect the course of acute renal failure (ARF). To test this hypothesis, male Sprague-Dawley rats were allocated to 2 groups: in Group 1, ARF was induced by bilateral renal artery clamping whereas in Group 2, animals underwent a sham procedure. In each group, rats were further allocated to undergo hemodialysis with either a Cuprophan, a Hemophan, or a polyacrylonitrile minidialyzer on Days 4 and 8 after surgery, or no dialysis. Renal function was measured by inulin clearance on the days after dialysis. Additionally, total complement activity (CH50) was estimated on Days 1, 2, 4, and 8, and complement factor C3 was detected immunohistochemically. The degree of renal failure and the rate of recovery of renal function were similar in all the ARF groups irrespective of whether they had undergone dialysis or not, or of the type of the dialysis membrane. Furthermore, there were no significant differences in the course of CH50 or in the amount and distribution of complement factor C3 in the kidney tissue between the rats of Groups 1 and 2. Our findings refute the hypothesis that in ischemic ARF exposure to complement-activating cellulosic dialysis membranes impairs the recovery of renal function in rats.

  6. Cyclophilin B expression in renal proximal tubules of hypertensive rats.

    PubMed

    Kainer, D B; Doris, P A

    2000-04-01

    Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.

  7. Effectiveness of green tea tannin on rats with chronic renal failure.

    PubMed

    Yokozawa, T; Chung, H Y; He, L Q; Oura, H

    1996-06-01

    The effects of green tea tannin on nephrectomized rats were examined. There were increases in blood urea nitrogen, serum creatinine, and urinary protein, and a decrease in creatinine clearance in the nephrectomized control rats, whereas better results for these parameters were obtained in rats given green tea tannin after nephrectomy, demonstrating a suppressed progression of the renal failure. When the renal parenchyma was partially resected, the remnant kidney showed a decrease in the activity of radical scavenger enzymes. Green tea tannin, however, was found to lighten the kidney under such oxidative stress. Mesangial proliferation and glomerular sclerotic lesions, which were conspicuous in the rats that were not given green tea tannin after nephrectomy, were also relieved.

  8. Augmenting kidney mass at transplantation abrogates chronic renal allograft injury in rats.

    PubMed

    Mackenzie, H S; Azuma, H; Troy, J L; Rennke, H G; Tilney, N L; Brenner, B M

    1996-03-01

    Conventional renal transplantation, which substitutes a single allograft for two native kidneys, imposes an imbalance between nephron supply and the metabolic and excretory demands of the recipient. This discrepancy, which stimulates hyperfunction and hypertrophy of viable allograft nephrons, may be intensified by nephron loss through ischemia-reperfusion injury or acute rejection episodes occurring soon after transplantation. In other settings where less than 50% of the total renal mass remains, progressive glomerular injury develops through mechanisms associated with compensatory nephron hyperfiltration and hypertrophy. To determine whether responses to nephron loss contribute to chronic injury in renal allografts, nephron supply was restored to near-normal levels by transplanting Lewis recipients with two Fisher 344 kidneys (group 2A) compared with the standard single allograft F344 --> LEW rat model of late renal allograft failure (group 1A). At 20 weeks, indices of injury were observed in 1A but not 2A rats. These indices included proteinuria (1A: 45 +/- 13; 2A: 4.0 +/- 0.29 mg/day) and glomerulosclerosis (1A: 23 +/- 4.9%, 2A: 0.7 +/- 0.3%) (p < .05). Double-allograft recipients maintained near normal renal structure and function, whereas 1A rats showed evidence of compensatory hyperfiltration (single-nephron glomerular filtration rate of 63 +/- 10 versus 44 +/- 2.0 nl/min in 2A rats) and hypertrophy (mean glomerular volume of 2.64 +/- 0.15 versus 1.52 +/- 0.05 microns3 x 10(6) in 2A rats) (p < .05). Thus, we conclude that a major component of late allograft injury is attributable to processes associated with inadequate transplanted renal mass, a finding that has major implications for kidney transplantation biology and policy.

  9. The renal effects of prenatal testosterone in rats.

    PubMed

    Bábíčková, Janka; Borbélyová, Veronika; Tóthová, L'ubomíra; Kubišová, Katarína; Janega, Pavol; Hodosy, Július; Celec, Peter

    2015-05-01

    Previous studies have shown that prenatal testosterone affects the development of not only reproductive organs but also the brain and even glucose metabolism. Whether prenatal testosterone influences the kidney development is largely unknown. We analyzed whether testosterone modulation during prenatal development would affect renal function and the number of nephrons in adult offspring. Pregnant rats were treated with olive oil, testosterone (2 mg/kg), the androgen receptor blocker flutamide (5 mg/kg) or testosterone plus flutamide via daily intramuscular injections from gestation day 14 until delivery. Renal histology and functional parameters were assessed in male and female adult offspring. Macerated kidneys were used for nephron counting. Prenatal testosterone administration increased proteinuria in male rats by 256%. A similar 134% effect in female rats was not statistically significant. This effect was prevented when flutamide was co-administered. In male rats prenatal testosterone increased blood urea nitrogen. In female rats flutamide increased creatinine clearance. In male rats prenatal testosterone and flutamide led to higher and lower, respectively, interstitial collagen deposition in adulthood. Prenatal testosterone induces proteinuria in adulthood. This effect is mediated via androgen receptor. Additional effects seem to be sex specific. Further studies should focus on the timing and dosing of testosterone as well as the applicability to human development. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. The fate of (13)C-labelled and non-labelled inulin predisposed to large bowel fermentation in rats.

    PubMed

    Butts, Christine A; Paturi, Gunaranjan; Tavendale, Michael H; Hedderley, Duncan; Stoklosinski, Halina M; Herath, Thanuja D; Rosendale, Douglas; Roy, Nicole C; Monro, John A; Ansell, Juliet

    2016-04-01

    The fate of stable-isotope (13)C labelled and non-labelled inulin catabolism by the gut microbiota was assessed in a healthy rat model. Sprague-Dawley male rats were randomly assigned to diets containing either cellulose or inulin, and were fed these diets for 3 days. On day (d) 4, rats allocated to the inulin diet received (13)C-labelled inulin. The rats were then fed the respective non-labelled diets (cellulose or inulin) until sampling (d4, d5, d6, d7, d10 and d11). Post feeding of (13)C-labelled substrate, breath analysis showed that (13)C-inulin cleared from the host within a period of 36 hours. Faecal (13)C demonstrated the clearance of inulin from gut with a (13)C excess reaching maximum at 24 hours (d5) and then declining gradually. There were greater variations in caecal organic acid concentrations from d4 to d6, with higher concentrations of acetic, butyric and propionic acids observed in the rats fed inulin compared to those fed cellulose. Inulin influenced caecal microbial glycosidase activity, increased colon crypt depth, and decreased the faecal output and polysaccharide content compared to the cellulose diet. In summary, the presence of inulin in the diet positively influenced large bowel microbial fermentation.

  11. The effect of zinc on healing of renal damage in rats

    PubMed Central

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-01-01

    Background: Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Materials and Methods: Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. Results: In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Conclusions: Overall, Zinc can contribute to better healing of the rat’s kidneys after a traumatic injury. PMID:28975095

  12. Role of 11beta-hydroxysteroid dehydrogenase 2 renal activity in potassium homeostasis in rats with chronic renal failure.

    PubMed

    Yeyati, N L; Altuna, M E; Damasco, M C; Mac Laughlin, M A

    2010-01-01

    Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11beta-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR), in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9) and sham rats (N = 10) were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr) concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg.kg-1.day-1 for 7 days) and 11beta-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means +/- SEM; Sham = 105 +/- 8 and CRF = 149 +/- 10 mmHg) and Pcr (Sham = 0.42 +/- 0.03 and CRF = 2.53 +/- 0.26 mg/dL) were higher (P < 0.05) while GFR (Sham = 1.46 +/- 0.26 and CRF = 0.61 +/- 0.06 mL/min) was lower (P < 0.05) in CRF, and plasma aldosterone (Pald) was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 +/- 0.090 (before) vs 0.89 +/- 0.09 microEq/min (after) and CRF = 1.05 +/- 0.05 (before) vs 0.37 +/- 0.07 microEq/min (after); P < 0.05). 11beta-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 +/- 0.09 and CRF = 0.217 +/- 0.07 nmol.min-1.mg protein-1; P < 0.05), although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This

  13. Nephrotoxicity of ibandronate and zoledronate in Wistar rats with normal renal function and after unilateral nephrectomy.

    PubMed

    Bergner, R; Siegrist, B; Gretz, N; Pohlmeyer-Esch, G; Kränzlin, B

    2015-09-01

    A previous animal study compared the nephrotoxic effect of ibandronate (IBN) and zoledronate (ZOL), but interpretation of these study results was limited because of the model of minimal nephrotoxic dosage with a dosage ratio of 1:3. The present study investigated the nephrotoxicity of ibandronate and zoledronate in a 1.5:1 dose ratio, as used in clinical practice and compared the nephrotoxicity in rats with normal and with mildly to moderately impaired renal function. We compared rats with normal renal function (SHAM) and with impaired renal function after unilateral nephrectomy (UNX), treated either with ibandronate 1.5mg/kg, zoledronate 1mg/kg or placebo once (1×) or nine (9×) times. Renal function and markers of tubular toxicity were measured over a 27 week period. After last bisphosphonate treatment the rats were sacrificed and kidneys examined histologically. All bisphosphonate treated animals showed a significant tubular toxicity, which was temporary except in the ZOL-UNX-9×-group. Also the renal function was only transiently reduced except in the ZOL-UNX-9×-group. Histologically, bisphosphonate treatment led to cortical tubuloepithelial degeneration/necrosis and medullary tubuloepithelial swelling which were slightly more pronounced in ibandronate treated animals, when compared to zoledronate treated animals, especially with impaired renal function. In contrast to the previous study we found a similar nephrotoxicity of ibandronate and zoledronate in rats with normal renal function. In rats with impaired renal function the peak of toxicity had not even been fully reached until end of experiment in the zoledronate treated animals. The peak of toxicity seems to be more severe and delayed in rats with impaired renal function compared with rats with normal renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Renal Function of Rats in Response to 37 Days of Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Wang, Tommy J.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Spaceflight induces changes in human renal function, suggesting similar changes may occur in rats. Since rats continue to be the prime mammalian model for study in space, the effects of chronic microgravity on rat renal function should be clarified. Acute studies in rats using the ground-based microgravity simulation model, head-down tilt (HDT), have shown increases in glomerular filtration rate (GFR), electrolyte excretion, and a diuresis. However, long term effects of HDT have not been studied extensively. This study was performed to elucidate rat renal function following long-term simulated microgravity. Chronic exposure to HDT will cause an increase in GFR and electrolyte excretion in rats, similar to acute exposures, and lead to a decrease in the fractional excretion of filtered electrolytes. Experimental animals (HDT, n=10) were tail-suspended for 37 days and renal function compared to ambulatory controls (AMB, n=10). On day 37 of HDT, GFR, osmolal clearance, and electrolyte excretion were decreased, while plasma osmolality and free water clearance were increased. Urine output remained similar between groups. The fractional excretion of the filtered electrolytes was unchanged except for a decrease in the percentage of filtered calcium excreted. Chronic exposure to HDT results in decreased GFR and electrolyte excretion, but the fractional excretion of filtered electrolytes remained primarily unaffected.

  15. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    PubMed

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  16. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  17. Arterial spin labelling MRI for detecting pseudocapsule defects and predicting renal capsule invasion in renal cell carcinoma.

    PubMed

    Zhang, H; Wu, Y; Xue, W; Zuo, P; Oesingmann, N; Gan, Q; Huang, Z; Wu, M; Hu, F; Kuang, M; Song, B

    2017-11-01

    To evaluate prospectively the performance of combining morphological and arterial spin labelling (ASL) magnetic resonance imaging (MRI) for detecting pseudocapsule defects in renal cell carcinoma (RCC), and to predict renal capsule invasion confirmed histopathologically. Twenty consecutive patients with suspicious renal tumours underwent MRI. Renal ASL imaging was performed and renal blood flow was measured quantitatively. The diagnostic performance of T2-weighted images alone, and a combination of T2-weighted and ASL images for predicting renal capsule invasion were assessed. Twenty renal lesions were evaluated in 20 patients. All lesions were clear cell RCCs (ccRCCs) confirmed at post-surgical histopathology. Fifteen ccRCCs showed pseudocapsule defects on T2-weighted images, of which 12 cases showed existing blood flow in defect areas on perfusion images. To predict renal capsule invasion, the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 71.4%, 86.7%, 100%, respectively, for T2-weighted images alone, and 92.3%, 100%, 100%, 87.5%, respectively, for the combination of T2-weighted and ASL images. ASL images can reflect the perfusion of pseudocapsule defects and as such, the combination of T2-weighted and ASL images produces promising diagnostic accuracy for predicting renal capsule invasion. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. High sodium diet converts renal proteoglycans into pro-inflammatory mediators in rats

    PubMed Central

    Shrestha, Pragyi; Sarpong, Kwaku A.; Yazdani, Saleh; el Masri, Rana; de Jong, Wilhelmina H. A.; Navis, Gerjan; Vivès, Romain R.; van den Born, Jacob

    2017-01-01

    Background High dietary sodium aggravates renal disease by affecting blood pressure and by its recently shown pro-inflammatory and pro-fibrotic effects. Moreover, pro-inflammatory modification of renal heparan sulfate (HS) can induce tissue remodeling. We aim to investigate if high sodium intake in normotensive rats converts renal HS into a pro-inflammatory phenotype, able to bind more sodium and orchestrate inflammation, fibrosis and lymphangiogenesis. Methods Wistar rats received a normal diet for 4 weeks, or 8% NaCl diet for 2 or 4 weeks. Blood pressure was monitored, and plasma, urine and tissue collected. Tissue sodium was measured by flame spectroscopy. Renal HS and tubulo-interstitial remodeling were studied by biochemical, immunohistochemical and qRT-PCR approaches. Results High sodium rats showed a transient increase in blood pressure (week 1; p<0.01) and increased sodium excretion (p<0.05) at 2 and 4 weeks compared to controls. Tubulo-interstitial T-cells, myofibroblasts and mRNA levels of VCAM1, TGF-β1 and collagen type III significantly increased after 4 weeks (all p<0.05). There was a trend for increased macrophage infiltration and lymphangiogenesis (both p = 0.07). Despite increased dermal sodium over time (p<0.05), renal concentrations remained stable. Renal HS of high sodium rats showed increased sulfation (p = 0.05), increased L-selectin binding to HS (p<0,05), and a reduction of sulfation-sensitive anti-HS mAbs JM403 (p<0.001) and 10E4 (p<0.01). Hyaluronan expression increased under high salt conditions (p<0.01) without significant changes in the chondroitin sulfate proteoglycan versican. Statistical analyses showed that sodium-induced tissue remodeling responses partly correlated with observed HS changes. Conclusion We show that high salt intake by healthy normotensive rats convert renal HS into high sulfated pro-inflammatory glycans involved in tissue remodeling events, but not in increased sodium storage. PMID:28594849

  19. Cardiac and renal antioxidant enzymes and effects of tempol in hyperthyroid rats.

    PubMed

    Moreno, Juan Manuel; Rodríguez Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Bueno, Pablo; Vargas, Félix

    2005-11-01

    This study evaluated the activity of cardiac and renal antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)] and whether chronic treatment with tempol, a cell membrane-permeable SOD mimetic, ameliorates the hypertension of hyperthyroidism. Two experiments were performed. In experiment I, the following four groups of male Wistar rats were used: control group and three groups that received thyroxine (T4) at 10, 50, or 75 microg x rat(-1) x day(-1). In experiment II, tempol was orally administered (18 mg x kg(-1) x day(-1)) to control and T4-treated (75 microg x rat(-1) x day(-1)) rats. All treatments were maintained for 6 wk. Body weight, tail systolic blood pressure (BP), and heart rate were measured one time a week, and direct BP and morphological, metabolic, plasma, and renal variables were measured at the end of the experiment. Enzymatic activities were measured in renal cortex and medulla and right and left ventricles. In renal cortex, SOD activity was decreased in the T4-75 group, and there was a dose-related increase in CAT activity and decrease in GPX and GR activities in T4-treated groups. Activity of all antioxidant enzymes was reduced in left ventricle in T4-50 and T4-75 groups and in right ventricle in the T4-75 group. Tempol reduced BP, plasma malondialdehyde, and total urinary excretion of F2 isoprostanes in hypertensive hyperthyroid rats but not in controls. Tempol did not improve cardiac hypertrophy, proteinuria, or creatinine clearance in hyperthyroid rats. In conclusion, the results obtained indicate that the activity of SOD, GPX, and GR in renal and cardiac tissues is decreased in hyperthyroidism and that antioxidant treatment with tempol ameliorates T4-induced hypertension.

  20. Whey versus soy protein diets and renal status in rats.

    PubMed

    Aparicio, Virginia A; Nebot, Elena; Tassi, Mohamed; Camiletti-Moirón, Daniel; Sanchez-Gonzalez, Cristina; Porres, Jesús M; Aranda, Pilar

    2014-09-01

    Different dietary protein sources can promote different renal statuses. We examined the effects of whey protein (WP) and soy protein (SP) intake on plasma, urinary, and morphological renal parameters in rats. One hundred and twenty Wistar rats were randomly distributed into 2 experimental groups fed with either WP or SP diets over 12 weeks. These diets were based on commercial WP or SP isolates. The urinary calcium content was higher in the WP diet compared to the SP diet group (P<.001) whereas the urinary citrate level was lower (P<.001). The urinary pH was more acidic in the WP diet group compared to the SP diet group (P<.001); however, no differences were observed between the groups for any of the renal morphological parameters analyzed (all, P>.05) or other plasma renal markers such as albumin or urea concentrations. The increase of acid and urinary calcium and the lower urinary citrate level observed in the WP diet group could increase the incidence of nephrolithiasis compared to the SP diet group. Despite the WP showed poorer acid-base profile, no significant morphological renal changes were observed. These results suggest that the use of SP instead of WP appears to promote a more alkaline plasma and urinary profile, with their consequent renal advantages.

  1. High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats.

    PubMed

    Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R

    2005-07-01

    A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.

  2. Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat.

    PubMed Central

    Osborne-Pellegrin, M J

    1978-01-01

    The rat renal artery and abdominal aorta have been studied by light and electron microscopy. In rats of 200 g body weight the extracellular space in aortic media ranges between 50-60% and that of the distal renal artery between 15-25%. The surface to volume ratio of aortic smooth muscle cells is 2.7 micron2/micron3 compared to 1.6 micron2/micron3 in the distal renal artery. Dense bodies are rare in aortic smooth muscle cells but are abundant in those of the distal renal artery. Other ultrastructural details of the smooth muscle cells are similar in the two types of artery. Cell-to-cell contacts consist of simple apposition of plasm membranes and their number is proportional to the total length of cell membrane profile. Mitochondria represent 7-8% of the cell volume in both arteries. The proximal renal artery shows structural characteristics which are intermediate between those of the aorta and distal renal artery. In all renal arteries examined, bands of longitudinal smooth muscle are present in the adventitia, principally at branch points. In older rats, regions of discontinuity of the internal elastic lamina have been observed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:640965

  3. Parecoxib reduces renal injury in an ischemia/reperfusion model in rats.

    PubMed

    Calistro Neto, José Pedro; Torres, Rômulo da Costa; Gonçalves, Giovanna Maria; Silva, Leopoldo Muniz da; Domingues, Maria Aparecida Custódio; Módolo, Norma Sueli Pinheiro; Barros, Guilherme Antonio Moreira de

    2015-04-01

    To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. Parecoxib resulted in renal protection in this experimental model.

  4. Role of neuropeptide Y in renal sympathetic vasoconstriction: studies in normal and congestive heart failure rats.

    PubMed

    DiBona, G F; Sawin, L L

    2001-08-01

    Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.

  5. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  6. Grape seed proanthocyanidins prevent DOCA-salt hypertension-induced renal injury and its mechanisms in rats.

    PubMed

    Lan, Chao-Zong; Ding, Ling; Su, Yi-Lin; Guo, Kun; Wang, Li; Kan, Hong-Wei; Ou, Yu-Rong; Gao, Shan

    2015-07-01

    Renal dysfunction is one of the major effects of DOCA (deoxycorticosterone acetate)-salt hypertension and there is an increasing amount of evidence that oxidative stress damages the function of the kidney. Grape seed proanthocyanidins (GSPE) have been reported to be potent anti-oxidants and free radical scavengers. The present study sought to investigate the ability of GSPE to prevent renal injury in DOCA-salt hypertensive rats and to explore the molecular mechanisms underlying its protective effects. A total of 54 Sprague Dawley (SD) rats were randomly divided into 7 groups: Sham group (n = 7), UnX-sham group (n = 8), DOCA-salt group (n = 8), GSPE150 group (150 mg kg(-1), n = 7), GSPE240 group (240 mg kg(-1), n = 8), GSPE384 group (384 mg kg(-1), n = 8) and ALM (amlodipine besylate tablets) group (5 mg kg(-1), n = 8), and treated for 4 weeks. Compared to sham group rats, renal injury was observed in DOCA-salt hypertensive group rats as the urine protein, KW/BW (kidney weight/body weight), degree of renal fibrosis, renal MDA (malondialdehyde) and Hyp (hydroxyproline) contents significantly increased (P < 0.01). Moreover, SOD (Superoxide Dismutase) activities decreased in the model group (P < 0.01). In contrast, DOCA-salt hypertensive rats treated with different dose of GSPE or ALM showed a significant improvement of renal injury with decreased urine protein, KW/BW, degree of renal fibrosis, renal total MDA and Hyp contents compared to the untreated group. In addition, SOD activities increased in the treatment group. Since the experimental modeling time was short, kidney damage occurs to a lesser extent. BUN (Blood Urea Nitrogen), Scr (Serum Creatinine) and UA (Uric Acid) contents did not appear significantly changed in all groups. Finally, the activation of JNK and p38 kinases in the kidney was suppressed in rats treated with GSPEs or ALM compared to the untreated group, suggesting that the inhibition of these kinase pathways by GSPE contributes to the improvement

  7. Effects of acetylcysteine and probucol on contrast medium-induced depression of intrinsic renal glutathione peroxidase activity in diabetic rats.

    PubMed

    Yen, Hsueh-Wei; Lee, Hsiang-Chun; Lai, Wen-Te; Sheu, Sheng-Hsiung

    2007-04-01

    Antioxidants such as N-acetylcysteine and probucol have been used to protect patients from contrast media-induced nephrotoxicity. The mechanisms underlying these protective effects are not well understood. We hypothesized that acetylcysteine and probucol alter the activity of endogenous antioxidant enzyme activity. Four weeks after induction of diabetes with streptozotocin, diabetic and nondiabetic rats were divided into three groups. Group 1 rats did not receive any antioxidant agents. Group 2 rats were treated with acetylcysteine and group 3 rats with probucol for 1 week before injection of the contrast medium diatrizoate (DTZ). We found that diabetic rats had higher renal glutathione peroxidase (GPx) activity than normal rats. DTZ suppressed renal GPx activity significantly in both group 1 diabetic and normal rats. Interestingly, renal GPx activity in both diabetic and normal rats pretreated with acetylcysteine or probucol was not inhibited by DTZ. Renal superoxide dismutase (SOD) increased significantly in normal rats after DTZ injection, but not in diabetic rats. Finally, acetylcysteine or probucol did not significantly influence renal SOD. These findings suggest that the renal protective effects of acetylcysteine and probucol against contrast-induced oxidative stress and nephrotoxicity may be mediated by altering endogenous GPx activity.

  8. The calcimimetic compound NPS R-568 suppresses parathyroid cell proliferation in rats with renal insufficiency. Control of parathyroid cell growth via a calcium receptor.

    PubMed Central

    Wada, M; Furuya, Y; Sakiyama, J; Kobayashi, N; Miyata, S; Ishii, H; Nagano, N

    1997-01-01

    Parathyroid (PT) cell hyperplasia is a common consequence of chronic renal insufficiency (CRI). NPS R-568 is a phenylalkylamine compound that acts as an agonist (calcimimetic) at the cell surface calcium receptor (CaR). To test the hypothesis that the CaR plays a role in PT hyperplasia in CRI, we tested the effect of NPS R-568 on PT cell proliferation in rats with renal insufficiency. Rats were subjected to 5/6 nephrectomy and then infused intraperitoneally with 5-bromodeoxyuridine (BrdU) to label S-phase cells. Two groups of nephrectomized rats received NPS R-568 by gavage twice daily for 4 d (1.5 and 15 mg/kg body wt). On day 5, the number of BrdU-positive PT cells of vehicle-treated nephrectomized rats was 2.6-fold greater than that of the sham-operated control. Low and high doses of NPS R-568 reduced the number of BrdU-positive PT cells by 20 and 50%, respectively. No changes in staining, however, were observed in ileal epithelial cells (CaR-negative) or in thyroidal C-cells (CaR-positive). Furthermore, the effect of NPS R-568 could not be explained by changes in serum 1,25(OH)2D3 or phosphorus. These results indicate that NPS R-568 suppresses PT cell proliferation in rats with renal insufficiency, and lend support to the linkage between the CaR and PT hyperplasia in CRI. PMID:9399943

  9. Effects of PEG-PLA-nano Artificial Cells Containing Hemoglobin on Kidney Function and Renal Histology in Rats

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology. PMID:18979292

  10. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    PubMed

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  11. Renal function in pregnant rats with two-kidney goldblatt hypertension.

    PubMed

    Dal Canton, A; Sabbatini, M; Esposito, C; Altomonte, M; Romano, G; Uccello, F; Conte, G; Fuiano, G; Russo, D; Andreucci, V E

    1983-01-01

    This study was carried out in female Wistar-Münich rats with two-kidney, one-clip hypertension, using clipped normotensive rats as controls. Metabolic studies were performed in the first two weeks of pregnancy, consisting of daily measurement of systolic blood pressure (BP) (tail-cuff), body weight (BW), and salt and water balance. At the end of metabolic studies, glomerular dynamics were studied in the unclipped kidney by micropuncture. During pregnancy, urinary output of Na+ and water was greater in hypertensive than normotensive rats. The greater natriuresis accounted for a reduced Na+ retention and a lower increase in maternal BW. Micropuncture studies showed an impaired renal auto-regulation. These results show that hypertension in pregnancy causes a salt-losing tendency, that may be secondary to incomplete renal autoregulation.

  12. Renal water handling in rats with decompensated liver cirrhosis.

    PubMed

    Jonassen, T E; Christensen, S; Kwon, T H; Langhoff, S; Salling, N; Nielsen, S

    2000-12-01

    The present study was performed to investigate the renal handling of water in rats with decompensated liver cirrhosis. Liver cirrhosis was induced by intraperitoneal administration of carbon tetrachloride twice weekly for 16 wk. Control rats were treated with vehicle. The cirrhotic rats developed severe disturbances in water homeostasis: urine production was decreased and hyperosmotic, the rats had significantly decreased plasma sodium concentration and ascites, and the ability to excrete an intravenous water load was significantly impaired. Plasma concentrations of vasopressin and aldosterone were increased. Mean arterial pressure, glomerular filtration rate (GFR), and fractional lithium excretion were decreased. Acute vasopressin type 2-receptor blockade with the selective nonpeptide antagonist OPC-31260 (800 microg. kg(-1). h(-1)) was performed during conditions whereby volume depletion was prevented by computer-driven, servo-controlled intravenous volume replacement with 150 mM glucose. The aquaretic response to OPC-31260 was similar in cirrhotic and control rats. However, the OPC 31260-induced rises in fractional water excretion (delta V/GFR; +24%) and fractional distal water excretion (delta V/C(Li); +46%) were significantly increased in the cirrhotic rats, where V is flow rate and delta is change. This suggests that vasopressin-mediated renal water reabsorption capacity was increased in the cirrhotic rats. Semiquantitative immunoblotting revealed that the expression of the vasopressin-regulated water channel aquaporin-2 was unchanged in membrane fractions of both whole kidney and inner medulla from cirrhotic rats. Together, these results suggest a relative escape from vasopressin on collecting duct water reabsorption in rats with decompensated liver cirrhosis.

  13. Immunological tolerance induced by galectin-1 in rat allogeneic renal transplantation.

    PubMed

    Xu, Gaosi; Tu, Weiping; Xu, Chengyun

    2010-06-01

    The existed literatures indicated that galectin-1 has anti-inflammatory effects and plays a pivotal role in autoimmune diseases. Present study was to identify the roles of galectin-1 in acute animal renal allograft rejection. Rat acute rejection models were erected by allogeneic renal transplantation. Galectin-1 injection was performed in different concentrations in renal recipients post-transplantation. Recipient survivals, CD8+ T cell proliferation, production of IFN-gamma, levels of serum CD30, enzyme-linked immunoabsorbent spot assay (ELISPOT) and immunohistochemistry were observed or tested 7days after renal transplantation. Galectin-1 injection can prolong the recipient animal survival, reduce the serum levels of IFN-gamma, soluble CD30, percentage of CD8+ T cell subset, CD8+ T cell-mediated cytotoxicity, and IFN-gamma ELISPOT frequency for allograft recipients. The therapeutic effects of galectin-1 injection on recipient rats were dose-dependent. Galectin-1 plays an important role in CD8+ T cell-mediated renal rejection by inducing immunological tolerance. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Losartan does not decrease renal oxygenation and norepinephrine effects in rats after resuscitated haemorrhage.

    PubMed

    Jönsson, Sofia; Melville, Jacqueline M; Becirovic-Agic, Mediha; Hultström, Michael

    2018-04-18

    Renin-angiotensin-system blockers are thought to increase the risk of acute kidney injury after surgery and haemorrhage. We found that Losartan does not cause renal cortical hypoxia after haemorrhage in rats because of decreased renal vascular resistance, but did not evaluate resuscitation. Study Losartan´s effect on renal cortical and medullary oxygenation, and norepinephrine´s vasopressor effect in a model of resuscitated haemorrhage. After seven days Losartan (60 mg/kg/day) or control treatment, male Wistar rats were haemorrhaged 20 % of the blood volume and resuscitated with Ringer's Acetate. Mean arterial pressure, renal blood flow, and kidney tissue oxygenation was measured at baseline and after resuscitation. Finally, the effect of norepinephrine on mean arterial pressure and renal blood flow was investigated. As expected, Losartan lowered mean arterial pressure but not renal blood flow. Losartan did not affect renal oxygen consumption and oxygen tension. Mean arterial pressure and renal blood flow were lower after resuscitated haemorrhage. Smaller increase of renal vascular resistance in Losartan group translated to smaller decrease in cortical oxygen tension, but no significant difference seen in medullary oxygen tension either between groups or after haemorrhage. The effect of norepinephrine on mean arterial pressure and renal blood flow was similar in controls and Losartan treated rats. Losartan does not decrease renal oxygenation after resuscitated haemorrhage because of a smaller increase in renal vascular resistance. Further, Losartan does not decrease the efficiency of norepinephrine as a vasopressor indicating that blood pressure may be managed effectively during Losartan treatment.

  15. Maternal separation diminishes α-adrenergic receptor density and function in renal vasculature from male Wistar-Kyoto rats.

    PubMed

    Loria, Analia S; Osborn, Jeffrey L

    2017-07-01

    Adult rats exposed to maternal separation (MatSep) are normotensive but display lower glomerular filtration rate and increased renal neuroadrenergic drive. The aim of this study was to determine the renal α-adrenergic receptor density and the renal vascular responsiveness to adrenergic stimulation in male rats exposed to MatSep. In addition, baroreflex sensitivity was assessed to determine a component of neural control of the vasculature. Using tissue collected from 4-mo-old MatSep and control rats, α 1 -adrenergic receptors (α 1 -ARs) were measured in renal cortex and isolated renal vasculature using receptor binding assay, and the α-AR subtype gene expression was determined by RT-PCR. Renal cortical α 1 -AR density was similar between MatSep and control tissues (B max = 44 ± 1 vs. 42 ± 2 fmol/mg protein, respectively); however, MatSep reduced α 1 -AR density in renal vasculature (B max = 47 ± 4 vs. 62 ± 4 fmol/mg protein, P < 0.05, respectively). In a separate group of rats, the pressor, bradycardic, and renal vascular constrictor responses to acute norepinephrine injection (NE, 0.03-0.25 μg/μl) were determined under anesthesia. Attenuated NE-induced renal vasoconstriction was observed in rats exposed to MatSep compared with control ( P < 0.05). A third group of rats was infused at steady state with the α 1 agonist phenylephrine (10 μg/min iv) and vasodilator sodium nitroprusside (5 μg/min iv). The difference between the change in heart rate/mean arterial pressure slopes was indicative of reduced baroreflex sensitivity in MatSep vs. control rats (-0.45 ± 0.04 vs. -0.95 ± 0.07 beats·min -1 ·mmHg -1 , P < 0.05). These data support the notion that reduced α-adrenergic receptor expression and function in the renal vasculature could develop secondary to MatSep-induced overactivation of the renal neuroadrenergic tone. Copyright © 2017 the American Physiological Society.

  16. Renal function in juvenile rats subjected to prenatal malnutrition and chronic salt overload.

    PubMed

    Magalhães, João Carlos G; da Silveira, Alex B; Mota, Diogenes L; Paixão, Ana Durce O

    2006-05-01

    Dietary sodium may contribute to hypertension and to cardiovascular and renal disease if a primary deficiency of the kidney to excrete sodium exists. In order to investigate whether chronic 1% NaCl in the drinking water changes blood pressure and renal haemodynamics in juvenile Wistar rats subjected to prenatal malnutrition, an evaluation of plasma volume, oxidative stress in the kidney, proteinuria and renal haemodynamics was carried out. Malnutrition was induced by a multideficient diet. Mean arterial pressure, renal blood flow and glomerular filtration rate (GFR) were measured using a blood pressure transducer, a flow probe and inulin clearance, respectively. Plasma volume and oxidative stress were measured by means of the Evans Blue method and by monitoring thiobarbituric acid reactive substances (TBARS) in the kidneys, respectively. Urinary protein was measured by precipitation with 3% sulphosalicylic acid. It was observed that prenatally malnourished rats presented higher values of plasma volume (26%, P < 0.05), kidney TBARS (43%, P < 0.01) and blood pressure (10%, P < 0.01) when compared with the control group. However, they showed no change in renal haemodynamics or proteinuria. Neither prenatally malnourished nor control rats treated with sodium overload presented plasma volume or blood pressure values different from their respective control groups, but both groups presented elevated proteinuria (P < 0.01). The prenatally malnourished group treated with sodium overload presented higher values of kidney TBARS, GFR and filtration fraction (58, 87 and 72% higher, respectively, P < 0.01) than its respective control group. In summary, sodium overload did not exacerbate the hypertension in juvenile prenatally malnourished rats, but induced renal haemodynamic adjustments compatible with the development of renal disease.

  17. REDUCTION OF ALDOSTERONE PRODUCTION IMPROVES RENAL OXIDATIVE STRESS AND FIBROSIS IN DIABETIC RATS

    PubMed Central

    Matavelli, Luis C.; Siragy, Helmy M.

    2012-01-01

    SUMMARY Aldosterone is increased in diabetes and contributes to the development of diabetic nephropathy. We hypothesized that reduction in aldosterone production in diabetes by amlodipine or aliskiren improves diabetic kidney disease by attenuating renal oxidative stress and fibrosis. Normoglycemic and streptozotocin-induced diabetes Sprague-Dawley rats were given vehicle, amlodipine or aliskiren individually and combined for six weeks. At the end of study, we evaluated BP, 24h urinary sodium (UNaV) and aldosterone excretion rates, renal interstitial fluid (RIF) levels of nitric oxide (NO), cGMP and 8-isoprostane, and renal morphology. BP was not significantly different between any of experimental groups. UNaV increased in diabetic animals and was not affected by different treatments. Urinary aldosterone excretion increased in diabetic rats receiving vehicle and decreased with amlodipine and aliskiren individually or combined. RIF NO and cGMP levels were reduced in vehicle treated diabetic rats and increased with amlodipine or aliskiren given individually and combined. RIF 8-isoprostane levels and renal immunostaining for PAS and fibronectin were increased in vehicle treated diabetic rats and decreased with aliskiren individually or combined with amlodipine. We conclude that inhibition of aldosterone by amlodipine or aliskiren ameliorates diabetes induced renal injury via improvement of NO-cGMP pathway, and reduction in oxidative stress and fibrosis, independent of BP changes. PMID:23011470

  18. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    PubMed

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  19. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease

    PubMed Central

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930

  20. Effect of novel vitamin D receptor activator paricalcitol on renal ischaemia/reperfusion injury in rats

    PubMed Central

    Huddam, B; Haberal, N; Koçak, G; Ortabozkoyun, L; Şenes, M; Akdoğan, MF; Denizli, N; Duranay, M

    2013-01-01

    Introduction Despite the developments in modern medicine, acute renal injury is still a challenging and common health problem. It is well known that ischaemia and reperfusion takes place in pathological mechanisms. Efforts to clarify the pathophysiology and interventions to improve outcomes are essential. Our study aimed to investigate whether the prophylactic use of paricalcitol is beneficial in renal ischaemia/reperfusion (I/R) injury. Methods Twenty-four Wistar albino rats were assigned randomly to four groups. Right nephrectomies were performed at the time of renal arterial clamping. Sham surgery was performed on the rats in group 1. For the rats in group 2, the left renal artery was clamped for 45 minutes. The rats in group 3 received paricalcitol for seven days (0.2µg/kg/day); following this, a right nephrectomy and left renal arterial clamping were not performed. The rats in group 4 received paricalcitol for seven days (0.2µg/ kg/day); following this, a right nephrectomy and left renal arterial clamping for 45 minutes were performed. Tissue thiobarbituric acid reactive substances (TBARS), superoxide dismutase, sulfhydryl groups as well as nitric oxide metabolites, serum urea and creatinine levels were measured for all four groups. Results In group 4, there were some improvements in terms of TBARS, nitrite, nitrate, superoxide dismutase and creatinine levels. In the histopathological evaluation, paricalcitol therapy improved tubular necrosis and medullar congestion but there was no significant difference in terms of tubular cell swelling, cellular vacuolisation or general damage. Immunohistopathological examination revealed lower scores for vascular endothelial growth factor in the group 4 rats than in group 2. Conclusions Paricalcitol therapy improved renal I/R injury in terms of serum and histopathological parameters. These potential beneficial effects need to be further investigated. PMID:24112495

  1. Combined aliskiren and amlodipine reduce albuminuria via reduction in renal inflammation in diabetic rats.

    PubMed

    Matavelli, Luis C; Huang, Jiqian; Siragy, Helmy M

    2012-03-01

    We hypothesized that compared with hydrochlorothiazide (HCTZ), the renin inhibitor aliskiren (ALISK) or amlodipine (AMLO) and their combination reduce albuminuria via reduction in renal inflammation, independent of blood pressure (BP) changes. We studied normal and streptozotocin-induced diabetic (DM) Sprague-Dawley rats treated for 6 weeks with vehicle, ALISK, HCTZ, or AMLO individually and combined and evaluated the effects of treatments on BP, urine albumin to creatinine ratio, renal interstitial fluid levels of angiotensin II, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) and renal expression of TNF-α, IL-6, transforming growth factor beta 1, and nuclear factor kappa B. There were no differences in BP between treatments. Only ALISK and its combinations reduced renal interstitial fluid angiotensin II. Urine albumin to creatinine ratio increased in DM rats and decreased with ALISK alone or combined with HCTZ or AMLO. HCTZ or AMLO individually and combined did not influence urine albumin to creatinine ratio. Renal interstitial fluid TNF-α and IL-6, and the renal expression of TNF-α, IL-6, transforming growth factor beta 1, and nuclear factor kappa B were increased in DM rats. These renal inflammatory markers were reduced only with ALISK or AMLO individually or combined with other treatments. We conclude that ALISK alone and combined with HCTZ or AMLO reduced albuminuria in diabetes via reduction in renal inflammation, independent of BP changes.

  2. Alteration of renal function of rats following spaceflight.

    PubMed

    Wade, C E; Morey-Holton, E

    1998-10-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  3. Alteration of renal function of rats following spaceflight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Morey-Holton, E.

    1998-01-01

    Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.

  4. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16more » weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.« less

  5. Decreased vasopressin-mediated renal water reabsorption in rats with compensated liver cirrhosis.

    PubMed

    Jonassen, T E; Nielsen, S; Christensen, S; Petersen, J S

    1998-08-01

    Experiments were performed to investigate vasopressin type 2 receptor (V2)-mediated renal water reabsorption and the renal expression of the vasopressin-regulated water channel aquaporin-2 (AQP-2) in cirrhotic rats with sodium retention but without ascites. In addition, the expression of the furosemide-sensitive type 1 Na-K-2Cl cotransporter (BSC-1) and the natriuretic response to an intravenous test dose furosemide (7.5 mg/kg) during acute V2-receptor blockade was measured. Acute V2-receptor blockade with the selective nonpeptide antagonist OPC-31260 (800 microg . kg-1 . h-1) was performed during conditions in which volume depletion was prevented by computer-driven, servo-controlled intravenous volume replacement with 150 mM glucose. OPC-31260 produced a significantly smaller increase in urine flow rate (-26%) and free water clearance (-18%) in cirrhotic rats than in control rats. The natriuretic response to an intravenous test dose furosemide (7.5 mg/kg) was significantly increased in cirrhotic rats (+52%), but pretreatment with OPC-31260 did not affect the natriuretic response to furosemide in neither cirrhotic nor in control rats. Semiquantitative immunoblotting showed a significant downregulation of AQP-2 in the renal cortex (-72%) and in the outer medulla (-44%). The relative expression of BSC-1 in the outer medulla was unchanged in cirrhotic rats. The corticopapillary gradient of Na was significantly increased in cirrhotic rats. Since daily urine flow rate was similar in cirrhotic and sham-operated rats, we suggest that non-vasopressin-mediated water reabsorption is increased in cirrhotic rats probably as a result of an increased corticomedullary gradient due to exaggerated NaCl reabsorption in the thick ascending limb of Henle's loop.

  6. Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats.

    PubMed

    Wang, Yue-Hua; Liu, Yan-Hong; He, Guo-Rong; Lv, Yang; Du, Guan-Hua

    2015-11-09

    Increasing studies have shown that dyslipidemia and inflammatory responses play important roles in the progression of microvascular diabetic complications. Esculin (ES), a coumarin derivative, was extracted from Fraxinus rhynchophylla. The present study was to evaluate the potential effects of ES on lipid metabolism, inflammation responses and renal damage in streptozotocin (STZ)-induced experimental diabetic rats and explore the possible mechanism. Diabetic rat model was established by administration high-glucose-fat diet and intraperitoneal injection of STZ 45 mg/kg. ES was administrated to diabetic rats intragastrically at 10, 30 and 90 mg/kg for 10 weeks respectively. The levels of triglycerides (TG), total cholesterol (T-CHO), low density lipoproteins (LDL), and high-density-cholesterol (HDL-C) in serum were measured. IL-1, IL-6, ICAM-1, NO, NAGL, and AGEs level in serum were detected by ELISA assay. The accumulation of AGEs in kidney tissue was examined by immunohistochemistry assay. The results showed that ES could decrease TG, T-CHO, LDL levels in serum of diabetic rats in a dose dependent manner. ES also decreased IL-1, IL-6, ICAM-1, NO and NGAL levels in serum of diabetic rats in a dose dependent manner. Furthermore, ES at 30 and 90 mg/kg significantly decreased AGEs level in serum and alleviated AGEs accumulation in renal in diabetic rats. Our findings indicate that ES could improve dyslipidemia, inflammation responses, renal damage in STZ-induced diabetic rats and the possible mechanism might be associated with the inhibition of AGEs formation.

  7. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected inmore » the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.« less

  8. Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats.

    PubMed

    Rodríguez-Gómez, Isabel; Banegas, Inmaculada; Wangensteen, Rosemary; Quesada, Andrés; Jiménez, Rosario; Gómez-Morales, Mercedes; O'Valle, Francisco; Duarte, Juan; Vargas, Félix

    2013-01-01

    The purpose was to analyse the cardiac and renal capillary density and glomerular morphology resulting from a chronic excess or deficiency of thyroid hormones (THs) in rats. We performed histopathological, morphometrical and immunohistochemical analyses in hypothyroid and hyperthyroid rats to evaluate the density of mesenteric, renal and cardiac vessels at 4 weeks after induction of thyroid disorders. The main angiogenic factors in plasma, heart and kidney were measured as possible mediators of vascular changes. Mesenteric vessel branching was augmented and decreased in hyper- and hypothyroid rats respectively. The numerical density of CD31-positive capillaries was higher in left and right ventricles and in cortical and medullary kidney from both hyper- and hypothyroid rats vs controls. Numbers of podocytes and glomeruli per square millimetre were similar among groups. Glomerular area and percentage mesangium were greater in the hyperthyroid vs control or hypothyroid groups. No morphological renal lesions were observed in any group. Vascularisation of the mesenteric bed is related to TH levels, but an increased capillarity was observed in heart and kidney in both thyroid disorders. This increase may be produced by higher tissue levels of angiogenic factors in hypothyroid rats, whereas haemodynamic factors would predominate in hyperthyroid rats. Our results also indicate that the renal dysfunctions of thyroid disorders are not related to cortical or medullary microvascular rarefaction and that the proteinuria of hyperthyroidism is not secondary to a podocyte deficit. Finally, TH or its analogues may be useful to increase capillarity in renal diseases associated with microvascular rarefaction.

  9. The Role of Endothelin System in Renal Structure and Function during the Postnatal Development of the Rat Kidney.

    PubMed

    Albertoni Borghese, María F; Ortiz, María C; Balonga, Sabrina; Moreira Szokalo, Rocío; Majowicz, Mónica P

    2016-01-01

    Renal development in rodents, unlike in humans, continues during early postnatal period. We aimed to evaluate whether the pharmacological inhibition of Endothelin system during this period affects renal development, both at structural and functional level in male and female rats. Newborn rats were treated orally from postnatal day 1 to 20 with vehicle or bosentan (Actelion, 20 mg/kg/day), a dual endothelin receptor antagonist (ERA). The animals were divided in 4 groups: control males, control females, ERA males and ERA females. At day 21, we evaluated renal function, determined the glomerular number by a maceration method and by morphometric analysis and evaluated possible structural renal alterations by three methods: 〈alpha〉-Smooth muscle actin (α-SMA) immunohistochemistry, Masson's trichrome and Sirius red staining. The pharmacological inhibition of Endothelin system with a dual ERA during the early postnatal period of the rat did not leads to renal damage in the kidneys of male and female rats. However, ERA administration decreased the number of glomeruli, the juxtamedullary filtration surface area and the glomerular filtration rate and increased the proteinuria. These effects could predispose to hypertension or renal diseases in the adulthood. On the other hand, these effects were more pronounced in male rats, suggesting that there are sex differences that could be greater later in life. These results provide evidence that Endothelin has an important role in rat renal postnatal development. However these results do not imply that the same could happen in humans, since human renal development is complete at birth.

  10. Study on the effect of black cumin (Nigella sativa Linn.) on experimental renal ischemia-reperfusion injury in rats.

    PubMed

    Mousavi, Ghafour

    2015-08-01

    To evaluate the effect of Black cumin (Nigella sativa Linn.) pre-treatment on renal ischemia/reperfusion (I/R) induced injury in the rats. A total of 40 male Wistar rats were randomly allocated into five equal groups including Sham, I/R model and three I/R+ Black cumin (0.5, 1 and 2%)-treated groups. I/R groups' kidneys were subjected to 60 min of global ischemia at 37°C followed by 24 h of reperfusion. At the end of reperfusion period, the rats were euthanized. Superoxide dismutase, catalase and glutathione peroxidase activities as well as reduced glutathione and renal malondialdehyde contents were determined in renal tissues. Kidney function tests and histopathological examination were also performed. High serum creatinine, blood urea nitrogen and uric acid as well as malondialhehyde (MDA) levels, and low antioxidant enzyme activities were observed in I/R rats compared to the sham rats. Pre-treatment with Black cumin for three weeks prior to IR operation improved renal function and reduced I/R induced renal inflammation and oxidative injury. These biochemical observations were supported by histopathological test of kidney sections. Black cumin significantly prevented renal ischemia/reperfusion induced functional and histological injuries.

  11. GENETIC INFLUENCE ON THE DEVELOPMENT OF RENAL HYPERTENSION IN PARABIOTIC RATS

    PubMed Central

    Iwai, J.; Knudsen, K. D.; Dahl, L. K.; Heine, M.; Leitl, G.

    1969-01-01

    The effects of several renal manipulations including uninephrectomy, unilateral renal artery constriction, and a combination of these two (Goldblatt procedure) were studied in two strains of rats with opposite constitutional predispositions to experimental hypertension. The protective value of intact renal tissue to protect against hypertension was shown to be genetically determined. The Goldblatt procedure carried out on only one member of a parabiotic pair induced hypertension in this operated rat but significant hypertension developed in the intact partner only when the operated animal belonged to the strain predisposed to hypertension. It was speculated that there were qualitative differences in the pressor signals of the two strains of rats. In the strain genetically predisposed to hypertension there are at least two pressor principles: (a) one which is common to both strains, not transmittable via the parabiosis junction and presumably related to the renin-angiotensin system; and (b) a second which is specific for the hypertension-prone strain and can be transmitted through the parabiosis junction. This transmittable agent is probably identical with the factor that produces salt hypertension and is associated with the salt-excreting mechanism. PMID:4304137

  12. Transient voltage-dependent potassium currents are reduced in NTS neurons isolated from renal wrap hypertensive rats.

    PubMed

    Belugin, Sergei; Mifflin, Steve

    2005-12-01

    Whole cell patch-clamp measurements were made in neurons enzymatically dispersed from the nucleus of the solitary tract (NTS) to determine if alterations occur in voltage-dependent potassium channels from rats made hypertensive (HT) by unilateral nephrectomy/renal wrap for 4 wk. Some rats had the fluorescent tracer DiA applied to the aortic nerve before the experiment to identify NTS neurons receiving monosynaptic baroreceptor afferent inputs. Mean arterial pressure (MAP) was greater in 4-wk HT (165 +/- 5 mmHg, n = 26, P < 0.001) rats compared with normotensive (NT) rats (109 +/- 3 mmHg measured in 10 of 69 rats). Transient outward currents (TOCs) were observed in 67-82% of NTS neurons from NT and HT rats. At activation voltages from -10 to +10 mV, TOCs were significantly less in HT neurons compared with those observed in NT neurons (P < 0.001). There were no differences in the voltage-dependent activation kinetics, the voltage dependence of steady-state inactivation, and the rise and decay time constants of the TOCs comparing neurons isolated from NT and HT rats. The 4-aminopyridine-sensitive component of the TOC was significantly less in neurons from HT compared with NT rats (P < 0.001), whereas steady-state outward currents, whether or not sensitive to 4-aminopyridine or tetraethylammonium, were not different. Delayed excitation, studied under current clamp, was observed in 60-80% of NTS neurons from NT and HT rats and was not different comparing neurons from NT and HT rats. However, examination of the subset of NTS neurons exhibiting somatic DiA fluorescence revealed that DiA-labeled neurons from HT rats had a significantly shorter duration delayed excitation (n = 8 cells, P = 0.022) than DiA-labeled neurons from NT rats (n = 7 cells). Neurons with delayed excitation from HT rats had a significantly broader first action potential (AP) and a slower maximal downstroke velocity of repolarization compared with NT neurons with delayed excitation (P = 0.016 and P = 0

  13. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats

    PubMed Central

    Mulder, Jan; Hökfelt, Tomas; Knuepfer, Mark M.

    2013-01-01

    Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation. PMID:23408032

  14. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Blood pressure-renal blood flow relationships in conscious angiotensin II- and phenylephrine-infused rats.

    PubMed

    Polichnowski, Aaron J; Griffin, Karen A; Long, Jianrui; Williamson, Geoffrey A; Bidani, Anil K

    2013-10-01

    Chronic ANG II infusion in rodents is widely used as an experimental model of hypertension, yet very limited data are available describing the resulting blood pressure-renal blood flow (BP-RBF) relationships in conscious rats. Accordingly, male Sprague-Dawley rats (n = 19) were instrumented for chronic measurements of BP (radiotelemetry) and RBF (Transonic Systems, Ithaca, NY). One week later, two or three separate 2-h recordings of BP and RBF were obtained in conscious rats at 24-h intervals, in addition to separate 24-h BP recordings. Rats were then administered either ANG II (n = 11, 125 ng·kg(-1)·min(-1)) or phenylephrine (PE; n = 8, 50 mg·kg(-1)·day(-1)) as a control, ANG II-independent, pressor agent. Three days later the BP-RBF and 24-h BP recordings were repeated over several days. Despite similar increases in BP, PE led to significantly greater BP lability at the heart beat and very low frequency bandwidths. Conversely, ANG II, but not PE, caused significant renal vasoconstriction (a 62% increase in renal vascular resistance and a 21% decrease in RBF) and increased variability in BP-RBF relationships. Transfer function analysis of BP (input) and RBF (output) were consistent with a significant potentiation of the renal myogenic mechanism during ANG II administration, likely contributing, in part, to the exaggerated reductions in RBF during periods of BP elevations. We conclude that relatively equipressor doses of ANG II and PE lead to greatly different ambient BP profiles and effects on the renal vasculature when assessed in conscious rats. These data may have important implications regarding the pathogenesis of hypertension-induced injury in these models of hypertension.

  16. RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) IN EKER RATS

    EPA Science Inventory

    RENAL CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING / WATER DISINFECTION BY -PRODUCTS (DBP) IN EKER RATS.

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 tumor suppressor gene, and are highly suscepti...

  17. COMBINED ALISKIREN AND AMLODIPINE REDUCE ALBUMINURIA VIA REDUCTION IN RENAL INFLAMMATION IN DIABETIC RATS

    PubMed Central

    Matavelli, Luis C.; Huang, Jiqian; Siragy, Helmy M.

    2011-01-01

    SUMMARY We hypothesized that compared to hydrochlorothiazide (HCTZ), the renin inhibitor aliskiren (ALISK) or amlodipine (AMLO) and their combination reduce albuminuria via reduction in renal inflammation, independent of BP changes. We studied normal and streptozotocin induced diabetic (DM) Sprague-Dawley rats treated for 6 weeks with vehicle, ALISK, HCTZ or AMLO individually and combined and evaluated effects of treatments on BP, urine albumin to creatinine ratio (UACR), renal interstitial fluid (RIF) levels of angiotensin II (Ang II), tumor necrosis factor-alpha (TNFα) and interleukin-6 (IL-6), and renal expression of TNFα, IL-6, transforming growth factor-beta1 (TGF-β1) and nuclear factor-kappa B (NF-κB). There were no differences in BP between treatments. Only ALISK and its combinations reduced RIF Ang II. UACR increased in DM rats and decreased with ALISK alone or combined with HCTZ or AMLO. HCTZ or AMLO individually and combined did not influence UACR. RIF TNFα and IL-6, and the renal expression of TNFα, IL-6, TGF-β1 and NF-κB were increased in DM rats. These renal inflammatory markers were reduced only with ALISK or AMLO individually or combined with other treatments. We conclude that ALISK alone and combined with HCTZ or AMLO reduced albuminuria in diabetes via reduction in renal inflammation, independent of BP changes. PMID:22075749

  18. Acute Pretreatment with Chloroquine Attenuates Renal I/R Injury in Rats

    PubMed Central

    Todorovic, Zoran; Medic, Branislava; Basta-Jovanovic, Gordana; Radojevic Skodric, Sanja; Stojanovic, Radan; Rovcanin, Branislav; Prostran, Milica

    2014-01-01

    Background Acute kidney injury (AKI) still remains an unresolved problem in pharmacotherapy and renal inflammation is a major factor in its development. Chloroquine, a well-known antimalarial drug, posses pleitropic effects as well: antiinflammatory, anticoagulant and vascular actions. The effects of chloroquine on renal function may involve significant increase in urine flow rate, glomerular filtration rate and sodium excretion, as well as stimulation of nitric oxide synthase. However, its role in experimental models of renal I/R injury is unknown. We aimed to analyze the acute effects of a single-dose intravenous chloroquine administered at three different times in the experimental model of I/R injury in rat. Methods Rats were subjected to bilateral renal ischemia (45 min) followed by reperfusion with saline lasting 4 hours. Chloroquine was administered in doses of 0.3 mg/kg i.v. and 3 mg/kg i.v. 30 min before ischemia, 30 min before reperfusion and 5 min before reperfusion. Selected a hemodynamic, biochemical and morphological parameters were followed in the Sham-operated animals and rats subjected to I/R injury and pretreated with saline or chloroquine. Results Chloroquine (0.3 and 3 mg/kg, i.v.) protected the I/R injured kidney in an U-shaped manner. Both doses were protective regarding biochemical and histological markers of the I/R injury (serum urea, creatinine and fractional excretion of sodium, as well as total histological score, tubular necrosis score and KIM-1 staining score) (P<0.05 vs. corresponding controls, i.e. rats subjected to I/R injury and treated with saline only). The protective effects of the lower dose of chloroquine were more profound. Time-related differences between pretreatments were not observed (P>0.05, all). Conclusion Our study shows for the first time that a single dose of chloroquine (0.3 mg/kg i.v.) could afford significant protection of the injured rat kidney. PMID:24681567

  19. Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine.

