Science.gov

Sample records for labeled single-stranded dna

  1. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  2. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  3. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection.

    PubMed

    Wang, Yonghong; Wang, Ping; Wang, Yiqiang; He, Xiaoxiao; Wang, Kemin

    2015-08-15

    In this work, a simple and sensitive electrochemical strategy for arsenite detection based on the ability of arsenite bound to single-strand DNA (ssDNA) and the signal transduction of single wall carbon nanotubes (SWCNTs) is developed. To realize this purpose, the ssDNA/SWCNTs complexes were formed at first by making ssDNA wrapped around SWCNTs via π-stacking. In the presence of arsenite, the arsenite could strongly bind with the G/T bases of ssDNA and decrease the π-π interaction between ssDNA and SWCNTs, resulting in a certain amount of ssDNA dissociating from the complexes. The separated SWCNTs were selectively assembled on the self-assembled monolayer (SAM) modified Au electrode. Then the SWCNTs onto the SAM-modified Au electrode substantially restored heterogeneous electron transfer that was almost totally blocked by the SAM. The assembled SWCNTs could generate a considerably sensitive and specific tactic for signal transduction, which was related to the concentration of the arsenite. Through detecting the currents mediated by SWCNTs, a linear response to concentration of arsenite ranging from 0.5 to 10ppb and a detection limit of 0.5ppb was readily achieved with desirable specificity and sensitivity. Such a SWCNTs-based biosensor creates a simple, sensitive, nonradioactive route for detection of arsenite. In addition, this demonstration provides a new approach to fabrication of stable biosensors with favorable electrochemical properties believed to be appealing to electroanalytical applications.

  4. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A. ); Haces, A.; Shih, P.J.; Harding, J.D. )

    1993-01-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  5. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A.; Haces, A.; Shih, P.J.; Harding, J.D.

    1993-02-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  6. 18F-labeled Single-Stranded DNA Aptamer for PET Imaging of Protein Tyrosine Kinase-7 Expression

    PubMed Central

    Wang, Lu; Wang, Zhe; Yang, Xiangyu; Dewhurst, Andrew; Ma, Ying; Zhu, Guizhi; Niu, Gang; Kiesewetter, Dale O.; Vasdev, Neil; Liang, Steven H.; Chen, Xiaoyuan

    2016-01-01

    Protein tyrosine kinase-7 (PTK7), a member of receptor tyrosine kinase superfamily initially identified as colon carcinoma kinase-4 (CCK-4), is highly expressed in various human malignancies. Its expression was found to correlate with aggressive biological behaviors such as increased cell proliferation, invasiveness and migration. Despite the importance and unmet need of imaging PTK7 in vivo, there is currently no clinically-relevant method to visualize tumoral PTK7 expression noninvasively such as PET or SPECT. This study aims to develop a specific, selective and high affinity PET radioligand based on single-stranded DNA (ssDNA) aptamer to address this challenge. Methods Sgc8, a 41-oligonucleotide that targets to PTK7, was labeled with F-18 using a two-step radiochemical synthesis, which featured a direct one-step radiofluorination on the distinctive spirocyclic hypervalent iodine(III) precursor to give 18F-fluorobenzyl azide followed by copper mediated “click” conjugation with Sgc8-alkyne. 18F-Sgc8 was evaluated in vitro and in vivo in two cell lines, HCT116 and U87MG, which express high and low amounts of PTK7, respectively. Results Sgc8 was labeled efficiently with F-18 in an isolated radiochemical yield of 62 ± 2%, non-decay-corrected (ndc) based on 18F-fluorobenzyl azide. 18F-Tr-Sgc8 was found to possess high affinity binding to both cell lines, with IC50 values for HCT116 as 2.7 ± 0.6 nM and U87MG as 16.9 ± 2.1 nM. In vivo PET imaging clearly visualized PTK7 expression in HCT116 xenografted mice with tumor uptake of 0.76 ± 0.09 %ID/g at 30 min post-injection (p.i.) for the subcutaneous tumor model and greater than 1.5 %ID/g for the liver metastasis model. U87MG xenograft tumors had much lower tracer accumulation (0.13 ± 0.06 %ID/g at 30 min p.i.), which was consistent with the lower expression of PTK7 in this tumor model. The labeled aptamer was rapidly cleared from the blood through the kidneys and bladder to give high tumor-to-blood and tumor

  7. Comparative properties of a technetium-99m-labeled single-stranded natural DNA and a phosphorothioate derivative in vitro and in mice.

    PubMed

    Hnatowich, D J; Mardirossian, G; Fogarasi, M; Sano, T; Smith, C L; Cantor, C R; Rusckowski, M; Winnard, P

    1996-01-01

    Oligonucleotides, particularly single stranded, may ultimately be of considerable use as radiopharmaceuticals. We have compared a synthetic 22-base single-stranded phosphodiester DNA with its phosphorothioate analog after both were radiolabeled with 99mTc via the hydrazino nicotinamide chelator. Whole body clearance of the label in mice was much slower when introduced on the phosphorothioate (30% vs. 75% clearance at 6 hr) because of immediate and persistent accumulation in liver (47% vs. 2% injected dose/g at 4 hr). The label in both cases was present in urine primarily on low molecular weight catabolites. High-performance liquid chromatography analysis of 37 degrees C serum incubates showed serum protein binding of 99mTc in both cases (about 100% bound at 24 hr) but to different proteins. Different behavior with respect to protein binding was also observed in the analysis of liver and kidney homogenates: the phosphodiester label was almost quantitatively converted to lower molecular weight catabolites after only 15 min, whereas the phosphorothioate label was primarily on proteins. The rapid digestion of the phosphodiester by nucleases was not observed, probably because protein binding of the labeled oligonucleotides stabilized against degradation. Thus the phosphodiester DNA may be the preferred 99mTc-labeled oligonucleotide in certain circumstances to avoid the high and persistent liver uptake observed with the phosphorothioate DNA. PMID:8558450

  8. Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA.

    PubMed

    Chen, Piaopiao; Wu, Peng; Chen, Junbo; Yang, Peng; Zhang, Xinfeng; Zheng, Chengbin; Hou, Xiandeng

    2016-02-16

    Based on selective and sensitive determination of Hg(2+) released from mercury complex by cold vapor generation (CVG) atomic fluorescence spectrometry (AFS) using SnCl2 as a reductant, a novel label-free and separation-free strategy was proposed for DNA and protein bioassay. To construct the DNA bioassay platform, an Hg(2+)-mediated molecular beacon (hairpin) without labeling but possessing several thymine (T) bases at both ends was employed as the probe. It is well-known that Hg(2+) could trigger the formation of the hairpin structure through T-Hg(2+)-T connection. In the presence of a specific target, the hairpin structure could be broken and the captured Hg(2+) was released. Interestingly, it was found that SnCl2 could selectively reduce only free Hg(2+) to Hg(0) vapor in the presence of T-Hg(2+)-T complex, which could be separated from sample matrices for sensitive AFS detection. Three different types of analyte, namely, single-strand DNA (ssDNA), protein, and double-strand DNA (dsDNA), were investigated as the target analytes. Under the optimized conditions, this bioassay provided high sensitivity for ssDNA, protein, and dsDNA determination with the limits of detection as low as 0.2, 0.08, and 0.3 nM and the linear dynamic ranges of 10-150, 5-175, and 1-250 nM, respectively. The analytical performance for these analytes compares favorably with those by previously reported methods, demonstrating the potential usefulness and versatility of this new AFS-based bioassay. Moreover, the bioassay retains advantages of simplicity, cost-effectiveness, and sensitivity compared to most of the conventional methods. PMID:26781421

  9. Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA.

    PubMed

    Chen, Piaopiao; Wu, Peng; Chen, Junbo; Yang, Peng; Zhang, Xinfeng; Zheng, Chengbin; Hou, Xiandeng

    2016-02-16

    Based on selective and sensitive determination of Hg(2+) released from mercury complex by cold vapor generation (CVG) atomic fluorescence spectrometry (AFS) using SnCl2 as a reductant, a novel label-free and separation-free strategy was proposed for DNA and protein bioassay. To construct the DNA bioassay platform, an Hg(2+)-mediated molecular beacon (hairpin) without labeling but possessing several thymine (T) bases at both ends was employed as the probe. It is well-known that Hg(2+) could trigger the formation of the hairpin structure through T-Hg(2+)-T connection. In the presence of a specific target, the hairpin structure could be broken and the captured Hg(2+) was released. Interestingly, it was found that SnCl2 could selectively reduce only free Hg(2+) to Hg(0) vapor in the presence of T-Hg(2+)-T complex, which could be separated from sample matrices for sensitive AFS detection. Three different types of analyte, namely, single-strand DNA (ssDNA), protein, and double-strand DNA (dsDNA), were investigated as the target analytes. Under the optimized conditions, this bioassay provided high sensitivity for ssDNA, protein, and dsDNA determination with the limits of detection as low as 0.2, 0.08, and 0.3 nM and the linear dynamic ranges of 10-150, 5-175, and 1-250 nM, respectively. The analytical performance for these analytes compares favorably with those by previously reported methods, demonstrating the potential usefulness and versatility of this new AFS-based bioassay. Moreover, the bioassay retains advantages of simplicity, cost-effectiveness, and sensitivity compared to most of the conventional methods.

  10. A signal-on fluorescent aptasensor based on single-stranded DNA-sensitized luminescence of terbium (III) for label-free detection of breast cancer cells.

    PubMed

    Cai, Shuxian; Li, Guangwen; Zhang, Xi; Xia, Yaokun; Chen, Mei; Wu, Dongzhi; Chen, Qiuxiang; Zhang, Jing; Chen, Jinghua

    2015-06-01

    Breast cancer is the most common type of malignant tumor in women. Recently, it has been shown that detection of breast cancer tumor cells outside the primitive tumor is an effective early diagnosis with great prognostic and clinical utility. For this purpose, we developed a signal-on fluorescence aptasensor for label-free, facile and sensitive detection of MCF-7 breast cancer cells. Due to target-aptamer specific recognition and single-stranded DNA-sensitized luminescence of terbium (III), the proposed aptasensor exhibits excellent sensitivity with detection limit as low as 70 cells mL(-1). Compared with common organic dyes and the emerging nano-technological probes, the combination of terbium (III) and single-stranded DNA signal probe (Tb(3+)-SP) serves as a more powerful bio-probe because of its stable optical property, good biocompatibility and free from complex synthesis. The feasibility investigations have illustrated the potential applicability of this aptasensor for selective and sensitive detection of MCF-7 breast cancer cells. Moreover, this proposed aptasensor can be also extended for the determination of other tumor cancers or bio-molecules by altering corresponding aptamers. Taken together, this easy-to-perform aptasensor may represent a promising way for early screening and detection of tumor cancers or other bio-molecules in clinical diagnosis.

  11. Interaction of fluorescence labeled single-stranded DNA with hexameric DNA-helicase RepA: a photon and fluorescence correlation spectroscopy study.

    PubMed

    Xu, H; Frank, J; Trier, U; Hammer, S; Schröder, W; Behlke, J; Schäfer-Korting, M; Holzwarth, J F; Saenger, W

    2001-06-19

    Fluorescence correlation spectroscopy (FCS) was used to characterize the interaction of fluorescence labeled single-stranded DNA (ssDNA) with hexameric RepA DNA-helicase (hRepA) encoded by plasmid RSF1010. The apparent dissociation constants, Kd(app), for the equilibrium binding of 12mer, 30mer, and 45mer ssDNA 5'-labeled with BFL to hRepA dimer in the presence of 0.5 mM ATPgammaS at pH 5.8 and 25 degrees C were determined to be 0.58 +/- 0.12, 0.52 +/- 0.07, and 1.66 +/- 0.32 microM, respectively. Binding curves are compatible with one binding site for ssDNA present on hRepA dimer, with no indication of cooperativity. At pH 7.6 in the presence of ATPgammaS and at pH 5.8 in the absence of ATPgammaS, complex formation between ssDNA and hRepA was too weak for measuring complete binding curves by FCS. Under these conditions, the dissociation constant, Kd(app), is in the range between 10 and 250 microM. The kinetics of complex formation at pH 5.8 are faster than the time resolution (approximately 10-20 s) of FCS experiments under pseudo-first-order conditions, with respect to BFL-ssDNA. Photon correlation spectroscopy (PCS) experiments yielded, within the experimental error range, the same values for the apparent hydrodynamic radii, R(h), of hRepA dimer and its complex with ssDNA as determined by FCS (R(h) = 6.6 +/- 1 nm). hRepA starts to aggregate under acidic conditions (DNA binding. CD spectra taken at pH 5.8 in the presence of ATPgammaS showed a structural change induced by ssDNA binding to hRepA which is not visible at pH 7.6 and with ADP as nucleotide cofactor.

  12. Recombination in Eukaryotic Single Stranded DNA Viruses

    PubMed Central

    Martin, Darren P.; Biagini, Philippe; Lefeuvre, Pierre; Golden, Michael; Roumagnac, Philippe; Varsani, Arvind

    2011-01-01

    Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution. PMID:21994803

  13. Isolating single stranded DNA using a microfluidic dialysis device

    PubMed Central

    Sheng, Yixiao

    2013-01-01

    Isolating a particular strand of DNA from a double stranded DNA duplex is an important step in aptamer generation as well as many other biotechnology applications. Here we describe a microfluidic, flow-through, dialysis device for isolating single-stranded DNA (ssDNA) from double-stranded DNA (dsDNA). The device consists of two channels fabricated in polydimethylsiloxane (PDMS) separated by a track etched polycarbonate membrane (800 nm pore size). To isolate ssDNA, dual-biotin labelled dsDNA was immobilized onto streptavidin-coated polystyrene beads. Alkaline treatment was used to denature dsDNA, releasing the non-biotinylated ssDNA. In the flow-through dialysis device the liberated ssDNA was able to cross the membrane and was collected in an outlet channel. The complementary sequence bound to the bead was unable to cross the membrane and was directed to a waste channel. The effect of NaOH concentration and flow rate on purity and yield were compared. >95% ssDNA purity was achieved at 25mM NaOH. However, lower flow rates were necessary to achieve ssDNA yields approaching the 50% theoretical maximum of the concurrent-flow device. Under optimized conditions the microfluidic isolation achieved even higher purity ssDNA than analogous manual procedures. PMID:24213273

  14. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA.

    PubMed

    Li, J J; Geyer, R; Tan, W

    2000-06-01

    Traditional methods to assay enzymatic cleavage of DNA are discontinuous and time consuming. In contrast, recently developed fluorescence methods are continuous and convenient. However, no fluorescence method has been developed for single-stranded DNA digestion. Here we introduce a novel method, based on molecular beacons, to assay single-stranded DNA cleavage by single strand-specific nucleases. A molecular beacon, a hairpin-shaped DNA probe labeled with a fluorophore and a quencher, is used as the substrate and enzymatic cleavage leads to fluorescence enhancement in the molecular beacon. This method permits real time detection of DNA cleavage and makes it easy to characterize the activity of DNA nucleases and to study the steady-state cleavage reaction kinetics. The excellent sensitivity, reproducibility and convenience will enable molecular beacons to be widely useful for the study of single-stranded DNA cleaving reactions.

  15. Single-strand stacking free energy from DNA beacon kinetics.

    PubMed

    Aalberts, Daniel P; Parman, John M; Goddard, Noel L

    2003-05-01

    DNA beacons are short single-stranded chains which can form closed hairpin shapes through complementary base pairing at their ends. Contrary to the common polymer theory assumption that only their loop length matters, experiments show that their closing kinetics depend on the loop composition. We have modeled the closing kinetics and in so doing have obtained stacking enthalpies and entropies for single-stranded nucleic acids. The resulting change of persistence length with temperature effects the dynamics. With a Monte Carlo study, we answer another polymer question of how the closing time scales with chain length, finding tau approximately N(2.44+/-0.02). There is a significant crossover for shorter chains, bringing the effective exponent into good agreement with experiment.

  16. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  17. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  18. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  19. Dynamics of single-stranded DNA tethered to a solid

    NASA Astrophysics Data System (ADS)

    Radiom, Milad; Paul, Mark R.; Ducker, William A.

    2016-06-01

    Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.

  20. Accessory proteins for DNA polymerase alpha activity with single-strand DNA templates.

    PubMed Central

    Lamothe, P; Baril, B; Chi, A; Lee, L; Baril, E

    1981-01-01

    Three forms of DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] were partially purified from the combined nuclear extract and postmicrosomal supernatant solution of synchronized HeLa cells. These enzymes, designated DNA polymerases alpha 1, alpha 2, and alpha 3, on the basis of their order of elution from DEAE-Bio-Gel, differ in their abilities to utilize single-strand DNA templates. DNA polymerase alpha 2 has equal catalytic activities with activated and single-strand DNAs as template-primers. DNA polymerase alpha 1 has only partial catalytic activity with single-strand DNA templates, and DNA polymerase alpha 3 is essentially inactive with this template. Successive steps of hydrophobic affinity chromatography and phosphocellulose chromatography of DNA polymerase alpha 2 resolved the polymerase alpha activity and two protein factors (C1 and C2) that are required for its catalytic activity with a DNA template-primer that contains extended single-strand regions. In the absence of the factors, DNA polymerase alpha activity is measurable with activated but not single-strand DNA templates. In the presence of the C1 and C2 factors DNA polymerase alpha activity with single-strand DNA templates is restored to about 75% of the catalytic activity of DNA polymerase alpha 2 with this template. Images PMID:6946421

  1. Two classes of single-stranded regions evident in deproteinized preparations of replicating DNA isolated from mammalian cells

    SciTech Connect

    Stewart, B.W.; Kavallaris, M.; Catchpoole, D.; Norris, M.D. )

    1991-02-01

    In DNA isolated from proliferating human lymphoblastoid CCRF-CEM cells which had been pulse-labeled by exposure to (3H)thymidine for periods from 30 s to 10 min, single-stranded regions were analyzed by caffeine-gradient elution from benzoylated DEAE-cellulose. Two classes of structural defect were evident. Some replicating DNA exhibited single-stranded regions of approximately 200 nucleotides, while most newly incorporated radioactivity was associated with DNA containing single-stranded regions from 900 to approximately 4000 nucleotides. The distribution of thymidine-derived radioactivity did not suggest sequential or preferential labeling of these DNA fractions as the incorporation time was varied. The findings may be correlated with recent proposals regarding the structural basis of eukaryotic DNA replication.

  2. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.

    PubMed

    Valero, Julián; Lohmann, Finn; Keppner, Daniel; Famulok, Michael

    2016-06-16

    Interlocked DNA architectures are useful for DNA nanotechnology because of their mechanically bonded components, which can move relative to one another without disassembling. We describe the design, synthesis, and characterization of novel single-stranded tile (SST) stoppers for the assembly of interlocked DNA architectures. SST stoppers are shown to self-assemble into a square-shaped rigid structure upon mixing 97 oligodeoxynucleotide (ODN) strands. The structures are equipped with a sticky end that is designed for hybridization with the sticky ends of a dsDNA axle of a DNA rotaxane. Because the diameter of the macrocycle threaded onto the axle is 14 nm, the dimension of the square-shaped stopper was designed to be bulky enough to prevent the dethreading of the macrocycle. An asymmetric rotaxane with a SST- and a ring-shaped stopper featuring two stations for hybridization of the macrocycle to the axle was assembled. The macrocycle can be directed towards one or the other station upon triggering with fuel ODNs.

  3. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.

    PubMed

    Valero, Julián; Lohmann, Finn; Keppner, Daniel; Famulok, Michael

    2016-06-16

    Interlocked DNA architectures are useful for DNA nanotechnology because of their mechanically bonded components, which can move relative to one another without disassembling. We describe the design, synthesis, and characterization of novel single-stranded tile (SST) stoppers for the assembly of interlocked DNA architectures. SST stoppers are shown to self-assemble into a square-shaped rigid structure upon mixing 97 oligodeoxynucleotide (ODN) strands. The structures are equipped with a sticky end that is designed for hybridization with the sticky ends of a dsDNA axle of a DNA rotaxane. Because the diameter of the macrocycle threaded onto the axle is 14 nm, the dimension of the square-shaped stopper was designed to be bulky enough to prevent the dethreading of the macrocycle. An asymmetric rotaxane with a SST- and a ring-shaped stopper featuring two stations for hybridization of the macrocycle to the axle was assembled. The macrocycle can be directed towards one or the other station upon triggering with fuel ODNs. PMID:26972112

  4. Purification and characterization of a mitochondrial, single-stranded-DNA-binding protein from Paracentrotus lividus eggs.

    PubMed

    Roberti, M; Musicco, C; Loguercio Polosa, P; Gadaleta, M N; Quagliariello, E; Cantatore, P

    1997-07-01

    A binding protein for single-stranded DNA was purified from Paracentrotus lividus egg mitochondria to near homogeneity by chromatography on DEAE-Sephacel and single-stranded-DNA-cellulose. The protein consists of a single polypeptide of about 15 kDa. Glycerol gradient sedimentation analysis suggested that P. lividus mitochondrial single-stranded-DNA-binding protein exists as a homo-oligomer, possibly a tetramer, in solution. The protein shows a stronger preference for poly(dT) with respect to single-stranded M13, poly(dI) and poly(dC). Binding to poly(dA) takes place with much lower affinity. The binding-site size, determined by gel mobility-shift experiments with oligonucleotides of different length, is approximately 45 nucleotides. The binding to single-stranded DNA occurs with low or no cooperativity and is not influenced by ionic strength. The protein has a very high affinity for the DNA: its apparent macroscopic association constant is 2x10(9) M(-1), a value which is the highest among the mitochondrial single-stranded-DNA-binding proteins characterized to date. The lack of cooperativity and the high association constant represent distinctive features of this protein and might be related to the peculiar mechanism of sea urchin mitochondrial DNA replication.

  5. Synthesis of PCR-derived, single-stranded DNA probes suitable for in situ hybridization.

    PubMed

    Hannon, K; Johnstone, E; Craft, L S; Little, S P; Smith, C K; Heiman, M L; Santerre, R F

    1993-08-01

    We report the novel synthesis of polymerase chain reaction (PCR)-derived single-stranded DNA (ssDNA) probes and their subsequent application in in situ hybridizations. Serial transverse sections of an 11.5-day postcoitum mouse embryo were hybridized to a 33P-ssDNA, 33P-RNA, or 35S-RNA probe corresponding to the same 181-bp sequence in the myogenin cDNA. Signal obtained using 33P-ssDNA was more intense than that using 33P-RNA probe, while signal/noise ratios obtained with both 33P-probes were far superior to those obtained with 35S-probe. Digoxigenin-labeled chicken growth hormone (GH) ssDNA gave slightly more intense signal than did digoxigenin-labeled chicken GH RNA when hybridized to chicken pituitary sections. 32P-ssDNA probes were found to be suitable for Northern blot hybridization. Advantages of using ssDNA probes for in situ hybridization include: (1) The ssDNA technique is rapid and simple. There was no need to clone a DNA template into a special RNA vector or order special T7-containing PCR primers. ssDNA probes can be synthesized in less than 1 day using any primers which currently exist in a laboratory (optimal probe length for in situ hybridization is between 50 and 200 bp). (2) In three separate in situ experiments, ssDNA probes yielded more intense signal than RNA probes. (3) ssDNA probes are potentially more stable than RNA probes. (4) Since the RNAse rinse is eliminated, posthybridization rinses are shortened when hybridizing with ssDNA probes. The ssDNA probes produced by this protocol can be labeled with a variety of different isotopes (both radioactive and nonradioactive), and are excellent probes for use in in situ hybridizations.

  6. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  7. Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts.

    PubMed

    Rodenburg, K W; de Groot, M J; Schilperoort, R A; Hooykaas, P J

    1989-12-01

    In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3-10-fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts from recalcitrant plant species.

  8. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms

    SciTech Connect

    Orita, Masato; Iwahana, Hiroyuki; Kanazawa, Hiroshi; Hayashi, Kenshi; Sekiya, Takao )

    1989-04-01

    The authors developed mobility shift analysis of single-stranded DNAs on neutral polyacrylamide gel electrophoresis to detect DNA polymorphisms. This method follows digestion of genomic DNA with restriction endonucleases, denaturation in alkaline solution, and electrophoresis on a neutral polyacrylamide gel. After transfer to a nylon membrane, the mobility shift due to a nucleotide substitution of a single-stranded DNA fragment could be detected by hybridization with a nick-translated DNA fragment or more clearly with RNA copies synthesized on each strand of the DNA fragment as probes. As the mobility shift caused by nucleotide substitutions might be due to a conformational change of single-stranded DNAs, we designate the features of single-stranded DNAs as single-strand conformation polymorphisms (SSCPs). Like restriction fragment length polymorphisms (RFLPs), SSCPs were found to be allelic variants of true Mendelian traits, and therefore they should be useful genetic markers. Moreover, SSCP analysis has the advantage over RFLP analysis that it can detect DNA polymorphisms and point mutations at a variety of positions in DNA fragments. Since DNA polymorphisms have been estimated to occur every few hundred nucleotides in the human genome, SSCPs may provide many genetic markers.

  9. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA.

    PubMed

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela; Gamba, Cristina; Barnett, Ross; Samaniego, José Alfredo; Madrigal, Jazmín Ramos; Orlando, Ludovic; Gilbert, M Thomas P

    2015-12-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained <3% endogenous DNA, but this enrichment is less pronounced when dsDNA preparations successfully recover short endogenous DNA fragments (mean size < 70 bp). Our findings can help researchers determine when to utilize the time- and resource-intensive ssDNA library preparation method.

  10. Titration of integrated simian virus 40 DNA sequences, using highly radioactive, single-stranded DNA probes.

    PubMed

    Marchionni, M A; Roufa, D J

    1981-04-01

    Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.

  11. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells.

    PubMed

    Liu, Ting; Huang, Jun

    2016-07-01

    Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.

  12. Solution structure of the single-stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: similarity to other proteins binding to single-stranded nucleic acids.

    PubMed Central

    Folmer, R H; Nilges, M; Konings, R N; Hilbers, C W

    1995-01-01

    The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins. Images PMID:7556054

  13. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells.

    PubMed Central

    Zupan, J R; Citovsky, V; Zambryski, P

    1996-01-01

    Agrobacterium genetically transforms plant cells by transferring a single-stranded DNA (ssDNA) copy of the transferred DNA (T-DNA) element, the T-strand, in a complex with Agrobacterium proteins VirD2, bound to the 5' end, and VirE2. VirE2 binds single-stranded nucleic acid cooperatively, fully coating the T-strand, and the protein localizes to the plant cell nucleus when transiently expressed. The coupling of ssDNA binding and nuclear localizing activities suggests that VirE2 alone could mediate nuclear localization of ssDNA. In this study, fluorescently labeled ssDNA accumulated in the plant cell nucleus specifically when microinjected as a complex with VirE2. Microinjected ssDNA alone remained cytoplasmic. Import of VirE2-ssDNA complex into the nucleus via a protein import pathway was supported by (i) the inhibition of VirE2-ssDNA complex import in the presence of wheat germ agglutinin or a nonhydrolyzable GTP analog, both known inhibitors of protein nuclear import, and (ii) the retardation of import when complexes were prepared from a VirE2 mutant impaired in ssDNA binding and nuclear import. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8637884

  14. Zn2+ blocks annealing of complementary single-stranded DNA in a sequence-selective manner

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple low-temperature EDTA-free agarose gel electrophoresis procedure (LTEAGE) coupled with UV-Vis spectrum and fluorescence quenching analyses was developed and the Zn2+-single-stranded (ss) DNA interaction was investigated under near-physiological conditions. It was found that Zn2+ blocked the...

  15. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks.

    PubMed

    Shiotani, Bunsyo; Zou, Lee

    2009-03-13

    ATM and ATR are two master checkpoint kinases activated by double-stranded DNA breaks (DSBs). ATM is critical for the initial response and the subsequent ATR activation. Here we show that ATR activation is coupled with loss of ATM activation, an unexpected ATM-to-ATR switch during the biphasic DSB response. ATM is activated by DSBs with blunt ends or short single-stranded overhangs (SSOs). Surprisingly, the activation of ATM in the presence of SSOs, like that of ATR, relies on single- and double-stranded DNA junctions. In a length-dependent manner, SSOs attenuate ATM activation and potentiate ATR activation through a swap of DNA-damage sensors. Progressive resection of DSBs directly promotes the ATM-to-ATR switch in vitro. In cells, the ATM-to-ATR switch is driven by both ATM and the nucleases participating in DSB resection. Thus, single-stranded DNA orchestrates ATM and ATR to function in an orderly and reciprocal manner in two distinct phases of DSB response.

  16. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    PubMed Central

    Hong, Ka Lok; Sooter, Letha J.

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  17. Interaction of bacteriophage T4 and T7 single-stranded DNA binding proteins with DNA

    PubMed Central

    Shokri, Leila; Rouzina, Ioulia; Williams, Mark C.

    2009-01-01

    Bacteriophage T4 and T7 are well studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination, and repair. Here we discuss the results from two recently developed single molecule methods to determine the salt-dependent DNA binding kinetics and thermodynamics of the single-stranded DNA (ssDNA) binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two order of magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four orders of magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding are essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA binding sites at the replication fork. PMID:19571366

  18. Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA.

    PubMed

    Sen, P; Pazour, G J; Anderson, D; Das, A

    1989-05-01

    The VirE2 protein of Agrobacterium tumefaciens Ti plasmid pTiA6 is a single-stranded-DNA-binding protein. Density gradient centrifugation studies showed that it exists as a tetramer in solution. Monomeric VirE2 active in DNA binding could also be obtained by using a different protein isolation procedure. VirE2 was found to be thermolabile; brief incubation at 37 degrees C abolished its DNA-binding activity. It was insensitive to the sulfhydryl-specific reagent N-ethylmaleimide. Removal of the carboxy-terminal 37 residues of the 533-residue VirE2 polypeptide led to complete loss of DNA-binding activity; however, chimeric fusion proteins containing up to 125 residues of the VirE2 C terminus were inactive in DNA binding. In nuclease protection studies, VirE2 protected single-stranded DNA against degradation by DNase I. Analysis of the DNA-VirE2 complex by electron microscopy demonstrated that VirE2 coats a single-stranded DNA molecule and that the binding of VirE2 to its substrate is cooperative. PMID:2708313

  19. Refined structure, DNA binding studies, and dynamics of the bacteriophage Pf3 encoded single-stranded DNA binding protein.