    PubMed

    de Cavanagh, Elena M V; Toblli, Jorge E; Ferder, León; Piotrkowski, Bárbara; Stella, Inés; Inserra, Felipe

    2006-06-01

    Mitochondrial dysfunction is associated with cardiovascular damage; however, data on a possible association with kidney damage are scarce. Here, we aimed at investigating whether 1) kidney impairment is related to mitochondrial dysfunction; and 2) ANG II blockade, compared with Ca2+ channel blockade, can reverse potential mitochondrial changes in hypertension. Eight-week-old male spontaneously hypertensive rats (SHR) received water containing losartan (40 mg.kg-1.day-1, SHR+Los), amlodipine (3 mg.kg-1.day-1, SHR+Amlo), or no additions (SHR) for 6 mo. Wistar-Kyoto rats (WKY) were normotensive controls. Glomerular and tubulointerstitial damage, systolic blood pressure, and proteinuria were higher, and creatinine clearance was lower in SHR vs. SHR+Los and WKY. In SHR+Amlo, blood pressure was similar to WKY, kidney function was similar to SHR, and renal lesions were lower than in SHR, but higher than in SHR+Los. In kidney mitochondria from SHR and SHR+Amlo, membrane potential, nitric oxide synthase, manganese-superoxide dismutase and cytochrome oxidase activities, and uncoupling protein-2 content were lower than in SHR+Los and WKY. In SHR and SHR+Amlo, mitochondrial H2O2 production was higher than in SHR+Los and WKY. Renal glutathione content was lower in SHR+Amlo relative to SHR, SHR+Los, and WKY. In SHR and SHR+Amlo, glutathione was relatively more oxidized than in SHR+Los and WKY. Tubulointerstitial alpha-smooth muscle actin labeling was inversely related to manganese-superoxide dismutase activity and uncoupling protein-2 content. These findings suggest that oxidant stress is associated with renal mitochondrial dysfunction in SHR. The mitochondrial-antioxidant actions of losartan may be an additional or alternative way to explain some of the beneficial effects of AT1-receptor antagonists.

  20. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development.

    PubMed

    Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing

    2017-01-01

    Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.

  1. Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats.

    PubMed

    Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P

    2014-05-01

    Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.

  2. 6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats.

    PubMed

    Hegazy, Ahmed M S; Mosaed, Mohammed M; Elshafey, Saad H; Bayomy, Naglaa A

    2016-06-01

    Ginger or Zingiber officinale which is used in traditional medicine has been found to possess antioxidant effect that can control the generation of free radicals. Free radicals are the causes of renal cell degeneration that leads to renal failure in case of gentamicin induced toxicity. This study was done to evaluate the possible protective effects of 6-gingerol as natural antioxidant on gentamicin-induced renal cortical oxidative stress and apoptosis in adult male albino rats. Forty adult male albino rats were used in this study and were randomly divided into four groups, control group; 6-gingerol treated group; gentamicin treated group and protected group (given simultaneous 6-gingerol and gentamicin). At the end of the study, blood samples were drawn for biochemical study. Kidney sections were processed for histological, and immunohistochemical examination for caspase-3 to detect apoptosis and anti heat shock protein 47 (HSP47) to detect oxidative damage. Gentamicin treated rats revealed a highly significant increase in renal function tests, tubular dilatation with marked vacuolar degeneration and desquamation of cells, interstitial hemorrhage and cellular infiltration. Immunohistochemically, gentamicin treated rats showed a strong positive immunoreaction for caspase-3 and anti heat shock protein 47 (HSP47). Protected rats showed more or less normal biochemical, histological, and immunohistochemical pictures. In conclusion, co-administration of 6-gingerol during gentamicin 'therapy' has a significant reno-protective effect in a rat model of gentamicin-induced renal damage. It is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology.

    PubMed

    Zhao, Liangcai; Dong, Minjian; Liao, Shixian; Du, Yao; Zhou, Qi; Zheng, Hong; Chen, Minjiang; Ji, Jiansong; Gao, Hongchang

    2016-06-03

    Renal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, (1)H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively. The results revealed that reduced levels of bioenergy synthesis and branched chain amino acids (BCAAs), as well as elevated levels of indoxyl sulfate (IS) are involved in metabolic alterations of renal fibrosis rats. Next, by pharmacological treatment we found that reduction of IS levels could prevent the renal fibrotic symptoms. Therefore, we suggested that urinary IS may be used as a potential biomarker for the diagnosis of renal fibrosis, and a therapeutic target for drugs. Novel attempt combining metabonomics and pharmacology was established that have ability to provide more systematic diagnostic and therapeutic information of diseases.

  4. Urinary cystatin C as a renal biomarker and its immunohistochemical localization in anti-GBM glomerulonephritis rats.

    PubMed

    Togashi, Yuko; Imura, Naoko; Miyamoto, Yohei

    2013-11-01

    The usefulness of urinary cystatin C for the early detection of renal damage in anti-glomerular basement membrane (GBM) glomerulonephritis rats was investigated and compared to other biomarkers (β2-microglobulin, calbindin, clusterin, epidermal growth factor (EGF), alpha-glutathione S-transferase (GST-α), mu-glutathione S-transferase (GST-μ), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin, tissue inhibitor of metalloprotease-1 (TIMP-1), and vascular endothelial growth factor (VEGF)). Urinary levels of cystatin C increased in anti-GBM glomerulonephritis rats, whereas the conventional markers, plasma creatinine and UN did not, demonstrating its usefulness for the early detection of renal damage associated with anti-GBM glomerulonephritis. As well as cystatin C, urinary β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL also had the potential to detect renal damage associated with anti-GBM glomerulonephritis. Furthermore, the immunohistochemical localization of cystatin C in the kidney was examined. Cystatin C expression was mainly observed in the proximal renal tubules in anti-GBM glomerulonephritis rats, and its expression barely changed with the progression of glomerulonephritis. Cystatin C expression was also observed in the tubular lumen of the cortex and medulla when glomerulonephritis was marked, which was considered to be characteristic of renal damage. In conclusion, urinary cystatin C, β2-microglobulin, clusterin, GST-α, GST-μ, KIM-1, and NGAL could be useful biomarkers of renal damage in anti-GBM glomerulonephritis rats. Immunohistochemical cystatin C expression in the proximal renal tubules was barely changed by the progression of glomerulonephritis, but it was newly observed in the tubular lumen when renal damage was apparent. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  5. Histological, molecular and biochemical detection of renal injury after Echis pyramidum snake envenomation in rats

    PubMed Central

    Al-Johany, Awadh M.; Al-Sadoon, Mohamed K.; Abdel Moneim, Ahmed E.; Bauomy, Amira A.; Diab, Marwa S.M.

    2014-01-01

    Nephrotoxicity is a common sign of snake envenomation. The present work aimed to clarify the effect of intraperitoneal injection of 1/8 LD50 and 1/4 LD50 doses of Echis pyramidum snake venom on the renal tissue of rats after 2, 4 and 6 h from envenomation. Histopathological examination showed intense dose and time dependent abnormalities, including swelling glomerulus and tubular necrosis and damage as well as signs of intertubular medullary hemorrhage at early stages of envenomation. However, at late stages of envenomation by any of the doses under investigation, no intact renal corpuscles were recorded and complete lysis in renal corpuscles with ruptured Bowman’s capsules was observed. Immunohistochemistry by immunohistochemical staining was used to test the protein expression of Bax in renal tissue of rats. The result showed that the expression of Bax in renal tissue sections of envenomated rats was increased according to dose and time-dependant manner. The isolation of DNA from the renal cells of envenomed rats pointed out to the occurrence of DNA fragmentation, which is another indicator for renal tissue injury especially after 6 h of 1/4 LD50 of E. pyramidum envenomation. Oxidative stress biomarkers malondialdehyde and nitrite/nitrate levels, antioxidant parameters; glutathione, total antioxidant capacity and catalase were assayed in renal tissue homogenates. The venom induced significant increase in the levels of malondialdehyde and nitrite/nitrate while the levels of glutathione, total antioxidant capacity and catalase were significantly decreased, especially after 6 h of envenomation. The results revealed that the E. pyramidum induced dose and time-dependant significant disturbances in the physiological parameters in the kidney. We conclude that the use of the immunohistochemical techniques, the detection of DNA integrity and oxidative stress marker estimations are more specific tools that can clarify cellular injury and could point out to the defense

  6. Histological, molecular and biochemical detection of renal injury after Echis pyramidum snake envenomation in rats.

    PubMed

    Al-Johany, Awadh M; Al-Sadoon, Mohamed K; Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa S M

    2015-05-01

    Nephrotoxicity is a common sign of snake envenomation. The present work aimed to clarify the effect of intraperitoneal injection of 1/8 LD50 and 1/4 LD50 doses of Echis pyramidum snake venom on the renal tissue of rats after 2, 4 and 6 h from envenomation. Histopathological examination showed intense dose and time dependent abnormalities, including swelling glomerulus and tubular necrosis and damage as well as signs of intertubular medullary hemorrhage at early stages of envenomation. However, at late stages of envenomation by any of the doses under investigation, no intact renal corpuscles were recorded and complete lysis in renal corpuscles with ruptured Bowman's capsules was observed. Immunohistochemistry by immunohistochemical staining was used to test the protein expression of Bax in renal tissue of rats. The result showed that the expression of Bax in renal tissue sections of envenomated rats was increased according to dose and time-dependant manner. The isolation of DNA from the renal cells of envenomed rats pointed out to the occurrence of DNA fragmentation, which is another indicator for renal tissue injury especially after 6 h of 1/4 LD50 of E. pyramidum envenomation. Oxidative stress biomarkers malondialdehyde and nitrite/nitrate levels, antioxidant parameters; glutathione, total antioxidant capacity and catalase were assayed in renal tissue homogenates. The venom induced significant increase in the levels of malondialdehyde and nitrite/nitrate while the levels of glutathione, total antioxidant capacity and catalase were significantly decreased, especially after 6 h of envenomation. The results revealed that the E. pyramidum induced dose and time-dependant significant disturbances in the physiological parameters in the kidney. We conclude that the use of the immunohistochemical techniques, the detection of DNA integrity and oxidative stress marker estimations are more specific tools that can clarify cellular injury and could point out to the defense

  7. Effect of cephalosporins on organic ion transport in renal membrane vesicles from rat and rabbit kidney cortex.

    PubMed

    Williams, P D; Hitchcock, M J; Hottendorf, G H

    1985-03-01

    The effects of cephaloridine and cephalothin on prototypical organic anion (p-aminohippurate, PAH) and cation (N-methylnicotinamide, NMN) transport were observed in brush border and basolateral membrane vesicles prepared from rat and rabbit renal cortex. The cephalosporins interacted with both the cationic and anionic transport systems. Cephalothin inhibited PAH transport in basolateral and brush border membrane in both rats and rabbits. Cephaloridine on the other hand inhibited PAH and NMN transport across rabbit basolateral membranes while it showed a lack of interaction with transport systems in rat basolateral membranes. Conversely, cephaloridine inhibited brush border transport of PAH and NMN in the rat but not in the rabbit. These results provide indirect evidence that cephalothin may be secreted across the renal tubule cell in rats and rabbits while cephaloridine may not accumulate in the rat kidney and becomes trapped in rabbit renal tubule cells. The differences in transport effects observed may explain intra- and interspecies differences in susceptibility to cephalosporin nephrotoxicity.

  8. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  10. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  11. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation.

    PubMed

    Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A

    2005-01-01

    The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.

  12. Effect of L-arginine on the relaxation caused by sodium nitroprusside on isolated rat renal artery.

    PubMed

    Orescanin, Z; Milovanović, S R

    2006-12-01

    In the present study we investigated the mechanism of nitric oxide induced relaxation of renal arteries, with or without endothelium, taken from normotensive and spontaneously hypertensive (SH) rats. With this purpose in mind, the effects of the nitric oxide donor, sodium nitroprusside (SNP), with and without L-arg in the medium, on isolated rat renal artery relaxation were studied. Relaxing effect of SNP was higher in normotensive (10(-5) M of SNP caused 220% of relaxation in the cases with endothelium and 240% without endothelium), in comparison with SH rats (100% of relaxation with endothelium and 150% without). L-arg antagonized the relaxing effect of SNP in the examined renal arteries, more in normotensive (100-160% with endothelium and 110-195% without) than in hypertensive ones (0-10% with endothelium and 35-75% without) at SNP concentrations 10(-7) - 10(-5) M, respectively (*P < 0.05; **P < 0.001). L-arg did not significantly change relaxing effect of SNP in the isolated renal arteries with endothelium taken from SH rats, which show that L-arg, by modifying the chemical versatility of NO into redox active forms -nitrosonium (NO+) and -nitroxyl (NO-), produces different relaxing effects in normotensive and hypertensive isolated arteries of rats, with or without endothelium, potentiating the role of nitroxyl induced relaxation in SH rats.

  13. Boldine prevents renal alterations in diabetic rats.

    PubMed

    Hernández-Salinas, Romina; Vielma, Alejandra Z; Arismendi, Marlene N; Boric, Mauricio P; Sáez, Juan C; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.

  14. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    PubMed Central

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395

  15. Assessment of renal dopaminergic system activity during cyclosporine A administration in the rat.

    PubMed Central

    Pestana, M.; Vieira-Coelho, M. A.; Pinto-do-O, P. C.; Fernandes, M. H.; Soares-da-Silva, P.

    1995-01-01

    1. Administration of cyclosporine A (CsA; 50 mg kg-1 day-1, s.c.) for 14 days produced an increase in both systolic (SBP) and diastolic (DBP) blood pressure by 60 and 25 mmHg, respectively. The urinary excretion of dopamine, DOPAC and HVA was reduced from day 5-6 of CsA administration onwards (dopamine from 19 to 46%, DOPAC from 16 to 48%; HVA from 18 to 42%). In vehicle-treated rats, the urinary excretion of dopamine and DOPAC increased (from 7 to 60%) from day 5 onwards; by contrast, the urinary excretion of HVA was reduced (from 27 to 60%) during the second week. 2. No significant difference was observed between the Vmax and Km values of renal aromatic L-amino acid decarboxylase (AAAD) in rats treated with CsA for 7 and 14 days or with vehicle. 3. Km and Vmax of monoamine oxidase types A and B did not differ significantly between rats treated with CsA for 7 and 14 days or with vehicle. 4. Maximal catechol-O-methyltransferase activity (Vmax) in homogenates of renal tissues obtained from rats treated with CsA for 7 or 14 days was significantly higher than that in vehicle-treated rats; Km (22.3 +/- 1.5 microM) values for COMT did not differ between the three groups of rats. 5. The accumulation of newly-formed dopamine and DOPAC in cortical tissues of rats treated with CsA for 14 days was three to four times higher than in controls. The outflow of both dopamine and DOPAC declined progressively with time and reflected the amine and amine metabolite tissue contents. No significant difference was observed between the DOPAC/dopamine ratios in the perifusate of renal tissues obtained from CsA- and vehicle-treated rats. In addition, no significant differences were observed in k values or in the slope of decline of both DA and DOPAC between experiments performed with CsA and vehicle-treated animals. 6. The Vmax for the saturable component of L-3,4-dihydroxyphenylalanine (L-DOPA) uptake in renal tubules from rats treated with CsA was twice that of vehicle-treated animals

  16. Renal response to L-arginine in diabetic rats. A possible link between nitric oxide system and aquaporin-2.

    PubMed

    Ortiz, María C; Albertoni Borghese, María F; Balonga, Sabrina E; Lavagna, Agustina; Filipuzzi, Ana L; Elesgaray, Rosana; Costa, María A; Majowicz, Mónica P

    2014-01-01

    The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.

  17. Experimental selective elevation of renal medullary blood flow in hypertensive rats: evidence against short-term hypotensive effect.

    PubMed

    Bądzyńska, B; Sadowski, J

    2012-08-01

    Renal medullary blood flow (MBF) can be selectively increased by intrarenal or systemic infusion of bradykinin (Bk) in anaesthetized normotensive rats. We reproduced this effect in a number of rat models of arterial hypertension and examined whether increased perfusion of the renal medulla can cause a short-term decrease in blood pressure (BP) that is not mediated by increased renal excretion and depletion of body fluids. In uninephrectomized Sprague-Dawley rats, BP was elevated to approx. 145 mmHg by acute i.v. infusion of noradrenaline (NA) or angiotensin II (Ang II) (groups 1, 2), 2-week exposure to high-salt diet (3), high-salt diet + chronic low-dose infusion of Ang II using osmotic minipumps (4) or chronic high-dose Ang II infusion on normal diet (5). Uninephrectomized spontaneous hypertensive rats (SHR) were also examined (6,7). To selectively increase medullary perfusion, in anaesthetized rats, bradykinin was infused during 30-75 min into the renal medullary interstitium or intravenously. Bradykinin increased outer- and inner-medullary blood flow (laser-Doppler fluxes) by 10-20% in groups (1, 2), by 30-50% in groups (3, 4, 5) and approx. 20% in SHR (6, 7). The concurrent increase in total renal blood flow (Transonic probe) was < 3%. A minor (<3%) decrease in BP was seen only in rats acutely rendered hypertensive by NA or Ang II infusions; however, the decreases in BP and increases in medullary perfusion were not correlated. Thus, there was no evidence that in hypertensive rats, substantial selective increases in medullary perfusion can cause a short-term decrease in BP. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  18. In-111-labeled leukocytes in the diagnosis of rejection and cytomegalovirus infection in renal transplant patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forstrom, L.A.; Loken, M.K.; Cook, A.

    1981-04-01

    Indium-111-labeled (In-111) leukocytes have been shown to be useful in the localization of inflammatory processes, including renal transplant rejection. Using previously reported labeling methods, 63 studies with this agent have been performed in 53 renal transplant patients. Indications for study included suspected rejection or cytomegalovirus (CMV) infection. Studies were performed in 33 men and 20 women, with ages ranging from 6 to 68 years. Autologous cells were normally used for labeling, although leukocytes obtained from ABO-compatible donors were used in three subjects. Rectilinear scanner and/or scintillation camera images were obtained at 24 hours after intravenous administration of 0.1 to 0.6more » mCi of In-111-leukocytes. There was abnormal uptake of In-111-leukocytes in the transplanted kidney in 11 of 15 cases of rejection. In three additional cases of increased transplant uptake, CMV infection was present in two. Abnormal lung uptake was present in 13 of 14 patients with CMV infection. In four additional cases, increased lung uptake was associated with other pulmonary inflammatory disease. Increased lung activity was not seen in patients with uncomplicated transplant rejection. These results suggest that In-111-leukocyte imaging may be useful in the differential diagnosis of rejection versus CMV infection in renal transplant patients.« less

  19. In-111-labeled leukocytes in the diagnosis of rejection and cytomegalovirus infection in renal transplant patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forstrom, L.A.; Loken, M.K.; Cook, A.

    1981-04-01

    Indium-111-labelled (In-111) leukocytes have been shown to be useful in the localization of inflammatory processes, including renal transplant rejection. Using previously reported labelling methods, 63 studies with this agent have been performed in 53 renal transplant patients. Indications for study included suspected rejection or cytomegalovirus (CMV) infection. Studies were performed in 33 men and 20 women, with ages ranging from 6 to 68 years. Autologous cells were normally used for labeling, although leukocytes obtained from ABO-compatible donors were used in three subjects. Rectilinear scanner and/or scintillation camera images were obtained at 24 hours after intravenous administration of 0.1 to 0.6more » mCi of In-111 leukocytes. There was abnormal uptake of In-111-leukocytes in the transplanted kidney in 11 of 15 cases of rejection. In three additional cases of increased transplant uptake, CMV infection was present in two. Abnormal lung uptake was present in 13 of 14 patients with CMV infection. In four additional cases, increased lung uptake was associated with other pulmonary inflammatory disease. Increased lung activity was not seen in patients with uncomplicated transplant rejection. These results suggest that In-111-leukocyte imaging may be useful in the differential diagnosis of rejection versus CMV infection in renal transplant patients.« less

  20. Hypertensive renal disease: susceptibility and resistance in inbred hypertensive rat lines.

    PubMed

    Braun, Michael C; Herring, Stacy M; Gokul, Nisha; Monita, Monique; Bell, Rebecca; Hicks, M John; Wenderfer, Scott E; Doris, Peter A

    2013-10-01

    Spontaneously hypertensive rat (SHR) lines differ in their susceptibility to hypertensive end-organ disease and may provide an informative model of genetic risk of disease. Lines derived from the original SHR-B and SHR-C clades are highly resistant to hypertensive end-organ disease, whereas lines derived from the SHR-A clade were selected for stroke susceptibility and experience hypertensive renal disease. Here we characterize the temporal development of progressive renal injury in SHR-A3 animals consuming 0.3% sodium in the diet and drinking water. SHR-A3 rats demonstrate albuminuria, glomerular damage, tubulointerstitial injury, and renal fibrosis that emerge at 18 weeks of age and progress. Mortality of SHR-A3 animals was 50% at 40 weeks of age, and animals surviving to this age had reduced renal function. In contrast SHR-B2, which are 87% genetically identical to SHR-A3, are substantially protected from renal injury and demonstrate only moderate changes in albuminuria and renal histological injury over this time period. At 40 weeks of age, electron microscopy of the renal glomerulus revealed severe podocyte effacement in SHR-A3, but slit diaphragm architecture in SHR-B2 at this age was well preserved. Renal injury traits in the F1 and F2 progeny of an intercross between SHR-A3 and SHR-B2 were measured to determine heritability of renal injury in this model. Heritability of albuminuria, glomerular injury, and tubulointerstitial injury were estimated at 48.9, 66.5 and 58.6%, respectively. We assessed the relationship between blood pressure and renal injury measures in the F2 animals and found some correlation between these variables that explain up to 26% of the trait variation. Quantitative trait locus (QTL) mapping was performed using over 200 single nucleotide polymorphism markers distributed across the 13% of the genome that differs between these two closely related lines. Mapping of albuminuria, tubulointerstitial injury, and renal fibrosis failed to

  1. Attenuation of hypertension and renal damage in renovascular hypertensive rats by iron restriction.

    PubMed

    Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru

    2016-12-01

    Iron is a catalyst in the formation of reactive oxygen species. Oxidative stress is associated with the pathogenesis of both human and experimental animal models of renovascular hypertension. We hypothesized that iron is involved in the pathogenesis of renovascular hypertension and that iron restriction may affect the pathogenesis of renovascular hypertension via the inhibition of oxidative stress. Herein, we investigated the effect of iron restriction on hypertension and renal damage in a rat model of two-kidney one-clip (2K1C) renovascular hypertension. Renovascular hypertension was induced by 2K1C in male Sprague-Dawley rats. At the day of clipping, 2K1C rats were divided into untreated (2K1C) and dietary iron-restricted groups (2K1C+IR). The 2K1C rats showed hypertension after the day of clipping, whereas dietary iron restriction attenuated the development of hypertension. Vascular hypertrophy and the increased fibrotic area were suppressed in the 2K1C+IR group. The clipped kidney developed renal atrophy in both the 2K1C and 2K1C+IR groups after clipping. However, the unclipped kidney showed renal hypertrophy in the 2K1C and 2K1C+IR groups, and the extent was less in the 2K1C+IR group. The 2K1C rats exhibited glomerulosclerosis and tubulointerstitial fibrosis in the unclipped kidney, whereas these changes were attenuated by an iron-restricted diet. Importantly, proteinuria was decreased in the 2K1C+IR group, along with decreased urinary 8-hydroxy-2'-deoxyguanosine excretion and superoxide production of the unclipped kidney. Moreover, the expression of nuclear mineralocorticoid receptor in the unclipped kidney of the 2K1C rats was attenuated by iron restriction. These data indicate a novel effect of iron restriction on hypertension and renal damage in renovascular hypertension.

  2. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.

    PubMed

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M

    2017-12-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Febuxostat exerts dose-dependent renoprotection in rats with cisplatin-induced acute renal injury.

    PubMed

    Fahmi, Alaa N A; Shehatou, George S G; Shebl, Abdelhadi M; Salem, Hatem A

    2016-08-01

    The aim of the present study was to investigate possible renoprotective effects of febuxostat, a highly potent xanthine oxidase inhibitor, against cisplatin (CIS)-induced acute kidney injury in rats. Male Sprague Dawley rats were randomly assigned into four groups of six rats each, as follows: normal control; CIS, received a single intraperitoneal injection of CIS (7.5 mg/kg); [febuxostat 10 + CIS] and [febuxostat 15 + CIS], received febuxostat (10 and 15 mg/kg/day, respectively, orally) for 14 days, starting 7 days before CIS injection. At the end of experiment, 24-h urine output was collected and serum was separated for biochemical assessments. Kidney tissue homogenate was prepared for determination of oxidative stress-related parameters, nitric oxide (NO), and tumor necrosis factor-α (TNF-α). Moreover, histological alterations of kidney tissues were evaluated. Serum creatinine, blood urea, and urinary total protein were significantly elevated, while serum albumin and creatinine clearance were significantly reduced, in CIS-intoxicated rats, indicating depressed renal function. CIS administration also elicited renal oxidative stress, evidenced by increased malondialdehyde content and depleted levels of reduced glutathione and superoxide dismutase activity. Moreover, enhancement of renal levels of the pro-inflammatory TNF-α indicated renal inflammation. CIS-administered rats also showed increased serum lactate dehydrogenase activity and reduced renal NO bioavailability. Febuxostat dose-dependently improved or restored these changes to near-normal (e.g., mean ± SD of serum creatinine levels in control, CIS, [febuxostat 10 + CIS] and [febuxostat 15 + CIS] groups were 0.78 ± 0.19, 3.28 ± 2.0 (P < 0.01 versus control group), 1.03 ± 0.36 (P < 0.01 versus CIS group), and 0.93 ± 0.21 (P < 0.01 versus CIS group) mg/dl, respectively, and blood urea levels for the different groups were 36.80 ± 4.36, 236.10 ± 89.19 (P < 0

  4. Renal Response to L-Arginine in Diabetic Rats. A Possible Link between Nitric Oxide System and Aquaporin-2

    PubMed Central

    Ortiz, María C.; Albertoni Borghese, María F.; Balonga, Sabrina E.; Lavagna, Agustina; Filipuzzi, Ana L.; Elesgaray, Rosana; Costa, María A.; Majowicz, Mónica P.

    2014-01-01

    The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression. PMID:25111608

  5. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats.

    PubMed

    Aslan, Zeyneb; Aksoy, Laçine

    2015-01-01

    In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1%) in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1%) in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-a, IL-1ß and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  6. Boldine Prevents Renal Alterations in Diabetic Rats

    PubMed Central

    Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726

  7. Renoprotective effects of gamma-aminobutyric acid on cisplatin-induced acute renal injury in rats.

    PubMed

    Ali, Badreldin H; Al-Salam, Suhail; Al Za'abi, Mohammed; Al Balushi, Khalid A; AlMahruqi, Ahmed S; Beegam, Somyia; Al-Lawatia, Intisar; Waly, Mostafa I; Nemmar, Abderrahim

    2015-01-01

    To investigate the effect of gamma-aminobutyric acid (GABA) on acute renal injury (ARI), we used here a rat model of acute tubular necrosis induced by the anticancer drug cisplatin (CP). GABA was given orally (100 or 500 mg/kg/day for ten consecutive days), and on the 6th day, some of the treated rats were also injected intraperitoneally with either saline or CP (6 mg/kg). Four days after CP treatment, urine was collected from all rats, which were then anaesthetized for blood pressure and renal blood flow monitoring. This was followed by intravenous injection of norepinephrine for the assessment of renal vasoconstrictor responses. Thereafter, blood and kidneys were collected for measurement of several functional, biochemical and structural parameters. GABA treatment (at 500 but not 100 mg/kg) significantly mitigated all the measured physiological and biochemical indices. Sections from saline- and GABA-treated rats showed apparently normal proximal tubules. However, kidneys of CP-treated rats had a moderate degree of necrosis. This was markedly lessened when CP was given simultaneously with GABA (500 mg/kg). The concentration of platinum in the cortical tissues was not significantly altered by GABA treatment. The results suggested that GABA can ameliorate CP nephrotoxicity in rats. Pending further pharmacological and toxicological studies, GABA may be considered a potentially useful nephroprotective agent in CP-induced ARI. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats.

    PubMed

    Zhao, Liangcai; Zhang, Haiyan; Yang, Yunjun; Zheng, Yongquan; Dong, Minjian; Wang, Yaqiang; Bai, Guanghui; Ye, Xinjian; Yan, Zhihan; Gao, Hongchang

    2014-01-01

    Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on. Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction. The metabolite levels were compared based on integral values of serum 1H NMR spectra from rats on 3, 7, 14, and 28 days after the medicine administration. Time trajectory analysis demonstrated that metabolic profiles of the agent-treated rats were restored to control levels after 7 days of dosage. The results confirmed that the agent would be an effective anti-fibrosis medicine in a time-dependent manner, especially in early renal fibrosis stage. Targeted metabolite analysis showed that the medicine could lower levels of lipid, acetoacetate, glucose, phosphorylcholine/choline, trimethylamine oxide and raise levels of pyruvate, glycine in the serum of the rats. Serum clinical chemistry and kidney histopathology examination dovetailed well with the metabonomics data. The results substantiated that Curcuma aromatica oil administration can ameliorate renal fibrosis symptoms by inhibiting some metabolic pathways, including lipids metabolism, glycolysis and methylamine metabolism, which are dominating targets of the agent working in vivo. This study further strengthens the novel analytical approach for evaluating the effect of traditional herbal medicine and elucidating its molecular mechanism.

  9. Previous Exercise Training Reduces Markers of Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Female Rats.

    PubMed

    Amaral, Liliany Souza de Brito; Souza, Cláudia Silva; Volpini, Rildo Aparecido; Shimizu, Maria Heloisa Massola; de Bragança, Ana Carolina; Canale, Daniele; Seguro, Antonio Carlos; Coimbra, Terezila Machado; de Magalhães, Amélia Cristina Mendes; Soares, Telma de Jesus

    2018-01-01

    The aim of this study is to evaluate the effects of regular moderate exercise training initiated previously or after induction of diabetes mellitus on renal oxidative stress and inflammation in STZ-induced diabetic female rats. For this purpose, Wistar rats were divided into five groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD), and previously trained diabetic (PTD). Only the PTD group was submitted to treadmill running for 4 weeks previously to DM induction with streptozotocin (40 mg/kg, i.v). After confirming diabetes, the PTD, TD, and TC groups were submitted to eight weeks of exercise training. At the end of the training protocol, we evaluated the following: glycosuria, body weight gain, plasma, renal and urinary levels of nitric oxide and thiobarbituric acid reactive substances, renal glutathione, and immunolocalization of lymphocytes, macrophages, and nuclear factor-kappa B (NF- κ B/p65) in the renal cortex. The results showed that exercise training reduced glycosuria, renal TBARS levels, and the number of immune cells in the renal tissue of the TD and PTD groups. Of note, only previous exercise increased weight gain and urinary/renal NO levels and reduced NF- κ B (p65) immunostaining in the renal cortex of the PTD group. In conclusion, our study shows that exercise training, especially when initiated previously to diabetes induction, promotes protective effects in diabetic kidney by reduction of renal oxidative stress and inflammation markers in female Wistar rats.

  10. Previous Exercise Training Reduces Markers of Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Female Rats

    PubMed Central

    Souza, Cláudia Silva; Volpini, Rildo Aparecido; Shimizu, Maria Heloisa Massola; de Bragança, Ana Carolina; Canale, Daniele; Seguro, Antonio Carlos; Coimbra, Terezila Machado; de Magalhães, Amélia Cristina Mendes

    2018-01-01

    The aim of this study is to evaluate the effects of regular moderate exercise training initiated previously or after induction of diabetes mellitus on renal oxidative stress and inflammation in STZ-induced diabetic female rats. For this purpose, Wistar rats were divided into five groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD), and previously trained diabetic (PTD). Only the PTD group was submitted to treadmill running for 4 weeks previously to DM induction with streptozotocin (40 mg/kg, i.v). After confirming diabetes, the PTD, TD, and TC groups were submitted to eight weeks of exercise training. At the end of the training protocol, we evaluated the following: glycosuria, body weight gain, plasma, renal and urinary levels of nitric oxide and thiobarbituric acid reactive substances, renal glutathione, and immunolocalization of lymphocytes, macrophages, and nuclear factor-kappa B (NF-κB/p65) in the renal cortex. The results showed that exercise training reduced glycosuria, renal TBARS levels, and the number of immune cells in the renal tissue of the TD and PTD groups. Of note, only previous exercise increased weight gain and urinary/renal NO levels and reduced NF-κB (p65) immunostaining in the renal cortex of the PTD group. In conclusion, our study shows that exercise training, especially when initiated previously to diabetes induction, promotes protective effects in diabetic kidney by reduction of renal oxidative stress and inflammation markers in female Wistar rats. PMID:29785400

  11. The effect of pregnancy on renal clearance of boron in rats given boric acid orally.

    PubMed

    Vaziri, N D; Oveisi, F; Culver, B D; Pahl, M V; Andersen, M E; Strong, P L; Murray, F J

    2001-04-01

    Boric acid (H(3)BO(3)) has been shown to cause developmental abnormalities in the offspring of pregnant rats. Comparative data on the renal clearance of boron (B) in rats and humans, both pregnant and nonpregnant, exposed to boric acid (BA) would reduce uncertainty in interspecies extrapolation from rats to humans. The purpose of this study was to evaluate the effect of pregnancy on the plasma half-life and renal clearance of boron in Sprague-Dawley rats given a single oral dose of boric acid. For the half-life study, nonpregnant and pregnant (gestation day 16) rats were given a single dose of 30 mg/kg of boric acid by gavage, and plasma samples were collected at 2-3 h intervals. The plasma half-life of boron was determined to be 2.9 +/- 0.2 and 3.2 +/- 0.3 h in nonpregnant and pregnant rats, respectively. In the clearance study, nonpregnant and pregnant (GD 16) rats were given a single gavage dose of 0.3, 3, or 30 mg/kg of boric acid. Boron clearance was slightly higher in pregnant rats (3.3 +/- 0.6, 3.2 +/- 0.5, and 3.4 +/- 0.5 ml/min/kg, respectively) compared to nonpregnant rats (3.1 +/- 0.8, 3.0 +/- 0.6, and 3.2 +/- 0.5 ml/min/kg, respectively), but the difference was not statistically significant and not dose-related. Boron clearance was less than creatinine clearance, suggesting tubular reabsorption in both groups. In conclusion, pregnancy did not appear to significantly alter the renal clearance or the plasma half-life of boron in Sprague-Dawley rats under the conditions of this study.

  12. Surgical Anatomy and Microvascular Surgical Technique Relevant to Experimental Renal Transplant in Rat Employing Aortic and Inferior Venacaval Conduits.

    PubMed

    Shrestha, Badri Man; Haylor, John

    2017-11-15

    Rat models of renal transplant are used to investigate immunologic processes and responses to therapeutic agents before their translation into routine clinical practice. In this study, we have described details of rat surgical anatomy and our experiences with the microvascular surgical technique relevant to renal transplant by employing donor inferior vena cava and aortic conduits. For this study, 175 rats (151 Lewis and 24 Fisher) were used to establish the Fisher-Lewis rat model of chronic allograft injury at our institution. Anatomic and technical details were recorded during the period of training and establishment of the model. A final group of 12 transplanted rats were studied for an average duration of 51 weeks for the Lewis-to-Lewis isografts (5 rats) and 42 weeks for the Fisher-to-Lewis allografts (7 rats). Functional measurements and histology confirmed the diagnosis of chronic allograft injury. Mastering the anatomic details and microvascular surgical techniques can lead to the successful establishment of an experimental renal transplant model.

  13. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure.

    PubMed

    Yaqoob, Noreen; Evans, Andrew; Foster, John R; Lock, Edward A

    2014-09-02

    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500mg/kg/day) or TCE-OH at (100mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for metabolism

  15. Effect of short-term treatment with levosimendan on oxidative stress in renal tissues of rats.

    PubMed

    Gecit, Ilhan; Kavak, Servet; Yüksel, Mehmet Bilgehan; Basel, Halil; Bektas, Hava; Gümrükçüoglu, Hasan Ali; Meral, Ismail; Demir, Halit

    2014-02-01

    The aim of this study is to evaluate the influences of short-term treatment with levosimendan (chemical formula: C14H12N6O) on oxidative stress and some trace element levels in renal tissues of healthy rats. A total of 20 male Wistar-albino rats were randomly divided into two groups, each consisting of 10 rats. Animals in the first group were not treated with levosimendan and served as control. Animals in the second group were injected intraperitoneally with 12 µg/kg levosimendan and served as levosimendan group. Animals in both the groups were killed 3 days after the treatment, and their kidneys were harvested for the determination of tissue oxidant/antioxidant statues and trace element levels in renal tissues. The tissue malondialdehyde level was significantly (p < 0.001) lower in levosimendan group than in controls. The protective enzyme activities such as superoxide dismutase, catalase, and glutathione peroxidase and antioxidant glutathione level were significantly (p < 0.001) higher in levosimendan group than in controls. It was concluded that levosimendan reduced oxidative stress by avoiding lipid peroxidation and production of reactive oxygen species, and overactivating and/or increasing the protective antioxidant enzyme levels in renal tissues of rats. It is supposed that this experimental study provides beneficial data for clinicians in the management of renal tissue damage related to obstruction and/or ischemia.

  16. Effects of chronic lithium administration on renal acid excretion in humans and rats

    PubMed Central

    Weiner, I. David; Leader, John P.; Bedford, Jennifer J.; Verlander, Jill W.; Ellis, Gaye; Kalita, Priyakshi; Vos, Frederiek; de Jong, Sylvia; Walker, Robert J.

    2014-01-01

    Abstract Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium‐treated and control humans. There were no significant differences between lithium‐treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium‐treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium‐treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg. PMID:25501430

  17. Dietary zinc modifies diabetic-induced renal pathology in rats

    PubMed Central

    Elsaed, Wael M.; Mohamed, Hazem Abdelhamid

    2017-01-01

    Abstract This study was conducted to investigate how far dietary zinc (Zn) modifies the histomorphological alterations induced by diabetes in rat kidneys. The animals were divided into negative control group (10 rats). Diabetes was induced in thirty animals by streptozotocin. After confirming diabetes, the animals were divided into three groups (n = 10). Group II served as the positive control group (fed on standard diet), group III was fed on Zn deficient diet, and group IV was fed on Zn supplemented diet. Caspase-3 immune staining was used to estimate the caspase activity. Stereological procedures were used to measure the quantity of the immune stain and the surface area of the Bowman’s space. The renal cortices of group II rats revealed apparent widening of Bowman’s spaces with few apoptotic figures. The filtration barrier showed thickening of the basement membrane. The proximal convoluted tubules showed patchy loss of the apical microvilli with swollen mitochondria. The distal convoluted tubules revealed area of irregular basal enfolding. The picture was aggravated by Zn deficiency in group III besides areas of cortical interstitial fibrosis. The histopathological alterations were minimal in the cortices of group IV. A significant increase of the Bowman’s space surface area in group II and IV while decrease in group III compared with group I. The expression of Caspase-3 density was significantly increased in group II and III compared with group I while in group IV was non significant. In conclusion, dietary Zn modulated renal cortical changes caused by diabetes in rats. PMID:27882813

  18. Inhibition of NA+/H+ Exchanger 1 Attenuates Renal Dysfunction Induced by Advanced Glycation End Products in Rats

    PubMed Central

    Li, Peng; Chen, Geng-Rong; Wang, Fu; Xu, Ping; Liu, Li-Ying; Yin, Ya-Ling; Wang, Shuang-Xi

    2016-01-01

    It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1. PMID:26697498

  19. Renal Carcinogenesis After Uninephrectomy1

    PubMed Central

    Sui, Yi; Zhao, Hai-Lu; Lee, Heung Man; Guan, Jing; He, Lan; Lai, Fernand MM; Tong, Peter CY; Chan, Juliana CN

    2009-01-01

    Nephrectomized rats have widely been used to study chronic renal failure. Interestingly, renal cell carcinoma occurred in the remnant kidney after uninephrectomy (UNX). In this study, we probed insulin-like growth factor (IGF)-1 signaling pathway in UNX-induced renal cancer. Adult male Sprague-Dawley rats were randomized into two groups: UNX rats (n = 22) and sham-operated rats (n = 12). Rats were killed at 3, 7, and 10 months. After 7 months after nephrectomy, the UNX rats developed renal cell carcinoma with increased expression of proliferating cell nuclear antigen, and 68.2% (15/22) of the animals exhibited invasive carcinoma. Western blot demonstrated significant down-regulation of IGF binding protein 3 contrasting with the up-regulation of protein kinase Cζ and Akt/protein kinase B in the renal cancer tissues. These findings indicate a unique rat model of UNX-induced renal cancer associated with enhanced IGF-1 signaling pathway. PMID:19956387

  20. [Effect of shenluotong decoction on renal interstitial fibrosis in rats with obstructive nephropathy].

    PubMed

    Wang, Zheng; Liang, Li-juan; Wang, Cong-hui; Wang, Rui; Jiang, Guo-wang; Zhang, Xiao-man; An, Ya-juan; Xu, Qing-you

    2014-10-01

    To observe the effect of Shenluotong Decoction (SD) on serum levels of aldosterone, monocyte chemoattractant protein-1 (MCP-1), α-smooth muscle protein (α-SMA), and nuclear factor-KB (NF-κB) in obstructive nephropathy rats, and to explore the initial mechanism of SD for inhibiting renal interstitial fibrosis. Totally 48 healthy Wistar rats were randomly divided into the sham-operation group (n =12) and the model group (n =36). Renal interstitial fibrosis rat model was established by unilateral ureteral obstruction (UUO). After successful modeling, 36 rats were randomly divided into the model group, the Chinese medicine group, and the Western medicine group, 12 in each group. Eplerenone was added in the forage at the daily dose of 100 mg/kg for rats in the Western medicine group. Chinese medicine was added in the forage at the daily dose of 26 g/kg for rats in the Chinese medicine group. Equal volume of normal saline was administered to rats in the sham-operation group and the model group. All medication was performed once daily. The obstructive kidneys were extracted ten days after medication. The pathomorphological changes were observed. The contents of serum aldosterone and MCP-1, and the protein or mRNA expression of MCP-1, α-SMA, and NF-KB were detected. Compared with the sham-operation group, infiltration of a large amount of inflammatory cells and collagen deposition significantly increased, serum contents of aldosterone and MCP-1 obviously increased (P < 0.01), the expression of MCP-1 mRNA and protein were significantly up-regulated (P <0.01), the protein expression of α-SMA and NF-KB were significantly enhanced in the model group (P <0.01). Com- pared with the model group, infiltration of inflammatory cells and renal collagen deposition were attenua- ted in the Chinese medicine group and the Western medicine group, the serum MCP-1 level were reduced, and the mRNA and protein expression of MCP-1 were significantly down-regulated (P <0.01), the protein

  1. Central angiotensin modulation of baroreflex control of renal sympathetic nerve activity in the rat: influence of dietary sodium.

    PubMed

    DiBona, G F

    2003-03-01

    Administration of angiotensin II (angII) into the cerebral ventricles or specific brain sites impairs arterial baroreflex regulation of renal sympathetic nerve activity (SNA). Further insight into this effect was derived from: (a) using specific non-peptide angII receptor antagonists to assess the role of endogenous angII acting on angII receptor subtypes, (b) microinjection of angII receptor antagonists into brain sites behind an intact blood-brain barrier to assess the role of endogenous angII of brain origin and (c) alterations in dietary sodium intake, a known physiological regulator of activity of the renin-angiotensin system (RAS), to assess the ability to physiologically regulate the activity of the brain RAS. In rats in balance on low, normal or dietary sodium intake, losartan or candesartan was injected into the lateral cerebral ventricle or the rostral ventrolateral medulla (RVLM) and the effects on basal renal SNA and the arterial baroreflex sigmoidal relationship between renal SNA and arterial pressure were determined. With both routes of administration, the effects were proportional to the activity of the RAS as indexed by plasma renin activity (PRA). The magnitude of both the decrease in basal renal SNA and the parallel resetting of arterial baroreflex regulation of renal SNA to a lower arterial pressure was greatest in low-sodium rats with highest PRA and least in high-sodium rats with lowest PRA. Disinhibition of the paraventricular nucleus (PVN) by injection of bicuculline causes pressor, tachycardic and renal sympathoexcitatory responses mediated via an angiotensinergic projection from PVN to RVLM. In comparison with responses in normal sodium rats, these responses were greatly diminished in high-sodium rats and greatly enhanced in low-sodium rats. Physiological changes in the activity of the RAS produced by alterations in dietary sodium intake regulate the contribution of endogenous angII of brain origin in the modulation of arterial baroreflex

  2. Kefir administration reduced progression of renal injury in STZ-diabetic rats by lowering oxidative stress.

    PubMed

    Punaro, Giovana R; Maciel, Fabiane R; Rodrigues, Adelson M; Rogero, Marcelo M; Bogsan, Cristina S B; Oliveira, Marice N; Ihara, Silvia S M; Araujo, Sergio R R; Sanches, Talita R C; Andrade, Lucia C; Higa, Elisa M S

    2014-02-15

    This study aimed at assessing the effects of Kefir, a probiotic fermented milk, on oxidative stress in diabetic animals. The induction of diabetes was achieved in adult male Wistar rats using streptozotocin (STZ). The animals were distributed into four groups as follows: control (CTL); control Kefir (CTLK); diabetic (DM) and diabetic Kefir (DMK). Starting on the 5th day of diabetes, Kefir was administered by daily gavage at a dose of 1.8 mL/day for 8 weeks. Before and after Kefir treatment, the rats were placed in individual metabolic cages to obtain blood and urine samples to evaluate urea, creatinine, proteinuria, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and C-reactive protein (CRP). After sacrificing the animals, the renal cortex was removed for histology, oxidative stress and NOS evaluation. When compared to CTL rats, DM rats showed increased levels of glycemia, plasmatic urea, proteinuria, renal NO, superoxide anion, TBARS, and plasmatic CRP; also demonstrated a reduction in urinary urea, creatinine, and NO. However, DMK rats showed a significant improvement in most of these parameters. Despite the lack of differences observed in the expression of endothelial NO synthase (eNOS), the expression of inducible NO synthase (iNOS) was significantly lower in the DMK group when compared to DM rats, as assessed by Western blot analysis. Moreover, the DMK group presented a significant reduction of glycogen accumulation within the renal tubules when compared to the DM group. These results indicate that Kefir treatment may contribute to better control of glycemia and oxidative stress, which is associated with the amelioration of renal function, suggesting its use as a non-pharmacological adjuvant to delay the progression of diabetic complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    PubMed

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might

  4. l-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats

    PubMed Central

    Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2015-01-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might

  5. Protection of ischemic preconditioning on renal neural function in rats with acute renal failure.

    PubMed

    Wu, Ming-Shiou; Chien, Chiang-Ting; Ma, Ming-Chieh; Chen, Chau-Fong

    2009-11-30

    We tested whether tolerance induced by ischemic preconditioning (IPC) in kidneys was related to renal nerves. Experimental acute renal failure (ARF) in a rat model was induced for 45 min of left renal arterial occlusion (RAO), followed by 6 or 24 h of reperfusion (ischemic reperfusion (I/R) group). The episode of IPC was four cycles of 4 min of RAO at 11 min intervals and then the I/R injury was treated as above (IPC-I/R group). After 6 h of reperfusion, polyuria was found in the I/R group associated with an enhancement of afferent renal nerve activity (ARNA) and a reflexive decrease in efferent renal nerve activity (ERNA). Changes in nerve responses were related with a reduction in neutral endopeptidase (NEP) activity and an increased release of substance P (SP). After 24 h of reperfusion, the I/R group showed oliguria which was associated with a lower ARNA, hyperactivity of ERNA and a nine-fold increase in SP release due to a further 52% loss in NEP activity. Prior IPC treatment did not affect the changed ischemia-induced excretory and nervous activity patterns during the first 6 h of reperfusion, but normalized both responses in the kidneys 24 h after ischemia. The IPC-mediated protection in oliguric ARF was related to the preservation of NEP activity to only 25% loss that caused an increase of SP amounts of only three-fold and a minor change in neurokinin 1 receptor (NK-1R) activities. Finally, both excretory and sensory responses in oliguric ARF after saline loading were significantly ameliorated by IPC. We conclude that IPC results in preservation of the renal sensory response in postischemic kidneys and has a beneficial effect on controlling efferent renal sympathetic nerve activity and excretion of solutes and water.

  6. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction.

    PubMed Central

    Bird, J E; Milhoan, K; Wilson, C B; Young, S G; Mundy, C A; Parthasarathy, S; Blantz, R C

    1988-01-01

    The effects of antioxidant therapy with probucol were evaluated in rats subjected to 1 h renal ischemia and to 24 h reperfusion. Probucol exerted significant antioxidant effects in renal cortical tubules in vitro when exposed to a catalase-resistant oxidant. At 24 h probucol treatment (IP) improved single nephron glomerular filtration rate (SNGFR) (28.1 +/- 3.3 nl/min) in comparison to untreated ischemic (I) rats (15.2 +/- 3.0), primarily as a result of improving SNGFR in a population of low SNGFR, low flow and/or obstructed nephrons. However, absolute proximal reabsorption remained abnormally low in IP rats at 24 h (5.9 +/- 0.8 nl/min), and cell necrosis was greater than in I rats. Kidney GFR remained low in IP rats due to extensive tubular backleak of inulin measured by microinjection studies. Evaluations after 2 h of reperfusion revealed a higher SNGFR in IP (36 +/- 3.1 nl/min) than I rats (20.8 +/- 2.7 nl/min). Absolute proximal reabsorption was essentially normal (11.6 +/- 1.3 nl/min) in IP rats, which was higher than IP rats at 24 h and the concurrent I rats. Administration of the lipophilic antioxidant, probucol, increased SNGFR and proximal tubular reabsorption within 2 h after ischemic renal failure. Although SNGFR remained higher than I rats at 24 h, absolute reabsorption fell below normal levels and tubular necrosis was more extensive in IP rats. Early improvement in nephron filtration with antioxidants may increase load dependent metabolic demand upon tubules and increase the extent of damage and transport dysfunction. Images PMID:2835399

  7. Renal Heme Oxygenase-1 Induction with Hemin Augments Renal Hemodynamics, Renal Autoregulation, and Excretory Function

    PubMed Central

    Botros, Fady T.; Dobrowolski, Leszek; Navar, L. Gabriel

    2012-01-01

    Heme oxygenases (HO-1; HO-2) catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n = 7) and hemin-treated rats (n = 6) were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF) was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115 ± 5 mmHg versus 112 ± 4 mmHg and 331 ± 16 versus 346 ± 10 bpm). However, RBF was significantly higher (9.1 ± 0.8 versus 7.0 ± 0.5 mL/min/g, P < 0.05), and renal vascular resistance was significantly lower (13.0 ± 0.9 versus 16.6 ± 1.4 [mmHg/(mL/min/g)], P < 0.05). Likewise, glomerular filtration rate was significantly elevated (1.4 ± 0.2 versus 1.0 ± 0.1 mL/min/g, P < 0.05), and urine flow and sodium excretion were also higher (18.9 ± 3.9 versus 8.2 ± 1.0 μL/min/g, P < 0.05 and 1.9 ± 0.6 versus 0.2 ± 0.1 μmol/min/g, P < 0.05, resp.). The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models. PMID:22518281

  8. Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats.

    PubMed

    Ahmeda, Ahmad F; Rae, Mark G; Al Otaibi, Mohammed F; Anweigi, Lamyia M; Johns, Edward J

    2017-05-01

    Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P < 0.001) and Wistar rats (by 17 ± 2%, P < 0.05) but the magnitude of the increase was significantly greater in the SHRSP (P < 0.01). When the enzyme catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.

  9. Distribution of ciprofloxacin into the central nervous system in rats with acute renal or hepatic failure.

    PubMed

    Naora, K; Ichikawa, N; Hirano, H; Iwamoto, K

    1999-05-01

    Pharmacokinetic changes of various drugs have been reported in renal or hepatic failure. The present study employed ciprofloxacin, a quinolone antibiotic having neurotoxic side effects, to assess the influence of these diseases on distribution of ciprofloxacin into the central nervous system (CNS). After intravenous dosing of ciprofloxacin (10-30 mg kg(-1)), ciprofloxacin levels in plasma and brain were measured in normal rats (Wistar, male, 10-week-old) and those with acute renal and hepatic injuries which were induced by uranyl nitrate and carbon tetrachloride (CCl4), respectively. In the uranyl nitrate-treated rats, the plasma elimination half-life of ciprofloxacin was prolonged and the total body clearance was reduced when compared with those in the normal rats. Similar but smaller changes were observed in the CCl4-treated group. Brain levels of ciprofloxacin were significantly increased by both uranyl nitrate and CCl4 treatments. A proportional correlation between serum unbound levels and brain levels of ciprofloxacin was observed in the normal group. However, brain-to-serum unbound concentration ratios of ciprofloxacin were reduced in the rats with renal or hepatic failure. These results suggest that renal failure as well as hepatic failure retards elimination of ciprofloxacin from the blood, leading to elevation of the CNS level, and also that ciprofloxacin distribution in the brain is reduced in these disease states.

  10. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  11. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H 2 S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H 2 S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H 2 S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  12. Segmental sodium reabsorption by the renal tubule in prenatally programmed hypertension in the rat.

    PubMed

    Alwasel, Saleh H; Ashton, Nick

    2012-02-01

    Hypertension and renal dysfunction can be programmed in the rat by prenatal exposure to a low-protein (LP) diet. Expression of the renal thick ascending limb (TAL) sodium transporter NKCC2 is up-regulated, which has been predicted to result in greater sodium reabsorption. However, we have shown that LP rats excrete more not less sodium. The aim of this study was to determine whether the increased abundance of sodium:potassium:chloride (Na(+):K(+):2Cl(-)) co-transporter (NKCC2) leads to enhanced sodium uptake by the TAL. Pregnant Wistar rats were fed a control (18%) or LP (9%) diet. Amiloride (AM), bendroflumethiazide (BF), and furosemide (FUR) were administered acutely to male offspring at 4 weeks of age. Fractional excretion of sodium (FE(Na)) was significantly greater in vehicle-infused LP rats (3.0 ± 0.3%) compared with controls (1.7 ± 0.5, P < 0.01). FE(Na) by the LP proximal tubule did not differ from controls, whereas FE(Na) by the distal tubule was significantly greater (P < 0.01). These differences were abolished by the administration of AM + BF (equivalent to the outflow from the TAL) and AM + BF + FUR (equivalent to the outflow from the proximal tubule), suggesting that the increase in NKCC2 expression was not functional. However, during acute salt loading, the LP rat pressure natriuresis curve was shifted rightward, implying that raised systemic blood pressure is required to match urinary sodium excretion with dietary intake. These data suggest that renal sodium handling is impaired in the LP rat but that this is not due to increased NKCC2 expression.

  13. Role of renal metabolism and excretion in 5-nitrofuran-induced uroepithelial cancer in the rat.

    PubMed Central

    Spry, L A; Zenser, T V; Cohen, S M; Davis, B B

    1985-01-01

    5-Nitrofurans have been used in the study of chemical carcinogenesis. There is substantial evidence that N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide (FANFT) is deformylated to 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT) in the process of FANFT-induced bladder cancer. Paradoxically, ANFT is less potent as a uroepithelial carcinogen than FANFT when fed to rats. Feeding aspirin with FANFT to rats decreases the incidence of bladder cancer. Isolated kidneys were perfused with 5-nitrofurans to determine renal clearances and whether aspirin acts to decrease urinary excretion of the carcinogen. In FANFT-perfused kidneys, FANFT was deformylated to ANFT and excreted (1.06 +/- 0.22 nmol/min) at a rate eightfold higher than excretion of FANFT. In kidneys perfused with equimolar ANFT, excretion of ANFT was 0.25 +/- 0.05 nmol/min, which suggests a coupling of renal deformylation of FANFT to excretion of ANFT in FANFT-perfused kidneys. Neither aspirin nor probenecid altered the urinary excretion or half-life of FANFT or ANFT. In rats fed 0.2% FANFT as part of their diet, coadministration of aspirin (0.5%) increased urinary excretion of ANFT during a 12-wk feeding study, which suggests decreased tissue binding or metabolism of ANFT. Kidney perfusion with acetylated ANFT (NFTA), a much less potent uroepithelial carcinogen, resulted in no ANFT excretion or accumulation, which indicates the specificity of renal deformylase. Renal deformylase activity was found in broken cell preparations of rat and human kidney. These data describe a unique renal metabolic/excretory coupling for these compounds that appears to explain the differential carcinogenic potential of the 5-nitrofurans tested. These results are consistent with the hypothesis that aspirin decreases activation of ANFT by inhibiting prostaglandin H synthase. PMID:4044826

  14. Perivascular radiofrequency renal denervation lowers blood pressure and ameliorates cardiorenal fibrosis in spontaneously hypertensive rats

    PubMed Central

    Zhang, Yan; Su, Linan; Zhang, Yunrong; Wang, Qiang; Yang, Dachun; Li, De; Yang, Yongjian; Ma, Shuangtao

    2017-01-01

    Background Catheter-based renal denervation (RDN) is a promising approach to treat hypertension, but innervation patterns limit the response to endovascular RDN and the post-procedural renal artery narrowing or stenosis questions the endovascular ablation strategy. This study was performed to investigate the anti-hypertensive and target organ protective effects of perivascular RDN in spontaneously hypertensive rats (SHR). Methods SHR and normotensive Wistar-Kyoto (WKY) rats were divided into sham group (n = 10), radiofrequency ablation group (n = 20) in which rats received bilateral perivascular ablation with radiofrequency energy (2 watts), and chemical (10% phenol in 95% ethanol) ablation group (n = 12). The tail-cuff blood pressure was measured before the ablation and on day 14 and day 28 after the procedure. The plasma levels of creatinine, urea nitrogen, and catecholamines, urinary excretion of electrolytes and protein, and myocardial and glomerular fibrosis were analyzed and compared among the groups on day 28 after the procedure. Results We identified that 2-watt is the optimal radiofrequency power for perivascular RDN in rats. Perivascular radiofrequency and chemical ablation achieved roughly comparable blood pressure reduction in SHR but not in WKY on day 14 and day 28 following the procedure. Radiofrequency-mediated ablation substantially destroyed the renal nerves surrounding the renal arteries of both SHR and WKY without damaging the renal arteries and diminished the expression of tyrosine hydroxylase, the enzyme marker for postganglionic sympathetic nerves. Additionally, perivascular radiofrequency ablation also decreased the plasma catecholamines of SHR. Interestingly, both radiofrequency and chemical ablation decreased the myocardial and glomerular fibrosis of SHR, while neither increased the plasma creatinine and blood urea nitrogen nor affected the urinary excretion of electrolytes and protein when compared to sham group. Conclusions Radiofrequency

  15. Perivascular radiofrequency renal denervation lowers blood pressure and ameliorates cardiorenal fibrosis in spontaneously hypertensive rats.

    PubMed

    Wei, Shujie; Li, Dan; Zhang, Yan; Su, Linan; Zhang, Yunrong; Wang, Qiang; Yang, Dachun; Li, De; Yang, Yongjian; Ma, Shuangtao

    2017-01-01

    Catheter-based renal denervation (RDN) is a promising approach to treat hypertension, but innervation patterns limit the response to endovascular RDN and the post-procedural renal artery narrowing or stenosis questions the endovascular ablation strategy. This study was performed to investigate the anti-hypertensive and target organ protective effects of perivascular RDN in spontaneously hypertensive rats (SHR). SHR and normotensive Wistar-Kyoto (WKY) rats were divided into sham group (n = 10), radiofrequency ablation group (n = 20) in which rats received bilateral perivascular ablation with radiofrequency energy (2 watts), and chemical (10% phenol in 95% ethanol) ablation group (n = 12). The tail-cuff blood pressure was measured before the ablation and on day 14 and day 28 after the procedure. The plasma levels of creatinine, urea nitrogen, and catecholamines, urinary excretion of electrolytes and protein, and myocardial and glomerular fibrosis were analyzed and compared among the groups on day 28 after the procedure. We identified that 2-watt is the optimal radiofrequency power for perivascular RDN in rats. Perivascular radiofrequency and chemical ablation achieved roughly comparable blood pressure reduction in SHR but not in WKY on day 14 and day 28 following the procedure. Radiofrequency-mediated ablation substantially destroyed the renal nerves surrounding the renal arteries of both SHR and WKY without damaging the renal arteries and diminished the expression of tyrosine hydroxylase, the enzyme marker for postganglionic sympathetic nerves. Additionally, perivascular radiofrequency ablation also decreased the plasma catecholamines of SHR. Interestingly, both radiofrequency and chemical ablation decreased the myocardial and glomerular fibrosis of SHR, while neither increased the plasma creatinine and blood urea nitrogen nor affected the urinary excretion of electrolytes and protein when compared to sham group. Radiofrequency-mediated perivascular RDN may become a

  16. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats.

    PubMed

    Sakai, Mariko; Uchii, Masako; Myojo, Kensuke; Kitayama, Tetsuya; Kunori, Shunji

    2015-08-15

    Saxagliptin, a potent dipeptidyl peptidase-4 (DPP-4) inhibitor, is currently used to treat type 2 diabetes mellitus, and it has been reported to exhibit a slower rate of dissociation from DPP-4 compared with another DPP-4 inhibitor, sitagliptin. In this study, we compared the effects of saxagliptin and sitagliptin on hypertension-related renal injury and the plasma and renal DPP-4 activity levels in Dahl salt-sensitive hypertensive (Dahl-S) rats. The high-salt diet (8% NaCl) significantly increased the blood pressure and quantity of urinary albumin excretion and induced renal glomerular injury in the Dahl-S rats. Treatment with saxagliptin (14mg/kg/day via drinking water) for 4 weeks significantly suppressed the increase in urinary albumin excretion and tended to ameliorate glomerular injury without altering the blood glucose levels and systolic blood pressure. On the other hand, the administration of sitagliptin (140mg/kg/day via drinking water) did not affect urinary albumin excretion and glomerular injury in the Dahl-S rats. Meanwhile, the high-salt diet increased the renal DPP-4 activity but did not affect the plasma DPP-4 activity in the Dahl-S rats. Both saxagliptin and sitagliptin suppressed the plasma DPP-4 activity by 95% or more. Although the renal DPP-4 activity was also inhibited by both drugs, the inhibitory effect of saxagliptin was more potent than that of sitagliptin. These results indicate that saxagliptin has a potent renoprotective effect in the Dahl-S rats, independent of its glucose-lowering actions. The inhibition of the renal DPP-4 activity induced by saxagliptin may contribute to ameliorating renal injury in hypertension-related renal injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chinese herbal medicine Shenqi Detoxification Granule inhibits fibrosis in adenine induced chronic renal failure rats.

    PubMed

    Peng, Min; Cai, Pingping; Ma, Hongbo; Meng, Hongyan; Xu, Yuan; Zhang, Xiaoyi; Si, Guomin

    2014-01-01

    Progressive fibrosis accompanies all chronic renal disease, connective tissue growth factor (CTGF,) and platelet-derived growth factor-B, (PDGF-B,) play important roles in extra-cellular matrix abnormal accumulation, while endothelin-1 (ET-1) nitric oxide (NO,) are related to endothelial dysfunction, which mediates the progression of renal fibrosis. Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years. In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the adenine-induced Wister rats as the CRF model, and losartan as postive control drug. Levels of serum creatinine [Scr], and blood urea nitrogen (BUN), albumin (ALB), 24hrs, urine protein (24hUP), triacylglycerol (TG), and cholesterol (CHO), together with ET-1, and NO were detected. Pathological changes of renal tissues were observed by HE, staining. In addition, CTGF and PDGF-B expression were analyzed by immuno-histo-chemistry. The results indicated that SDG can effectively reduce Scr, BUN, 24hUP, TG, and CHO levels, increase ALB levels, inhibit renal tissue damage in CRF rats, and the mechanism maybe reduce PDGF-B, CTGF expression and ET-1/NO. Shenqi Detoxification Granule is a beneficial treatment for chronic renal failure.

  18. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats.

    PubMed

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney's response to ischemia-reperfusion injury.

  19. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats

    PubMed Central

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury. PMID:27551718

  20. The effects of changes of water balance on the renal pelvic epithelium of the rat.

    PubMed

    Khorshid, M R; Moffat, D B

    1975-01-01

    The effects of changes of water balance on the renal pelvic epithelium of the rat. The fine structure of the various epithelia which line the renal pelvis was investigated in five hydropenic rats and five rats undergoing a water diuresis. In the former, the thin epithelium which covers the outer medulla showed dilated intercellular spaces and an increased number of cytoplasmic vacuoles whereas the intercellular spaces were tightly closed and there were few vacuoles in the diuretic rats. It was considered that these changes indicate an exchange of water and solute between pelvic urine and the outer since medulla they are similar to those occurring in epithelia elsewhere which are engaged in transport of salt or water. Similar but less marked changes were found in the papillary epithelium. Changes in the transitional epithelium were similar to those which have previously been described elsewhere in the urinary tract.

  1. Impact of cardiac hypertrophy on arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity in anaesthetized rats.

    PubMed

    Flanagan, Evelyn T; Buckley, Maria M; Aherne, Claire M; Lainis, Fredolin; Sattar, Munavvar; Johns, Edward J

    2008-09-01

    This study aimed to quantify the effect of cardiac hypertrophy induced with isoprenaline and caffeine on reflex regulation of renal sympathetic nerve activity by the arterial and cardiopulmonary baroreceptors. Male Wistar rats, untreated or given water containing caffeine and subcutaneous (s.c.) isoprenaline every 72 h for 2 weeks or thyroxine s.c. for 7 days, were anaesthetized and prepared for measurement of renal sympathetic nerve activity or cardiac indices. Both isoprenaline-caffeine and thyroxine treatment blunted weight gain but increased heart weight and heart weight to body weight ratio by 40 and 14% (both P<0.01), respectively. In the isoprenaline-caffeine group, the maximal rate of change of left ventricular pressure and the contractility index were higher by 17 and 14% (both P<0.01), respectively, compared with untreated rats. In the isoprenaline-caffeine-treated rats, baroreflex gain curve sensitivity was depressed by approximately 30% (P<0/05), while the mid-point blood pressure was lower, by 15% (P<0/05), and the range of the curve was 60% (P<0.05) greater than in the untreated rats. An acute intravenous infusion of a saline load decreased renal sympathetic nerve activity by 42% (P<0.05) in the untreated rats but had no effect in the isoprenaline-caffeine- or the thyroxine-treated groups. The isoprenaline-caffeine treatment induced cardiac hypertrophy with raised cardiac performance and an associated depression in the reflex regulation of renal sympathetic nerve activity by both high- and low-pressure baroreceptors. The thyroxine-induced cardiac hypertrophy also blunted the low-pressure baroreceptor-mediated renal sympatho-inhibition. These findings demonstrate that in cardiac hypertrophy without impaired cardiac function, there is a blunted baroreceptor control of renal sympathetic outflow.

  2. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease.

    PubMed

    Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying

    2018-05-01

    Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.

  3. Hypertension and Hyperglycemia Synergize to Cause Incipient Renal Tubular Alterations Resulting in Increased NGAL Urinary Excretion in Rats

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J.; Martínez-Salgado, Carlos; López-Novoa, José M.; López-Hernández, Francisco J.

    2014-01-01

    Background Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Methods Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Results Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Conclusions Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion. PMID:25148248

  4. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Quiros, Yaremi; Montero, María J; Martínez-Salgado, Carlos; López-Novoa, José M; López-Hernández, Francisco J

    2014-01-01

    Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

  5. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology.

    PubMed

    Tomat, Analia Lorena; Veiras, Luciana Cecilia; Aguirre, Sofía; Fasoli, Héctor; Elesgaray, Rosana; Caniffi, Carolina; Costa, María Ángeles; Arranz, Cristina Teresa

    2013-03-01

    Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Microalbuminuria and early renal response to lethal dose Shiga toxin type 2 in rats.

    PubMed

    Ochoa, Federico; Oltra, Gisela; Gerhardt, Elizabeth; Hermes, Ricardo; Cohen, Lilian; Damiano, Alicia E; Ibarra, Cristina; Lago, Nestor R; Zotta, Elsa

    2012-01-01

    In Argentina, hemolytic uremic syndrome (HUS) constitutes the most frequent cause of acute renal failure in children. Approximately 2%-4% of patients die during the acute phase, and one-third of the 96% who survive are at risk of chronic renal sequelae. Little information is available about the direct effect of Shiga toxin type 2 (Stx2) on the onset of proteinuria and the evolution of toxin-mediated glomerular or tubular injury. In this work, rats were injected intraperitoneally with recombinant Escherichia coli culture supernatant containing Stx2 (sStx2; 20 μg/kg body weight) to induce HUS. Functional, immunoblotting, and immunohistochemistry studies were carried out to determine alterations in slit diaphragm proteins and the proximal tubule endocytic system at 48 hours post-inoculation. We detected a significant increase in microalbuminuria, without changes in the proteinuria values compared to the control rats. In immunoperoxidase studies, the renal tubules and glomerular mesangium showed an increased expression of transforming growth factor β(1)(TGF-β(1)). The expression of megalin was decreased by immunoperoxidase and the cytoplasm showed a granular pattern of megalin expression by immunofluorescence techniques. Western blot analysis performed in the renal cortex from sStx2-treated and control rats using anti-nephrin and anti-podocalyxin antibodies showed a decreased expression of these proteins. We suggest that the alterations in slit diaphragm proteins and megalin expression could be related to the development of microalbuminuria in response to lethal doses of Stx2.

  7. Mineralocorticoid receptor blockade but not steroid withdrawal reverses renal fibrosis in deoxycorticosterone/salt rats.

    PubMed

    Lam, Emily Y M; Funder, John W; Nikolic-Paterson, David J; Fuller, Peter J; Young, Morag J

    2006-07-01

    The pathophysiologic effects of nonepithelial mineralocorticoid receptor (MR) activation include vascular inflammation followed by renal and cardiac remodeling in experimental animals. We have recently shown that MR blockade can reverse established cardiac fibrosis and vascular inflammation; the present study explores whether a similar protection is seen in renal tissue. Rats were uninephrectomized and maintained on 0.9% NaCl solution to drink and treated as follows: control, vehicle; deoxycorticosterone (DOC), 20 mg/wk sc for 4 wk and then killed; DOC for 8 wk; DOC for 4 wk and no steroid for wk 5-8; DOC for 8 wk and eplerenone 100 mg/kg.d in the food for wk 5-8. DOC increased renal collagen at 4 and 8 wk; rats given DOC for 4 wk and killed at 8 wk showed levels of fibrosis identical with those killed at 4 wk, whereas rats given DOC for 8 wk plus eplerenone for wk 5-8 were indistinguishable from control. The inflammatory markers ED-1, osteopontin, and cyclooxygenase-2 remained significantly elevated despite the withdrawal of DOC (DOC404), whereas eplerenone restored cyclooxygenase-2 expression (but not that of ED-1 or osteopontin) to control levels. In addition, markers of oxidative stress and TGFbeta were determined. We hypothesize that continuing tubular inflammation and fibrosis despite DOC withdrawal indicates that the renal tissue may reflect MR activation in the context of tissue damage.

  8. Renal denervation decreases blood pressure and renal tyrosine hydroxylase but does not augment the effect of hypotensive drugs.

    PubMed

    Skrzypecki, Janusz; Gawlak, Maciej; Huc, Tomasz; Szulczyk, Paweł; Ufnal, Marcin

    2017-01-01

    The effect of renal denervation on the efficacy of antihypertensive drugs has not yet been elucidated. Twenty-week-old spontaneously hypertensive rats were treated with metoprolol, losartan, indapamide, or saline (controls) and assigned to renal denervation or a sham procedure. Acute hemodynamic measurements were performed ten days later. Series showing a significant interaction between renal denervation and the drugs were repeated with chronic telemetry measurements. In the saline series, denervated rats showed a significantly lower mean arterial blood pressure (blood pressure) than the sham-operated rats. In contrast, in the metoprolol series denervated rats showed a significantly higher blood pressure than sham rats. There were no differences in blood pressure between denervated and sham rats in the losartan and indapamide series. In chronic studies, a 4-week treatment with metoprolol caused a decrease in blood pressure. Renal denervation and sham denervation performed 10 days after the onset of metoprolol treatment did not affect blood pressure. Denervated rats showed markedly reduced renal nerve tyrosine hydroxylase levels. In conclusion, renal denervation decreases blood pressure in hypertensive rats. The hypotensive action of metoprolol, indapamide, and losartan is not augmented by renal denervation, suggesting the absence of synergy between renal denervation and the drugs investigated in this study.

  9. Cardiovascular-renal and metabolic characterization of a rat model of polycystic ovary syndrome.

    PubMed

    Yanes, Licy L; Romero, Damian G; Moulana, Mohaddetheh; Lima, Roberta; Davis, Deborah D; Zhang, Huimin; Lockhart, Rachel; Racusen, Lorraine C; Reckelhoff, Jane F

    2011-04-01

    Polycystic ovary syndrome (PCOS) is the most common reproductive dysfunction in premenopausal women. PCOS is also associated with increased risk of cardiovascular disease when PCOS first occurs and later in life. Hypertension, a common finding in women with PCOS, is a leading risk factor for cardiovascular disease. The mechanisms responsible for hypertension in women with PCOS have not been elucidated. This study characterized the cardiovascular-renal consequences of hyperandrogenemia in a female rat model. Female Sprague-Dawley rats (aged 4-6 weeks) were implanted with dihydrotestosterone or placebo pellets lasting 90 days. After 10 to 12 weeks, blood pressure (by radiotelemetry), renal function (glomerular filtration rate, morphology, protein, and albumin excretion), metabolic parameters (plasma insulin, glucose, leptin, cholesterol, and oral glucose tolerance test), inflammation (plasma tumor necrosis factor-α), oxidative stress (mRNA expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, p22(phox), p47(phox), gp91(phox), and NOX4), nitrate/nitrite excretion and mRNA expression of components of the renin-angiotensin system (angiotensinogen, angiotensin-I-converting enzyme [ACE], and AT1 receptor) were determined. Plasma dihydrotestosterone increased 3-fold in hyperandrogenemic female (HAF) rats, whereas plasma estradiol levels did not differ compared with control females. HAF rats exhibited estrus cycle dysfunction. They also had increased food intake and body weight, increased visceral fat, glomerular filtration rate, renal injury, insulin resistance and metabolic dysfunction, oxidative stress, and increased expression of angiotensinogen and ACE and reduced AT1 receptor expression. The HAF rat is a unique model that exhibits many of the characteristics of PCOS in women and is a useful model to study the mechanisms responsible for PCOS-mediated hypertension. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  10. Fish oil supplementation reduces cachexia and tumor growth while improving renal function in tumor-bearing rats.

    PubMed

    Coelho, Isabela; Casare, Fernando; Pequito, Danielle C T; Borghetti, Gina; Yamazaki, Ricardo K; Brito, Gleisson A P; Kryczyk, Marcelo; Fernandes, Luiz Claudio; Coimbra, Terezila M; Fernandez, Ricardo

    2012-11-01

    The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FE(Na+)) of FO rats was similar to C. Proximal Na(+) reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B(2) (TXB(2)) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.

  11. Deuterated methoxyflurane anesthesia and renal function in Fischer 344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baden, J.M.; Rice, S.A.; Mazze, R.I.

    1982-03-01

    Inorganic fluoride (F-) production and renal function were assessed in six groups of Fischer 344 rats administered either methoxyflurane (MOF) or deuterated methoxyflurane (d4-MOF). One untreated and one phenobarbital (PB)-treated group were exposed for two hours to either air, 0.5 per cent (V/v) MOF, or 0.5 per cent (v/v) d4-MOF. Serum and urinary F- and serum urea nitrogen and creatinine were measured. Urine volume and urinary F- excretion were only slightly greater among MOF than among d4-MOF exposed animals. Pretreatment with PB, however, greatly enhanced F- production in MOF-exposed animals leading to marked renal impairment but only slightly enhanced F-more » production in d4-MOF animals leading to mild renal impairment. Thus, only in PB-pretreated animals could a biologically significant difference in nephrotoxicity be demonstrated for MOF and d4-MOF.« less

  12. Antiurolithiatic Effect of Sirupeelai Samoola Kudineer: A Polyherbal Siddha Decoction on Ethylene Glycol-induced Renal Calculus in Experimental Rats

    PubMed Central

    Vasanthi, A. Hannah Rachel; Muthulakshmi, V.; Gayathri, V.; Manikandan, R.; Ananthi, S.; Kuruvilla, Sarah

    2017-01-01

    Background: Sirupeelai Samoola Kudineer (SK), a polyherbal decoction containing four medicinal plants has been used in Siddha system of medicine, practiced in Southern parts of India for the management of urolithiasis. Objective: The present study is carried out to scientifically validate the traditional claim and to study the mechanism of action of the drug. Materials and Methods: In the present study, anti-urolithiatic effect of SK was evaluated in Sprague-Dawley rats using ethylene glycol through drinking water and intraperitoneal injection of sodium oxalate. Renal damage was confirmed by the increased production of thiobarbituric acid reactive substance (TBARS). Results: Co-treatment with SK to urolithiatic rats for 21 days significantly prevented the elevation of renal and urinary stone biomarkers in plasma and renal tissue thereby preventing renal damage and the formation of renal calculi. Administration of SK at all doses and cystone restored the antioxidant (glutathione) levels by preventing the elevation of TBARS in the kidney tissue, which was further confirmed by histological sections. Conclusions: SK treatment promotes diuresis which leads to flushing of the renal stones and maintains the alkaline environment in the urinary system which probably mediates the antilithiatic activity. SK provides structural and functional protection to the kidneys by enhancing its physiological function against stone formation and validates its clinical use. SUMMARY SK exhibited antilithiatic and diuretic potential in ethylene glycol and sodium oxalate induced urolithiasis in ratsElevated urinary stone markers (Calcium, oxalate, uric acid, magnesium and phosphates) in plasma and renal tubular enzymes (LDH, GGT, ALP, AST ALT) in urolithiatic rats were reversed by SK treatmentSK administration significantly reduced the level of renal stress markers like Urea, Creatinine, LPO and elevated SOD, GPx, GSH levels aiding in nephroprotectionSK also provides structural and

  13. CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IN A RAT MODEL OF HEREDITARY RENAL CELL CARCINOMA

    EPA Science Inventory

    Carcinogenicity of Individual and a Mixture of Drinking Water Disinfection By-Products in a Rat Model of Hereditary Renal Cell Carcinoma

    Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 (Tsc2) gene and are ligh...

  14. PHARMACOLOGIC PROBING OF AMPHOTERICIN B-INDUCED RENAL DYSFUNCTION IN THE NEONATAL RAT

    EPA Science Inventory

    Pharmacologic Probing of Amphotericin B-Induced Renal Dysfunction in the Neonatal Rat. Gray, J.A., and Kavlock, R.J. (1988). Toxicol. Appl. Pharmacol. 93, 360-368. Acetazolamide, furosemide, chlorothiazide, and amiloride pharmacologic agents that act primarily in the proximal tub...

  15. The effect of the degree of left renal vein constriction on the development of adolescent varicocele in Sprague-Dawley rats.

    PubMed

    Yao, Bing; Zhou, Wen-Liang; Han, Da-Yu; Ouyang, Bin; Chen, Xu; Chen, Sheng-Fu; Deng, Chun-Hua; Sun, Xiang-Zhou

    2016-01-01

    Experimental models have allowed inquiry into the pathophysiology of varicocele (VC) beyond that possible with human patients. A randomized controlled study in rats was designed to clarify the influence of the degree of left renal vein constriction on the development of adolescent VC. Fifty adolescent male Sprague-Dawley rats (Rattus norvegicus) were randomly assigned to five groups of 10: the experimental groups (I-IV) underwent partial ligation of left renal veins with 0.5-, 0.6-, 0.7-, and 0.8-mm diameter needles, respectively. The control group (V) underwent a sham operation. The diameter of the left spermatic vein (LSV) was measured at baseline and 30 days postoperatively. In addition, the lesion of the left kidney was examined with the naked eye and assessed by Masson's trichrome staining. VC was successfully induced in 2 (20%), 4 (40%), 7 (70%), and 10 (100%) rats in groups I-IV, respectively. The other rats failed to develop VCs primarily due to left renal atrophy. No VC was observed in group V. The postsurgical LSV diameters in VC rats in groups III and IV were 1.54 ± 0.16 and 1.49 ± 0.13 mm, respectively (P > 0.05), and their increments were 1.36 ± 0.10 and 1.31 ± 0.10 mm, respectively (P > 0.05). These results suggest that suitable constriction of the left renal vein is critical for adolescent VC development. In addition, the 0.8-mm diameter needle may be more suitable for inducing left renal vein constriction in adolescent rat models.

  16. Arctigenin suppresses renal interstitial fibrosis in a rat model of obstructive nephropathy.

    PubMed

    Li, Ao; Zhang, Xiaoxun; Shu, Mao; Wu, Mingjun; Wang, Jun; Zhang, Jingyao; Wang, Rui; Li, Peng; Wang, Yitao

    2017-07-01

    Renal tubulointerstitial fibrosis (TIF) is commonly the final result of a variety of progressive injuries and leads to end-stage renal disease. There are few therapeutic agents currently available for retarding the development of renal TIF. The aim of the present study is to evaluate the role of arctigenin (ATG), a lignan component derived from dried burdock (Arctium lappa L.) fruits, in protecting the kidney against injury by unilateral ureteral obstruction (UUO) in rats. Rats were subjected to UUO and then administered with vehicle, ATG (1 and 3mg/kg/d), or losartan (20mg/kg/d) for 11 consecutive days. The renoprotective effects of ATG were evaluated by histological examination and multiple biochemical assays. Our results suggest that ATG significantly protected the kidney from injury by reducing tubular dilatation, epithelial atrophy, collagen deposition, and tubulointerstitial compartment expansion. ATG administration dramatically decreased macrophage (CD68-positive cell) infiltration. Meanwhile, ATG down-regulated the mRNA levels of pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ), in the obstructed kidneys. This was associated with decreased activation of nuclear factor κB (NF-κB). ATG attenuated UUO-induced oxidative stress by increasing the activity of renal manganese superoxide dismutase (SOD2), leading to reduced levels of lipid peroxidation. Furthermore, ATG inhibited the epithelial-mesenchymal transition (EMT) of renal tubules by reducing the abundance of transforming growth factor-β1 (TGF-β1) and its type I receptor, suppressing Smad2/3 phosphorylation and nuclear translocation, and up-regulating Smad7 expression. Notably, the efficacy of ATG in renal protection was comparable or even superior to losartan. ATG could protect the kidney from UUO-induced injury and fibrogenesis by suppressing inflammation, oxidative

  17. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats.

    PubMed

    Saberi, Shadan; Dehghani, Aghdas; Nematbakhsh, Mehdi

    2016-01-01

    The angiotensin 1-7 (Ang 1-7), is abundantly produced in kidneys and antagonizes the function of angiotensin II through Mas receptor (MasR) or other unknown mechanisms. In the current study, the role of MasR and steroid hormone estrogen on renal blood flow response to Ang 1-7 administration was investigated in ovariectomized (OV) female rats. OV female Wistar-rats received estradiol (500 μg/kg/week) or vehicle for two weeks. In the day of the experiment, the animals were anesthetized, cannulated, and the responses including mean arterial pressure, renal blood flow (RBF), and renal vascular resistance at the constant level of renal perfusion pressure to graded infusion of Ang 1-7 at 0, 100 and 300 ng/kg/min were determined in OV and OV estradiol-treated (OVE) rats, treated with vehicle or MasR antagonist; A779. RBF response to Ang 1-7 infusion increased dose-dependently in vehicle (Pdose <0.001) and A779-treated (Pdose <0.01) animals. However, when MasR was blocked, the RBF response to Ang 1-7 significantly increased in OV animals compared with OVE rats (P<0.05). When estradiol was limited by ovariectomy, A779 increased RBF response to Ang 1-7 administration, while this response was attenuated in OVE animals.

  18. Gender Difference in Renal Blood Flow Response to Angiotensin II Administration after Ischemia/Reperfusion in Rats: The Role of AT2 Receptor.

    PubMed

    Maleki, Maryam; Nematbakhsh, Mehdi

    2016-01-01

    Background. Renal ischemia/reperfusion (I/R) is one of the major causes of kidney failure, and it may interact with renin angiotensin system while angiotensin II (Ang II) type 2 receptor (AT2R) expression is gender dependent. We examined the role of AT2R blockade on vascular response to Ang II after I/R in rats. Methods. Male and female rats were subjected to 30 min renal ischemia followed by reperfusion. Two groups of rats received either vehicle or AT2R antagonist, PD123319. Mean arterial pressure (MAP), and renal blood flow (RBF) responses were assessed during graded Ang II (100, 300, and 1000 ng/kg/min, i.v.) infusion at controlled renal perfusion pressure (RPP). Results. Vehicle or antagonist did not alter MAP, RPP, and RBF levels significantly; however, 30 min after reperfusion, RBF decreased insignificantly in female treated with PD123319 (P = 0.07). Ang II reduced RBF and increased renal vascular resistance (RVR) in a dose-related fashion (P dose < 0.0001), and PD123319 intensified the reduction of RBF response in female (P group < 0.005), but not in male rats. Conclusion. The impact of the AT2R on vascular responses to Ang II in renal I/R injury appears to be sexually dimorphic. PD123319 infusion promotes these hemodynamic responses in female more than in male rats.

  19. Renovascular hypertension in spontaneous hypertensive rats: an experimental model of renal artery stenosis superimposed on essential hypertension.

    PubMed

    Rosenthal, T; Bass, A; Grossman, E; Shani, M; Griffel, B; Adar, R

    1987-09-01

    Renovascular hypertension superimposed on essential hypertension, a condition encountered in the elderly, was studied. An experimental animal model consisting of a two-kidney one-clip Goldblatt preparation in the spontaneous hypertensive (SHR) rat, that would simulate this condition, was designed. A 0.25 mm silver clip was placed on the left renal artery of SHR male rats. The same procedure performed on WKY rats served as control. All experiments were performed on low, normal, and rich sodium diet. Systolic blood pressure (BP) was measured by tail-cuff method. Plasma renin concentration (PRC) was determined before and after clipping of the renal artery. Results were as follows: Mean systolic BP increased significantly in clipped rats fed with normal and rich sodium diets. SHR showed an increase from 144 +/- 3 (mean + s.e.m.) to 168 +/- 3 mmHg, and WKY rats showed an increase from 120 +/- 2 to 139 +/- 5 mmHg. There was a two- to threefold rise in PRC. A low-salt diet given prior to clipping prevented the appearance of renovascular hypertension despite a significant rise in PRC. We concluded that renal artery narrowing plays a significant role in the rise of BP in the basically essential type of hypertension.

  20. Protective effects of a natural herbal compound quercetin against snake venom-induced hepatic and renal toxicities in rats.

    PubMed

    Al-Asmari, Abdulrahman K; Khan, Haseeb A; Manthiri, Rajamohamed A; Al-Khlaiwi, Ahmad A; Al-Asmari, Bayan A; Ibrahim, Khalid E

    2018-05-08

    Echis pyramidum is a highly poisonous viper snake. Previous studies have shown acute phase hepatic and renal toxicities of Echis pyramidum venom (EPV) in rats. This study reports the protective effects of a natural herbal compound quercetin (QRC) on EPV-induced hepatic and renal toxicities in rats. A singly injection of EPV (4.76 mg/kg) caused significant increase in serum biomarkers of liver and kidney function. Pre-treatment of QRC (10 mg/kg) significantly reduced the toxic effects of EPV on functional impairment in liver and kidneys of rats. Administration of QRC also reversed EPV-induced increase in lipid peroxidation and decrease in total thiols. The histopathology of liver showed fat accumulation, focal degeneration and cytoplasmic vacuolation of hepatocytes in EPV treated rats. EPV also caused renal tubular dilation and focal atrophy of glomerular tufts in rat kidneys. Administration of QRC prevented EPV-induced structural tissue damage in liver and kidneys of rats. In conclusion, QRC significantly inhibited the acute phase toxic effects of EPV on liver and kidneys of rats by preventing the oxidative stress in these organs. QRC is also known for its anti-inflammatory, anti-edema, anti-hemorrhagic and PLA2-inhibitory properties and therefore may be regarded as a multi-action antidote against snake venom toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  2. The role of angiotensin II in the renal responses to somatic nerve stimulation in the rat.

    PubMed Central

    Handa, R K; Johns, E J

    1987-01-01

    1. Electrical stimulation of the brachial nerves at 3 Hz (15 V, 0.2 ms), in sodium pentobarbitone-anaesthetized rats whose renal arterial pressure was held constant, elicited a 26% increase in systemic blood pressure, a 15% rise in heart rate, an 11% reduction in renal blood flow, did not alter glomerular filtration rate and significantly reduced absolute and fractional sodium excretions and urine flow by 44, 49 and 31%, respectively. 2. In a separate group of rats, brachial nerve stimulation at 3 Hz increased plasma renin activity approximately 2-fold, while in animals in which the brachial nerves were not stimulated plasma renin activity did not change. 3. Following inhibition of the renin-angiotensin system with captopril or sar-1-ile-8-angiotensin II, brachial nerve stimulation resulted in similar increases in systemic blood pressure and heart rate as in the animals with an intact renin-angiotensin system but, in captopril-infused rats, did not change renal haemodynamics or urine flow while absolute and fractional sodium excretions were reduced by 20 and 25%, respectively. In sar-1-ile-8-angiotensin II-infused animals, similar nerve stimulation decreased renal blood flow by 12%, glomerular filtration rate by 7% and absolute and fractional sodium excretions and urine flow by 25, 18 and 18%, respectively. These decreases in sodium and water output were significantly smaller than those observed in animals with an intact renin-angiotensin system. 4. Stimulation of the brachial nerves increased post-ganglionic efferent renal nerve activity by 20% and the magnitude of this response was unaffected following inhibition of the renin-angiotensin system. 5. The results show that low rates of brachial nerve stimulation in the rat can increase efferent renal nerve activity and result in an antinatriuresis and antidiuresis which is dependent on the presence of angiotensin II, and appears to be due to an action of angiotensin II at the level of the kidney. PMID:3328780

  3. Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia

    PubMed Central

    Johannes, Tanja; Mik, Egbert G; Nohé, Boris; Raat, Nicolaas JH; Unertl, Klaus E; Ince, Can

    2006-01-01

    Introduction Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (μPO2) and oxygen consumption (VO2,ren), that endotoxemia is associated with a diminished kidney function, that fluid resuscitation can restore μPO2, VO2,ren and kidney function, and that colloids are more effective than crystalloids. Methods Male Wistar rats received a one-hour intravenous infusion of lipopolysaccharide, followed by resuscitation with HES130/0.4 (Voluven®), HES200/0.5 (HES-STERIL® ® 6%) or Ringer's lactate. The renal μPO2 in the cortex and medulla and the renal venous PO2 were measured by a recently published phosphorescence lifetime technique. Results Endotoxemia induced a reduction in renal blood flow and anuria, while the renal μPO2 and VO2,ren remained relatively unchanged. Resuscitation restored renal blood flow, renal oxygen delivery and kidney function to baseline values, and was associated with oxygen redistribution showing different patterns for the different compounds used. HES200/0.5 and Ringer's lactate increased the VO2,ren, in contrast to HES130/0.4. Conclusion The loss of kidney function during endotoxemia could not be explained by an oxygen deficiency. Renal oxygen redistribution could for the first time be demonstrated during fluid resuscitation. HES130/0.4 had no influence on the VO2,ren and restored renal function with the least increase in the amount of renal work. PMID:16784545

  4. Activation of Nrf2/HO-1 Pathway by Glycogen Synthase Kinase-3β Inhibition Attenuates Renal Ischemia/Reperfusion Injury in Diabetic Rats.

    PubMed

    Shen, Xiaohua; Hu, Bo; Xu, Guangtao; Chen, Fengjuan; Ma, Ruifen; Zhang, Nenghua; Liu, Jie; Ma, Xiaoqin; Zhu, Jia; Wu, Yuhong; Shen, Ruilin

    2017-01-01

    Diabetes mellitus can exacerbate renal ischemia-reperfusion (I/R) injury (RI/RI). The aim of the present study was to evaluate the protective effect of GSK-3β inhibition (TDZD-8) on I/R-induced renal injury through the Nrf2/HO-1 pathway in a streptozocin (STZ)-induced diabetic rat model. STZ-induced diabetic rats preconditioned with TDZD-8 and ZnPP were subjected to renal I/R. The extent of renal morphologic lesions. Renal function was assessed from blood urea nitrogen (BUN) and serum creatinine (Scr), as determined utlizing commercial kits. Oxidative stress and inflammatory activity in the kidney tissue was estimated from levels of malondialdehyde (MDA), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the activities of superoxide dismutase (SOD) and glutathione (GSH) using qRT-PCR and ELISA. The expressions of Nrf2, HO-1, Bcl-2 and NF-κB in the renal tissue were measured by qRT-PCR and western blotting. I/R-induced renal inflammation was reduced significantly by TDZD-8 pretreatment. Preconditioning with TDZD-8 suppressed NF-κB expression and enhanced Bcl-2 expression in the renal tissue. The upregulated level of malondialdehyde (MDA), and reduced activities of superoxide dismutase (SOD) and glutathione (GSH) in I/R-shocked rats were markedly restored by TDZD-8 pretreatment. Furthermore, pretreatment with TDZD-8 enhanced activation of the Nrf2/HO-1 pathway in the renal tissue of diabetic RI/RI rats. These findings suggest that preconditioning with TDZD-8 may protect the kidney from I/R-induced damage via the activation of the Nrf2/HO-1 pathway in STZ-induced diabetic rats. Further detailed studies are needed to further clarify the underlying mechanisms. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Activation of adenosine receptors improves renal antioxidant status in diabetic Wistar but not SHR rats

    PubMed Central

    Patinha, Daniela; Afonso, Joana; Sousa, Teresa; Albino-Teixeira, António

    2014-01-01

    Background Diabetes and hypertension independently contribute to renal injury, and the major mechanisms involved are increased reactive oxygen species (ROS) bioavailability and renin-angiotensin system (RAS) activation. We investigated the role of adenosine in controlling ROS production and RAS activation associated with renal dysfunction in hypertension and diabetes. Methods Fourteen days after induction of diabetes with streptozotocin in 12-week-old male Wistar and spontaneously hypertensive (SHR) rats, animals were treated during 7 days with 2-chloroadenosine (CADO group, 5 mg/kg/d), a stable analogue of adenosine, or underwent a sham operation procedure. At the end of the study (day 21), intra-arterial systolic blood pressure (SBP) was measured, and 24-h urine and plasma samples and renal tissue were collected. Results CADO treatment decreased the plasma glucose concentration and glucose and protein excretion by more than 30% in both strains. CADO treatment decreased SBP in diabetic SHR rats (143 ± 8 versus 114 ± 4 mmHg, p < 0.05), but not in diabetic Wistar rats. The hypotensive effect of CADO was associated to a ∼70% increase in plasma angiotensinogen (AGT) concentration and a ∼50% decrease in urinary AGT excretion. CADO also caused a decrease in medullary and cortical hydrogen peroxide production of about 40%, which was associated with a proportional increase in glutathione peroxidase (GPx) activity in diabetic Wistar but not in diabetic SHR animals. Conclusions These results suggest that activation of adenosine receptors improves renal antioxidant capacity in diabetic Wistar but not SHR rats, although it improves glucose metabolism in both strains. Furthermore, activation of adenosine receptors does not seem to be directly influencing AGT production. PMID:24195577

  6. Evaluation of anti-urolithiatic activity of Pashanabhedadi Ghrita against experimentally induced renal calculi in rats

    PubMed Central

    Gupta, Sanjay Kumar; Baghel, Madhav Singh; Bhuyan, Chaturbhuja; Ravishankar, B.; Ashok, B. K.; Patil, Panchakshari D.

    2012-01-01

    Population in an industrialized world is afflicted by urinary stone disease. Kidney stones are common in all kinds of urolithiasis. One distinguished formulation mentioned by Sushruta for management of Ashmari (urolithiasis) is Pashanabhedadi Ghrita (PBG), which is in clinical practice since centuries. Validation of drug is the requirement of time through the experimental study. In this study, trial of PBG has been made against ammonium oxalate rich diet and gentamicin injection induced renal calculi in albino rats. The calculi were induced by gentamicin injection and ammonium oxalate rich diet. Test drug was administered concomitantly in the dose of 900 mg/kg for 15 consecutive days. Rats were sacrificed on the 16th day. Parameters like kidney weight, serum biochemical, kidney tissue and histopathology of kidney were studied. Concomitant treatment of PBG attenuates blood biochemical parameters non-significantly, where as it significantly attenuated lipid peroxidation and enhanced glutathione and glutathione peroxidase activities. It also decreased crystal deposition markedly into the renal tubules in number as well as size and prevented damage to the renal tubules. The findings showed that PBG is having significant anti-urolithiatic activities against ammonium oxalate rich diet plus gentamicine injection induced urolithiasis in rats. PMID:23723654

  7. Evaluation of anti-urolithiatic activity of Pashanabhedadi Ghrita against experimentally induced renal calculi in rats.

    PubMed

    Gupta, Sanjay Kumar; Baghel, Madhav Singh; Bhuyan, Chaturbhuja; Ravishankar, B; Ashok, B K; Patil, Panchakshari D

    2012-07-01

    Population in an industrialized world is afflicted by urinary stone disease. Kidney stones are common in all kinds of urolithiasis. One distinguished formulation mentioned by Sushruta for management of Ashmari (urolithiasis) is Pashanabhedadi Ghrita (PBG), which is in clinical practice since centuries. Validation of drug is the requirement of time through the experimental study. In this study, trial of PBG has been made against ammonium oxalate rich diet and gentamicin injection induced renal calculi in albino rats. The calculi were induced by gentamicin injection and ammonium oxalate rich diet. Test drug was administered concomitantly in the dose of 900 mg/kg for 15 consecutive days. Rats were sacrificed on the 16(th) day. Parameters like kidney weight, serum biochemical, kidney tissue and histopathology of kidney were studied. Concomitant treatment of PBG attenuates blood biochemical parameters non-significantly, where as it significantly attenuated lipid peroxidation and enhanced glutathione and glutathione peroxidase activities. It also decreased crystal deposition markedly into the renal tubules in number as well as size and prevented damage to the renal tubules. The findings showed that PBG is having significant anti-urolithiatic activities against ammonium oxalate rich diet plus gentamicine injection induced urolithiasis in rats.

  8. Effect of kefir and low-dose aspirin on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet.

    PubMed

    Kanbak, Güngör; Uzuner, Kubilay; Kuşat Ol, Kevser; Oğlakçı, Ayşegül; Kartkaya, Kazım; Şentürk, Hakan

    2014-01-01

    Abstract We aim to study the effect of low-dose aspirin and kefir on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet. Forty adult male Sprague-Dawley rats were divided into five groups: control, high-salt (HS) (8.0% NaCl), HS+aspirin (10 mg/kg), HS+kefir (10.0%w/v), HS+aspirin +kefir. We measured sistolic blood pressure (SBP), mean arterial pressure (MAP), diastolic pressure, pulse pressure in the rats. Cathepsin B, L, DNA fragmentation and caspase-3 activities were determined from rat kidney tissues and rats clearance of creatinine calculated. Although HS diet increased significantly SBP, MAP, diastolic pressure, pulse pressure parameters compared the control values. They were not as high as accepted hypertension levels. When compared to HS groups, kefir groups significantly decrease Cathepsin B and DNA fragmentation levels. Caspase levels were elevated slightly in other groups according to control group. While, we also found that creatinine clearance was higher in HS+kefir and HS+low-dose aspirin than HS group. Thus, using low-dose aspirin had been approximately decreased of renal function damage. Kefir decreased renal function damage playing as Angiotensin-converting enzyme inhibitor. But, low-dose aspirin together with kefir worsened rat renal function damage. Cathepsin B might play role both apoptosis and prorenin-processing enzyme. But not caspase pathway may be involved in the present HS diet induced apoptosis. In conclusion, kefir and low-dose aspirin used independently protect renal function and renal damage induced by HS diet in rats.

  9. Spleen tyrosine kinase contributes to acute renal allograft rejection in the rat

    PubMed Central

    Ramessur Chandran, Sharmila; Tesch, Greg H; Han, Yingjie; Woodman, Naomi; Mulley, William R; Kanellis, John; Blease, Kate; Ma, Frank Y; Nikolic-Paterson, David J

    2015-01-01

    Kidney allografts induce strong T-cell and antibody responses which mediate acute rejection. Spleen tyrosine kinase (Syk) is expressed by most leucocytes, except mature T cells, and is involved in intracellular signalling following activation of the Fcγ-receptor, B-cell receptor and some integrins. A role for Syk signalling has been established in antibody-dependent native kidney disease, but little is known of Syk in acute renal allograft rejection. Sprague–Dawley rats underwent bilateral nephrectomy and received an orthotopic Wistar renal allograft. Recipient rats were treated with a Syk inhibitor (CC0482417, 30 mg/kg/bid), or vehicle, from 1 h before surgery until being killed 5 days later. Vehicle-treated recipients developed severe allograft failure with marked histologic damage in association with dense leucocyte infiltration (T cells, macrophages, neutrophils and NK cells) and deposition of IgM, IgG and C3. Immunostaining identified Syk expression by many infiltrating leucocytes. CC0482417 treatment significantly improved allograft function and reduced histologic damage, although allograft injury was still clearly evident. CC0482417 failed to prevent T-cell infiltration and activation within the allograft. However, CC0482417 significantly attenuated acute tubular necrosis, infiltration of macrophages and neutrophils and thrombosis of peritubular capillaries. In conclusion, this study identifies a role for Syk in acute renal allograft rejection. Syk inhibition may be a useful addition to T-cell-based immunotherapy in renal transplantation. PMID:25529862

  10. Antibody and complement reduce renal hemodynamic function in isolated perfused rat kidney.

    PubMed

    Jocks, T; Zahner, G; Helmchen, U; Kneissler, U; Stahl, R A

    1996-01-01

    To evaluate the effect of antibody and complement on renal hemodynamic changes, glomerular injury was induced in isolated perfused kidneys by an anti-thymocyte antibody (ATS) and rat serum (RS). Glomerular filtration rate (GFR), renal vascular resistance (RVR), and renal perfusate flow (RPF) were assessed over an 80-min period. The possible role of thromboxane (Tx) was tested by the application of the Tx synthesis inhibitor UK-38485 and the Tx receptor blocker daltroban. Perfusion of kidneys with ATS and RS significantly reduced GFR at 10 min (control, 501 +/- 111; ATS + RS, 138 +/- 86 ml.g kidney-1.min-1, significance of F = 0.000) after RS. Similarly, RPF (ml.g kidney-1.min-1) fell from 19.2 +/- 1.8 to 6.1 +/- 2.0 (significance of F = 0.000), whereas RVR (mmHg.ml-1.g.min) increased threefold from 5.2 +/- 0.4 to 17.9 +/- 5.0 at 10 min. These changes were ameliorated by the pretreatment of the rats with daltroban and UK-38485. Addition of erythrocytes to the perfusate increased RVR and GFR, whereas RPF decreased compared with cell-free perfused kidneys. ATS and RS in this preparation also decrease GFR and RPF. The hemodynamic alterations appeared without changes in filtration fraction. Compared with untreated, perfused control kidneys, glomerular Tx formation was significantly increased in ATS and RS perfused kidneys. These data demonstrate that antibody and RS induce impairment of renal hemodynamics, which are mediated by increased Tx formation.

  11. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    PubMed

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  12. Role of Mas receptor antagonist (A779) in renal hemodynamics in condition of blocked angiotensin II receptors in rats.

    PubMed

    Mansoori, A; Oryan, S; Nematbakhsh, M

    2016-03-01

    The vasodilatory effect of angiotensin 1-7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/ KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal circulation.

  13. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    PubMed

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-07-01

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Spontaneous renal tumors suspected of being familial in sprague-dawley rats.

    PubMed

    Kudo, Kayoko; Hoshiya, Toru; Nakazawa, Tomomi; Saito, Tsubasa; Shimoyama, Natsumi; Suzuki, Isamu; Tamura, Kazutoshi; Seely, John Curtis

    2012-12-01

    Spontaneous renal tubule tumors (RTTs), with a distinctive morphological phenotype, were present in three Sprague-Dawley rats, 1 male and 2 females, out a total of 120 animals of each sex from untreated and placebo control groups in a 2-year carcinogenicity study. One female had one carcinoma, adenoma and hyperplasia, and the other female had five adenomas and many hyperplastic lesions; the male case had one carcinoma. From these cases, a biological continuum of hyperplasia, adenoma and carcinoma could be recognized. The tumors were present in the renal cortex and appeared as solid lobulated growths with occasional central necrosis. The lobules were divided by a small amount of fibrovascular tissue. Occasionally the larger tumors contained a cystic area. Tumor cells appeared distinctive and exhibited variable amounts of eosinophilic/amphophilic and vacuolated cytoplasm. Nuclei were round to oval with a prominent nucleolus. Mitotic figures were uncommon, and no distant metastasis was noted. The tumors were seen as multiple and bilateral lesions in two animals and had no apparent relationship to chronic progressive nephropathy (CPN). Foci of tubule hyperplasia were also noted to contain the same type of cellular morphology. The morphological and biological features of these 3 cases resembled the amphophilic-vacuolar (AV) variant of RTT that has been posited to be of familial origin. This is a report of spontaneous familial renal tumors in Sprague-Dawley rats from Japan.

  15. Frequency response of the renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-04-29

    The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.

  16. Effects of fosinopril and losartan on renal Klotho expression and oxidative stress in spontaneously hypertensive rats.

    PubMed

    Tang, Rong; Zhou, Qiaoling; Liu, Zhichun; Xiao, Zhou; Pouranan, Veeraragoo

    2011-01-01

    To explore effects of fosinopril and losartan on renal Klotho expression and oxidative stress in spontaneously hypertensive rats (SHR) and the mechanisms underlying the protection against renal damage. Fifteen male SHRs (22 weeks old) were randomly divided into 3 groups (n=5 in each group): a SHR group, a fosinopril group [10 mg/(kg.d)], and a losartan group [50 mg/(kg.d)]. Age-matched Wistar-Kyoto (WKY) rats were chosen for a control group. Eight weeks later, tail arterial pressure, 24 hours urinary protein (Upro),urinary N-acetyl-β-D-glucosaminidase (NAGase) were measured. Renal pathological changes were examined under light microscopy by HE staining. The renal mRNA and protein expression of Klotho were determined by RT-PCR, immunohistochemical staining or Western blot. The levels of total antioxidant capacity (TAOC), malondialdehyde (MDA), Cu/Zn superoxide dismutase (Cu/Zn-SOD), Mn superoxide dismutase (Mn-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were determined. The typical pathological characteristics of hypertensive renal damage were observed in the kidney of the SHR group.Compared with the SHR group, the systolic pressure, Upro, and urinary NAGase, the content of MDA and renal pathological damage was reduced while the renal Klotho expression and activities of TAOC, Cu/Zn-SOD, CAT, and GSH-Px were increased (P<0.05 or P<0.01) in the fosinopril or losartan group. There was no significant difference in renal Mn-SOD level among the 4 groups (P>0.05). Fosinopril and losartan can exert protection against hypertensive renal damage through upregulating Klotho expression as well as reducing oxidative stress.

  17. Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake.

    PubMed

    Ibarra, Mariano E; Albertoni Borghese, Maria F; Majowicz, Mónica P; Ortiz, María C; Loidl, Fabián; Rey-Funes, Manuel; Di Ciano, Luis A; Ibarra, Fernando R

    2017-03-01

    Under high sodium intake renal dopamine (DA) increases while NOS I expression in macula densa cells (MD) decreases. To explore whether renal DA and NOS I, linked to natriuresis and to the stability of the tubuloglomerular feedback, respectively, act in concert to regulate renal plasma flow (RPF) and glomerular filtration rate (GFR). Male Wistar rats were studied under a normal sodium intake (NS, NaCl 0.24%) or a high sodium intake (HS, NaCl 1% in drinking water) during the 5 days of the study. For the last two days, the specific D 1 -like receptor antagonist SCH 23390 (1 mg kg bwt -1  day -1 , sc) or a vehicle was administered. HS intake increased natriuresis, diuresis, and urinary DA while it decreased cortical NOS I expression ( P  < 0.05 vs. NS), Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in MD ( P  < 0.001 vs. NS) and cortical nitrates+nitrites (NOx) production (NS 2.04 ± 0.22 vs. HS 1.28 ± 0.10 nmol mg protein -1 , P  < 0.01). Treatment with SCH 23390 to rats on HS sharply decreased hydroelectrolyte excretion ( P  < 0.001 vs. HS) while NOS I expression, NADPH-d activity and NOx production increased ( P  < 0.05 vs. HS for NOS I and P  < 0.001 vs. HS for NADPH-d and NOx). SCH 23390 increased RPF and GFR in HS rats ( P  < 0.01 HS+SCH vs. HS). It did not cause variations in NS rats. Results indicate that when NS intake is shifted to a prolonged high sodium intake, renal DA through the D 1 R, and NOS I in MD cells act in concert to regulate RPF and GFR to stabilize the delivery of NaCl to the distal nephron. © 2017 Universidad De Buenos Aires. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats.

    PubMed

    Quesada, Andrés; Vargas, Félix; Montoro-Molina, Sebastián; O'Valle, Francisco; Rodríguez-Martínez, María Dolores; Osuna, Antonio; Prieto, Isabel; Ramírez, Manuel; Wangensteen, Rosemary

    2012-01-01

    This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p<0.011; r(2)>0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.

  19. Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging.

    PubMed

    Shimizu, Kazuhiro; Kosaka, Nobuyuki; Fujiwara, Yasuhiro; Matsuda, Tsuyoshi; Yamamoto, Tatsuya; Tsuchida, Tatsuro; Tsuchiyama, Katsuki; Oyama, Nobuyuki; Kimura, Hirohiko

    2017-01-10

    The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99m Tc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL-MRI as debated in brain imaging.

  20. Different reactivity to angiotensin II of peripheral and renal arteries in spontaneously hypertensive rats: effect of acute and chronic angiotensin converting enzyme inhibition

    NASA Technical Reports Server (NTRS)

    Guidi, E.; Hollenberg, N. K.

    1986-01-01

    We assessed renal blood flow and pressor responses to graded angiotensin II doses in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats ingesting a diet containing 1.6% sodium basally and after acute and chronic angiotensin converting enzyme (ACE) inhibition with captopril. In the basal state the pressor response to angiotensin II was enhanced (P<0.0005) and the renal vascular response was blunted (P<0.005) in SHR compared with WKY rats. After acute captopril administration the pressor response was enhanced in both strains, and the difference between them was maintained, while the renal vascular response was enhanced in both, but more in SHR, so that the renal vascular response in the SHR became larger than in WKY (P<0.0001). Chronic captopril treatment blunted both pressor and renal responses in WKY rats, but only the pressor response in SHR. The renal vessels of SHR seem to be different from those of WKY rats in reaction to exogenous angiotensin II, and in response to both acute administration of captopril (probably acting through blockade of angiotensin II production) and chronic administration of captopril (probably acting mainly through accumulation of kinin or production of prostaglandins).

  1. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    PubMed

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats. © 2014 American Heart Association, Inc.

  2. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  3. Study of renal and hepatic toxicity in rats supplemented with creatine.

    PubMed

    Baracho, Nilo Cesar do Vale; Castro, Letícia Pereira de; Borges, Niara da Cunha; Laira, Patrícia Benício

    2015-05-01

    To evaluate the renal and hepatic function, through biochemical analysis after 14 days of creatine supplementation in physically inactive rats. Twenty four male, adult, Wistar rats were used which were kept in individual metabolic cages and were distributed into four groups, and received the following treatments by gavage:1) CONTROL: distilled water; 2)Creatine 0.5g/Kg/day; 3) Creatine 1g/Kg/day; 4) Creatine 2g/Kg/day. Their urinary outputs as well as food and water intake were daily measured. At the end of the experiment, the animals were euthanized and serum samples were stored for biochemical analysis. Creatine supplementation at the doses given produced no significant changes in plasma levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, albumin, total cholesterol, HDL cholesterol, LDL cholesterol, VLDL cholesterol, triglycerides, glucose, creatinine, urea, and creatinine clearance, compared to control group (p> 0.05) Similarly, water and food intake, as well as urinary output, did not show significant changes among the four groups studied. At the doses used, oral creatine supplementation did not result in renal and/or hepatic toxicity.

  4. Effects of endothelin receptor antagonists on renal hemodynamics in angiotensin II-infused rats on high NaCl intake.

    PubMed

    Saeed, Aso; Dibona, Gerald F; Guron, Gregor

    2012-01-01

    The aim was to investigate effects of selective endothelin (ET) receptor antagonists on renal hemodynamics and dynamic renal blood flow autoregulation (RBFA) in angiotensin II (Ang II)-infused rats on a high NaCl intake. Sprague-Dawley rats received Ang II (250 ng/kg/min, s.c.) and an 8% NaCl diet for 14 days after which renal clearance experiments were performed. After baseline measurements animals were administered either: (a) saline vehicle; (b) ETA receptor antagonist BQ-123 (30 nmol/kg/min); (c) ETB receptor antagonist BQ-788 (30 nmol/kg/min); or (d) BQ-123 + BQ-788, for six consecutive 20-minute clearance periods. BQ-123 reduced arterial pressure (AP) and selectively increased outer medullary perfusion versus vehicle (p<0.05). These effects were attenuated or abolished by combined BQ-123 and BQ-788. BQ-788 reduced renal blood flow and increased renovascular resistance (p<0.05). Ang II-infused rats on high NaCl intake showed abnormalities in dynamic RBFA characterized by an impaired myogenic response that were not significantly affected by ET receptor antagonists. In hypertensive Ang II-infused rats on a high-NaCl intake selective ETA antagonism with BQ-123 reduced AP and specifically increased OM perfusion and these effects were dependent on intact ETB receptor stimulation. Furthermore, ET receptor antagonists did not attenuate abnormalities in dynamic RBFA. Copyright © 2012 S. Karger AG, Basel.

  5. Nephroprotective effects of b-carotene on ACE gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity in rats.

    PubMed

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2016-07-01

    β -carotene is one of carotenoid natural pigments, which are produced by plants and are accountable for the bright colors of various fruits and vegetables. These pigments have been widely studied for their ability to prevent chronic diseases and toxicities. This study was designed to evaluate the effects of β-carotene on angiotensin converting enzyme (ACE) gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity. Total 24 albino wistar rats of male sex (200-250gm) were divided into 6 groups as Group-1: The control remained untreated; Group-2: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks; Group-3: Received β-carotene orally (200mg/kg b.w), for 24 weeks; and Group-4: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks + received β-carotene orally (200mg/kg b.w), for further 12 weeks. The expression of ACE gene in thioacetamide induced renal toxicity in rats as well as supplemented with β-carotene was investigated and compared their level with control groups by using the quantitative RT-PCR method. The ACE gene expression was significantly increase in TAA rats as compare to control rats specifies that TAA induced changes in ACE gene of kidney, elevated renal ACE has been correlated with increase hypertensive end organ renal damage. The quantity of ACE gene were diminish in our rats who received β-Carotene after TAA is administered, for this reason they seemed to be defended against increased ACE levels in kidney bought by TAA. In pre- and post-treatment groups, we studied the role of β-Carotene against thioacetamide in the kidney of Wistar rats. Experimental confirmation from our study illustrates that β-Carotene can certainly work as a successful radical-trapping antioxidant our results proved that TAA injury increased lipid peroxidation and diminish antioxidant GSH, SOD and CAT in renal tissue. Since β-Carotene administration recover renal lipid peroxidation and antioxidants, it give the impression that

  6. Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats.