    PubMed

    Folmer, R H; Nilges, M; Papavoine, C H; Harmsen, B J; Konings, R N; Hilbers, C W

    1997-07-29

    The solution structure of the 18-kDa single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been refined using 40 ms 15N- and 13C-edited NOESY spectra and many homo- and heteronuclear J-couplings. The structures are highly precise, but some variation was found in the orientation of the beta-hairpin denoted the DNA binding wing with respect to the core of the protein. Backbone dynamics of the protein was investigated in the presence and absence of DNA by measuring the R1 and R2 relaxation rates of the 15N nuclei and the 15N-1H NOE. It was found that the DNA binding wing is much more flexible than the rest of the protein, but its mobility is largely arrested upon binding of the protein to d(A)6. This confirms earlier hypotheses on the role of this hairpin in the function of the protein, as will be discussed. Furthermore, the complete DNA binding domain of the protein has been mapped by recording two-dimensional TOCSY spectra of the protein in the presence and absence of a small amount of spin-labeled oligonucleotide. The roles of specific residues in DNA binding were assessed by stoichiometric titration of d(A)6, which indicated for instance that Phe43 forms base stacking interactions with the single-stranded DNA. Finally, all results were combined to form a set of experimental restraints, which were subsequently used in restrained molecular dynamics calculations aimed at building a model for the Pf3 nucleoprotein complex. Implying in addition some similarities to the well-studied M13 complex, a plausible model could be constructed that is in accordance with the experimental data.

  20. X-ray photoelectron spectroscopy of γ-ray-irradiated single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Lee, Eunmo; Hong, W.; Han, J. H.; Choi, D. M.; Lee, Cheol Eui; Kim, H. D.; Kim, J.

    2015-07-01

    The effects of γ-ray irradiation on herring sperm single-stranded DNA have been studied by using X-ray photoelectron spectroscopy (XPS) in the view of the bonding configurations and the structural modifications. The significant changes in the hydrogen, carbon, nitrogen, and phosphorous bonding energies, as revealed by the XPS analysis, indicate that electron transfers result in the creation of radicals and in DNA strand breaks.

  1. The single-stranded DNA-binding protein of Escherichia coli.

    PubMed Central

    Meyer, R R; Laine, P S

    1990-01-01

    The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake. PMID:2087220

  2. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    PubMed

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms. PMID:27281207

  3. Dissociative Electron Attachment to Phosphoric Acid Esters: The Direct Mechanism for Single Strand Breaks in DNA

    SciTech Connect

    Koenig, Constanze; Kopyra, Janina; Bald, Ilko; Illenberger, Eugen

    2006-07-07

    We use dibutyl phosphate to simulate the behavior of the phosphate group in DNA towards the attack of low energy electrons. We find that the compound undergoes effective dissociative electron attachment within a low energy resonant feature at 1 eV and a further resonance peaking at 8 eV. The dissociative electron attachment (DEA) reactions are associated with the direct cleavage of the C-O and the P-O bond but also the excision of the PO{sup -}, PO{sub 3}{sup -}, H{sub 2}PO{sub 3}{sup -} units. For the phosphate group coupled in the DNA network these reactions represent single strand breaks. We hence propose that the most direct mechanism of single strand breaks occurring in DNA at subexcitation energies (<4 eV) is due to DEA directly to the phosphate group.

  4. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology

    PubMed Central

    Ander, Marcel; Subramaniam, Sivaraman; Fahmy, Karim; Stewart, A. Francis; Schäffer, Erik

    2015-01-01

    Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA–protein interaction. PMID:26271032

  5. Structural and functional studies of the rat mitochondrial single strand DNA binding protein P16.

    PubMed

    Hoke, G D; Pavco, P A; Ledwith, B J; Van Tuyle, G C

    1990-10-01

    The rat mitochondrial single strand DNA binding protein (SSB) P16 was purified to apparent homogeneity by elution from single strand DNA agarose with ethidium bromide. Each monomer of P16 contains two tryptophan residues, and the intrinsic fluorescence from these residues is quenched upon binding to single strand polynucleotides. From fluorescence quench titrations of ligand to fixed amounts of DNA lattice, a binding site size of 8 or 9 nucleotides per P16 monomer was found. Measurement of the affinity of P16 for isolated sites by titration with either oligo(dT)8 or 5'-dephosphorylated oligo(dT)8 indicated values on the order of 10(7) M-1. P16 exhibited a binding preference for single strand DNA, poly(dT), and poly(dC) in comparison to double strand DNA, poly(U), or poly[d(A-T)]. Although it was not possible to show that P16 destabilizes double helical DNA or even poly[d(A-T)], binding of P16 does inhibit the process of renaturation as shown by inhibition of duplex formation between poly(dA) and poly(dT). The binding of saturating amounts of P16 to single strand poly(dT).oligo(dA)50 template-primers enhanced approximately 10-fold the activity of both the homologous mitochondrial DNA polymerase and the Escherichia coli DNA polymerase I Klenow fragment. However, the mitochondrial DNA primase was nearly completely inhibited by the saturation of the poly(dT) template with P16. Amino-terminal sequence analysis of P16 and a protease-insensitive, DNA binding domain (Mr approximately 6000) revealed that the DNA binding domain residues, at least in part, in the amino-terminal third of the P16 molecule. Furthermore, the amino-terminal sequence was found to be strikingly similar to that of the Xenopus laevis mtSSB-1 and to a lesser extent similar to E. coli SSB and E. coli F sex factor SSB.

  6. The Contribution of DNA Single-Stranded Order to the Thermodynamics of Duplex Formation

    NASA Astrophysics Data System (ADS)

    Vesnaver, Gorazd; Breslauer, Kenneth J.

    1991-05-01

    We report a direct determination of the thermodynamic contribution that DNA single-stranded order makes to DNA duplex formation. By using differential scanning calorimetry (DSC) and temperature-dependent UV absorbance spectroscopy, we have characterized thermodynamically the thermally induced disruption of the 13-mer duplex [d(CGCATGAGTACGC)]\\cdot[d(GCGTACTCATGCG)] (henceforth called S_1\\cdotS_2) and its component single strands,[d(CGCATGAGTACGC)] (henceforth called S_1) and ]d(GCGTACTCATGCG)] (henceforth called S_2). These spectroscopic and calorimetric measurements yield the following thermodynamic profiles at 25^circC: Δ G^circ = 20.0 kcal/mol, Δ H^circ = 117.0 kcal/mol, and Δ S^circ = 325.4 cal\\cdotdegree-1\\cdotmol-1 for duplex melting of S_1\\cdotS_2; Δ G^circ = 0.45 kcal/mol, Δ H^circ = 29.1 kcal/mol, and Δ S^circ = 96.1 cal\\cdotdegree-1\\cdotmol-1 for single-strand melting of S_1; Δ G^circ = 1.44 kcal/mol, Δ H^circ = 27.2 kcal/mol, and Δ S^circ = 86.4 cal\\cdotdegree-1\\cdotmol-1 for single-strand melting of S_2 (1 cal = 4.184 J). These data reveal that the two single-stranded structures S_1 and S_2 are only marginally stable at 25^circC, despite exhibiting rather substantial transition enthalpies. This behavior results from enthalpy and entropy contributions of similar magnitudes that compensate each other, thereby giving rise to relatively small free energies of stabilization for the single strands at 25^circC. By contrast, the S_1\\cdotS_2 duplex state is very stable at 25^circC since the favorable transition entropy associated with duplex disruption (325.4 cal\\cdotdegree-1\\cdotmol-1) is more than compensated for by the extremely large duplex transition enthalpy (117.0 kcal/mol). We also measured directly an enthalpy change (Δ H^circ) of -56.4 kcal/mol for duplex formation at 25^circC using isothermal batch-mixing calorimetry. This duplex formation enthalpy of -56.4 kcal/mol at 25^circC is very different in magnitude from the duplex

  7. Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA.

    PubMed Central

    Gietl, C; Koukolíková-Nicola, Z; Hohn, B

    1987-01-01

    Crude protein extracts of induced and uninduced octopine wild-type strain of Agrobacterium tumefaciens, as well as several mutants of the virulence loci virA, -B, -G, -C, -D, and -E, were probed with single- and double-stranded synthetic oligodeoxynucleotides of different sequence and length in an electrophoretic retardation assay. Four complexes involving sequence-nonspecific, single-stranded-DNA-binding proteins were recognized. One inducible complex is determined by the virE locus, two Ti-plasmid-dependent complexes are constitutively expressed, and a fourth one is controlled by chromosomal genes. The protein-DNA complexes were characterized by sucrose density gradient centrifugation and by determination of the length of single-stranded DNA required for their formation. It is hypothesized that the single-stranded-DNA-binding proteins are involved in the production of T-DNA intermediates or have a carrier or protective function during T-DNA transfer. Images PMID:3480525

  8. Rad51 Nucleoprotein Filament Disassembly Captured Using Fluorescent Plasmodium falciparum SSB as a Reporter for Single-Stranded DNA

    PubMed Central

    Davenport, Eric Parker; Harris, Derek F.; Origanti, Sofia

    2016-01-01

    Single-stranded DNA binding (SSB) proteins coordinate DNA replication, repair, and recombination and are critical for maintaining genomic integrity. SSB binds to single-stranded DNA (ssDNA) rapidly and with very high affinity making it a useful molecular tool to detect free ssDNA in solution. We have labeled SSB from Plasmodium falciparum (Pf-SSB) with the MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-carbonyl)coumarin) fluorophore which yields a four-fold increase in fluorescence upon binding to ssDNA. Pf-SSBMDCC binding to DNA is unaffected by NaCl or Mg2+ concentration and does not display salt-dependent changes in DNA binding modes or cooperative binding on long DNA substrates. These features are unique to Pf-SSB, making it an ideal tool to probe the presence of free ssDNA in any biochemical reaction. Using this Pf-SSBMDCC probe as a sensor for free ssDNA, we have investigated the clearing of preformed yeast Rad51 nucleoprotein filaments by the Srs2 helicase during HR. Our studies provide a rate for the disassembly of the Rad51 filament by full length Srs2 on long ssDNA substrates. Mutations in the conserved 2B domain in the homologous bacterial UvrD, Rep and PcrA helicases show an enhancement of DNA unwinding activity, but similar mutations in Srs2 do not affect its DNA unwinding or Rad51 clearing properties. These studies showcase the utility of the Pf-SSB probe in mechanistic investigation of enzymes that function in DNA metabolism. PMID:27416037

  9. Single-stranded DNA binding activity of C1-tetrahydrofolate synthase enzymes.

    PubMed

    Wahls, W P; Song, J M; Smith, G R

    1993-11-15

    In eukaryotes C1-5,6,7,8-tetrahydrofolate (THF) synthase is a trifunctional enzyme that catalyzes the interconversion of reduced forms of folate to supply activated one-carbon units required for a variety of metabolic pathways. The enzymatic activities include 10-formyl-THF synthetase (EC 6.3.4.3), 5,10-methenyl-THF cyclohydrolase (EC 3.5.4.9), and 5,10-methylene-THF dehydrogenase (EC 1.5.1.5). In bacteria separate, monofunctional or bifunctional polypeptides catalyze the same reactions. We have purified C1-THF synthase from the fission yeast Schizosaccharomyces pombe and found its physical and enzymatic properties similar to those of other eukaryotic C1-THF synthase enzymes. Unexpectedly, the S. pombe enzyme bound strongly (Keq = 100 pM) to single-stranded DNA, but not to double-stranded DNA or to RNA. The binding was sequence-independent, apparently not cooperative, and not detectably inhibited by C1-THF synthase substrates or cofactors. Trifunctional cytoplasmic enzyme from Saccharomyces cerevisiae and monofunctional (synthetase) enzyme from Clostridium acidiurici also bound tightly to single-stranded DNA, while bifunctional (dehydrogenase and cyclohydrolase) enzyme from Escherichia coli did not, suggesting that single-stranded DNA binding is a conserved function of the synthetase domain of C1-THF synthase enzymes. PMID:8226914

  10. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  11. Single-stranded DNA-binding proteins (SSBs) -- sources and applications in molecular biology.

    PubMed

    Kur, Józef; Olszewski, Marcin; Długołecka, Anna; Filipkowski, Paweł

    2005-01-01

    Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea and eukarya. The SSBs share a common core ssDNA-binding domain with a conserved OB (oligonucleotide/oligosaccharide binding) fold. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life. In recent years, there has been an increasing interest in SSBs because they are useful for molecular biology methods and for analytical purposes. In this review, we concentrate on recent advances in the discovery of new sources of SSBs as well as certain aspects of their applications in analytical sciences.

  12. The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins.

    PubMed

    Inoue, Jin; Honda, Masayoshi; Ikawa, Shukuko; Shibata, Takehiko; Mikawa, Tsutomu

    2008-01-01

    The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins. PMID:18000001

  13. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair.

    PubMed

    Marceau, Aimee H

    2012-01-01

    Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance

  14. Genomoviridae: a new family of widespread single-stranded DNA viruses.

    PubMed

    Krupovic, Mart; Ghabrial, Said A; Jiang, Daohong; Varsani, Arvind

    2016-09-01

    Here, we introduce a new family of eukaryote-infecting single-stranded (ss) DNA viruses that was created recently by the International Committee on Taxonomy of Viruses (ICTV). The family, named Genomoviridae, contains a single genus, Gemycircularvirus, which currently has one recognized virus species, Sclerotinia gemycircularvirus 1. Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) is currently the sole representative isolate of the family; however, a great number of SsHADV-1-like ssDNA virus genomes has been sequenced from various environmental, plant- and animal-associated samples, indicating that members of family Genomoviridae are widespread and abundant in the environment. PMID:27343045

  15. FEN1 participates in repair of the 5'-phosphotyrosyl terminus of DNA single-strand breaks.

    PubMed

    Kametani, Yukiko; Takahata, Chiaki; Narita, Takashi; Tanaka, Kiyoji; Iwai, Shigenori; Kuraoka, Isao

    2016-01-01

    Etoposide is a widely used anticancer drug and a DNA topoisomerase II (Top2) inhibitor. Etoposide produces Top2-attached single-strand breaks (Top2-SSB complex) and double-strand breaks (Top2-DSB complex) that are thought to induce cell death in tumor cells. The Top2-SSB complex is more abundant than the Top2-DSB complex. Human tyrosyl-DNA phosphodiesterase 2 (TDP2) is required for efficient repair of Top2-DSB complexes. However, the identities of the proteins involved in the repair of Top2-SSB complexes are unknown, although yeast genetic data indicate that 5' to 3' structure-specific DNA endonuclease activity is required for alternative repair of Top2 DNA damage. In this study, we purified a flap endonuclease 1 (FEN1) and xeroderma pigmentosum group G protein (XPG) in the 5' to 3' structure-specific DNA endonuclease family and synthesized single-strand break DNA substrates containing a 5'-phoshotyrosyl bond, mimicking the Top2-SSB complex. We found that FEN1 and XPG did not remove the 5'-phoshotyrosyl bond-containing DSB substrates but removed the 5'-phoshotyrosyl bond-containing SSB substrates. Under DNA repair conditions, FEN1 efficiently repaired the 5'-phoshotyrosyl bond-containing SSB substrates in the presence of DNA ligase and DNA polymerase. Therefore, FEN1 may play an important role in the repair of Top2-SSB complexes in etoposide-treated cells.

  16. Tunable loading of single-stranded DNA on gold nanorods through the displacement of polyvinylpyrrolidone.

    PubMed

    Pekcevik, Idah C; Poon, Lester C H; Wang, Michael C P; Gates, Byron D

    2013-10-15

    A quantitative and tunable loading of single-stranded (ss-DNA) molecules onto gold nanorods was achieved through a new method of surfactant exchange. This new method involves the exchange of cetyltrimethylammonium bromide surfactants for an intermediate stabilizing layer of polyvinylpyrrolidone and sodium dodecylsulfate. The intermediate layer of surfactants on the anisotropic gold particles was easily displaced by thiolated ss-DNA, forming a tunable density of single-stranded DNA molecules on the surfaces of the gold nanorods. The success of this ligand exchange process was monitored in part through the combination of extinction, X-ray photoelectron, and infrared absorption spectroscopies. The number of ss-DNA molecules per nanorod for nanorods with a high density of ss-DNA molecules was quantified through a combination of fluorescence measurements and elemental analysis, and the functionality of the nanorods capped with dense monolayers of DNA was assessed using a hybridization assay. Core-satellite assemblies were successfully prepared from spherical particles containing a probe DNA molecule and a nanorod core capped with complementary ss-DNA molecules. The methods demonstrated herein for quantitatively fine tuning and maximizing, or otherwise optimizing, the loading of ss-DNA in monolayers on gold nanorods could be a useful methodology for decorating gold nanoparticles with multiple types of biofunctional molecules.

  17. Complex formation between phage phi 29 single-stranded DNA binding protein and DNA.

    PubMed

    Soengas, M S; Esteban, J A; Salas, M; Gutiérrez, C

    1994-06-01

    Bacteriophage phi 29 gene 5 encodes a single-stranded DNA (ssDNA) binding protein (SSB) which stimulates viral DNA replication. In the present study, a structural characterization of the complex between ssDNA and the phi 29 SSB was carried out using electron microscopy, band-shift assays and nuclease digestion as well as by monitoring changes in the intrinsic fluorescence of phi 29 SSB upon binding. Phage phi 29 SSB behaves as a monomer in solution and forms complexes with ssDNA which have a homogeneous structure, as if they consist of a continuous array of protein bound to DNA. Interaction of phi 29 SSB with ssDNA leads to a quenching of its tyrosine-dependent intrinsic fluorescence. This fluorescence quenching was directly proportional to the amount of phi 29 SSB bound to the ssDNA and the maximal quenching upon binding was very high (Qmax = 94.6 +/- 3.5%). Direct titration experiments have allowed us to estimate that the stoichiometry (n) of binding to ssDNA was 3.4(+/- 0.3) nucleotides per phi 29 SSB monomer. Both Qmax and n are independent of the salt concentration, suggesting the existence of only one major binding mode. At low salt concentrations, the effective binding constant (Keff = K omega) to poly(dT) was 2.2 x 10(5) M-1, the intrinsic binding constant (K) and the cooperativity parameter (omega) being 4.3 x 10(3) M-1 and 51, respectively. At increasing salt concentrations, the Keff exhibited a small, but significant, decrease. The possible functional significance of the binding parameters of phi 29 SSB during viral DNA replication is discussed.

  18. Assembly of single-stranded DNA onto HOPG surface at different temperature: atomic force microscopy study.

    PubMed

    Liu, Zhiguo; Zhao, Lin; Zhou, Zhen; Sun, Tongze; Zu, Yuangang

    2012-01-01

    Assembly of long single-stranded DNA (ssDNA) and short oligodeoxynucleotides onto bare highly oriented pyrolytic graphite (HOPG) at different temperature has been studied. It was indicated that both long ssDNA and oligodeoxynucleotides can sequentially form network, straight chains, and layer structures when the adsorption temperature was changed from room temperature, 37-55°C. High-resolution atomic force microscopy (AFM) imaging of the layer structures revealed that they are composed of parallel ssDNA chains with relatively higher height and tend to form patterns with three-fold symmetry. These new findings are significantly important for understanding assembly characterization of ssDNA. In addition, this assembly method for ssDNA is expected to be used for preparation of DNA structures in biosensing and DNA-based nanodevices.

  19. Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences

    PubMed Central

    Yoo, Wonseok; Lim, Dongbin

    2016-01-01

    A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA. PMID:27103888

  20. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein.

    PubMed

    Ryzhikov, Mikhail; Koroleva, Olga; Postnov, Dmitri; Tran, Andrew; Korolev, Sergey

    2011-08-01

    RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms. PMID:21504984

  1. Human single-stranded DNA binding proteins: guardians of genome stability.

    PubMed

    Wu, Yuanzhong; Lu, Jinping; Kang, Tiebang

    2016-07-01

    Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.

  2. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    PubMed

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-01

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii. PMID:27352216

  3. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    PubMed

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-01

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  4. Targeted recombination with single-stranded DNA vectors in mammalian cells.

    PubMed Central

    Fujioka, K; Aratani, Y; Kusano, K; Koyama, H

    1993-01-01

    We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells. Images PMID:8441653

  5. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    PubMed Central

    Williams, Ryan M.; Kulick, Amanda R.; Yedlapalli, Srilakshmi; Battistella, Louisa; Hajiran, Cyrus J.; Sooter, Letha J.

    2014-01-01

    Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE) specific for bromacil. We have identified one MRE with high affinity (Kd = 9.6 nM) and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device. PMID:25400940

  6. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  7. A mechanism for single-stranded DNA-binding protein (SSB) displacement from single-stranded DNA upon SSB-RecO interaction.

    PubMed

    Inoue, Jin; Nagae, Takayuki; Mishima, Masaki; Ito, Yutaka; Shibata, Takehiko; Mikawa, Tsutomu

    2011-02-25

    Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO. PMID:21169364

  8. Graphitic Surface Attachment by Single-Stranded DNA and Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Somers, Luke

    Graphene and carbon nanotubes are extreme mechanical and electronic materials which have been the subjects of intense study and development since their discoveries. While many of their intrinsic properties have been discovered, their interactions with other materials are only beginning to be explored. The noncovalent binding of single-stranded DNA oligonucleotides to carbon nanotubes and graphene has been seen to give rise to effective gas sensors. We examine similar systems to each of these in turn, imaging carbon nanotubes decorated with single-stranded DNA in Transmission Electron Microscope, and performing X-ray reflectivity of a single-stranded DNA film on graphite. The TEM study shows that the DNA bunches up along tubes but does not tend to clump on single tubes. Helical wrapping is not seen on single tubes. X-ray reflectivity shows that DNA on a graphite surface forms an inhomogeneous layer around 1.6 nm thick. The differences between the various thicknesses of few-layer graphene are substantial though often underappreciated. These differences are highlighted in the system of several-nanometer metal particles on few-layer graphene flakes. We formed such particles by evaporation and annealing, then examined them in Scanning Electron Microscope. We found that gold nanoparticles were circular and experienced limited growth, with the radius varying as the number of layers to the 1/3 power. A theoretical explanation is given for this observation, based on an electrostatic interaction. This theory is also consistent with observations for titanium and silver nanoparticles. Ytterbium nanoparticles on graphene form instead into filaments. A related theory is presented showing that the same electrostatic interaction is capable of overcoming surface tension to deform particles from circularity.

  9. Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA.

    PubMed

    Abu-Arish, Asmahan; Frenkiel-Krispin, Daphna; Fricke, Tobin; Tzfira, Tzvi; Citovsky, Vitaly; Wolf, Sharon Grayer; Elbaum, Michael

    2004-06-11

    Agrobacterium tumefaciens infects plant cells by a unique mechanism involving an interkingdom genetic transfer. A single-stranded DNA substrate is transported across the two cell walls along with the bacterial virulence proteins VirD2 and VirE2. A single VirD2 molecule covalently binds to the 5'-end of the single-stranded DNA, while the VirE2 protein binds stoichiometrically along the length of the DNA, without sequence specificity. An earlier transmission/scanning transmission electron microscopy study indicated a solenoidal ("telephone coil") organization of the VirE2-DNA complex. Here we report a three-dimensional reconstruction of this complex using electron microscopy and single-particle image-processing methods. We find a hollow helical structure of 15.7-nm outer diameter, with a helical rise of 51.5 nm and 4.25 VirE2 proteins/turn. The inner face of the protein units contains a continuous wall and an inward protruding shelf. These structures appear to accommodate the DNA binding. Such a quaternary arrangement naturally sequesters the DNA from cytoplasmic nucleases and suggests a mechanism for its nuclear import by decoration with host cell factors. Coexisting with the helices, we also found VirE2 tetrameric ring structures. A two-dimensional average of the latter confirms the major features of the three-dimensional reconstruction. PMID:15054095

  10. Interspecies differences in DNA single strand breaks caused by benzo(a)pyrene and marine environment.

    PubMed

    Bihari, Nevenka; Fafandel, Maja

    2004-08-18

    The presence of DNA single strand breaks in untreated specimens of selected species, mosquito fish Gambusia affinis, painted comber Serranus scriba, blue mussel Mytilus galloprovincialis, spiny crab Maja crispata and sea cucumber Holothuria tubulosa as well as in 10 microg/g benzo(a)pyrene (BaP) treated mosquito fish, blue mussel and spiny crab was measured, using alkaline filter elution. Interspecies differences in alkaline elution profiles were observed and attributed to different lengths of DNA from different sources and to differences in the number of strand breaks present during normal cellular events in different phyla. Spiny crab hemocytes are more sensitive to action of BaP then blue mussel hemocytes and mosquito fish hepatocytes that could be explained by differences in the rates of distinct metabolic reactions and DNA repair among the investigated species. In field study, DNA single strand breaks were measured in hepatocytes of painted comber and in hemocytes of blue mussel and spiny crab from natural population specimens collected at eight sampling sites along Istrian coast, Croatia. Spatial variations in DNA integrity for each species were detected and revealed for the first time that spiny crab is responsive to different environmental conditions. Interspecies variations in the DNA integrity due to environmental conditions, confirmed species specific susceptibility to genotoxicity of certain environment that in long-term may modify the structure of marine communities. The multi-species approach in designing biomonitoring studies was suggested.

  11. Cloning and sequencing of PYBP, a pyrimidine-rich specific single strand DNA-binding protein.

    PubMed Central

    Brunel, F; Alzari, P M; Ferrara, P; Zakin, M M

    1991-01-01

    In the human transferrin gene promoter, PRI and DRI are positive cis-acting elements interacting respectively with two families of proteins, Tf-LF1 and Tf-LF2. In this paper, we report the purification from rat liver nuclei, of one of these factors, PYBP, as well as the cloning and the sequencing of its cDNA. PYBP is a DNA-binding protein, purified as a 58 kDa doublet which binds only to single strand pyrimidine-rich DNA present for example in PRI and DRI. The protein binds also to a similar polypyrimidine tract present in one of the two strands of a DNA regulatory element of the rat tyrosine aminotransferase gene enhancer. PYBP gene is transcribed ubiquitously as a roughly 2.8 kb RNA which is likely to be subject to an alternative splicing. PYBP is highly homologous to a mouse nuclear protein, as well as to PTB, its human version, which interacts specifically with the pyrimidine tracts of introns. Primary structure information and predicted secondary structure elements of the protein indicate that PYBP contains four sequence repeats. Each of these repeats appears to exhibit the typical RNA recognition motif found in several proteins interacting with RNA or single strand DNA. Finally several hypotheses concerning the biological function of PYBP are presented. Images PMID:1681508

  12. Entrapment of DNA in an intersubunit tunnel system of a single-stranded DNA-binding protein

    PubMed Central

    Ghalei, Homa; von Moeller, Holger; Eppers, Detlef; Sohmen, Daniel; Wilson, Daniel N.; Loll, Bernhard; Wahl, Markus C.

    2014-01-01

    Instead of a classical single-stranded deoxyribonuleic acid (DNA)-binding protein (SSB), some hyperthermophilic crenarchaea harbor a non-canonical SSB termed ThermoDBP. Two related but poorly characterized groups of proteins, which share the ThermoDBP N-terminal DNA-binding domain, have a broader phylogenetic distribution and co-exist with ThermoDBPs and/or other SSBs. We have investigated the nucleic acid binding properties and crystal structures of representatives of these groups of ThermoDBP-related proteins (ThermoDBP-RPs) 1 and 2. ThermoDBP-RP 1 and 2 oligomerize by different mechanisms and only ThermoDBP-RP2 exhibits strong single-stranded DNA affinity in vitro. A crystal structure of ThermoDBP-RP2 in complex with DNA reveals how the NTD common to ThermoDBPs and ThermoDBP-RPs can contact the nucleic acid in a manner that allows a symmetric homotetrameric protein complex to bind single-stranded DNA molecules asymmetrically. While single-stranded DNA wraps around the surface or binds along channels of previously investigated SSBs, it traverses an internal, intersubunit tunnel system of a ThermoDBP-RP2 tetramer. Our results indicate that some archaea have acquired special SSBs for genome maintenance in particularly challenging environments. PMID:24744237

  13. Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase

    PubMed Central

    Chen, Cheng-Yao; Mosbaugh, Dale W.; Bennett, Samuel E.

    2011-01-01

    To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the Kd of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The kcat of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, kcat on double-stranded DNA substrate was reduced 4–12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase. PMID:15970468

  14. Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2.

    PubMed

    Dombek, P; Ream, W

    1997-02-01

    The transferred DNA (T-DNA) portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid enters infected plant cells and integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events liberate the lower strand of the T-DNA from the Ti plasmid, producing single-stranded DNA molecules (T strands) that are covalently linked to VirD2 at their 5' ends. A. tumefaciens appears to transfer T-DNA into plant cells as a T-strand-VirD2 complex. The bacterium also transports VirE2, a cooperative single-stranded DNA-binding protein, into plant cells during infection. Both VirD2 and VirE2 contain nuclear localization signals that may direct these proteins, and bound T strands, into plant nuclei. Here we report the locations of functional regions of VirE2 identified by eight insertions of XhoI linker oligonucleotides, and one deletion mutation, throughout virE2. We examined the effects of these mutations on virulence, single-stranded DNA (ssDNA) binding, and accumulation of VirE2 in A. tumefaciens. Two of the mutations in the C-terminal half of VirE2 eliminated ssDNA binding, whereas two insertions in the N-terminal half altered cooperativity. Four of the mutations, distributed throughout virE2, decreased the stability of VirE2 in A. tumefaciens. In addition, we isolated a mutation in the central region of VirE2 that decreased tumorigenicity but did not affect ssDNA binding or VirE2 accumulation. This mutation may affect export of VirE2 into plant cells or nuclear localization of VirE2, or it may affect an uncharacterized activity of VirE2. PMID:9023198

  15. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins

    PubMed Central

    Gallardo, Ignacio F.; Zhou, Yi; Gong, Fade; Yang, Soo-Hyun; Wold, Marc S.; Miller, Kyle M.; Paull, Tanya T.

    2016-01-01

    Exonuclease 1 (Exo1) is a 5′→3′ exonuclease and 5′-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1—a recently identified human SSB that promotes DNA resection during homologous recombination—supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells. PMID:26884156

  16. Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein.

    PubMed

    Das, A

    1988-05-01

    The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmid are essential for transformation of plant cells. Overproduction of a virE-encoded gene product in Escherichia coli was achieved by construction of an operon fusion with the E. coli tryptophan (trp) operon. The virE2 gene product in E. coli partitioned into the insoluble membrane fraction. The protein was solubilized by treatment with 4 M urea at 0 degree C. DNA-protein binding experiments showed that a strong single-stranded (ss) DNA-binding activity was present in protein fractions containing the virE2 gene product. The binding was highly specific with little or no binding observed with either double-stranded DNA or ssRNA. No significant binding to Ti plasmid DNA sequences was observed. Protein blotting studies indicated that the ssDNA-binding activity was associated with the 68-kDa virE2 polypeptide. PMID:2452439

  17. Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit.

    PubMed

    McCauley, Micah J; Shokri, Leila; Sefcikova, Jana; Venclovas, Ceslovas; Beuning, Penny J; Williams, Mark C

    2008-09-19

    The alpha subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the alpha subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the alpha subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct subdomains of the protein. The portion of the protein that binds to double-stranded DNA stabilizes the DNA helix, because protein binding must be at least partially disrupted with increasing force to melt DNA. Upon relaxation, the DNA fails to fully reanneal, because bound protein interferes with the reformation of the double helix. In addition, the single-stranded DNA binding component appears to be passive, as the protein does not facilitate melting but instead binds to single-stranded regions already separated by force. From DNA stretching measurements we determine equilibrium association constants for the binding of alpha and several fragments to dsDNA and ssDNA. The results demonstrate that ssDNA binding is localized to the C-terminal region that contains the OB-fold domain, while a tandem helix-hairpin-helix (HhH) 2 motif contributes significantly to dsDNA binding. PMID:18652472

  18. Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays.

    PubMed Central

    Bilang, R; Peterhans, A; Bogucki, A; Paszkowski, J

    1992-01-01

    Two separate assays, one that requires stable integration of recombination products and one that does not, were employed to elucidate the role of single-stranded DNA in extrachromosomal homologous recombination in Nicotiana tabacum. Both assays revealed that single-stranded DNA in linear and in circular forms was an efficient substrate for recombination, provided that the cotransformed recombination substrates were of complementary sequence, so that direct annealing was possible. Recombination was inefficient when both single-stranded recombination partners contained homologous regions of identical sequence and generation of a double-stranded DNA was required prior to heteroduplex formation. These results indicate that direct annealing of single strands is an important initial step for intermolecular recombination in tobacco cells. Annealed cotransformed single-stranded molecules yielded intermediates that could be further processed by either continuous or discontinuous second-strand synthesis. The type of intermediate had no influence on the recombination efficiency. Double-stranded circles were unable to recombine efficiently either with each other or with single-stranded DNA. Our results suggest that a helicase activity is involved in the initial steps of double-stranded DNA recombination which unwinds duplex molecules at the site of double-strand breaks. Images PMID:1729608

  19. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres.

    PubMed

    Lloyd, Neil R; Dickey, Thayne H; Hom, Robert A; Wuttke, Deborah S

    2016-09-27

    Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.

  20. Generation of DNA single-strand displacement by compromised nucleotide excision repair

    PubMed Central

    Godon, Camille; Mourgues, Sophie; Nonnekens, Julie; Mourcet, Amandine; Coin, Fréderic; Vermeulen, Wim; Mari, Pierre-Olivier; Giglia-Mari, Giuseppina

    2012-01-01

    Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. PMID:22863773

  1. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA.

    PubMed

    Fang, X; Li, J J; Tan, W

    2000-07-15

    The interactions between two key macromolecular species, nucleic acids and proteins, control many important biological processes. There have been limited effective methodologies to study these interactions in real time. In this work, we have applied a newly developed molecular beacon (MB) DNA probe for the analysis of an enzyme, lactate dehydrogenase (LDH), and for the investigation of its properties of binding with single-stranded DNA. Molecular beacons are single-stranded oligonucleotide probes designed to report the presence of specific complementary nucleic acids by fluorescence detection. The interaction between LDH and MB has resulted in a significant fluorescence signal enhancement, which is used for the elucidation of MB/LDH binding properties. The processes of binding between MB and different isoenzymes of LDH have been studied. The results show that the stoichiometry of LDH-5/MB binding is 1:1, and the binding constant is 1.9 x 10(-7) M(-1). We have also studied salt effects, binding sites, temperature effects, pH effects, and the binding specificities for different isoenzymes. Our results demonstrate that MB can be effectively used for sensitive protein quantitation and for efficient protein-DNA interaction studies. MB has a signal transduction mechanism built within the molecule and can thus be used for the development of rapid protein assays and for real-time measurements.

  2. Blocking single-stranded transferred DNA conversion to double-stranded intermediates by overexpression of yeast DNA REPLICATION FACTOR A.

    PubMed

    Dafny-Yelin, Mery; Levy, Avner; Dafny, Raz; Tzfira, Tzvi

    2015-01-01

    Agrobacterium tumefaciens delivers its single-stranded transferred DNA (T-strand) into the host cell nucleus, where it can be converted into double-stranded molecules. Various studies have revealed that double-stranded transfer DNA (T-DNA) intermediates can serve as substrates by as yet uncharacterized integration machinery. Nevertheless, the possibility that T-strands are themselves substrates for integration cannot be ruled out. We attempted to block the conversion of T-strands into double-stranded intermediates prior to integration in order to further investigate the route taken by T-DNA molecules on their way to integration. Transgenic tobacco (Nicotiana benthamiana) plants that overexpress three yeast (Saccharomyces cerevisiae) protein subunits of DNA REPLICATION FACTOR A (RFA) were produced. In yeast, these subunits (RFA1-RFA3) function as a complex that can bind single-stranded DNA molecules, promoting the repair of genomic double strand breaks. Overexpression of the RFA complex in tobacco resulted in decreased T-DNA expression, as determined by infection with A. tumefaciens cells carrying the β-glucuronidase intron reporter gene. Gene expression was not blocked when the reporter gene was delivered by microbombardment. Enhanced green fluorescent protein-assisted localization studies indicated that the three-protein complex was predominantly nuclear, thus indicating its function within the plant cell nucleus, possibly by binding naked T-strands and blocking their conversion into double-stranded intermediates. This notion was further supported by the inhibitory effect of RFA expression on the cell-to-cell movement of Bean dwarf mosaic virus, a single-stranded DNA virus. The observation that RFA complex plants dramatically inhibited the transient expression level of T-DNA and only reduced T-DNA integration by 50% suggests that double-stranded T-DNA intermediates, as well as single-stranded T-DNA, play significant roles in the integration process. PMID:25424309

  3. Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking

    PubMed Central

    McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.

    2014-01-01

    Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606

  4. Sequence-dependent elasticity and electrostatics of single-stranded DNA: signatures of base-stacking.

    PubMed

    McIntosh, Dustin B; Duggan, Gina; Gouil, Quentin; Saleh, Omar A

    2014-02-01

    Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer's rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼-0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration.

  5. Using surface-enhanced Raman spectroscopy to probe for genetic markers on single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Moody, Benjamin; Leotaud, John; McCarty, Gregory S.

    2010-03-01

    Methods capable of quickly and inexpensively collecting genetic information are of increasing importance. We report a method of using surface-enhanced Raman spectroscopy to probe single-stranded DNA for genetic markers. This unique approach is used to analyze unmodified genes of moderate length for genetic markers by hybridizing native test oligonucleotides into a surface-enhanced Raman complex, vastly increasing detection sensitivity as compared to traditional Raman spectroscopy. The Raman complex is formed by sandwiching the test DNA between 40-nm gold nanoparticles and a photolithographically defined gold surface. With this design, we are able to collect characteristic Raman spectra about the test DNA and to detect genetic markers such as single-nucleotide polymorphisms (SNPs) and polymorphic regions. Results show that strands containing one of three different types of polymorphism can be differentiated using statistically significant trends regarding Raman intensity.

  6. Structure and switching of single-stranded DNA tethered to a charged nanoparticle surface

    NASA Astrophysics Data System (ADS)

    Xin-Jun, Zhao; Zhi-Fu, Gao

    2016-07-01

    Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA (ssDNA) tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ssDNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ssDNA will collapse due to the existence of electrostatic interaction between ssDNA and charged nanoparticle surface; ii) for the short ssDNA chains with the number of bases less than 10, the switching of ssDNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ssDNA and charged nanoparticle surface becomes weak dramatically, and ssDNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ssDNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ssDNA will not happen if the grafting densities are too high. Project supported by the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2015211C298).

  7. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology.

    PubMed

    Székely, Anna J; Breitbart, Mya

    2016-03-01

    Single-stranded DNA (ssDNA) phages are profoundly different from tailed phages in many aspects including the nature and size of their genome, virion size and morphology, mutation rate, involvement in horizontal gene transfer, infection dynamics and cell lysis mechanisms. Despite the importance of ssDNA phages as molecular biology tools and model systems, the environmental distribution and ecological roles of these phages have been largely unexplored. Viral metagenomics and other culture-independent viral diversity studies have recently challenged the perspective of tailed, double-stranded DNA (dsDNA) phages, dominance by demonstrating the prevalence of ssDNA phages in diverse habitats. However, the differences between ssDNA and dsDNA phages also substantially limit the efficacy of simultaneously assessing the abundance and diversity of these two phage groups. Here we provide an overview of the major differences between ssDNA and tailed dsDNA phages that may influence their effects on bacterial communities. Furthermore, through the analysis of 181 published metaviromes we demonstrate the environmental distribution of ssDNA phages and present an analysis of the methodological biases that distort their study through metagenomics. PMID:26850442

  8. Replication of single-stranded DNA templates by primase-polymerase complexes of the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Biswas, E E; Biswas, S B

    1988-01-01

    A partially purified primase-polymerase complex from the yeast, Saccharomyces cerevisiae, was capable of replicating a single stranded circular phage DNA into a replicative form with high efficiency. The primase-polymerase complex exhibited primase activity and polymerase activity on singly primed circular ssDNA as well as on gapped DNA. In addition, it was able to replicate an unprimed, single-stranded, circular phage DNA through a coupled primase-polymerase action. On Biogel A-O.5m filtration the primase-polymerase activities appeared in the void volume, demonstrating a mass of greater than 500 kilodaltons. Primase and various primase-polymerase complexes synthesized unique primers on single stranded DNA templates and the size distribution of primers was dependent on the structure of the DNA and the nature of the primase-polymerase assembly. Images PMID:3041377

  9. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.

    PubMed

    Tang, Zhipeng; Lu, Bo; Zhao, Qing; Wang, Jiajun; Luo, Kaifu; Yu, Dapeng

    2014-11-12

    Nanopore technology is one of the most promising approaches for fast and low-cost DNA sequencing application. Single-stranded DNA detection is primary objective in such device, while solid-state nanopores remain less explored than their biological counterparts due to bio-molecule clogging issue caused by surface interaction between DNA and nanopore wall. By surface coating a layer of polyethylene glycol (PEG), solid-state nanopore can achieve long lifetime for single-stranded DNA sticky-free translocation at pH 11.5. Associated with elimination of non-specific binding of molecule, PEG coated nanopore presents new surface characteristic as less hydrophility, lower 1/f noise, and passivated surface charge responsiveness on pH. Meanwhile, conductance blockage of single-stranded DNA is found to be deeper than double-stranded DNA, which can be well described by a string of blobs model for a quasi-equilibrium state polymer in constraint space.

  10. Single-stranded DNA scanning and deamination with Single molecule resolution

    NASA Astrophysics Data System (ADS)

    Rueda, David

    2012-04-01

    Over the past decade, single-molecule fluorescence resonance energy transfer spectroscopy (smFRET) has become an increasingly popular tool to study the structural dynamics of biopolymers, such as DNA, RNA and proteins. The most attractive aspect of single-molecule experiments is that, unlike ensemble-averaged techniques, they directly reveal the structural dynamics of individual molecules, which would otherwise be hidden in ensemble-averaged experiments. Here, we will present a novel single molecule assay to study, for the first time, scanning of an enzyme (APOBEC3G, involved in the defense against HIV) on single stranded DNA (ssDNA). We have investigated the ssDNA scanning and activity of Apo3G with smFRET. Our data show that Apo3G scans ssDNA randomly and bidirectionally with average excursion lengths of ˜ 10 å and ˜1 s-1 scanning rates. Apo3G quasi-localization is observed on highly reactive motifs located near the one end of the ssDNA. Motif-dependent ssDNA bending is also observed, where the bending is maximal for highly reactive targets located near the DNA end. Interestingly, both the Apo3G scanning and Apo3G-induced ssDNA bending is reduced with lowered ionic strength, indicating that Apo3G motion on ssDNA is facilitated by salt by reducing `electrostatic friction'. Although scanning is random, asymmetric catalytic orientation may be the reason for Apo3G directional activity.

  11. Managing Single-Stranded DNA during Replication Stress in Fission Yeast.

    PubMed

    Sabatinos, Sarah A; Forsburg, Susan L

    2015-01-01

    Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA. PMID:26393661

  12. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    PubMed Central

    Sabatinos, Sarah A.; Forsburg, Susan L.

    2015-01-01

    Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA. PMID:26393661

  13. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron

    NASA Astrophysics Data System (ADS)

    Shih, William M.; Quispe, Joel D.; Joyce, Gerald F.

    2004-02-01

    Molecular self-assembly offers a means of spontaneously forming complex and well-defined structures from simple components. The specific bonding between DNA base pairs has been used in this way to create DNA-based nanostructures and to direct the assembly of material on the subnanometre to micrometre scale. In principle, large-scale clonal production of suitable DNA sequences and the directed evolution of sequence lineages towards optimized behaviour can be realized through exponential DNA amplification by polymerases. But known examples of three-dimensional geometric DNA objects are not amenable to cloning because they contain topologies that prevent copying by polymerases. Here we report the design and synthesis of a 1,669-nucleotide, single-stranded DNA molecule that is readily amplified by polymerases and that, in the presence of five 40-mer synthetic oligodeoxynucleotides, folds into an octahedron structure by a simple denaturation-renaturation procedure. We use cryo-electron microscopy to show that the DNA strands fold successfully, with 12 struts or edges joined at six four-way junctions to form hollow octahedra approximately 22 nanometres in diameter. Because the base-pair sequence of individual struts is not repeated in a given octahedron, each strut is uniquely addressable by the appropriate sequence-specific DNA binder.

  14. Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kamiya, Katsumasa; Okada, Susumu

    2011-04-01

    We report total-energy electronic-structure calculations based on density functional theory performed on single-stranded DNA (ssDNA) encapsulated in single-walled carbon nanotubes (SWCNTs). We find that the encapsulation reaction is exothermic for nanotubes with diameters greater than 1.33 nm. The energy gain is calculated to be in the range of 0.8-1.5 eV/nm, depending on tube diameter, base sequences, and ssDNA structure. In optimal ssDNA-SWCNT hybrid-system geometries, the polar groups of ssDNA, i.e. the POH moiety in its backbone, are located adjacent to the wall of the nanotube. The electronic structure of the hybrid system is qualitatively similar to a simple sum of those of an isolated ssDNA molecule and an empty SWCNT. However, detailed analysis of the electronic structure of the hybrid system reveals that the encapsulation of ssDNA into a SWCNT affects the electronic structures of both the ssDNA and the SWCNT.

  15. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics.

    PubMed

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2012-10-01

    Despite their small size and limited protein-coding capacity, the rapid evolution rates of single-stranded DNA (ssDNA) viruses have led to their emergence as serious plant and animal pathogens. Recently, metagenomics has revealed an unprecedented diversity of ssDNA viruses, expanding their known environmental distributions and host ranges. This review summarizes and contrasts the basic characteristics of known circular ssDNA viral groups, providing a resource for analyzing the wealth of ssDNA viral sequences identified through metagenomics. Since ssDNA viruses are largely identified based on conserved rolling circle replication proteins, this review highlights distinguishing motifs and catalytic residues important for replication. Genomes identified through metagenomics have demonstrated unique ssDNA viral genome architectures and revealed characteristics that blur the boundaries between previously well-defined groups. Metagenomic discovery of ssDNA viruses has created both a challenge to current taxonomic classification schemes and an opportunity to revisit hypotheses regarding the evolutionary history of these viruses.

  16. Nucleotides sequestered at different subsite loci within DNA-binding pockets of two OB-fold single-stranded DNA-binding proteins are unstacked to different extents.

    PubMed

    Nguyen, Hieu N; Zhao, Liang; Gray, Carla W; Gray, Donald M; Xia, Tianbing

    2013-07-01

    The gene 5 protein (g5p) encoded by the Ff strains of Escherichia coli bacteriophages is a dimeric single-stranded DNA-binding protein (SSB) that consists of two identical OB-fold (oligonucleotide/oligosaccharide-binding) motifs. Ultrafast time-resolved fluorescence measurements were carried out to investigate the effect of g5p binding on the conformation of 2-aminopurine (2AP) labels positioned between adenines or cytosines in the 16-nucleotide antiparallel tails of DNA hairpins. The measurements revealed significant changes in the conformational heterogeneity of the 2AP labels caused by g5p binding. The extent of the changes was dependent on sub-binding-site location, but generally resulted in base unstacking. When bound by g5p, the unstacked 2AP population increased from ∼ 22% to 59-67% in C-2AP-C segments and from 39% to 77% in an A-2AP-A segment. The OB-fold RPA70A domain of the human replication protein A also caused a significant amount of base unstacking at various locations within the DNA binding site as evidenced by steady-state fluorescence titration measurements using 2AP-labeled 5-mer DNAs. These solution studies support the concept that base unstacking at most of a protein's multiple sub-binding-site loci may be a feature that allows non-sequence specific OB-fold proteins to bind to single-stranded DNAs (ssDNAs) with minimal preference for particular sequences.

  17. Single-stranded DNA-binding proteins: multiple domains for multiple functions.

    PubMed

    Dickey, Thayne H; Altschuler, Sarah E; Wuttke, Deborah S

    2013-07-01

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.

  18. Single-Stranded DNA-Binding Proteins: Multiple Domains for Multiple Functions

    PubMed Central

    Dickey, Thayne H.; Altschuler, Sarah E.; Wuttke, Deborah S.

    2013-01-01

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins. PMID:23823326

  19. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers.

    PubMed

    Kosaka, Priscila M; González, Sheila; Domínguez, Carmen M; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-08-21

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties. PMID:23832284

  20. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers.

    PubMed

    Kosaka, Priscila M; González, Sheila; Domínguez, Carmen M; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-08-21

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.

  1. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA.

    PubMed Central

    Bamdad, C

    1998-01-01

    A novel method for DNA surface immobilization and a paradigm for the attachment of unmodified DNA of any length or sequence are described herein. The development of a DNA self-assembled monolayer (DNA-SAM) that incorporates a DNA-thiol into a monolayer of inert alkane thiolates is reported. This DNA-SAM specifically hybridized complementary oligonucleotides while resisting the nonspecific adsorption of noncomplementary DNA and irrelevant proteins. Duplex DNA, having a single-stranded "capture tail," specifically bound to the DNA-SAM if the sequence of the "tail" was complementary to DNA presented in the SAM. The sense strand of the hybridized duplex DNA could be covalently attached to the surface by an enzymatic ligation reaction (leaving the anti-sense strand dissociable). DNA-binding proteins specifically bound to these surfaces only if their cognate sites were present in the duplex DNA. PMID:9746541

  2. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    PubMed

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  3. Single-Stranded DNA Catalyzes Hybridization of PCR-Products to Microarray Capture Probes

    PubMed Central

    Dally, Simon; Rupp, Steffen; Lemuth, Karin; Hartmann, Stefan C.; Hiller, Ekkehard; Bailer, Susanne M.; Knabbe, Cornelius; Weile, Jan

    2014-01-01

    Since its development, microarray technology has evolved to a standard method in the biotechnological and medical field with a broad range of applications. Nevertheless, the underlying mechanism of the hybridization process of PCR-products to microarray capture probes is still not completely understood, and several observed phenomena cannot be explained with current models. We investigated the influence of several parameters on the hybridization reaction and identified ssDNA to play a major role in the process. An increase of the ssDNA content in a hybridization reaction strongly enhanced resulting signal intensities. A strong influence could also be observed when unlabeled ssDNA was added to the hybridization reaction. A reduction of the ssDNA content resulted in a massive decrease of the hybridization efficiency. According to these data, we developed a novel model for the hybridization mechanism. This model is based on the assumption that single stranded DNA is necessary as catalyst to induce the hybridization of dsDNA. The developed hybridization model is capable of giving explanations for several yet unresolved questions regarding the functionality of microarrays. Our findings not only deepen the understanding of the hybridization process, but also have immediate practical use in data interpretation and the development of new microarrays. PMID:25025686

  4. SSB protein limits RecOR binding onto single-stranded DNA.

    PubMed

    Hobbs, Michael D; Sakai, Akiko; Cox, Michael M

    2007-04-13

    The RecO and RecR proteins form a complex that promotes the nucleation of RecA protein filaments onto SSB protein-coated single-stranded DNA (ssDNA). However, even when RecO and RecR proteins are provided at optimal concentrations, the loading of RecA protein is surprisingly slow, typically proceeding with a lag of 10 min or more. The rate-limiting step in RecOR-promoted RecA nucleation is the binding of RecOR protein to ssDNA, which is inhibited by SSB protein despite the documented interaction between RecO and SSB. Full activity of RecOR is seen only when RecOR is preincubated with ssDNA prior to the addition of SSB. The slow binding of RecOR to SSB-coated ssDNA involves the C terminus of SSB. When an SSB variant that lacks the C-terminal 8 amino acids is used, the capacity of RecOR to facilitate RecA loading onto the ssDNA is largely abolished. The results are used in an expanded model for RecOR action. PMID:17272275

  5. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  6. Human replication protein A binds single-stranded DNA in two distinct complexes.

    PubMed Central

    Blackwell, L J; Borowiec, J A

    1994-01-01

    Human replication protein A, a single-stranded DNA (ssDNA)-binding protein, is a required factor in eukaryotic DNA replication and DNA repair systems and has been suggested to function during DNA recombination. The protein is also a target of interaction for a variety of proteins that control replication, transcription, and cell growth. To understand the role of hRPA in these processes, we examined the binding of hRPA to defined ssDNA molecules. Employing gel shift assays that "titrated" the length of ssDNA, hRPA was found to form distinct multimeric complexes that could be detected by glutaraldehyde cross-linking. Within these complexes, monomers of hRPA utilized a minimum binding site size on ssDNA of 8 to 10 nucleotides (the hRPA8-10nt complex) and appeared to bind ssDNA cooperatively. Intriguingly, alteration of gel shift conditions revealed the formation of a second, distinctly different complex that bound ssDNA in roughly 30-nucleotide steps (the hRPA30nt complex), a complex similar to that described by Kim et al. (C. Kim, R. O. Snyder, and M. S. Wold, Mol. Cell. Biol. 12:3050-3059, 1992). Both the hRPA8-10nt and hRPA30nt complexes can coexist in solution. We speculate that the role of hRPA in DNA metabolism may be modulated through the ability of hRPA to bind ssDNA in these two modes. Images PMID:8196638

  7. RecA-ssDNA filaments supercoil in the presence of single-stranded DNA-binding protein

    SciTech Connect

    Shi Weixian; Larson, Ronald G. . E-mail: rlarson@umich.edu

    2007-06-08

    Using atomic force microscopy (AFM), we find that RecA-single-stranded DNA (RecA-ssDNA) filaments, in the presence of single-stranded DNA-binding (SSB) protein, organize into left-handed bundles, which differ from the previously reported disordered aggregates formed when SSB is excluded from the reaction. In addition, we see both left- and right-handedness on bundles of two filaments. These two-filament supercoils, individual filaments, and other smaller bundles further organize into more complicated bundles, showing overall left-handedness which cannot be explained by earlier arguments that presumed supercoiling is absent in RecA-ssDNA filaments. This novel finding and our previous results regarding supercoiling of RecA-double-stranded DNA (RecA-dsDNA) filaments are, however, consistent with each other and can possibly be explained by the intrinsic tendency of RecA-DNA filaments, in their fully coated form, to order themselves into helical bundles, independent of the DNA inside the filaments (ssDNA or dsDNA). RecA-RecA interactions may dominate the bundling process, while the original conformation of DNA inside filaments and other factors (mechanical properties of filaments, concentration of filaments, and Mg{sup 2+} concentration) could contribute to the variation in the appearance and pitch of supercoils. The tendency of RecA-DNA filaments to form ordered supercoils and their presence during strand exchange suggest a possible biological importance of supercoiled filaments.

  8. Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean.

    PubMed

    Tucker, Kimberly P; Parsons, Rachel; Symonds, Erin M; Breitbart, Mya

    2011-05-01

    Knowledge of marine phages is highly biased toward double-stranded DNA (dsDNA) phages; however, recent metagenomic surveys have also identified single-stranded DNA (ssDNA) phages in the oceans. Here, we describe two complete ssDNA phage genomes that were reconstructed from a viral metagenome from 80 m depth at the Bermuda Atlantic Time-series Study (BATS) site in the northwestern Sargasso Sea and examine their spatial and temporal distributions. Both genomes (SARssφ1 and SARssφ2) exhibited similarity to known phages of the Microviridae family in terms of size, GC content, genome organization and protein sequence. PCR amplification of the replication initiation protein (Rep) gene revealed narrow and distinct depth distributions for the newly described ssDNA phages within the upper 200 m of the water column at the BATS site. Comparison of Rep gene sequences obtained from the BATS site over time revealed changes in the diversity of ssDNA phages over monthly time scales, although some nearly identical sequences were recovered from samples collected 4 years apart. Examination of ssDNA phage diversity along transects through the North Atlantic Ocean revealed a positive correlation between genetic distance and geographic distance between sampling sites. Together, the data suggest fundamental differences between the distribution of these ssDNA phages and the distribution of known marine dsDNA phages, possibly because of differences in host range, host distribution, virion stability, or viral evolution mechanisms and rates. Future work needs to elucidate the host ranges for oceanic ssDNA phages and determine their ecological roles in the marine ecosystem. PMID:21124487

  9. The single-stranded DNA-binding protein of Deinococcus radiodurans

    PubMed Central

    Eggington, Julie Malia; Haruta, Nami; Wood, Elizabeth Anne; Cox, Michael Matthew

    2004-01-01

    Background Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored. Results A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer. Conclusions The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus

  10. Follow-up of antibodies against single-stranded DNA in patients with haematological malignancies.

    PubMed Central

    Kostiala, A A; Gripenberg, M; Elonen, E; Gripenberg, G; Kostiala, I

    1985-01-01

    Antibodies against single-stranded DNA (ssDNA) were followed by enzyme-linked immunosorbent assay in weekly serum samples of 39 patients with acute myeloid leukaemia (AML), 11 with acute lymphatic leukaemia (ALL) and 26 with other haematological malignancies. Their frequency and mean level during the entire follow-up were higher than in sera of healthy blood donors. Patients with AML had the highest levels and prevalence of anti-ssDNA antibodies, i.e. overall frequencies of IgG class antibodies in patients with AML, ALL and other haematological malignancies were 97%, 82% and 58%, respectively. Antibodies of IgM class were less frequently found. Prevalence and levels of anti-ssDNA antibodies were already at least as high in newly diagnosed malignancies as later during the course of the disease. Following bacterial septicaemias, these antibodies were significantly low. No consistent correlations between levels of anti-Candida antibodies formed in response to fungal infections or concentrations of serum immunoglobulins and anti-ssDNA antibodies were found. PMID:3876179

  11. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    PubMed Central

    2011-01-01

    Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses) via horizontal gene transfer (HGT). It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA) viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep)-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts. PMID:21943216

  12. Diversity and Abundance of Single-Stranded DNA Viruses in Human Feces▿†

    PubMed Central

    Kim, Min-Soo; Park, Eun-Jin; Roh, Seong Woon; Bae, Jin-Woo

    2011-01-01

    In this study, we investigated the abundance and diversity of single-stranded DNA (ssDNA) viruses in fecal samples from five healthy individuals through a combination of serial filtration and CsCl gradient ultracentrifugation. Virus abundance ranged from 108 to 109 per gram of feces, and virus-to-bacterium ratios were much lower (less than 0.1) than those observed in aquatic environments (5 to 10). Viral DNA was extracted and randomly amplified using phi29 polymerase and analyzed through high-throughput 454 pyrosequencing. Among 400,133 sequences, an average of 86.2% viromes were previously uncharacterized in public databases. Among previously known viruses, double-stranded DNA podophages (52 to 74%), siphophages (11 to 30%), myophages (1 to 4%), and ssDNA microphages (3 to 9%) were major constituents of human fecal viromes. A phylogenetic analysis of 24 large contigs of microphages based on conserved capsid protein sequences revealed five distinct newly discovered evolutionary microphage groups that were distantly related to previously known microphages. Moreover, putative capsid protein sequences of five contigs were closely related to prophage-like sequences in the genomes of three Bacteroides and three Prevotella strains, suggesting that Bacteroides and Prevotella are the sources of infecting microphages in their hosts. PMID:21948823

  13. Multicopy single-stranded DNA directs intestinal colonization of enteric pathogens

    SciTech Connect

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. G.; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.

  14. Multicopy single-stranded DNA directs intestinal colonization of enteric pathogens

    SciTech Connect

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. Garry; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.; Fang, Ferric C.

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.

  15. Multicopy single-stranded DNA directs intestinal colonization of enteric pathogens

    DOE PAGESBeta

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. Garry; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.; et al

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking itsmore » retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.« less

  16. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.

    PubMed

    Martin, Willis; Zhu, Wusheng; Krilov, Goran

    2008-12-18

    Recent discovery that single-stranded DNA (ssDNA) binds to carbon nanotubes with high affinity to form soluble hybrids has received great attention as a promising approach to solving the long-standing problem of nanotube solubilization and separation. The mechanism of this process, including the nature of the DNA-nanotube interactions and the molecular structure of the hybrids is still not well understood. Here, we use all-atom replica-exchange molecular dynamics simulations to study the association of several ssDNA decamers with single-walled carbon nanotubes of different chirality in an aqueous environment. The oligonucleotides are found to readily adsorb onto the nanotube surface, after which they undergo a slow structural rearrangement. Cluster analysis of bound DNA conformations as well as population distribution maps computed as a function of several local and global order parameters show that the hybrids exhibit a complex morphology with DNA strands assuming a number of distinct backbone geometries, which depend on both DNA sequence and nanotube diameter. In contrast, the nucleotide bases are found to align parallel to the nanotube surface with a high degree of orientational order. While the binding appears to be primarily driven by energetically favorable pi-stacking of DNA bases onto the nanotube surface, equilibrium distribution of hybrid conformations is modulated by a complex interplay of forces, including the DNA conformational strain and solvent interactions. As a result, the hybrid free-energy landscapes are found to be rugged, with multiple low-lying minima separated by high barriers, several of which are significantly populated at room temperature. Qualitative differences are observed in free energy profiles of purine- and pyrimidine-based oligonucleotide sequences and are attributed to the difference in self-stacking propensity of the bases.

  17. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  18. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    PubMed Central

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  19. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    PubMed

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  20. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    SciTech Connect

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N. . E-mail: micano@ibb.unesp.br

    2007-06-29

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.

  1. Structural modifications of gold thin films produced by thiol-derivatized single-stranded DNA immobilization.

    PubMed

    Arroyo-Hernández, María; Svec, Martin; Rogero, Celia; Briones, Carlos; Martín-Gago, José Angel; Costa-Krämer, José Luis

    2014-02-01

    Recent experiments have reported an opposite sign of the differential surface stress produced on gold-coated cantilevers by a thiol-derivatized single-stranded DNA (SH-DNA) immobilization process. The sign of the surface stress depends on the method used to evaporate the gold thin film, being compressive (negative) or tensile (positive) for e-beam or resistively deposited gold, respectively. This study investigates the origin of this effect by means of a combination of x-ray diffraction and x-ray photoelectron spectroscopy. Both e-beam and resistively grown gold thin films are characterized to find the subtle differences responsible for this intriguing stress behaviour. Somewhat remarkably, these studies show a tight relation between the surface structure of the gold overlayer and the SH-DNA immobilization efficiency. The average grain size variation seems to correlate well with the differential surface stress triggered by the SH-DNA immobilization previously reported. These results suggest that the relation of the probe molecules with the surface structure must be considered to understand surface stress changes. PMID:24440831

  2. Diffusion, Dispersion, and Mobility of Single-stranded DNA in Polyacrylamide Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lo, Roger; Ugaz, Victor

    2004-03-01

    The ability to perform DNA electrophoresis in miniaturized microfluidic systems has the potential to provide a new generation of low-cost high-throughput genomic analysis technology. Further progress toward improving separation performance under these conditions, however, requires a more detailed understanding of diffusion and dispersion phenomena in the gel matrix. Unfortunately, it has thus far proven difficult to obtain extensive measurements of these quantities due in large part to the lack of a convenient experimental platform. In this paper, we demonstrate the use of microfabricated gel electrophoresis devices to measure diffusion, dispersion, and mobility of single-stranded DNA fragments in crosslinked and uncrosslinked polyacrylamide gels. The microdevice format allows a complete set of diffusion and dispersion data to be collected in approximately one hour, as opposed to experiment times lasting several days using conventional sequencing equipment. By comparing runs using identical DNA samples, gel formulations, and operating conditions in both microfabricated electrophoresis devices and an ALF Express automated DNA sequencer, we are able to isolate the key factors governing separation performance in each system. The results of these experiments are then compared with biased reptation theory to extract information about the gel structure and predict achievable resolution. The effects of gel composition and polymerization chemistry are also explored.