    PubMed

    Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum

    2016-07-01

    We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.

  7. Effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress.

    PubMed

    Bucioli, Sérvio A; de Abreu, Luiz Carlos; Valenti, Vitor E; Leone, Claudio; Vannucchi, Helio

    2011-12-20

    Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels. The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001). Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.

  8. Effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress

    PubMed Central

    2011-01-01

    Background Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress. Methods Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels. Results The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001). Conclusion Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress. PMID:22185374

  9. Effects of creatine supplementation on biomarkers of hepatic and renal function in young trained rats.

    PubMed

    Souza, William Marciel; Heck, Thiago Gomes; Wronski, Evanio Castor; Ulbrich, Anderson Zampier; Boff, Everton

    2013-11-01

    Creatine supplementation has been widely used by athletes and young physical exercise practioneers in order of increasing muscle mass and enhancing athletic performance, but their use/overuse may represent a health risk on hepatic and renal impaired function. In this study, we evaluated the effects of 40 days of oral creatine supplementation on hepatic and renal function biomarkers in a young animal model. Wistar rats (5 weeks old) were divided in five groups (n = 7): control (CONTR), oral creatine supplementation (CREAT), moderate exercise training (EXERC), moderate exercise training plus oral creatine supplementation (EXERC + CREAT) and pathological group (positive control for liver and kidney injury) by the administration of rifampicin (RIFAMPICIN). Exercise groups were submitted to 60 min/day of swimming exercise session with a 4% of body weight workload for six weeks. The EXERC + CREAT showed the higher body weight at the end of the training protocol. The CREAT and EXERC + CREAT group showed an increase in hepatic (Aspartate transaminase and gamma-glutamyl transpeptidase) and renal (urea and creatinine) biomarkers levels (p < 0.05). Our study showed that the oral creatine supplementation promoted hepatic and renal function challenge in young rats submitted to moderate exercise training.

  10. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved

  11. The influence of mutant lactobacilli on serum creatinine and urea nitrogen concentrations and renal pathology in 5/6 nephrectomized rats.

    PubMed

    Wang, Fang; Jiang, Yun-Sheng; Liu, Fang

    2016-10-01

    To explore the capacity of mutant lactobacilli to remove creatinine (Cr) and urea nitrogen (UN) via the gastrointestinal tract and its effects on renal pathology in the 5/6 nephrectomized rat model of chronic renal failure. Sixty Sprague-Dawley rats were randomly divided into a Sham group, a Model group, a wide-type Lactobacilli group (L.B group), and a Mutant Lactobacilli group (Mut-L.B group). The rats in the Model, LB and Mut-L.B groups underwent 5/6 nephrectomy. Eight weeks after administration, 24-h urine, orbital blood and digestive secretions were collected to analyze Cr and UN levels. Pathological changes in nephridial tissues were observed by hematoxylin and eosin and Masson trichrome staining, and the expression of TGF-β1 and FN was detected by immunohistochemistry. There were no significant differences in urinary Cr and UN levels among the Sham, L.B and Mut-L.B groups (p > .05), while serum and digestive Cr and UN levels were significantly decreased in the Mut-L.B group (p < .01). Furthermore, renal tubular injury and interstitial fibrosis were significantly reduced and TGF-β1 and FN expression was decreased (p < .05) in the Mut-L.B group. Mutant lactobacilli decreased serum Cr and UN levels, reduced the expression of TGF-β1 and FN in renal tissues and alleviated renal interstitial injury and fibrosis in a rat model of chronic renal failure in a mechanism that may involve decomposition and not just excretion of small molecule toxins in the gastrointestinal tract.

  12. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  13. [Effect of Cordyceps sinensis on the expression of HIF-1α and NGAL in rats with renal ischemia-reperfusion injury].

    PubMed

    Yu, Honglei; Zhou, Qiaoling; Huang, Renfa; Yuan, Mingxia; Ao, Xiang; Yang, Jinghua

    2012-01-01

    To observe the level of urinary neutrophil gelatinase-associated lipocalin (NGAL), the expression of hypoxia inducible factor-1α (HIF-1α) and NGAL in rat kidney after renal ischemia and reperfusion (I/R), before and after the treatment with Cordyceps Sinensis (C. sinensis), and to explore the mechanism of C. sinensis against I/R injury. A total of 45 healthy male Sprague-Dawley rats were randomly divided into a sham group, a renal I/R model group, and a C. sinensis group (15 in each group).The rats in the sham group and the renal I/R model group were intragastrically administered saline (2 mL/d), and rats in the treatment group were intragastricabby administered of C. sinensis [5.0 g/(kg.d)]. The rats were sacrificed at 24, 48, and 72 h, respectively after the reperfusion and urinary N-acetyl-β-D-glucosaminidase (NAG) level was measured, renal function in rats was detected, and the pathological changes were observed with HE staining. We determined the urinary NGAL levels in the rats by ELISA, the expression of HIF-1α mRNA by RT-PCR, and the expressions of HIF-1α and NGAL proteins by confocal immunofluorescence. Compared with the sham group, the levels of BUN, SCr, levels of NAG and NGAL in urine were increased in the I/R group and the C. sinensis group, reached a peak at 24 h after the reperfusion and slowly declined at 48 and 72 h. Glomerular and tubulointerstitial areas in the sham group did not show any pathological change. Induced pathological changes included tubular cell necrosis, focal areas of proximal tubular dilation, distal tubular casts, effacement and loss of proximal tubule brush border, etc. Compared with the sham group, the expression of HIF-1α and NGAL in the kidney tissues of the I/R group and the C. sinensis group increased. C. sinensis can lower the level of NAG and NGAL in the urine and the expression of NGAL protein in the kidney tissues. It up-regulated the expression of HIF-1α mRNA and protein in the kidney tissues whilst attenuated

  14. POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMOR IS INDEPENDENT OF CODING REGION MUTATIONS IN THE VON HIPPEL- LINDAU GENE

    EPA Science Inventory

    Potassium bromate (KBr03) is a rat renal carcinogen and a major drinking water disinfection by-product from ozonization. While KBr03 is a human nephro- and neuro-toxicant, its carcinogenicity in humans is unknown. Clear cell renal tumors, the common form of human renal carcinomas...

  15. Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Zong, Zhi-Hong; Du, Zhen-Xian; Li, De-Tian; Wang, Hua-Qin; Liu, Bo; Miao, Jia-Ning; Bian, Xiao-Hui

    2015-01-01

    BAG3 regulates a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, and epithelial-mesenchymal transition (EMT). However, the role of BAG3 in renal tubular EMT and renal interstitial fibrosis remains elusive. This study aimed to examine the dynamic expression of BAG3 during renal fibrosis, and to investigate the efficacy of Cordyceps sinensis (C. sinensis) on renal fibrosis. A rat model of unilateral ureteral obstruction (UUO) was established, and the expression of BAG3 and α-SMA, and the efficacy of C. sinensis on renal fibrosis induced by UUO were examined. The results showed that UUO led to collagen accumulation, which was significantly suppressed by C. sinensis. UUO increased the expression of BAG3 and α-SMA, a mesenchymal marker, while UUO induced BAG3 and α-SMA expression was significantly inhibited by C. sinensis. In addition, immunohistochemical staining demonstrated that BAG3 immunoreactivity was restricted to tubular epithelium. In conclusion, BAG3 is a potential target for the prevention and/or treatment of renal fibrosis, and C. Sinensis is a promising agent for renal fibrosis.

  16. Effect of monofluoroacetate on renal H+ excretion in the rat.

    PubMed

    Simonnet, H; Gauthier, C; Pellet, M V

    1979-05-01

    In order to investigate the effect of monofluoroacetate (MFA) on renal H+ excretion, anesthetized rats under mannitol diuresis were given intraperitoneally MFA and some of the acido-basic status parameters were determined. Urinary pH and pCO2 did not change after MFA administration, while urinary flow rate increased. MFA induced a decrease in H+ net excretion and in ammonia excretion. Titratable acidity did not change significantly within the experiment.

  17. Spontaneous Renal Tumors Suspected of Being Familial in Sprague-Dawley Rats

    PubMed Central

    Kudo, Kayoko; Hoshiya, Toru; Nakazawa, Tomomi; Saito, Tsubasa; Shimoyama, Natsumi; Suzuki, Isamu; Tamura, Kazutoshi; Seely, John Curtis

    2012-01-01

    Spontaneous renal tubule tumors (RTTs), with a distinctive morphological phenotype, were present in three Sprague-Dawley rats, 1 male and 2 females, out a total of 120 animals of each sex from untreated and placebo control groups in a 2-year carcinogenicity study. One female had one carcinoma, adenoma and hyperplasia, and the other female had five adenomas and many hyperplastic lesions; the male case had one carcinoma. From these cases, a biological continuum of hyperplasia, adenoma and carcinoma could be recognized. The tumors were present in the renal cortex and appeared as solid lobulated growths with occasional central necrosis. The lobules were divided by a small amount of fibrovascular tissue. Occasionally the larger tumors contained a cystic area. Tumor cells appeared distinctive and exhibited variable amounts of eosinophilic/amphophilic and vacuolated cytoplasm. Nuclei were round to oval with a prominent nucleolus. Mitotic figures were uncommon, and no distant metastasis was noted. The tumors were seen as multiple and bilateral lesions in two animals and had no apparent relationship to chronic progressive nephropathy (CPN). Foci of tubule hyperplasia were also noted to contain the same type of cellular morphology. The morphological and biological features of these 3 cases resembled the amphophilic-vacuolar (AV) variant of RTT that has been posited to be of familial origin. This is a report of spontaneous familial renal tumors in Sprague-Dawley rats from Japan. PMID:23345931

  18. Renal sodium transport in renin-deficient Dahl salt-sensitive rats

    PubMed Central

    Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V; Moreno, Carol; Staruschenko, Alexander

    2016-01-01

    Objective: The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Methods: Renin knockout (Ren−/−) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na+ transporters. Results: It has been described previously that Ren−/− rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na+/H+ exchanger involved in Na+ absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren−/− rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren−/− rats which was mediated via changes in the channel open probability. Conclusion: These data illustrate that renin deficiency leads to significant dysregulation of ion transporters. PMID:27443990

  19. Measurement of glomerulus diameter and Bowman's space width of renal albino rats.

    PubMed

    Kotyk, Taras; Dey, Nilanjan; Ashour, Amira S; Balas-Timar, Dana; Chakraborty, Sayan; Ashour, Ahmed S; Tavares, João Manuel R S

    2016-04-01

    Glomerulus diameter and Bowman's space width in renal microscopic images indicate various diseases. Therefore, the detection of the renal corpuscle and related objects is a key step in histopathological evaluation of renal microscopic images. However, the task of automatic glomeruli detection is challenging due to their wide intensity variation, besides the inconsistency in terms of shape and size of the glomeruli in the renal corpuscle. Here, a novel solution is proposed which includes the Particles Analyzer technique based on median filter for morphological image processing to detect the renal corpuscle objects. Afterwards, the glomerulus diameter and Bowman's space width are measured. The solution was tested with a dataset of 21 rats' renal corpuscle images acquired using light microscope. The experimental results proved that the proposed solution can detect the renal corpuscle and its objects efficiently. As well as, the proposed solution has the ability to manage any input images assuring its robustness to the deformations of the glomeruli even with the glomerular hypertrophy cases. Also, the results reported significant difference between the control and affected (due to ingested additional daily dose (14.6mg) of fructose) groups in terms of glomerulus diameter (97.40±19.02μm and 177.03±54.48μm, respectively). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    PubMed

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  1. Droxidopa, an oral norepinephrine precursor, improves hemodynamic and renal alterations of portal hypertensive rats.

    PubMed

    Coll, Mar; Rodriguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Brull, Astrid; Augustin, Salvador; Guardia, Jaime; Esteban, Rafael; Martell, María; Genescà, Joan

    2012-11-01

    We aimed to evaluate the effects of droxidopa (an oral synthetic precursor of norepinephrine) on the hemodynamic and renal alterations of portal hypertensive rats. Sham, portal vein-ligated (PVL), and 4-week biliary duct-ligated (BDL) rats received a single oral dose of droxidopa (25-50 mg/kg) or vehicle and hemodynamic parameters were monitored for 2 hours. Two groups of BDL and cirrhotic rats induced by carbon tetrachloride (CCl(4) ) were treated for 5 days with droxidopa (15 mg/kg, twice daily, orally); hemodynamic parameters and blood and urinary parameters were assessed. The droxidopa effect on the Rho kinase (RhoK) / protein kinase B (AKT) / endothelial nitric oxide synthase (eNOS) pathways was analyzed by western blot in superior mesenteric artery (SMA). The acute administration of droxidopa in PVL and BDL rats caused a significant and maintained increase in arterial pressure and mesenteric arterial resistance, with a significant decrease of mesenteric arterial and portal blood flow, without changing portal pressure and renal blood flow. Two-hour diuresis greatly increased. Carbidopa (DOPA decarboxylase inhibitor) blunted all effects of droxidopa. Chronic droxidopa therapy in BDL rats produced the same beneficial hemodynamic effects observed in the acute study, did not alter liver function parameters, and caused a 50% increase in 24-hour diuresis volume (7.4 ± 0.9 mL/100g in BDL vehicle versus 11.8 ± 2.5 mL/100g in BDL droxidopa; P = 0.01). Droxidopa-treated rats also showed a decreased ratio of p-eNOS/eNOS and p-AKT/AKT and increased activity of RhoK in SMA. The same chronic treatment in CCl(4) rats caused similar hemodynamic effects and produced significant increases in diuresis volume and 24-hour natriuresis (0.08 ± 0.02 mmol/100g in CCl(4) vehicle versus 0.23 ± 0.03 mmol/100g in CCl(4) droxidopa; P = 0.014). Droxidopa might be an effective therapeutic agent for hemodynamic and renal alterations of liver cirrhosis and should be tested in cirrhosis

  2. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    PubMed

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  3. Febuxostat Prevents Renal Interstitial Fibrosis by the Activation of BMP-7 Signaling and Inhibition of USAG-1 Expression in Rats.

    PubMed

    Cao, Jing; Li, Yong; Peng, Yingxian; Zhang, Yaqian; Li, Huanhuan; Li, Ran; Xia, Anzhou

    2015-01-01

    Renal interstitial fibrosis (RIF) is a common pathology associated with end-stage renal diseases. The activation of bone morphogenetic protein-7 (BMP-7)-Smad1/5/8 pathway seems to alleviate RIF. Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific BMPs antagonist, is associated with the development and prognosis of several renal diseases. Febuxostat is a xanthine oxidase inhibitor that can attenuate the renal dysfunction of patients. The purpose of this study was to investigate the effects of febuxostat on renal fibrosis and to clarify the mechanisms underlying these effects. Rats were randomly divided into 6 groups termed a sham-operated group, a unilateral ureteral obstruction (UUO) group, 3 doses of febuxostat groups (low, intermediate and high doses) and a sham group treated with high-dose febuxostat. After 14 days, renal function, relative kidney weight, accumulation of glycogen and collagens were examined by different methods. Expression of α-SMA, transforming growth factor-β1 (TGF-β1), BMP-7 and USAG-1 was detected by western blotting and RT-PCR, respectively. The phosphorylation level of Smad1/5/8 was also quantified by western blotting. The renal function was declined, and large amounts of glycogen and collagens were deposited in the kidneys of UUO rats compared with the rats in the sham group. Besides, expression of α-SMA and USAG-1 in these kidneys was elevated, and the TGF-β1 was also activated, while the BMP-7-Smad1/5/8 pathway was inhibited. Febuxostat reversed the changes stated earlier, exhibiting protective effects on RIF induced by UUO. Febuxostat was able to attenuate RIF caused by UUO, which was associated with the activation of BMP-7-Smad1/5/8 pathway and the inhibition of USAG-1 expression in the kidneys of UUO rats. © 2015 S. Karger AG, Basel.

  4. The renal effects of droxidopa are maintained in propranolol treated cirrhotic rats.

    PubMed

    Rodríguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Augustin, Salvador; Esteban, Rafael; Genescà, Joan; Martell, María

    2015-02-01

    Droxidopa improves hemodynamic and renal alterations of cirrhotic rats without changing portal pressure. We aimed to evaluate the effects of a combined treatment with droxidopa and non-selective beta-blockers or statins in order to decrease portal pressure, while maintaining droxidopa beneficial effects. Acute studies combining droxidopa with carvedilol, propranolol or atorvastatin in four-week bile-duct ligated (BDL) rats and a chronic study combining propranolol and droxidopa for 5 days in CCl4 -cirrhotic rats were performed. Hemodynamic values were registered and biochemical parameters from blood and urine samples analyzed. Bile-duct ligated rats treated with carvedilol + droxidopa showed no changes in mean arterial pressure (MAP) and portal pressure (PP) compared to vehicles. Atorvastatin + droxidopa combination also failed to reduce PP, but maintained the beneficial increase in MAP and superior mesenteric artery resistance (SMAR) and decrease in blood flow (SMABF) caused by droxidopa. In contrast, the acute administration of propranolol + droxidopa significantly reduced PP maintaining a mild increase in MAP and improving, in an additive way, the decrease in SMABF and increase in SMAR caused by droxidopa. This combination also preserved droxidopa diuretic effect. When chronically administered to CCl4 -cirrhotic rats, propranolol + droxidopa caused a decrease in PP, a significant reduction in SMABF and an increase in SMAR. The combination did not alter liver function and droxidopa diuretic and natriuretic effect, and even improved free water clearance. Droxidopa could be effective for the renal alterations of cirrhotic patients on propranolol therapy and the combination of both drugs may balance the adverse effects of each treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.

    PubMed

    Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

    2013-07-01

    Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.

  6. The small molecule probe PT-Yellow labels the renal proximal tubules in zebrafish.

    PubMed

    Sander, Veronika; Patke, Shantanu; Sahu, Srikanta; Teoh, Chai Lean; Peng, Zhenzhen; Chang, Young-Tae; Davidson, Alan J

    2015-01-01

    We report the development of a small fluorescent molecule, BDNCA3-D2, herein referred to as PT-Yellow. Soaking zebrafish embryos in PT-Yellow or intraperitoneal injection into adults results in non-toxic in vivo fluorescent labeling of the renal proximal tubules, the major site of blood filtrate reabsorption and a common target of injury in acute kidney injury. We demonstrate the applicability of this new compound as a rapid and simple readout for zebrafish kidney filtration and proximal tubule reabsorption function.

  7. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    PubMed

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences.

    PubMed

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L

    2015-01-01

    The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.

  9. Chronic Treatment with Atrial Natriuretic Peptide in Spontaneously Hypertensive Rats: Beneficial Renal Effects and Sex Differences

    PubMed Central

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A.; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L.

    2015-01-01

    Objective The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Results Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Conclusions Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes. PMID:25774801

  10. The effect of exposure of rats during prenatal period to radiation spreading from mobile phones on renal development.

    PubMed

    Bedir, Recep; Tumkaya, Levent; Şehitoğlu, İbrahim; Kalkan, Yıldıray; Yilmaz, Adnan; Şahin, Osman Zikrullah

    2015-03-01

    The aim of this study was to investigate the effects of exposure to a 900-MHz electromagnetic field (EMF) produced by mobile phones on the renal development of prenatal rats. Histopathological changes and apoptosis in the kidneys, together with levels of urea, creatinine and electrolyte in serum were determined. A total of 14 Sprague-Dawley rats were studied. Pregnant rats were divided into two equal groups: a control group and an EMF-exposed group. The study group was exposed to 900-MHz of EMF during the first 20 days of pregnancy, while the control group was unexposed to EMF. Sections obtained from paraffin blocks were stained for caspase-3 by immunohistochemistry, hematoxylin-eosin and Masson's trichrome. Mild congestion and tubular defects, and dilatation of Bowman's capsule were observed in the kidney tissues of rats in the exposed group. Apoptosis was evaluated using anti-caspase-3; stronger positive staining was observed in the renal tubular cells in the study group than those of the control group. Although there was a significant difference between the study and control groups in terms of K+ level (p<0.05), no significant difference was observed in the other parameters studied (p>0.05). Our study shows that the electromagnetic waves propagated from mobile phones have harmful effects on the renal development of prenatal rats.

  11. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    PubMed

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  12. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference.

    PubMed

    Vafapour, Marzieh; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Talebi, Nahid; Shirdavani, Soheyla

    2015-01-01

    The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P < 0.05), while GABA decreased these parameters in female significantly (P < 0.05), but not in male rats. Uterus weight decreased significantly in female rats treated with GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P < 0.05). GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.

  13. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat

    PubMed Central

    Maric-Bilkan, Christine; Flynn, Elizabeth R.

    2012-01-01

    Diabetic nephropathy is a progressive and generalized vasculopathic condition associated with abnormal angiogenesis. We aim to determine whether changes in renal microvascular (MV) density correlate with and play a role in the progressive deterioration of renal function in diabetes. We hypothesize that MV changes represent the early steps of renal injury that worsen as diabetes progresses, initiating a vicious circle that leads to irreversible renal injury. Male nondiabetic (ND) or streptozotocin-induced diabetic (D) Sprague-Dawley rats were followed for 4 or 12 wk. Renal blood flow and glomerular filtration rate (GFR) were measured by PAH and 125I-[iothalamate], respectively. Renal MV density was quantified ex vivo using three-dimensional micro computed tomography and JG-12 immunoreactivity. Vascular endothelial growth factor (VEGF) levels (ELISA) and expression of VEGF receptors and factors involved in MV remodeling were quantified in renal tissue by Western blotting. Finally, renal morphology was investigated by histology. Four weeks of diabetes was associated with increased GFR, accompanied by a 34% reduction in renal MV density and augmented renal VEGF levels. However, at 12 wk, while GFR remained similarly elevated, reduction of MV density was more pronounced (75%) and associated with increased MV remodeling, renal fibrosis, but unchanged renal VEGF compared with ND at 12 wk. The damage, loss, and subsequent remodeling of the renal MV architecture in the diabetic kidney may represent the initiating events of progressive renal injury. This study suggests a novel concept of MV disease as an early instigator of diabetic kidney disease that may precede and likely promote the decline in renal function. PMID:22031855

  14. A Survey of Mesenchyme-related Tumors of the Rat Kidney in the National Toxicology Program Archives, with Particular Reference to Renal Mesenchymal Tumor.

    PubMed

    Hard, Gordon C; Seely, John Curtis; Betz, Laura J

    2016-08-01

    In order to harmonize diagnostic terminology, confirm diagnostic criteria, and describe aspects of tumor biology characteristic of different tumor types, a total of 165 cases of mesenchyme-related tumors and nephroblastomas of the rat kidney were reexamined from the National Toxicology Program (NTP) Archives. This survey demonstrated that renal mesenchymal tumor (RMT) was the most common spontaneous nonepithelial tumor in the rat kidney, also occurring more frequently in the NTP studies than nephroblastoma. Renal sarcoma was a distinct but very rare tumor entity, representing a malignant, monomorphous population of densely crowded, fibroblast-like cells, in which, unlike RMT, preexisting tubules did not persist. Nephroblastoma was characterized by early death of affected animals, suggesting an embryonal origin for this tumor type. Male and female rats were equally disposed to developing RMT, but most of the cases of nephroblastoma occurred in female rats and liposarcoma occurred mostly in male rats. This survey confirmed discrete histopathological and biological differences between the mesenchyme-related renal tumor types and between RMT and nephroblastoma. Statistical analysis also demonstrated a lack of any relationship of these renal tumor types to test article administration in the NTP data bank. © 2016 by The Author(s) 2016.

  15. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats

    PubMed Central

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-01-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. PMID:25766467

  16. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors Pre-nephrectomy and post-nephrectomy.

    PubMed

    Cutajar, Marica; Hilton, Rachel; Olsburgh, Jonathon; Marks, Stephen D; Thomas, David L; Banks, Tina; Clark, Christopher A; Gordon, Isky

    2015-08-01

    Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ((51)Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. • Non-invasive MRI measured renal blood flow and calculated renal plasma flow. • Effect of nephrectomy on blood flow and filtration in donors is presented. • Calculated filtration fraction may be a useful new kidney biomarker.

  17. Renal and metabolic effects of three months of decarbonated cola beverages in rats.

    PubMed

    Celec, Peter; Pálffy, Roland; Gardlík, Roman; Behuliak, Michal; Hodosy, Július; Jáni, Peter; Bozek, Peter; Sebeková, Katarína

    2010-11-01

    Epidemiological studies have shown an association between the intake of cola beverages and chronic kidney diseases. Experimental evidence for the negative effects of cola intake on kidneys is lacking. Male Wistar rats had ad libitum access to water (control group) or three different sugar-sweetened cola beverages for three months. Despite very high cola intake (daily cca 140 mL), no differences were found in body weight, kidney weight, glomerular morphology, oxidative and carbonyl stress or expression of selected marker genes in the renal cortex. Interestingly, all groups consuming cola beverages had lower blood glucose levels during an oral glucose tolerance test, suggesting improved insulin sensitivity. Despite hyperfiltration (5-6-fold increase in diuresis), cola beverages had no effect on assessed parameters of renal function, histology, gene expression or oxidative stress. Moreover, cola intake seems to increase creatinine clearance and to decrease plasma levels of urea. In our study increased insulin sensitivity and altered renal functional parameters were observed in rats receiving cola beverages for three months. Whether the findings are due to the short duration of the study or interspecies metabolic differences should be uncovered in further studies. Even more interesting might be the analysis of effects of cola intake in animal models of diabetes.

  18. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, Rachel Rogers, E-mail: idz7@cdc.gov; Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602; Fisher, Jeffrey

    ABSTRACT: Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the rolemore » of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. - Highlights: • The PBPK model for PFOA in the rat explores the role of OATs in sex-specific clearance. • Descriptions of OAT kinetics were extrapolated from in vitro studies. • Model predictions showed good fit with experimental data for male and female rats.« less

  19. Renal effects of intrathecally injected tachykinins in the conscious saline-loaded rat: receptor and mechanism of action

    PubMed Central

    Ding Yuan, Yi; Couture, Réjean

    1997-01-01

    The effects of intrathecally (i.t.) injected substance P (SP), neurokinin A (NKA), [β-Ala8]NKA (4–10) and [MePhe7]neurokinin B (NKB) at T13 thoracic spinal cord level were investigated on renal excretion of water, sodium and potassium in the conscious saline-loaded rat. Antagonists selective for NK1 (RP 67580), NK2 (SR 48968) and NK3 (R 820; 3-indolylcarbonyl-Hyp-Phg-N(Me)-Bzl) receptors were used to characterize the spinal effect of SP on renal function. Saline gavage (4.5% of the body weight) enhanced renal excretion of water, sodium and potassium over the subsequent hour of measurement. Whereas these renal responses were not affected by 0.65 nmol SP, the dose of 6.5 nmol SP blocked the natriuretic response (aCSF value 3.9±0.8; SP value 0.7±0.3 μmol min−1, P<0.01) as well as the renal excretion of water (aCSF value 48.9±5.8; SP value 14.5±4.0 μl min−1, P<0.01) and potassium (aCSF value 4.8±0.6; SP value 1.5±0.6 μmol min−1, P<0.01) at 30 min post-injection. SP had no significant effect on urinary osmolality. The SP-induced renal inhibitory effects during the first 30 min were abolished in rats subjected to bilateral renal denervation 1 week earlier or in rats injected i.t. 5 min earlier with 6.5 nmol RP 67580. In contrast, the co-injection of SR 48968 and R 820 (6.5 nmol each) did not affect the inhibitory responses to SP. On their own, these antagonists had no direct effect on renal excretion function. Since SP induced only transient changes in mean arterial blood pressure (−18.8±3.8 mmHg at 1 min and +6.3±2.4 mmHg at 5 min post-injection), it is unlikely that the renal effects of SP are due to systemic haemodynamic changes. NKA (6.5 nmol but not 0.65 nmol) produced a transient drop in renal excretion of water (aCSF value 31.2±5.1; NKA value 11.3±4.2 μl min−1, P<0.05), sodium (aCSF value 1.7±0.8; NKA value 0.4±0.2 μmol min−1, P<0.05) and potassium (aCSF value 4.1±0.7; NKA value 1.5±0

  20. Protective effect of remote ischemic per-conditioning in the ischemia and reperfusion-induce renal injury in rats.

    PubMed

    Yamaki, Vitor Nagai; Gonçalves, Thiago Barbosa; Coelho, João Vitor Baia; Pontes, Ruy Victor Simões; Costa, Felipe Lobato da Silva; Brito, Marcus Vinicius Henriques

    2012-12-01

    To evaluate the protective effect of remote ischemic per-conditioning in ischemia and reperfusion-induced renal injury. Fifteen rats (Rattus norvegicus) were randomized into three groups (n = 5): Group Normality (GN), Control Ischemia and Reperfusion (GIR) and Group remote ischemic per-conditioning (GPER). With the exception of the GN group, all others underwent renal ischemia for 30 minutes. In group GPER we performed the ischemic remote per-conditioning, consisting of three cycles of ischemia and reperfusion applied every five minutes during the ischemic period, to the left hindlimb of the rats by means of a tourniquet. To quantify the lesions we measured serum levels of creatinine and urea, as well as analyzed renal histopathology. The GPER group presented with better levels of urea (83.74 ± 14.58%) and creatinine (0.72 ± 26.14%) when compared to GIR group, approaching the GN group. Histopathologically, the lower levels of medullary congestion and hydropic degeneration were found in group GPER. The remote ischemic per-conditioning had a significant protective effect on renal ischemia and reperfusion.

  1. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    PubMed

    Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook

    2009-12-01

    Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

  2. Morphological and cytohistochemical evaluation of renal effects of cadmium-doped silica nanoparticles given intratracheally to rat

    NASA Astrophysics Data System (ADS)

    Coccini, T.; Roda, E.; Barni, S.; Manzo, L.

    2013-04-01

    Renal morphological parameters were determined in rats intratracheally instilled with model cadmium-containing silica nanoparticles (Cd-SiNPs, 1mg/rat), also exploring whether their potential modifications would be associated with toxicogenomic changes. Cd-SiNP effects, evaluated 7 and 30 days post-exposure, were assessed by (i) histopathology (Haematoxylin/Eosin Staining), (ii) characterization of apoptotic features by TUNEL staining. Data were compared with those obtained by CdCl2 (400μg/rat), SiNPs (600μg/rat), 0.1 ml saline. Area-specific cell apoptosis was observed in all treatment groups: cortex and inner medulla were the most affected regions. Apoptotic changes were apparent at 7 days post-exposure in both areas, and were still observable in inner medulla 30 days after treatment. Increase in apoptotic frequency was more pronounced in Cd-SiNP-treated animals compared to either CdCl2 or SiNPs. Histological findings showed comparable alterations in the renal glomerular (cortex) architecture occurring in all treatment groups at both time-points considered. The glomeruli appeared often collapsed, showing condensed, packed mesangial and endothelial cells. Oedematous haemorrhagic glomeruli were also observed in Cd-SiNPs-treated animals. Bare SiNPs caused morphological and apoptotic changes without modifying the renal gene expression profile. These findings support the concept that multiple assays and an integrated testing strategy should be recommended to characterize toxicological responses to nanoparticles in mammalian systems.

  3. Role of Mas receptor in renal blood flow response to angiotensin (1-7) in male and female rats.

    PubMed

    Nematbakhsh, Mehdi; Safari, Tahereh

    2014-01-01

    Epidemiologic and clinical studies have shown that progression of renal disease in male is faster than that in female. However, the exact mechanisms are not well recognized. Angiotensin (1-7) (Ang 1-7) receptor, called "Mas", is an element in the depressor arm of renin angiotensin system (RAS), and its expression is enhanced in females. We test the hypothesis that Mas receptor (MasR) blockade (A779) attenuates renal blood flow (RBF) in response to infusion of graded doses of Ang 1-7 in female rats. Male and female Wistar rats were anesthetized and catheterized. Then, the mean arterial pressure (MAP), RBF, and controlled renal perfusion pressure (RPP) responses to infusion of graded doses of Ang 1-7 (100-1000 ng/kg/min i.v.) with and without A779 were measured in the animals. Basal MAP, RPP, RBF, and renal vascular resistance (RVR) were not significantly different between the two groups. After Ang 1-7 administration, RPP was controlled at a constant level. However, RBF increased in a dose-related manner in response to Ang 1-7 infusion in both male and female rats (Pdose<0.0001), but masR blockade significantly attenuated this response only in female (Pgroup=0.04) and not male (Pgroup=0.23). In addition, A779 increased the RBF response to Ang 1-7 to a greater extent. This is while the increase in male was not significant when compared with that in female (Pgender=0.08). RVR response to Ang 1-7 was insignificantly attenuated by A779 in both genders. The masR differently regulated RBF response to Ang 1-7 in the two genders, and the effect was greater in female rats. The masR may be a target for improvement of kidney circulation in renal diseases.

  4. A Mechanism for the induction of renal tumours in male Fischer 344 rats by short-chain chlorinated paraffins.

    PubMed

    Warnasuriya, Gayathri D; Elcombe, Barbara M; Foster, John R; Elcombe, Clifford R

    2010-03-01

    Short-chain chlorinated paraffins (SCCPs) cause kidney tumours in male rats, but not in female rats or mice of either sex. Male rat-specific tumours also occur in rats dosed with a range of compounds including 1,4- dichlorobenzene (DCB) and d-limonene (DL). These compounds bind to a male rat-specific hepatic protein, alpha-2-urinary globulin (α2u), and form degradationresistant complexes in the kidney. The resulting accumulation of α2u causes cell death and sustained regenerative cell proliferation, which in turn leads to the formation of renal tumours. To investigate whether the SCCP, Chlorowax 500C (C500C), causes tumours via the accumulation of α2u male rats were orally dosed with either C500C (625 mg/kg of body weight), DCB (300 mg/kg of body weight), or DL (150 mg/kg of body weight) for 28 consecutive days. An increase in renal α2u and cell proliferation was observed in DCB- and DL-treated rats but not in C500C-treated rats. C500C caused peroxisome proliferation and a down-regulation of α2u synthesis in male rat liver. This down-regulation occurred at the transcriptional level. Since less α2u was produced in C500C-treated rats, there was less available for accumulation in the kidney hence a typical α2u nephropathy did not appear. However, the administration of a radiolabelled SCCP, [14C]polychlorotridecane (PCTD), to male rats demonstrated its binding to renal α2u. Thus, it is possible that SCCPs bind to α2u and cause a slow accumulation of the protein in the kidney followed by delayed onset of α2u nephropathy. As a consequence of these findings in the current experiments, while evidence exists implicating α2u-globulin in the molecular mechanism of action of the C500C, the classic profile of a α2u-globulin nephropathy seen with other chemicals such as DCB and DL was not reproduced during this experimental protocol.

  5. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    PubMed

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research

  6. Renal hypertension prevents run training modification of cardiomyocyte diastolic Ca2+ regulation in male rats.

    PubMed

    Palmer, B M; Lynch, J M; Snyder, S M; Moore, R L

    2001-06-01

    The combined effects of endurance run training and renal hypertension on cytosolic Ca2+ concentration ([Ca2+]c) dynamics and Na+-dependent Ca2+ regulation in rat left ventricular cardiomyocytes were examined. Male Fischer 344 rats underwent stenosis of the left renal artery [hypertensive (Ht), n = 18] or a sham operation [normotensive (Nt), n = 20]. One-half of the rats from each group were treadmill trained for >16 wk. Cardiomyocyte fura 2 fluorescence ratio transients were recorded for 7 min during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degrees C. The rate of [Ca2+]c decline was not changed by run training in the Nt group but was reduced in the Ht group. At 7 min, cardiomyocytes were exposed to 10 mM caffeine in the absence of Na+ and Ca2+, which triggered sarcoplasmic reticular Ca2+ release and suppressed Ca2+ efflux via Na+/Ca2+ exchanger. External Na+ was then added, and Na+-dependent Ca2+ efflux rate was recorded. Treadmill training significantly enhanced Na+-dependent Ca2+ efflux rate under these conditions in the Nt group but not in the Ht group. These data provide evidence that renal hypertension prevents the normal run training-induced modifications in diastolic [Ca2+]c regulation mechanisms, including Na+/Ca2+ exchanger.

  7. [Effect of Cordyceps sinensis powder on renal oxidative stress and mitochondria functions in 5/6 nephrectomized rats].

    PubMed

    Zhang, Ming-hui; Pan, Ming-ming; Ni, Hai-feng; Chen, Jun-feng; Xu, Mn; Gong, Yu-xiang; Chen, Ping-sheng; Liu, Bi-cheng

    2015-04-01

    To observe the effect of Cordyceps sinensis (CS) powder on renal oxidative stress and mitochondria functions in 5/6 nephrectomized rats, and to primarily explore its possible mechanisms. Totally 30 male Sprague-Dawley rats were divided into the sham-operation group, the model group, and the treatment group by random digit table, 10 in each group. A chronic kidney disease (CKD) rat model was prepared by one step 5/6 nephrectomy. Rats in the treatment group were intragastrically administered with CS powder solution at the daily dose of 2 g/kg, once per day. Equal volume of double distilled water was intragastrically administered to rats in the sham-operation group and the model group. All medication lasted for 12 weeks. The general condition of rats, their body weight, blood pressure, 24 h proteinuria, urinary N-acetyl-β-D-glucosaminidase (NAG), serum creatinine (SCr) , and blood urea nitrogen (BUN) were assessed before surgery, at week 2, 4, 6, 8, 10, and 10 after surgery. Pathological changes of renal tissues were observed under light microscope. Morphological changes of mitochondria in renal tubular epithelial cells were observed under transmission electron microscope. Activities of antioxidant enzymes including reduced glutathione (GSH), manganese superoxide dismutase (MnSOD), and malondialdehyde (MDA) in fresh renal tissue homogenate were detected. Mitochondria of renal tissues were extracted to detect levels of mitochondrial membrane potential and changes of reactive oxygen species (ROS). And expressions of cytochrome-C (Cyto-C) and prohibitin in both mitochondria and cytoplasm of the renal cortex were also measured by Western blot. (1) Compared with the sham-operation group, body weight was significantly decreased at week 2 (P <0. 01), but blood pressure increased at week 4 (P <0. 05) in the model group. Compared with the model group, body weight was significantly increased at week 12 (P <0. 01), but blood pressure decreased at week 8 (P < 0. 01) in the

  8. Fetal development and renal function in adult rats prenatally subjected to sodium overload.

    PubMed

    Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O

    2009-10-01

    The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P < 0.05). Prenatally sodium-overloaded pups showed increased U(Prot24 h) (45%, P < 0.05) but unchanged MAP, renal hemodynamics, NN and kidney Ox. Prenatally and postnatally sodium-overloaded rats showed increased U(Prot24 h) (27%, P < 0.05) and kidney Ox (44%, P < 0.05), reduced GFR (12%, P < 0.05), increased PV (26%, P < 0.05) and unchanged MAP and NN. The TG increased in both groups of treated offspring (21%, P < 0.05), whereas Chol increased only in the postnatally sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.

  9. Effect of high saturated free fatty acids feeding on progression of renal failure in rat model of experimental nephrotoxicity.

    PubMed

    Ibraheem, Zaid O; Sattar, Munavvar A; Abdullah, Nor A; Rathore, Hassaan A; Johns, Edward J

    2012-02-01

    The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFD)received an experimental high fat diet rich in palm kernel oil (40% of Calories as fat) for the same period. The third group (HFDG) was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure.

  10. Effect of high saturated free fatty acids feeding on progression of renal failure in rat model of experimental nephrotoxicity

    PubMed Central

    Ibraheem, Zaid O.; Sattar, Munavvar A.; Abdullah, Nor A.; Rathore, Hassaan A.; Johns, Edward J.

    2012-01-01

    The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFD)received an experimental high fat diet rich in palm kernel oil (40% of Calories as fat) for the same period. The third group (HFDG) was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure. PMID:22364300

  11. Reduced cholesterol levels in renal membranes of undernourished rats may account for urinary Na⁺ loss.

    PubMed

    Oliveira, Fabiana S T; Vieira-Filho, Leucio D; Cabral, Edjair V; Sampaio, Luzia S; Silva, Paulo A; Carvalho, Vera C O; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Lima, Vera L M; Paixão, Ana D O

    2013-04-01

    It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.

  12. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    PubMed

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  14. Regional traumatic limb hypothermia attenuates distant hepatic and renal injury following blast limb trauma in rats.

    PubMed

    Zhao, Hongzhi; Ning, Jiaolin; Duan, Jiaxiang; Gu, Jianteng; Yi, Bin; Lu, Kaizhi; Mo, Liwen; Lai, Xinan; Hennah, Lindsay; Ma, Daqing

    2014-09-01

    Blast limb injury was reported to result in distant organ injury including the lungs, which can be attenuated with transient regional hypothermia (RH) to the injured limb. We aimed to further study hepatic and renal injuries following blast limb trauma and also to evaluate the protective effects of regional traumatic limb hypothermia on such injuries in rats. Blast limb trauma (BLT) was created using chartaceous electricity detonators in anesthetized male Sprague-Dawley rats. The BLT rats were randomly allocated to undergo regional traumatic limb hypothermic treatment (RH) for 30 minutes, 60 minutes, or 6 hours immediately after the onset of blast or without RH (n = 8 per group). The severity of hepatic and renal injury was assessed through histologic examination and water content (wet/dry weight) in all animals 6 hours later. The level of plasma tumor necrosis factor α (TNF-α), interleukin 6, hydrogen sulfide (H2S), and myeloperoxidase (MPO) together with hepatic and renal MPO, malondialdehyde (MDA), superoxide dismutase, and total antioxidant capacity were measured 6 hours after the blast injury. Following BLT, hepatic injury was evidenced by histopathologic changes, increased water content, as well as plasma alanine aminotransferase and aspartate aminotransferase. Renal histopathologic but not functional changes were also found. RH treatment for all durations attenuated this distant renal injury, but only RH treatment for 60 minutes and 6 hours attenuated distant hepatic injury following BLT. RH treatment for all durations decreased plasma TNF-α and interleukin 6, reduced liver and kidney MPO activity and kidney MDA, and elevated superoxide dismutase and total antioxidant capacity in both liver and kidneys. RH treatment for 60 minutes is the most effective duration to reduce hepatic MPO activity, plasma TNF-α, and kidney MDA. This study indicates that BLT-induced distant renal and hepatic injury could be attenuated by RH treatment through reduction of

  15. Renal damage induced by the pesticide methyl parathion in male Wistar rats.

    PubMed

    Fuentes-Delgado, Victor Hugo; Martínez-Saldaña, María Consolación; Rodríguez-Vázquez, María Luisa; Reyes-Romero, Miguel Arturo; Reyes-Sánchez, José Luis; Jaramillo-Juárez, Fernando

    2018-01-01

    Little information is apparently available regarding the nephrotoxic effects induced by pesticides. The aim of this study was to examine the influence of low doses of methyl parathion (MP) on the structure and function of the kidney of male Wistar rats. A corn oil (vehicle) was administered to control rats, whereas treated rats received MP at 0.56 mg/kg orally (1/25 of LD 50 ), every third day, for 8 weeks. At the end of each week following MP exposure, creatinine and glucose levels were measured in plasma, while glucose, inorganic phosphate, total proteins, albumin, and activity of γ-glutamyltranspeptidase (GGT) were determined in urine. Kidney histological study was also performed. Compared with control rats, MP significantly increased plasma glucose and creatinine levels accompanied by decreased urinary flow rate and elevated urinary excretion rates of glucose, phosphate, and albumin. Further, the activity of GGT in urine was increased significantly. The proximal cells exhibited cytoplasmic vacuolization, positive periodic acid Schiff inclusions, and brush border edge loss after 2 or 4 weeks following MP treatment. Finally, renal cortex samples were obtained at 2, 4, 6, and 8 weeks of MP treatment, and the concentrations of reduced glutathione (GSH) and glutathione peroxidase (GPx) activity were measured. The mRNA expression levels of BAX and tumor necrosis factor-α (TNF-α) were also determined (RT-PCR). MP significantly decreased renal GSH levels, increased GPx activity, as well as downregulated the mRNA expression of TNF-α and BAX. Densitometry analysis showed a significant reduction in TNF-α and BAX mRNA expression levels at 2 and 4 weeks following MP treatment. Low doses of MP produced structural and functional damage to the proximal tubules of male rat kidney.

  16. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts.

    PubMed

    Azuma, H; Isaka, Y; Li, X; Hünig, T; Sakamoto, T; Nohmi, H; Takabatake, Y; Mizui, M; Kitazawa, Y; Ichimaru, N; Ibuki, N; Ubai, T; Inamoto, T; Katsuoka, Y; Takahara, S

    2008-10-01

    The ultimate goal of organ transplantation is to establish graft tolerance where CD4+CD25+FOXP3+ regulatory T (Treg) cells play an important role. We examined whether a superagonistic monoclonal antibody specific for CD28 (CD28 SA), which expands Treg cells in vivo, would prevent acute rejection and induce tolerance using our established rat acute renal allograft model (Wistar to Lewis). In the untreated or mouse IgG-treated recipients, graft function significantly deteriorated with marked destruction of renal tissue, and all rats died by 13 days with severe azotemia. In contrast, 90% of recipients treated with CD28 SA survived over 100 days, and 70% survived with well-preserved graft function until graft recovery at 180 days. Analysis by flow cytometry and immunohistochemistry demonstrated that CD28 SA induced marked infiltration of FOXP3+ Treg cells into the allografts. Furthermore, these long-surviving recipients showed donor-specific tolerance, accepting secondary (donor-matched) Wistar cardiac allografts, but acutely rejecting third-party BN allografts. We further demonstrated that adoptive transfer of CD4+CD25+ Treg cells, purified from CD28 SA-treated Lewis rats, significantly prolonged allograft survival and succeeded in inducing donor-specific tolerance. In conclusion, CD28 SA treatment successfully induces donor-specific tolerance with the involvement of Treg cells, and thus the therapeutic value of this approach warrants further investigation and preclinical studies.

  17. Mathematical Model of Ammonia Handling in the Rat Renal Medulla

    PubMed Central

    Noiret, Lorette; Baigent, Stephen; Jalan, Rajiv; Thomas, S. Randall

    2015-01-01

    The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein release are not fully understood. We developed a mathematical model that reflects current thinking about renal ammonia handling in order to investigate the role of each tubular segment and identify some of the components which might control this balance. The model treats the movements of water, sodium chloride, urea, NH3 and NH4+, and non-reabsorbable solute in an idealized renal medulla of the rat at steady state. A parameter study was performed to identify the transport parameters and microenvironmental conditions that most affect the rate of urinary ammonia excretion. Our results suggest that urinary ammonia excretion is mainly determined by those parameters that affect ammonia recycling in the loops of Henle. In particular, our results suggest a critical role for interstitial pH in the outer medulla and for luminal pH along the inner medullary collecting ducts. PMID:26280830

  18. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    PubMed

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  19. Relaxation by urocortin of rat renal arteries: effects of diabetes in males and females.

    PubMed

    Sanz, Elena; Fernández, Nuria; Monge, Luis; Climent, Belén; Diéguez, Godofredo; García-Villalón, Angel Luis

    2003-06-01

    Urocortin is a peptide structurally related to corticotropin releasing factor (CRF), and the present study was performed to examine the effects of diabetes mellitus on the relaxation by urocortin of renal arteries from males and females. The response to urocortin was studied in isolated segments, 2 mm long, from renal arteries, from male and female, control (normoglycemic) and streptozotocin-induced diabetic rats. In the renal arterial segments precontracted with endothelin-1, urocortin produced concentration-dependent relaxation, that was not different between males and females. Diabetes reduced the relaxation in renal arteries from females but not in those from males. The potassium channel blocker charybdotoxin (10(-7) M) reduced the relaxation to urocortin of renal arteries from normoglycemic males and females. The cyclooxygenase inhibitor meclofenamate did not modify the relaxation to urocortin in renal arteries from normoglycemic males or females. The inhibitor of nitric oxide synthesis N(W)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) reduced the relaxation to urocortin in renal arteries from normoglycemic females, but not in renal arteries from normoglycemic males. Neither charybdotoxin, L-NAME or meclofenamate modified the relaxation to urocortin of renal arteries from diabetic females. These results suggest that urocortin produces a marked vasodilation of renal arteries, which may be mediated by nitric oxide in females and by activation of potassium channels in both genders, and is reduced by diabetes in renal arteries from females.

  20. Induction of Renal Cell Tumors in Rats and Mice, and Enhancement of Hepatocellular Tumor Development in Mice after Long‐term Hydroquinone Treatment

    PubMed Central

    Hirose, Masao; Tanaka, Hikaru; Asakawa, Emiko; Shirai, Tomoyuki; Ito, Nobuyuki

    1991-01-01

    Hydroquinone (HQ) was administered to F344 rats and B6C3F1 mice of both sexes at a level of 0.8% in the diet for two years. This treatment induced renal tubular hyperplasia as well as adenomas, predominantly in males of both species, and was associated with chronic nephropathy in rats. In addition, the occurrence of epithelial hyperplasia of the renal papilla was increased in male rats. Foci of cellular alteration of the liver were significantly reduced in number by HQ in rats, but in contrast, were increased in mice, where development of hepatocellular adenoma was also enhanced in males. The incidence of squamous cell hyperplasia of the forestomach epithelium was significantly higher in mice of both sexes given HQ than in the controls, but no corresponding increase in tumor development was observed. The present study strongly indicates potential renal carcinogenicity of HQ in male rats and hepatocarcinogenicity in male mice. Thus, it is possible that HQ, which is present in the human environment, may play a role in cancer development in man. PMID:1752780

  1. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in DOCA-salt hypertension

    PubMed Central

    Banek, Christopher T.; Knuepfer, Mark M.; Foss, Jason D.; Fiege, Jessica K.; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W.

    2016-01-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity (RSNA) has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA)-salt rat model. Uninephrectomized male Sprague Dawley rats (275–300g) underwent selective afferent-selective RDNx (A-RDNx; n=10), total RDNx (T-RDNx; n=10), or Sham (n=10) and were instrumented for measurement of mean arterial pressure (MAP) and heart rate (HR) by radiotelemetry. Rats received 100mg DOCA (s.c.) and 0.9% saline for 21 days. Resting afferent renal nerve activity (ARNA) in DOCA and Vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting ARNA, expressed as a percent of peak afferent nerve activity (%Amax), was substantially increased in DOCA vs. Vehicle (35.8±4.4 vs. 15.3±2.8%Amax). The DOCA-Sham hypertension (132±12 mmHg) was attenuated by ~50% in both T-RDNx (111±8) and A-RDNx (117±5mmHg) groups. Renal inflammation induced by DOCA-salt was attenuated by T-RDNx, and unaffected by A-RDNx. These data suggest ARNA may mediate the hypertensive response to DOCA-salt, but inflammation may be mediated primarily by efferent RSNA. Also, resting ARNA is elevated in DOCA-salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. PMID:27698066

  2. Effects of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in Wistar rats.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Adebayo, Joseph O; Olatunji, Victoria A

    2012-09-01

    To investigate the effects of oral administration of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in rats. The 25 and 50 mg/(kg·d) of aqueous extracts of H. sabdariffa were respectively given to rats in the experimental groups for 28 d, and rats in the control group received an appropriate volume of distilled water as vehicle. Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in the kidney were assayed by spectrophotometric method. Administrations of 25 and 50 mg/(kg·d) of aqueous extract of H. sabdariffa significantly decreased the Ca(2+)-Mg(2+)-ATPase activity in the kidney of rats (P<0.05). However, the renal Na(+)-K(+)-ATPase activity of the experimental rats was not affected by either dose of the extract. And the plasma Na(+), K(+) and Ca(2+) levels of the experimental rats had no significant changes. Administration of either dose of the extract did not result in any significant changes in body and kidney weights, the concentrations of plasma albumin and total protein, and alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase activities. However, concentrations of creatinine and urea were significantly reduced by 50 mg/kg of the extract (P<0.05). The present study indicates that oral administration of aqueous extract of H. sabdariffa may preserve the renal function despite a decreased renal Ca(2+)-Mg(2+)-ATPase activity.

  3. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    PubMed

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  4. Intra-arterial catheter system to repeatedly deliver mesenchymal stem cells in a rat renal failure model.

    PubMed

    Katsuoka, Yuichi; Ohta, Hiroki; Fujimoto, Eisuke; Izuhara, Luna; Yokote, Shinya; Kurihara, Sho; Yamanaka, Shuichiro; Tajiri, Susumu; Chikaraish, Tatsuya; Okano, Hirotaka J; Yokoo, Takashi

    2016-04-01

    Mesenchymal stem cell therapy in renal failure is rarely used because of low rates of cell engraftment after systemic delivery. Repeated intra-arterial cell administration may improve results; however, no current delivery method permits repeated intra-arterial infusions in a rat model. In this study, we developed an intra-arterial delivery system for repeated stem cell infusion via the aorta, catheterizing the left femoral artery to the suprarenal aorta under fluoroscopic guidance in rats with adenosine-induced renal failure. First, we compared our intra-arterial catheter system (C group, n = 3) with tail vein injection (V group, n = 3) for engraftment efficacy, using mesenchymal stem cells from luciferase transgenic rats. Rats were infused with the cells and euthanized the following day; we performed cell-tracking experiments using a bioluminescence imaging system to assess the distribution of the infused cells. Second, we assessed the safety of the system over a 30-day period in a second group of six rats receiving infusions every 7 days. Cells infused through our delivery system efficiently engrafted into the kidney, compared with peripheral venous infusion. In five of the six rats in the safety study, the delivery system remained patent for at least 9 days (range, 9-24 days). Complications became evident only after 10 days. Our intra-arterial catheter system was effective in delivering cells to the kidney and permitted repeated injection of cells.

  5. Simultaneous characterization of metabolic, cardiac, vascular and renal phenotypes of lean and obese SHHF rats.

    PubMed

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P J; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF(+/?) regrouping (+/+) and (+/cp) rats) and obese (SHHF(cp/cp), "cp" defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHF(cp/cp )but not SHHF(+/?) rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF(+/?) rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF(+/?) rats developed concentric left ventricular hypertrophy (LVH) while SHHF(cp/cp) rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHF(cp/cp) rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF(+/?). In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHF(cp/cp) rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHF(cp/cp) rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development.

  6. Simultaneous Characterization of Metabolic, Cardiac, Vascular and Renal Phenotypes of Lean and Obese SHHF Rats

    PubMed Central

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821

  7. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats

    PubMed Central

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  8. Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function.

    PubMed Central

    Handa, R K; Johns, E J

    1985-01-01

    Stimulation of the renal sympathetic nerves in pentobarbitone anaesthetized rats achieved a 13% reduction in renal blood flow, did not change glomerular filtration rate, but reduced urine flow by 37%, absolute sodium excretion by 37%, and fractional sodium excretion by 34%. Following inhibition of converting enzyme with captopril (0.38 mmol kg-1 h-1), similar nerve stimulation reduced both renal blood flow and glomerular filtration rate by 16%, and although urine flow and absolute sodium excretion fell by 32 and 31%, respectively, the 18% fall in fractional sodium excretion was significantly less than that observed in the absence of captopril. Renal nerve stimulation at low levels, which did not change either renal blood flow or glomerular filtration rate, reduced urine flow, and absolute and fractional sodium excretions by 25, 26 and 23%, respectively. In animals receiving captopril at 0.38 mmol kg-1 h-1, low-level nerve stimulation caused small increases in glomerular filtration rate of 7% and urine flow of 12%, but did not change either absolute or fractional sodium excretions. At one-fifth the dose of captopril (0.076 mmol kg-1 h-1), low-level nerve stimulation did not change renal haemodynamics but decreased urine flow, and absolute and fractional sodium excretions by 10, 10 and 8%, respectively. These results showed that angiotensin II production was necessary for regulation of glomerular filtration rate in the face of modest neurally induced reductions in renal blood flow and was compatible with an intra-renal site of action of angiotensin II preferentially at the efferent arteriole. They also demonstrated that in the rat the action of the renal nerves to decrease sodium excretion was dependent on angiotensin II. PMID:3005558

  9. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats.

    PubMed

    Yamabe, Noriko; Kang, Ki Sung; Hur, Jong Moon; Yokozawa, Takako

    2009-08-01

    Matcha, a powdered green tea produced by grinding with a stone mill, has been popularly used in the traditional tea ceremony and foods in Japan. Matcha is well known to be richer in some nutritional elements and epigallocatechin 3-O-gallate than other green teas. In our previous study, epigallocatechin 3-O-gallate exhibited protective effects against renal damage in a rat model of diabetic nephropathy. In the present study, we investigated the preventive effects of Matcha (50, 100, or 200 mg/kg/day) on the progression of hepatic and renal damage in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats were orally administered Matcha for 16 weeks, and we assessed biochemical parameters in the serum, liver, and kidney and expression levels of major products of advanced glycation end products (AGEs), N(6)-(carboxylmethyl)lysine (CML) and N(6)-(carboxylethyl)lysine (CEL), receptor for AGE (RAGE), and sterol regulatory element binding proteins (SREBPs)-1 and -2. Serum total protein levels were significantly increased by Matcha administration, whereas the serum albumin and glycosylated protein levels as well as the renal glucose and triglyceride levels were only slightly or not at all affected. However, Matcha treatment significantly lowered the glucose, triglyceride, and total cholesterol levels in the serum and liver, renal AGE levels, and the serum thiobarbituric acid-reactive substances levels. In addition, Matcha supplementation resulted in decreases in the renal CML, CEL, and RAGE expressions as well as an increase in hepatic SREBP-2 expression, but not that of SREBP-1. These results suggest that Matcha protects against hepatic and renal damage through the suppression of renal AGE accumulation, by decreases in hepatic glucose, triglyceride, and total cholesterol levels, and by its antioxidant activities.