  3. Persistence length and scaling properties of single-stranded DNA adsorbed on modified graphite.

    PubMed

    Rechendorff, Kristian; Witz, Guillaume; Adamcik, Jozef; Dietler, Giovanni

    2009-09-01

    We have characterized the polymer physics of single-stranded DNA (ssDNA) using atomic force microscopy. The persistence length l(p) of circular ssDNA adsorbed on a modified graphite surface was determined independently of secondary structure. At a very low ionic strength we obtained l(p)=9.1 nm from the bond correlation function. Increasing the salt concentration lead to a decrease in l(p); at 1 mM NaCl we found l(p)=6.7 nm, while at 10 mM NaCl a value l(p)=4.6 nm was obtained. The persistence length was also extracted from the root-mean-square end-to-end distance and the end-to-end distance distribution function. Finally, we have investigated the scaling behavior using the two latter quantities, and found that on long length scales ssDNA behaves as a two-dimensional self-avoiding walk.

  4. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against Atrazine

    PubMed Central

    Williams, Ryan M.; Crihfield, Cassandra L.; Gattu, Srikanth; Holland, Lisa A.; Sooter, Letha J.

    2014-01-01

    Widespread use of the chlorotriazine herbicide, atrazine, has led to serious environmental and human health consequences. Current methods of detecting atrazine contamination are neither rapid nor cost-effective. In this work, atrazine-specific single-stranded DNA (ssDNA) molecular recognition elements (MRE) were isolated. We utilized a stringent Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology that placed the greatest emphasis on what the MRE should not bind to. After twelve rounds of SELEX, an atrazine-specific MRE with high affinity was obtained. The equilibrium dissociation constant (Kd) of the ssDNA sequence is 0.62 ± 0.21 nM. It also has significant selectivity for atrazine over atrazine metabolites and other pesticides found in environmentally similar locations and concentrations. Furthermore, we have detected environmentally relevant atrazine concentrations in river water using this MRE. The strong affinity and selectivity of the selected atrazine-specific ssDNA validated the stringent SELEX methodology and identified a MRE that will be useful for rapid atrazine detection in environmental samples. PMID:25196435

  5. Structural modifications of gold thin films produced by thiol-derivatized single-stranded DNA immobilization.

    PubMed

    Arroyo-Hernández, María; Svec, Martin; Rogero, Celia; Briones, Carlos; Martín-Gago, José Angel; Costa-Krämer, José Luis

    2014-02-01

    Recent experiments have reported an opposite sign of the differential surface stress produced on gold-coated cantilevers by a thiol-derivatized single-stranded DNA (SH-DNA) immobilization process. The sign of the surface stress depends on the method used to evaporate the gold thin film, being compressive (negative) or tensile (positive) for e-beam or resistively deposited gold, respectively. This study investigates the origin of this effect by means of a combination of x-ray diffraction and x-ray photoelectron spectroscopy. Both e-beam and resistively grown gold thin films are characterized to find the subtle differences responsible for this intriguing stress behaviour. Somewhat remarkably, these studies show a tight relation between the surface structure of the gold overlayer and the SH-DNA immobilization efficiency. The average grain size variation seems to correlate well with the differential surface stress triggered by the SH-DNA immobilization previously reported. These results suggest that the relation of the probe molecules with the surface structure must be considered to understand surface stress changes.

  6. Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae

    PubMed Central

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137

  7. In vitro selection of a single-stranded DNA molecular recognition element against atrazine.

    PubMed

    Williams, Ryan M; Crihfield, Cassandra L; Gattu, Srikanth; Holland, Lisa A; Sooter, Letha J

    2014-08-18

    Widespread use of the chlorotriazine herbicide, atrazine, has led to serious environmental and human health consequences. Current methods of detecting atrazine contamination are neither rapid nor cost-effective. In this work, atrazine-specific single-stranded DNA (ssDNA) molecular recognition elements (MRE) were isolated. We utilized a stringent Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology that placed the greatest emphasis on what the MRE should not bind to. After twelve rounds of SELEX, an atrazine-specific MRE with high affinity was obtained. The equilibrium dissociation constant (Kd) of the ssDNA sequence is 0.62 ± 0.21 nM. It also has significant selectivity for atrazine over atrazine metabolites and other pesticides found in environmentally similar locations and concentrations. Furthermore, we have detected environmentally relevant atrazine concentrations in river water using this MRE. The strong affinity and selectivity of the selected atrazine-specific ssDNA validated the stringent SELEX methodology and identified a MRE that will be useful for rapid atrazine detection in environmental samples.

  8. Study on the electrical control of graphene with single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Young June; Jung, Youngmo; Choi, Jaebin; Lim, Chaehyun; Lee, Taikjin; Kim, Jae Hun; Seo, Minah; Yi, Jong Chang; Lee, Seok; Kim, Chulki

    2015-07-01

    Graphene is a promising material for its exceptional electrical and mechanical properties. Starting with the initial demonstration of isolating a single graphene sheet from graphite, much progress has been made in realizing graphene based devices for diverse applications. Here, we introduce an experiment in which the electrical properties of graphene are modified by coating different-sequence single-stranded deoxyribonucleic acid (ssDNA) molecules. We fabricated a graphene-field effect transistor (FET) by transferring CVD graphene on copper foil onto a Si/SiO2 wafer. A passivation layer opened up windows on the surface of the graphene to enable interaction with liquid buffers. ssDNA molecules with different base sequences were coated onto the active graphene channels. We observed a variation in the Dirac voltage of the ssDNA-coated graphene FETs according to the ssDNA base sequences. Electrical control of the graphene FET is obtained via gating effect of the deposited ssDNAs. We conduct a systematic study of this ssDNAinduced gating effect with different base sequences, concentrations, and lengths of molecules, leading to extraction of characteristic parameters of the graphene FET accordingly.

  9. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.

    PubMed

    Shi, Xiaolong; Chen, Congzhou; Li, Xin; Song, Tao; Chen, Zhihua; Zhang, Zheng; Wang, Yanfeng

    2015-11-21

    Precise control of nanostructure is a significant goal shared by supramolecular chemistry, nanotechnology and materials science. In DNA nanotechnology, methods of constructing desired DNA nanostructures using programmable DNA strands have been studied extensively and have become a promising branch of research, but developing universal and low-cost (in the sense of using fewer types of DNA strands) methods remains a challenge. In this work, we propose a novel approach to assemble size-controllable DNA nanoribbons with three types of reusable brick SSTs (single-stranded DNA tiles), where the control of ribbon size is achieved by regulating the concentration ratio between manipulative strands and packed single-stranded DNA tiles. In our method, three types of brick SSTs are sufficient in assembling DNA nanoribbons of different sizes, which is much less than the number of types of unique tile-programmable assembling strategy, thus achieving a universal and low-cost method. The assembled DNA nanoribbons are observed and analyzed by atomic force microscopy (AFM). Experimental observations strongly suggest the feasibility and reliability of our method. PMID:26367111

  10. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.

    PubMed

    Shi, Xiaolong; Chen, Congzhou; Li, Xin; Song, Tao; Chen, Zhihua; Zhang, Zheng; Wang, Yanfeng

    2015-11-21

    Precise control of nanostructure is a significant goal shared by supramolecular chemistry, nanotechnology and materials science. In DNA nanotechnology, methods of constructing desired DNA nanostructures using programmable DNA strands have been studied extensively and have become a promising branch of research, but developing universal and low-cost (in the sense of using fewer types of DNA strands) methods remains a challenge. In this work, we propose a novel approach to assemble size-controllable DNA nanoribbons with three types of reusable brick SSTs (single-stranded DNA tiles), where the control of ribbon size is achieved by regulating the concentration ratio between manipulative strands and packed single-stranded DNA tiles. In our method, three types of brick SSTs are sufficient in assembling DNA nanoribbons of different sizes, which is much less than the number of types of unique tile-programmable assembling strategy, thus achieving a universal and low-cost method. The assembled DNA nanoribbons are observed and analyzed by atomic force microscopy (AFM). Experimental observations strongly suggest the feasibility and reliability of our method.

  11. Replication Protein A: Single-stranded DNA's first responder : Dynamic DNA-interactions allow Replication Protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair

    PubMed Central

    Chen, Ran; Wold, Marc S.

    2015-01-01

    Summary Replication Protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis. PMID:25171654

  12. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1.

    PubMed

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E; Riccio, Amanda A; Pascal, John M; Neuhaus, David

    2015-12-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins. PMID:26626479

  13. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II).

    PubMed Central

    Dreyer, G B; Dervan, P B

    1985-01-01

    The synthesis of a DNA hybridization probe 19 nucleotides in length, equipped with the metal chelator EDTA at C-5 of thymidine in position 10 (indicated by T*) is described. DNA-EDTA 1 has the sequence 5'-T-A-A-C-G-C-A-G-T*-C-A-G-G-C-A-C-C-G-T-3', which is complementary to a 19-nucleotide sequence in the plasmid pBR322. In the presence of Fe(II), O2, and dithiothreitol, DNA-EDTA 1 affords specific cleavage (25 degrees C, pH 7.4, 60 min) at its complementary sequence in a heat-denatured 167-base-pair restriction fragment. Cleavage occurs over a range of 16 nucleotides at the site of hybridization of 1, presumably due to a diffusible reactive species. No other cleavage sites are observed in the 167-base-pair restriction fragment. The procedure used to synthesize DNA-EDTA probes is based on the incorporation of a thymidine modified at C-5 with the triethyl ester of EDTA. By using routine phosphoramidite procedures, thymidine-EDTA can be incorporated into oligodeoxynucleotides of any desired length and sequence. Because the efficiency of the DNA cleavage reaction is dependent on the addition of both Fe(II) and reducing agent (dithiothreitol), the initiation of the cleavage reaction can be controlled. These DNA-EDTA X Fe(II) probes should be useful for the sequence-specific cleavage of single-stranded DNA (and most likely RNA) under mild conditions. Images PMID:3919391

  14. Isolation and Characterization of a Single-Stranded DNA Virus Infecting Chaetoceros lorenzianus Grunow▿

    PubMed Central

    Tomaru, Yuji; Takao, Yoshitake; Suzuki, Hidekazu; Nagumo, Tamotsu; Koike, Kanae; Nagasaki, Keizo

    2011-01-01

    Diatoms are one of the most significant primary producers in the ocean, and the importance of viruses as a potential source of mortality for diatoms has recently been recognized. Thus far, eight different diatom viruses infecting the genera Rhizosolenia and Chaetoceros have been isolated and characterized to different extents. We report the isolation of a novel diatom virus (ClorDNAV), which causes the lysis of the bloom-forming species Chaetoceros lorenzianus, and show its physiological, morphological, and genomic characteristics. The free virion was estimated to be ∼34 nm in diameter. The arrangement of virus particles appearing in cross-section was basically a random aggregation in the nucleus. Occasionally, distinctive formations such as a ring-like array composed of 9 or 10 spherical virions or a centipede-like array composed of rod-shaped particles were also observed. The latent period and the burst size were estimated to be <48 h and 2.2 × 104 infectious units per host cell, respectively. ClorDNAV harbors a covalently closed circular single-stranded DNA (ssDNA) genome (5,813 nucleotides [nt]) that includes a partially double-stranded DNA region (979 nt). At least three major open reading frames were identified; one showed a high similarity to putative replicase-related proteins of the other ssDNA diatom viruses, Chaetoceros salsugineum DNA virus (previously reported as CsNIV) and Chaetoceros tenuissimus DNA virus. ClorDNAV is the third member of the closed circular ssDNA diatom virus group, the genus Bacilladnavirus. PMID:21666026

  15. Isolation and characterization of a single-stranded DNA virus infecting Chaetoceros lorenzianus Grunow.

    PubMed

    Tomaru, Yuji; Takao, Yoshitake; Suzuki, Hidekazu; Nagumo, Tamotsu; Koike, Kanae; Nagasaki, Keizo

    2011-08-01

    Diatoms are one of the most significant primary producers in the ocean, and the importance of viruses as a potential source of mortality for diatoms has recently been recognized. Thus far, eight different diatom viruses infecting the genera Rhizosolenia and Chaetoceros have been isolated and characterized to different extents. We report the isolation of a novel diatom virus (ClorDNAV), which causes the lysis of the bloom-forming species Chaetoceros lorenzianus, and show its physiological, morphological, and genomic characteristics. The free virion was estimated to be ∼34 nm in diameter. The arrangement of virus particles appearing in cross-section was basically a random aggregation in the nucleus. Occasionally, distinctive formations such as a ring-like array composed of 9 or 10 spherical virions or a centipede-like array composed of rod-shaped particles were also observed. The latent period and the burst size were estimated to be <48 h and 2.2 × 10(4) infectious units per host cell, respectively. ClorDNAV harbors a covalently closed circular single-stranded DNA (ssDNA) genome (5,813 nucleotides [nt]) that includes a partially double-stranded DNA region (979 nt). At least three major open reading frames were identified; one showed a high similarity to putative replicase-related proteins of the other ssDNA diatom viruses, Chaetoceros salsugineum DNA virus (previously reported as CsNIV) and Chaetoceros tenuissimus DNA virus. ClorDNAV is the third member of the closed circular ssDNA diatom virus group, the genus Bacilladnavirus.

  16. Distinct circular single-stranded DNA viruses exist in different soil types.

    PubMed

    Reavy, Brian; Swanson, Maud M; Cock, Peter J A; Dawson, Lorna; Freitag, Thomas E; Singh, Brajesh K; Torrance, Lesley; Mushegian, Arcady R; Taliansky, Michael

    2015-06-15

    The potential dependence of virus populations on soil types was examined by electron microscopy, and the total abundance of virus particles in four soil types was similar to that previously observed in soil samples. The four soil types examined differed in the relative abundances of four morphological groups of viruses. Machair, a unique type of coastal soil in western Scotland and Ireland, differed from the others tested in having a higher proportion of tailed bacteriophages. The other soils examined contained predominantly spherical and thin filamentous virus particles, but the Machair soil had a more even distribution of the virus types. As the first step in looking at differences in populations in detail, virus sequences from Machair and brown earth (agricultural pasture) soils were examined by metagenomic sequencing after enriching for circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) virus genomes. Sequences from the family Microviridae (icosahedral viruses mainly infecting bacteria) of CRESS-DNA viruses were predominant in both soils. Phylogenetic analysis of Microviridae major coat protein sequences from the Machair viruses showed that they spanned most of the diversity of the subfamily Gokushovirinae, whose members mainly infect obligate intracellular parasites. The brown earth soil had a higher proportion of sequences that matched the morphologically similar family Circoviridae in BLAST searches. However, analysis of putative replicase proteins that were similar to those of viruses in the Circoviridae showed that they are a novel clade of Circoviridae-related CRESS-DNA viruses distinct from known Circoviridae genera. Different soils have substantially different taxonomic biodiversities even within ssDNA viruses, which may be driven by physicochemical factors.

  17. Spatially programmed assembling of oxidoreductases with single-stranded DNA for cofactor-required reactions.

    PubMed

    Wang, Tianwen David; Ma, Fei; Ma, Xingyuan; Wang, Ping

    2015-04-01

    Cofactor is especially important for biotransformation catalyzed by oxidoreductases. Many attempts in enhancing performance of the reactions by improving cofactor utilization have been reported. In this study, efficiency of cofactor-requiring biocatalysis was enhanced by improving cofactor recycling via spatially programmed assembling glycerol dehydrogenase (GlyDH, Escherichia coli MG1655) and glutamate dehydrogenase (GluDH, Bacillus subtilis str168), with the aid of single-stranded DNA (ssDNA). The two enzymes were first independently expressed as molecules fused with a phage protein A* that could covalently link ssDNA with certain features. After an enzymatic cross-linking reaction taking place under mild conditions, the conjugate of fused enzyme and ssDNA was assembled into desired structures through base pairing enabled by the ssDNA. Results showed that, to some extent, the fusion with protein A* could improve the specific activity of the enzymes (GlyDH-A*/GlyDH = 116.0 %; GluDH-A*/GluDH = 105.2 %). Additionally, in the coupled reaction system with glycerol and α-ketoglutaric acid as substrates, regarding the production of glutamic acid based on HPLC analysis, the efficiency of cofactor utilization was significantly enhanced (by 23.8- to 41.9-folds), indicating the existence of a substrate-channeling mechanism for cofactor utilization in the assembled reaction system due to the proximity effects. The degree of substrate channeling was calculated as from 1.65 to 1.73. Furthermore, the efficiency of cofactor utilization was influenced in an architecture-dependent manner when complexes with different stoichiometry of GlyDH and GluDH were utilized in biotransformation. This study demonstrated a novel strategy of cofactor recycling for enhanced performance of coupled oxidoreductive reactions.

  18. Selection and Characterization of Single Stranded DNA Aptamers for the Hormone Abscisic Acid

    PubMed Central

    Gonzalez, Victor M.; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M.; Bellotti, Marta; Zocchi, Elena

    2013-01-01

    The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98±0.14 μM and 0.80±0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays. PMID:23971905

  19. O-hydroxylamine-coupled alkaline gel electrophoresis assay for the detection and measurement of DNA single-strand breaks.

    PubMed

    Luke, April M; Nakamura, Jun

    2012-01-01

    The ability to detect and measure DNA single-strand breaks has been the aim of numerous assays developed to assess genotoxicity. These methods often rely on alkaline conditions to denature DNA. However, alkaline treatment of DNA also introduces artifactual SSBs through the cleavage of alkali-labile sites resulting in confounded data. Here, we describe a modified alkaline gel electrophoresis assay coupled with a neutral O-hydroxylamine to obtain the measurement of true SSB formation.

  20. Assembly of pyrene-modified DNA/RNA duplexes incorporating a G-rich single strand region.

    PubMed

    Seio, Kohji; Tokugawa, Munefumi; Tsunoda, Hirosuke; Ohkubo, Akihiro; Arisaka, Fumio; Sekine, Mitsuo

    2013-12-15

    The structural properties of a DNA/RNA duplex having a pyrene residue at the 5' end of DNA and a G-rich single strand region at the 3' end of RNA were studied in detail. Fluorescence and ultracentrifugation analyses indicated the formation of a complex containing four DNA/RNA duplexes, which required a pyrene residue, G-rich sequence, RNA-type backbone, and high salt concentration. PMID:24183539

  1. Covalent adduct formation between the antihypertensive drug hydralazine and abasic sites in double- and single-stranded DNA.

    PubMed

    Melton, Douglas; Lewis, Calvin D; Price, Nathan E; Gates, Kent S

    2014-12-15

    Hydralazine (4) is an antihypertensive agent that displays both mutagenic and epigenetic properties. Here, gel electrophoretic, mass spectroscopic, and chemical kinetics methods were used to provide evidence that medicinally relevant concentrations of 4 rapidly form covalent adducts with abasic sites in double- and single-stranded DNA under physiological conditions. These findings raise the intriguing possibility that the genotoxic properties of this clinically used drug arise via reactions with an endogenous DNA lesion rather than with the canonical structure of DNA.

  2. Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule

    SciTech Connect

    Changela, A.; Digate, R.J.; Mondragon, A.

    2010-03-05

    A variety of cellular processes, including DNA replication, transcription, and chromosome condensation, require enzymes that can regulate the ensuing topological changes occurring in DNA. Such enzymes - DNA topoisomerases - alter DNA topology by catalysing the cleavage of single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), the passage of DNA through the resulting break, and the rejoining of the broken phosphodiester backbone. DNA topoisomerase III from Escherichia coli belongs to the type IA family of DNA topoisomerases, which transiently cleave ssDNA via formation of a covalent 5' phosphotyrosine intermediate. Here we report the crystal structure, at 2.05 {angstrom} resolution, of an inactive mutant of E. coli DNA topoisomerase III in a non-covalent complex with an 8-base ssDNA molecule. The enzyme undergoes a conformational change that allows the oligonucleotide to bind within a groove leading to the active site. We note that the ssDNA molecule adopts a conformation like that of B-DNA while bound to the enzyme. The position of the DNA within the realigned active site provides insight into the role of several highly conserved residues during catalysis. These findings confirm various aspects of the type IA topoisomerase mechanism while suggesting functional implications for other topoisomerases and proteins that perform DNA rearrangements.

  3. Minisatellite binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein.

    PubMed Central

    Collick, A; Dunn, M G; Jeffreys, A J

    1991-01-01

    Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes. Images PMID:1754375

  4. The androgen receptor is transcriptionally suppressed by proteins that bind single-stranded DNA.

    PubMed

    Grossmann, M E; Tindall, D J

    1995-05-01

    The androgen receptor (AR) is a nuclear transcription factor that is essential for development of the male urogenital tract. In the current work, we have characterized the mouse androgen receptor suppressor (mARS). A single, 20-base pair, region (TCCCCCCACCCACCCCC-CCT) was sufficient for suppression in chloramphenicol acetyltransferase assays. Northern analysis indicated that translational regulation is not necessary for the suppression. Analysis of the AR mRNA half-life indicated that the mARS does not affect AR RNA degradation. Gel mobility assays showed that the mARS is bound by multiple proteins that can recognize single-stranded DNA and RNA. In addition, differing proteins are expressed in distinct tissues. Purification of some of these proteins has shown that a doublet of 33 and 35 kDa binds to the G-rich strand and that a 52-kDa protein binds to the C-rich strand. Southwestern blots have confirmed that these proteins are indeed recognized by the mARS. The results of these experiments indicate that the AR 5'-untranslated region contains a suppressor element that can be bound by multiple proteins. The mARS appears to be acting either by altering transcription initiation or blocking transcription elongation. Characterization of this suppressor may provide insight into the physiological means by which the AR is regulated.

  5. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis.

    PubMed

    Bienert, Ralf; Zeeb, Markus; Dostál, Lubomir; Feske, Anette; Magg, Christine; Max, Klaas; Welfle, Heinz; Balbach, Jochen; Heinemann, Udo

    2004-04-01

    The cold-shock response has been described for several bacterial species. It is characterized by distinct changes in intracellular protein patterns whereby a set of cold-shock-inducible proteins become abundant. The major cold-shock proteins of Bacillus subtilis (Bs-CspB) and Bacillus caldolyticus (Bc-Csp) are small oligonucleotide/oligosaccharide-binding (OB) fold proteins that have been described as binding single-stranded nucleic acids. Bs-CspB (Mr = 7365) and Bc-Csp (Mr = 7333) were crystallized in the presence of the deoxyhexanucleotide (dT)6. Crystals of (dT)6 with Bs-CspB grew in the orthorhombic space group C222(1), with unit-cell parameters a = 49.0, b = 53.2, c = 77.0 A. Crystals with Bc-Csp grew in the primitive orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 74.3, b = 64.9, c = 31.2 A. These crystals diffract to maximal resolutions of 1.78 and 1.29 A, respectively. The presence of protein and DNA in the crystals was demonstrated by Raman spectroscopy.

  6. Application of motif-based tools on evolutionary analysis of multipartite single-stranded DNA viruses.

    PubMed

    Wang, Hsiang-Iu; Chang, Chih-Hung; Lin, Po-Heng; Fu, Hui-Chuan; Tang, Chuanyi; Yeh, Hsin-Hung

    2013-01-01

    Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV) (consisting of 6 genome components) and Faba bean necrotic yellows virus (FBNYV) (consisting of 8 genome components). Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses.

  7. Application of Motif-Based Tools on Evolutionary Analysis of Multipartite Single-Stranded DNA Viruses

    PubMed Central

    Wang, Hsiang-Iu; Chang, Chih-Hung; Lin, Po-Heng; Fu, Hui-Chuan; Tang, ChuanYi; Yeh, Hsin-Hung

    2013-01-01

    Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV) (consisting of 6 genome components) and Faba bean necrotic yellows virus (FBNYV) (consisting of 8 genome components). Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses. PMID:23936517

  8. Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets.

    PubMed

    Kuhn, Heiko; Demidov, Vadim V; Coull, James M; Fiandaca, Mark J; Gildea, Brian D; Frank-Kamenetskii, Maxim D

    2002-02-13

    Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions containing various concentrations of NaCl and MgCl(2). We demonstrate that different molecular beacons respond differently to the change of salt concentration, which could be attributed to the differences in their backbones and constructions. We have found that the stemless PNA beacon hybridizes rapidly to the complementary oligodeoxynucleotide and is less sensitive than the DNA beacons to the change of salt thus allowing effective detection of nucleic acid targets under various conditions. Though we found stemless DNA beacons improper for diagnostic purposes due to high background fluorescence, we believe that use of these DNA and similar RNA constructs in molecular-biophysical studies may be helpful for analysis of conformational flexibility of single-stranded nucleic acids. With the aid of PNA "openers", molecular beacons were employed for the detection of a chosen target sequence directly in double-stranded DNA (dsDNA). Conditions are found where the stemless PNA beacon strongly discriminates the complementary versus mismatched dsDNA targets. Together with the insensitivity of PNA beacons to the presence of salt and DNA-binding/processing proteins, the latter results demonstrate the potential of these probes as robust tools for recognition of specific sequences within dsDNA without denaturation and deproteinization of duplex DNA.

  9. (Analysis of proteins essential for Agrobacterium mediated DNA transfer to plant cells). [Single-stranded DNA binding proteins

    SciTech Connect

    Not Available

    1989-12-14

    The tumor inducing (Ti) plasmid of Agrobacterium contains two regions important for infection and transformation of plant cells. One region, the T-DNA, is transferred as a single strand into the plant cell, while the virulence (vir) region is responsible for recognition of susceptible cells, synthesis of the T-DNA single strand (T-strand), formation of a T-strand protein complex and transfer of this complex into susceptible cells. A DNA binding protein, VirE2, was identified as a product of the vir region. Sequencing of the 9000 kilobase pair virB region has been completed. Expression of 10 of the predicted 11 open reading frames (ORFs) was demonstrated in Escherichia coli. Translational coupling was demonstrated for 5 ORFs. Hydropathy analysis indicates that 9 of 11 ORFs have hydrophobic regions that could permit membrane channel formation. In related work, analysis of protons that potentiate movement of plant viruses was discussed, with indications that the tobacco mosaic virus (TMV) protein P30 may mediate transfer of TMV RNA through plasmadesmata. Also, using the T-DNA element as a marker, genes responsible for abnormal flower development are being cloned and isolated. 3 refs. (MHB)

  10. The Structure of DdrB from Deinococcus: a New Fold for Single-stranded DNA Binding Proteins

    SciTech Connect

    Sugiman-Marangos, S.; Junop, M

    2010-01-01

    Deinococcus spp. are renowned for their amazing ability to recover rapidly from severe genomic fragmentation as a result of exposure to extreme levels of ionizing radiation or desiccation. Despite having been originally characterized over 50 years ago, the mechanism underlying this remarkable repair process is still poorly understood. Here, we report the 2.8 {angstrom} structure of DdrB, a single-stranded DNA (ssDNA) binding protein unique to Deinococcus spp. that is crucial for recovery following DNA damage. DdrB forms a pentameric ring capable of binding single-stranded but not double-stranded DNA. Unexpectedly, the crystal structure reveals that DdrB comprises a novel fold that is structurally and topologically distinct from all other single-stranded binding (SSB) proteins characterized to date. The need for a unique ssDNA binding function in response to severe damage, suggests a distinct role for DdrB which may encompass not only standard SSB protein function in protection of ssDNA, but also more specialized roles in protein recruitment or DNA architecture maintenance. Possible mechanisms of DdrB action in damage recovery are discussed.

  11. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    NASA Astrophysics Data System (ADS)

    Shokri, Leila; Rouzina, Ioulia; Williams, Mark C.

    2009-06-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork.

  12. Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy.

    PubMed

    Adamcik, Jozef; Klinov, Dmitry V; Witz, Guillaume; Sekatskii, Sergey K; Dietler, Giovanni

    2006-10-16

    Atomic force microscopy was used to image single-stranded DNA (ssDNA) adsorbed on mica modified by Mg(2+), by 3-aminopropyltriethoxysilane or on modified highly oriented pyrolytic graphite (HOPG). ssDNA molecules on mica have compact structures with lumps, loops and super twisting, while on modified HOPG graphite ssDNA molecules adopt a conformation without secondary structures. We have shown that the immobilization of ssDNA under standard conditions on modified HOPG eliminates intramolecular base-pairing, thus this method could be important for studying certain processes involving ssDNA in more details.

  13. DNA single strand breaks in peripheral lymphocytes associated with urinary thiodiglycolic acid levels in polyvinyl chloride workers.

    PubMed

    Lei, Yu-Chen; Yang, Huei-Ting; Ma, Yee-Chung; Huang, Ming-Feng; Chang, Wushou P; Cheng, Tsun-Jen

    2004-07-11

    The association between vinyl chloride monomer (VCM) exposure and DNA damage has been established. However, the relationship between individual exposure and DNA single strand breaks was limited. Since environmental monitoring may not reflect the actual exposure, a useful marker of exposure is needed to assess the individual exposure. In our previous study, we have found a high correlation between air VCM level and urinary thiodiglycolic acid (TdGA) at the commencement of the next shift. Here, we further used comet assay to evaluate the relationship between urinary TdGA levels and DNA single strand breaks in polyvinyl chloride monomer (PVC) workers. Urinary TdGA levels (n=26) at the commencement of the following shift were analyzed. Ten of the 26 workers also had personal air sampling for air VCM exposure. Questionnaires were administered to obtain epidemiological information including detailed history of occupation and lifestyles. Workers experiencing air VCM level greater than 5 ppm had higher tail moment and tail intensity (%) than those experiencing VCM exposure between 1 and 5, or <1 ppm, respectively (P < 0.05). The results also revealed that level of DNA single strand breaks, including tail moment and tail intensity, were increased with urinary TdGA level. The dose-response relationship of urinary TdGA level and DNA single strand breaks was particularly significant among the workers with 4 mg/g Cr of urinary TdGA level, which is equivalent to 5 ppm air VCM level. We concluded that air VCM exposure greater than 5 ppm could induce DNA damage. Further sensitive assay should be developed for the diction of DNA damage when air VCM exposure below 5 ppm.