  10. The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys

    PubMed Central

    Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A. J.; Murphy, Michael P.

    2011-01-01

    The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ∼2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation. PMID:21159749

  11. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys.

    PubMed

    Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A J; Murphy, Michael P; MacMillan-Crow, Lee Ann

    2011-03-01

    The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ~2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation.

  12. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  13. Hemorheological and metabolic consequences of renal ischemia-reperfusion and their modulation by N,N-dimethyl-tryptamine on a rat model.

    PubMed

    Peto, Katalin; Nemeth, Norbert; Mester, Anita; Magyar, Zsuzsanna; Ghanem, Souleiman; Somogyi, Viktoria; Tanczos, Bence; Deak, Adam; Bidiga, Laszlo; Frecska, Ede; Nemes, Balazs

    2018-04-13

    Micro-rheological relations of renal ischemia-reperfusion (I/R) have not been completely elucidated yet. Concerning anti-inflammatory agents, it is supposed that sigma-1 receptor agonist N,N-dimethyl-tryptamin (DMT) can be useful to reduce I/R injury. To investigate the micro-rheological and metabolic parameters, and the effects of DMT in renal I/R in rats. In anesthetized rats from median laparotomy both kidneys were exposed. In Control group (n = 6) no other intervention happened. In I/R group (n = 10) the right renal vessels were ligated and after 60 minutes the organ was removed. The left renal vessels were clamped for 60 minutes followed by 120-minute reperfusion. In I/R+DMT group (n = 10) DMT was administered 15 minutes before the ischemia. Blood samples were taken before/after ischemia and during the reperfusion for testing hematological, metabolic parameters, erythrocyte deformability and aggregation. Lactate concentration significantly increased and accompanied with decreased blood pH. Enhanced erythrocyte aggregation and impaired deformability were observed from the 30th minute of reperfusion. In I/R+DMT group we found diminished changes compared to the I/R group (lactate, pH, electrolytes, red blood cell deformability and aggregation). Metabolic and micro-rheological parameters impair during renal I/R. DMT could reduce but not completely prevent the changes in this rat model.

  14. Sub-nephrotoxic cisplatin sensitizes rats to acute renal failure and increases urinary excretion of fumarylacetoacetase.

    PubMed

    Vicente-Vicente, Laura; Sánchez-Juanes, Fernando; García-Sánchez, Omar; Blanco-Gozalo, Víctor; Pescador, Moisés; Sevilla, María A; González-Buitrago, José Manuel; López-Hernández, Francisco J; López-Novoa, José Miguel; Morales, Ana Isabel

    2015-04-16

    Nephrotoxicity limits the therapeutic efficacy of the antineoplastic drug cisplatin. Due to dosage adjustment and appropriate monitoring, most therapeutic courses with cisplatin produce no or minimal kidney damage. However, we studied whether even sub-nephrotoxic dosage of cisplatin poses a potential risk for the kidneys by predisposing to acute kidney injury (AKI), specifically by lowering the toxicity threshold for a second nephrotoxin. With this purpose rats were treated with a single sub-nephrotoxic dosage of cisplatin (3mg/kg, i.p.) and after two days, with a sub-nephrotoxic regime of gentamicin (50mg/kg/day, during 6 days, i.p.). Control groups received only one of the drugs or the vehicle. Renal function and renal histology were monitored throughout the experiment. Cisplatin treatment did not cause any relevant functional or histological alterations in the kidneys. Rats treated with cisplatin and gentamicin, but not those under single treatments, developed an overt renal failure characterized by both renal dysfunction and massive tubular necrosis. In addition, the urinary excretion of fumarylacetoacetase was increased in cisplatin-treated animals at subtoxic doses, which might be exploited as a cisplatin-induced predisposition marker. In fact, the urinary level of fumarylacetoacetase prior to the second nephrotoxin correlated with the level of AKI triggered by gentamicin in predisposed animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Honokiol protects against renal ischemia/reperfusion injury via the suppression of oxidative stress, iNOS, inflammation and STAT3 in rats.

    PubMed

    Yu, Yongwu; Li, Mingxv; Su, Ning; Zhang, Zhiyong; Zhao, Haidan; Yu, Hai; Xu, Yingluan

    2016-02-01

    Honokiol is the predominant active ingredient in the commonly used traditional Chinese medicine, Magnolia, which has been confirmed in previous studies to exhibit anti-oxidation, antimicrobial, antitumor and other pharmacological effects. However, its effects on renal ischemia/reperfusion injury (IRI) remain to be elucidated. The present study aimed to examine the effects of honokiol on renal IRI, and to investigate its potential protective mechanisms in the heart. Male adult Wistar albino rats were induced into a renal IRI model. Subsequently, the levels of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), and the levels of serum nitrite and the kidney nitrite were examined in the IRI group. The levels of oxidative stress, inducible nitric oxide synthase (iNOS), inflammatory factors and caspase-3 were evaluated using a series of commercially available kits. The levels of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and the protein expression levels of STAT3 were determined using western blotting. Pretreatment with honokiol significantly reduced the levels of serum creatinine, BUN, ALT, AST and ALP, and the level of nitrite in the kidney of the IRI group, compared with the control group. The levels of malondialdehyde, the activity of myeloperoxidase, and the gene expression and activity of iNOS were reduced in the IRI rats, compared with the sham-operated rats, whereas the levels of superoxide dismutase and catalase were increased following treatment with honokiol in the IRI rats. In addition, the expression levels of tumor necrosis factor-α and interleukin-6 in the IRI rats were increased by honokiol. Treatment with honokiol suppressed the protein expression levels of p-STAT3 and caspase-3 in the IRI rats. These findings indicated that honokiol protects against renal IRI via the suppression of oxidative stress, iNOS, inflammation and STAT3 in

  16. Attenuation of the activated mammalian target of rapamycin pathway might be associated with renal function reserve by a low-protein diet in the rat remnant kidney model.

    PubMed

    Ohkawa, Sakae; Yanagida, Momoko; Uchikawa, Tsuyoshi; Yoshida, Takuya; Ikegaya, Naoki; Kumagai, Hiromichi

    2013-09-01

    The mammalian target of rapamycin (mTOR), a regulator of cellular protein synthesis and cell growth, plays an important role in the progression of renal hypertrophy and renal dysfunction in experimental chronic kidney disease models. Because the mTOR activity is regulated by nutrients including amino acids, we tested the hypothesis that the renoprotective effect of a low-protein diet (LPD) might be associated with the attenuation of the renal mTOR pathway. In this study, 5/6 nephrectomized rats were fed an LPD or a normal protein diet (NPD), and a number of rats that were fed an NPD received rapamycin (1.0 mg kg⁻¹ d⁻¹), a specific inhibitor of mTOR. After 6 weeks, renal tissue was collected to evaluate the activity of the mTOR pathway and histologic changes. The phosphorylation of p70S6k, a kinase in the downstream of mTOR, was significantly higher in the NPD-fed rats that showed progressive renal dysfunction than in the sham-operated rats (NPD). The LPD attenuated the excessive phosphorylation of p70S6k concomitant with reduced proteinuria and improved renal histologic changes in the 5/6 nephrectomized rats. The effects of the LPD were similar to the effects of rapamycin. The expression of phosphorylated p70S6k was significantly correlated with proteinuria (r² = 0.63, P < .001), the glomerular area (r² = 0.60, P < .001), and the number of phosphorylated Smad2-positive cells in the glomerulus (r² = 0.26, P < .05) of these rats. These results suggest that the preventive effect of an LPD on the progression of renal failure is associated with attenuation of the activated mTOR/p70S6k pathway in the rat remnant kidney model. © 2013.

  17. Euterpe edulis effects on cardiac and renal tissues of Wistar rats fed with cafeteria diet.

    PubMed

    De Barrios Freitas, Rodrigo; Melato, Fernanda Araujo; Oliveira, Jerusa Maria de; Bastos, Daniel Silva Sena; Cardoso, Raisa Mirella; Leite, João Paulo Viana; Lima, Luciana Moreira

    2017-02-01

    This study's objective was to evaluate the antioxidant and toxic effects of E. edulison cardiac and renal tissues of Wistar rats fed with cafeteria diet. Catalase (CAT), glutathione-S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in cardiac muscle and renal tissue of 60 animals, which were randomly assigned for 10 equal groups. Half of the rats were fed with cafeteria diet and the other half with commercial chow, combined or not to E. edulislyophilized extract, E. edulis deffated lyophilized extract or E. edulisoil. Data were evaluated using ANOVA, followed by the Student-Newman-Keuls test. Data showed a significant increase of CAT activity in cardiac tissue of animals from the groups fed with cafeteria diet associated to E. edulis lyophilized extract at 5%, E. edulis lyophilized extract at 10% and E. edulis deffated lyophilized extract at 10%. In addition, the same result was found in animals from the groups fed with commercial chow and commercial chow combined with E. edulislyophilized extract at 10% in comparison to the group fed exclusively with cafeteria diet. GST and SOD enzyme activity showed significant increase in the heart tissue of animals nourished with commercial chow when compared to the groups fed with cafeteria diet. On the other hand, there were no significant differences enzymatic levels in renal tissues. The oil and the extract of E. edulishad an important role promoting an increase of antioxidant enzymes levels in cardiac muscle, which prevent the oxidative damage resulting from the cafeteria diet in Wistar rats. There were no evidenced signs of lipid peroxidation in renal or in cardiac tissue of the animals studied, indicating that the E. edulisuse did not promote any increase in malondialdehyde cytotoxic products formation. This show that both E. edulis oil and extracts evaluated in this study were well tolerated in the studied doses.

  18. Icariin protects rats against 5/6 nephrectomy-induced chronic kidney failure by increasing the number of renal stem cells.

    PubMed

    Huang, Zhongdi; He, Liqun; Huang, Di; Lei, Shi; Gao, Jiandong

    2015-10-21

    Chronic kidney disease poses a serious health problem worldwide with increasing prevalence and lack of effective treatment. This study aimed to investigate the mechanism of icariin in alleviating chronic renal failure induced by 5/6 nephrectomy in rats. The chronic renal failure model was established by a two-phased 5/6 nephrectomy procedure. The model rats were given daily doses of water or icariin for 8 weeks. The kidney morphology was checked by HE staining. The levels of blood urea nitrogen, serum creatinine, and serum uric acid were measured by colometric methods. The expression of specified genes was analyzed by quantitative real-time PCR and immunohistochemical staining. The number of renal stem/progenitor cells was analyzed by CD133 and CD24 immunohistochemical staining. Icariin protected against CDK-caused damages to kidney histology and improved renal function, significantly reduced levels of BUN, creatinine, and uric acid. Icariin inhibited the expression level of TGF-β1 whereas upregulated HGF, BMP-7, WT-1, and Pax2 expression. Moreover, ccariin significantly increased the expression of CD24, CD133, Osr1, and Nanog in remnant kidney and the numbers of CD133(+)/CD24(+) renal stem/progenitor cells. These data demonstrated that icariin effectively alleviated 5/6 nephrectomy induced chronic renal failure through increasing renal stem/progenitor cells.

  19. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  20. A Canola Oil-Supplemented Diet Prevents Type I Diabetes-Caused Lipotoxicity and Renal Dysfunction in a Rat Model.

    PubMed

    Cano-Europa, Edgar; Ortiz-Butron, Rocio; Camargo, Estela Melendez; Esteves-Carmona, María Miriam; Oliart-Ros, Rosa Maria; Blas-Valdivia, Vanessa; Franco-Colin, Margarita

    2016-11-01

    We investigated the effect of a canola oil-supplemented diet on the metabolic state and diabetic renal function of a type I diabetes experimental model. Male Sprague-Dawley rats were randomly divided into four groups: (1) normoglycemic+chow diet, (2) normoglycemic+a canola oil-supplemented chow diet, (3) diabetic+chow diet, and (4) diabetic+a canola oil-supplemented chow diet. For 15 weeks, animals were fed a diet of Purina rat chow alone or supplemented with 30% canola oil. Energetic intake, water intake, body weight, and adipose tissue fat pad were measured; renal function, electrolyte balance, glomerular filtration rate, and the plasmatic concentration of free fatty acids, cholesterol, triglycerides, and glucose were evaluated. The mesenteric, retroperitoneal, and epididymal fat pads were dissected and weighed. The kidneys were used for lipid peroxidation (LP) and reactive oxygen species (ROS) quantifications. Diabetic rats fed with a canola oil-supplemented diet had higher body weights, were less hyperphagic, and their mesenteric, retroperitoneal, and epididymal fat pads weighed more than diabetic rats on an unsupplemented diet. The canola oil-supplemented diet decreased plasmatic concentrations of free fatty acids, triglycerides, and cholesterol; showed improved osmolarity, water clearances, and creatinine depuration; and had decreased LP and ROS. A canola oil-supplemented diet decreases hyperphagia and prevents lipotoxicity and renal dysfunction in a type I diabetes mellitus model.

  1. Mixed organic solvents induce renal injury in rats.

    PubMed

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  2. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  3. Interleukin-2-dependent mechanisms are involved in the development of glomerulosclerosis after partial renal ablation in rats.

    PubMed

    Hamar, P; Peti-Peterdi, J; Szabó, A; Becker, G; Flach, R; Rosivall, L; Heemann, U

    2001-01-01

    Glomerulosclerosis is a common feature of many end-stage renal diseases. The contribution of cellular immune mechanisms has been implicated in the development of glomerulosclerosis. We investigated whether the inhibition of lymphocyte activation influences this process in an established rat model of renal hyperfiltration. After removal of two-thirds of their respective kidney mass, rats were treated with either tacrolimus (0.08 mg/kg/day) or vehicle until the end of the study (n = 10/group). The rats were pair-fed and proteinuria was assessed regularly. Twenty weeks after nephrectomy, creatinine clearance and systemic blood pressure were determined, and kidneys were harvested for morphological, immunohistological and PCR analysis. In control animals, renal function started to decline from week 12, as indicated by an elevated proteinuria. Interleukin (IL)-2 and IL-2 receptor synthesis was upregulated in control animals and inhibited by tacrolimus treatment. Transforming growth factor-beta (TGF-beta(1)), platelet-derived growth factor-AA (PDGF-AA) and macrophage chemoattractant protein-1 (MCP-1) mRNA levels were upregulated in control animals, but were significantly lower in immunosuppressed hosts. Additionally, tacrolimus treatment resulted in a significant reduction of proteinuria. Morphological analysis supported these functional results; glomerular sclerosis, tubular atrophy and intimal proliferation were more pronounced in controls than in the tacrolimus group. These morphological parameters were accompanied by reduced infiltration of CD5+ (rat T-cell marker) T cells, ED1+ (rat macrophage marker) macrophages, and less intense staining for laminin and fibronectin. A continuous treatment with tacrolimus - an inhibitor of lymphocyte proliferation - reduced the pace of glomerulosclerosis in the remnant kidney. Copyright 2001 S. Karger AG, Basel

  4. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats.

    PubMed

    Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T; do Carmo, Jussara M; Zhang, Howei; Smith, Andrew D; Bui, Elizabeth; Thomas, R Lucas; Moulana, Mohadetheh; Hall, John E; Granger, Joey P; Reckelhoff, Jane F

    2015-04-15

    Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. Copyright © 2015 the American Physiological Society.

  5. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system.

    PubMed

    Maranon, Rodrigo O; Reckelhoff, Jane F

    2016-02-01

    Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P < 0.05). Losartan reduced MAP in both sham and RD rats similarly (numerically and by percentage) (142 ± 10 vs. 161 ± 6 mm Hg; P < 0.05 vs. RD, P < 0.05 vs. baseline). However, female SHR rats remained significantly hypertensive despite both pharmacological intervention and RD. The data suggest that both the renal sympathetic nervous system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. TELMISARATAN PROVIDES BETTER RENAL PROTECTION THAN VALSARTAN IN A RAT MODEL OF METABOLIC SYNDROME

    PubMed Central

    Khan, Abdul Hye; Imig, John D.

    2013-01-01

    BACKGROUND Angiotension receptor blockers (ARB), telmisartan and valsartan were compared for renal protection in spontaneously hypertensive rats (SHR) fed high fat diet. We hypothesized that in cardiometabolic syndrome, telmisartan an ARB with PPAR-γ activity will offer better renal protection. METHODS SHR were fed either normal (SHR-NF, 7% fat) or high fat (SHR-HF, 36% fat) diet and treated with an ARB for 10 weeks. RESULTS Blood pressure was similar between SHR-NF (190±3 mmHg) and SHR-HF (192±4 mmHg) at the end of the 10 week period. Telmisartan and valsartan decreased blood pressure to similar extents in SHR-NF and SHR-HF groups. Body weight was significantly higher in SHR-HF (368±5g) compared to SHR-NF (328±7g). Telmisartan but not valsartan significantly reduced the body weight gain in SHR-HF. Telmisartan was also more effective than valsartan in improving glycemic and lipid status in SHR-HF. Monocyte chemoattractant protein-1 (MCP-1), an inflammatory marker, was higher in SHR-HF (24±2 ng/d) compared to SHR-NF (14±5 ng/d). Telmisartan reduced MCP-1 excretion in both SHR-HF and SHR-NF to a greater extent than valsartan. An indicator of renal injury, urinary albumin excretion increased to 85±8 mg/d in SHR-HF compared to 54±9 mg/d in SHR-NF. Telmisartan (23±5 mg/d) was more effective than valsartan (45±3 mg/d) in lowering urinary albumin excretion in SHR-HF. Moreover, telmisartan reduced glomerular damage to a greater extent than valsartan in the SHR-HF. CONCLUSIONS Collectively, our data demonstrate that telmisartan was more effective than valsartan in reducing body weight gain, renal inflammation, and renal injury in a rat model of cardiometabolic syndrome. PMID:21415842

  7. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    PubMed

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  9. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging.

    PubMed

    Briat, Arnaud; Wenk, Christiane H F; Ahmadi, Mitra; Claron, Michael; Boturyn, Didier; Josserand, Véronique; Dumy, Pascal; Fagret, Daniel; Coll, Jean-Luc; Ghezzi, Catherine; Sancey, Lucie; Vuillez, Jean-Philippe

    2012-06-01

    Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches. © 2012 Japanese Cancer Association.

  10. Prenatal programming of renal salt wasting resets postnatal salt appetite, which drives food intake in the rat.

    PubMed

    Alwasel, Saleh H; Barker, David J P; Ashton, Nick

    2012-03-01

    Sodium retention has been proposed as the cause of hypertension in the LP rat (offspring exposed to a maternal low-protein diet in utero) model of developmental programming because of increased renal NKCC2 (Na+/K+/2Cl- co-transporter 2) expression. However, we have shown that LP rats excrete more rather than less sodium than controls, leading us to hypothesize that LP rats ingest more salt in order to maintain sodium balance. Rats were fed on either a 9% (low) or 18% (control) protein diet during pregnancy; male and female offspring were studied at 4 weeks of age. LP rats of both sexes held in metabolism cages excreted more sodium and urine than controls. When given water to drink, LP rats drank more and ate more food than controls, hence sodium intake matched excretion. However, when given a choice between saline and water to drink, the total volume of fluid ingested by LP rats fell to control levels, but the volume of saline taken was significantly larger [3.8±0.1 compared with 8.8±1.3 ml/24 h per 100 g of body weight in control and LP rats respectively; P<0.001]. Interestingly food intake also fell to control levels. Total body sodium content and ECF (extracellular fluid) volumes were greater in LP rats. These results show that prenatal programming of renal sodium wasting leads to a compensatory increase in salt appetite in LP rats. We speculate that the need to maintain salt homoeostasis following malnutrition in utero stimulates greater food intake, leading to accelerated growth and raised BP (blood pressure).

  11. Renal Protective Role of Xiexin Decoction with Multiple Active Ingredients Involves Inhibition of Inflammation through Downregulation of the Nuclear Factor-κB Pathway in Diabetic Rats

    PubMed Central

    Wu, Jia-sheng; Shi, Rong; Zhong, Jie; Lu, Xiong; Ma, Bing-liang; Wang, Tian-ming; Zan, Bin; Ma, Yue-ming; Cheng, Neng-neng; Qiu, Fu-rong

    2013-01-01

    In Chinese medicine, Xiexin decoction (XXD) has been used for the clinical treatment of diabetes for at least 1700 years. The present study was conducted to investigate the effective ingredients of XXD and their molecular mechanisms of antidiabetic nephropathy in rats. Rats with diabetes induced by high-fat diet and streptozotocin were treated with XXD extract for 12 weeks. XXD significantly improved the glucolipid metabolism disorder, attenuated albuminuria and renal pathological changes, reduced renal advanced glycation end-products, inhibited receptor for advanced glycation end-product and inflammation factors expression, suppressed renal nuclear factor-κB pathway activity, and downregulated renal transforming growth factor-β1. The concentrations of multiple components in plasma from XXD were determined by liquid chromatography and tandem mass spectrometry. Pharmacokinetic/pharmacodynamic analysis using partial least square regression revealed that 8 ingredients of XXD were responsible for renal protective effects via actions on multiple molecular targets. Our study suggests that the renal protective role of XXD with multiple effective ingredients involves inhibition of inflammation through downregulation of the nuclear factor-κB pathway, reducing renal advanced glycation end-products and receptor for advanced glycation end-product in diabetic rats. PMID:23935673

  12. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression

  13. Mesenchymal stem cells in renal function recovery after acute kidney injury: use of a differentiating agent in a rat model.

    PubMed

    La Manna, Gaetano; Bianchi, Francesca; Cappuccilli, Maria; Cenacchi, Giovanna; Tarantino, Lucia; Pasquinelli, Gianandrea; Valente, Sabrina; Della Bella, Elena; Cantoni, Silvia; Claudia, Cavallini; Neri, Flavia; Tsivian, Matvey; Nardo, Bruno; Ventura, Carlo; Stefoni, Sergio

    2011-01-01

    Acute kidney injury (AKI) is a major health care condition with limited current treatment options. Within this context, stem cells may provide a clinical approach for AKI. Moreover, a synthetic compound previously developed, hyaluronan monoesters with butyric acid (HB), able to induce metanephric differentiation, formation of capillary-like structures, and secretion of angiogenic cytokines, was tested in vitro. Thereafter, we investigated the effects of human mesenchymal stem cells from fetal membranes (FMhMSCs), both treated and untreated with HB, after induction of ischemic AKI in a rat model. At reperfusion following 45-min clamping of renal pedicles, each rat was randomly assigned to one of four groups: CTR, PBS, MSC, and MSC-HB. Renal function at 1, 3, 5, and 7 days was assessed. Histological samples were analyzed by light and electron microscopy and renal injury was graded. Cytokine analysis on serum samples was performed. FMhMSCs induced an accelerated renal functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys. HB-treated rats showed a minor degree of inflammation, both at cytokine and TEM analyses. Better functional and morphological recovery were not associated to stem cells' regenerative processes, but possibly suggest paracrine effects on microenvironment that induce retrieval of renal damaged tissues. These results suggest that FMhMSCs could be useful in the treatment of AKI and the utilization of synthetic compounds could enhance the recovery induction ability of cells.

  14. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR.

    PubMed

    Figueira, Miriam F; Castiglione, Raquel C; de Lemos Barbosa, Carolina M; Ornellas, Felipe M; da Silva Feltran, Geórgia; Morales, Marcelo M; da Fonseca, Rodrigo N; de Souza-Menezes, Jackson

    2017-07-01

    Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats.

    PubMed

    Reshi, Mohd Salim; Shrivastava, Sadhana; Jaswal, Amita; Sinha, Neelu; Uthra, Chhavi; Shukla, Sangeeta

    2017-04-04

    Valuable effects of gold particles have been reported and used in complementary medicine for decades. The aim of this study was to evaluate the therapeutic efficacy of gold nanoparticles (AuNPs) against acetaminophen (APAP) induced toxicity. Albino rats were administered APAP at a dose of 2g/kg p.o. once only. After 24h of APAP intoxication, animals were treated with three different doses of AuNPs (50μg/kg, 100μg/kg, 150μg/kg) orally or silymarin at a dose of 50mg/kg p.o., once only. Animals of all the groups were sacrificed after 24h of last treatment. APAP administered group showed a significant rise in the AST, ALT, SALP, LDH, cholesterol, bilirubin, albumin, urea and creatinine in serum which indicated the hepato-renal damage. A significantly enhanced LPO and a depleted level of GSH were observed in APAP intoxicated rats. Declined activities of SOD and Catalase, after acetaminophen exposure indicated oxidative stress in liver and kidney. The activities of ATPase and glucose-6-Phosphatase were significantly inhibited after APAP administration. AuNPs treatment reversed all variables significantly towards normal level and was found nontoxic. Thus it is concluded that gold nanoparticles played a beneficial role in reducing acetaminophen induced toxicity and can be used in the development of drug against hepatic as well as renal diseases, after further preclinical and clinical studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats.

    PubMed

    Trovato, Ada; Taviano, Maria F; Pergolizzi, Simona; Campolo, Loredana; De Pasquale, Rita; Miceli, Natalizia

    2010-04-01

    The present study was designed to evaluate the protective effect of treatment with Citrus bergamia juice (1 mL/day, for 30 days) against hypercholesterolemic diet-induced renal injury in rat.C. bergamia juice provoked a significant reduction in the plasma levels of cholesterol, triglycerides and LDL, and an increase in HDL levels, versus hyperlipidemic controls (p < 0.05). Plasma creatinine levels, measured to assess renal glomerular function, did not change compared with hyperlipidemic controls (0.37 +/- 0.11 mg/dL and 0.32 +/- 0.10 mg/dL, respectively). Moreover, in vivo lipid peroxidation was measured in kidney homogenate; C. bergamia juice administration significantly decreased MDA levels elevations compared with hyperlipidemic controls (4.10 +/- 0.10 nmol/mg protein and 4.78 +/- 0.15 nmol/mg protein, respectively).Histological observations of the kidney supported the biochemical data and indicated a protective effect of C. bergamia juice on the development of renal damage in hypercholesterolemic rats.The antioxidant potential of C. bergamia juice was examined in two in vitro systems: in the DPPH test the juice showed a noticeable effect on scavenging free radicals (IC(50) = 25.01 +/- 0.70 +/-L); in the reducing power assay it showed a strong activity, too (1.44 +/- 0.01 ASE/mL).These findings suggest that C. bergamia juice has a protective role in hypercholesterolemic diet-induced renal damage, which may be attributed to its antioxidant properties. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. A comparison of renal effects and metabolism of sevoflurane and methoxyflurane in enzyme-induced rats.

    PubMed

    Cook, T L; Beppu, W J; Hitt, B A; Kosek, J C; Mazze, R I

    1975-01-01

    Twenty-five 5-month-old male Fischer-344 rats were randomly divided into 5 groups: Group I, no anesthesia; Group II, 1.4 precent sevoflurane for 2 hours; Group III, 0.1 percent phenobarbital, ad lib, in drinking water for 7 days; followed by 1.4 percent sevoflurane for 2 hours; Group IV, 0.25 percent methoxyflurane, 1 hour; Group V, phenobarbital in water as in Group III, followed by methoxyflurane as in group IV. Pre- and postanesthetic serum and urinary osmolality, Na+, K+, urea nitrogen (BUN), inorganic fluoride (F-) levels, and 24-hour urine volume were measured. Kidney tissue was obtained for examination by light and electron microscopy. Sevoflurane was metabolized to F- to a lesser extent than was methoxyflurane; treatment with phenobarbital-sevoflurane doubled urinary F- excretion, resulting in a value similar to that seen after methoxyflurane alone. There was no functional or morphologic evidence of renal abnormalities in either group of rats anesthetized with sevoflurane. Methoxyflurane dosage was sufficiently low that renal abnormalities did not occur except in rats treated also with phenobarbital; these animals developed polyuria and the morphologic lesion typically associated with F--induced nephrotoxicity.

  18. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats.

    PubMed

    Liu, Yang; Liu, Xiuheng; Wang, Lei; Du, Yang; Chen, Zhiyuan; Chen, Hui; Guo, Jia; Weng, Xiaodong; Wang, Xiao; Wang, Ming; Wang, Zhishun

    2017-12-01

    The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo . Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro . Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro . In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats.

  19. Effects of apigenin on the expression levels of B-cell lymphoma-2, Fas and Fas ligand in renal ischemia-reperfusion injury in rats

    PubMed Central

    Liu, Yang; Liu, Xiuheng; Wang, Lei; Du, Yang; Chen, Zhiyuan; Chen, Hui; Guo, Jia; Weng, Xiaodong; Wang, Xiao; Wang, Ming; Wang, Zhishun

    2017-01-01

    The aim of the present study was to investigate the effect and possible mechanism of apigenin on renal ischemia-reperfusion (I/R) injury in rats, as well as in in vitro experiments. In total, 36 rats were subjected to 45 min of renal ischemia, with or without treatment prior to ischemia with different concentrations of apigenin (2, 10 and 50 mg/kg) administered intravenously. All rats were sacrificed at 24 h after I/R injury. The serum creatinine (Cr) and blood urea nitrogen (BUN) levels were analyzed, and histological examination was conducted. In addition, the expression levels of B-cell lymphoma 2 (Bcl-2) and Fas/Fas ligand (FasL) were detected by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. For in vitro experiments, the NRK-52E cell line was employed. The viability, apoptosis and expression levels of Fas, FasL and Bcl-2 were examined in the culture of NRK-52E cells following the I/R. The results indicated that apigenin significantly decreased the levels of serum Cr and BUN induced by renal I/R, demonstrating an improvement in renal function. The histological evidence of renal damage associated with I/R was also mitigated by apigenin in vivo. Furthermore, apigenin increased the cell viability and decreased cell apoptosis in the culture of NRK52E after I/R in vitro. Compared with the I/R group, the expression of Bcl-2 was upregulated and the expression levels of Fas and FasL were downregulated by apigenin at the mRNA and protein levels in vivo and in vitro. In conclusion, apigenin appeared to increase the expression of Bcl-2 and reduce Fas/FasL expression in renal I/R injury, providing evident protection against renal I/R injury in rats. PMID:29285062

  20. Effects of vitamin E on mercuric chloride-induced renal interstitial fibrosis in rats and the antioxidative mechanism.

    PubMed

    Tao, Yan-yan; Wang, Qing-lan; Yuan, Ji-li; Shen, Li; Liu, Cheng-hai

    2011-02-01

    To observe the effects of vitamin E (Vit E) on mercuric chloride (HgCl2)-induced renal interstitial fibrosis (RIF) in rats and discuss its antioxidative mechanism. A total of 32 Sprague-Dawley rats were randomly assigned to three groups: normal group, model group and Vit E group. RIF was induced by oral administration of HgCl(2) at a dose of 8 mg/kg body weight once a day for 9 weeks. Rats in Vit E group were administered with Vit E capsule at 100 mg/kg body weight, and rats in normal and model groups were treated with normal saline. At the end of the 9th week, rats were sacrificed and renal hydroxyproline (Hyp)'s trichrome and periodic acid-silver methenamine (PASM) staining. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and contents of glutathione (GSH) and malondialdehyde (MDA) in kidney tissue were tested with commercial kits. The expressions of nuclear factor-κB (NF-κB), inhibitor-κB (IκB), phospho-IκB (p-IκB) and tumor necrosis factor-α (TNF-α) were determined by Western blot. The expression of α-smooth muscle actin (α-SMA) was assayed by Western blot and immunofluorescent staining. Renal Hyp content, HE, Masson's trichrome and PASM staining results and α-SMA expression confirmed development of HgCl2-induced RIF in rats. Oxidative stress markers GSH, GSH-Px and MDA confirmed oxidative stress in RIF rats. Compared with model rats, rats in Vit E group had lower kidney Hyp content (P<0.01). GSH and MDA contents decreased significantly in Vit E group compared with model group (P<0.01). The expressions of NF-κB and IκB had no significant difference among all groups (P>0.05). In Vit E group, the expressions of p-IκB and TNF-α decreased significantly compared with model group (P<0.01). The expression of α-SMA in Vit E group was also decreased significantly compared with model group (P<0.01). Vit E has a protective effect on experimental RIF induced by HgCl(2) in rats and it is related to inhibition of lipid

  1. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus.

    PubMed

    Sreekutty, M S; Mini, S

    2016-01-01

    Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus.

  2. Renal Medullary and Urinary Oxygen Tension during Cardiopulmonary Bypass in the Rat

    PubMed Central

    Sgouralis, Ioannis; Evans, Roger G.; Layton, Anita T.

    2017-01-01

    Renal hypoxia could result from a mismatch in renal oxygen supply and demand, particularly in the renal medulla. Medullary hypoxic damage is believed to give rise to acute kidney injury, which is a prevalent complication of cardiac surgery performed on cardiopulmonary bypass (CPB). To determine the mechanisms that could lead to medullary hypoxia during CPB in the rat kidney, we developed a mathematical model which incorporates (i) autoregulation of renal blood flow and glomerular filtration rate, (ii) detailed oxygen transport and utilization in the renal medulla, and (iii) oxygen transport along the ureter. Within the outer medulla, the lowest interstitial tissue PO2, which is an indicator of renal hypoxia, is predicted near the thick ascending limbs. Interstitial tissue PO2 exhibits a general decrease along the inner medullary axis, but urine PO2 increases significantly along the ureter. Thus, bladder urinary PO2 is predicted to be substantially higher than medullary PO2. The model is used to identify the phase of cardiac surgery performed on CPB that is associated with the highest risk for hypoxic kidney injury. Simulation results indicate that the outer medulla’s vulnerability to hypoxic injury depends, in part, on the extent to which medullary blood flow is autoregulated. With imperfect medullary blood flow autoregulation, the model predicts that the rewarming phase of CPB, in which medullary blood flow is low but medullary oxygen consumption remains high, is the phase in which the kidney is most likely to suffer hypoxic injury. PMID:27281792

  3. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    PubMed

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  4. 5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats.

    PubMed

    Quesada, Andrés; O'Valle, Francisco; Montoro-Molina, Sebastián; Gómez-Morales, Mercedes; Caba-Molina, Mercedes; González, Juan Francisco; de Gracia, María C; Osuna, Antonio; Vargas, Félix; Wangensteen, Rosemary

    2018-04-27

    The aim of the present study is to analyze the effects of 5-aminoisoquinoline (5-AIQ), a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, over renal dysfunction and fibrosis during recovery phase of cisplatin (CisPt)-induced acute kidney injury (AKI) in rats. Male Wistar rats were distributed in three groups ( n =8 each group): control, CisPt, and CisPt + 5-AIQ. Control and CisPt groups received a subcutaneous injection of either saline or 7 mg/kg CisPt, respectively. CisPt + 5-AIQ group received two intraperitoneal injections of 10 mg/kg 5-AIQ 2 h before and 24 h after CisPt treatment. Thirteen days after the treatment, rats were housed in metabolic cages and 24-h urine collection was made. At day 14, CisPt-treated rats showed increased diuresis, N-acetyl-β-d-glucosaminidase (NAG) excretion, glucosuria and sodium fractional excretion (NaFE), and decreased creatinine clearance (CrCl). 5-AIQ significantly increased CrCl and decreased NAG excretion, glucosuria, and NaFE. In plasma, CisPt increased sodium, urea, and creatinine concentrations, while 5-AIQ treatment decreased these variables to the levels of control group. 5-AIQ completely prevented the body weight loss evoked by CisPt treatment. CisPt also induced an increased renal expression of PAR polymer, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and collagen-IV. These variables were decreased in CisPt + 5-AIQ group. Tubular lesions and renal fibrosis were also decreased by 5-AIQ treatment. We conclude that inhibition of PARP1 with 5-AIQ can attenuate long-term nephrotoxic effects associated with the CisPt treatment, preventing renal dysfunction and body weight decrease and ameliorating tubular lesions and collagen deposition. © 2018 The Author(s).

  5. 5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats

    PubMed Central

    Quesada, Andrés; O’Valle, Francisco; Montoro-Molina, Sebastián; Gómez-Morales, Mercedes; Caba-Molina, Mercedes; González, Juan Francisco; de Gracia, María C.; Osuna, Antonio; Vargas, Félix; Wangensteen, Rosemary

    2018-01-01

    The aim of the present study is to analyze the effects of 5-aminoisoquinoline (5-AIQ), a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, over renal dysfunction and fibrosis during recovery phase of cisplatin (CisPt)-induced acute kidney injury (AKI) in rats. Male Wistar rats were distributed in three groups (n=8 each group): control, CisPt, and CisPt + 5-AIQ. Control and CisPt groups received a subcutaneous injection of either saline or 7 mg/kg CisPt, respectively. CisPt + 5-AIQ group received two intraperitoneal injections of 10 mg/kg 5-AIQ 2 h before and 24 h after CisPt treatment. Thirteen days after the treatment, rats were housed in metabolic cages and 24-h urine collection was made. At day 14, CisPt-treated rats showed increased diuresis, N-acetyl-β-d-glucosaminidase (NAG) excretion, glucosuria and sodium fractional excretion (NaFE), and decreased creatinine clearance (CrCl). 5-AIQ significantly increased CrCl and decreased NAG excretion, glucosuria, and NaFE. In plasma, CisPt increased sodium, urea, and creatinine concentrations, while 5-AIQ treatment decreased these variables to the levels of control group. 5-AIQ completely prevented the body weight loss evoked by CisPt treatment. CisPt also induced an increased renal expression of PAR polymer, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and collagen-IV. These variables were decreased in CisPt + 5-AIQ group. Tubular lesions and renal fibrosis were also decreased by 5-AIQ treatment. We conclude that inhibition of PARP1 with 5-AIQ can attenuate long-term nephrotoxic effects associated with the CisPt treatment, preventing renal dysfunction and body weight decrease and ameliorating tubular lesions and collagen deposition. PMID:29599129

  6. Renal structure and function evaluation of rats from dams that received increased sodium intake during pregnancy and lactation submitted or not to 5/6 nephrectomy.

    PubMed

    Marin, Evelyn Cristina Santana; Balbi, Ana Paula Coelho; Francescato, Heloísa Della Coletta; Alves da Silva, Cleonice Giovanini; Costa, Roberto Silva; Coimbra, Terezila M

    2008-01-01

    Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.

  7. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero G in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Four rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast, five of the seven remaining rats increased the fraction of the filtered sodium excreted and their urinary flow rate. Potassium excretion increased. End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause in the rat a decrease in distal tubular sodium and water reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis. The adequacy of other nonatrial volume control mechanisms in regulating renal salt and water conservation in opposition to the studied atrial-renal (Henry-Gauer) reflex of thoracic vascular distension is confirmed.

  8. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment.

    PubMed

    Ledeganck, Kristien J; Boulet, Gaëlle A; Horvath, Caroline A; Vinckx, Marleen; Bogers, Johannes J; Van Den Bossche, Rita; Verpooten, Gert A; De Winter, Benedicte Y

    2011-09-01

    Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss.

  9. Protective effects of AT1-receptor blocker and CA antagonist combination on renal function in salt loaded spontaneously hypertensive rats.

    PubMed

    Gjorgjievska, K; Zafirov, D; Jurhar-Pavlova, M; Cekovska, S; Atanasovska, E; Pavlovska, K; Zendelovska, D

    2015-01-01

    Salt sensitive hypertension is known to be a contributing factor for the progression of kidney disease. This study was undertaken to investigate the role of excessive dietary salt on renal function and to evaluate the effect of valsartan and amlodipin given as a combination therapy on blood pressure and parameters specific to the renal function in salt loaded SHR rats. 48 male SHR rats at age of 20 weeks and body weight ranging between 270-350 g were used. SHR rats were divided into 3 groups: control group of rats -SHRC (n = 16) given tab water ad libitum and two salt treated groups in which tab water was replaced with a solution of NaCl (1%) from age of 8 weeks given ad libitum: SHRVAL+AMLO group (n = 16) where investigated drugs were administered at a dose of 10 mg/kg/ b.w. (valsartan) and 5 mg/kg/ b.w. (amlodipin) by gavage and SHR NaCl group (n = 16) that received saline in the same volume and the same time intervals as the SHRVAL+AMLO group. For a period of 12 weeks we have investigated the effect of the VAL+AMLO drug combination on systolic blood pressure (SBP), body weight and renal function tests. Salt loading with 1% solution in the SHR NaCl group has lead to significant increase of blood pressure, proteinuria and decrease in creatinine clearance. Combined treatment with AT1 receptor blocker and calcium antagonist has managed to control blood pressure and ameliorated renal damage.

  10. Losartan corrects abnormal frequency response of renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-11-01

    In congestive heart failure, renal blood flow is decreased and renal vascular resistance is increased in a setting of increased activity of both the sympathetic nervous and renin-angiotensin systems. The renal vasoconstrictor response to renal nerve stimulation is enhanced. This is associated with an abnormality in the low-pass filter function of the renal vasculature wherein higher frequencies (> or =0.01 Hz) within renal sympathetic nerve activity are not normally attenuated and are passed into the renal blood flow signal. This study tested the hypothesis that excess angiotensin II action mediates the abnormal frequency response characteristics of the renal vasculature in congestive heart failure. In anesthetized rats, the renal vasoconstrictor response to graded frequency renal nerve stimulation was significantly greater in congestive heart failure than in control rats. Losartan attenuated the renal vasoconstrictor response to a significantly greater degree in congestive heart failure than in control rats. In control rats, the frequency response of the renal vasculature was that of a first order (-20 dB/frequency decade) low-pass filter with a corner frequency (-3 dB, 30% attenuation) of 0.002 Hz and 97% attenuation (-30 dB) at > or =0.1 Hz. In congestive heart failure rats, attenuation did not exceed 45% (-5 dB) over the frequency range of 0.001-0.6 Hz. The frequency response of the renal vasculature was not affected by losartan treatment in control rats but was completely restored to normal by losartan treatment in congestive heart failure rats. The enhanced renal vasoconstrictor response to renal nerve stimulation and the associated abnormality in the frequency response characteristics of the renal vasculature seen in congestive heart failure are mediated by the action of angiotensin II on renal angiotensin II AT1 receptors.

  11. Intake of water with high levels of dissolved hydrogen (H2) suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats.

    PubMed

    Zhu, Wan-Jun; Nakayama, Masaaki; Mori, Takefumi; Nakayama, Keisuke; Katoh, Junichiro; Murata, Yaeko; Sato, Toshinobu; Kabayama, Shigeru; Ito, Sadayoshi

    2011-07-01

    Hydrogen (H(2)) reportedly produces an antioxidative effect by quenching cytotoxic oxygen radicals. We studied the biological effects of water with dissolved H(2) on ischemia-induced cardio-renal injury in a rat model of chronic kidney disease (CKD). Dahl salt-sensitive rats (7 weeks old) were allowed ad libitum drinking of filtered water (FW: dissolved H(2), 0.00 ± 0.00 mg/L) or water with dissolved H(2) produced by electrolysis (EW: dissolved H(2), 0.35 ± 0.03 mg/L) for up to 6 weeks on a 0.5% salt diet. The rats then underwent ischemic reperfusion (I/R) of one kidney and were killed a week later for investigation of the contralateral kidney and the heart. In the rats given FW, unilateral kidney I/R induced significant increases in plasma monocyte chemoattractant protein-1, methylglyoxal and blood urea nitrogen. Histologically, significant increases were found in glomerular adhesion, cardiac fibrosis, number of ED-1 (CD68)-positive cells and nitrotyrosine staining in the contralateral kidney and the heart. In rats given EW, those findings were significantly ameliorated and there were significant histological differences between rats given FW and those given EW. Consumption of EW by ad libitum drinking has the potential to ameliorate ischemia-induced cardio-renal injury in CKD model rats. This indicates a novel strategy of applying H(2) produced by water electrolysis technology for the prevention of CKD cardio-renal syndrome.

  12. Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine–Induced Chronic Renal Failure in Rats

    PubMed Central

    Ali, Badreldin H.; Al-Husseni, Isehaq; Beegam, Sumyia; Al-Shukaili, Ahmed; Nemmar, Abderrahim; Schierling, Simone; Queisser, Nina; Schupp, Nicole

    2013-01-01

    Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-α and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for γ-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals. PMID:23383316

  13. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Visnagri, Asjad; Bodhankar, Subhash L

    2015-01-01

    Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.

  14. Effect of antisense oligodeoxynucleotides for ICAM-1 on renal ischaemia–reperfusion injury in the anaesthetised rat

    PubMed Central

    Kiew, Lik Voon; Munavvar, Abdul Sattar; Law, Chung Hiong; Azizan, Abdullah Nor; Nazarina, Abdul Rahman; Sidik, Khalifah; Johns, Edward J

    2004-01-01

    An antisense oligodeoxynucleotide (As-ODN) to the 3′ untranslated region of the mRNA sequence expressing the intracellular adhesion molecule-1 (ICAM-1) was employed to determine ICAM-1's role in renal ischaemia–reperfusion injury in the rat. Wistar-Kyoto rats receiving i.v. either lipofectin–As-ODN (As-ODN group), lipofectin–reverse ODN (Rv-ODN group) or lipofectin (ischaemia control group) 8 h prior to study were anaesthetized and subjected to 30 min of renal artery occlusion. Renal haemodynamic and excretory parameters were monitored before and after renal ischaemia. On termination of the study renal tissue was subjected to histological and Western blot analysis. Renal blood flow decreased in the 3 h post-ischaemia period in the ischaemia control and Rv-ODN groups, but was maintained in the As-ODN group. Glomerular filtration rate was depressed initially but gradually increased to 10% above basal levels in the ischaemia control and Rv-ODN groups, but was below basal levels (20%) in the As-ODN group. There was a three- to fourfold increase in sodium and water excretion following ischaemia in the ischaemia control and reverse-ODN groups but not in the As-ODN treated group. The As-ODN ameliorated the histological evidence of ischaemic damage and reduced ICAM-1 protein levels to a greater extent in the medulla than cortex. These observations suggested that in the post-ischaemic period afferent and efferent arteriolar tone was increased with a loss of reabsorptive capacity which was in part due to ICAM-1. The possibility arises that the action of ICAM-1 at vascular and tubular sites in the deeper regions of the kidney contributes to the ischaemia–reperfusion injury. PMID:15047774

  15. Cleistanthus collinus induces type I distal renal tubular acidosis and type II respiratory failure in rats.

    PubMed

    Maneksh, Delinda; Sidharthan, Anita; Kettimuthu, Kavithapriya; Kanthakumar, Praghalathan; Lourthuraj, Amala A; Ramachandran, Anup; Subramani, Sathya

    2010-06-01

    A water decoction of the poisonous shrub Cleistanthus collinus is used for suicidal purposes. The mortality rate is 28%. The clinical profile includes distal renal tubular acidosis (DRTA) and respiratory failure. The mechanism of toxicity is unclear. To demonstrate features of C. collinus toxicity in a rat model and to identify its mechanism(s) of action. Rats were anesthetized and the carotid artery was cannulated. Electrocardiogram and respiratory movements were recorded. Either aqueous extract of C. collinus or control solution was administered intraperitoneally. Serial measurements of blood gases, electrolytes and urinary pH were made. Isolated brush border and basolateral membranes from rat kidney were incubated with C. collinus extract and reduction in ATPase activity was assessed. Venous blood samples from human volunteers and rats were incubated with an acetone extract of C. collinus and plasma potassium was estimated as an assay for sodium-potassium pump activity. The mortality was 100% in tests and 17% in controls. Terminal event in test animals was respiratory arrest. Controls had metabolic acidosis, respiratory compensation acidic urine and hyperkalemia. Test animals showed respiratory acidosis, alkaline urine and low blood potassium as compared to controls. C. collinus extract inhibited ATPase activity in rat kidney. Plasma K(+) did not increase in human blood incubated with C. collinus extract. Active principles of C. collinus inhibit proton pumps in the renal brush border, resulting in type I DRTA in rats. There is no inhibition of sodium-potassium pump activity. Test animals develop respiratory acidosis, and the immediate cause of death is respiratory arrest.

  16. Role of vasopressin in regulation of renal kinin excretion in Long-Evans and diabetes insipidus rats.

    PubMed Central

    Kauker, M L; Crofton, J T; Share, L; Nasjletti, A

    1984-01-01

    To study the relationship between vasopressin and the renal kallikrein-kinin system we measured the rate of excretion of kinins into the urine of anesthetized rats during conditions of increased and decreased vasopressin level. The excretion of immunoreactive kinins in Brattleboro rats with hereditary diabetes insipidus (DI) (24 +/- 3 pg min-1 kg-1) was lower than in the control Long Evans (LE) rats (182 +/- 22 pg min-1 kg-1; P less than 0.05). The DI rats also exhibited negligible urinary excretion of immunoreactive vasopressin, reduced urine osmolality, and increased urine flow and kininogenase excretion. In LE rats, volume expansion by infusion of 0.45% NaCl-2.5% dextrose to lower vasopressin secretion reduced (P less than 0.05) kinin excretion, vasopressin excretion, and urine osmolality to 41, 26, and 15% of their respective control values, while increasing (P less than 0.05) urine flow and kininogenase excretion. On the other hand, the infusion of 5% NaCl, which promotes vasopressin secretion, increased (P less than 0.05) the urinary excretion of kinins and vasopressin to 165 and 396% of control, while increasing (P less than 0.05) urine flow and kininogenase excretion. Infusion of vasopressin (1.2 mU/h, intravenous) enhanced (P less than 0.05) kinin excretion by two to threefold in DI rats and in LE rats during volume expansion with 0.45% NaCl-2.5% dextrose, while decreasing urine flow and increasing urine osmolality. This study demonstrates that the urinary excretion of immunoreactive kinins varies in relation to the urinary level of vasopressin, irrespective of urine volume and osmolality and of the urinary excretions of sodium and kininogenase. The study suggests a role for vasopressin in promoting the activity of the renal kallikrein-kinin system in the rat. PMID:6561201

  17. Stanniocalcin 1 effects on the renal gluconeogenesis pathway in rat and fish.

    PubMed

    Schein, Vanessa; Kucharski, Luiz C; Guerreiro, Pedro M G; Martins, Tiago Leal; Morgado, Isabel; Power, Deborah M; Canario, Adelino V M; da Silva, Roselis S M

    2015-10-15

    The mammalian kidney contributes significantly to glucose homeostasis through gluconeogenesis. Considering that stanniocalcin 1 (STC1) regulates ATP production, is synthesized and acts in different cell types of the nephron, the present study hypothesized that STC1 may be implicated in the regulation of gluconeogenesis in the vertebrate kidney. Human STC1 strongly reduced gluconeogenesis from (14)C-glutamine in rat renal medulla (MD) slices but not in renal cortex (CX), nor from (14)C-lactic acid. Total PEPCK activity was markedly reduced by hSTC1 in MD but not in CX. Pck2 (mitochondrial PEPCK isoform) was down-regulated by hSTC1 in MD but not in CX. In fish (Dicentrarchus labrax) kidney slices, both STC1-A and -B isoforms decreased gluconeogenesis from (14)C-acid lactic, while STC1-A increased gluconeogenesis from (14)C-glutamine. Overall, our results demonstrate a role for STC1 in the control of glucose synthesis via renal gluconeogenesis in mammals and suggest that it may have a similar role in teleost fishes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet

    PubMed Central

    Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.

    2008-01-01

    The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797

  19. Micropuncture studies of the recovery phase of myohemoglobinuric acute renal failure in the rat

    PubMed Central

    Oken, Donald E.; DiBona, Gerald F.; McDonald, Franklin D.

    1970-01-01

    Micropuncture studies of the recovery phase of glycerol-induced myohemoglobinuric acute renal failure were performed in rats whose blood urea nitrogen (BUN) had fallen at least 20% below its peak value. The glomerular filtration rate (GFR) of individual nephrons in a single kidney in the recovery period generally either was in the normal range or minimal. Each animal's BUN concentration at the time of the study was inversely related to the proportion of functioning surface nephrons, but did not correlate with individual nephron GFR values. Proximal tubule fractional water absorption was significantly depressed as manifested by both depressed inulin (TF/P) values and supernormal volumes of collections, a finding which, in the absence of a urea-induced osmotic diuresis, suggests impaired sodium transport by the damaged nephron. The mean proximal tubule hydrostatic pressure in recovery was normal and there was little variation in pressure among functioning nephrons. It is concluded that recovery from this model of acute renal failure reflects the progressive recruitment of increasing numbers of functioning nephrons. The recovery of individual nephron glomerular filtration, once begun, was rapid and complete. No evidence could be adduced that the gradual return of renal function towards normal reflects a slow release of tubular obstruction or repair of disrupted tubular epithelium. Rather, recovery appeared to be directly attributable to the return of an adequate effective glomerular filtration pressure. Significant limitation in proximal tubule water absorption persisted after individual nephron GFR had returned to normal or supernormal values in this model of experimental acute renal failure in the rat, a finding which readily accounts for the diuresis associated with the recovery phase of this syndrome. PMID:5443173

  20. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of Shenkang granules on the progression of chronic renal failure in 5/6 nephrectomized rats

    PubMed Central

    ZHANG, YU; ZHOU, NAN; WANG, HONGYING; WANG, SICEN; HE, JIANYU

    2015-01-01

    Shenkang granules (SKGs) are a Chinese herbal medicinal formula, consisting of rhubarb (Rheum palmatum L.), Salvia miltiorrhiza, milkvetch root [Astragalus membranaceus (Fisch.) Bunge] and safflower (Carthamus tinctorius L.). The aim of the present study was to investigate the effect of SKG on chronic renal failure (CRF) in 5/6 nephrectomized (5/6 Nx) rats. The rats were randomly divided into seven groups (n=10 per group) as follows: (i) 5/6 Nx (model group; 2.25 ml/kg/day normal saline); (ii) SKGL (low dose; 5/6 Nx treated with 2 g crude drug/kg/day SKG); (iii) SKGM (moderate dose; 5/6 Nx treated with 4 g crude drug/kg/day SKG); (iv) SKGH (high dose; 5/6 Nx treated with 8 g crude drug/kg/day SKG); (v) benazepril treatment group (5/6 Nx treated with 5 mg/kg/day benazepril); (vi) Shenkang injection (SKI) group (5/6 Nx with 13.3 ml/kg/day SKI); and (vii) sham-operated group (2.25 ml/kg/day normal saline). After 30 days, the levels of microalbumin, total protein, serum creatinine, blood urea nitrogen and serum lipid were found to be significantly decreased in the SKGL and SKGM rats, showing histological improvement compared with the untreated 5/6 Nx rats, as determined by hematoxylin and eosin, and Masson's trichrome staining. In addition, SKG was found to significantly improve the levels of glutathione peroxidase and reduce the damage caused by free radicals to the kidney tissues. Furthermore, SKG prevented the accumulation of extracellular matrix by decreasing the expression of collagen I and III and inhibiting the expression of matrix metalloproteinases-2 and −9 in the renal tissue, as determined by western blot analysis. SKG was also shown to decrease the concentrations of serum transforming growth factor-β1, as determined by ELISA, and kidney angiotensin II, as determined using a radioimmunoassay kit. In conclusion, SKG was demonstrated to ameliorate renal injury in a 5/6 Nx rat model of CRF. Thus, SKG may exert a good therapeutic effect on CRF. PMID:26136932

  2. Real-time point-of-care measurement of impaired renal function in a rat acute injury model employing exogenous fluorescent tracer agents

    NASA Astrophysics Data System (ADS)

    Dorshow, Richard B.; Fitch, Richard M.; Galen, Karen P.; Wojdyla, Jolette K.; Poreddy, Amruta R.; Freskos, John N.; Rajagopalan, Raghavan; Shieh, Jeng-Jong; Demirjian, Sevag G.

    2013-02-01

    Renal function assessment is needed for the detection of acute kidney injury and chronic kidney disease. Glomerular filtration rate (GFR) is now widely accepted as the best indicator of renal function, and current clinical guidelines advocate its use in the staging of kidney disease. The optimum measure of GFR is by the use of exogenous tracer agents. However current clinically employed agents lack sensitivity or are cumbersome to use. An exogenous GFR fluorescent tracer agent, whose elimination rate could be monitored noninvasively through skin would provide a substantial improvement over currently available methods. We developed a series of novel aminopyrazine analogs for use as exogenous fluorescent GFR tracer agents that emit light in the visible region for monitoring GFR noninvasively over skin. In rats, these compounds are eliminated by the kidney with urine recovery greater than 90% of injected dose, are not broken down or metabolized in vivo, are not secreted by the renal tubules, and have clearance values similar to a GFR reference compound, iothalamate. In addition, biological half-life of these compounds measured in rats by noninvasive optical methods correlated with plasma derived methods. In this study, we show that this noninvasive methodology with our novel fluorescent tracer agents can detect impaired renal function. A 5/6th nephrectomy rat model is employed.

  3. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats.

    PubMed

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-12-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  4. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-06-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats ( p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group, and was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group ( p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  5. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats.

    PubMed

    Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin

    2015-09-07

    Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.

  6. Increased Blood Pressure Variability Prior to Chronic Kidney Disease Exacerbates Renal Dysfunction in Rats

    PubMed Central

    Freitas, Frederico F. C. T.; Araujo, Gilberto; Porto, Marcella L.; Freitas, Flavia P. S.; Graceli, Jones B.; Balarini, Camille M.; Vasquez, Elisardo C.; Meyrelles, Silvana S.; Gava, Agata L.

    2016-01-01

    Increased blood pressure variability (BPV), which can be experimentally induced by sinoaortic denervation (SAD), has emerged as a new marker of the prognosis of cardiovascular and renal outcomes. Considering that increased BPV can lead to organ-damage, the goal of the present study was to evaluate the effects of SAD on renal function in an experimental model of chronic kidney disease (CKD). SAD was performed in male Wistar rats 2 weeks before 5/6 nephrectomy and the animals were evaluated 4 weeks after the induction of CKD. Our data demonstrated that BPV was increased in SAD and CKD animals and that the combination of both conditions (SAD+CKD) exacerbated BPV. The baroreflex sensitivity index was diminished in the SAD and CKD groups; this reduction was more pronounced when SAD and CKD were performed together. 5/6 nephrectomy led to hypertension, which was higher in SAD+CKD animals. Regarding renal function, the combination of SAD and CKD resulted in reduced renal plasma and blood flow, increased renal vascular resistance and augmented uraemia when compared to CKD animals. Glomerular filtration rate and BPV were negatively correlated in SAD, CKD, and SAD+CKD animals. Moreover, SAD+CKD animals presented a higher level of glomerulosclerosis when compared to all other groups. Cardiac and renal hypertrophy, as well as oxidative stress, was also further increased when SAD and CKD were combined. These results show that SAD prior to 5/6 nephrectomy exacerbates renal dysfunction, suggesting that previous augmented BPV should be considered as an important factor to the progression of renal diseases. PMID:27721797

  7. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    PubMed

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Role of Vasodilator Receptors of Renin-angiotensin System on Nitric Oxide Formation and Kidney Circulation after Angiotensin II Infusion in Renal Ischemia/Reperfusion Rats.

    PubMed

    Maleki, Maryam; Hasanshahi, Jalal; Moslemi, Fatemeh

    2018-01-01

    Nitric oxide (NO) as a vasodilator factor has renoprotective effect against renal ischemia. The balance between angiotensin II (Ang II) and NO can affect kidney homeostasis. The aim of this study was to determine NO alteration in response to renin-Ang system vasodilator receptors antagonists (PD123319; Ang II type 2 receptor antagonist and A779; Mas receptor antagonist) in renal ischemia/reperfusion injury (IRI) in rats. Sixty-three Wistar male and female rats were used. Animals from each gender were divided into four groups received saline, Ang II, PD123319 + Ang II, and A779 + Ang II after renal IRI. Renal IRI induced with an adjustable hook. Blood pressure and renal blood flow (RBF) measured continuously. The nitrite levels were measured in serum, kidney, and urine samples. In female rats, the serum and kidney nitrite levels increased significantly by Ang II ( P < 0.05) and decreased significantly ( P < 0.05) when PD123319 was accompanied with Ang II. Such observation was not seen in male. Ang II decreased RBF significantly in all groups ( P < 0.05), while PD + Ang II group showed significant decrease in RBF in comparison with the other groups in female rats ( P < 0.05). Males show more sensibility to Ang II infusion; in fact, it is suggested that there is gender dimorphism in the Ang II and NO production associated with vasodilator receptors.

  9. Renal pathophysiologic role of cortical tubular inclusion bodies.

    PubMed

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  10. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage

    PubMed Central

    Jiang, Shaoling; He, Hanchang; Tan, Lishan; Wang, Liangliang; Su, Zhengxiu; Liu, Yufeng; Zhu, Hongguo; Zhang, Menghuan; Hou, Fan Fan; Li, Aiqing

    2016-01-01

    Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity. PMID:27775022

  11. Aripiprazole prevents renal ischemia/reperfusion injury in rats, probably through nitric oxide involvement.

    PubMed

    Gholampour, Hanieh; Moezi, Leila; Shafaroodi, Hamed

    2017-10-15

    Renal ischemia/reperfusion (I/R) injury is strongly related to morbidity and mortality. Oxidative stress, inflammation, and apoptosis play key roles in renal dysfunction following renal I/R. Aripiprazole is an atypical antipsychotic which used for the treatment of schizophrenia and bipolar disorder. Recent studies have reported aripiprazole as displaying certain anti-inflammatory effects. Regarding the underlying mechanisms of renal ischemia-reperfusion, therefore, nephroprotective effects might be predicted to be seen with aripiprazole. I/R injury was induced by bilateral clamping of the renal pedicles (45min) followed by reperfusion (24h). The mechanism of aripiprazole-mediated nephroprotection was explored by a combined use of aripiprazole and L-NAME (non-selective nitric oxide synthase inhibitor). Animals were given aripiprazole (2.5, 5, 10 and 20mg/kg) intraperitoneally, 30min before ischemia. L-NAME was administered before the aripiprazole injection. Serum creatinine and blood urea nitrogen were assessed after 24h of reperfusion. Serum levels of malondialdehyde (MDA), TNF-α and IL-1β were measured for rats treated with aripiprazole. The extent of necrosis was measured by the stereology method. Ischemia/reperfusion caused significant renal dysfunction and marked renal injury. Aripiprazole reduced creatinine and blood urea nitrogen. Serum levels of MDA, IL-1β and TNF-α were significantly lower in the aripiprazole group. Aripiprazole treatment also decreased the volume of kidney necrosis. The administration of L-NAME reversed the renoprotective effect of aripiprazole on BUN and creatinine, but enhanced the anti-necrotic effect of aripiprazole. The results show that a single dose of aripiprazole significantly improved renal function following ischemia/reperfusion injury - probably through the involvement of nitric oxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Induction of hepatic and renal ornithine decarboxylase by cobalt and other metal ions in rats.

    PubMed Central

    Yoshida, T; Numazawa, S; Kuroiwa, Y

    1986-01-01

    We previously showed that Cd2+ is able to induce hepatic and renal ornithine decarboxylase (ODC). In addition to Cd2+, the administration of Co2+ and other metal ions such as Se2+, Zn2+ and Cr2+ produced a significant increase of hepatic and/or renal ODC activity. Of the metal ions used in this study, Co2+ produced the greatest increase of ODC activity. The maximum increases in hepatic and renal ODC activity, to respectively 70 and 14 times the control values in male rats, were observed 6 h after the administration of Co2+. A similar response was seen in the liver, but not in the kidney, of female rats. Thereafter, ODC activity gradually returned to control values in the liver, but it was profoundly decreased to 7% of the control value at 24 h in the kidney. The pretreatment of animals with either actinomycin D or cycloheximide almost completely blocked the Co2+-mediated increase of ODC activity. Co2+ complexed with either cysteine or glutathione (GSH) failed to induce ODC. Depletion of hepatic GSH content by treatment of rats with diethyl maleate greatly enhanced the inducing effect of Co2+ on ODC. The inhibitors of ODC, 1,3-diaminopropane and alpha-difluoromethylornithine, were able to inhibit the induction of the enzyme, without affecting the induction of haem oxygenase by Co2+. Methylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, significantly inhibited the Co2+-mediated induction of both ODC and haem oxygenase. It is suggested that the inducing effects of Co2+ on ODC and haem oxygenase are brought about in a similar manner. PMID:3754136

  13. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes.

    PubMed

    Yun, Bo; Azad, Mohammad A K; Nowell, Cameron J; Nation, Roger L; Thompson, Philip E; Roberts, Kade D; Velkov, Tony; Li, Jian

    2015-12-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    DTIC Science & Technology

    1990-01-01

    induced by decalin exposure are processes, accelerated apoptosis has been describedin renal tissue with hydronephrosis (6), during the clearly intact...experimental hydronephrosis in topathology and cell proliferation induced by 2,2.4- the rat. Lab. Invest. 56(3): 273-281. trimethylpentane in the

  15. Adrenalectomy prevents renal ischemia-reperfusion injury.

    PubMed

    Ramírez, Victoria; Trujillo, Joyce; Valdes, Rafael; Uribe, Norma; Cruz, Cristino; Gamba, Gerardo; Bobadilla, Norma A

    2009-10-01

    Spironolactone treatment prevents renal damage induced by ischemia-reperfusion (I/R), suggesting that renoprotection conferred by spironolactone is mediated by mineralocorticoid receptor (MR) blockade. It is possible, however, that this effect is due to other mechanisms. Therefore, this study evaluated whether adrenalectomy prevented renal damage induced by I/R. Three groups of Wistar rats were studied: 1) a group subjected to a sham surgery, 2) a group subjected to bilateral I/R, and 3) a group of rats in which adrenal glands were removed 3 days before induction of I/R. As expected, I/R resulted in renal dysfunction and severe tubular injury that was associated with a significant increase in tubular damage markers. In contrast, there was no renal dysfunction or tubular injury in rats that were adrenalectomized before I/R. These effects were demonstrated by normalization of glomerular filtration rate, markers of oxidative stress, and tubular injury markers in adrenalectomized rats. The renoprotection observed was associated with the reestablishment of nitric oxide metabolites, increased endothelial nitric oxide synthase expression and its activating phosphorylation, as well as normalization of Rho-kinase expression and ET(A) mRNA levels. Our results show that aldosterone plays a central role in the pathogenesis of renal damage induced by I/R and that MR blockade may be a promising strategy that opens a new therapeutic option for preventing acute renal injury.

  16. Noncontrast-enhanced magnetic resonance renal angiography using a repetitive artery and venous labelling technique at 3 T: comparison with contrast-enhanced magnetic resonance angiography in subjects with normal renal function.

    PubMed

    Park, Sung Yoon; Kim, Chan Kyo; Kim, EunJu; Park, Byung Kwan

    2015-02-01

    To investigate the feasibility of noncontrast-enhanced MR angiography (NC-MRA) using the repetitive artery and venous labelling (RAVEL) technique to evaluate renal arteries compared to contrast-enhanced MR angiography (CE-MRA). Twenty-five subjects with normal renal function underwent NC-MRA using a RAVEL technique and CE-MRA at 3 T. Two independent readers analysed the MRA images. Image quality, number of renal arteries, presence or absence of an early branching vessel, and diameter of the main renal arteries were evaluated. The overall image quality of NC-MRA was fair or greater in 88% of right and 92% of left renal arteries, while it was 96% in both sides with CE-MRA. On NC-MRA, the number of renal arteries in all subjects was perfectly predicted by both readers. Sensitivity and specificity for predicting early branching vessels were 82% and 100% for reader 1 and 82% and 95% for reader 2. Inter-modality agreement for comparing the diameters of main renal arteries was good or excellent at all segments for both readers. Inter-reader agreement was moderate or good at all segments except at the right distal segment on NC-MRA. NC-MRA with the RAVEL technique at 3 T may have comparable diagnostic feasibility for evaluating renal arteries compared to CE-MRA. • Accurate pre-treatment evaluation of renal artery anatomy helps clinical decision-making. • NC-MRA using RAVEL offers acceptable imaging quality for renal artery evaluation. • The 3 T RAVEL technique provides excellent diagnostic performance for renal artery evaluation. • The 3 T RAVEL technique may be an alternative to contrast-enhanced MRA.

  17. Reduced NO production rapidly aggravates renal function through the NF-κB/ET-1/ETA receptor pathway in DOCA-salt-induced hypertensive rats.

    PubMed

    Kimura, Kimihiro; Ohkita, Mamoru; Koyama, Maki; Matsumura, Yasuo

    2012-10-15

    It has been reported that endothelin-1 (ET-1) overproduction and reduced nitric oxide (NO) production are closely related to the progression of renal diseases. In the present study, we examined the interrelation between ET-1 and NO system using rats treated with the combination of deoxycorticosterone acetate (DOCA)-salt and a non selective NO synthase inhibitor N(ω)-nitro-L-arginine (NOARG). Rats were treated with DOCA-salt (15 mg/kg, plus drinking water containing 1% NaCl) for two weeks, and then additional treatment of NOARG (0.6 mg/ml in the drinking water) was performed for three days. Combined treatment of DOCA-salt and NOARG drastically developed the severe renal dysfunction and tissue injury. This treatment additionally enhanced renal ET-1 production compared to the rats treated with DOCA-salt alone, whereas a selective ET(A) receptor antagonist ABT-627 completely prevented renal dysfunction and tissue injury. On the other hand, combined treatment of DOCA-salt and NOARG induced the phosphorylation of inhibitory protein kappa B (IκB), followed by the activation of nuclear factor-kappa B (NF-κB) in the kidney. In addition, pyrrolidine-dithiocarbamate completely suppressed not only NF-κB activation but also renal dysfunction and ET-1 overproduction. These results suggest that NF-κB/ET-1/ET(A) receptor-mediated actions are responsible for the increased susceptibility to DOCA-salt induced renal injuries in the case of reduced NO production. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats.

    PubMed

    Adi, Pradeepkiran Jangampalli; Burra, Siva Prasad; Vataparti, Amardev Rajesh; Matcha, Bhaskar

    2016-01-01

    This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn) or vitamin E (Vit-E) on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g) (n = 6) control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight) alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each) or Vit-E (20 mg/kg body weight) supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and lipid peroxidase (LPx) were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity.

  19. Biomarker and Drug Target Discovery Using Proteomics in a New Rat Model of Sepsis-Induced Acute Renal Failure

    PubMed Central

    Holly, Mikaela K.; Dear, James W.; Hu, Xuzhen; Schechter, Alan N.; Gladwin, Mark T.; Hewitt, Stephen M.; Yuen, Peter S.T.; Star, Robert A.

    2008-01-01

    Background Sepsis is one of the common causes of acute renal failure (ARF). The objective of this study was to identify new biomarkers and therapeutic targets. We present a new rat model of sepsis-induced ARF based on cecal ligation and puncture (CLP). We used this model to find urinary proteins which may be potential biomarkers and/or drug targets. Methods Aged rats were treated with fluids and antibiotics after CLP. Urinary proteins from septic rats without ARF and urinary proteins from septic rats with ARF were compared by difference in-gel electrophoresis (DIGE). Results CLP surgery elevated IL-6 and IL-10 serum cytokines and blood nitrite compared with sham-operated rats. However there was a range of serum creatinine values at 24 hrs (0.4–2.3 mg/dL) and only 24% developed ARF. Histology confirmed renal injury in these rats. 49% of rats did not develop ARF. Rats without ARF also had less liver injury. The mortality rate at 24 hrs was 27% but was increased by housing the post-surgery rats in metabolic cages. Creatinine clearance and urine output 2–8 hours after CLP was significantly reduced in rats which died within 24 hours. Using DIGE we identified changes in a number of urinary proteins including albumin, brush-border enzymes (eg., meprin-1-alpha) and serine protease inhibitors. The meprin-1-alpha inhibitor actinonin prevented ARF in aged mice. Conclusion In summary we describe a new rat model of sepsis-induced ARF which has a heterogeneous response similar to humans. This model allowed us to use DIGE to find changes in urinary proteins and this approach identified a potential biomarker and drug target – meprin-1-alpha. PMID:16760904

  20. Down-Regulation of Renal Gluconeogenesis in Type II Diabetic Rats Following Roux-en-Y Gastric Bypass Surgery: A Potential Mechanism in Hypoglycemic Effect

    PubMed Central

    Wen, Yi; Lin, Ning; Yan, Hong-Tao; Luo, Hao; Chen, Guang-Yu; Cui, Jian-Feng; Shi, Li; Chen, Tao; Wang, Tao; Tang, Li-Jun

    2015-01-01

    Objective This study was initiated to evaluate the effects of Roux-en-Y gastric bypass surgery on renal gluconeogenesis in type 2 diabetic rats and its relationship with hormonal parameters. Methods Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ; 35 mg/kg) combined with a high-fat diet. They were then randomly divided into three groups: diabetes model group (DM group, n = 8), sham Roux-en-Y gastric bypass group (SRYGB group, n = 8), and Roux-en-Y gastric bypass group (RYGB group, n = 14). Another 8 normal rats comprised the normal control group (NC group, n = 8). Body weight, glucose, serum lipid, insulin, glucagon-like peptide-1 (GLP-1), leptin, and adiponectin were measured pre- and postoperatively. Glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin receptor-α (IR-α), insulin receptor-β (IR-β), and glycogen synthase kinase 3 beta (Gsk3b) were measured in renal cortex by using RT-PCR and Western immune-blot analyses on the 4th week after operation. Results Following RYGB surgery, surgery-treated rats showed significantly improved oral glucose tolerance, dyslipidemia and insulin resistance as well as increased post-gavage insulin levels and serum circulating levels of GLP-1 and adiponectin. RT-PCR and Western immune-blot analyses showed PEPCK and G6Pase protein and mRNA to be significantly decreased in the renal cortex in the RYGB group (p < 0.05 vs. DM or SRYGB group); in addition, IR-α and Gsk3b phosphorylation levels increased in the RYGB group (p < 0.05 vs. DM or SRYGB group). Conclusion Down-regulation of renal gluconeogenic enzymes might be a potential mechanism in hypoglycemia. An improved insulin signal pathway in the renal cortex and increased circulating adiponectin concentrations may contribute to the decline of renal gluconeogenesis following RYGB surgery. PMID:25832593

  1. Comparative metabolism and elimination of acetanilide compounds by rat.

    PubMed

    Davison, K L; Larsen, G L; Feil, V J

    1994-10-01

    1. 14C-labelled propachlor, alachlor, butachlor, metolachlor, methoxypropachlor and some of their mercapturic acid pathway metabolites (MAP) were given to rat either by gavage or by perfusion into a renal artery. MAP metabolites were isolated from bile and urine. 2. Rat gavaged with propachlor and methoxypropachlor eliminated 14C mostly in urine, whereas rat gavaged with alachlor, butachlor and metolachlor eliminated 14C about equally divided between urine and faeces. When bile ducts were cannulated, the gavaged rat eliminated most of the 14C in bile for all compounds. The amount of 14C in bile from the propachlor-gavaged rat was less than that for the other acetanilides, with the difference being in the urine. 3. The mercapturic acid metabolites 2-methylsulphinyl-N-(1-methylhydroxyethyl)-N-phenylacetam ide and 2-methylsulphinyl-N-(1-methylmethoxyethyl)-N-phenylacetam ide were isolated from the urine and bile of the methoxypropachlor-gavaged rat. 4. Bile was the major route for 14C elimination when MAP metabolites of alachlor, butachlor and metolachlor were perfused into a renal artery. Urine was the major route for 14C elimination when MAP metabolites of propachlor and methoxypropachlor were perfused. Mercapturic acid conjugates were major metabolites in bile and urine when MAP metabolites were perfused. 5. We conclude that alkyl groups on the phenyl portion of the acetanilide causes biliary elimination to be favoured over urinary elimination.

  2. Halofuginone reduces the occurrence of renal fibrosis in 5/6 nephrectomized rats.

    PubMed

    Benchetrit, Sydney; Yarkoni, Shy; Rathaus, Mauro; Pines, Marc; Rashid, Gloria; Bernheim, Joelle; Bernheim, Jacques

    2007-01-01

    Halofuginone is a novel antifibrotic agent that can reverse the fibrotic process by specific inhibition of collagen type I synthesis. To evaluate the effect of Halo on the development of glomerulosclerosis and interstitial fibrosis in the 5/6 nephrectomy rat model Male Wistar rats were assigned to undergo 5/6 NX or sham operation, and then divided into three groups: 5/6 NX rats (NX-Halo and NX-Control) and sham. Systolic blood pressure, proteinuria and body weight were determined every 2 weeks. At sacrifice (10 weeks) creatinine clearance was evaluated and remnant kidneys removed for histologic examination, sirius red staining and in situ hybridization Systolic blood pressure increased progressively in both 5/6 NX groups. Halo slowed the increase in proteinuria in 5/6 NX rats. As expected, creatinine clearance was lower in 5/6 NX groups when compared to sham rats. Creatinine clearance was significantly higher in the NX-Halo group at the end of the study period. Histologic examination by light microscopy showed significantly less severe interstitial fibrosis and glomerulosclerosis in Halo-treated rats. The increase in collagen alpha1 (I) gene expression and collagen staining after nephrectomy was almost completely abolished by Halo. Halofuginone reduced proteinuria as well as the severity of interstitial fibrosis and glomerulosclerosis in 5/6 NX rats. The renal beneficial effect of Halo was also demonstrated by the blunted decrease in creatinine clearance observed in the treated animals.

  3. Preclinical evaluation of 99mTc(CO)3-aspartic-N-monoacetic acid, 99mTc(CO)3(ASMA), a new renal radiotracer with pharmacokinetic properties comparable to 131I-OIH

    PubMed Central

    Lipowska, Malgorzata; Klenc, Jeffrey; Marzilli, Luigi G.; Taylor, Andrew T.

    2014-01-01

    In an ongoing effort to develop a renal tracer with pharmacokinetic properties comparable to PAH and superior to those of both 99mTc-MAG3 and 131I-OIH, we evaluated a new renal tricarbonyl radiotracer based on the aspartic-N-monoacetic acid ligand, 99mTc(CO)3(ASMA). The ASMA ligand features two carboxyl groups and an amine function for the coordination of the {99mTc(CO)3}+ core as well as a dangling carboxylate to facilitate rapid renal clearance. Methods rac-ASMA and L-ASMA were labeled with a 99mTc-tricarbonyl precursor and radiochemical purity of the labeled products was determined by HPLC. Using 131I-OIH as an internal control, we evaluated biodistribution in normal rats with 99mTc(CO)3(ASMA) isomers and in rats with renal pedicle ligation with 99mTc(CO)3(rac-ASMA). Clearance studies were conducted in 4 additional rats. In vitro radiotracer stability was determined in PBS buffer pH 7.4 and in challenge studies with cysteine and histidine. 99mTc(CO)3(ASMA) metabolites in urine were analyzed by HPLC. Results Both 99mTc(CO)3(ASMA) preparations had > 99% radiochemical purity and were stable in PBS buffer pH 7.4 for 24 h. Challenge studies on both revealed no significant displacement of the ligand. In normal rats, % injected dose in urine at 10 and 60 min for both preparations averaged 103% and 106% that of 131I-OIH, respectively. The renal clearances of 99mTc(CO)3(rac-ASMA) and 131I-OIH were comparable (P = 0.48). The tracer was excreted unchanged in the urine, proving its in vivo stability. In pedicle-ligated rats, 99mTc(CO)3(rac-ASMA) had less excretion into the bowel (P < 0.05) and was better retained in the blood (P < 0.05) than 131I-OIH. Conclusion Both 99mTc(CO)3(ASMA) complexes have pharmacokinetic properties in rats comparable to or superior to those of 131I-OIH, and human studies are warranted for their further evaluation. PMID:22717977

  4. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  5. Effects of lornoxicam and intravenous ibuprofen on erythrocyte deformability and hepatic and renal blood flow in rats.

    PubMed

    Arpacı, Hande; Çomu, Faruk Metin; Küçük, Ayşegül; Kösem, Bahadır; Kartal, Seyfi; Şıvgın, Volkan; Turgut, Hüseyin Cihad; Aydın, Muhammed Enes; Koç, Derya Sebile; Arslan, Mustafa

    2016-01-01

    Change in blood supply is held responsible for anesthesia-related abnormal tissue and organ perfusion. Decreased erythrocyte deformability and increased aggregation may be detected after surgery performed under general anesthesia. It was shown that nonsteroidal anti-inflammatory drugs decrease erythrocyte deformability. Lornoxicam and/or intravenous (iv) ibuprofen are commonly preferred analgesic agents for postoperative pain management. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg, iv) and ibuprofen (30 mg/kg, iv) on erythrocyte deformability, as well as hepatic and renal blood flows, in male rats. Eighteen male Wistar albino rats were randomly divided into three groups as follows: iv lornoxicam-treated group (Group L), iv ibuprofen-treated group (Group İ), and control group (Group C). Drug administration was carried out by the iv route in all groups except Group C. Hepatic and renal blood flows were studied by laser Doppler, and euthanasia was performed via intra-abdominal blood uptake. Erythrocyte deformability was measured using a constant-flow filtrometry system. Lornoxicam and ibuprofen increased the relative resistance, which is an indicator of erythrocyte deformability, of rats (P=0.016). Comparison of the results from Group L and Group I revealed no statistically significant differences (P=0.694), although the erythrocyte deformability levels in Group L and Group I were statistically higher than the results observed in Group C (P=0.018 and P=0.008, respectively). Hepatic and renal blood flows were significantly lower than the same in Group C. We believe that lornoxicam and ibuprofen may lead to functional disorders related to renal and liver tissue perfusion secondary to both decreased blood flow and erythrocyte deformability. Further studies regarding these issues are thought to be essential.

  6. Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy.

    PubMed

    Hadj Abdallah, Najet; Baulies, Anna; Bouhlel, Ahlem; Bejaoui, Mohamed; Zaouali, Mohamed A; Ben Mimouna, Safa; Messaoudi, Imed; Fernandez-Checa, José C; García Ruiz, Carmen; Ben Abdennebi, Hassen

    2018-05-15

    Oxidative stress is a major factor involved in the pathogenesis of renal ischemia/reperfusion (I/R). Exogenous zinc (Zn) was suggested as a potent antioxidant; however, the mechanism by which it strengthens the organ resistance against the effects of reactive oxygen species (ROS) is not yet investigated. The present study aims to determine whether acute zinc chloride (ZnCl 2 ) administration could attenuate endoplasmic reticulum (ER) stress, autophagy, and inflammation after renal I/R. Rats were subjected to either sham operation (Sham group, n = 6), or 1 hr of bilateral ischemia followed by 2 hr of reperfusion (I/R groups, n = 6), or they received ZnCl 2 orally 24 hr and 30 min before ischemia (ZnCl 2 group, n = 6). Rats were subjected to 1 hr of bilateral renal ischemia followed by 2 hr of reperfusion (I/R group, n = 6). Our results showed that ZnCl 2 enhances renal function and reduces cytolysis (p < 0,05). In addition, it increased significantly the activities of antioxidant enzymes (SOD, CAT, and GPX) and the level of GSH in comparison to I/R (p < 0,05). Interestingly, ZnCl 2 treatment resulted in significant decreased ER stress, as reflected by GRP78, ATF-6,p-eIF-2α, XPB-1, and CHOP downregulaion. Rats undergoing ZnCl 2 treatment demonstrated a low expression of autophagy parameters (Beclin-1 and LAMP-2), which was correlated with low induction of apoptosis (caspase-9, caspase-3, and p-JNK), and reduction of inflammation (IL-1ß, IL-6, and MCP-1) (p < 0,05). In conclusion, we demonstrated the potential effect of Zn supplementation to modulate ER pathway and autophagic process after I/R. © 2018 Wiley Periodicals, Inc.

  7. Photoaffinity labelling of the active site of the rat glutathione transferases 3-3 and 1-1 and human glutathione transferase A1-1.

    PubMed

    Cooke, R J; Björnestedt, R; Douglas, K T; McKie, J H; King, M D; Coles, B; Ketterer, B; Mannervik, B

    1994-09-01

    The glutathione transferases (GSTs) form a group of enzymes responsible for a wide range of molecular detoxications. The photoaffinity label S-(2-nitro-4-azidophenyl)glutathione was used to study the hydrophobic region of the active site of the rat liver GST 1-1 and 2-2 isoenzymes (class Alpha) as well as the rat class-Mu GST 3-3. Photoaffinity labelling was carried out using a version of S-(2-nitro-4-azidophenyl)glutathione tritiated in the arylazido ring. The labelling occurred with higher levels of radioisotope incorporation for the Mu than the Alpha families. Taking rat GST 3-3, 1.18 (+/- 0.05) mol of radiolabel from S-(2-nitro-4-azidophenyl)glutathione was incorporated per mol of dimeric enzyme, which could be blocked by the presence of the strong competitive inhibitor, S-tritylglutathione (Ki = 1.4 x 10(-7) M). Radiolabelling of the protein paralleled the loss of enzyme activity. Photoaffinity labelling by tritiated S-(2-nitro-4-azidophenyl)glutathione on a preparative scale (in the presence and absence of S-tritylglutathione) followed by tryptic digestion and purification of the labelled peptides indicated that GST 3-3 was specifically photolabelled; the labelled peptides were sequenced. Similarly, preparative photoaffinity labelling by S-(2-nitro-4-azidophenyl)glutathione of the rat liver 1-1 isoenzyme, the human GST A1-1 and the human-rat chimaeric GST, H1R1/1, was carried out with subsequent sequencing of radiolabelled h.p.l.c.-purified tryptic peptides. The results were interpreted by means of molecular-graphics analysis to locate photoaffinity-labelled peptides using the X-ray-crystallographic co-ordinates of rat GST 3-3 and human GST A1-1. The molecular-graphical analysis indicated that the labelled peptides are located within the immediate vicinity of the region occupied by S-substituted glutathione derivatives bound in the active-site cavity of the GSTs investigated.

  8. Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.

    PubMed Central

    Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M

    1985-01-01

    Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139

  9. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renalmore » injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative

  10. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  11. Pharmacokinetics of S-Allyl-l-cysteine in Rats Is Characterized by High Oral Absorption and Extensive Renal Reabsorption.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-02-01

    S-Allylcysteine (SAC) is a key component of aged garlic extract, one of many garlic products. However, information on its pharmacokinetics has been scant except for data from a few animal studies. We designed this study to determine the overall pharmacokinetics of SAC in rats. After oral or intravenous administration of SAC to rats at a dose of 5 mg/kg, the plasma concentration-time profile of SAC and its metabolites, as well as the amounts excreted in bile and urine, were analyzed by using liquid chromatography tandem mass spectrometry. After oral administration, SAC was well absorbed with a bioavailability of 98%. Two major metabolites of SAC, N-acetyl-S-allylcysteine (NAc-SAC) and N-acetyl-S-allylcysteine sulfoxide (NAc-SACS), were detected in plasma, but their concentrations were markedly lower than those of SAC. SAC was metabolized to a limited extent, but most of the orally absorbed SAC was excreted into urine in the form of its N-acetylated metabolites. The amounts of SAC, NAc-SAC, and NAc-SACS excreted in urine over 24 h were 2.9%, 80%, and 11% of the orally administered SAC, respectively. The very low renal clearance (0.016 L ⋅ h(-1) ⋅ kg(-1)) of SAC indicated that it undergoes extensive renal reabsorption. These results collectively suggested that SAC was ultimately metabolized to NAc-SAC and NAc-SACS through the cycles of urinary excretion, renal reabsorption, and systemic recirculation. The pharmacokinetics of SAC in rats were characterized by high oral absorption, limited metabolism, and extensive renal reabsorption, all of which potentially contribute to its high and relatively long-lasting plasma concentrations. © 2016 American Society for Nutrition.

  12. Renal handling of sodium and water in the hypothyroid rat

    PubMed Central

    Michael, Ulrich F.; Barenberg, Robert L.; Chavez, Rafaelita; Vaamonde, Carlos A.; Papper, Solomon

    1972-01-01

    Hypothyroid rats were examined with conventional renal clearance and micropuncture techniques to elicit the mechanism and site within the nephron responsible for the increased salt and water excretion observed in these animals. When compared with age-matched control rats, a decrease in inulin clearance of 30% (P < 0.001) and in Hippuran clearance of 32% (P < 0.005) was observed in the hypothyroid rats. Absolute excretion of sodium and water was increased 3-fold (P < 0.02) and 2-fold (P < 0.025), respectively, while fractional excretion of sodium and water was increased 4.3-fold (P < 0.02) and 2.9-fold (P < 0.05), respectively, in the hypothyroid animals. Fractional proximal reabsorption of sodium as assessed from proximal tubular fluid to plasma ratios of inulin ([TF/P]IN) was found to be decreased by 28% (P < 0.001) in the hypothyroid rats. Superficial single nephron filtration rate was reduced proportionately to the decrease in total filtration rate in the hypothyroid rats. These data indicate that the proximal tubule is one of the sites of diminished sodium and water reabsorption in the hypothyroid rat. The data also suggest that the observed decrease in glomerular filtration rate in the hypothyroid animals is not caused by a decrease in the number of functioning nephrons and that the observed increase in sodium and water excretion is not caused by a redistribution of filtrate from juxtamedullary to superficial nephrons. Although the exact mechanisms of the observed changes in proximal tubular function remain unknown, the data suggest that they are probably related to the lack of thyroid hormone. Whatever their mechanism, it appears that the enhanced sodium and water excretion observed in the hypothyroid animals must be determined by further reduction in tubular sodium reabsorption in the distal nephron. PMID:5024038

  13. Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function

    PubMed Central

    Pinkham, Maximilian I.; Loftus, Michael T.; Amirapu, Satya; Guild, Sarah-Jane; Quill, Gina; Woodward, William R.; Habecker, Beth A.

    2017-01-01

    Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P < 0.05), and RDx significantly increased ventricular sympathetic innervation (0.76 ± 0.14%, P < 0.05) and tissue norepinephrine content. MI was associated with an increase in fibrosis of the noninfarcted ventricular myocardium, which was attenuated by RDx. RDx improved LV ejection fraction and end-systolic and -diastolic areas when compared with pre-RDx levels. This is the first study to show an interaction between renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart. PMID:28052866

  14. High resolution molecular and histological analysis of renal disease progression in ZSF1 fa/faCP rats, a model of type 2 diabetic nephropathy

    PubMed Central

    Zhao, Shanrong; Schlerman, Franklin J.; Savary, Leigh; Campanholle, Gabriela; Johnson, Bryce G.; Xi, Li; Nguyen, Vuong; Zhan, Yutian; Lech, Matthew P.; Wang, Ju; Nie, Qing; Karsdal, Morten A.; Genovese, Federica; Boucher, Germaine; Brown, Thomas P.; Zhang, Baohong; Homer, Bruce L.; Martinez, Robert V.

    2017-01-01

    ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model’s suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy. PMID:28746409

  15. High resolution molecular and histological analysis of renal disease progression in ZSF1 fa/faCP rats, a model of type 2 diabetic nephropathy.

    PubMed

    Dower, Ken; Zhao, Shanrong; Schlerman, Franklin J; Savary, Leigh; Campanholle, Gabriela; Johnson, Bryce G; Xi, Li; Nguyen, Vuong; Zhan, Yutian; Lech, Matthew P; Wang, Ju; Nie, Qing; Karsdal, Morten A; Genovese, Federica; Boucher, Germaine; Brown, Thomas P; Zhang, Baohong; Homer, Bruce L; Martinez, Robert V

    2017-01-01

    ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model's suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy.

  16. Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis

    PubMed Central

    Wang, Y; Huang, WC; Wang, CY; Tsai, CC; Chen, CL; Chang, YT; Kai, JI; Lin, CF

    2009-01-01

    Background and purpose: Excessive inflammation and apoptosis are pathological features of endotoxaemic acute renal failure. Activation of glycogen synthase kinase-3 (GSK-3) is involved in inflammation and apoptosis. We investigated the effects of inhibiting GSK-3 on lipopolysaccharide (LPS)-induced acute renal failure, nuclear factor-κB (NF-κB), inflammation and apoptosis. Experimental approach: The effects of inhibiting GSK-3 with inhibitors, including lithium chloride (LiCl) and 6-bromo-indirubin-3′-oxime (BIO), on LPS-treated (15 mg·kg−1) C3H/HeN mice (LiCl, 40 mg·kg−1 and BIO, 2 mg·kg−1) and LPS-treated (1 µg·mL−1) renal epithelial cells (LiCl, 20 mM and BIO, 5 µM) were studied. Mouse survival was monitored and renal function was analysed by histological and serological examination. Cytokine and chemokine production, and cell apoptosis were measured by enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick-end labelling staining, respectively. Activation of NF-κB and GSK-3 was determined by immunostaining and Western blotting, respectively. Key results: Mice treated with GSK-3 inhibitors showed decreased mortality, renal tubular dilatation, vacuolization and sloughing, blood urea nitrogen, creatinine and renal cell apoptosis in response to endotoxaemia. Inhibiting GSK-3 reduced LPS-induced tumour necrosis factor-α (TNF-α) and CCL5/RANTES (released upon activation of normal T-cells) in vivo in mice and in vitro in murine kidney cortical collecting duct epithelial M1 cells. Inhibiting GSK-3 did not block TNF-α-induced cytotoxicity in rat kidney proximal tubular epithelial NRK52E or in M1 cells. Conclusions and implications: These results suggest that GSK-3 inhibition protects against endotoxaemic acute renal failure mainly by down-regulating pro-inflammatory TNF-α and RANTES. PMID:19508392

  17. Functional involvement of the organic cation transporter 2 (rOct2) in the renal uptake of organic cations in rats.

    PubMed

    Umehara, K-I; Iwatsubo, T; Noguchi, K; Kamimura, H

    2008-01-01

    This study examined the contribution made by organic cation transporters (hOCT/rOct) to the saturable component of the renal uptake of 1-methyl-4-phenylpyridinium, tetraethylammonium (TEA), cimetidine and metformin into rOct2-expressing HEK293 cells and rat kidney slices. All the test compounds accumulated in the rat kidney slices in a carrier-mediated manner. The Michaelis- Menten constant (K(m)) values for saturable uptake of TEA, cimetidine and metformin into rat kidney slices were relatively comparable with those for the rOct2-expressing HEK293 cells. In addition, the relative uptake activity values of TEA, cimetidine and metformin in rat kidney slices were similar to those in rOct2-expressing HEK293 cells. This suggests that the saturable components involved in the renal uptake of TEA, cimetidine and metformin are mediated mainly by rOct2. The saturable uptake profile of cationic compounds into rat kidney can be evaluated in both cDNA-expressing cells and rat kidney slices, as well as the transporter expression pattern. This approach can also be used to estimate the saturable uptake mechanism of cationic compounds into the human kidney when human kidney slices and hOCT2-expressing cells are used.

  18. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure

    PubMed Central

    Wang, Jiali; Xu, Jiankun; Liu, Waiching; Li, Yangde; Qin, Ling

    2016-01-01

    Mg and its alloys have been considered as one of the most promising biodegradable medical devices, but it was still unclear whether hypermagnesemia involved health risks would occur in persons with kidney disease due to their deteriorated kidney function for Mg ions excretion from their body. In this study, we established a chronic renal failure (CRF) model in rats induced by adenine administration prior to Mg implantation, aiming to predict if CRF patients are suitable for the use of Mg implants. The results showed that Mg levels in serum, urine, feces and internal organs had no significant changes after Mg implantation for both normal and CRF rats. Biochemical indices detection and histopathological analysis in kidney, liver and heart tissue confirmed that Mg implants did not induce any extra damage in animals even with renal failure. Our study indicates that Mg based orthopaedic medical device may be considered for use in CRF patients without biosafety concerns. PMID:27210744

  20. Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Xu, Jiankun; Liu, Waiching; Li, Yangde; Qin, Ling

    2016-05-01

    Mg and its alloys have been considered as one of the most promising biodegradable medical devices, but it was still unclear whether hypermagnesemia involved health risks would occur in persons with kidney disease due to their deteriorated kidney function for Mg ions excretion from their body. In this study, we established a chronic renal failure (CRF) model in rats induced by adenine administration prior to Mg implantation, aiming to predict if CRF patients are suitable for the use of Mg implants. The results showed that Mg levels in serum, urine, feces and internal organs had no significant changes after Mg implantation for both normal and CRF rats. Biochemical indices detection and histopathological analysis in kidney, liver and heart tissue confirmed that Mg implants did not induce any extra damage in animals even with renal failure. Our study indicates that Mg based orthopaedic medical device may be considered for use in CRF patients without biosafety concerns.

  1. Influence of Renal Impairment on the Pharmacokinetics of Afatinib: An Open-Label, Single-Dose Study.

    PubMed

    Wiebe, Sabrina; Schnell, David; Külzer, Raimund; Gansser, Dietmar; Weber, Anne; Wallenstein, Gudrun; Halabi, Atef; Conrad, Anja; Wind, Sven

    2017-06-01

    Afatinib is an oral irreversible ErbB-Family Blocker indicated for treatment of patients with EGFR mutation positive advanced non-small cell lung cancer. This trial assessed whether renal impairment influences the pharmacokinetics and safety of afatinib. This was an open-label, single-dose study. Pharmacokinetic parameters after afatinib 40 mg were investigated in subjects with moderate (n = 8) or severe (n = 8) renal impairment (estimated glomerular filtration rate 30-59 mL/min/1.73 m 2 and 15-29 mL/min/1.73 m 2 , respectively) and healthy matched controls (n = 14). Plasma and urine samples were collected before and up to 14 days after dosing for pharmacokinetic and plasma protein-binding assessment. Primary endpoints were area under the plasma concentration-time curve from time zero to the last quantifiable concentration (AUC last ) and maximum plasma concentration (C max ) between subjects with renal impairment and healthy matched controls. Pharmacokinetic profiles and plasma protein binding were similar in all groups. The extent of exposure, as indicated by AUC last and C max , was generally similar between the matched treatment groups, with the exception of the geometric mean ratio of AUC last for subjects with severe renal impairment, which showed a trend towards a higher value compared with matched healthy subjects (150.0 % [90 % CI 105.3-213.7]) Inter-individual variability was moderate (geometric mean coefficient of variation 28-39 % for moderate impairment, 34-42 % for severe impairment). Afatinib was well tolerated and urinary excretion was minimal. Moderate-to-severe renal impairment had a minor influence on the pharmacokinetics of afatinib that was within the observed inter-individual variability, suggesting that afatinib treatment can be considered in this patient population. Registered at ClinicalTrials.gov as NCT02096718.

  2. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expressionmore » of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in

  3. Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats.

    PubMed

    Hottenrott, Maximilia C; Krebs, Joerg; Pelosi, Paolo; Luecke, Thomas; Rocco, Patricia R M; Sticht, Carsten; Breedijk, Annette; Yard, Benito; Tsagogiorgas, Charalambos

    2017-12-01

    Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model. Copyright © 2017. Published by Elsevier B.V.

  4. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact

  5. Assessment of myeloperoxidase activity in renal tissue after ischemia/reperfusion.

    PubMed

    Laight, D W; Lad, N; Woodward, B; Waterfall, J F

    1994-11-01

    We have shown that a photometric assay of myeloperoxidase derived from rat blood polymorphonucleocytes employing 3,3',5,5'-tetramethylbenzidine as substrate is more sensitive than an established assay employing o-dianisidine. We went on to demonstrate that rat renal tissue is capable of inhibiting peroxidase activity. This activity approached 100% when the rat renal supernate was incubated at 60 degree C for 2 h and the assay was conducted in the presence of a 10-fold higher concentration of hydrogen peroxide (H2O2). Rat kidneys undergoing 45 min ischaemia and 1,3 and 6 h reperfusion in vivo, exhibited significant increases in myeloperoxidase activity, indicating tissue polymorphonucleocyte accumulation. Monoclonal antibodies against rat intercellular adhesion molecule 1 (ICAM-1) and CD18 of beta 2-integrins administered both 5 min before a period of 45 min renal ischaemia (20 micrograms/kg i.v.) and at the commencement of 1 h reperfusion (20 micrograms/kg i.v.) reduced renal tissue polymorphonucleocyte accumulation. However, similar treatment with the parent murine antibody immunoglobulin G1 (IgG1) and an unrelated murine antibody, IgG2a, also significantly reduced renal tissue polymorphonucleocyte accumulation. In conclusion, we demonstrate that the rat renal suppression of peroxidase activity can be overcome by a combination of heat inactivation and the provision of excess assay H2O2. In addition, the available evidence suggests that murine monoclonal antibodies against rat adhesion molecules may exert non-specific actions in our model of renal ischaemia/reperfusion in vivo.

  6. Combination therapy of chitosan, gynostemma, and motherwort alleviates the progression of experimental rat chronic renal failure by inhibiting STAT1 activation

    PubMed Central

    Bai, Wenxia; Wang, Shudong; An, Shanshan; Guo, Mengjie; Gong, Guangming; Liu, Wenya; Ma, Shaoxin; Li, Xin; Fu, Jihua; Yao, Wenbing

    2018-01-01

    This study aimed to investigate the effect of single and combination therapy using chitosan (K), gynostemma (J), and motherwort (Y) on an experimental rat model of chronic renal failure (CRF) induced by adenine and the underlying mechanisms. CRF rats were treated with individual or combinational therapy with two or three of these agents. Biochemical indicators showed that the levels of blood urea nitrogen, creatinine and uric acid decreased and the levels of albumin and hemoglobin increased by single or combination therapy of these drugs. Drug treatment also decreased oxidative stress damage of renal tissues in CRF rats. Histopathological lesions were attenuated in each drug treatment group by various degrees. Additionally, drug treatment affected the expression of extracellular matrix (ECM) proteins including plasminogen activator inhibitor 1, collagen I, matrix metalloprotease-1, and tissue inhibitor of metalloproteinases 1. In particular, the combination therapy of K, J, and Y was superior to the respective monotherapy, which supported the prescription of KJY combination. We further studied the inhibitory effect of KJY on LPS-induced inflammation in RAW264.7 macrophages. The results showed that KJY inhibited LPS-induced secretion of inflammatory cytokines (Interferon-gamma, Interleukin-1 Beta, chemokine (C-X-C motif) ligand 10, cyclooxygenase-2 and Tumor necrosis factor-α in RAW264.7 macrophages. Combination therapy of KJY suppressed the protein expression of Cyclooxygenase-2 and inducible nitric oxide synthase in vivo and in vitro. Further study indicated that KJY inhibited STAT1 activation by down regulating p-STAT1 to exert anti-inflammatory effect and improve renal function in rats with chronic renal failure. PMID:29643988

  7. Spontaneous changes in arterial blood pressure and renal interstitial hydrostatic pressure in conscious rats.

    PubMed Central

    Skarlatos, S; Brand, P H; Metting, P J; Britton, S L

    1994-01-01

    1. Previous work has demonstrated a positive relationship between experimentally induced changes in arterial pressure (AP) and renal interstitial hydrostatic pressure (RIHP). The purpose of the present study was to test the hypothesis that RIHP is positively correlated with the normal changes in AP that occur spontaneously in conscious rats. 2. Rats were chronically instrumented for the recording of AP (via an aortic catheter) and RIHP. RIHP was measured by implanting a Millar microtransducer, whose tip had been encapsulated in a 35 microns pore polyethylene matrix (5 mm long, 2 mm o.d.), approximately 5 mm below the renal cortical surface. 3. A total of 56 h of simultaneous analog recording of AP and RIHP was obtained from ten rats. Each 1 h segment was digitized and evaluated at frequencies of 1, 0.1, 0.02 and 0.01 Hz. 4. In forty-nine out of fifty-six of these 1 h recordings taken at 1 Hz, there were significant positive linear correlations between AP and RIHP (mean r = 0.32) with a mean slope of 0.11 mmHg RIHP/1 mmHg AP. Low-pass filtering to 0.01 Hz significantly increased the r value to 0.48. 5. These results demonstrate that spontaneous changes in AP and RIHP are positively correlated. The spontaneous coupling of AP and RIHP may be of importance in the regulation of salt and water excretion by the pressure diuresis mechanism. PMID:7707240

  8. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction.

    PubMed

    Liu, Chun-feng; Liu, Hing; Fang, Yi; Jiang, Su-hua; Zhu, Jia-ming; Ding, Xiao-qiang

    2014-06-01

    The purpose of this study was to explore effects of rapamycin on renal hypoxia, interstitial inflammation and fibrosis, and the expression of transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), Flk-1 and Flt-1 in a rat model of unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats (n=36) were randomly divided into three groups (n=12 per group): sham surgery, UUO and UUO plus rapamycin (0.2 mg/kg/d). Serum creatinine (Scr), blood urea nitrogen, uric acid, triglycerides, cholesterol and 24-h urine protein levels were measured. The extent of interstitial fibrosis was determined by Masson's trichrome staining. ED-1 positive macrophages, type III collagen, hypoxia, TGF-1, VEGF, Flk-1, and Flt-1 mRNA and protein expressions were detected using immunohistochemical staining, real-time PCR and Western blot. UUO induced an elevation in Scr, renal hypoxia, inflammation, interstitial fibrosis, TGF-β1, VEGF, Flk-1, and Flt-1 mRNA and protein expression levels (P < 0.05). Rapamycin alleviated the UUO-induced renal hypoxia, infiltration of inflammatory cells and tubulointerstitial fibrosis (at days 3 and 7). Rapamycin also down-regulated the UUO-induced elevated expression levels of TGF-β1 and Flt-1 mRNA and protein (P < 0.05). Rapamycin decreased VEGF mRNA and protein expression at day 3, and increased Flk-1 mRNA and protein expression at day 7, compared with the UUO group (P < 0.05). Rapamycin shows beneficial effects by reducing UUO-induced renal hypoxia, inflammation and tubulointerstitial fibrosis.

  9. Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity

    PubMed Central

    Leonard, Ellen C.; Beal, Alisa G.; Schleuter, Devin; Friedrich, Jessica

    2012-01-01

    ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg−1·min−1), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI. PMID:22442209

  10. Follitropin receptors in rat testis. Characterization with enzymatically 125I-labeled human follitropin.

    PubMed

    Ketelslegers, J M; Catt, K J

    1978-07-03

    The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.

  11. Nicotine impairs reflex renal nerve and respiratory activity in deoxycorticosterone acetate-salt rats.

    PubMed

    Whitescarver, S A; Roberts, A M; Stremel, R W; Jimenez, A E; Passmore, J C

    1991-02-01

    Smoking exacerbates the increase in arterial pressure in hypertension. The effect of nicotine on the baroreceptor-mediated reflex responses of renal nerve activity (RNA), heart rate, and respiratory activity (minute diaphragmatic activity [MDA]) after bolus injections of phenylephrine was compared in deoxycorticosterone acetate (DOCA)-salt sensitive and normotensive rats. Osmotic minipumps that dispensed either nicotine (2.4 mg/kg/day) or saline were implanted in DOCA and normotensive rats for 18 days. Anesthetized DOCA-nicotine, DOCA-saline, control-nicotine, and control-saline rats had mean arterial pressures (MAP) of 117 +/- 3, 110 +/- 9, 90 +/- 3, and 89 +/- 5 mm Hg, respectively. Nicotine decreased the sensitivity (p less than 0.05) of baroreceptor reflex control of RNA (% delta RNA/delta MAP) in the DOCA-nicotine rats (-0.92 +/- 0.08) compared with the DOCA-saline (-1.44 +/- 0.16), control-nicotine (-1.45 +/- 0.08), or control-saline (-1.45 +/- 0.21) rats. The reflex decrease in respiratory activity (% delta MDA/delta MAP x 100) was impaired (p less than 0.01) in both control-nicotine (-24.5 +/- 3.3) and DOCA-nicotine (-18.2 +/- 4.6) rats compared with control-saline (-59.2 +/- 9.1) and DOCA-saline (-52.5 +/- 9.9) rats. The reflex decrease in heart rate (absolute delta HR/delta MAP) in both DOCA-nicotine (1.56 +/- 0.17) and control-nicotine (1.54 +/- 0.24) rats was augmented compared with DOCA-saline and control-saline rats (0.91 +/- 0.12 and 0.97 +/- 0.14).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Potential Cardiovascular and Renal Protective Effects of Vitamin D and Coenzyme Q10 in l-NAME-Induced Hypertensive Rats.

    PubMed

    Shamardl, Hanan A; El-Ashmony, Sahar M; Kamel, Hala F; Fatani, Sameer H

    2017-08-01

    Hypertension is one of the primary modifiable risk factors for cardiovascular disease. Adequate vitamin D (vit D) levels have been shown to reduce vascular smooth muscle contraction and to increase arterial compliance, which may be beneficial in hypertension. Further, coenzyme Q10 (COQ10) through its action to lower oxidative stress has been reported to have beneficial effects on hypertension and heart failure. This study examined the possible cardiac and renal protective effects of vit D and COQ10 both separately and in combination with an angiotensin II receptor blocker, valsartan (vals) in l-NAME hypertensive rats. Hypertension was induced in rats by l-NAME administration. Following induction of hypertension, the rats were assigned into the following 6 subgroups: an l-NAME alone group and treated groups receiving the following drugs intraperitoneally for 6 weeks; vals, vit D, COQ10 and combination of vals with either vit D or COQ10. A group of normotensive rats were used as negative controls. At the end of the treatment period, blood pressure, serum creatinine, blood urea nitrogen, lipids and serum, cardiac and renal parameters of oxidative stress were measured. Compared to the l-NAME only group, all treatments lowered systolic, diastolic, mean arterial pressure, total cholesterol, low-density lipoprotein cholesterol, and creatinine levels as well as TNF-α and malondialdehyde. Further, the agents increased serum, cardiac and renal total antioxidant capacity. Interestingly, the combination of agents had further effects on all the parameters compared to treatment with each single agent. The study suggests that the additive protective effects of vit D and COQ10 when used alone or concurrent with vals treatment in hypertensive rats may be due to their effects as antioxidants, anticytokines and blood pressure conservers. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  13. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes.

    PubMed

    Dugbartey, George J; Talaei, Fatemeh; Houwertjes, Martin C; Goris, Maaike; Epema, Anne H; Bouma, Hjalmar R; Henning, Robert H

    2015-12-15

    Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine β-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Simple equation for calculation of plasma clearance for evaluation of renal function without urine collection in rats.

    PubMed

    Liu, Xiang; Peng, Dejun; Tian, Hao; Lu, Chengyu

    2017-01-01

    To develop an equation for the evaluation of renal function in rats using three dilutions of plasma samples and to validate this method by comparison with a reference method. The investigation was conducted in Sprague-Dawley (SD) rats after delivery of three doses of iohexol, with blood samples collected before and after dosage using a quantitative blood collection method. Plasma iohexol concentrations were detected by high performance liquid chromatography (HPLC). The extraction recovery of iohexol from plasma was >97.30% and the calibration curve was linear (r 2  = 0.9997) over iohexol concentrations ranging from 10 to 1000 µg/mL. The method had an RE of <9.310 and intra- and inter-day RSD of <5.137% and <3.693%, respectively. The plasma clearance values obtained from the equation correlated closely (r = 0.763) with those obtained using the reference method. The relatively correlation in the results obtained using the method under investigation and the reference method indicate that this new equation can be used for preliminary assessment of renal function in rats. © 2016 Asian Pacific Society of Nephrology.

  15. Serum and renal tissue markers of nephropathy in rats under immunosuppressive therapy: cyclosporine versus sirolimus.

    PubMed

    Sereno, J; Parada, B; Rodrigues-Santos, P; Lopes, P C; Carvalho, E; Vala, H; Teixeira-Lemos, E; Alves, R; Figueiredo, A; Mota, A; Teixeira, F; Reis, F

    2013-04-01

    Cyclosporin (CsA) has been progressively replaced by other drugs with putatively fever side effects, including nephrotoxicity and hypertension. Sirolimus (SRL) is one of the main options for management of kidney transplant patients in the post-CsA era. It shows identical efficacy with apparently less cardiorenal side effects than CsA. However, doubts remain concerning the mechanisms of putative renoprotection by SRL as well as the best serum and/or tissue markers for nephropathy, as assessed in this study employing CsA- and SRL-treated rats. Three groups (n = 6) were treated orally during a 6-week protocol: control (vehicle); CsA (5 mg/kg body weight per day Sandimmun Neoral); SRL (1 mg/kg body weight per day Rapamune). Blood pressure and heart rate were assessed with a "tail cuff". Renal dysfunction and morphology were characterized using serum creatinine and blood urea nitrogen (BUN) levels as well as hematoxylin and eosin and periodic acid Schiff staining, respectively. We examined serum concentrations of interleukin (IL)-2, IL-1β, high-sensitivity C-reactive protein, tumor necrosis factor TNF-α, and vascular endothelial growth factor and kidney mRNA expression of interleukin-1β (IL-1β), tumor protein 53 (TP53), mammalian target of rapamycin (mTOR) and proliferating cell nuclear antigen (PCNA), as well as markers of lipid peroxidation in the kidney and serum. Both CsA and SRL induced significant increases in systolic and diastolic blood pressure, but only CsA caused tachycardia. CsA-treated rats also displayed increased serum creatinine and BUN levels, accompanied by mild renal lesions, which were almost absent among SRL-treated rats, which presented hyperlipidemic and hyperglycemic profiles. CsA-induced nephrotoxicity was accompanied by kidney overexpression of inflammatory and proliferative mRNA markers (IL-1β, mTOR and PCNA), which were absent among SRL group. In conclusion, the antiproliferative and antifibrotic character of SRL may explain its less

  16. Effects of compound Shenhua tablet on renal tubular Na+-K+-ATPase in rats with acute ischemic reperfusion injury.

    PubMed

    Yang, Yue; Wei, Ri-bao; Zheng, Xiao-yong; Qiu, Qiang; Cui, Shao-yuan; Yin, Zhong; Shi, Suo-zhu; Chen, Xiang-mei

    2014-03-01

    To observe the effect of Compound Shenhua Tablet (, SHT) on the sodium-potassium- exchanging adenosinetriphosphatase (Na(+)-K(+)-ATPase) in the renal tubular epithelial cells of rats with acute ischemic reperfusion and to investigate the mechanisms underlying the effects of SHT on renal ischemic reperfusion injury (RIRI). Fifty male Wistar rats were randomly divided into the sham surgery group, model group, astragaloside group [150 mg/(kg·d)], SHT low-dose group [1.5 g/(kg·d)] and SHT high-dose group [3.0 g/(kg·d)], with 10 rats in each group. After 1 week of continuous intragastric drug administration, surgery was performed to establish the model. At either 24 or 72 h after the surgery, 5 rats in each group were sacrificed, blood biochemistry, renal pathology, immunoblot and immunohistochemical examinations were performed, and double immunofluorescence staining was observed under a laser confocal microscope. Compared with the sham surgery group, the serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased, Na(+)-K(+)-ATPase protein level was decreased, and kidney injury molecule-1 (KIM-1) protein level was increased in the model group after the surgery (P<0.01 or P<0.05). Compared with the model group, the SCr, BUN, pathological scores, Na(+)-K(+)-ATPase, and the KIM-1 protein level of the three treatment groups were significantly improved at 72 h after the surgery (P<0.05 or P<0.01). And the SCr, BUN of the SHT low- and high-dose groups, and the pathological scores of the SHT high-dose group were significantly lower than those of the astragaloside group (P<0.05). The localizations of Na(+)-K(+)-ATPase and megalin of the model group were disrupted, with the distribution areas overlapping with each other and alternately arranged. The severity of the disruption was slightly milder in three treatment groups compared with that of the model group. The results of immunofluorescence staining showed that the SHT high-dose group had a

  17. Effects of cadmium on the renal and skeletal muscle microcirculation in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Chong.