  14. Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore.

    PubMed

    Japrung, Deanpen; Henricus, Marsiyana; Li, Qiuhong; Maglia, Giovanni; Bayley, Hagan

    2010-05-19

    The staphylococcal alpha-hemolysin (alphaHL) protein nanopore is under investigation as a fast, cheap detector for nucleic acid analysis and sequencing. Although discrimination of all four bases of DNA by the alphaHL pore has been demonstrated, analysis of single-stranded DNAs and RNAs containing secondary structure mediated by basepairing is prevented because these nucleic acids cannot be translocated through the pore. Here, we show that a structured 95-nucleotide single-stranded DNA and its RNA equivalent are translocated through the alphaHL pore in the presence of 4 M urea, a concentration that denatures the secondary structure of the polynucleotides. The alphaHL pore is functional even in 7 M urea, and therefore it is easily stable enough for analyses of challenging DNA and RNA species. PMID:20441749

  15. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma

    PubMed Central

    Burnham, Philip; Kim, Min Seong; Agbor-Enoh, Sean; Luikart, Helen; Valantine, Hannah A.; Khush, Kiran K.; De Vlaminck, Iwijn

    2016-01-01

    Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in the plasma of lung transplant recipients (40 samples, six patients). We found that ssDNA library preparation yields a greater portion of sub-100 bp nuclear genomic cfDNA (p 10−5, Mann-Whitney U Test), and an increased relative abundance of mitochondrial (10.7x, p 10−5) and microbial cfDNA (71.3x, p 10−5). The higher yield of microbial sequences from this method increases the sensitivity of cfDNA-based monitoring for infections following transplantation. We detail the fragmentation pattern of mitochondrial, nuclear genomic and microbial cfDNA over a broad fragment length range. We report the observation of donor-specific mitochondrial cfDNA in the circulation of lung transplant recipients. A ssDNA library preparation method provides a more informative window into understudied forms of cfDNA, including mitochondrial and microbial derived cfDNA and short nuclear genomic cfDNA, while retaining information provided by standard dsDNA library preparation methods. PMID:27297799

  16. Cisplatin GG-crosslinks within single-stranded DNA: origin of the preference for left-handed helicity.

    PubMed

    Monnet, Jordan; Kozelka, Jiří

    2012-10-01

    Molecular dynamics (MD) simulations of the single-stranded DNA trinucleotide TG*G*, with the G* guanines crosslinked by the antitumor drug cisplatin, were performed with explicit representation of the water as solvent. The purpose of the simulations was to explain previous NMR observations indicating that in single-stranded cisplatin-DNA adducts, the crosslinked guanines adopt a left-handed helical orientation, whereas in duplexes, the orientation is right-handed. The analysis of the MD trajectory of TG*G* has ascribed a crucial role to hydrogen-bonding (direct or through-water) interactions of the 5'-oriented NH(3) ligand of platinum with acceptor groups at the 5'-side of the crosslink, namely the TpG* phosphate and the terminal 5'-OH group. These interactions bring about some strain into the trinucleotide which is slightly but significantly (1-1.5 kcal.mol(-1)) higher for the right-handed orientation than for the left-handed one. During the unconstrained, 3 ns long MD simulation, left-handed conformations were ~15 times more abundant than the right-handed ones. This sampling difference agrees roughly with the calculated energy difference in strain energy. Overall, these results show that the Pt-GG crosslink within single-stranded DNA is malleable and can access different conformations at a moderate energy cost. This malleability could be of importance in interactions between the platinated DNA and cellular proteins, in which the DNA is locally unwound.

  17. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways

    PubMed Central

    Suksombat, Sukrit; Khafizov, Rustem; Kozlov, Alexander G; Lohman, Timothy M; Chemla, Yann R

    2015-01-01

    Escherichia coli single-stranded (ss)DNA binding (SSB) protein mediates genome maintenance processes by regulating access to ssDNA. This homotetrameric protein wraps ssDNA in multiple distinct binding modes that may be used selectively in different DNA processes, and whose detailed wrapping topologies remain speculative. Here, we used single-molecule force and fluorescence spectroscopy to investigate E. coli SSB binding to ssDNA. Stretching a single ssDNA-SSB complex reveals discrete states that correlate with known binding modes, the likely ssDNA conformations and diffusion dynamics in each, and the kinetic pathways by which the protein wraps ssDNA and is dissociated. The data allow us to construct an energy landscape for the ssDNA-SSB complex, revealing that unwrapping energy costs increase the more ssDNA is unraveled. Our findings provide insights into the mechanism by which proteins gain access to ssDNA bound by SSB, as demonstrated by experiments in which SSB is displaced by the E. coli recombinase RecA. DOI: http://dx.doi.org/10.7554/eLife.08193.001 PMID:26305498

  18. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.

    PubMed

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B

    2016-09-09

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.

  19. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides.

    PubMed

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B

    2016-01-01

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9. PMID:27609304

  20. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides

    PubMed Central

    Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia; Bloh, Kevin; Man, Dula; Kmiec, Eric B.

    2016-01-01

    The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9. PMID:27609304

  1. Observation of spermidine-induced attractive forces in self-assembled monolayers of single stranded DNA using a microcantilever sensor

    NASA Astrophysics Data System (ADS)

    Mertens, J.; Tamayo, J.; Kosaka, P.; Calleja, M.

    2011-04-01

    Despite the biological relevance, the physical origin of attraction between highly negatively charged DNA strands in condensation remains an open question. We have used microcantilever sensors to study the forces involved in DNA condensation by spermidine. The experiments were performed under flow conditions with gold-coated cantilevers sensitized with thiolated single stranded DNA. The experiments show that above a critical concentration of spermidine, the DNA strands abruptly experiences large attractive forces. The critical spermidine concentration for the transition increases with the monovalent salt concentration. The experiments provide a direct insight of the forces responsible of condensation.

  2. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response.

    PubMed

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-10-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  3. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA

    PubMed Central

    Wierer, Sebastian; Daldrop, Peter; Ud Din Ahmad, Misbha; Boos, Winfried; Drescher, Malte; Welte, Wolfram; Seidel, Ralf

    2016-01-01

    In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure. PMID:27214207

  4. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA.

    PubMed

    Wierer, Sebastian; Daldrop, Peter; Ud Din Ahmad, Misbha; Boos, Winfried; Drescher, Malte; Welte, Wolfram; Seidel, Ralf

    2016-01-01

    In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.

  5. Negatively supercoiled DNA from plants infected with a single-stranded DNA virus.

    PubMed

    Sunter, G; Coutts, R H; Buck, K W

    1984-02-14

    A method for isolating covalently closed circular double-stranded DNA from plants infected with the geminivirus, tomato golden mosaic virus, is described. Ethidium bromide titration showed this DNA to be negatively supercoiled with a superhelical density of -0.062. The presence of S1 nuclease-sensitive secondary structure in the supercoiled DNA was demonstrated by its conversion to the open circular and linear DNA forms on treatment with this enzyme.

  6. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.

  7. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA. PMID:27311715

  8. The RecOR proteins modulate RecA protein function at 5' ends of single-stranded DNA.

    PubMed

    Bork, J M; Cox, M M; Inman, R B

    2001-12-17

    The Escherichia coli RecF, RecO and RecR pro teins have previously been implicated in bacterial recombinational DNA repair at DNA gaps. The RecOR-facilitated binding of RecA protein to single-stranded DNA (ssDNA) that is bound by single-stranded DNA-binding protein (SSB) is much faster if the ssDNA is linear, suggesting that a DNA end (rather than a gap) facilitates binding. In addition, the RecOR complex facilitates RecA protein-mediated D-loop formation at the 5' ends of linear ssDNAs. RecR protein remains associated with the RecA filament and its continued presence is required to prevent filament disassembly. RecF protein competes with RecO protein for RecR protein association and its addition destabilizes RecAOR filaments. An enhanced function of the RecO and RecR proteins can thus be seen in vitro at the 5' ends of linear ssDNA that is not as evident in DNA gaps. This function is countered by the RecF/RecO competition for association with the RecR protein. PMID:11743007

  9. Effects of DNA sequence and structure on binding of RecA to single-stranded DNA.

    PubMed

    Bar-Ziv, R; Libchaber, A

    2001-07-31

    Fluorescence anisotropy is used to follow the binding of RecA to short single-stranded DNA (ssDNA) sequences (39 bases) at low DNA and RecA concentration where the initial phase of polymerization occurs. We observe that RecA condensation is extremely sensitive to minute changes in DNA sequences. RecA binds strongly to sequences that are rich in pyrimidines and that lack significant secondary structure and base stacking. We find a correlation between the DNA folding free energy and the onset concentration for RecA binding. These results suggest that the folding of ssDNA and base stacking represent a barrier for RecA binding. The link between secondary structure and binding affinity is further analyzed with two examples: discrimination between two naturally occurring polymorphisms differing by one base and RecA binding on a molecular beacon. A self-assembly model is introduced to explain these observations. We propose that RecA may be used to sense ssDNA sequence and structure.

  10. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    SciTech Connect

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  11. The Adsorption of Short Single-Stranded DNA Oligomers on Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Kopstein, M.; Sverjensky, D. A.; Hazen, R. M.; Cleaves, H. J.

    2009-12-01

    Previous studies have described feasible pathways for the synthesis of simple organic building blocks such as formaldehyde and hydrogen cyanide, and their reaction to form more complex biomolecules such as nucleotide bases, amino acids and sugars (Miller and Orgel 1974, Miller and Cleaves 2006). However, the polymerization of monomers into a useful genetic material remains problematic (Orgel 2004). Organic building blocks were unlikely to polymerize from very dilute aqueous solution in the primitive oceans. Mineral surface adsorption has been suggested as a possible mechanism for concentrating the necessary building blocks (Bernal 1951). This study focused on the adsorption behavior of single-stranded DNA homo-oligomers of adenine and thymine (including the monomers, dimers, tetramers, hexamers, octomers, and decamers) with five different mineral surfaces (pyrite, rutile, hematite, olivine and calcite). Adsorption was studied in 0.1 M pH 8.1 KHCO3 with0.05 M NaCl as background electrolyte. Solutions were mixed for 24 hours at room temperature, centrifuged and the supernatants analyzed by UV/visible spectrophotometry. Equilibrium solution concentrations were measured and used to determine the number of moles adsorbed per square meter. Langmuir isotherms were constructed using the experimental data. It was found that adenine-containing molecules tend to bind much more strongly than thymine-containing molecules. It was also found that the number of moles adsorbed at saturation tends to fall with increasing chain length, while adsorption affinity tends to rise. Oligomer length appears to affect adsorption more than the mineral type. These results may have implications for the primordial organization of the first nucleic acid molecules as the persistence of extra-cellular nucleic acids in the environment. References Bernal, J. D. (1951) The Physical Basis of Life (Routledge, London). Miller S.L. and Cleaves, H.J. (2006) Prebiotic chemistry on the primitive Earth. In

  12. Plasmodium falciparum SSB tetramer wraps single-stranded DNA with similar topology but opposite polarity to E. coli SSB.

    PubMed

    Antony, Edwin; Weiland, Elizabeth A; Korolev, Sergey; Lohman, Timothy M

    2012-07-20

    Single-stranded DNA binding (SSB) proteins play central roles in genome maintenance in all organisms. Plasmodium falciparum, the causative agent of malaria, encodes an SSB protein that localizes to the apicoplast and likely functions in the replication and maintenance of its genome. P. falciparum SSB (Pf-SSB) shares a high degree of sequence homology with bacterial SSB proteins but differs in the composition of its C-terminus, which interacts with more than a dozen other proteins in Escherichia coli SSB (Ec-SSB). Using sedimentation methods, we show that Pf-SSB forms a stable homo-tetramer alone and when bound to single-stranded DNA (ssDNA). We also present a crystal structure at 2.1 Å resolution of the Pf-SSB tetramer bound to two (dT)(35) molecules. The Pf-SSB tetramer is structurally similar to the Ec-SSB tetramer, and ssDNA wraps completely around the tetramer with a "baseball seam" topology that is similar to Ec-SSB in its "65 binding mode". However, the polarity of the ssDNA wrapping around Pf-SSB is opposite to that observed for Ec-SSB. The interactions between the bases in the DNA and the amino acid side chains also differ from those observed in the Ec-SSB-DNA structure, suggesting that other differences may exist in the DNA binding properties of these structurally similar proteins.

  13. Sub-diffusive electronic transport in a DNA single-strand chain with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Sales, M. O.; Lyra, M. L.; de Moura, F. A. B. F.; Fulco, U. L.; Albuquerque, E. L.

    2015-01-01

    We investigate the electronic wavepacket dynamics in a finite segment of a DNA single-strand chain considering the electron-phonon coupling. Our theoretical approach makes use of an effective tight-binding Hamiltonian to describe the electron dynamics, together with a classical harmonic Hamiltonian to treat the intrinsic DNA vibrations. An effective time-dependent Schrödinger equation is then settled up and solved numerically for an initially localized wave-packet using the standard Dormand-Prince eighth-order Runge-Kutta method. Our numerical results indicate the presence of a sub-diffusive electronic wavepacket spread mediated by the electron-phonon interaction.

  14. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    PubMed

    Chan, Kin; Sterling, Joan F; Roberts, Steven A; Bhagwat, Ashok S; Resnick, Michael A; Gordenin, Dmitry A

    2012-01-01

    Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA) is more prone to damage than double-strand DNA (dsDNA), due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions accurately.

  15. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure

    PubMed Central

    Goto, Yusuke; Haga, Takanobu; Yanagi, Itaru; Yokoi, Takahide; Takeda, Ken-ichi

    2015-01-01

    DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This decelerating effect originates from the strong interaction between ssDNA and the chemical group on the surface of the bead. This nanostructure was simply prepared by dip coating in which a substrate with a nanopore was immersed in a silica bead solution and then dried in an oven. As compared with conventional approaches, our novel method is less laborious, simpler to perform and more effective in reducing ssDNA translocation speed. PMID:26559466

  16. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure

    NASA Astrophysics Data System (ADS)

    Goto, Yusuke; Haga, Takanobu; Yanagi, Itaru; Yokoi, Takahide; Takeda, Ken-Ichi

    2015-11-01

    DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This decelerating effect originates from the strong interaction between ssDNA and the chemical group on the surface of the bead. This nanostructure was simply prepared by dip coating in which a substrate with a nanopore was immersed in a silica bead solution and then dried in an oven. As compared with conventional approaches, our novel method is less laborious, simpler to perform and more effective in reducing ssDNA translocation speed.

  17. FBXL5-mediated degradation of single-stranded DNA-binding protein hSSB1 controls DNA damage response.

    PubMed

    Chen, Zhi-Wei; Liu, Bin; Tang, Nai-Wang; Xu, Yun-Hua; Ye, Xiang-Yun; Li, Zi-Ming; Niu, Xiao-Min; Shen, Sheng-Ping; Lu, Shun; Xu, Ling

    2014-10-01

    Human single-strand (ss) DNA binding proteins 1 (hSSB1) has been shown to participate in DNA damage response and maintenance of genome stability by regulating the initiation of ATM-dependent signaling. ATM phosphorylates hSSB1 and prevents hSSB1 from ubiquitin-proteasome-mediated degradation. However, the E3 ligase that targets hSSB1 for destruction is still unknown. Here, we report that hSSB1 is the bona fide substrate for an Fbxl5-containing SCF (Skp1-Cul1-F box) E3 ligase. Fbxl5 interacts with and targets hSSB1 for ubiquitination and degradation, which could be prevented by ATM-mediated hSSB1 T117 phosphorylation. Furthermore, cells overexpression of Fbxl5 abrogated the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets and exhibited increased radiosensitivity, chemosensitivity and defective checkpoint activation after genotoxic stress stimuli. Moreover, the protein levels of hSSB1 and Fbxl5 showed an inverse correlation in lung cancer cells lines and clinical lung cancer samples. Therefore, Fbxl5 may negatively modulate hSSB1 to regulate DNA damage response, implicating Fbxl5 as a novel, promising therapeutic target for lung cancers.

  18. Bacillus subtilis RecO Nucleates RecA onto SsbA-coated Single-stranded DNA*

    PubMed Central

    Manfredi, Candela; Carrasco, Begoña; Ayora, Silvia; Alonso, Juan C.

    2008-01-01

    Subsaturating amounts of Bacillus subtilis SsbA, independently of the order of addition, partially inhibit the single-stranded DNA-dependent dATPase activity of RecA. This negative effect is fully overcome when a substoichiometric amount of RecO is added. SsbA added prior to RecA does not stimulate the dATP-dependent DNA strand exchange activity; however, added after RecA it enhances the extent of strand exchange. The addition of RecO stimulates RecA-mediated joint molecule formation, although it limits the accumulation of final recombination products. Thus we suggest that RecO has a dual activity: RecO acts as a RecA mediator enabling RecA to utilize SsbA-coated single-stranded DNA as a polymerization substrate and controls RecA-mediated DNA strand exchange by limiting its extent. We herein discuss the possible mechanisms of RecO involvement in the regulation of double strand break repair and genetic transformation. PMID:18599486

  19. Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA.

    PubMed

    Manfredi, Candela; Carrasco, Begoña; Ayora, Silvia; Alonso, Juan C

    2008-09-01

    Subsaturating amounts of Bacillus subtilis SsbA, independently of the order of addition, partially inhibit the single-stranded DNA-dependent dATPase activity of RecA. This negative effect is fully overcome when a substoichiometric amount of RecO is added. SsbA added prior to RecA does not stimulate the dATP-dependent DNA strand exchange activity; however, added after RecA it enhances the extent of strand exchange. The addition of RecO stimulates RecA-mediated joint molecule formation, although it limits the accumulation of final recombination products. Thus we suggest that RecO has a dual activity: RecO acts as a RecA mediator enabling RecA to utilize SsbA-coated single-stranded DNA as a polymerization substrate and controls RecA-mediated DNA strand exchange by limiting its extent. We herein discuss the possible mechanisms of RecO involvement in the regulation of double strand break repair and genetic transformation. PMID:18599486

  20. The Cys4 zinc finger of bacteriophage T7 primase in sequence-specific single-stranded DNA recognition

    PubMed Central

    Kusakabe, Takahiro; Hine, Anna V.; Hyberts, Sven G.; Richardson, Charles C.

    1999-01-01

    Bacteriophage T7 DNA primase recognizes 5′-GTC-3′ in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5′-GTC-3′ and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reveals that T7 primase selectively binds CTP in the absence of DNA. We propose that bound CTP selects the remaining base G, of 5′-GTC-3′, by base pairing. Our deduced mechanism for recognition of ssDNA by Cys4 motifs bears little resemblance to the recognition of trinucleotides of double-stranded DNA by Cys2His2 zinc fingers. PMID:10200256

  1. Single-stranded DNA detection by solvent-induced assemblies of a metallo-peptide-based complex

    NASA Astrophysics Data System (ADS)

    Das, Priyadip; Reches, Meital

    2016-05-01

    DNA detection is highly important for the sensitive sensing of different pathogenic bacteria and viruses. The major challenge is to create a sensor that can selectively detect very small concentrations of DNA without the need for amplification or complicated equipment. Different technologies such as optical, electrochemical and microgravimetric approaches can detect DNA fragments. Here we show, for the first time, the use of self-assembled nanostructures generated by a metallo-peptide as an optical sensing platform for DNA detection. The system can selectively detect single stranded DNA fragments by fluorescence measurements as it can discriminate even one base mismatch and can perform in the presence of other interfering proteins. This system may be useful in lab-on-a-chip applications.DNA detection is highly important for the sensitive sensing of different pathogenic bacteria and viruses. The major challenge is to create a sensor that can selectively detect very small concentrations of DNA without the need for amplification or complicated equipment. Different technologies such as optical, electrochemical and microgravimetric approaches can detect DNA fragments. Here we show, for the first time, the use of self-assembled nanostructures generated by a metallo-peptide as an optical sensing platform for DNA detection. The system can selectively detect single stranded DNA fragments by fluorescence measurements as it can discriminate even one base mismatch and can perform in the presence of other interfering proteins. This system may be useful in lab-on-a-chip applications. Electronic supplementary information (ESI) available: Peptide and receptor synthesis, characterization of the final and intermediate products, experimental details and additional figures including SEM, TEM, DLS, XRD, UV analysis and AFM topographic analysis. See DOI: 10.1039/c5nr07714a

  2. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions.

    PubMed

    Bosco, Alessandro; Camunas-Soler, Joan; Ritort, Felix

    2014-02-01

    Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.

  3. A distinct single-stranded DNA-binding protein encoded by the Lactococcus lactis bacteriophage bIL67.

    PubMed

    Szczepanska, Agnieszka K; Bidnenko, Elena; Płochocka, Danuta; McGovern, Stephen; Ehrlich, S Dusko; Bardowski, Jacek; Polard, Patrice; Chopin, Marie-Christine

    2007-06-20

    Single-stranded binding proteins (SSBs) are found to participate in various processes of DNA metabolism in all known organisms. We describe here a SSB protein encoded by the Lactococcus lactis phage bIL67 orf14 gene. It is the first noted attempt at characterizing a SSB protein from a lactococcal phage. The purified Orf14(bIL67) binds unspecifically to ssDNA with the same high affinity as the canonical Bacillus subtilis SSB. Electrophoretic mobility-shift assays performed with mutagenized Orf14(bIL67) protein derivatives suggest that ssDNA-binding occurs via a putative OB-fold structure predicted by three-dimensional modeling. The native Orf14(bIL67) forms homotetramers as determined by gel filtration studies. These results allow distinguishing the first lactococcal phage protein with single-strand binding affinity, which defines a novel cluster of phage SSBs proteins. The possible role of Orf14(bIL67) in phage multiplication cycle is also discussed.

  4. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions

    PubMed Central

    Bosco, Alessandro; Camunas-Soler, Joan; Ritort, Felix

    2014-01-01

    Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces. PMID:24225314

  5. Charge transport and photoresponses in a single-stranded DNA/single-walled carbon nanotube composite film

    NASA Astrophysics Data System (ADS)

    Hong, Wonseon; Lee, Eunmo; Kue Park, Jun; Eui Lee, Cheol

    2013-06-01

    Electrical conductivity and photoresponse measurements have been carried out on a single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite film in comparison to those of a SWNT film. While the temperature-dependent electrical conductivity of the pristine SWNT film was described well by the combined mechanism of a three-dimensional variable-range hopping and hopping conduction, that of the ssDNA/SWNT composite film followed a fluctuation-induced tunneling model. Besides, competition of photoexcited charge carrier generation and oxygen adsorption/photodesorption in the photoresponses of the films was observed and discussed in view of the role of the DNA wrapping. Thus, the biopolymer coating of the SWNTs is shown to play a significant role in modifying the charge dynamics of the composite system.

  6. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells.

    PubMed

    Sundberg, C; Meek, L; Carroll, K; Das, A; Ream, W

    1996-02-01

    Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1. PMID:8576060

  7. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells.

    PubMed Central

    Sundberg, C; Meek, L; Carroll, K; Das, A; Ream, W

    1996-01-01

    Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1. PMID:8576060

  8. Naphthalenedicarboxamides as fluorescent probes of inter- and intramolecular electron transfer in single strand, hairpin, and duplex DNA

    SciTech Connect

    Lewis, F.D.; Zhang, Y.; Liu, X.; Xu, N.; Letsinger, R.L.

    1999-04-01

    The 2,6-naphthalenedicarboxamide chromophore has been investigated as a fluorescent probe for DNA hairpin and duplex formation and DNA electron transfer. The high fluorescence quantum yield and long singlet lifetime of this chromophore make it an attractive candidate for these studies. The kinetics of intermolecular quenching of a naphthalenedicarboxamide by nucleosides is dependent upon the nucleoside oxidation potential and solvent. Bis(oligonucleotide) conjugates containing naphthalene linkers have been prepared by means of conventional phosphoramidite chemistry. The base-sequence dependence of the naphthalene fluorescence intensity and decay times in both single-strand and hairpin conjugates indicates that singlet naphthalene is quenched by neighboring dA more efficiently than by dT, in accord with an electron-transfer quenching mechanism. These data are analyzed by means of a three-state model which includes a nonemissive dark state. Duplexes formed between complementary naphthalene-linked oligonucleotides display naphthalene excimer emission. The base-sequence dependence of the excimer emission quantum yields indicates that the excimer is not quenched by neighboring dA but that distance-dependent electron-transfer quenching by dG may occur. Quenching serves to protect the naphthalene chromophore from photobleaching in both single strand and duplex structures.

  9. New single-stranded DNA virus with a unique genomic structure that infects marine diatom Chaetoceros setoensis.

    PubMed

    Tomaru, Yuji; Toyoda, Kensuke; Suzuki, Hidekazu; Nagumo, Tamotsu; Kimura, Kei; Takao, Yoshitake

    2013-11-26

    Diatoms are among the most abundant organisms in nature; however, their relationships with single-stranded DNA (ssDNA) viruses have not yet been defined in detail. We report the isolation and characterisation of a virus (CsetDNAV) that lytically infects the bloom-forming diatom Chaetoceros setoensis. The virion is 33 nm in diameter and accumulates in the nucleus of its host. CsetDNAV harbours a covalently closed-circular ssDNA genome comprising 5836 nucleotides and eight different short-complementary fragments (67-145 nucleotides), which have not been reported in other diatom viruses. Phylogenetic analysis based on the putative replicase-related protein showed that CsetDNAV was not included in the monophyly of the recently established genus Bacilladnavirus. This discovery of CsetDNAV, which harbours a genome with a structure that is unique among known viruses that infect diatoms, suggests that other such undiscovered viruses possess diverse genomic architectures.

  10. Blocking Single-Stranded Transferred DNA Conversion to Double-Stranded Intermediates by Overexpression of Yeast DNA REPLICATION FACTOR A1

    PubMed Central

    Levy, Avner; Dafny, Raz; Tzfira, Tzvi

    2015-01-01

    Agrobacterium tumefaciens delivers its single-stranded transferred DNA (T-strand) into the host cell nucleus, where it can be converted into double-stranded molecules. Various studies have revealed that double-stranded transfer DNA (T-DNA) intermediates can serve as substrates by as yet uncharacterized integration machinery. Nevertheless, the possibility that T-strands are themselves substrates for integration cannot be ruled out. We attempted to block the conversion of T-strands into double-stranded intermediates prior to integration in order to further investigate the route taken by T-DNA molecules on their way to integration. Transgenic tobacco (Nicotiana benthamiana) plants that overexpress three yeast (Saccharomyces cerevisiae) protein subunits of DNA REPLICATION FACTOR A (RFA) were produced. In yeast, these subunits (RFA1–RFA3) function as a complex that can bind single-stranded DNA molecules, promoting the repair of genomic double strand breaks. Overexpression of the RFA complex in tobacco resulted in decreased T-DNA expression, as determined by infection with A. tumefaciens cells carrying the β-glucuronidase intron reporter gene. Gene expression was not blocked when the reporter gene was delivered by microbombardment. Enhanced green fluorescent protein-assisted localization studies indicated that the three-protein complex was predominantly nuclear, thus indicating its function within the plant cell nucleus, possibly by binding naked T-strands and blocking their conversion into double-stranded intermediates. This notion was further supported by the inhibitory effect of RFA expression on the cell-to-cell movement of Bean dwarf mosaic virus, a single-stranded DNA virus. The observation that RFA complex plants dramatically inhibited the transient expression level of T-DNA and only reduced T-DNA integration by 50% suggests that double-stranded T-DNA intermediates, as well as single-stranded T-DNA, play significant roles in the integration process. PMID

  11. 5′-Single-stranded/duplex DNA junctions are loading sites for E. coli UvrD translocase

    PubMed Central

    Tomko, Eric J; Jia, Haifeng; Park, Jeehae; Maluf, Nasib K; Ha, Taekjip; Lohman, Timothy M

    2010-01-01

    Escherichia coli UvrD is a 3′–5′ superfamily 1A helicase/translocase involved in a variety of DNA metabolic processes. UvrD can function either as a helicase or only as an single-stranded DNA (ssDNA) translocase. The switch between these activities is controlled in vitro by the UvrD oligomeric state; a monomer has ssDNA translocase activity, whereas at least a dimer is needed for helicase activity. Although a 3′-ssDNA partial duplex provides a high-affinity site for a UvrD monomer, here we show that a monomer also binds with specificity to DNA junctions possessing a 5′-ssDNA flanking region and can initiate translocation from this site. Thus, a 5′-ss–duplex DNA junction can serve as a high-affinity loading site for the monomeric UvrD translocase, whereas a 3′-ss–duplex DNA junction inhibits both translocase and helicase activity of the UvrD monomer. Furthermore, the 2B subdomain of UvrD is important for this junction specificity. This highlights a separation of helicase and translocase function for UvrD and suggests that a monomeric UvrD translocase can be loaded at a 5′-ssDNA junction when translocation activity alone is needed. PMID:20877334

  12. The molecular structure of agrobacterium VirE2-single stranded DNA complexes involved in nuclear import.

    PubMed

    Citovsky, V; Guralnick, B; Simon, M N; Wall, J S

    1997-09-01

    Nuclear import of DNA is a central event in genetic transformation of plant cells by Agrobacterium tumefaciens. Agrobacterium elicits tumors on plant hosts by transporting a single-stranded (ss) copy of the bacterial transferred DNA (T-DNA) from its Ti (tumor-inducing) plasmid into the plant cell nucleus. Presumably, the process of T-DNA nuclear import is mediated by two agrobacterium proteins, VirD2 and VirE2, which are thought to directly associate with the transported T-DNA. Both proteins have been shown to contain functional nuclear localizations signals (NLS). Recently, VirE2 alone has been shown to actively transport ssDNA into the plant cell nucleus. To understand the process of DNA nuclear import, it is important to know the structure of the transport intermediate. To this end, complexes of VirE2 and ssDNA were analyzed by scanning transmission electron microscopy (STEM). This analysis suggests that VirE2 packages ssDNA into semi-rigid, hollow cylindrical filaments with a telephone cord-like coiled structure. The outer diameter of these complexes is too large to enter the nucleus by diffusion but is within the size exclusion limits of the active nuclear import. Detailed mass analysis of VirE2-ssDNA filaments is presented and a structural model is proposed. PMID:9299322

  13. Molecular dynamics simulation of a single-stranded DNA with heterogeneous distribution of nucleobases in aqueous medium

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Mantha, Sriteja; Bandyopadhyay, Sanjoy

    2013-08-01

    The DNA metabolic processes often involve single-stranded DNA (ss-DNA) molecules as important intermediates. In the absence of base complementarity, ss-DNAs are more flexible and interact strongly with water in aqueous media. Ss-DNA-water interactions are expected to control the conformational flexibility of the DNA strand, which in turn should influence the properties of the surrounding water molecules. We have performed room temperature molecular dynamics simulation of an aqueous solution containing the ss-DNA dodecamer, 5'-CGCGAATTCGCG-3'. The conformational flexibility of the DNA strand and the microscopic structure and ordering of water molecules around it have been explored. The simulation reveals transformation of the initial base-stacked form of the ss-DNA to a fluctuating collapsed coil-like conformation with the formation of a few non-sequentially stacked base pairs. A preliminary analysis shows further collapse of the DNA conformation in presence of additional salt (NaCl) due to screening of negative charges along the backbone by excess cations. Additionally, higher packing of water molecules within a short distance from the DNA strand is found to be associated with realignment of water molecules by breaking their regular tetrahedral ordering.