    1990-01-01

    The effects of cadmium on the arteriolar diameters of the kidney and skeletal muscle were quantified, because of the hypertensive effect of cacmium. The effect of cacmium on the constrictor response of the renal arterioles to angiotensin II (Ang II) were also assessed. In vivo preparations of the rat hydronephrotic kidney and cremaster muscle were used for direct visualization of the microvessels with intravital television microscopy. Hydronephrosis was induced in twenty-seven male Wistar-Kyoto rats (150-180 g) by unilateral ureter ligation. The hydronephrotic kidney, with intact cortical circulation and innervation, was exteriorized in a specially designed bath for microcirculation observation 6-8more » weeks following the ureter ligation. The cremaster muscle experiments were conducted in another thirty-seven male WKY rats (120-180 g). Disparate effects of cadmium were observed in these two microcirculation beds. Topical cadmium (1.35 [mu]M-0.45 mM) increased the diameters of the pre- and postglomerular vessels in the hydronephrotic kidney maximally by 15-26%. Cadmium (0.27 mM) inhibited the Ang II response of the arterioles non-competitively. However, intraperitoneally injected cadmium (2 mg/kg), which significantly increased the mean arterial pressure, did not dilate the arterioles nor alter the Ang II response. On the other hand, cadmium (13.5 [mu]M-0.72 mM) constricted the larger arterioles in the cremaster muscle (60-160 [mu]m) concentration-dependently, but not small arterioles (15-30 [mu]m). In summary, topical cadmium dilates renal arterioles and decreases their reactivity to Ang II, but constricts the larger cremaster arterioles. The disparate effects of cadmium suggest different Ca[sup 2+] utilization mechanisms in different vascular beds. The construction of the cremaster arterioles may contribute to cadmium-induced hypertension by increasing peripheral resistance.« less

  18. Evaluation of Renal Toxicity by Combination Exposure to Melamine and Cyanuric Acid in Male Sprague-Dawley Rats

    PubMed Central

    Son, Ji Yeon; Kang, Yoon Jong; Kim, Kyeong Seok; Kim, Tae Hyung; Lim, Sung Kwang; Lim, Hyun Jung; Jeong, Tae Cheon; Choi, Dal Woong; Chung, Kyu Hyuck; Lee, Byung Mu

    2014-01-01

    Melamine-induced nephrotoxicity is closely associated with crystal formation in the kidney caused by combined exposure to melamine (Mel) and cyanuric acid (CA). However, there are few dosage-finding studies for toxicological evaluation of chronic co-exposure to Mel and CA. The objective of this study was to investigate the possible mechanism by which a Mel and CA mixture lead to renal toxicity in rats. Mel and CA were co-administered to rats via oral gavage for 50 days. Nephrotoxicity was determined by measuring blood urea nitrogen (BUN) and serum creatinine (sCr) levels. Relative kidney weights were significantly increased in rats after co-exposure to Mel+CA (63/6.3 or 630/6.3 mg/kg) mixtures. BUN and sCr levels were significantly increased after Mel and CA co-exposure. Taken together, significant increase in KIM-1, NGAL, and calbindin levels were observed in the urine of rats exposed to Mel+CA (63/6.3 or 630/6.3 mg/kg) compared with the corresponding control group. Histological analysis revealed epithelial degeneration and necrotic cell death in the proximal tubules of the kidney after co-exposure to Mel+CA (63/6.3 or 630/6.3 mg/kg). Our data suggest that Mel-mediated renal toxicity may be influenced by CA concentrations in Mel-contaminated milk or foods. PMID:25071919

  19. Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain.

    PubMed

    Tomie, Arthur; Di Poce, Jason; Aguado, Allison; Janes, Amy; Benjamin, Daniel; Pohorecky, Larissa

    2003-06-13

    Effects of experience with Pavlovian autoshaping procedures on lever-press autoshaping conditioned response (CR) performance and 3H-8-OH-DPAT-labeled binding of 5-HT(1a) receptors as well as 125I-LSD-labeled binding of 5-HT(2a) receptors were evaluated in four groups of male Long-Evans hooded rats. Two groups of rats (Group Paired High CR and Group Paired Low CR) received Pavlovian autoshaping procedures wherein the presentation of a lever (conditioned stimulus, CS) was followed by the response-independent presentation of food (unconditioned stimulus, US). Rats in Group Paired High CR (n=12) showed more rapid CR acquisition and higher asymptotic levels of lever-press autoshaping CR performance relative to rats in Group Low CR (n=12). Group Omission (n=9) received autoshaping with an omission contingency, such that performing the lever-press autoshaping CR resulted in the cancellation the food US, while Group Random (n=9) received presentations of lever CS and food US randomly with respect to one another. Though Groups Omission and Random did not differ in lever-press autoshaping CR performance, Group Omission showed significantly lower levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in post-synaptic areas (frontal cortex, septum, caudate putamen), as well as significantly higher plasma corticosterone levels than Group Random. In addition, Group Random showed higher levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in pre-synaptic somatodendritic autoreceptors on dorsal raphe nucleus relative to each of the other three groups. Autoradiographic analysis of 125I-LSD-labeled 5-HT(2a) receptor binding revealed no significant differences between Groups Paired High CR and Paired Low CR or between Groups Omission and Random in any brain regions.

  20. Functional characteristics of a renal H+/lipophilic cation antiport system in porcine LLC-PK1 cells and rats.

    PubMed

    Matsui, Ryutaro; Hattori, Ryutaro; Usami, Youhei; Koyama, Masumi; Hirayama, Yuki; Matsuba, Emi; Hashimoto, Yukiya

    2018-02-01

    We have recently found an H + /quinidine (a lipophilic cation, QND) antiport system in Madin-Darby canine kidney (MDCK) cells. The primary aim of the present study was to evaluate whether the H + /lipophilic cation antiport system is expressed in porcine LLC-PK 1 cells. That is, we investigated uptake and/or efflux of QND and another cation, bisoprolol, in LLC-PK 1 cells. In addition, we studied the renal clearance of bisoprolol in rats. Uptake of QND into LLC-PK 1 cells was decreased by acidification of the extracellular pH or alkalization of the intracellular pH. Cellular uptake of QND from the apical side was much greater than from the basolateral side. In addition, apical efflux of QND from LLC-PK 1 cells was increased by acidification of the extracellular pH. Furthermore, lipophilic cationic drugs significantly reduced uptake of bisoprolol in LLC-PK 1 cells. Renal clearance of bisoprolol in rats was approximately 7-fold higher than that of creatinine, and was markedly decreased by alkalization of the urine pH. The present study suggests that the H + /lipophilic cation antiport system is expressed in the apical membrane of LLC-PK 1 cells. Moreover, the H + /lipophilic cation antiport system may be responsible for renal tubular secretion of bisoprolol in rats. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Short-term menhaden oil rich diet changes renal lipid profile in acute kidney injury.

    PubMed

    Ossani, Georgina P; Denninghoff, Valeria C; Uceda, Ana M; Díaz, Maria L; Uicich, Raúl; Monserrat, Alberto J

    2015-01-01

    Weanling male Wistar rats fed a choline-deficient diet develop acute kidney injury. Menhaden oil, which is a very important source of omega-3 fatty acids, has a notorious protective effect. The mechanism of this protection is unknown; one possibility could be that menhaden oil changes renal lipid profile, with an impact on the functions of biological membranes. The aim of this work was to study the renal lipid profile in rats fed a choline-deficient diet with menhaden oil or vegetable oil as lipids. Rats were divided into 4 groups and fed four different diets for 7 days: choline-deficient or choline-supplemented diets with corn and hydrogenated oils or menhaden oil. Serum homocysteine, vitamin B12, and folic acid were analyzed. Renal lipid profile, as well as the fatty acid composition of the three oils, was measured. Choline-deficient rats fed vegetable oils showed renal cortical necrosis. Renal omega-6 fatty acids were higher in rats fed a cholinedeficient diet and a choline-supplemented diet with vegetable oils, while renal omega-3 fatty acids were higher in rats fed a choline-deficient diet and a choline-supplemented diet with menhaden oil. Rats fed menhaden oil diets had higher levels of renal eicosapentaenoic and docosahexaenoic acids. Renal myristic acid was increased in rats fed menhaden oil. The lipid renal profile varied quickly according to the type of oil present in the diet.

  2. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer.

    PubMed

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong

    2017-02-08

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.

  3. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    PubMed Central

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong

    2017-01-01

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719

  4. 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours.

    PubMed

    von Guggenberg, E; Dietrich, H; Skvortsova, I; Gabriel, M; Virgolini, I J; Decristoforo, C

    2007-08-01

    Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA(0),D: Glu(1)]minigastrin (DTPA-MG0) radiolabelled with (111)In and (90)Y, our group developed a (99m)Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC(0),D: Glu(1),desGlu(2-6)]minigastrin (HYNIC-MG11). (99m)Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. Radiolabelling was performed at high specific activities and radiochemical purity was >90%. (99m)Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of (99m)Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. (99m)Tc-EDDA-HYNIC-MG11 shows advantages over (99m)Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement.

  5. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats.

    PubMed

    Yang, Ming; Liu, Changjin; Jiang, Jian; Zuo, Guowei; Lin, Xuemei; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-05-27

    The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1. The present results

  6. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats

    PubMed Central

    2014-01-01

    Background The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. Methods The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. Results In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1

  7. Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats

    PubMed Central

    Hasona, Nabil A.; Alrashidi, Ahmed A.; Aldugieman, Thamer Z.; Alshdokhi, Ali M.; Ahmed, Mohammed Q.

    2017-01-01

    This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline and consider as normal control one. Group 2: animals were injected subcutaneously with dexamethasone in a dose of 0.1 mg/kg body weight. Group 3: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 200 mg/kg body weight by oral gavage. Group 4: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 400 mg/kg body weight by oral gavage. After 4 weeks, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, albumin, uric acid, creatinine, and glucose levels were assayed. Hepatic reduced glutathione (GSH), total protein content, and catalase and glucose-6-phosphate dehydrogenase activities were also assayed. Dexamethasone administration caused elevation of serum levels of glucose, uric acid, creatinine, ALT, AST activities, and a decrease in other parameters such as hepatic glutathione, total protein levels, and catalase enzyme activity. Treatment with Vitis vinifera L. seed extract showed a significant increase in the body weight of rats in the group treated with Vitis vinifera L. seed extract orally compared with the dexamethasone control group. An increase in GSH and catalase activity in response to oral treatment with Vitis vinifera L. seed extract was observed after treatment. Grape seed extract positively affects glucocorticoid-induced hepatic and renal alteration in albino rats. PMID:29051443

  8. Apoptosis of rat renal cells by organophosphate pesticide, quinalphos: Ultrastructural study.

    PubMed

    Eid, Refaat A

    2017-01-01

    Quinalphos or Ekalux, an organophosphate pesticide, is used in controlling the pests of a variety of crops. Quinalphos was studied on male Sprague-Dawley albino rats. The acute po LD50 of technical Ekalux was 19.95 mg/kg in males. Ekalux, produced several pathological changes in the kidney. A glomerulus demonstrated capillary lumina occluded by degenerated cellular debris. Basement membrane showed irregular wrinkling and branching. The proximal tubular cells showed damage such as dilation of endoplasmic reticulum, accumulation of glycogen granules, and pyknotic nucleus. The changes also included swelling of the mitochondria and reduction of the cristae up to total destruction. The distal tubular changes included electron lucency and vacuolation of cytoplasm. The distal convoluted tubule wall showed edematous epithelial cells, formation of blebs, and microvilli loss. These results suggest that subchronic exposure of rats to Ekalux causes ultrastructural changes in renal corpuscle and marked ultrastructural changes in proximal and distal tubules.

  9. High-Fat Diet Increased Renal and Hepatic Oxidative Stress Induced by Vanadium of Wistar Rat.

    PubMed

    Wang, J P; Cui, R Y; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-04-01

    The study was conducted to assess the effect of vanadium (V) in high-fat diet on the liver and kidney of rats in a 5-week trial. Seventy-two female Wistar rats (BW = 95 ± 5 g) were randomly allotted into eight groups. Groups I, II, III, and IV obtained low-fat diet containing 0, 3, 15, and 30 mg/kg V, and V, VI, VII, and VIII groups received the respective vanadium doses with high-fat diet, respectively. There were lesions in the liver and kidney of V, VI, VII, and VIII groups, granular degeneration and vacuolar degeneration were observed in the renal tubular and glomerulus epithelial cells, and hepatocytes showed granular degeneration and vacuolar degeneration. Supplemented high-fat diet with vanadium was shown to decrease (P < 0.05) activities of superoxide dismutase, total antioxidant capacity, glutathione-S transferase, and NAD(P)H/quinone oxidoreductase 1 (NQO1) and increase malondialdehyde content in the liver and kidney. The relative expression of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and NQO1 mRNA was downregulated by V addition and high-fat diet, and the effect of V was more pronounced in high-fat diet (interaction, P < 0.05), with VIII group having the lowest mRNA expression of Nrf-2 and NQO1 in the liver and kidney. In conclusion, it suggested that dietary vanadium ranging from 15 to 30 mg/kg could lead to oxidative damage and vanadium accumulation in the liver and kidney, which caused renal and hepatic toxicity. The high-fat diet enhanced vanadium-induced hepatic and renal damage, and the mechanism was related to the modulation of the hepatic and renal mRNA expression of Nrf-2 and NQO1.

  10. Hibiscus sabdariffa Linnaeus aqueous extracts attenuate the progression of renal injury in 5/6 nephrectomy rats.

    PubMed

    Seujange, Yuyen; Leelahavanichkul, Asada; Yisarakun, Waranurin; Khawsuk, Witoon; Meepool, Ardool; Phamonleatmongkol, Ponlapat; Saechau, Walai; Onlamul, Winita; Tantiwarattanatikul, Pansa; Oonsook, Worapong; Eiam-Ong, Somchai; Eiam-Ong, Somchit

    2013-01-01

    Hibiscus sabdariffa Linn. (HS) is a tropical wild plant with antioxidant, antibacterial, antihypertensive, and lipid-lowering properties. In several animal models, HS aqueous extracts reduced the severity of the multi-organ injuries such as hypertension and diabetic nephropathy. One of the multiorgan injuries is chronic kidney disease (CKD), which results from the loss of nephron function. HS was used in a 5/6 nephrectomy (5/6 Nx) rat model to determine if it could attenuate the progression of CKD. HS (250 mg/kg/day) or placebo was orally administered to 5/6 Nx male Sprague-Dawley rats. The Nx+HS group had fewer renal injuries as measured by blood urea nitrogen, serum creatinine, creatinine clearance, and renal pathology when compared with the Nx group. In order to determine which property of HS, either vasodilatory and/or antioxidant, was important in attenuating the progression of CKD, systolic blood pressure (SBP) and serum levels of malondialdehyde (MDA) were assessed. In the Nx+HS group, the SBP and the serum levels of MDA were significantly lower at Week 7. In conclusion, through either antihypertensive and/or antioxidant properties, HS was able to attenuate the progression of renal injury after 5/6 Nx. Hence, HS should be considered as one of the new, promising drugs that can be used to attenuate the progression of CKD.

  11. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion.

    PubMed

    Xue, Yuquan; Xu, Zhibin; Chen, Haiwen; Gan, Weimin; Chong, Tie

    2017-07-01

    To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.

  12. Increased Renal Solute Excretion in Rats Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moore, A. L.; Morey-Holton, E.

    1995-01-01

    Following space flight a diuresis, due to an increase in free water clearance, has been suggested in humans. To assess the effects of space flight on renal function, rats were flown in space for 14 days. Rats were divided into three groups; vivarium controls (V;n=6; housed 2/shoe box cage), flight controls (FC;n=6; group housed in a flight cage), and flight animals (F;n=6). Upon landing all animals were placed into individual metabolic cages. Urine was collected daily for 7 days and every other day for 14 days. Urine output was increased (p less than 0.05; ANOVA) following flight for 3 days. On postflight day 1, flow rates were, V=6.8 plus or minus 0.9, FC=8.711.8 and F=16.6 plus or minus 2.7 microliter/min. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate (V=7.9 plus or minus 0.9, FC=6.1 plus or minus 0.7 and F=13.5 plus or minus 0.7 uOsm/min). Creatinine excretion rate was increased over the first two postflight days. In the absence of changes in plasma creatinine, Na+, or K+ (samples obtained immediately post flight from similar rats compared to Day 14), GFR was increased following space flight. The increased excretion of solute was thus the result of increased delivery and decreased reabsorption. Osmotic clearance was increased (V=28, FC=27 and F=51 microliter/min), while free water clearance was decreased post flight (V=-21,FC=-18 and F=-34 microliter/min). In rats, the postflight diuresis is the result of an increase in solute (osmotic) excretion with an accompanying reduction in free water clearance.

  13. Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter.

    PubMed

    Temple, C S; Boyd, C A

    1998-08-14

    We demonstrate that the angiotensin-converting enzyme inhibitors enalapril and captopril inhibit the transport of D-Phe-L-Gln into PepT1-expressing Xenopus oocytes and into rat renal cortical brush border membrane vesicles (BBMV). The kinetics of inhibition are competitive. Enalapril and captopril are not substrates for PepT2 (Boll et al., Proc. Natl. Acad. Sci. 93 (1996) 284-289). Therefore we conclude that in rat renal cortical BBMV this neutral dipeptide is transported via PepT1.

  14. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  15. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model.

    PubMed

    Semedo, Patricia; Correa-Costa, Matheus; Antonio Cenedeze, Marcos; Maria Avancini Costa Malheiros, Denise; Antonia dos Reis, Marlene; Shimizu, Maria Heloisa; Seguro, Antonio Carlos; Pacheco-Silva, Alvaro; Saraiva Camara, Niels Olsen

    2009-12-01

    Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2|x|10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson's trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney.

  16. Promoting effects of potassium dibasic phosphate on early-stage renal carcinogenesis in unilaterally nephrectomized rats treated with N-ethyl-N-hydroxyethylnitrosamine.

    PubMed

    Hiasa, Y; Konishi, N; Nakaoka, S; Nakamura, T; Nishii, K; Ohshima, M

    1992-07-01

    The effects of potassium dibasic phosphate (PDP), potassium aluminum sulfate (PAS) and copper sulfate (CS) on early-stage renal carcinogenesis were investigated in unilaterally nephrectomized male Wistar rats after N-ethyl-N-hydroxyethylnitrosamine (EHEN) administration. After feeding 1,000 ppm EHEN, or basal diet for 2 weeks and removal of the left kidney at week 3, male Wistar rats were divided into 8 groups of 20 rats each. These groups received the following dietary treatments: 50,000 ppm PDP, 50,000 ppm PAS, 5,000 ppm CS or basal diet, respectively, for 18 weeks from weeks 3 to 20. The average numbers of adenomatous hyperplasias counted as preneoplastic lesions in the EHEN with 50,000 ppm PDP group were significantly higher than in the EHEN alone group or the EHEN followed by 50,000 ppm PAS or 5,000 ppm CS group. The treatment with 50,000 ppm PDP induced renal calcification and promoted the development of preneoplastic lesions in unilaterally nephrectomized rats treated with EHEN, but that with 50,000 ppm PAS or 5,000 ppm CS did not.

  17. Promoting Effects of Potassium Dibasic Phosphate on Early‐stage Renal Carcinogenesis in Unilaterally Nephrectomized Rats Treated with N‐Ethyl‐N‐hydroxyethylnitrosamine

    PubMed Central

    Konishi, Noboru; Nakaoka, Shingo; Nakamura, Toshimitsu; Nishii, Kiyoji; Ohshima, Masato

    1992-01-01

    The effects of potassium dibasic phosphate (PDP), potassium aluminum sulfate (PAS) and copper sulfate (CS) on early‐stage renal carcinogenesis were investigated in unilaterally nephrectomized male Wistar rats after N‐ethyl‐N‐hydroxyethylnitrosamine (EHEN) administration. After feeding 1,000 ppm EHEN, or basal diet for 2 weeks and removal of the left kidney at week 3, male Wistar rats were divided into 8 groups of 20 rats each. These groups received the following dietary treatments: 50,000 ppm PDP, 50,000 ppm PAS, 5,000 ppm CS or basal diet, respectively, for 18 weeks from weeks 3 to 20. The average numbers of adenomatous hyperplasias counted as preneoplastic lesions in the EHEN with 50,000 ppm PDP group were significantly higher than in the EHEN alone group or the EHEN followed by 50,000 ppm PAS or 5,000 ppm CS group. The treatment with 50,000 ppm PDP induced renal calcification and promoted the development of preneoplastic lesions in unilaterally nephrectomized rats treated with EHEN, but that with 50,000 ppm PAS or 5,000 ppm CS did not. PMID:1517146

  18. Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats.

    PubMed

    Wible, James H; Galen, Karen P; Wojdyla, Jolette K; Hughes, Michael S; Klibanov, Alexander L; Brandenburger, Gary H

    2002-01-01

    The generation of ultrasound (US) bioeffects using a clinical imaging system is controversial. We tested the hypothesis that the presence of microbubbles in the US field of a medical imager induces biologic effects. Both kidneys of anesthetized rats were insonified for 5 min using a medical imaging system after the administration of microbubbles. One kidney was insonified using a continuous mode (30 Hz) and the opposite kidney was insonified using an intermittent (1 Hz) technique. The microbubbles were exposed to three different transducer frequencies and four transducer output powers. After insonification, the animals were euthanized, the kidneys were removed and their gross appearance scored under "blinded" conditions using a defined scale. After the administration of microbubbles, US imaging of the kidney caused hemorrhage in the renal tissue. The severity and area of hemorrhage increased with an increase in the transducer power and a decrease in the transducer frequency. Intermittent insonification in the presence of microbubbles produced a greater degree of renal hemorrhage than continuous imaging techniques.

  19. [The morphometric characteristics of the main structural components of renal nephrons in the white rats with experimentally induced acute and chronic alcohol intoxication].

    PubMed

    Shcherbakova, V M

    2016-01-01

    The objective of the present work was to study the morphometric characteristics of the main structural components of renal nephrons in the white rats with the experimentally induced acute and chronic alcohol intoxication. We undertook the morphometric examination of the structural elements of rat kidneys with the subsequent statistical analysis of the data obtained. The results of the study give evidence of the toxic action of ethanol on all structural components of the nephron in the case of both acute and chronic alcohol intoxication. The study revealed some specific features of the development of pathological process in the renal tissue structures at different stages of alcohol intoxication. The most pronounced morphological changes were observed in the renal proximal tubules and the least pronounced ones in the structure of the renal glomeruli. The earliest morphological changes become apparent in distal convoluted tubules of the nephron; in the case of persistent alcoholemia, they first develop in the renal corpuscles and thereafter in the distal proximal tubules. The maximum changes occur in the case of acute alcohol intoxication and between 2 weeks and 2 months of chronic intoxication; they become less conspicuous during a later period.

  20. Effect of Euterpe oleracea Mart. Seeds Extract on Chronic Ischemic Renal Injury in Renovascular Hypertensive Rats.

    PubMed

    da Costa, Cristiane Aguiar; Ognibene, Dayane Teixeira; Cordeiro, Viviane Silva Cristino; de Bem, Graziele Freitas; Santos, Izabelle Barcellos; Soares, Ricardo Andrade; de Melo Cunha, Letícia L; Carvalho, Lenize C R M; de Moura, Roberto Soares; Resende, Angela Castro

    2017-10-01

    Previously, we have demonstrated that the seeds of Euterpe oleracia Mart. (açaí) are rich in polyphenols with antihypertensive and antioxidant properties. This study evaluated the renal protective effects of the hydroalcoholic extract obtained from the seeds of açaí (ASE) fruits in two-kidney, one-clip (2K1C) renovascular hypertension. Young male Wistar rats were used to obtain 2K1C and sham groups. Animals received ASE (200 mg/(kg·day) in drinking water) or vehicle for 40 days. We evaluated serum and urinary parameters, renal structural changes, and oxidative status. The increase in systolic blood pressure of the 2K1C group was accompanied by a decrease in left kidney volume and number of glomeruli, as well as an increase in glomerular volume and collagen deposition. ASE prevented the alterations of these parameters, except the reduced kidney volume. Serum levels of urea and creatinine and urinary protein excretion were increased in the 2K1C group and treatment with ASE improved all these functional parameters. The increased oxidative damage in the 2K1C group, assessed by lipid and protein oxidation, was prevented by ASE. The nitrite content and both expression and activity of antioxidant enzymes (superoxide dismutase-1, catalase, and glutathione peroxidase) were lower in the 2K1C group and restored by ASE. ASE substantially reduced renal injury and prevented renal dysfunction in 2K1C rats probably through its antihypertensive and antioxidant effects, providing a natural resource for treatment and prevention of renovascular hypertension-related abnormalities.

  1. Expression of renal Oat5 and NaDC1 transporters in rats with acute biliary obstruction

    PubMed Central

    Brandoni, Anabel; Torres, Adriana Mónica

    2015-01-01

    AIM: To examine renal expression of organic anion transporter 5 (Oat5) and sodium-dicarboxylate cotransporter 1 (NaDC1), and excretion of citrate in rats with acute extrahepatic cholestasis. METHODS: Obstructive jaundice was induced in rats by double ligation and division of the common bile duct (BDL group). Controls underwent sham operation that consisted of exposure, but not ligation, of the common bile duct (Sham group). Studies were performed 21 h after surgery. During this period, animals were maintained in metabolic cages in order to collect urine. The urinary volume was determined by gravimetry. The day of the experiment, blood samples were withdrawn and used to measure total and direct bilirubin as indicative parameters of hepatic function. Serum and urine samples were used for biochemical determinations. Immunoblotting for Oat5 and NaDC1 were performed in renal homogenates and brush border membranes from Sham and BDL rats. Immunohistochemistry studies were performed in kidneys from both experimental groups. Total RNA was extracted from rat renal tissue in order to perform reverse transcription polymerase chain reaction. Another set of experimental animals were used to evaluate medullar renal blood flow (mRBF) using fluorescent microspheres. RESULTS: Total and direct bilirubin levels were significantly higher in BDL animals, attesting to the adequacy of biliary obstruction. An important increase in mRBF was determined in BDL group (Sham: 0.53 ± 0.12 mL/min per 100 g body weight vs BDL: 1.58 ± 0.24 mL/min per 100 g body weight, P < 0.05). An increase in the urinary volume was observed in BDL animals. An important decrease in urinary levels of citrate was seen in BDL group. Besides, a decrease in urinary citrate excretion (Sham: 0.53 ± 0.11 g/g creatinine vs BDL: 0.07 ± 0.02 g/g creatinine, P < 0.05) and an increase in urinary excretion of H+ (Sham: 0.082 ± 0.03 μmol/g creatinine vs BDL: 0.21 ± 0.04 μmol/g creatinine, P < 0.05) were observed in BDL

  2. Renoprotective Effect of Humic Acid on Renal Ischemia-Reperfusion Injury: An Experimental Study in Rats.

    PubMed

    Akbas, Alpaslan; Silan, Coskun; Gulpinar, Murat Tolga; Sancak, Eyup Burak; Ozkanli, Sidika Seyma; Cakir, Dilek Ulker

    2015-12-01

    Humic acid is an antioxidant molecule used in agriculture and livestock breeding, as well as in medicine. Our aim was to investigate the potential renoprotective effects of humic acid in a renal ischemia reperfusion model. Twenty-one rats were randomly divided into three equal groups. Intraperitoneal serum or humic acid was injected at 1, 12, and 24 h. Non-ischemic group I was evaluated as sham. The left renal artery was clamped in serum (group II) and intraperitoneal humic acid (group III) to subject to left renal ischemic reperfusion procedure. Ischemia and reperfusion time was 60 min for each. Total antioxidant status, total oxidative status, oxidative stress index, and ischemia-modified albumin levels were analyzed biochemically from the serum samples. Kidneys were evaluated histopatologically and immunohistochemically. Biochemical results showed that total oxidative status, ischemia-modified albumin, and oxidative stress index levels were significantly decreased, but total antioxidant status was increased in the humic acid group (III) compared with the ischemia group (II) On histopathological examination, renal tubular dilatation, tubular cell damage and necrosis, dilatation of Bowman's capsule, hyaline casts, and tubular cell spillage were decreased in the humic acid group (III) compared with the ischemia group (II). Immunohistochemical results showed that apoptosis was deteriorated in group III. Renal ischemia reperfusion injury was attenuated by humic acid administration. These observations indicate that humic acid may have a potential therapeutic effect on renal ischemia reperfusion injury by preventing oxidative stress.

  3. Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury

    PubMed Central

    Wang, Feng; Zhang, Guangyuan; Lu, Zeyuan; Geurts, Aron M; Usa, Kristie; Jacob, Howard J; Cowley, Allen W; Wang, Niansong; Liang, Mingyu

    2015-01-01

    Antithrombin III, encoded by SerpinC1, is a major anti-coagulation molecule in vivo and has anti-inflammatory effects. We found that patients with low antithrombin III activities presented a higher risk of developing acute kidney injury after cardiac surgery. To study this further, we generated SerpinC1 heterozygous knockout rats and followed the development of acute kidney injury in a model of modest renal ischemia/reperfusion injury. Renal injury, assessed by serum creatinine and renal tubular injury scores after 24 h of reperfusion, was significantly exacerbated in SerpinC1+/− rats compared to wild-type littermates. Concomitantly, renal oxidative stress, tubular apoptosis, and macrophage infiltration following this injury were significantly aggravated in SerpinC1+/− rats. However, significant thrombosis was not found in the kidneys of any group of rats. Antithrombin III is reported to stimulate the production of prostaglandin I2, a known regulator of renal cortical blood flow, in addition to having anti-inflammatory effects and to protect against renal failure. Prostaglandin F1α, an assayable metabolite of prostaglandin I2, was increased in the kidneys of the wild-type rats at 3 h after reperfusion. The increase of prostaglandin F1α was significantly blunted in SerpinC1+/− rats, which preceded increased tubular injury and oxidative stress. Thus, our study found a novel role of SerpinC1 insufficiency in increasing the severity of renal ischemia/reperfusion injury. PMID:26108065

  4. Progression of renal fibrosis in congenital CKD model rats with reduced number of nephrons.

    PubMed

    Yasuda, Hidenori; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu

    2017-06-14

    A congenital reduction in the number of nephrons is a critical risk factor for both onset of chronic kidney disease (CKD) and its progression to end-stage kidney disease (ESKD). Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and show progressive CKD. This study used an immunohistological method to assess glomerular and interstitial pathogenesis in male HPK rats aged 35-210days. CD68 positive-macrophages were found to infiltrate into glomeruli in HPK rats aged 35 and 70days and to infiltrate into interstitial tissue in rats aged 140 and 210days. HPK rats aged 35 and 70days showed glomerular hypertrophy, loss of normal linear immunostaining of podocine, and increased expression of PDGFr-β, TGF-β, collagens, and fibronectin, with all of these alterations gradually deteriorating with age. α-SMA-positive myofibroblasts were rarely detected in glomerular tufts, whereas α-SMA-positive glomerular parietal epithelium (GPE) cells were frequently observed along Bowman's capsular walls. The numbers of PDGFr-β-positive fibroblasts in interstitial tissue were increased in rats aged 35days and older, whereas interstitial fibrosis, characterized by the increased expression of tubular PDGF-BB, the appearance of myofibroblasts doubly positive for PDGFr-β and α-SMA, and increased expression of collagens and fibronectin, were observed in rats aged 70 and older. These results clearly indicate that congenital CKD with only 20% of nephrons cause renal fibrosis in rats. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. The protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax.

    PubMed

    Shen, Sheng; Zhou, Jiexue; Meng, Shandong; Wu, Jiaqing; Ma, Juan; Zhu, Chunli; Deng, Gengguo; Liu, Dong

    2017-11-01

    The aim of the present study was to investigate the protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Thirty-six SD rats were randomly divided into three groups (n=12) including sham operation (S) group, ischemia-reperfusion group (I/R) group and ischemic preconditioning (IP) group. After anesthesia with intraperitoneal injection of chloral hydrate, bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h to establish the I/R model. Both kidneys in rats of S group were separated and exposed for 45 min, but renal pedicles were not clipped. In IP group, bilateral renal pedicles were clipped for 5 min, followed by perfusion for 5 min, this procedure was repeated 3 times. Then bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h. Blood samples were collected and rats were sacrificed to collect renal tissue. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. Activity of superoxide dismutase (SOD) was measured by xanthine oxidase assay. Degree of renal injury was evaluated by H&E staining. TUNEL kit was used to detect the number of apoptotic cells in renal tissue. Expression levels of Bcl-2 and Bax were detected by semi-quantitative PCR and western blot analysis at mRNA and protein levels, respectively. Results showed that levels of Cr and BUN in I/R and IP groups were significantly higher than those in S group, and levels of Cr and BUN in I/R group were significantly higher than that in IP group (P<0.05). Activity of SOD in I/R group and IP group were significantly lower than those in S group, and activity of SOD in I/R group were significantly lower than those in IP group (P<0.05). H&E staining showed that, compared with S group, renal injury in the I/R and IP groups was more serious than that in the S group, and I/R group was more serious than the IP group (P<0.05). TUNEL apoptosis assay showed that

  6. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats.

    PubMed

    Damiano, Sara; Puzio, Maria V; Squillacioti, Caterina; Mirabella, Nicola; Zona, Enrica; Mancini, Aldo; Borrelli, Antonella; Astarita, Carlo; Boffo, Silvia; Giordano, Antonio; Avallone, Luigi; Florio, Salvatore; Ciarcia, Roberto

    2018-01-01

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O 2 - in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. (67/68)Ga-labeling agent that liberates (67/68)Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels.

    PubMed

    Uehara, Tomoya; Rokugawa, Takemi; Kinoshita, Mai; Nemoto, Souki; Fransisco Lazaro, Guerra Gomez; Hanaoka, Hirofumi; Arano, Yasushi

    2014-11-19

    The renal localization of gallium-67 or gallium-68 ((67/68)Ga)-labeled low molecular weight (LMW) probes such as peptides and antibody fragments constitutes a problem in targeted imaging. Wu et al. previously showed that (67)Ga-labeled S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA)-conjugated methionine ((67)Ga-NOTA-Met) was rapidly excreted from the kidney in urine following lysosomal proteolysis of the parental (67)Ga-NOTA-Bz-SCN-disulfide-stabilized Fv fragment (Bioconjugate Chem., (1997) 8, 365-369). In the present study, a new (67/68)Ga-labeling reagent for LMW probes that liberates (67/68)Ga-NOTA-Met was designed, synthesized, and evaluated using longer-lived (67)Ga in order to reduce renal radioactivity levels. We employed a methionine-isoleucine (MI) dipeptide bond as the cleavable linkage. The amine residue of MI was coupled with SCN-Bz-NOTA for (67)Ga-labeling, while the carboxylic acid residue of MI was derivatized to maleimide for antibody conjugation in order to synthesize NOTA-MI-Mal. A Fab fragment of the anti-Her2 antibody was thiolated with iminothiolane, and NOTA-MI-Mal was conjugated with the antibody fragment by maleimide-thiol chemistry. The Fab fragment was also conjugated with SCN-Bz-NOTA (NOTA-Fab) for comparison. (67)Ga-NOTA-MI-Fab was obtained at radiochemical yields of over 95% and was stable in murine serum for 24 h. In the biodistribution study using normal mice, (67)Ga-NOTA-MI-Fab registered significantly lower renal radioactivity levels from 1 to 6 h postinjection than those of (67)Ga-NOTA-Fab. An analysis of urine samples obtained 6 h after the injection of (67)Ga-NOTA-MI-Fab showed that the majority of radioactivity was excreted as (67)Ga-NOTA-Met. In the biodistribution study using tumor-bearing mice, the tumor to kidney ratios of (67)Ga-NOTA-MI-Fab were 4 times higher (6 h postinjection) than those of (67)Ga-NOTA-Fab. Although further studies including the structure of radiometabolites and

  8. Telemetric signal-driven servocontrol of renal perfusion pressure in acute and chronic rat experiments

    PubMed Central

    Xia, Min; Li, Pin-Lan; Li, Ningjun

    2008-01-01

    The present study was designed to take advantage of telemetry data acquisition and develop an easy and reliable system to servocontrol renal perfusion pressure (RPP). Digitized pressure signals from lower abdominal aorta in rats, reflecting RPP, was obtained by a telemetry device and dynamically exported into an Excel worksheet. A computer program (LabVIEW) compared the RPP data with a preselected pressure range and drove a bidirectional syringe pump to control the inflation of a vascular occluder around the aorta above renal arteries. When RPP was higher than the preselected range, the syringe pump inflated the occluder and decreased RPP, and vice versa. If RPP was within range, there was no action. In this way, RPP was servocontrolled within the desired range. In experiments with norepinephrine- or ANG II-induced acute increases in systemic arterial pressure (120–145 mmHg), the system controlled RPP at a constant range of 100–105 mmHg within 30–50 s and differentiated the pressure-dependent and -independent effects on renal functions. In Dahl S rats with high-salt-induced hypertension, this system maintained RPP at 100–120 mmHg over 10 days, while systemic arterial pressures were 150 ± 5.9 mmHg in uncontrolled animals. This system also has the ability of simultaneity and multiplexing to control multiple animals. Our results suggest that this is an effective and reliable system to servocontrol RPP, which can be easily established with general computer knowledge. This system provides a powerful tool and may greatly facilitate the studies in pressure-dependent/-independent effects of a variety of cardiovascular factors. PMID:18815205

  9. Comparative study on the protective role of vitamin C and L-arginine in experimental renal ischemia reperfusion in adult rats.

    PubMed

    Mohamed, Abd El-Hamid A; Lasheen, Noha N

    2014-01-01

    Ischemia reperfusion (I/R) injury is a main cause of transplanted kidney dysfunction and rejection. Reactive oxygen species (ROS) play a causal role in cellular damage induced by I/R. Antioxidant vitamins and Nitric oxide (NO) were postulated to play renoprotective effects against I/R. This study compares the protective effects of vitamin C with that of the nitric oxide donor, L-arginine, on renal I/R injury in adult rats. The study was performed on 50 adult Wistar rats of both sexes, divided into 5 groups: I: Control group, receive daily intraperitoneal (i.p.) saline for 3 days. II: Renal I/R group, received i.p saline for 3 days and subjected to renal I/R. III: L-arginine Pretreated, 400 mg/kg/day i.p. for 3 days prior to I/R. IV: Vitamin C Pretreated, 500 mg/kg/day i.p. 24 hours prior to I/R. V: combined L-arginine and Vitamin C Pretreated, exposed to Renal I/R group. At the end of the experiment, plasma urea and creatinine were determined. Kidney tissue malondialdehyde (MDA), NO, catalase and superoxide dismutase (SOD) activity were measured and kidneys were examined histologically. I/R group showed significant increase in plasma urea, creatinine, and renal MDA, and a significant decrease in renal catalase with marked necrotic epithelial cells and infiltration by inflammatory cells in kidney section compared to the control group. All the treated groups showed significant decrease in urea, creatinine, and MDA, and a significant increase in catalase with less histopathological changes in kidney sections compared to I/R group. However, significant improvements in urea, MDA, and catalase were found in vitamin C pretreated and combined treated groups than L-arginine pretreated group. Oxidative stress is the primary element involved in renal I/R injury. So, antioxidants play an important renoprotective effects than NO donors.

  10. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs

    PubMed Central

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    Background The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. Material/Methods MI and RSD were induced in Sprague–Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. Results In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. Conclusions The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  11. Retinoid agonist isotretinoin ameliorates obstructive renal injury.

    PubMed

    Schaier, Matthias; Jocks, Thomas; Grone, Hermann-Josef; Ritz, Eberhard; Wagner, Juergen

    2003-10-01

    Interstitial fibrosis is a major cause of end stage renal failure. Retinoids, which are involved in tissue repair and fibrosis, inhibit inflammatory and proliferative pathways. Therefore, we studied the dose dependent effects of the retinoid receptor agonist isotretinoin 13-cis retinoic acid in the unilateral ureteral obstruction model (UUO). Sham operated control rats were compared with UUO rats treated with vehicle (UUO-Veh), or low (5 mg/kg body weight (UUO-LD) or high (25 mg/kg) (UUO-HD) dose isotretinoin. Kidneys were evaluated using reverse transcriptase-polymerase chain reaction and immunohistology 7 days after UUO. Renal injury and fibrosis were quantified by immunostaining and expression measurements of the genes involved in renal fibrosis. In UUO-Veh kidneys the interstitial area was expanded 5-fold but only 3-fold in UUO-HD and 3.5-fold in UUO-LD rats. Interstitial cell counts were 3-fold higher in UUO-Veh rats but significantly less in UUO-HD or UUO-LD animals. Tubular and interstitial cell proliferation was significantly higher in UUO-Veh rats compared with sham operated control plus vehicle animals but less so in UUO-LD and UUO-HD rats. In UUO-Veh rats interstitial infiltration by monocytes/macrophages was higher compared with unobstructed controls. It was significantly less after isotretinoin treatment. In UUO-Veh rats mRNA for procollagen I, and transforming growth factor-beta1 and II receptor was significantly increased. It was significantly less after treatment with isotretinoin. Fibronectin and collagen I immunostaining was also decreased by isotretinoin. Since isotretinoin limits proliferation, inflammation and fibrosis after UUO, retinoids should be further investigated as potentially promising therapeutic agents for renal disease.

  12. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    PubMed

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  14. Despite similar reduction of blood pressure and renal ANG II and ET-1 levels aliskiren but not losartan normalizes albuminuria in hypertensive Ren-2 rats.

    PubMed

    Vanourková, Z; Kramer, H J; Husková, Z; Cervenka, L; Vanecková, I

    2010-01-01

    The relationship between angiotensin II (ANG II) and endothelin-1 (ET-1) is known to be complex; both peptides can initiate and potentiate the gene expression of each other. This pilot study investigated the effects of the AT(1) receptor blocker losartan or the direct renin inhibitor aliskiren on mean arterial pressure (MAP) and albuminuria and the renal ANG II and ET-1 levels. 3-month-old male Ren-2 transgenic rats (TGR) were treated either with losartan (5 mg kg(-1) day(-1)) or aliskiren (10 mg kg(-1) day(-1)) for 10 weeks. At the end of the experiment, rats were decapitated and cortical and papillary parts of kidneys were separated. Plasma and tissue ANG II levels were measured by RIA and tissue ET-1 concentrations by ELISA. In all four groups of animals ET-1 levels were lowest in renal cortex and more than 100-fold higher in the papilla. Cortical and papillary ET-1 concentrations in untreated TGR significantly exceeded those of control HanSD rats and were significantly depressed by both drugs. In both strains, papillary ANG II concentrations were moderately but significantly higher than cortical ANG II, TGR exhibited higher ANG II levels both in cortex and papilla as compared to control HanSD rats. Aliskiren and losartan at the doses used depressed similarly the levels of ANG II in cortex and papilla and reduced ET-1 significantly in the renal cortex and papilla below control levels in HanSD rats. Albuminuria, which was more than twice as high in TGR as in HanSD rats, was normalized with aliskiren and reduced by 28% with losartan, although MAP was reduced to a similar degree by both drugs. Despite similar reductions of MAP and renal ET-1 and ANG II levels aliskiren appears to be more effective than losartan, at the doses used, in reducing albuminuria in heterozygous hypertensive Ren-2 rats.

  15. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  16. A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-D-glucosaminidase and nitric oxide determination.

    PubMed

    Ozguner, Fehmi; Oktem, Faruk; Ayata, Ali; Koyu, Ahmet; Yilmaz, H Ramazan

    2005-09-01

    Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It has been used in folk medicine for many years in Middle East countries. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine long-term applied 900 MHz emitting mobile phone-induced oxidative stress that promotes production of reactive oxygen species (ROS) and, was to investigate the role of CAPE on kidney tissue against the possible electromagnetic radiation (EMR)-induced renal impairment in rats. In particular, the ROS such as superoxide and nitric oxide (NO) may contribute to the pathophysiology of EMR-induced renal impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels, urinary N-acetyl-beta-D-glucosaminidase (NAG, a marker of renal tubular injury) and nitric oxide (NO, an oxidant product) levels were used as markers of oxidative stress-induced renal impairment and the success of CAPE treatment. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in renal tissue were determined to evaluate the changes of antioxidant status. The rats used in the study were randomly grouped (10 each) as follows: i) Control group (without stress and EMR), ii) Sham-operated rats stayed without exposure to EMR (exposure device off), iii) Rats exposed to 900 MHz EMR (EMR group), and iv) A 900 MHz EMR exposed + CAPE treated group (EMR + CAPE group). In the EMR exposed group, while tissue MDA, NO levels and urinary NAG levels increased (p < 0.0001), the activities of SOD, CAT, and GSH-Px in renal tissue were reduced (p < 0.001). CAPE treatment reversed these effects as well (p < 0.0001, p < 0.001 respectively). In conclusion, the increase in NO and MDA levels of renal tissue, and in urinary NAG with the decrease in renal SOD, CAT, GSH-Px activities demonstrate the role of oxidative mechanisms in 900 MHz mobile phone-induced renal tissue damage

  17. Effects of combination of aliskiren and pentoxyfylline on renal function in the rat remnant kidney model of chronic renal failure.

    PubMed

    Soni, Hitesh M; Patel, Praful P; Patel, Savan; Rath, Akshyaya C; Acharya, Aviseka; Trivedi, Harshkant D; Jain, Mukul R

    2015-01-01

    The aim was to investigate the nephroprotective effect of combination of aliskiren (ASK), a direct renin inhibitor and pentoxifylline (PTX), inhibitor of tumor necrotic factor-alpha (TNF-alpha), in rat remnant kidney model of chronic kidney disease (CKD). Nephrectomized (NPX) rats were treated with ASK (10 mg/kg, p.o.), PTX (100 mg/kg, p.o.), and combination of PTX + ASK once daily for 28 days. We have performed analysis of various renal injury parameters after 4 weeks of treatment. Treatment with PTX, ASK and combination showed significant improvement in urea, creatinine and total protein in plasma when compared with vehicle treated group in NPX rats. ASK and combination of PTX + ASK elicited significant reduction in blood pressure but PTX alone did not produce blood pressure reduction. ASK treatment showed significant elevation in TNF-alpha, whereas PTX and ASK + PTX showed significant reduction in TNF-alpha in plasma. Histopathologically, the extent of the kidney injury was similar in NPX + vehicle and NPX + ASK-treated rats. PTX and ASK + PTX-treated group showed lesser extent of kidney injury. There was good correlation of mRNA expression levels of kidney injury molecule-1 and bradykinin B1 receptor data with histopathological findings in kidney samples and elevated TNF-alpha levels in plasma. We conclude that combination of PTX + ASK may be better therapeutic intervention for nephroprotection in CKD patients.

  18. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  19. The effect of intermittent hypobaric-hypoxia treatments on renal glutathione peroxidase activity of rats

    NASA Astrophysics Data System (ADS)

    Paramita, I. A.; Jusman, S. W. A.

    2017-08-01

    Many people living at high altitudes experiencing a condition called intermittent hypobaric hypoxia (IHH). Some people even create IHH condition as an exercise for pilots, athletes, and mountaineers. In this experiment, we aimed to determine whether the protective effect of IHH is mediated through glutathione peroxidase (GPX) enzyme. The experiment’s sample is two-month-old healthy Sprague-Dawley rat kidneys weighing 200-250 g. Intermittent hypobaric hypoxia treatment is done using a Hypobaric Chamber type I that can mimic air pressure at certain altitudes: 35,000 (one minute), 30,000 (three minutes), 25,000 (five minutes), and 18,000 (30 minutes) feet. The rats were divided into five treatment groups, including a control group, hypobaric-hypoxia group, and intermittent hypobaric-hypoxia 1x, 2x, and 3x groups with each group consisting of three rats. The specific activity of GPX was measured using RANDOX and RANSEL methods. The statistical analysis of one way-ANOVA did not show significant differences between the groups (p > 0.05), although specific activities of the renal GPX of rats exposed to hypobaric-hypoxia were higher than the control group. This may be caused by the other antioxidants’ activities. In conclusion, the IHH treatment did not affect GPX activity in the rat kidneys.

  20. Application of an in vitro OAT assay in drug design and optimization of renal clearance.

    PubMed

    Soars, Matthew G; Barton, Patrick; Elkin, Lisa L; Mosure, Kathleen W; Sproston, Joanne L; Riley, Robert J

    2014-07-01

    1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance. 2. In vitro inhibition assays were established for human OAT1 and rat Oat3 and rat in vivo renal clearance was obtained. Statistically significant quantitative relationships were explored between the compounds' physical properties, their affinity for OAT1 and oat3 and the inter-relationship with unbound renal clearance (URC) in rat. 3. Many of the compounds were actively secreted and in vitro analysis demonstrated that these were ligands for rat and human OAT transporters (IC50 values ranging from <1 to >100 µM). Application of resultant QSAR models reduced renal clearance in the rat from 24 to <0.1 ml/min/kg. Data analysis indicated that the properties associated with increasing affinity at OATs are the same as those associated with reducing URC but orthogonal in nature. 4. This study has demonstrated that OAT inhibition data and QSAR models can be successfully used to optimize rat renal clearance in vivo and provide confidence of translation to humans.

  1. Renal histopathology in toxicity and carcinogenicity studies with tert-butyl alcohol administered in drinking water to F344 rats: a pathology working group review and re-evaluation.

    PubMed

    Hard, Gordon C; Bruner, Richard H; Cohen, Samuel M; Pletcher, John M; Regan, Karen S

    2011-04-01

    An independent Pathology Working Group (PWG) re-evaluated the kidney changes in National Toxicology Program (NTP) toxicology/carcinogenicity studies of tert-butyl alcohol (TBA) in F344/N rats to determine possible mode(s) of action underlying renal tubule tumors in male rats at 2-years. In the 13-week study, the PWG confirmed that the normal pattern of round hyaline droplets in proximal convoluted tubules was replaced by angular droplet accumulation, and identified precursors of granular casts in the outer medulla, changes typical of alpha(2u)-globulin (α(2u)-g) nephropathy. In the 2-year study, the PWG confirmed the NTP observation of increased renal tubule tumors in treated male groups. Linear papillary mineralization, another hallmark of the α(2u)-g pathway was present only in treated male rats. Chronic progressive nephropathy (CPN) was exacerbated in high-dose males and females, with a relationship between advanced grades of CPN and renal tumor occurrence. Hyperplasia of the papilla lining was a component of CPN in both sexes, but there was no pelvic urothelial hyperplasia. High-dose females showed no TBA-related nephrotoxicity. The PWG concluded that both α(2u)-g nephropathy and exacerbated CPN modes of action were operative in TBA renal tumorigenicity in male rats, neither of which has relevance for human cancer risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  3. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers.

    PubMed

    da Rosa Maggi Sant'Helena, Bruna; Guarido, Karla L; de Souza, Priscila; Crestani, Sandra; da Silva-Santos, J Eduardo

    2015-10-15

    We evaluated the effects of K+ channel blockers in the vascular reactivity of in vitro perfused kidneys, as well as on the influence of vasoactive agents in the renal blood flow of rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both norepinephrine and phenylephrine had the ability to increase the vascular perfusion pressure reduced in kidneys of rats subjected to CLP at 18 h and 36 h before the experiments. The non-selective K+ channel blocker tetraethylammonium, but not the Kir6.1 blocker glibenclamide, normalized the effects of phenylephrine in kidneys from the CLP 18 h group. Systemic administration of tetraethylammonium, glibenclamide, or the KCa1.1 blocker iberiotoxin, did not change the renal blood flow in control or septic rats. Norepinephrine or phenylephrine also had no influence on the renal blood flow of septic animals, but its injection in rats from the CLP 18 h group previously treated with either glibenclamide or iberiotoxin resulted in an exacerbated reduction in the renal blood flow. These results suggest an abnormal functionality of K+ channels in the renal vascular bed in sepsis, and that the blockage of different subtypes of K+ channels may be deleterious for blood perfusion in kidneys, mainly when associated with vasoactive drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    DTIC Science & Technology

    2014-06-01

    to measure serum creatinine. 5b. urine collection twice each month for measurements of protein and creatinine ratios Task 6. Intravital imaging...volume, renal fibrosis (quantified on trichrome stained sections), albuminuria, blood urea nitrogen (BUN) and kidney weight were significantly...IRCT markedly reduced cyst volume, renal fibrosis, albuminuria, blood urea nitrogen and kidney weights in treated rats, as compared to PCK rats

  5. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less

  6. Conversion to Sirolimus Ameliorates Cyclosporine-Induced Nephropathy in the Rat: Focus on Serum, Urine, Gene, and Protein Renal Expression Biomarkers

    PubMed Central

    Sereno, José; Nunes, Sara; Rodrigues-Santos, Paulo; Rocha-Pereira, Petronila; Fernandes, João; Teixeira, Frederico; Reis, Flávio

    2014-01-01

    Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6) were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-β, NF-κ β, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal damage, without clear changes on the traditional markers, but with changes in serums TGF-β and IL-7, TBARs clearance, and kidney TGF-β and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL. PMID:24971338

  7. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo.

    PubMed

    Uchii, Masako; Sakai, Mariko; Hotta, Yuhei; Saeki, Satoshi; Kimoto, Naoya; Hamaguchi, Akinori; Kitayama, Tetsuya; Kunori, Shunji

    2017-11-01

    Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Effect of naringin on hemodynamic changes and left ventricular function in renal artery occluded renovascular hypertension in rats

    PubMed Central

    Visnagri, Asjad; Adil, Mohammad; Kandhare, Amit D.; Bodhankar, Subhash L.

    2015-01-01

    Background: Renal artery occlusion (RAO) induced hypertension is a major health problem associated with structural and functional variations of the renal and cardiac vasculature. Naringin a flavanone glycoside derived possesses metal-chelating, antioxidant and free radical scavenging properties. Objective: The objective of this study was to investigate the antihypertensive activity of naringin in RAO induced hypertension in rats. Material and Methods: Male Wistar rats (180-200 g) were divided into five groups Sham, RAO, naringin (20, 40 and 80 mg/kg). Animals were pretreated with naringin (20, 40 and 80 mg/kg p.o) for 4 weeks. On the last day of the experiment, left renal artery was occluded with renal bulldog clamp for 4 h. After assessment of hemodynamic and left ventricular function various biochemical (superoxide dismutase [SOD], glutathione [GSH] and malondialdehyde [MDA]) and histological parameters were determined in the kidney. Results: RAO group significantly (P < 0.001) increased hemodynamic parameters at 15, 30 and 45 min of clamp removal. Naringin (40 and 80 mg/kg) treated groups showed a significant decrease in hemodynamic parameters at 15 min. after clamp removal that remained sustained for 60 min. Naringin (40 and 80 mg/kg) treated groups showed significant improvement in left ventricular function at 15, 30 and 45 min after clamp removal. Alteration in level of SOD, GSH and MDA was significantly restored by naringin (40 and 80 mg/kg) treatment. It also reduced histological aberration induced in kidney by RAO. Conclusion: It is concluded that the antihypertensive activity of naringin may result through inhibition of oxidative stress. PMID:25883516

  9. The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats.

    PubMed

    Peake, Jonathan M; Gobe, Glenda C; Fassett, Robert G; Coombes, Jeff S

    2011-03-01

    We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Three groups of Sprague-Dawley rats (n=16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n=4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-β expression, apoptosis, and tissue levels of arachidonic acid, MIP-1α, IL-1β, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of long-term high-saturated and unsaturated fatty acid diets on relaxation and contraction of renal arteries in insulin resistant rats.

    PubMed

    Gao, Yu; Song, Guang-Yao; Ma, Hui-Juan; Zhang, Wen-Jie; Zhou, Yu

    2007-06-25

    The present study was designed to investigate the effects of high-saturated and high-unsaturated fatty acid diets on relaxation and contraction of the renal arteries in insulin resistance (IR) rats. Wistar rats were fed normal chow diet (control), high-saturated fatty acid diet or high-unsaturated fatty acid diet for 6 months (n=14 in each group). IR was evaluated by glucose infusion rate (GIR) of hyperinsulinemic euglycemic clamp. Blood pressure was measured via the tail-cuff method. Body weight (BW), plasma total triglyceride (TG), free fatty acid (FFA), insulin, fasting blood glucose (FBG) and nitric oxide metabolite (NO2(-)/NO3(-)) were compared among the three groups. The rats were sacrificed and the renal arterial rings were placed in the physiological tissue baths for measurement of vascular response to various agents. After the arterial rings were constricted with 3 mmol/L noradrenaline (NA), endothelium-dependent vasorelaxation to acetylcholine (ACh) and endothelium-independent vasorelaxation to sodium nitroprusside (NTP) were measured. Endothelium-dependent vasorelaxation to ACh was also observed in renal arterial rings incubated with L-arginine (L-Arg), N(omega)-nitro-L-arginine (L-NNA) and methylene blue (MB), respectively. Arterial contractility was evaluated from concentration-response curves to 10 nmol/L-100 micromol/L NA. Saturated or unsaturated fatty acids led to moderate rises in blood pressure (P<0.05). It was associated with higher levels of plasma lipids and lower whole body insulin sensitivity (P<0.01). There were no significant differences in BW, FBG, TG, insulin and FFA between saturated and unsaturated fatty acid-fed rats. A decrease in endothelium-dependent vasorelaxation of the renal arteries in saturated and unsaturated fatty acid-fed rats was observed (P<0.01), but there was no marked difference between the two high-fatty acid diet groups. Endothelium-dependent vasorelaxation was increased when the arteries were incubated with L

  12. The Protective Effect of γ-aminobutyric Acid on Kidney Injury Induced by Renal Ischemia-reperfusion in Ovariectomized Estradiol-treated Rats.