  14. Involvement of single-stranded tails in homologous recombination of DNA injected into Xenopus laevis oocyte nuclei.

    PubMed Central

    Maryon, E; Carroll, D

    1991-01-01

    Homologous recombination of DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient when those molecules are linear and have overlapping homologous ends. It was previously shown that a 5'----3' exonuclease activity in oocytes attacks injected linear DNAs and leaves them with single-stranded 3' tails. We tested the hypothesis that such tailed molecules are early intermediates on the pathway to recombination products. Substrates with 3' tails were made in vitro and injected into oocytes, where they recombined rapidly and efficiently. In experiments with mixed substrates, molecules with 3' tails entered recombination intermediates and products more rapidly than did molecules with flush ends. Molecules endowed in vitro with 5' tails also recombined efficiently in oocytes, but their rate was not faster than for flush-ended substrates. In most cases, the 5' tails served as templates for resynthesis of the 3' strands, regenerating duplex ends which then entered the normal recombination pathway. In oocytes from one animal, some of the 5' tails were removed, and this was exacerbated when resynthesis was partially blocked. Analysis by two-dimensional gel electrophoresis of recombination intermediates from 5'-tailed substrates confirmed that they had acquired 3' tails as a result of the action of the 5'----3' exonuclease. These results demonstrate that homologous recombination in oocytes proceeds via a pathway that involves single-stranded 3' tails. Molecular models incorporating this feature are discussed. Images PMID:2038330

  15. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2.

    PubMed

    Hodges, Larry D; Cuperus, Josh; Ream, Walt

    2004-05-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2. PMID:15126468

  16. Effects of proton irradiation on single-stranded DNA studied by using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, E.; Lee, Cheol Eui; Han, J. H.

    2016-08-01

    X-ray photoelectron spectroscopy (XPS) has been employed in order to study the effects of proton irradiation on herring sperm single-stranded DNA. Systematic changes of the chemical shifts in the C, N, O, and P XPS line components as functions of the irradiation dose were observed, indicative of the bonding configurations in the DNA system. While the C 1 s XPS lines showed weak blueshifts, the N 1 s, O 1 s, and P 2 p XPS lines showed blueshifts with a marked dependence on the irradiation dose in a prominent manner. Our results show that linear energy transfer by charged particles and photons may have distinct molecular-level effects as the C 1 s, N 1 s, O 1 s, and P 2 p XPS lines showed redshifts in our previous study of effects of the γ-ray irradiation on the same system.

  17. Discovery, Prevalence, and Persistence of Novel Circular Single-Stranded DNA Viruses in the Ctenophores Mnemiopsis leidyi and Beroe ovata.

    PubMed

    Breitbart, Mya; Benner, Bayleigh E; Jernigan, Parker E; Rosario, Karyna; Birsa, Laura M; Harbeitner, Rachel C; Fulford, Sidney; Graham, Carina; Walters, Anna; Goldsmith, Dawn B; Berger, Stella A; Nejstgaard, Jens C

    2015-01-01

    Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton. PMID:26733971

  18. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  19. Discovery, Prevalence, and Persistence of Novel Circular Single-Stranded DNA Viruses in the Ctenophores Mnemiopsis leidyi and Beroe ovata

    PubMed Central

    Breitbart, Mya; Benner, Bayleigh E.; Jernigan, Parker E.; Rosario, Karyna; Birsa, Laura M.; Harbeitner, Rachel C.; Fulford, Sidney; Graham, Carina; Walters, Anna; Goldsmith, Dawn B.; Berger, Stella A.; Nejstgaard, Jens C.

    2015-01-01

    Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton. PMID:26733971

  20. Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins.

    PubMed

    Yadav, Tribhuwan; Carrasco, Begoña; Myers, Angela R; George, Nicholas P; Keck, James L; Alonso, Juan C

    2012-07-01

    We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation. PMID:22373918

  1. Purification and characterization of a protein from Saccharomyces cerevisiae that binds tightly to single-stranded DNA and stimulates a cognate strand exchange protein.

    PubMed

    Heyer, W D; Kolodner, R D

    1989-04-01

    A single-stranded DNA binding protein (yeast SSB protein) was purified to near-homogeneity from mitotic Saccharomyces cerevisiae cells. The Mr 34,000 protein specifically eluted at high salt (approximately 1200 mM NaCl) during chromatography on a single-stranded DNA-cellulose column. The protein formed stable complexes with single-stranded DNA in an apparent cooperative fashion. As judged from titration and competition experiments, the affinity of the protein was much higher for single-stranded DNA than for double-stranded DNA or single-stranded RNA. The SSB protein also was found to stimulate the strand exchange reaction between linear M13mp19 RF DNA and circular M13mp19 viral DNA as catalyzed by a yeast strand exchange protein previously purified in this laboratory [Kolodner, R., Evans, D. H., & Morrison, P. T. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5660-5664]. Titration experiments showed maximum stimulation of joint molecule formation at a stoichiometry of about 1 Mr 34,000 monomer yeast SSB per 18 nucleotides of single-stranded DNA. Kinetic experiments demonstrated at least an 18-fold increase in the rate of strand exchange due to the presence of the SSB in reactions where the amount of strand exchange protein was limiting. The yeast SSB protein stimulated the Escherichia coli RecA protein in the strand exchange reaction involving linear M13mp19 RF DNA and circular M13mp19 viral DNA as efficiently as E. coli SSB. However, the E. coli SSB protein did not substitute for the yeast SSB protein in reactions with the yeast strand exchange protein. This suggests that the stimulation of the yeast strand exchange protein by the yeast SSB may involve specific protein/protein interactions.

  2. Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    PubMed Central

    Peeters, Eveline; Siewering, Katja; Hackett, Kathleen T.; Dillard, Joseph P.; van der Does, Chris

    2012-01-01

    Background Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins. Methodology/Principal Findings In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity. Conclusions/Significance We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands. PMID:22536367

  3. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA.

    PubMed

    Hoshina, Shoko; Yura, Kei; Teranishi, Honami; Kiyasu, Noriko; Tominaga, Ayumi; Kadoma, Haruka; Nakatsuka, Ayaka; Kunichika, Tomoko; Obuse, Chikashi; Waga, Shou

    2013-10-18

    Origin recognition complex (ORC), consisting of six subunits ORC1-6, is known to bind to replication origins and function in the initiation of DNA replication in eukaryotic cells. In contrast to the fact that Saccharomyces cerevisiae ORC recognizes the replication origin in a sequence-specific manner, metazoan ORC has not exhibited strict sequence-specificity for DNA binding. Here we report that human ORC binds preferentially to G-quadruplex (G4)-preferable G-rich RNA or single-stranded DNA (ssDNA). We mapped the G-rich RNA-binding domain in the ORC1 subunit, in a region adjacent to its ATPase domain. This domain itself has an ability to preferentially recognize G4-preferable sequences of ssDNA. Furthermore, we found, by structure modeling, that the G-rich RNA-binding domain is similar to the N-terminal portion of AdoMet_MTase domain of mammalian DNA methyltransferase 1. Therefore, in contrast with the binding to double-stranded DNA, human ORC has an apparent sequence preference with respect to its RNA/ssDNA binding. Interestingly, this specificity coincides with the common signature present in most of the human replication origins. We expect that our findings provide new insights into the regulations of function and chromatin binding of metazoan ORCs.

  4. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana

    PubMed Central

    2010-01-01

    Background In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. Conclusion The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR). PMID:20950419

  5. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules.

    PubMed

    Adam, Tijjani; Hashim, U

    2015-05-15

    The study demonstrates the development of a liquid-based gate-control silicon nanowire biosensor for detection of specific single-stranded DNA (ssDNA) molecules. The sensor was fabricated using conventional photolithography coupled with an inductively coupled plasma dry etching process. Prior to the application of DNA to the device, its linear response to pH was confirmed by serial dilution from pH 2 to pH 14. Then, the sensor surface was silanized and directly aminated with (3-aminopropyl) triethoxysilane to create a molecular binding chemistry for biofunctionalization. The resulting Si‒O‒Si‒ components were functionalized with receptor ssDNA, which interacted with the targeted ssDNA to create a field across the silicon nanowire and increase the current. The sensor shows selectivity for the target ssDNA in a linear range from target ssDNA concentrations of 100 pM to 25 nM. With its excellent detection capabilities, this sensor platform is promising for detection of specific biomarkers and other targeted proteins. PMID:25453738

  6. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    NASA Astrophysics Data System (ADS)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  7. Crystal structure of DnaT84–153-dT10 ssDNA complex reveals a novel single-stranded DNA binding mode

    PubMed Central

    Liu, Zheng; Chen, Peng; Wang, Xuejuan; Cai, Gang; Niu, Liwen; Teng, Maikun; Li, Xu

    2014-01-01

    DnaT is a primosomal protein that is required for the stalled replication fork restart in Escherichia coli. As an adapter, DnaT mediates the PriA-PriB-ssDNA ternary complex and the DnaB/C complex. However, the fundamental function of DnaT during PriA-dependent primosome assembly is still a black box. Here, we report the 2.83 Å DnaT84–153-dT10 ssDNA complex structure, which reveals a novel three-helix bundle single-stranded DNA binding mode. Based on binding assays and negative-staining electron microscopy results, we found that DnaT can bind to phiX 174 ssDNA to form nucleoprotein filaments for the first time, which indicates that DnaT might function as a scaffold protein during the PriA-dependent primosome assembly. In combination with biochemical analysis, we propose a cooperative mechanism for the binding of DnaT to ssDNA and a possible model for the assembly of PriA-PriB-ssDNA-DnaT complex that sheds light on the function of DnaT during the primosome assembly and stalled replication fork restart. This report presents the first structure of the DnaT C-terminal complex with ssDNA and a novel model that explains the interactions between the three-helix bundle and ssDNA. PMID:25053836

  8. Investigation of the nanoviscosity effect of a G-quadruplex and single-strand DNA using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Dongkeun; Kim, Minjung; Kim, Soo Yong; Shin, Hyosup; Kim, Sok Won; Park, Inho

    2015-01-01

    Guanine (G)-quadruplexes are of interest because of their presence in the telomere sequence and the oncogene promoter region. Their diffusion and change of structure, especially in high viscosity solutions, are important for understanding their dynamics. G-quadruplexes may have less effective viscosity (nanoviscosity) when they are smaller than the solvent molecules. In this paper, we report the difference in the diffusion dynamics of the G-rich DNA sequences of single-strand DNA (ssDNA) and the G-quadruplex in aqueous, sucrose, and polyethylene glycol (PEG) solutions. From experiments with aqueous and sucrose solutions, we confirm that a simple diffusion model according to the viscosity is appropriate. In the PEG experiments, the nanoviscosity effect is observed according to PEG's molecular weight. In the PEG 200 solution, both the ssDNA and the G-quadruplex possess macroviscosity. In the PEG 10 000 solution, the G-quadruplex possesses nanoviscosity and the ssDNA possesses macroviscosity, whereas, in the PEG 35 000 solution, both ssDNA and the G-quadruplex possess nanoviscosity. The experimental results are consistent with the theoretical predictions.

  9. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis.

    PubMed

    Olszewski, Marcin; Nowak, Marta; Cyranka-Czaja, Anna; Kur, Józef

    2014-01-01

    Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB.

  10. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    PubMed Central

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles. PMID:26506038

  11. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair.

    PubMed

    Ström, Cecilia E; Mortusewicz, Oliver; Finch, David; Parsons, Jason L; Lagerqvist, Anne; Johansson, Fredrik; Schultz, Niklas; Erixon, Klaus; Dianov, Grigory L; Helleday, Thomas

    2011-09-01

    CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the alkylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). We also show that XRCC1(ckm) protein has a higher affinity for DNA than wild type XRCC1 protein and resides in an immobile fraction on DNA, in particular after damage. We propose a model whereby the increased affinity for DNA sequesters XRCC1(ckm) and the repair enzymes associated with it, at the repair site, which retards kinetics of BER. In conclusion, our results indicate that phosphorylation of XRCC1 by CK2 facilitates the BER incision step, likely by promoting dissociation from DNA.

  12. Direct single-stranded DNA binding by Teb1 mediates the recruitment of Tetrahymena thermophila telomerase to telomeres.

    PubMed

    Upton, Heather E; Hong, Kyungah; Collins, Kathleen

    2014-11-15

    The eukaryotic reverse transcriptase telomerase copies its internal RNA template to synthesize telomeric DNA repeats at chromosome ends in balance with sequence loss during cell proliferation. Previous work has established several factors involved in telomerase recruitment to telomeres in yeast and mammalian cells; however, it remains unclear what determines the association of telomerase with telomeres in other organisms. Here we investigate the cell cycle dependence of telomere binding by each of the seven Tetrahymena thermophila telomerase holoenzyme proteins TERT, p65, Teb1, p50, p75, p45, and p19. We observed coordinate cell cycle-regulated recruitment and release of all of the subunits, including the telomeric-repeat DNA-binding subunit Teb1. Using domain truncation and mutagenesis approaches, we investigated which subunits govern the interaction of telomerase holoenzyme with telomeres. Our results show that Teb1 is critical for telomere interaction of other holoenzyme subunits and demonstrate that high-affinity Teb1 DNA-binding activity is necessary and sufficient for cell cycle-regulated telomere association. Overall, these and additional findings indicate that in the ciliate Tetrahymena, telomerase recruitment to telomeres requires direct binding to single-stranded DNA, unlike the indirect DNA recognition through telomere-bound proteins essential in yeast and mammalian cells.

  13. The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases.

    PubMed

    Greetham, Matthew; Skordalakes, Emmanuel; Lydall, David; Connolly, Bernard A

    2015-09-25

    The telomere is present at the ends of all eukaryotic chromosomes and usually consists of repetitive TG-rich DNA that terminates in a single-stranded 3' TG extension and a 5' CA-rich recessed strand. A biochemical assay that allows the in vitro observation of exonuclease-catalyzed degradation (resection) of telomeres has been developed. The approach uses an oligodeoxynucleotide that folds to a stem-loop with a TG-rich double-stranded region and a 3' single-stranded extension, typical of telomeres. Cdc13, the major component of the telomere-specific CST complex, strongly protects the recessed strand from the 5'→3' exonuclease activity of the model exonuclease from bacteriophage λ. The isolated DNA binding domain of Cdc13 is less effective at shielding telomeres. Protection is specific, not being observed in control DNA lacking the specific TG-rich telomere sequence. RPA, the eukaryotic single-stranded DNA binding protein, also inhibits telomere resection. However, this protein is non-specific, equally hindering the degradation of non-telomere controls.

  14. Yields of single-strand breaks in double-stranded calf thymus DNA irradiated in aqueous solution in the presence of oxygen and scavengers

    SciTech Connect

    Udovicic, Lj.; Mark, F.; Bothe, E.

    1994-11-01

    Yields of radiation-induced single-strand breaks in double-stranded calf thymus DNA have been measured as a function of OH scavenger concentration in N{sub 2}O/O{sub 2}-saturated aqueous solution. The experimental data are well represented by a theoretical model based on non-homogeneous reaction kinetics, without the need to adjust any parameter. The good agreement between experimental and theoretical data is taken as evidence that, in the presence of oxygen, the main effect of added scavengers with respect to the formation of single-strand breaks in double-stranded DNA is OH radical scavenging. 30 refs., 3 figs., 1 tab.

  15. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage.

    PubMed

    Zee, Yeng Peng; López-Fernández, Carmen; Arroyo, F; Johnston, Stephen D; Holt, William V; Gosalvez, Jaime

    2009-08-01

    In this study, we have used single and double comet assays to differentiate between single- and double-stranded DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa. We have also investigated the likelihood that single-stranded DNA breakage is part of the natural spermiogenic process in koalas, where its function would be the generation of structural bends in the DNA molecule so that appropriate packaging and compaction can occur. Koala spermatozoa were examined using the sperm chromatin dispersion test (SCDt) and comet assays to investigate non-orthodox double-stranded DNA. Comet assays were conducted under 1) neutral conditions; and 2) neutral followed by alkaline conditions (double comet assay); the latter technique enabled simultaneous visualisation of both single-stranded and double-stranded DNA breaks. Following the SCDt, there was a continuum of nuclear morphotypes, ranging from no apparent DNA fragmentation to those with highly dispersed and degraded chromatin. Dispersion morphotypes were mirrored by a similar diversity of comet morphologies that could be further differentiated using the double comet assay. The majority of koala spermatozoa had nuclei with DNA abasic-like residues that produced single-tailed comets following the double comet assay. The ubiquity of these residues suggests that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with 'true' DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA with a diffuse single tail to nuclei that exhibited both single- and double-stranded breaks with two comet tails. PMID:19494045

  16. Salt Dependence of the Radius of Gyration and Flexibility of Single-stranded DNA in Solution probed by Small-angle X-ray Scattering

    SciTech Connect

    Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2012-07-06

    Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.

  17. Characterization of a complete genome of a circular single-stranded DNA virus from porcine stools in Korea.

    PubMed

    Kim, A Reum; Chung, Hee Chun; Kim, Hye Kwon; Kim, Eun Ok; Nguyen, Van Giap; Choi, Min Gyung; Yang, Hye Jung; Kim, Jung Ah; Park, Bong Kyun

    2014-02-01

    Porcine circular single-stranded DNA viruses have been just identified from swine feces in Korea. This virus was mentioned as bovine stool-associated circular DNA virus (BoSCV)-like virus discovered from porcine stools. However, the thorough characteristics of the virus were not identified. Therefore, this research focuses on finding a full genome sequence and analyzing the genetic features of the virus. The virus, now called porcine stool-associated circular DNA virus in Korea (PoSCV Kor), consists of 2,589 bases forming circular structure. It has two major ORFs inversely encoding replicase and capsid protein, with each stem-loop structure between 5' ends and 3' ends of the two putative ORFs. This characteristics is the same as PoSCV in New Zealand, but different from chimpanzee stool-associated circular virus (ChiSCVs) and BoSCV, which have one stem-loop structure. Therefore, it would be sure that PoSCV Kor is very similar to PoSCV in respect to the genetic aspect; the same number of nucleotide bases and the amino acid identity of replicase and capsid protein (96 and 93 %, respectively). This fact could be certified through the finding that PoSCV Kor and PoSCV are in the same cluster by phylogenetic analysis based on the comparison with full-sequences of other circular ssDNA viruses.

  18. Single-strand DNA binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs

    PubMed Central

    Pandita, Raj K.; Chow, Tracy T.; Udayakumar, Durga; Bain, Amanda L.; Cubeddu, Liza; Hunt, Clayton R.; Shi, Wei; Horikoshi, Nobuo; Zhao, Yong; Wright, Woodring E.; Khanna, Kum Kum; Shay, Jerry W.; Pandita, Tej K.

    2015-01-01

    Proliferating mammalian stem and cancer cells express telomerase (TERT) in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA binding protein SSB1, which has a critical role in DNA double-strand break repair. Here we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacted with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduced TERT interaction with telomeres and lead to G-overhang loss. While SSB1 was recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relied upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. PMID:25589350

  19. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells

    PubMed Central

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-01

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis. PMID:26822533

  20. Single-strand breakage of DNA in UV-irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli.

    PubMed Central

    Tang, M S; Ross, L

    1985-01-01

    We transduced the uvrA6, uvrB5, uvrC34, and uvrC56 markers from the original mutagenized strains into an HF4714 background. Although in the original mutagenized strains uvrA6 cells are more UV sensitive than uvrB5 and uvrC34 cells, in the new background no significant difference in UV sensitivity is observed among uvrA6, uvrB5, and uvrC34 cells. No DNA single-strand breaks are detected in UV-irradiated uvrA6 or uvrB5 cells, whereas in contrast a significant number of single-strand breaks are detected in both UV-irradiated uvrC34 and uvrC56 cells. The number of single-strand breaks in these cells reaches a plateau at 20-J/m2 irradiation. Since these single-strand breaks can be detected by both alkaline sucrose and neutral formamide-sucrose gradient sedimentation, we concluded that the single-strand breaks observed in UV-irradiated uvrC cells are due to phosphodiester bond interruptions in DNA and are not due to apurinic/apyrimidinic sites. PMID:3882671

  1. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.

    PubMed

    Hwu, Jih Ru; Kapoor, Mohit; Li, Rou-Ying; Lin, Yung-Chieh; Horng, Jia-Cherng; Tsay, Shwu-Chen

    2014-12-01

    For the first time ssDNA (25-aptamer of mixed dA, dT, dG, and dC) was wrapped around functionalized single-walled carbon nanotubes (SWCNTs), whose external surfaces were attached to multiple triazole-(ethylene glycol)-dA ligands. This method of hybridization involved the formation of hydrogen bonds between dT of ssDNA and dA of functionalized SWCNTs. It deviates from the reported π-π stacking between the nucleobases of DNA and the external sidewalls of nanotubes. The structural properties of the functionalized SWCNTs and its ssDNA complex were characterized by spectroscopic (including CD and Raman), thermogravimetric, and microscopic (TEM) methods. The results thus obtained establish a new platform of DNA delivery by use of nanotubes as a new vehicle with great potential in biomedical applications and drug development.

  2. Products of ozonized arachidonic acid potentiate the formation of DNA single strand breaks in cultured human lung cells

    SciTech Connect

    Kozumbo, W.J.; Hanley, N.M.; Agarwal, S.

    1996-12-31

    In this study we examined the potential for environmental levels of ozone (O{sub 3}) to degrade arachidonic acid (AA), a polyunsaturated fatty acid abundantly present in the lung, into products that can produce DNA single strand breaks (ssb) in cultured human lung cells. Human lung fibroblasts were incubated with 60 {mu}M AA that had been previously exposed to an degraded by 0.4 ppm O{sub 3} (1 hr). Incubation of the cells with O{sub 3}-exposed AA (but not with vehicle alone) for 1 hr at 4{degrees}C and 37{degrees}C produced 555 and 245 rad-equivalents of DNA ssb, respectively, as determined by the DNA alkaline elution technique. These breaks were completely eliminated when the ozonized AA solution was incubated with catalase prior to cell treatment, indicating that H{sub 2}O{sub 2} was solely responsible for damaging DNA. Superoxide dismutase, bovine serum albumin, or heat-inactivated catalase showed little, if any, inhibitory activity. The H{sub 2}O{sub 2} content for only about 40% of the observed breaks. Potentiation of the H{sub 2}O{sub 2}-induced DNA ssb persisted after removal of the carbonyl substances by chromatographic procedures, suggesting that the non-carbonyl component of ozonized AA was the responsible component for inducing augmentation of the observed increases in DNA ssb. Ozonized AA also induced DNA ssb in cultures of the human bronchial epithelial cell line BEAS-2B. Again, these breaks were shown to exceed levels that could be attributed to the presence of H{sub 2}O{sub 2} alone. These results indicate that products of ozonized AA can interact to potentiate DNA ssb in human lung cells. 42 refs., 6 figs., 3 tabs.

  3. Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    PubMed Central

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y. F.; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie

    2014-01-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here. PMID:24284329

  4. Control of cross-over by single-strand DNA resection.

    PubMed

    Prado, Félix; Aguilera, Andrés

    2003-08-01

    Control of DNA cross-overs is necessary for meiotic recombination and genome integrity. The frequency of cross-overs is dependent on homology length and the conversion tract, but the mechanisms underlying the regulation of cross-overs remain unknown. We propose that 5'-end resection, a key intermediate in double-strand break repair, could determine the formation of cross-overs. Extensive DNA resection might favor gene conversion without cross-over by channeling recombination events through synthesis-dependent strand-annealing. In reactions with short regions of homology, resection beyond the homologous sequence would impede Holliday junction formation and, consequently, cross-over. Extensive DNA resection could be an effective mechanism to prevent reciprocal exchanges between dispersed DNA sequences, and thus contribute to the genome stability.

  5. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    NASA Astrophysics Data System (ADS)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  6. Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers

    PubMed Central

    Zhao, Nianxi; Pei, Sung-nan; Parekh, Parag; Salazar, Eric; Zu, Youli

    2014-01-01

    To investigate the potential clinical application of aptamers to prevention of HIV infection, single- stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12 hr. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd=1.59 nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers. PMID:24661998

  7. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    PubMed Central

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-01-01

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. 20/34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access substrate DNA cytosines. PMID:22181350

  8. New single-stranded DNA virus with a unique genomic structure that infects marine diatom Chaetoceros setoensis

    PubMed Central

    Tomaru, Yuji; Toyoda, Kensuke; Suzuki, Hidekazu; Nagumo, Tamotsu; Kimura, Kei; Takao, Yoshitake

    2013-01-01

    Diatoms are among the most abundant organisms in nature; however, their relationships with single-stranded DNA (ssDNA) viruses have not yet been defined in detail. We report the isolation and characterisation of a virus (CsetDNAV) that lytically infects the bloom-forming diatom Chaetoceros setoensis. The virion is 33 nm in diameter and accumulates in the nucleus of its host. CsetDNAV harbours a covalently closed-circular ssDNA genome comprising 5836 nucleotides and eight different short-complementary fragments (67–145 nucleotides), which have not been reported in other diatom viruses. Phylogenetic analysis based on the putative replicase-related protein showed that CsetDNAV was not included in the monophyly of the recently established genus Bacilladnavirus. This discovery of CsetDNAV, which harbours a genome with a structure that is unique among known viruses that infect diatoms, suggests that other such undiscovered viruses possess diverse genomic architectures. PMID:24275766

  9. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells

    PubMed Central

    van Ravesteyn, Thomas W.; Dekker, Marleen; Fish, Alexander; Sixma, Titia K.; Wolters, Astrid; Dekker, Rob J.; te Riele, Hein P. J.

    2016-01-01

    Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype. PMID:26951689

  10. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    SciTech Connect

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  11. Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    PubMed Central

    Guilliam, Thomas A.; Jozwiakowski, Stanislaw K.; Ehlinger, Aaron; Barnes, Ryan P.; Rudd, Sean G.; Bailey, Laura J.; Skehel, J. Mark; Eckert, Kristin A.; Chazin, Walter J.; Doherty, Aidan J.

    2015-01-01

    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication. PMID:25550423

  12. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA.

    PubMed

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  13. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA

    PubMed Central

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  14. Hydrated electrons react with high specificity with cisplatin bound to single-stranded DNA.

    PubMed

    Behmand, B; Cloutier, P; Girouard, S; Wagner, J R; Sanche, L; Hunting, D J

    2013-12-19

    Short oligonucleotides TTTTTGTGTTT and TTTTTTTGTTT in solution with and without cisplatin (cisPt) bound to the guanine bases were irradiated with γ-rays at doses varying from 0 to 2500 Gy. To determine the effect of hydrated electrons from water radiolysis on the oligonucleotides, we quenched (•)OH radicals with ethylenediaminetetraacetic acid (EDTA) and displaced oxygen, which reacts with hydrated electrons, by bubbling the solution with wet nitrogen. DNA strand breaks and platinum detachment were quantified by gel electrophoresis. Our results demonstrate that hydrated electrons react almost exclusively at the position of the cisPt adduct, where they induce cisPt detachment from one or both guanines in the oligonucleotide. Given the high yield of hydrated electrons in irradiated tissues, this reaction may be an important step in the mechanism of radiosensitization of DNA by cisPt.

  15. Hydrated Electrons React with High Specificity with Cisplatin Bound to Single-Stranded DNA

    PubMed Central

    Behmand, B.; Cloutier, P.; Girouard, S.; Wagner, J. R.; Sanche, L.; Hunting, D. J.

    2015-01-01

    Short oligonucleotides TTTTTGTGTTT and TTTTTTTGTTT in solution with and without cisplatin (cisPt) bound to the guanine bases were irradiated with γ-rays at doses varying from 0 to 2500 Gy. To determine the effect of hydrated electrons from water radiolysis on the oligonucleotides, we quenched •OH radicals with ethylenediaminetetraacetic acid (EDTA) and displaced oxygen, which reacts with hydrated electrons, by bubbling the solution with wet nitrogen. DNA strand breaks and platinum detachment were quantified by gel electrophoresis. Our results demonstrate that hydrated electrons react almost exclusively at the position of the cisPt adduct, where they induce cisPt detachment from one or both guanines in the oligonucleotide. Given the high yield of hydrated electrons in irradiated tissues, this reaction may be an important step in the mechanism of radiosensitization of DNA by cisPt. PMID:24205952

  16. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA.

    PubMed

    Furukohri, Asako; Nishikawa, Yoshito; Akiyama, Masahiro Tatsumi; Maki, Hisaji

    2012-07-01

    DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.

  17. Theoretical Study of the Transpore Velocity Control of Single-Stranded DNA

    PubMed Central

    Qian, Weixin; Doi, Kentaro; Uehara, Satoshi; Morita, Kaito; Kawano, Satoyuki

    2014-01-01

    The electrokinetic transport dynamics of deoxyribonucleic acid (DNA) molecules have recently attracted significant attention in various fields of research. Our group is interested in the detailed examination of the behavior of DNA when confined in micro/nanofluidic channels. In the present study, the translocation mechanism of a DNA-like polymer chain in a nanofluidic channel was investigated using Langevin dynamics simulations. A coarse-grained bead-spring model was developed to simulate the dynamics of a long polymer chain passing through a rectangular cross-section nanopore embedded in a nanochannel, under the influence of a nonuniform electric field. Varying the cross-sectional area of the nanopore was found to allow optimization of the translocation process through modification of the electric field in the flow channel, since a drastic drop in the electric potential at the nanopore was induced by changing the cross-section. Furthermore, the configuration of the polymer chain in the nanopore was observed to determine its translocation velocity. The competition between the strength of the electric field and confinement in the small pore produces various transport mechanisms and the results of this study thus represent a means of optimizing the design of nanofluidic devices for single molecule detection. PMID:25116683

  18. Quiescent human peripheral blood lymphocytes do not contain a sizable amount of preexistent DNA single-strand breaks

    SciTech Connect

    Boerrigter, M.E.; Mullaart, E.; van der Schans, G.P.; Vijg, J.

    1989-02-01

    Sedimentation of nucleoids through neutral sucrose density gradients has shown that nucleoids isolated from phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes (PBL) sediment faster than nucleoids derived from quiescent lymphocytes, which was attributed to rejoining of DNA single-strand breaks (SSB) present in the resting cells. We isolated PBL from donors and determined the amount of SSB in nonradiolabeled, untreated resting and PHA-stimulated cells by applying the alkaline filter elution technique. Calibration was based on dose-dependent induction of SSB by /sup 60/Co-gamma-radiation. Quiescent cells did not contain a sizable amount of SSB. Mitogen-stimulated cells showed equally low amounts of SSB per cell. The present study indicates that the interpretation of the results obtained with the nucleoid sedimentation technique concerning the supposed rejoining of SSB in PHA-stimulated human lymphocytes is incorrect. Other, equally sensitive, techniques such as alkaline filter elution appear to be preferable for studies on DNA damage and repair.