    PubMed

    Talebi, Nahid; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Vafapour, Marzieh

    2016-01-01

    Renal ischemia-reperfusion injury (IRI) is one of the most important causes of kidney injury, which is possibly gender-related. This study was designed to investigate the role of γ-aminobutyric acid (GABA) against IRI in ovariectomized estradiol-treated rats. Thirty-five ovariectomized Wistar rats were used in six experimental groups. The first three groups did not subject to estradiol treatment and assigned as sham-operated, control, and GABA-treated groups. GABA (50 μmol/kg) and saline were injected in the treated and control groups 30 min before the surgery, respectively. The second three groups received the same treatments but received estradiol valerate (500 μg/kg, intramuscularly) 3 days prior to the surgery. The IRI was induced in the control and treated groups by clamping the renal artery for 45 min and then 24 h of reperfusion. All animals were sacrificed for the measurements. The serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score significantly increased in the IRI rats (P < 0.05). GABA significantly decreased the aforementioned parameters (P < 0.05). The uterus weight increased significantly in rats that received estradiol (P < 0.05). Serum and kidney levels of nitrite (nitric oxide metabolite) did not alter significantly. Serum level of malondialdehyde increased significantly in the ovariectomized rats exposed to IRI (P < 0.05). It seems that GABA improved IRI in ovariectomized rats. Estradiol was also nephroprotective against IRI. However, co-administration of estradiol and GABA could not protect the kidney against IRI.

  13. Effect of Carnosine on Renal Function, Oxidation and Glycation Products in the Kidneys of High-Fat Diet/Streptozotocin-Induced Diabetic Rats.

    PubMed

    Fatih Aydın, Abdurrahman; Küçükgergin, Canan; Bingül, İlknur; Doğan-Ekici, Işın; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2017-05-01

    High fat diet (HFD) and low dose of streptozotocin (STZ)-treated rats provide an animal model for type 2 Diabetes Mellitus (T2DM). Oxidative stress plays a role in the development of diabetic complications. Carnosine (CAR) has antioxidant and antiglycating properties. We investigated effects of CAR on renal function, oxidation and glycation products in HFD+STZ-rats. Rats were fed with HFD (60% of total calories from fat) for 4 weeks and then a single dose STZ (40 mg/kg; i.p.) was applied. Rats with blood glucose levels above 200 mg/dL were fed with HFD until the end of the 12 th week. CAR (250 mg/kg body weight; i.p.; 5 times a week) was administered to rats for the last 4 weeks. Glycated hemoglobin (HbA1c), glucose, lipids, and andrenal function tests in serum as well as reactive oxygen species, malondialdehyde, protein carbonyl, advanced oxidation protein products, advanced glycation end products (AGEs), antioxidant power, and antioxidant enzyme activities and their mRNA expressions in kidneys were determined. CAR treatment did not alter glucose and HbA1c, but it decreased serum lipids, creatinine, and urea levels in HFD+STZ rats. Oxidation products of lipids and proteins and AGEs levels decreased, but antioxidant enzyme activities and their mRNA expressions remained unchanged due to CAR treatment. Our results indicate that CAR treatment alleviated renal function and decreased accumulation of oxidation and glycation products in kidneys in HFD+STZ-rats. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy

    PubMed Central

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-01-01

    Aim: A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. Methods: The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Results: Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Conclusion: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity. PMID:26775661

  15. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy.

    PubMed

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-02-01

    A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity.

  16. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats

    PubMed Central

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M

    2016-01-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345

  17. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats.

    PubMed

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J

    2016-02-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.

  18. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers.

    PubMed

    de Almeida Chaves Rodrigues, Aline Fernanda; de Lima, Ingrid Lauren Brites; Bergamaschi, Cássia Toledo; Campos, Ruy Ribeiro; Hirata, Aparecida Emiko; Schoorlemmer, Guus Hermanus Maria; Gomes, Guiomar Nascimento

    2013-01-15

    The exposure of the fetus to a hyperglycemic environment promotes the development of hypertension and renal dysfunction in the offspring at adult age. We evaluated the role of renal nerves in the hypertension and renal changes seen in offspring of diabetic rats. Diabetes was induced in female Wistar rats (streptozotocin, 60 mg/kg ip) before mating. Male offspring from control and diabetic dams were studied at an age of 3 mo. Systolic blood pressure measured by tail cuff was increased in offspring of diabetic dams (146 ± 1.6 mmHg, n = 19, compared with 117 ± 1.4 mmHg, n = 18, in controls). Renal function, baseline renal sympathetic nerve activity (rSNA), and arterial baroreceptor control of rSNA were analyzed in anesthetized animals. Glomerular filtration rate, fractional sodium excretion, and urine flow were significantly reduced in offspring of diabetic dams. Two weeks after renal denervation, blood pressure and renal function in offspring from diabetic dams were similar to control, suggesting that renal nerves contribute to sodium retention in offspring from diabetic dams. Moreover, basal rSNA was increased in offspring from diabetic dams, and baroreceptor control of rSNA was impaired, with blunted responses to infusion of nitroprusside and phenylephrine. Thus, data from this study indicate that in offspring from diabetic mothers, renal nerves have a clear role in the etiology of hypertension; however, other factors may also contribute to this condition.

  19. Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress.

    PubMed

    da Silva Cristino Cordeiro, Viviane; de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; Ognibene, Dayane Teixeira; da Rocha, Ana Paula Machado; de Carvalho, Jorge José; de Moura, Roberto Soares; Resende, Angela Castro

    2018-03-01

    Euterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg -1 day -1 ) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury. Male rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water. The elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-β1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx). ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.

  20. Green Tea Polyphenols Stimulate Mitochondrial Biogenesis and Improve Renal Function after Chronic Cyclosporin A Treatment in Rats

    PubMed Central

    Rehman, Hasibur; Krishnasamy, Yasodha; Haque, Khujista; Lemasters, John J.; Schnellmann, Rick G.; Zhong, Zhi

    2013-01-01

    Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis (MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS) protein ATP synthase-β (AS-β) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate Cs

  1. Germanium in ginseng is low and causes no sodium and water retention or renal toxicity in the diuretic-resistant rats

    PubMed Central

    Tan, Chunjiang; Xiao, Lu; Chen, Wenlie

    2015-01-01

    Ginseng preparations contain high concentrations of germanium (Ge), which was reported to contribute to diuretic resistance or renal failure. However, Ge content in ginseng and the influence on renal functions remain unclear. Forty rats were randomly divided into control group, low, moderate, and high Ge ginseng-treated group and observed for 25 days. Daily urine, renal functions, and serum and urine electrolytics were measured. Ge retention in the organs and renal histological changes were also evaluated. Ge content ranged from 0.007 to 0.450 µg/g in various ginseng samples. Four groups showed no difference in the daily urine output, glomerular filtration rate, urinary electrolytes excretions, 24 h-urine protein, as well as plasma and urine urea nitrogen, creatinine, osmotic pressure, and pH values. Ge did not cause any renal pathological effects in this study. No Na and water retention was detected in the ginseng-treated groups. Ge retention in various organs was found highest in spleen, followed by the kidney, liver, lung, stomach, heart, and pancreas. The total Ge contents in various ginsengs were low, and ginseng treatment did not affect renal functions or cause renal histological changes. PMID:25711879

  2. Role of Bone Marrow Derived Mesenchymal Stem Cells and the Protective Effect of Silymarin in Cisplatin-Induced Acute Renal Failure in Rats.

    PubMed

    Ibrahim, Mohamed El-Tantawy; Bana, Eman El; El-Kerdasy, Hanan I

    2018-01-01

    Cisplatin is a highly effective antitumor agent whose clinical application is limited by its nephrotoxicity, which is associated with high mortality and morbidity rates. We aimed to study the protective role of silymarin and mesenchymal stem cells as a therapeutic tool of cisplatin nephrotoxicity. We injected rats with cisplatin in a dose of 5mg/kg body weight for 5 days to induce acute renal failure (ARF). Silymarin was administrated 6 hours before cisplatin injection and mesenchymal stem cells were injected 24 hours after cisplatin-induced ARF. We assessed the ARF biochemically by elevation of kidney function tests and histopathologically by an alteration of the histological architecture of the renal cortex in the form of shrinkage of glomeruli, lobulated tufts and glomerular hypertrophy with narrowing capsular space. The tubules showed extensive tubular degeneration with cellular hyaline materials and debris in the lumen of the renal tubules. The renal blood vessels appeared sclerotic with marked thickened walls. When silymarin was given in different doses before cisplatin, it decreased the toxic effect of cisplatin in the kidney but sclerotic blood vessels remained. Injection of mesenchymal stem cells in rats with cisplatin-induced ARF improved the histopathological effects of cisplatin in renal tissues and kidney function tests were significantly improved. There was a significant improvement in kidney function tests and renal histopathology by using silymarin as protective mechanism in cisplatin-induced ARF. Administration of mesenchymal stem cells denoted a more remarkable therapeutic effect in ARF. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  3. Comparative assessment of onion and garlic extracts on endogenous hepatic and renal antioxidant status in rat.

    PubMed

    Suru, Stephen M; Ugwu, Chidiebere E

    2015-07-01

    Despite growing claims of functional health benefits in folkloric medicine, the safety of chronic/elevated intakes of onion and garlic cannot be assumed. Therefore, this study assesses oral administration of varied doses of onion and garlic on some biomarkers of hepatic and renal functions in rats. Animals were divided into five groups: control group received vehicle and extract-treated groups received varied doses of onion or garlic extract (0.5 mL and 1.0 mL/100 g bwt/day) for 6 weeks. Both doses of onion caused marked (p<0.05) increase in hepatic and renal levels of glutathione (GSH), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and marked (p<0.05) decrease in malondialdehyde (MDA). Treatment with low dose of garlic elicited similar trend except in hepatic CAT, renal SOD and GST levels. A high dose of garlic only caused marked (p<0.05) increase in hepatic GST, renal GST, and SOD. Both doses of onion and low dose of garlic significantly (p<0.05) enhanced renal Na+/K+-ATPase activity. Only a high dose of onion caused significant (p<0.05) increase in hepatic aspartate transaminase (AST), alkaline phosphatase (ALP), and decrease in plasma AST activities. These findings suggest antioxidant enhancing capability for both doses of onion and low dose of garlic, while high dose of garlic elicited pro-oxidant conditions.

  4. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  5. A PET Tracer for Renal Organic Cation Transporters, ¹¹C-Metformin: Radiosynthesis and Preclinical Proof-of-Concept Studies.

    PubMed

    Jakobsen, Steen; Busk, Morten; Jensen, Jonas Brorson; Munk, Ole Lajord; Zois, Nora Elisabeth; Alstrup, Aage K O; Jessen, Niels; Frøkiær, Jørgen

    2016-04-01

    Organic cation transporters (OCTs) in the kidney proximal tubule (PT) participate in renal excretion of drugs and endogenous compounds. PT function is commonly impaired in kidney diseases, and consequently quantitative measurement of OCT function may provide an important estimate of kidney function. Metformin is a widely used drug and targets OCT type 2 located in the PT. Thus, we hypothesized that (11)C-labeled metformin would be a suitable PET tracer for quantification of renal function. (11)C-metformin was prepared by (11)C-methylation of 1-methylbiguanide. In vitro cell uptake of (11)C-metformin was studied in LLC-PK1 cells in the presence of increasing doses of unlabeled metformin. In vivo small-animal PET studies in Sprague-Dawley rats were performed at baseline and after treatment with OCT inhibitors to evaluate renal uptake of (11)C-metformin. Kidney and liver pharmacokinetics of (11)C-metformin was investigated in vivo by dynamic (11)C-metformin PET/CT in 6 anesthetized pigs, and renal clearance of (11)C-metformin was compared with renal clearance of (51)Cr-ethylenediaminetetraacetic acid (EDTA). Formation of (11)C metabolites was investigated by analysis of blood and urine samples. The radiochemical yield of (11)C-metformin was 15% ± 3% (n= 40, decay-corrected), and up to 1.5 GBq of tracer were produced with a radiochemical purity greater than 95% in less than 30 min. Dose-dependent uptake of (11)C-metformin in LLC-PK1 cells was rapid. Rat small-animal PET images showed (11)C-metformin uptake in the kidney and liver, the kinetics of which were changed after challenging animals with OCT inhibitors. In pigs, 80% of the injected metformin dose was rapidly present in the kidney, and a high dose of metformin caused a delayed renal uptake and clearance compared with baseline consistent with transporter-mediated competition. Renal clearance of (11)C-metformin was approximately 3 times the renal clearance of (51)Cr-EDTA. We successfully synthesized an (11)C

  6. Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity

    PubMed Central

    Manchandani, Pooja; Zhou, Jian; Babic, Jessica T.; Ledesma, Kimberly R.; Truong, Luan D.

    2017-01-01

    ABSTRACT Despite dose-limiting nephrotoxic potentials, polymyxin B has reemerged as the last line of therapy against multidrug-resistant Gram-negative bacterial infections. However, the handling of polymyxin B by the kidneys is still not thoroughly understood. The objectives of this study were to evaluate the impact of renal polymyxin B exposure on nephrotoxicity and to explore the role of megalin in renal drug accumulation. Sprague-Dawley rats (225 to 250 g) were divided into three dosing groups, and polymyxin B was administered (5 mg/kg, 10 mg/kg, and 20 mg/kg) subcutaneously once daily. The onset of nephrotoxicity over 7 days and renal drug concentrations 24 h after the first dose were assessed. The effects of sodium maleate (400 mg/kg intraperitoneally) on megalin homeostasis were evaluated by determining the urinary megalin concentration and electron microscopic study of renal tissue. The serum/renal pharmacokinetics of polymyxin B were assessed in megalin-shedding rats. The onset of nephrotoxicity was correlated with the daily dose of polymyxin B. Renal polymyxin B concentrations were found to be 3.6 ± 0.4 μg/g, 9.9 ± 1.5 μg/g, and 21.7 ± 4.8 μg/g in the 5-mg/kg, 10-mg/kg, and 20-mg/kg dosing groups, respectively. In megalin-shedding rats, the serum pharmacokinetics of polymyxin B remained unchanged, but the renal exposure was attenuated by 40% compared to that of control rats. The onset of polymyxin B-induced nephrotoxicity is correlated with the renal drug exposure. In addition, megalin appears to play a pivotal role in the renal accumulation of polymyxin B, which might contribute to nephrotoxicity. PMID:28096166

  7. Protective effects of boron and vitamin E on ethylene glycol-induced renal crystal calcium deposition in rat.

    PubMed

    Bahadoran, H; Naghii, M R; Mofid, M; Asadi, M H; Ahmadi, K; Sarveazad, A

    2016-10-01

    Kidney stone disease is a common form of renal disease. Antioxidants, such as vitamin E (Vit E) and boron, are substances that reduce the damage caused by oxidation. Adult male rats were divided into 5 groups (n=6). In group 1, rats received standard food and water for 28 days (control group); in group 2, standard rodent food and water with 0.75% ethylene glycol/d (dissolved in drinking water) (EG Group); in group 3, similar to group 2, with 3 mg of boron/d (dissolved in water) (EG+B Group); in group 4, similar to group 2, with 200 IU of vitamin E injected intraperitoneally on the first day and the 14th day, (EG+Vit E Group); in group 5, mix of groups 3 and 4, respectively (EG+B+Vit E Group). Kidney sections showed that crystals in the EG group increased significantly in comparison with the control group. Crystal calcium deposition score in groups of EG+B (160), EG+Vit E, and EG+B+Vit E showed a significant decrease compared to EG group. Measurement of the renal tubules area and renal tubular epithelial histological score showed the highest significant dilation in the EG group. Tubular dilation in the EG+B+Vit E group decreased compared to the EG+B and EG+Vit E groups. Efficient effect of boron and Vit E supplements, separately and in combination, has a complimentary effect in protection against the formation of kidney stones, probably by decreasing oxidative stress.

  8. Dependence of renal (Na+ + k+)-adenosine triphosphatase activity on thyroid status.

    PubMed

    Lo, S C; August, T R; Liberman, U A; Edelman, I S

    1976-12-25

    In thyroidectomized rats, a single injection of L-2,,5,2'-triiodothyronine (T3) (50mug/100 g body weight) elicited at 45% increase in (Na+ + k+)-dependent adenosine triphosphatase (NaK-ATPase) activity of the membrane-rich fraction of renal cortex at the optimal time of response, 48 h after injection. Three successive doses of T3 (50 mug/100 g body weight), given on alternate days, increased NaK-ATPase by 67% in the renal cortex but had no significant effect on the outer medulla or the papilla. Moreover, T3 had no effect on Mg2+-dependent adenosine trisphatase (MgATPase) in cortex, cedulla, or papilla. Three doses of T3 (50 mug/100 g body weight) given on alternate days to thyroidectomized rats elecited a 134, 79, and 46% increase in Vmax for ATP, Na4, and K+, respectively. There were no changes in the Km for ATP or the K1/2 values for Na+ and K+. Two methods were used to estimate the effect of T3 on the number of NaK-ATPase units (assumed to represent the number of Na+ pump sites); rat renal plasma membrane fractions were incubated with [gamma-32P]ATP, Mg2+, and Na+; the 32P-labeled membrane protein yeild was quantitatively dependent on Na+ and was hydrolyzed on addition of K+. There was a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of phosphorylated intermediate formed, in renal cortical membrane fractions from thyroidectomized rats given T3 or the diluent. There was also a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of [3H]ouabain specifically bound (Na+-, Mg2+-, APT-dependent) to the NaK-ATPase preparation. Injection of T3 resulted in a 70% increase in NaK-ATPase activity, a 79% increase in formation of the phosphorylated intermediate, and a 65% increase in the [H]ouabain specifically bound to the NaK-ATPase system. The T3-dependent increases in Vmax for ATP, Na+, and K+ and the proportionate increases in the phosphorylated intermediate and in the amount of [3H]ouabain bound

  9. 5-HT2 receptor blockade exhibits 5-HT vasodilator effects via nitric oxide, prostacyclin and ATP-sensitive potassium channels in rat renal vasculature.

    PubMed

    García-Pedraza, J A; García, M; Martín, M L; Rodríguez-Barbero, A; Morán, A

    2016-04-01

    The aim of this study was to determine whether orally sarpogrelate (selective 5-HT2 antagonist) treatment (30 mg/kg/day; 14 days) could modify 5-HT renal vasoconstrictor responses, characterizing 5-HT receptors and mediator mechanisms involved in serotonergic responses in the in situ autoperfused rat kidney. Intra-arterial (i.a.) injections of 5-HT (0.00000125 to 0.1 μg/kg) decreased renal perfusion pressure (RPP) but did not affect the mean blood pressure (MBP). i.a. agonists 5-CT (5-HT1/7), CGS-12066B (5-HT1B), L-694,247 (5-HT1D) or AS-19 (5-HT7) mimicked renal 5-HT vasodilator effect. However, neither 8-OH-DPAT (5-HT1A) nor 1-phenylbiguanide (5-HT3) modified RPP. Moreover: (i) GR-55562 (5-HT1B antagonist) and L-NAME (nitric oxide synthase [NOS] inhibitor) blocked CGS-12066B-induced vasodilator response, (ii) LY310762 (5-HT1D antagonist) and indomethacin (non-selective cyclooxygenase inhibitor) blocked L-694,247-induced vasodilator response; (iii) SB-258719 (5-HT7 antagonist) and glibenclamide (ATP-sensitive K+ channel blocker) blocked AS-19-induced vasodilator response; and (iv) 5-HT- or 5-CT-elicited renal vasodilation was significantly blocked by the mixture of GR-55562 + LY310762 + SB-258719. Furthermore, eNOS and iNOS proteins and prostacyclin levels are overexpressed in sarpogrelate-treated rats. Our data suggest that 5-HT exerts renal vasodilator effect in the in situ autoperfused sarpogrelate-treated rat kidney, mediated by 5-HT1D, 5-HT1B and 5-HT7 receptors, involving cyclooxygenase-derived prostacyclin, nitric oxide synthesis/release and ATP-sensitive K+ channels, respectively.

  10. Protective effect of dexpanthenol on ischemia-reperfusion-induced renal injury in rats.

    PubMed

    Altintas, Ramazan; Parlakpinar, Hakan; Beytur, Ali; Vardi, Nigar; Polat, Alaadin; Sagir, Mustafa; Odabas, Gul Pelin

    2012-01-01

    This experimental study was designed to investigate protective and therapeutic effects of Dexpanthenol (Dxp), an alcoholic analogue of pantothenic acid, on kidney damage induced by ischemia-reperfusion (I/R) in rats. Forty rats were randomly divided into a control group and 4 I/R groups (1 h ischemia followed by 23 h reperfusion). Three I/R groups were treated by Dxp (500 mg/kg, i.p.) at 3 different time points (before ischemia, during ischemia and late reperfusion). The histopathological findings including apoptotic changes, and also tissue malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), blood urea nitrogen (BUN), serum creatinine (Cr) and albumin (Alb) levels were determined. Kidney tissue MDA levels were found to be significantly higher in the I/R group, whereas the values of GPX were lower when compared to the control group. The levels of SOD and CAT did not reach to statistical meaning level in I/R group. Dxp given during ischemia reduced the elevated MDA levels to the nearly control levels and this ameliorating effect was found as parallel to the result of GPX. Serum levels of BUN and Cr were significantly higher in I/R group. Dxp given during ischemia significantly reduced the elevated BUN and Cr levels when compared to I/R group. Renal I/R injury also induced extensive tubular necrosis, glomerular damage and apoptosis in the histological evaluation. Dxp ameliorated these histological damages in different amounts in all treatment groups. In this study the protective effects of Dxp against renal I/R injury has been evaluated for the first time. Copyright © 2012 S. Karger AG, Basel.

  11. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  12. Effect of L-dopa decarboxylase inhibitor benserazide on renal function in streptozotocin-diabetic rats.

    PubMed

    Pfeil, Katrin; Staudacher, Torsten; Luippold, Gerd

    2006-01-01

    Benserazide (BZD), an inhibitor of the dopamine synthesis, abolished the increase in glomerular filtration rate (GFR) following the infusion of a mixed amino acid solution. These results reveal endogenous dopamine as a mediator in the renal response to amino acids. The aim of the present study was to evaluate whether dopamine is also involved in the regulation of glomerular hyperfiltration during the early state of diabetes mellitus (DM). Male Sprague-Dawley rats were injected with a single dose of streptozotocin (60 mg/kg i.p.) for induction of experimental DM (n = 7-8/group). Age-matched non-diabetic animals, injected with citrate buffer, served as controls (CON, n = 8/group). Clearance experiments were performed 2 weeks after induction of DM in thiopental-anesthetized rats (80 mg/kg i.p.), which were continuously infused either with BZD (30 microg/min/kg) or vehicle (VHC). Mean arterial blood pressure was around 110 mm Hg and did not significantly differ among the groups. GFR was 0.95 +/- 0.02 ml/min/100 g b.w. in VHC-treated CON. BZD treatment did not significantly change GFR in the CON group (0.92 +/- 0.06 ml/min/100 g b.w.). As expected, glomerular hyperfiltration was observed in diabetic rats infused with VHC (1.24 +/- 0.08 ml/min/100 g b.w.). Treatment with BZD significantly reduced the diabetes-induced increase in GFR to control levels (0.95 +/- 0.05 ml/min/100 g b.w.). Our results show that the inhibition of dopamine synthesis prevented the increase in GFR due to diabetic conditions, indicating that endogenous dopamine is involved in the regulation of DM-induced changes in renal hemodynamics. Copyright 2006 S. Karger AG, Basel.

  13. High-NaCl intake impairs dynamic autoregulation of renal blood flow in ANG II-infused rats.

    PubMed

    Saeed, Aso; Dibona, Gerald F; Marcussen, Niels; Guron, Gregor

    2010-11-01

    The aim of this study was to investigate dynamic autoregulation of renal blood flow (RBF) in ANG II-infused rats and the influence of high-NaCl intake. Sprague-Dawley rats received ANG II (250 ng·kg(-1)·min(-1) sc) or saline vehicle (sham) for 14 days after which acute renal clearance experiments were performed during thiobutabarbital anesthesia. Rats (n = 8-10 per group) were either on a normal (NNa; 0.4% NaCl)- or high (HNa; 8% NaCl)-NaCl diet. Separate groups were treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol; 1 M in drinking water). Transfer function analysis from arterial pressure to RBF in the frequency domain was used to examine the myogenic response (MR; 0.06-0.09 Hz) and the tubuloglomerular feedback mechanism (TGF; 0.03-0.06 Hz). MAP was elevated in ANG II-infused rats compared with sham groups (P < 0.05). RBF in ANG II HNa was reduced vs. sham NNa and sham HNa (6.0 ± 0.3 vs. 7.9 ± 0.3 and 9.1 ± 0.3 ml·min(-1)·g kidney wt(-1), P < 0.05). transfer function gain in ANG II HNa was significantly elevated in the frequency range of the MR (1.26 ± 0.50 dB, P < 0.05 vs. all other groups) and in the frequency range of the TGF (-0.02 ± 0.50 dB, P < 0.05 vs. sham NNa and sham HNa). Gain values in the frequency range of the MR and TGF were significantly reduced by tempol in ANG II-infused rats on HNa diet. In summary, the MR and TGF components of RBF autoregulation were impaired in ANG II HNa, and these abnormalities were attenuated by tempol, suggesting a pathogenetic role for superoxide in the impaired RBF autoregulatory response.

  14. The influence of diltiazem and nifedipine on renal function in the rat.

    PubMed Central

    Johns, E. J.

    1985-01-01

    The effect of intravenous administration of the calcium-entry blocking drugs, diltiazem and nifedipine, on renal haemodynamic and tubular function was examined in denervated kidneys of pentobarbitone-anaesthetized rats. Infusion of vehicle for the compounds had no effect on renal function which was stable for the duration of the experiments. Diltiazem was infused at 5, 10 and 20 micrograms kg-1 min-1. Blood pressure did not change following 5 micrograms kg-1 min-1 diltiazem but was significantly reduced, by 12 mmHg, after 10 micrograms kg-1 min-1 and by 17 mmHg after 20 micrograms kg-1 min-1. Renal blood flow was not affected by any dose of diltiazem while at the lowest dose of drug, glomerular filtration rate (g.f.r.) was significantly increased, by 24%. Absolute and fractional sodium excretion were increased significantly, 154% and 77% respectively, by 5 micrograms kg-1 min-1 diltiazem, 20% and 24% respectively, by 10 micrograms kg-1 min-1 diltiazem, but were unchanged by 20 micrograms kg-1 min-1. Infusion of nifedipine at 0.5, 1.0 and 2.0 micrograms kg-1 min-1 decreased systemic blood pressure by 9, 9 and 20 mmHg, respectively. Renal blood flow was increased (7%) by 1.0 microgram kg-1 min-1 only, while g.f.r. did not change at any dose. Urine flow, absolute and fractional sodium excretions were increased, 127%, 96% and 90% respectively, by 0.5 microgram kg-1 min-1 nifedipine, 127%, 197% and 194% respectively, by 1.0 microgram kg-1 min-1, while these variables remained unchanged by a dose of 2.0 micrograms kg-1 min-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3986432

  15. Atorvastatin prevents the downregulation of aquaporin-2 receptor after bilateral ureteral obstruction and protects renal function in a rat model.

    PubMed

    Danilovic, Alexandre; Lopes, Roberto Iglesias; Sanches, Talita Rojas; Shimizu, Maria Heloísa Massola; Oshiro, Fabíola M; Andrade, Lúcia; Dénes, Francisco Tibor; Seguro, Antonio Carlos

    2012-08-01

    To assess the effects of atorvastatin (ATORV) on renal function after bilateral ureteral obstruction (BUO), measuring inulin clearance and its effect on renal hemodynamic, filtration, and inflammatory response, as well as the expression of Aquaporin-2 (AQP2) in response to BUO and after the release of BUO. Adult Munich-Wistar male rats were subjected to BUO for 24 hours and monitored during the following 48 hours. Rats were divided into 5 groups: sham operated (n = 6); sham + ATORV (n = 6); BUO (n = 6); BUO + ATORV (10 mg/kg in drinking water started 2 days before BUO [n = 5]; and BUO + ATORV (10 mg/kg in drinking water started on the day of the release of BUO [n = 5]). We measured blood pressure (BP, mm Hg); inulin clearance (glomerular filtration rate [GFR]; mL/min/100 g); and renal blood flow (RBF, mL/min, by transient-time flowmeter). Inflammatory response was evaluated by histologic analysis of the interstitial area. AQP2 expression was evaluated by electrophoresis and immunoblotting. Renal function was preserved by ATORV treatment, even if initiated on the day of obstruction release, as expressed by GFR, measured by inulin clearance. Relative interstitial area was decreased in both BUO + ATORV groups. Urine osmolality was improved in the ATORV-treated groups. AQP2 protein expression decreased in BUO animals and was reverted by ATORV treatment. ATORV administration significantly prevented and restored impairment in GFR and renal vascular resistance. Furthermore, ATORV also improved urinary concentration by reversing the BUO-induced downregulation of AQP2. These findings have significant clinical implication in treating obstructive nephropathy. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Cardio-renal and metabolic adaptations during pregnancy in female rats born small: implications for maternal health and second generation fetal growth.

    PubMed

    Gallo, Linda A; Tran, Melanie; Moritz, Karen M; Mazzuca, Marc Q; Parry, Laura J; Westcott, Kerryn T; Jefferies, Andrew J; Cullen-McEwen, Luise A; Wlodek, Mary E

    2012-02-01

    Intrauterine growth restriction caused by uteroplacental insufficiency increases risk of cardiovascular and metabolic disease in offspring. Cardio-renal and metabolic responses to pregnancy are critical determinants of immediate and long-term maternal health. However, no studies to date have investigated the renal and metabolic adaptations in growth restricted offspring when they in turn become pregnant. We hypothesised that the physiological challenge of pregnancy in growth restricted females exacerbates disease outcome and compromises next generation fetal growth. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of gestation in WKY rats and F1 female offspring birth and postnatal body weights were recorded. F1 Control and Restricted females were mated at 4 months and blood pressure, renal and metabolic parameters were measured in late pregnancy and F2 fetal and placental weights recorded. Age-matched non-pregnant Control and Restricted F1 females were also studied. F1 Restricted females were born 10-15% lighter than Controls. Basal insulin secretion and pancreatic β-cell mass were reduced in non-pregnant Restricted females but restored in pregnancy. Pregnant Restricted females, however, showed impaired glucose tolerance and compensatory glomerular hypertrophy, with a nephron deficit but normal renal function and blood pressure. F2 fetuses from Restricted mothers exposed to physiological measures during pregnancy were lighter than Controls highlighting additive adverse effects when mothers born small experience stress during pregnancy. Female rats born small exhibit mostly normal cardio-renal adaptations but altered glucose control during late pregnancy making them vulnerable to lifestyle challenges.

  17. Aqueous extract of Boerhaavia diffusa root ameliorates ethylene glycol-induced hyperoxaluric oxidative stress and renal injury in rat kidney.

    PubMed

    Pareta, Surendra K; Patra, Kartik C; Mazumder, Papiya M; Sasmal, Dinakar

    2011-12-01

    Boerhaavia diffusa Linn. (Nyctaginaceae) is widely used in traditional Indian medicines against renal afflictions including calcium oxalate (CaOx) urolithiasis and is known for antioxidant activity. The present study was designed to investigate the ameliorating effect of aqueous extract of B. diffusa roots (BDE) in hyperoxaluric oxidative stress and renal cell injury. In vitro antioxidant activity of BDE was estimated in terms of total phenolic content and 1,1-diphenyl-2-picryl hydrazyl free radical scavenging activity. Wistar albino rats were given 0.75% v/v ethylene glycol in drinking water to induce chronic hyperoxaluria and simultaneously BDE was given to nephrolithiasic treated rats at the dose of 100 and 200 mg/kg b.w. orally for 28 days. Urinary volume, oxalate, serum creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA) and antioxidant enzyme (SOD, CAT, GST, GPx) were evaluated. BDE extract was found to posses a high total phenolic content and exhibited significant free radicals scavenging activity. Oxalate excretion significantly increased in hyperoxaluric animals as compared to control which was protected in BDE-treated animals. BDE treatment significantly reduced level of MDA and improved the activity of antioxidant enzymes followed by reduction in BUN and serum creatinine. In addition, BDE reduced the number of CaOx monohydrate crystals in the urine. Histological analysis depicted that BDE treatment inhibited deposition of CaOx crystal and renal cell damage. The present study reveals that antioxidant activity of BDE significantly protects against hyperoxaluric oxidative stress and renal cell injury in urolithiasis.

  18. NTP toxicology and carcinogenesis studies of decalin (CAS No. 91-17-8) in F344/N rats and B6C3F(1) mice and a toxicology study of decalin in male NBR rats (inhalation studies).

    PubMed

    2005-01-01

    Decalin is used as an industrial solvent for naphthalene, fats, resins, oils, and waxes. It is also used as a substitute for turpentine in lacquers, paints, and varnishes; as a solvent and stabilizer for shoe polishes and floor waxes; and as a constituent of motor fuels and lubricants. Other applications include use as a paint thinner and remover, a patent fuel in stoves, a high-density fuel in submarine-launched cruise missile systems, and in stain removal and cleaning machinery. Decalin was nominated for study by the National Cancer Institute because of its chemical structure, its potential for consumer exposure, and a lack of adequate testing of the chemical. Male and female F344/N rats and B6C3F(1) mice were exposed to decalin (greater than 99% pure) by inhalation for 2 weeks, 3 months, or 2 years. Groups of male NBR rats were exposed to decalin for 2 weeks. Male NBR rats do not produce alpha2u-globulin; the NBR rats were included to study the relationship of alpha2u-globulin and renal lesion induction. Genetic toxicology studies were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. 2-WEEK STUDIES IN RATS: Groups of five male and five female F344/N rats and five male NBR rats were exposed to 0, 25, 50, 100, 200, or 400 ppm decalin vapor 6 hours per day, 5 days per week for 16 days. All rats survived to the end of the study, and mean body weights of exposed groups were similar to those of the chamber controls. Renal toxicity studies were performed in male F344/N and NBR rats. The numbers of labeled cells and the labeling indices in the left kidney of 200 and 400 ppm F344/N male rats were significantly greater than those in the chamber controls. The alpha2u-globulin/soluble protein ratios were significantly increased in all exposed groups of F344/N rats. Liver weights of male F344/N and NBR rats exposed to 100 ppm or greater were significantly increased, as were those of all exposed groups of females. Kidney weights of male F344/N rats

  19. Protective effect of Petroselinum crispum extract in abortion using prostadin-induced renal dysfunction in female rats.

    PubMed

    Rezazad, Maryam; Farokhi, Farah

    2014-09-01

    Present study investigated the effects of parsley extract on pregnant rat kidneys which have undergone clinical abortion using prostaglandins. The renal protective effect of parsley extract was evaluated in pregnant rats which had an abortion. Parsley was used due to its antioxidant properties. Fifty-four female rats were divided in 9 groups of 6: control pregnant, two pregnant groups which received parsley extract and prostadin, two non-pregnant groups treated with parsley extract and prostadin, a group administered with both treatments, and three groups which received parsley extract in pre-implantation, implantation, and post-implantation periods of embryos. Ethanolic extract (5 mg/kg) was given daily to animals for 18 days of pregnancy period. Parameters such as malondialdehyde (MDA), total antioxidant statues (TAS), creatinine, and urea were measured using biochemical assays. Histopathologic studies were also done with Hematoxylin-Eosin staining method. After 18 days of treatment, significant differences were observed in serum creatinine, urea, and MDA and TAS levels. Kidney cross-sections showed edema in prostadin-treated rats while improvements in parsley + prostadin -treated rats were observed. These results suggested that ethanolic extract of Petroselinum crispum reduced the dysfunction in rats kidney caused by prostadin-induced abortion and could have beneficial effect in reducing the progression of prostaglandin-induced edema.

  20. Chronic administration of sildenafil improves erectile function in a rat model of chronic renal failure

    PubMed Central

    Gurbuz, Nilgun; Kol, Arif; Ipekci, Tumay; Ates, Erhan; Baykal, Asli; Usta, Mustafa F

    2015-01-01

    The relationship between erectile dysfunction (ED) and chronic renal failure (CRF) has been reported in several studies. This study aimed to investigate whether the chronic use of sildenafil could enhance the erectile capacity in CRF-induced rats. In addition, we assessed the effect of that treatment on certain molecules, which have been suggested to play crucial roles in erectile physiology and CRF-related ED as well. Three groups of animals were utilized: (1) age-matched control rats, (2) CRF-induced rats, (3) CRF-induced rats treated with chronic administration of sildenafil (5 mg kg−1 p.o. for 6 weeks [treatment started after 6 weeks of CRF induction]). At 3 months, all animals underwent cavernosal nerve stimulation (CNS) to assess erectile function. Penile tissue advanced glycation end products (AGE's)/5-hydroxymethyl-2-furaldehyde, malondialdehyde (MDA), cGMP (ELISA), inducible nitric oxide synthase (iNOS) and neuronal NOS (nNOS) (Western blot) analyses were performed in all rat groups. CRF-induced rats had a significant decrease in erectile function when compared to control rats (P < 0.05). The increase in both intracavernosal pressure (ICP) and area under the curve of CRF-induced rats treated with sildenafil (Group 3) was greater than CRF-induced rats (Group 2). Additionally, sildenafil treatment decreased AGE, MDA and iNOS levels, while it preserved nNOS and cGMP contents in CRF-induced penile tissue. Decreased AGE, MDA, iNOS and increased nNOS, cGMP levels at the sildenafil-treated group increased both ICP and Total ICP to CNS, which led to improve erectile function in CRF-induced rats. The results of the present study revealed the therapeutic effect of chronic sildenafil administration on erectile function in CRF-induced rats. PMID:25652632

  1. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.

    PubMed

    Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru

    2017-01-01

    The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.

  2. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats.

    PubMed

    Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-06-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.

  3. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats

    PubMed Central

    Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367

  4. Effect of commonly used vehicles on gastrointestinal, renal, and liver function in rats.

    PubMed

    Pestel, Sabine; Martin, Hans-Juergen; Maier, Gerd-Michael; Guth, Brian

    2006-01-01

    Solubility is often a limiting factor when testing new compounds in animal experiments. Various solubilizing agents may be used, but each have their own pharmacological effects. We investigated the effects of selected vehicles having different chemical characteristics on gastrointestinal, renal, and liver function. Rats were treated orally, intravenously or intraperitoneally and gastric emptying, intestinal transit, renal, and liver function were investigated. Gastrointestinal motility was influenced by hydroxyethylcellulose, hydroxypropyl-beta-cyclodextrin (HPbetaCD), HPgammaCD, DMSO, polyethylene glycol 400 (PEG 400), fat emulsion, and the corresponding emulsifier. Liver function was affected by HPbetaCD, HPgammaCD, DMSO, PEG 400, Polysorbate 80, Cremophor RH 40, and fat emulsion. An increase in liver enzymes was observed after PEG 400 and Polysorbate 80. DMSO interfered with clinical chemistry measurements in serum. Urinary function was modified by HPgammaCD, DMSO, PEG 400, and Polysorbate 80, while enhanced urine enzyme excretion was observed after HPbetaCD, HPgammaCD, DMSO, PEG 400, and Polysorbate 80. Most of the investigated vehicles changed gastrointestinal, renal, and/or liver parameters after application of a certain threshold dose for each assay. No "best" vehicle could be identified that may be used in each test system. Thus, vehicles must be selected not only on their chemical characteristics but also on their potential pharmacological activity in a given test system.

  5. Sinomenine Hydrochloride Attenuates Renal Fibrosis by Inhibiting Excessive Autophagy Induced by Adriamycin: An Experimental Study

    PubMed Central

    Zhao, Ming-ming

    2017-01-01

    The objective of this study is to investigate if sinomenine hydrochloride (SIN-HCl) could be effective against adriamycin-induced renal fibrosis by regulating autophagy in a rat model. Forty male Sprague-Dawley (SD) rats were randomly divided into control group, model group, telmisartan group, and SIN-HCl group; rat model was induced by adriamycin; all rats were given intragastric administration for 6 weeks. Urine was collected from rats in metabolic cages to determine 24 h protein level. This was done after intragastric administration for the first two weeks and then once for every two weeks. Renal pathological changes were examined by the staining of HE, Masson, and PASM. Expressions and distributions of fibronectin (FN), laminin (LN), light chain 3 (LC3), and Beclin-1 were observed by immunohistochemistry. SIN-HCl ameliorates proteinuria, meanwhile attenuating the renal pathological changes in adriamycin-induced rats and also attenuating renal fibrosis and excessive autophagy by reducing the expression of FN, LN, LC3, and Beclin-1. SIN-HCl attenuates renal fibrosis by inhibiting excessive autophagy induced by adriamycin and upregulates the basal autophagy. PMID:28798804

  6. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  7. Urinary Proteolytic Activation of Renal Epithelial Na+ Channels in Chronic Heart Failure.

    PubMed

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P

    2016-01-01

    One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared with sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06, and plasmin 3.57 versus sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch clamp was conducted in cultured renal collecting duct M-1 cells to record Na(+) currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na(+) inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ≈2-folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid, which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na(+) retention commonly observed in CHF. © 2015 American Heart Association, Inc.

  8. Urinary proteolytic activation of renal epithelial Na+ channels in chronic heart failure

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P.

    2015-01-01

    One of the key mechanisms involved in renal Na+ retention in chronic heart failure (CHF) is activation of epithelial Na+ channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC resulting in renal Na+ retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared to sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06 and plasmin 3.57 vs. sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch-clamp was conducted in cultured renal collecting duct M-1 cells to record Na+ currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na+ inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ~2 folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na+ retention commonly observed in CHF. PMID:26628676

  9. Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium.

    PubMed

    Cano, Mercedes; Calonge, María L; Ilundáin, Anunciación A

    2015-10-01

    The low renal excretion of betaine indicates that the kidney efficiently reabsorbs the betaine filtered by the glomeruli but the mechanisms involved in such a process have been scarcely investigated. We have detected concentrative and non-concentrative betaine transport activity in brush-border membrane vesicles (BBMV) from rat renal cortex and medulla. The concentrative system is the Sodium/Imino-acid Transporter 1 (SIT1) because it is Na+- and Cl--dependent, electrogenic and is inhibited by an anti-SIT1 antibody. Its apparent affinity constant for betaine, Kt, is 1.1±0.5 mM and its maximal transport velocity, Vmax, 0.5±0.1 nmol betaine/mg protein/s. Inhibitors of the Na+/Cl-/betaine uptake are L-proline (75%) and cold betaine, L-carnitine and choline (40-60%). Neither creatine, TEA, taurine, β-alanine, GABA nor glycine significantly inhibited Na+/Cl-/betaine uptake. The non-concentrative betaine transport system is Na+- and H+-independent, electroneutral, with a Kt for betaine of 47±7 μM and a Vmax of 7.8±1 pmol betaine/mg protein/s. Its transport activity is nearly abolished by betaine, followed by L-carnitine (70-80%) and proline (40-50%), but a difference from the Na+/Cl-/betaine transport is that it is inhibited by TEA (approx. 50%) and unaffected by choline. The underlying carrier functions as an antiporter linking betaine entry into the BBMV with the efflux of either L-carnitine or betaine, an exchange unaffected by the anti-SIT1 antibody. As far as we know this is the first work reporting that betaine crosses the apical membrane of rat renal epithelium by SIT1 and by a Na+- and H+-independent transport system. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mechanism of grape seeds extract protection against paracetamol renal cortical damage in male Albino rats.

    PubMed

    Abdel-Hafez, S M N; Rifaai, R A; Abd Elzaher, W Y

    2017-01-01

    The aim of the study was to assess the possible protective role of grape seeds extract (GSE) in ameliorating the toxic effects of paracetamol overdose on the rat renal cortical tissue. Paracetamol is one of the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Unfortunately, it was reported as the most common cause of toxic ingestion in the world. Grape seeds extract (GSE) is known to have a strong antioxidant and anti-inflammatory properties. The rats were divided into 4 groups; control group, GSE group, paracetamol group and GSE with paracetamol group. Kidney specimens were processed for biochemical, histological and immunohisto-chemical studies. The study showed marked biological changes in the form of significant increase in serum urea and creatinine levels with significant decrease in renal superoxide dismutase with paracetamol group. Furthermore, Proximal (PCT) and distal convoluted tubules showed marked degeneration, dense nuclear staining, cytoplasmic vacuolization, and partial loss of the brush borders. Most tubules were dilated, irregular and were filled with hyaline casts. PCT and DCT showed less PAS reaction and more COX-2 and caspase expression if compared with the control and the GSE groups. Concomitant administration of grape seeds extract with paracetamol revealed a noticeable amelioration of these biochemical and histological changes. Proximal and distal convoluted tubules showed less PAS reaction and more COX2 and caspase expression if compared with the control and the GSE. Concomitant administration of GSE with paracetamol revealed a noticeable amelioration of these biochemical and histological changes. Grape seeds extract provided biochemical and histo-pathological improvement in paracetamol induced renal cortical toxicity. These findings revealed that this improvement was associated with a decrease in oxidative damage and apoptosis (Tab. 1, Fig. 7, Ref. 55).

  11. Protection from renal fibrosis, putative role of TRIB3 gene silencing.

    PubMed

    Ding, Wen-yuan; Li, Wen-bo; Ti, Yun; Bi, Xiu-ping; Sun, Hui; Wang, Zhi-hao; Zhang, Yun; Zhang, Wei; Zhong, Ming

    2014-02-01

    Renal fibrosis is thought to be the common pathway in most cases of chronic kidney disease. Recently, TRIB3 was found to play an important role in progression of cardiac fibrosis in an insulin-resistant state. We investigated whether TRIB3 might participate in the pathogenesis of renal fibrosis in insulin-resistant rats. We randomly separated 40 male Sprague-Dawley into 4 groups for treatment (n = 10 each): control and high-fat diet (HFD) with TRIB3 siRNA adenovirus transfection, vehicle transfection or HFD alone. Insulin resistance markers were measured. Renal tissues were stained with hematoxylin and eosin, Masson's trichrome and periodic acid-Schiff. Rats with HFD showed insulin resistance and TRIB3 overexpression. Upregulated TRIB3 expression could induce renal fibrosis accompanied by increased phosphorylation of extracellular signal-regulated kinase (ERK). Also, TRIB3 siRNA knockdown could ameliorate renal fibrosis, which was accompanied by decreased phosphorylation of ERK. TRIB3 gene silencing can attenuate renal fibrosis for beneficial effect on the development of renal fibrosis in chronic kidney disease in rat. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  12. Effect of vitamin E on reversibility of renal function following discontinuation of colistin in rats: Histological and biochemical investigations.

    PubMed

    Ghlissi, Zohra; Hakim, Ahmed; Mnif, Hela; Kallel, Rim; Zeghal, Khaled; Boudawara, Tahiya; Sahnoun, Zouheir

    2018-01-01

    This study was carried out to evaluate spontaneous renal regeneration after stopping colistin methanesulfonate (CMS), which induces tubular damage, and the curative effect of Vitamin E (vit E) in rats. Animals were given the following: sterile saline (n = 6), 300,000 IU/kg/ day of CMS (n = 24), or 450,000 IU/kg/day of CMS (n = 24) for seven days. Each CMS group was subdivided into four subgroups (n = 6) and sacrificed as follows: (i) 12 h after stopping CMS, (ii) two weeks after stopping CMS, (iii) two weeks after stopping treatment with vit E, and (iv) two weeks after stopping treatment with olive oil. Subsequently, plasma creatinine (pCr), urine N-acetyl-b-D-glucosaminidase (NAG), renal tissue level of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), and renal histology were tested. CMS-induced tubular damage increased the NAG and MDA levels and decreased the SOD and GSH activities. After two weeks of stopping CMS, there was no significant renal recovery. However, treatment with vit E improved tubular regeneration and reduced the biochemical impairments. Two weeks might not be long enough for significant spontaneous renal regeneration. Improvement of renal parameters by vit E could be explained by the reduction of oxidative stress damage.

  13. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.; Discala, V. A.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero g or space, in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast 5 of the 7 remaining rats increased the fraction of the filtered sodium excreted (C sub Na/GFR, p .05) and their urinary flow rate (V, p .05). Potassium excretion increased (U sub k V, p .05). End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause, in rats, a decrease in distal tubular sodium, water and potassium reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis.

  14. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    PubMed

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. Interaction between alpha 2-adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat

    NASA Technical Reports Server (NTRS)

    Thomson, S. C.; Gabbai, F. B.; Tucker, B. J.; Blantz, R. C.

    1992-01-01

    The hypothesis that renal alpha 2 adrenoceptors influence nephron filtration rate (SNGFR) via interaction with angiotensin II (AII) was tested by renal micropuncture. The physical determinants of SNGFR were assessed in adult male Munich Wistar rats 5-7 d after ipsilateral surgical renal denervation (DNX). DNX was performed to isolate inhibitory central and presynaptic alpha 2 adrenoceptors from end-organ receptors within the kidney. Two experimental protocols were employed: one to test whether prior AII receptor blockade with saralasin would alter the glomerular hemodynamic response to alpha 2 adrenoceptor stimulation with the selective agonist B-HT 933 under euvolemic conditions, and the other to test whether B-HT 933 would alter the response to exogenous AII under conditions of plasma volume expansion. In euvolemic rats, B-HT 933 caused SNGFR to decline as the result of a decrease in glomerular ultrafiltration coefficient (LpA), an effect that was blocked by saralasin. After plasma volume expansion, B-HT 933 showed no primary effect on LpA but heightened the response of arterial blood pressure, glomerular transcapillary pressure gradient, and LpA to AII. The parallel results of these converse experiments suggest a complementary interaction between renal alpha 2-adrenergic and AII systems in the control of LpA.

  16. [Up-regulation of intrarenal renin-angiotensin system contributes to renal damage in high-salt induced hypertension rats].

    PubMed

    Wu, Hai-yan; Liang, Yao-xian; Bai, Qiong; Zhuang, Zhen; A, La-ta; Zheng, Dan-xia; Wang, Yue

    2015-02-18

    To test the hypothesis that in a high-salt induced hypertension in normal rats, whether the changes of intrarenal renin-agiotensin system (RAS) play a critical role in renal damage and could be reflected by urinary angiotensinogen (AGT). In the study, 27 normotensive male Wistar-Kyoto rats were divided into control group [0.3% (mass faction) NaCl in chow, n=9, NS], high-salt diet group [8% (mass faction) NaCl in chow, n=9, HS] and high-salt diet with Losartan group [8% (mass faction) NaCl in chow and 20 mg/(kg×d) Losartan in gavages, n=9, HS+L)], and were fed for six weeks. The blood pressure was monitored and urine samples were collected every 2 weeks. AGTs in plasma, kidney and urine were measured by ELISA kits. The renal cortex expression of mRNA and protein of AGT were measured by Real-time PCR and immunohistochemistry (IHC). The renin activity and ANG II were measured by radioimmunoassay (RIA) kits. Compared with NS, the systolic blood pressure (SBP) [(156 ± 2) mmHg vs. (133 ± 3) mmHg, P<0.05] increased significantly at the end of the 2nd week, and the urinary protein [(14.07 ± 2.84) mg/24 h vs. (7.62 ± 3.02) mg/24 h, P<0.05] increased significantly at the end of the 6th week in HS. Compared with HS, there was no significant difference in SBP (P>0.05) but the proteinuria [(9.69 ± 2.73) mg/24 h vs. (14.07 ± 2.84) mg/24 h, P<0.01] decreased significantly in HS+L. Compared with NS, there was no significant difference in the plasma renin activity, angiotensinogen and ANG II level in HS (P>0.05), but the renal cortex renin content [(8.72 ± 1.98) ng/(mL × h) vs. (4.37 ± 1.26) ng/(mL × h), P<0.05], AGT formation [(4.02 ± 0.60) ng/mg vs. (2.59 ± 0.42) ng/mg, P<0.01], ANG II level [(313.8 ± 48.76) pmol/L vs. (188.9 ± 46.95) pmol/L, P<0.05] were increased significantly in HS, and the urinary AGT and ANG II excretion rates increased significantly (P<0.05). Compared with HS, the plasma renin activity, angiotensinogen and ANG II level were significantly

  17. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  18. Vascular Hyperactivity in the Rat Renal Aorta Participates in the Association between Immune Complex-Mediated Glomerulonephritis and Systemic Hypertension.

    PubMed

    Pérez-Torres, Israel; Moguel-González, Bernardo; Soria-Castro, Elizabeth; Guarner-Lans, Verónica; Avila-Casado, María Del Carmen; Goes, Teresa Imelda Fortoul Vander

    2018-06-03

    Introduction : systemic hypertension (SH) involving endothelial dysfunction contributes to immune complex-mediated glomerulonephritis (ICGN). Objective, we demonstrate a relationship between ICGN and SH by analyzing vascular reactivity in renal aortic rings. Methods : 48 male Wistar rats were divided into four groups: (a) control (C); (b) injected with bovine serum albumin (BSA); (c) receiving 200 mg/L NAME (an analog of arginine that inhibits NO production) in drinking water; and (d) receiving BSA and 200 mg/L NAME. Rats were pre-immunized subcutaneously with BSA and Freund's adjuvant. After 10 days, groups (b) and (c) received 1 mg/mL of BSA in saline intravenous (IV) daily for 35 days. The urine of 24 h was measured at days 0, 15, 30 and 45. Results : vascular reactivity to norepinephrine (NE), acetylcholine (Ach) and NAME were tested. Creatinine clearance, vasodilatation, eNOS and elastic fibers were diminished ( p ≤ 0.001). Blood pressure, vasoconstriction, iNOS were increased, and glomerular alterations were observed in groups (b), (c) and (d) when compared to group (a) ( p ≤ 0.001). Conclusions: SH contributes to the development of progressive renal disease in ICGN. Alterations of the vascular reactivity are mediated by the endothelium in the renal aorta. Thus, the endothelium plays a determinant role in the production of vasoactive substances such as NO during this process.

  19. Renal effects of the novel selective adenosine A1 receptor blocker SLV329 in experimental liver cirrhosis in rats.

    PubMed

    Hocher, Berthold; Heiden, Susi; von Websky, Karoline; Arafat, Ayman M; Rahnenführer, Jan; Alter, Markus; Kalk, Philipp; Ziegler, Dieter; Fischer, Yvan; Pfab, Thiemo

    2011-03-10

    Liver cirrhosis is often complicated by an impaired renal excretion of water and sodium. Diuretics tend to further deteriorate renal function. It is unknown whether chronic selective adenosine A(1) receptor blockade, via inhibition of the hepatorenal reflex and the tubuloglomerular feedback, might exert diuretic and natriuretic effects without a reduction of the glomerular filtration rate. In healthy animals intravenous treatment with the novel A(1) receptor antagonist SLV329 resulted in a strong dose-dependent diuretic (up to 3.4-fold) and natriuretic (up to 13.5-fold) effect without affecting creatinine clearance. Male Wistar rats with thioacetamide-induced liver cirrhosis received SLV329, vehicle or furosemide for 12 weeks. The creatinine clearance of cirrhotic animals decreased significantly (-36.5%, p<0.05), especially in those receiving furosemide (-41.9%, p<0.01). SLV329 was able to prevent this decline of creatinine clearance. Mortality was significantly lower in cirrhotic animals treated with SLV329 in comparison to animals treated with furosemide (17% vs. 54%, p<0.05). SLV329 did not relevantly influence the degree of liver fibrosis, kidney histology or expression of hepatic or renal adenosine receptors. In conclusion, chronic treatment with SLV329 prevented the decrease of creatinine clearance in a rat model of liver cirrhosis. Further studies will have to establish whether adenosine A(1) receptor antagonists are clinically beneficial at different stages of liver cirrhosis.

  20. Combination of vitamin E and vitamin C alleviates renal function in hyperoxaluric rats via antioxidant activity.

    PubMed

    Jaturakan, Orapun; Dissayabutra, Thasinas; Chaiyabutr, Narongsak; Kijtawornrat, Anusak; Tosukhowong, Piyaratana; Rungsipipat, Anudep; Nhujak, Thumnoon; Buranakarl, Chollada

    2017-05-18

    Hyperoxaluria and oxidative stress are risk factors in calcium oxalate (CaOx) stone formation. Supplement with antioxidant could be effective in prevention of recurrent stone formation. The present study aims to evaluate the protective effects of vitamin E and vitamin C in hyperoxaluric rat. The experiment was performed in rats for 21 days. Rats were divided into 5 groups as follows: control (group 1, n=8), hyperoxaluric rats (group 2, n=8), hyperoxaluric rats with vitamin E supplement (group 3, n=7), hyperoxaluric rats with vitamin C supplement (group 4, n=7) and hyperoxaluric rats with vitamin E and C supplement (group 5, n=7). Hyperoxaluria was induced by feeding hydroxyl L-proline (HLP) 2% w/v dissolved in drinking water. Intraperitoneal 200 mg/kg of vitamin E was given in groups 3 and 5 on days 1, 6, 11 and 16, while 500 mg of vitamin C was injected intravenously in groups 4 and 5 on days 1 and 11. Renal functions and oxidative status were measured. The urinary oxalate excretion was increased in HLP supplement rats, while glomerular filtration rate, proximal water and sodium reabsorption were significantly lower in group 2 compared with a control (P<0.05). Giving antioxidants significantly lower urinary calcium oxalate crystals (P<0.05). Hyperoxaluric rats had higher plasma malondialdehyde (PMDA) and lower urinary total antioxidant status (UTAS), which were alleviated by vitamin E and/or vitamin C supplement. In conclusion, giving combination of vitamin E and vitamin C exerts a protective role against HLP-induced oxalate nephropathy.