  19. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA.

    PubMed

    Chang, S F; Netter, H J; Bruns, M; Schneider, R; Frölich, K; Will, H

    1999-09-15

    We describe the identification and functional analysis of an evolutionary distinct new avian hepadnavirus. Infection of snow geese (Anser caerulescens) with a duck hepatitis B virus (DHBV)-related virus, designated SGHBV, was demonstrated by detection of envelope proteins in sera with anti-DHBV preS and S antibodies. Comparative sequence analysis of the PCR-amplified SGHBV genomes revealed unique SGHBV sequence features compared with other avian hepadnaviruses. Unlike DHBV, SGHBV shows an open reading frame in an analogous position to orthohepadnavirus X genes. Four of five cloned genomes were competent in replication, gene expression, and virus particle secretion in chicken hepatoma cells. Primary duck hepatocytes were permissive for infection with SGHBV, suggesting a similar or identical host range. SGHBV was found to secrete a significant fraction of virion-like particles containing single-stranded viral DNA. This was observed both in cell culture medium of SGHBV DNA-transfected LMH cells and in viremic sera of several birds, suggesting that it is a stable trait of SGHBV. Taken together, SGHBV has several unique features that expand the knowledge of the functional and evolutionary diversity of hepadnaviruses and offers new experimental opportunities for studies on the life cycle of hepadnaviruses. PMID:10489339

  20. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    PubMed Central

    Pearson, Victoria M.; Caudle, S. Brian

    2016-01-01

    Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae), and model organisms for genetics and evolution studies (Microviridae). Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group. PMID:27781171

  1. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA

    PubMed Central

    Hayner, Jaclyn N.; Douma, Lauren G.; Bloom, Linda B.

    2014-01-01

    Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3′OH (3′DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3′DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5′phosphate (5′P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5′DNA). The 5′P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3′DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5′DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3′DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role. PMID:25159615

  2. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay.

    PubMed

    Zhang, Cunzheng; Wang, Li; Tu, Zhui; Sun, Xing; He, Qinghua; Lei, Zhaojing; Xu, Chongxin; Liu, Yuan; Zhang, Xiao; Yang, Jingyi; Liu, Xianjin; Xu, Yang

    2014-05-15

    An approach is developed to detect the organophosphorus pesticides via competitive binding to a recombinant broad-specificity DNA aptamer with a molecular beacon (MB), the binding of the MB to the aptamer results in the activation of a fluorescent signal, which can be measured for pesticide quantification. Aptamers selected via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) were structurally modified and truncated to narrow down the binding region of the target, which indicated that loops of the aptamer contributed different functions for different chemical recognition. Thereafter, a variant fused by two different minimum functional structures, was clarified with broad specificity and increased affinity. Further molecular docking and molecular dynamics simulations was conducted to understand the molecular interaction between DNA structure and chemicals. 3D modeling revealed a hot spot area formed by 3 binding sites, forces including hydrogen bonds and van der Waals interactions appear to play a significant role in enabling and stabilizing the binding of chemicals. Finally, an engineered aptamer based approach for the detection of organophosphorus pesticides was successfully applied in a test using a real sample, the limit of quantification (LOQ) for phorate, profenofos, isocarbophos, and omethoate reached 19.2, 13.4, 17.2, and 23.4 nM (0.005 mg L(-1)), respectively.

  3. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay.

    PubMed

    Zhang, Cunzheng; Wang, Li; Tu, Zhui; Sun, Xing; He, Qinghua; Lei, Zhaojing; Xu, Chongxin; Liu, Yuan; Zhang, Xiao; Yang, Jingyi; Liu, Xianjin; Xu, Yang

    2014-05-15

    An approach is developed to detect the organophosphorus pesticides via competitive binding to a recombinant broad-specificity DNA aptamer with a molecular beacon (MB), the binding of the MB to the aptamer results in the activation of a fluorescent signal, which can be measured for pesticide quantification. Aptamers selected via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) were structurally modified and truncated to narrow down the binding region of the target, which indicated that loops of the aptamer contributed different functions for different chemical recognition. Thereafter, a variant fused by two different minimum functional structures, was clarified with broad specificity and increased affinity. Further molecular docking and molecular dynamics simulations was conducted to understand the molecular interaction between DNA structure and chemicals. 3D modeling revealed a hot spot area formed by 3 binding sites, forces including hydrogen bonds and van der Waals interactions appear to play a significant role in enabling and stabilizing the binding of chemicals. Finally, an engineered aptamer based approach for the detection of organophosphorus pesticides was successfully applied in a test using a real sample, the limit of quantification (LOQ) for phorate, profenofos, isocarbophos, and omethoate reached 19.2, 13.4, 17.2, and 23.4 nM (0.005 mg L(-1)), respectively. PMID:24384262

  4. Mammalian cells are not killed by DNA single-strand breaks caused by hydroxyl radicals from hydrogen peroxide

    SciTech Connect

    Ward, J.F.; Blakely, W.F.; Joner, E.I.

    1985-09-01

    Cell killing by ionizing radiation has been shown to be caused by hydroxyl free radicals formed by water radiolysis. The authors have previously suggested that the killing is not caused by individual OH free radicals but by the interaction of volumes of high radical density with DNA to cause locally multiple damaged sites (LMDS). Here they test this hypothesis using hydrogen dioxide as an alternate source of OH radicals. The route to OH production from H/sub 2/O/sub 2/ is expected to cause singly damaged sites rather than LMDS. Chinese hamster V79-171 cells were treated with H/sub 2/O/sub 2/ at varying concentrations for varying times at 0/sup 0/C. The yield of DNA damage produced increases with increasing concentration of H/sub 2/O/sub 2/ and with time of exposure. H/sub 2/O/sub 2/ is efficient in producing single-strand breaks; treatment with 50 ..mu..M for 30 min produces damage equivalent to that formed by 10 Gy of ..cap alpha.. irradiation. In the presence of a hydroxyl radical scavenger, dimethyl sulfoxide (DMSO), the yield of damage decreases with increasing DMSO concentration consistent with the scavenging of hydroxyl radicals. In contrast to DNA damage production, cell killing by H/sub 2/O/sub 2/ treatment at 0/sup 0/C is inefficient. The conclusion drawn is that individual DNA damage sites are ineffectual in killing cells. Mechanisms are suggested for killing at 0/sup 0/C at high concentrations and for the efficient cell killing by H/sub 2/O/sub 2/ at 37/sup 0/C at much lower concentrations.

  5. Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption.

    PubMed

    van Amerongen, H; van Grondelle, R; van der Vliet, P C

    1987-07-28

    The adenovirus DNA-binding protein (AdDBP) is a multifunctional protein required for viral DNA replication and control of transcription. We have studied the binding of AdDBP to single-stranded M13 DNA and to the homopolynucleotides poly(rA), poly(dA), and poly(dT) by means of circular dichroism (CD) and optical density (OD) measurements. The binding to all these polynucleotides was strong and nearly stoichiometric. Titration experiments showed that the size of the binding site is 9-11 nucleotides long for M13 DNA, poly(dA), and poly(rA). A higher value (15.0 +/- 0.8) was found for poly(dT). Pronounced changes in the circular dichroism and optical density spectra were observed upon binding of AdDBP. In general, both the positive peak around 260-270 nm and the negative peak around 240-250 nm in the CD spectra decreased in intensity, and a shift of the crossover point to longer wavelengths was found. The OD spectra observed upon binding of AdDBP are remarkably similar to those obtained with prokaryotic helix-destabilizing proteins like bacteriophage T4 gene 32 protein and fd gene 5 protein. The data can best be interpreted by assuming that the AdDBP-polynucleotide complex has a regular, rigid, and extended configuration that satifies two criteria: (1) a considerable tilt of the bases in combination with (2) a small rotation per base and/or a shift of the bases closer to the helix axis.

  6. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA.

    PubMed

    Christie, P J; Ward, J E; Winans, S C; Nester, E W

    1988-06-01

    Agrobacterium tumefaciens transfers T-DNA into the plant genome by a process mediated by Ti plasmid-encoded vir genes. Cleavage at T-DNA border sequences by the VirD endonuclease generates linear, single-stranded T-DNA molecules. In the work described in this report, we used electrophoretic mobility shift assays to show that the purified virE2 gene product binds to single-stranded DNA. VirE2 protein associates with T-DNA as shown by immunoprecipitation studies with VirE2-specific antiserum. The VirE2 protein was detected primarily in the cytoplasm, but also in the inner and outer membrane and periplasmic fractions. Virulence of a virE2 mutant was restored by mixed infection with strains carrying an intact vir region, but not with virA, virB, virD, virE, or virG mutants or chvA, chvB, or exoC mutants. We propose that the VirE2 protein is involved in the processing of T-DNA and in T-strand protection during transfer to the plant cell. PMID:2836366

  7. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.

    PubMed

    Iliafar, Sara; Mittal, Jeetain; Vezenov, Dmitri; Jagota, Anand

    2014-09-17

    We used single molecule force spectroscopy to measure the force required to remove single-stranded DNA (ssDNA) homopolymers from single-walled carbon nanotubes (SWCNTs) deposited on methyl-terminated self-assembled monolayers (SAMs). The peeling forces obtained from these experiments are bimodal in distribution. The cluster of low forces corresponds to peeling from the SAM surface, while the cluster of high forces corresponds to peeling from the SWCNTs. Using a simple equilibrium model of the single molecule peeling process, we calculated the free energy of binding per nucleotide. We found that the free energy of ssDNA binding to hydrophobic SAMs decreases as poly(A) > poly(G) ≈ poly(T) > poly(C) (16.9 ± 0.1; 9.7 ± 0.1; 9.5 ± 0.1; 8.7 ± 0.1 kBT, per nucleotide). The free energy of ssDNA binding to SWCNT adsorbed on this SAM also decreases in the same order poly(A) > poly(G) > poly(T) > poly(C), but its magnitude is significantly greater than that of DNA-SAM binding energy (38.1 ± 0.2; 33.9 ± 0.1; 23.3 ± 0.1; 17.1 ± 0.1 kBT, per nucleotide). An unexpected finding is that binding strength of ssDNA to the curved SWCNTs is much greater than to flat graphite, which also has a different ranking (poly(T) > poly(A) > poly(G) ≥ poly(C); 11.3 ± 0.8, 9.9 ± 0.5, 8.3 ± 0.2, and 7.5 ± 0.8 kBT, respectively, per nucleotide). Replica-exchange molecular dynamics simulations show that ssDNA binds preferentially to the curved SWCNT surface, leading us to conclude that the differences in ssDNA binding between graphite and nanotubes arise from the spontaneous curvature of ssDNA.

  8. Short-term splenic impact of single-strand DNA functionalized multi-walled carbon nanotubes intraperitoneally injected in rats.

    PubMed

    Clichici, Simona; Biris, Alexandru Radu; Catoi, Cornel; Filip, Adriana; Tabaran, Flaviu

    2014-04-01

    In recent years, a great deal of studies have focused on the possible toxicity of carbon nanotubes (CNT), as a result of their potential applications in the field of nanotechnologies. The investigation of spleen toxicity is part of the carbon nanotubes-induced toxicity assessment. In this study, we investigated the possible toxic effects of CNT on the rat spleen, after intraperitoneally (i.p.) administration of a single dose [1.5 ml; 2 mg multi-walled (MW) CNT per body weight (bw)] of multi-walled carbon nanotubes (exterior diameter 15-25 nm, interior diameter 10-15 nm, surface 88 m(2) g(-1) ) functionalized 1:1 with single-strand DNA (ss-DNA-MWCNT, 270 mg l(-1) ). CNT functionalization with DNA determines a stable dispersion in the body fluids. For the detection of carbon nanotubes in the spleen, Raman spectroscopy, histopathologic examination, confocal microscopy and transmission electron microscopy (TEM) were performed at different time points (1, 6, 24, 48 and 144 h) after MWCNT administration. The dynamics of oxidative stress parameters (malondialdehyde, protein carbonyls and reduced glutathione), along with nitrosative stress parameters (nitric oxide, inducible NO synthase), the pro-inflammatory cytokines [interleukin-(IL)-1β] and the number of cells expressing caspase 3 and proliferating cell nuclear antigen (PCNA) were assessed. Our results indicate that, after i.p. administration, MWCNT translocate progressively in the spleen, with a peak of concentration after 48 h, and determine lymphoid hyperplasia and an increase in the number of cells which undergo apoptosis, in parallel with the enhancement of the mitosis in the white pulp and with transient alterations of oxidative stress and inflammation that need further investigations for a longer period of monitoring.

  9. Development of a Single Stranded DNA Aptamer as a Molecular Probe for LNCap Cells Using Cell-SELEX

    PubMed Central

    Almasi, Faezeh; Mousavi Gargari, Seyed Latif; Bitaraf, Fatemeh; Rasoulinejad, Samaneh

    2016-01-01

    Background: Nowadays, highly specific aptamers generated by cell SELEX technology (systematic evolution of ligands by exponential enrichment) are being applied for early detection of cancer cells. Prostate Specific Membrane Antigen (PSMA), over expressed in prostate cancer, is a highly specific marker and therefore can be used for diagnosis of the prostate cancer cells. The aim of the present study was to select single-stranded DNA aptamers against LNCap cells highly expressing PSMA, using cell–SELEX method which can be used as a diagnostic tool for the detection of prostate cancer cells. Methods: After 10 rounds of cell-SELEX, DNA aptamers were isolated against PSMA using LNCaP cells as a target and PC-3 cell lines for counter SELEX. Five DNA aptamers with more than 70% affinity were selected up on flow cytometry analysis of positive clones. Results: Dissociation constants of two selected sequences (A12-B1) were estimated in the range of 33.78±3.77 and 57.49±2.214 pmol, respectively. Conserved secondary structures of A12 and B1 sequences suggest the necessity of these structures for binding with high affinity to native PSMA. Comparison of the secondary structures of our isolated aptamers and aptamer A10 obtained by protein SELEX showed similar stem-loop structures which could be responsible for the recognition of PSMA on LNCap cell surface. Conclusion: Our results indicated that selected aptamers may turn out to be ideal candidates for the development of a detection tool and also can be used in targeted drug delivery for future smart drugs. PMID:27563422

  10. Isolation of Single-Stranded DNA Aptamers That Distinguish Influenza Virus Hemagglutinin Subtype H1 from H5

    PubMed Central

    Yim, Sanggyu; Jeong, Yong-Joo

    2015-01-01

    Surface protein hemagglutinin (HA) mediates the binding of influenza virus to host cell receptors containing sialic acid, facilitating the entry of the virus into host cells. Therefore, the HA protein is regarded as a suitable target for the development of influenza virus detection devices. In this study, we isolated single-stranded DNA (ssDNA) aptamers binding to the HA1 subunit of subtype H1 (H1-HA1), but not to the HA1 subunit of subtype H5 (H5-HA1), using a counter-systematic evolution of ligands by exponential enrichment (counter-SELEX) procedure. Enzyme-linked immunosorbent assay and surface plasmon resonance studies showed that the selected aptamers bind tightly to H1-HA1 with dissociation constants in the nanomolar range. Western blot analysis demonstrated that the aptamers were binding to H1-HA1 in a concentration-dependent manner, yet were not binding to H5-HA1. Interestingly, the selected aptamers contained G-rich sequences in the central random nucleotides region. Further biophysical analysis showed that the G-rich sequences formed a G-quadruplex structure, which is a distinctive structure compared to the starting ssDNA library. Using flow cytometry analysis, we found that the aptamers did not bind to the receptor-binding site of H1-HA1. These results indicate that the selected aptamers that distinguish H1-HA1 from H5-HA1 can be developed as unique probes for the detection of the H1 subtype of influenza virus. PMID:25901739

  11. Comparison of hybridization behavior between double and single strands of targets and the application of asymmetric PCR targets in cDNA microarray.

    PubMed

    Wei, Qing; Liu, Sanzhen; Huang, Jianfeng; Mao, Xueying; Chu, Xiaohui; Wang, Yu; Qiu, MinYan; Mao, Yumin; Xie, Yi; Li, Yao

    2004-07-31

    Double stranded targets on the cDNA microarray contain representatives of both the coding and noncoding strands, which will introduce hybridization competition with probes. Here, the effect of double and single strands of targets on the signal intensity and the ratios of Cy5/Cy3 within the same slide were compared. The results show that single stranded targets can increase the hybridization efficiency without changing the Cy5/Cy3 ratio. Based on these results, a new strategy was established by generating cDNA targets with asymmetric PCR, instead of conventional PCR, to increase the sensitivity of the cDNA microarray. Furthermore, the feasibility of this approach was validated. The results indicate that the cDNA microarray system based on asymmetric PCR is more sensitive, with no decrease in the reliability and reproducibility as compared with that based on conventional symmetric PCR.

  12. Replication of simian virus 40 DNA after UV irradiation: evidence of growing fork blockage and single-stranded gaps in daughter strands

    SciTech Connect

    Mezzina, M.; Menck, C.F.M.; Courtin, P.; Sarasin, A.

    1988-11-01

    The molecular mechanisms of in vivo inhibition of mammalian DNA replication by exposure to UV light (at 254 nm) was studied in monkey and human cells infected with simian virus 40. Analysis of viral DNA by electron microscopy and sucrose gradients confirmed that the presence of UV-induced lesions severely blocks DNA synthesis, and thus the conversion of replicative intermediates (RIs) into fully replicated form I DNA is inhibited by UV irradiation. These blocked RI molecules present several special features when visualized by electron microscopy. In excision repair-proficient monkey and human cells they are composed of a double-stranded circular DNA with a double-stranded tail whose size corresponds to the average interpyrimidine dimer distance, as determined by the dimer-specific T4 endonuclease V. In excision repair-deficient human cells from patients with xeroderma pigmentosum, UV-irradiated RIs present a Carins-like structure similar to that observed for replicating molecules obtained from unirradiated infected cells. Single-stranded gaps are visualized in the replicated portions of UV-irradiated RI molecules; such regions are detected and clearly distinguishable from double-stranded DNA when probed by a specific single-stranded DNA-binding protein such as the bacteriophage T4 gene 32 product. Consistent with the presence of gaps in UV-irradiated RI molecules, single-strand-specific S1 nuclease digestion causes a shift in their sedimentation properties when analyzed in neutral sucrose gradients compared with undamaged molecules.

  13. Single-stranded DNA aptamer that specifically binds to the influenza virus NS1 protein suppresses interferon antagonism.

    PubMed

    Woo, Hye-Min; Kim, Ki-Sun; Lee, Jin-Moo; Shim, Hee-Sup; Cho, Seong-Je; Lee, Won-Kyu; Ko, Hyuk Wan; Keum, Young-Sam; Kim, Soo-Youl; Pathinayake, Prabuddha; Kim, Chul-Joong; Jeong, Yong-Joo

    2013-11-01

    Non-structural protein 1 (NS1) of the influenza A virus (IAV) inhibits the host's innate immune response by suppressing the induction of interferons (IFNs). Therefore, blocking NS1 activity can be a potential strategy in the development of antiviral agents against IAV infection. In the present study, we selected a single-stranded DNA aptamer specific to the IAV NS1 protein after 15 cycles of systematic evolution of ligands by exponential enrichment (SELEX) procedure and examined the ability of the selected aptamer to inhibit the function of NS1. The selected aptamer binds to NS1 with a Kd of 18.91±3.95nM and RNA binding domain of NS1 is determined to be critical for the aptamer binding. The aptamer has a G-rich sequence in the random sequence region and forms a G-quadruplex structure. The localization of the aptamer bound to NS1 in cells was determined by confocal images, and flow cytometry analysis further demonstrated that the selected aptamer binds specifically to NS1. In addition, luciferase reporter gene assay, quantitative RT-PCR, and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that the selected aptamer had the ability to induce IFN-β by suppressing the function of NS1. Importantly, we also found that the selected aptamer was able to inhibit the viral replication without affecting cell viability. These results indicate that the selected ssDNA aptamer has strong potential to be further developed as a therapeutic agent against IAV.

  14. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    SciTech Connect

    Clichici, Simona; Biris, Alexandru Radu; Tabaran, Flaviu; Filip, Adriana

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTs (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF-KB increase

  15. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation.

    PubMed

    Osipov, Andreyan N; Smetanina, Nadezhda M; Pustovalova, Margarita V; Arkhangelskaya, Ekaterina; Klokov, Dmitry

    2014-08-01

    The potency of UVA radiation, representing 90% of solar UV light reaching the earth's surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1J/cm(2) was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5M Na(+), implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.

  16. Host and φx 174 Mutations Affecting the Morphogenesis or Stabilization of the 50s Complex, a Single-Stranded DNA Synthesizing Intermediate

    PubMed Central

    Ekechukwu, M. C.; Oberste, D. J.; Fane, B. A.

    1995-01-01

    The morphogenetic pathway of bacteriophage φX 174 was investigated in rep mutant hosts that specifically block stage III single-stranded DNA synthesis. The defects conferred by the mutant rep protein most likely affect the formation or stabilization of the 50S complex, a single-stranded DNA synthesizing intermediate, which consists of a viral prohead and a DNA replicating intermediate (preinitiation complex). φX 174 mutants, ogr(rep), which restore the ability to propagate in the mutant rep hosts, were isolated. The ogr(rep) mutations confer amino acid substitutions in the viral coat protein, a constituent of the prohead, and the viral A protein, a constituent of the preinitiation complex. Four of the six coat protein substitutions are localized on or near the twofold axis of symmetry in the atomic structure of the mature virion. PMID:7498760

  17. Structure and dynamics of M13mp19 circular single-strand DNA: effects of ionic strength.

    PubMed

    Wilson, D H; Price, H L; Henderson, J; Hanlon, S; Benight, A S

    1990-02-01

    Dynamic and static light scattering, CD, and optical melting experiments have been conducted on M13mp19 viral circular single-strand DNA as a function of NaCl concentration. Over the 10,000-fold range in concentration from 100 microM to 1.0 M NaCl, the melting curves and CD spectra indicate an increase in base stacking and stability of stacked regions with increased salt concentration. Analysis of dynamic light scattering measurements of the single-strand DNA solutions as a function of K2 from 1.56 to 20 X 10(10) cm-2 indicates the collected autocorrelation functions are biexponential, thus revealing the presence of two decaying dynamic components. These components are taken to correspond to (1) global translational motions of the molecular center of mass and (2) motions of the internal molecular subunits. From the evaluated relaxation rates of these components, diffusion coefficients D0 and Dplat are determined. The center of mass translational diffusion coefficient D0, varies in a nonmonotonic manner, by 10%, from 3.75 X 10(-8) to 3.39 X 10(-8) cm2/s over the NaCl concentration range from 100 microM to 1.0 M. Likewise, the radius of gyration RG, obtained from static light scattering experiments, varies by 15% from 699 to 830 A over the same NaCl range Dplat, the diffusion coefficient of the internal subunits, displays a different dependence on the NaCl concentration and decreases, by nearly 22% in a titratable fashion, from 12.46 X 10(-8) to 10.26 X 10(-8) cm2/s, when the salt is increased from 100 microM to 1.0 M. A semiquantitative interpretation of these results is provided by analysis of the light scattering data in terms of the circular Rouse-Zimm chain. Rouse-Zimm model parameters are estimated from the experimental results, assuming the circular chains are composed of a fixed number of Gaussian segments, N + 1 = 15. The rms displacement of the internal segments, b, is estimated to be the smallest (442 A) in 100 mM NaCl. Increases of b to 467 A in 100 micro

  18. [The role of protein binding with single-stranded DNA (SSB-protein) in DNA replication in Ehrlich ascites carcinoma cells].

    PubMed

    Koterov, A N; Novoradovskaia, N A; Filippovich, I V

    1990-05-01

    Possible involvement of the single-strand DNA-binding protein (SSB-protein) in DNA replication in Ehrlich ascite tumour (EAT) cells was studied. There was a direct correlation between the content of SSB-protein in chromatin and the intensity of replicative synthesis of DNA in various preparations of EAT in vitro and in vivo (the computed value of the correlation coefficient was equal to 0.9). It was shown that the addition of exogenous SSB-protein to permeable EAT cells increased the replicative synthesis. It was concluded that although eukaryotic SSB-proteins are not complete analogs of prokaryotic ones, they may participate in DNA replication in eukaryotic cells and, possibly, are intracellular regulators of proliferation.

  19. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  20. Assignment of the sup 1 H NMR spectrum and secondary structure elucidation of the single-stranded DNA binding protein encoded by the filamentous bacteriophage IKe

    SciTech Connect

    van Duynhoven, J.P.M.; Folkers, P.J.M.; Prinse, C.W.J.M.; Harmsen, B.J.M.; Konings, R.N.H.; Hilbers, C.W. )

    1992-02-04

    By means of 2D NMR techniques, all backbone resonances in the {sup 1}H NMR spectrum of the single-stranded DNA binding protein encoded by gene V of the filamentous phage IKe have been assigned sequence specifically. In addition, a major part of the side chain resonances could be assigned as well. Analysis of NOESY data permitted the elucidation of the secondary structure of IKe gene V protein. The major part of the secondary structure is present as an antiparallel {beta}-sheet, i.e., as two {beta}-loops which partly combine into a triple-stranded {beta}-sheet structure, one {beta}-loop and one triple-stranded {beta}-sheet structure. It is shown that a high degree of homology exists with the single-stranded DNA binding protein encoded by gene V of the distantly related filamentous phase M13.

  1. Role of DNA damage and repair in the function of eukaryotic genes: radiation-induced single-strand breaks and their rejoining in chromosomal and extrachromosomal ribosomal DNA of Tetrahymena

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1980-04-01

    The production and rejoining of single-strand breaks (SSB) in chromosomal DNA and extrachromosomal ribosomal DNA (rDNA) were investigated after sublethal doses of ..gamma.. radiation to exponentially growing Tetrahymena. Hydrogen-3-labeled total nuclear DNA isolated from either control or irradiated cells was heat denatured and electrophoresed in agarose gels containing formaldehyde. Ribosomal DNA was identified by hybridization to (/sup 32/P)rRNA after transferring the DNA from the gels to nitrocellulose strips. It was found that (a) approximately 0.68 SSB is produced in each strand of rDNA exposed to 40 krad; (b) greater than 80% of SSB were rejoined within the first 20 min after irradiation in both chromosomal and rDNA; and (c) the rejoining process in both chromosomal and rDNA proceeded in the presence of inhibitors of protein synthesis, RNA synthesis, or oxidative metabolism. While the majority of SSB induced by 40 krad is rejoined within 20 min after irradiation, the resumption of rRNA synthesis does not occur until 30 min thereafter; it is concluded that the restoration of the normal size of the rDNA template is probably necessary but not sufficient for the resumption of rRNA synthesis.

  2. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps.

    PubMed

    Webb, B L; Cox, M M; Inman, R B

    1997-10-31

    In the presence of both the RecF and RecR proteins, RecA filament extension from a single strand gap into adjoining duplex DNA is attenuated. RecR protein alone has no effect, and RecF protein alone has a reduced activity. The RecFR complexes bind randomly, primarily to the duplex regions of the DNA, and the extension of the RecA filament is halted at the first complex encountered. A very slow lengthening of RecA filaments observed in the presence of RecFR is virtually eliminated when RecF is replaced with an RecF mutant protein that does not hydrolyze ATP. These observations are incorporated into an expanded model for the functions of RecF, RecO, and RecR proteins in the early stages of postreplication DNA repair. PMID:9363943

  3. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity.

    PubMed

    Jose, Davis; Weitzel, Steven E; Baase, Walter A; Michael, Miya M; von Hippel, Peter H

    2015-10-30

    We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5'-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex.

  4. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity.

    PubMed

    Jose, Davis; Weitzel, Steven E; Baase, Walter A; Michael, Miya M; von Hippel, Peter H

    2015-10-30

    We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5'-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex. PMID:26275774

  5. Crystal structure of a DNA aptamer bound to PvLDH elucidates novel single-stranded DNA structural elements for folding and recognition

    PubMed Central

    Choi, Sung-Jin; Ban, Changill

    2016-01-01

    Structural elements are key elements for understanding single-stranded nucleic acid folding. Although various RNA structural elements have been documented, structural elements of single-stranded DNA (ssDNA) have rarely been reported. Herein, we determined a crystal structure of PvLDH in complex with a DNA aptamer called pL1. This aptamer folds into a hairpin-bulge contact by adopting three novel structural elements, viz, DNA T-loop-like motif, base–phosphate zipper, and DNA G·G metal ion zipper. Moreover, the pL1:PvLDH complex shows unique properties compared with other protein:nucleic acid complexes. Generally, extensive intermolecular hydrogen bonds occur between unpaired nucleotides and proteins for specific recognitions. Although most protein-interacting nucleotides of pL1 are unpaired nucleotides, pL1 recognizes PvLDH by predominant shape complementarity with many bridging water molecules owing to the combination of three novel structural elements making protein-binding unpaired nucleotides stable. Moreover, the additional set of Plasmodium LDH residues which were shown to form extensive hydrogen bonds with unpaired nucleotides of 2008s does not participate in the recognition of pL1. Superimposition of the pL1:PvLDH complex with hLDH reveals steric clashes between pL1 and hLDH in contrast with no steric clashes between 2008s and hLDH. Therefore, specific protein recognition mode of pL1 is totally different from that of 2008s. PMID:27725738

  6. Structure-Based Analysis of the Interaction between the Simian Virus 40 T-Antigen Origin Binding Domain and Single-Stranded DNA

    SciTech Connect

    G Meinke; P Phelan; A Fradet-Turcotte; A Bohm; J Archambault; P Bullock

    2011-12-31

    The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT){sub 12} is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.

  7. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    SciTech Connect

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  8. Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process.

    PubMed

    Citovsky, V; Wong, M L; Zambryski, P

    1989-02-01

    Induction of Agrobacterium tumefaciens vir gene expression by wounded plant cells results in production of a free transferable single-stranded (ss) copy of T-DNA, the T-strand. One of the Vir proteins, the VirE2 polypeptide, is a ssDNA-binding protein. In the present work, interaction of nopaline-specific VirE2 protein (Mr 69,000) with ssDNA was studied by using nitrocellulose filter binding, gel retardation, and electron microscopy techniques. The VirE2 protein was found to bind to ssDNA molecules with strong cooperativity, forming VirE2-ssDNA complexes with a binding site of 28-30 nucleotides. The VirE2-ssDNA complexes are stable at high salt concentrations and resistant to exonucleolytic activity. When examined under the electron microscope, the VirE2 protein converted collapsed free ssDNA molecules into unfolded and extended structures. The structure and properties of VirE2-ssDNA complexes predict possible functions in Agrobacterium virulence to (i) protect the T-strands from cellular nucleases and (ii) facilitate transfer of the T-strands through bacterial membranes possibly by specific interaction with putative membrane pores formed in plant-induced Agrobacterium cells. PMID:2919168

  9. Functional roles of N-terminal and C-terminal domains in the overall activity of a novel single-stranded DNA binding protein of Deinococcus radiodurans

    PubMed Central

    Ujaoney, Aman K.; Basu, Bhakti; Muniyappa, K.; Apte, Shree K.

    2015-01-01

    Single-stranded DNA binding protein (Ssb) of Deinococcus radiodurans comprises N- and C-terminal oligonucleotide/oligosaccharide binding (OB) folds connected by a beta hairpin connector. To assign functional roles to the individual OB folds, we generated three Ssb variants: SsbN (N-terminal without connector), SsbNC (N-terminal with connector) and SsbC (C-terminal), each harboring one OB fold. Both SsbN and SsbNC displayed weak single-stranded DNA (ssDNA) binding activity, compared to the full-length Ssb (SsbFL). The level of ssDNA binding activity displayed by SsbC was intermediate between SsbFL and SsbN. SsbC and SsbFL predominantly existed as homo-dimers while SsbNC/SsbN formed different oligomeric forms. In vitro, SsbNC or SsbN formed a binary complex with SsbC that displayed enhanced ssDNA binding activity. Unlike SsbFL, Ssb variants were able to differentially modulate topoisomerase-I activity, but failed to stimulate Deinococcal RecA-promoted DNA strand exchange. The results suggest that the C-terminal OB fold is primarily responsible for ssDNA binding. The N-terminal OB fold binds weakly to ssDNA but is involved in multimerization. PMID:25973364

  10. Polyelectrolyte properties of single stranded DNA measured using SAXS and single molecule FRET: beyond the wormlike chain model

    PubMed Central

    Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois

    2013-01-01

    Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337

  11. The acidic C-terminus of vaccinia virus I3 single-strand binding protein promotes proper assembly of DNA-protein complexes.

    PubMed

    Harrison, Melissa L; Desaulniers, Megan A; Noyce, Ryan S; Evans, David H

    2016-02-01

    The vaccinia virus I3L gene encodes a single-stranded DNA binding protein (SSB) that is essential for virus DNA replication and is conserved in all Chordopoxviruses. The I3 protein contains a negatively charged C-terminal tail that is a common feature of SSBs. Such acidic tails are critical for SSB-dependent replication, recombination and repair. We cloned and purified variants of the I3 protein, along with a homolog from molluscum contagiosum virus, and tested how the acidic tail affected DNA-protein interactions. Deleting the C terminus of I3 enhanced the affinity for single-stranded DNA cellulose and gel shift analyses showed that it also altered the migration of I3-DNA complexes in agarose gels. Microinjecting an antibody against I3 into vaccinia-infected cells also selectively inhibited virus replication. We suggest that this domain promotes cooperative binding of I3 to DNA in a way that would maintain an open DNA configuration around a replication site.

  12. Measurement of steady-state kinetic parameters for DNA unwinding by the bacteriophage T4 Dda helicase: use of peptide nucleic acids to trap single-stranded DNA products of helicase reactions

    PubMed Central

    Nanduri, Bindu; Eoff, Robert L.; Tackett, Alan J.; Raney, Kevin D.

    2001-01-01

    Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s–1 whereas the rate was 1.34 nM s–1 in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase. PMID:11433029

  13. Nanopore Detection of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Immobilized Single-stranded DNA via Adduct Formation to the DNA Damage Site

    PubMed Central

    Schibel, Anna E. P.; An, Na; Jin, Qian; Fleming, Aaron M.; Burrows, Cynthia J.; White, Henry S.

    2010-01-01

    The ability to detect DNA damage within the context of the surrounding sequence is an important goal in medical diagnosis and therapies, but there are no satisfactory methods available to detect a damaged base while providing sequence information. One of the most common base lesions is 8-oxo-7,8-dihydroguanine that occurs during oxidation of guanine. In the work presented here, we demonstrate the detection of a single oxidative damage site using ion channel nanopore methods employing α-hemolysin. Hydantoin lesions produced from further oxidation of 8-oxo-7,8-dihydroguanine, as well as spirocyclic adducts produced from covalently attaching a primary amine to the spiroiminodihydantoin lesion, were detected by tethering the damaged DNA to streptavidin via a biotin linkage, and capturing the DNA inside an α-hemolysin ion channel. Spirocyclic adducts, in both homo- and hetero-polymer background single-stranded DNA sequences, produced current blockage levels differing by almost 10% from those of native base current blockage levels. These preliminary studies show the applicability of ion channel recordings not only for DNA sequencing, which has recently received much attention, but also to detecting DNA damage, which will be an important component to any sequencing efforts. PMID:21138270

  14. Direct Binding to Replication Protein A (RPA)-coated Single-stranded DNA Allows Recruitment of the ATR Activator TopBP1 to Sites of DNA Damage.

    PubMed

    Acevedo, Julyana; Yan, Shan; Michael, W Matthew

    2016-06-17

    A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes.

  15. New Type of Papillomavirus and Novel Circular Single Stranded DNA Virus Discovered in Urban Rattus norvegicus Using Circular DNA Enrichment and Metagenomics.

    PubMed

    Hansen, Thomas Arn; Fridholm, Helena; Frøslev, Tobias Guldberg; Kjartansdóttir, Kristín Rós; Willerslev, Eske; Nielsen, Lars Peter; Hansen, Anders Johannes

    2015-01-01

    Rattus norvegicus (R. norvegicus) are ubiquitous and their presence has several effects on the human populations in our urban areas on a global scale. Both historically and presently, this close interaction has facilitated the dissemination of many pathogens to humans, making screening for potentially zoonotic and emerging viruses in rats highly relevant. We have investigated faecal samples from R. norvegicus collected from urban areas using a protocol based on metagenomic enrichment of circular DNA genomes and subsequent sequencing. We found a new type of papillomavirus, with a L1 region 82% identical to that of the known R. norvegicus Papillomavirus 2. Additionally, we found 20 different circular replication associated protein (Rep)-encoding single stranded DNA (CRESS-DNA) virus-like genomes, one of which has homology to the replication-associated gene of Beak and feather disease virus. Papillomaviruses are a group of viruses known for their carcinogenic potential, and although they are known to infect several different vertebrates, they are mainly studied and characterised in humans. CRESS-DNA viruses are found in many different environments and tissue types. Both papillomaviruses and CRESS-DNA viruses are known to have pathogenic potential and screening for novel and known viruses in R. norvegicus could help identify viruses with pathogenic potential. PMID:26559957

  16. A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses.

    PubMed

    Rodríguez-Negrete, Edgar A; Sánchez-Campos, Sonia; Cañizares, M Carmen; Navas-Castillo, Jesús; Moriones, Enrique; Bejarano, Eduardo R; Grande-Pérez, Ana

    2014-01-01

    Circular single-stranded DNA (ssDNA) viruses are the smallest viruses known to infect eukaryotes. High recombination and mutation rates have conferred these viruses with an evolutionary potential that has facilitated their emergence. Their damaging effects on livestock (circoviruses) and crops (geminiviruses and nanoviruses), and the ubiquity of anelloviruses in human populations and other mammalian species, have resulted in increased interest in better understanding their epidemiology and infection mechanisms. Circular ssDNA viral replication involves the synthesis of dsDNA intermediates containing complementary-sense (CS) and virion-sense (VS) strands. Precise quantification of VS and CS accumulation during viral infections can provide insights into the molecular mechanisms underlying viral replication and the host invasion process. Although qPCR protocols for quantifying viral molecules exist, none of them discriminate VS and CS strands. Here, using a two-step qPCR protocol we have quantified VS and CS molecule accumulation during the infection process of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) (genus Begomovirus, family Geminiviridae). Our results show that the VS/CS strand ratio and overall dsDNA amounts vary throughout the infection process. Moreover, we show that these values depend on the virus-host combination, and that most CS strands are present as double-stranded molecules. PMID:25241765

  17. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    PubMed

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate.

  18. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition.

    PubMed

    Uchiyama, Susumu; Kawahara, Kazuki; Hosokawa, Yuki; Fukakusa, Shunsuke; Oki, Hiroya; Nakamura, Shota; Kojima, Yukiko; Noda, Masanori; Takino, Rie; Miyahara, Yuya; Maruno, Takahiro; Kobayashi, Yuji; Ohkubo, Tadayasu; Fukui, Kiichi

    2015-12-01

    Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ~30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.

  19. Metabolism, sister chromatid exchanges, and DNA single-strand breaks induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and their modulation by vitamin A in vitro.

    PubMed

    Alaoui-Jamali, M A; Bélanger, P M; Rossignol, G; Castonguay, A

    1991-08-01

    The nicotine-derived N-nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone (NNK) is abundant in smokeless tobacco and tobacco smoke and is hepatocarcinogenic in F344 rats. We have investigated how vitamin A modulates sister chromatid exchanges and DNA single-strand breaks induced by NNK. In V79 cells, vitamin A at concentrations ranging from 34.9 to 139.6 microM inhibited sister chromatid exchange frequencies induced by 20 mM NNK activated by primary rat hepatocytes. Sister chromatid exchanges were inhibited by 24, 44, and 55% when cells were cotreated with 34.9, 69.8, and 139.6 microM vitamin A, respectively. DNA single-strand breaks induced by NNK in rat hepatocytes were also inhibited by vitamin A. After 9 h of elution, DNA single-strand breaks induced by 1, 5, and 10 mM NNK were inhibited by 13, 5, and 3.5% in the presence of 69.8 microM vitamin A, respectively. This protective effect by vitamin A was associated with a reduction of alpha-carbon hydroxylation, an activation pathway of NNK. This pathway was inhibited by 50% when cells were cotreated with 3.49 microM vitamin A. The reduction in the hepatic microsomal aminopyrine N-demethylase, aniline hydroxylase, and N,N-dimethyl aniline N-demethylase in the presence of vitamin A (0.035 to 0.35 microM) suggests that vitamin A could reduce NNK genotoxicity by inhibiting the enzymes involved in the activation process. PMID:1855212

  20. Zn(2+)-cyclen-based complex enable a selective detection of single-stranded thymine-rich DNA in aqueous buffer.

    PubMed

    Zhu, Zece; Wang, Sheng; Wei, Danqing; Yang, Chuluo

    2016-11-15

    It is a big challenge to develop fluorescent probes for selective detection of DNA with specific sequences in aqueous buffers. We report a new tetraphenylethene-based Zn(2+)-cyclen complex (TPECyZn), and a chemo-sensing ensemble of the Zn complex with phenol red. TPECyZn showed significant fluorescence enhancement upon binding to thymine-rich DNA in HEPES buffers. But its selectivity was not high enough to eliminate the interference from some random DNA. By constructing the chemo-sensing ensemble of TPECyZn with phenol red, the background fluorescence was eliminated due to the energy transfer from TPECyZn to phenol red. Moreover, this chemo-sensing ensemble revealed high selectivity in detecting thymine-rich single-stranded DNA over other DNA in aqueous buffer. It can detect poly deoxythymidylic acid sequence as short as 2 nt. This detection in aqueous media makes this probe feasible in real application. PMID:27288711

  1. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria.

    PubMed

    Antes, Anita; Tappin, Inger; Chung, Stella; Lim, Robert; Lu, Bin; Parrott, Andrew M; Hill, Helene Z; Suzuki, Carolyn K; Lee, Chee-Gun

    2010-10-01

    Mammalian mitochondria contain full-length genome and a single-stranded 7S DNA. Although the copy number of mitochondrial DNA (mtDNA) varies depending on the cell type and also in response to diverse environmental stresses, our understanding of how mtDNA and 7S DNA are maintained and regulated is limited, partly due to lack of reliable in vitro assay systems that reflect the in vivo functionality of mitochondria. Here we report an in vitro assay system to measure synthesis of both mtDNA and 7S DNA under a controllable in vitro condition. With this assay system, we demonstrate that the replication capacity of mitochondria correlates with endogenous copy numbers of mtDNA and 7S DNA. Our study also shows that higher nucleotide concentrations increasingly promote 7S DNA synthesis but not mtDNA synthesis. Consistently, the mitochondrial capacity to synthesize 7S DNA but not mtDNA noticeably varied along the cell cycle, reaching its highest level in S phase. These findings suggest that syntheses of mtDNA and 7S DNA proceed independently and that the mitochondrial capacity to synthesize 7S DNA dynamically changes not only with cell-cycle progression but also in response to varying nucleotide concentrations.

  2. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.

    PubMed

    Cheng, Chang-Li; Zhao, Guang-Jiu

    2012-04-01

    In the present work, we explored the diameter selectivity of dynamic self-assembly for the single-strand DNA (ssDNA) encapsulation in double-walled nanotubes (DWNTs) via molecular dynamics simulation method. Moreover, the pulling out process was carried out by steered molecular dynamics simulations. Considering π-π stacking and solvent accessibility together, base-CNT binding should be strongest on a graphene sheet and weakest on the inner CNT surface. When pulling the ssDNA out of the single-walled carbon nanotube (SWNT), the force exhibits characteristic fluctuations around a plateau about 300 pN. Each fluctuation force pulse to pull ssDNA corresponds to the exit of one base. In addition, the solvents used for the system are also of significant interest. Water does play an important role in encapsulation process but doesn't in the pulling out process.

  3. Significance of enzyme linked immunosorbent assay (ELISA) for antibodies to double stranded and single stranded DNA in patients with lupus nephritis: correlation with severity of renal histology.

    PubMed

    Okamura, M; Kanayama, Y; Amastu, K; Negoro, N; Kohda, S; Takeda, T; Inoue, T

    1993-01-01

    The correlation between renal histology and class specific (IgG and IgM) antibodies to double stranded DNA (dsDNA) and single stranded DNA (ssDNA) was studied by enzyme linked immunosorbent assay (ELISA) in 40 untreated patients with systemic lupus erythematosus (SLE). The levels of IgG antibodies to dsDNA were significantly higher in patients with World Health Organisation class IV nephritis than in those with class I, class II, or class III nephritis. IgG antibodies to ssDNA were higher in patients with class IV than in those with class II nephritis. IgG antibodies to dsDNA showed a close correlation with the histological activity score and the amount of electron dense deposit. IgG antibodies to ssDNA showed only a weak correlation with the renal histological activity score. IgM antibodies to dsDNA and IgM antibodies to ssDNA were not correlated with renal histological features. Patients with moderate to severe nephritis had a lower ratio of IgM antibodies to dsDNA to IgG antibodies to dsDNA than those with mild nephritis. These results indicate that the measurement of IgG antibodies to dsDNA is predictive in evaluating renal histological activity in patients with SLE.

  4. DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers.

    PubMed Central

    Popp, W; Vahrenholz, C; Schell, C; Grimmer, G; Dettbarn, G; Kraus, R; Brauksiepe, A; Schmeling, B; Gutzeit, T; von Bülow, J; Norpoth, K

    1997-01-01

    OBJECTIVES: To investigate the specificity of biological monitoring variables (excretion of phenanthrene and pyrene metabolites in urine) and the usefulness of some biomarkers of effect (alkaline filter elution, 32P postlabelling assay, measurement of sister chromatid exchange) in workers exposed to polycyclic aromatic hydrocarbons (PAHs). METHODS: 29 coke oven workers and a standardised control group were investigated for frequencies of DNA single strand breakage, DNA protein cross links (alkaline filter elution assay), sister chromatid exchange, and DNA adducts (32P postlabelling assay) in lymphocytes. Phenanthrene and pyrene metabolites were measured in 24 hour urine samples. 19 different PAHs (including benzo(a)pyrene, pyrene, and phenanthrene) were measured at the workplace by personal air monitoring. The GSTT1 activity in erythrocytes and lymphocyte subpopulations in blood was also measured. RESULTS: Concentrations of phenanthrene, pyrene, and benzo(a)pyrene in air correlated well with the concentration of total PAHs in air; they could be used for comparisons of different workplaces if the emission compositions were known. The measurement of phenanthrene metabolites in urine proved to be a better biological monitoring variable than the measurement of 1-hydroxypyrene. Significantly more DNA strand breaks in lymphocytes of coke oven workers were found (alkaline filter elution assay); the DNA adduct rate was not significantly increased in workers, but correlated with exposure to PAHs in a semiquantitative manner. The number of sister chromatid exchanges was lower in coke oven workers but this was not significant; thus counting sister chromatid exchanges was not a good variable for biomonitoring of coke oven workers. Also, indications for immunotoxic influences (changes in lymphocyte subpopulations) were found. CONCLUSIONS: The measurement of phenanthrene metabolites in urine seems to be a better biological monitoring variable for exposure to PAHs than

  5. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture.

  6. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture. PMID:25052520

  7. Crystal Structure of DNA Cytidine Deaminase ABOBEC3G Catalytic Deamination Domain Suggests a Binding Mode of Full-length Enzyme to Single-stranded DNA*

    PubMed Central

    Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng; Liu, Shanshan; Zhao, Bin; Lan, Wenxian; Wang, Chunxi; Ding, Jianping; Cao, Chunyang

    2015-01-01

    APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA. PMID:25542899

  8. Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA.

    PubMed

    Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng; Liu, Shanshan; Zhao, Bin; Lan, Wenxian; Wang, Chunxi; Ding, Jianping; Cao, Chunyang

    2015-02-13

    APOBEC3G (A3G) is a DNA cytidine deaminase (CD) that demonstrates antiviral activity against human immunodeficiency virus 1 (HIV-1) and other pathogenic virus. It has an inactive N-terminal CD1 virus infectivity factor (Vif) protein binding domain (A3G-CD1) and an actively catalytic C-terminal CD2 deamination domain (A3G-CD2). Although many studies on the structure of A3G-CD2 and enzymatic properties of full-length A3G have been reported, the mechanism of how A3G interacts with HIV-1 single-stranded DNA (ssDNA) is still not well characterized. Here, we reported a crystal structure of a novel A3G-CD2 head-to-tail dimer (in which the N terminus of the monomer H (head) interacts with the C terminus of monomer T (tail)), where a continuous DNA binding groove was observed. By constructing the A3G-CD1 structural model, we found that its overall fold was almost identical to that of A3G-CD2. We mutated the residues located in or along the groove in monomer H and the residues in A3G-CD1 that correspond to those seated in or along the groove in monomer T. Then, by performing enzymatic assays, we confirmed the reported key elements and the residues in A3G necessary to the catalytic deamination. Moreover, we identified more than 10 residues in A3G essential to DNA binding and deamination reaction. Therefore, this dimer structure may represent a structural model of full-length A3G, which indicates a possible binding mode of A3G to HIV-1 ssDNA.

  9. Ortho-stabilized 18F-azido click agents and application in PET imaging of single-stranded DNA aptamer

    PubMed Central

    Wang, Lu; Jacobson, Orit; Avdic, Din; Rotstein, Benjamin H.; Weiss, Ido D.; Collier, Lee

    2015-01-01

    Azido 18F-arenes are important and versatile building blocks for radiolabeling of biomolecules via Huisgen cycloaddition (‘click chemistry’) in positron emission tomography (PET). However, routine access of such clickable agents is challenged by inefficient multi-step and esoteric radiochemical approaches. Herein we describe a high-yielding direct radiofluorination for azido 18F-arenes by developing an oxygen ortho-stabilized iodonium derivative (OID). This OID strategy addresses an unmet need for a reliable azido 18F-arene clickable agent in bioconjugation reactions. A ssDNA aptamer is radiolabeled and visualized in a xenograft mouse model of human colon cancer by PET, which demonstrates a convenient and highly efficient way of labeling biomolecules and tracking them by OID approach. PMID:26308650

  10. Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum

    PubMed Central

    2014-01-01

    Background Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination and repair in Bacteria, Archaea and Eukarya. In recent years, there has been an increasing interest in SSBs, since they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila (DpsSSB), Flavobacterium psychrophilum (FpsSSB), Psychrobacter arcticus (ParSSB), Psychrobacter cryohalolentis (PcrSSB), Psychromonas ingrahamii (PinSSB), Photobacterium profundum (PprSSB), and Psychroflexus torquis (PtoSSB). The proteins show a high differential within the molecular mass of their monomers and the length of their amino acid sequences. The high level of identity and similarity in respect to the EcoSSB is related to the OB-fold and some of the last amino acid residues. They are functional as homotetramers, with each monomer encoding one single stranded DNA binding domain (OB-fold). The fluorescence titrations indicated that the length of the ssDNA-binding site size is approximately 30 ± 2 nucleotides for the PinSSB, 31 ± 2 nucleotides for the DpsSSB, and 32 ± 2 nucleotides for the ParSSB, PcrSSB, PprSSB and PtoSSB. They also demonstrated that it is salt independent. However, when the ionic strength was changed from low salt to high, binding-mode transition was observed for the FpsSSB, at 31 ± 2 nucleotides and 45 ± 2 nucleotides, respectively. As expected, the SSB proteins under study cause duplex DNA destabilization. The greatest decrease in duplex DNA melting temperature was observed in the presence of the PtoSSB 17°C. The SSBs in question possess relatively high thermostability for proteins derived from cold-adapted bacteria. Conclusion The results showed that SSB proteins from psychrophilic microorganisms are typical bacterial SSBs and possess relatively high thermostability

  11. Linear-After-The-Exponential (LATE)-PCR: primer design criteria for high yields of specific single-stranded DNA and improved real-time detection.

    PubMed

    Pierce, Kenneth E; Sanchez, J Aquiles; Rice, John E; Wangh, Lawrence J

    2005-06-14

    Traditional asymmetric PCR uses conventional PCR primers at unequal concentrations to generate single-stranded DNA. This method, however, is difficult to optimize, often inefficient, and tends to promote nonspecific amplification. An alternative approach, Linear-After-The-Exponential (LATE)-PCR, solves these problems by using primer pairs deliberately designed for use at unequal concentrations. The present report systematically examines the primer design parameters that affect the exponential and linear phases of LATE-PCR amplification. In particular, we investigated how altering the concentration-adjusted melting temperature (Tm) of the limiting primer (TmL) relative to that of the excess primer (TmX) affects both amplification efficiency and specificity during the exponential phase of LATE-PCR. The highest reaction efficiency and specificity were observed when TmL - TmX 5 degrees C. We also investigated how altering TmX relative to the higher Tm of the double-stranded amplicon (TmA) affects the rate and extent of linear amplification. Excess primers with TmX closer to TmA yielded higher rates of linear amplification and stronger signals from a hybridization probe. These design criteria maximize the yield of specific single-stranded DNA products and make LATE-PCR more robust and easier to implement. The conclusions were validated by using primer pairs that amplify sequences within the cystic fibrosis transmembrane regulator (CFTR) gene, mutations of which are responsible for cystic fibrosis.

  12. Effect of phosphorothioate modifications on the ability of GTn oligodeoxynucleotides to specifically recognize single-stranded DNA-binding proteins and to affect human cancer cellular growth.

    PubMed

    Morassutti, C; Scaggiante, B; Dapas, B; Xodo, L; Tell, G; Quadrifoglio, F

    1999-12-01

    We have previously identified phosphodiester oligonucleotides exclusively made of G and T bases, named GTn, that significantly inhibit human cancer cell growth and recognize specific nuclear single-stranded DNA binding proteins. We wished to examine the ability of the modified GTn oligonucleotides with different degrees of phosphorothioate modifications to bind specifically to the same nuclear proteins recognized by the GTn phosphodiester analogues and their cytotoxic effect on the human T-lymphoblastic CCRF-CEM cell line. We showed that the full phosphorothioate GTn oligonucleotide was neither able to specifically recognize those nuclear proteins, nor cytotoxic. In contrast, the 3'-phosphorothioate-protected GTn oligonucleotides can maintain the specific protein-binding activity. The end-modified phosphorothioate oligonucleotides were also able to elicit the dose-dependent cell growth inhibition effect, but a loss in the cytotoxic ability was observed increasing the extent of sulphur modification of the sequences. Our results indicate that phosphorothioate oligonucleotides directed at specific single-stranded DNA-binding proteins should contain a number of phosphorothioate end-linkages which should be related to the length of the sequence, in order to maintain the same biological activities exerted by their phosphodiester analogues.

  13. Effect of temperature on the low-frequency vibrational spectrum and relative structuring of hydration water around a single-stranded DNA.

    PubMed

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-01-01

    Molecular dynamics simulations of the single-stranded DNA oligomer (5'-CGCGAAT TCGCG-3') in aqueous solution have been carried out at different temperatures between 160 K and 300 K. The effects of temperature on the low-frequency vibrational spectrum and local structural arrangements of water molecules hydrating the DNA strand have been explored in detail. The low-frequency density of states distributions reveal that increasingly trapped transverse water motions play a dominant role in controlling the band corresponding to O⋯O⋯O bending or transverse oscillations of hydration water at supercooled temperatures. In addition, presence of a broad band around 260 (±20) cm(-1) under supercooled conditions indicates transformation from high density liquid-like structuring of hydration water at higher temperatures to that of a low density liquid at lower temperatures. It is found that long-range correlations between the supercooled hydration water molecules arise due to such local structural transition around the DNA oligomer.

  14. Construction and gene expression analysis of a single-stranded DNA minivector based on an inverted terminal repeat of adeno-associated virus.

    PubMed

    Ping, Han; Liu, Xiaomei; Zhu, Dongqin; Li, Taiming; Zhang, Chun

    2015-04-01

    The plasmid vectors currently used for nonviral gene transfer have the disadvantage of carrying a bacterial backbone and an antibiotic resistance gene, which may cause side effects. The adeno-associated virus (AAV) genome is a linear single-stranded DNA (ssDNA) molecule with palindromic inverted terminal repeat (ITR) sequences forming double-stranded DNA (dsDNA) hairpin (HP) structures at each end. Based on the AAV genome, we constructed an AAV-ITR ssDNA minivector that consists of a GFP expression cassette flanked by both ITR sequences of 125 nucleotides. The minivectors were produced by digestion of the parental plasmids followed by denaturation. The self-complementary inverted T-shaped HP structure of the minivector was automatically formed. The HEK 293T cells were transfected with the AAV-ITR ssDNA minivector, plasmid, and dsDNA expression cassette. The results showed that AAV-ITR ssDNA minivector had relatively low gene expression efficiency in vitro. However, we found that the GFP expression efficiency of the D sequence-deleted AAV-ITR ssDNA minivector was significantly increased and was similar to those obtained with the plasmid and dsDNA expression cassette. Our data suggest that the AAV-ITR ssDNA minivector may be a new type of gene expression vector for gene therapy besides the virus and plasmid.

  15. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins

    PubMed Central

    Rosario, Karyna; Schenck, Ryan O.; Harbeitner, Rachel C.; Lawler, Stephanie N.; Breitbart, Mya

    2015-01-01

    Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses. PMID:26217327

  16. Localization of specific sequences and DNA single-strand breaks in individual UV-A-irradiated human lymphocytes by COMET FISH

    NASA Astrophysics Data System (ADS)

    Bock, Claudia; Rapp, Alexander; Dittmar, Heike; Monajembashi, Shamci; Greulich, Karl-Otto

    1999-01-01

    The COMET assay, a single cell electrophoresis technique which allows to separate electrophoretically fractionated DNA according to size has been combined with fluorescence in situ hybridization (FISH) which allows to localize specific genes or gene regions. This combination (COMET FISH) allows the detection of DNA single strand breaks in specific regions of the genome of human lymphocytes at the single cell level. Various types of DNA probes, e.g. centromere-, (alpha) - satellite-, telomere-, whole chromosome-, single copy- and region specific DNA probes have been used to investigate whether the UV-A induced DNA single strand breaks are distributed randomly all over the human genome or induced at specific sites ('hot spots'). In the investigated human peripheral blood lymphocytes all but one centromere reveal low sensitivity for UV-A irradiation (500 kJ/m2), while telomeres are randomly distributed over COMET heads and tails. The human chromosome 1 is fractionated by irradiation, but remains in the COMET head, indicating an only moderate degree of fractionation. Among three tested single copy probes, c- myc, p53 and p58, the p53 gene located on chromosome 17p13.1 and the p58 gene (1p36) appear to be located in UV-A stable regions of the human genome in 95% of 65 investigated lymphocytes. In contrast, the c-myc proto-oncogene (8q24) is found in the COMET tail in 90% of the 27 investigated lymphocytes and thus appears to be more sensitive to UV-A irradiation.

  17. Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro.

    PubMed Central

    Lin, J J; Zakian, V A

    1994-01-01

    By screening lambda gt11 libraries with a radiolabeled (TG1-3)n oligonucleotide, two Saccharomyces cerevisiae genes were identified that encode polypeptides that recognize the single-stranded telomeric repeat sequence (TG1-3)n. The first gene, NSR1, a previously identified gene, encodes a protein involved in ribosomal RNA maturation and possibly in transport of proteins into the nucleus. The second gene, GBP2 (G-strand Binding Protein), is an anonymous open reading frame from chromosome III. These two genes contain RNA recognition motifs (RRMs) that are found in proteins that interact with RNA. Both Nsr1p and Gbp2p bind specifically to yeast single strand (TG1-3)n DNA in vitro. To test whether these two proteins associate with telomeres in vivo, strains were constructed in which one or both of these genes were either disrupted or overexpressed. None of these alterations affected telomere length or telomere position effect. The potential role of these two (TG1-3)n binding proteins is discussed. Images PMID:7800479

  18. Fluorescent single-stranded DNA-based assay for detecting unchelated Gadolinium(III) ions in aqueous solution.

    PubMed

    Edogun, Osafanmwen; Nguyen, Nghia Huu; Halim, Marlin

    2016-06-01

    The main concern pertaining to the safety of Gadolinium(III)-based contrast agents (GBCAs) is the toxicity caused by the unchelated ion, which may be inadvertently present in the solution due most commonly to excess unreacted starting material or dissociation of the complexes. Detecting the aqueous free ion during the synthesis and preparation of GBCA solutions is therefore instrumental in ensuring the safety of the agents. This paper reports the development of a sensitive fluorogenic sensor for aqueous unchelated Gadolinium(III) (Gd(III)). Our design utilizes single-stranded oligodeoxynucleotides with a specific sequence of 44 bases as the targeting moiety. The fluorescence-based assay may be run at ambient pH with very small amounts of samples in 384-well plates. The sensor is able to detect nanomolar concentration of Gd(III), and is relatively unresponsive toward a range of biologically relevant ions and the chelated Gd(III). Although some cross-reactivity with other trivalent lanthanide ions, such as Europium(III) and Terbium(III), is observed, these are not commonly found in biological systems and contrast agents. This convenient and rapid method may be useful in ascertaining a high purity of GBCA solutions. Graphical abstract Fluorescent aptamer-based assay for detecting unchelated Ln(III) ions in aqueous solution. PMID:27071762

  19. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus.

    PubMed Central

    Gyllensten, U B; Erlich, H A

    1988-01-01

    Single-copy sequences can be enzymatically amplified from genomic DNA by the polymerase chain reaction. By using unequal molar amounts of the two amplification primers, it is possible in a single step to amplify a single-copy gene and produce an excess of single-stranded DNA of a chosen strand for direct sequencing or for use as a hybridization probe. Further, individual alleles in a heterozygote can be sequenced directly by using allele-specific oligonucleotides either in the amplification reaction or as sequencing primers. By using these methods, we have studied the allelic diversity at the HLA-DQA locus and its association with the serologically defined HLA-DR and -DQ types. This analysis has revealed a total of eight alleles and three additional haplotypes. This procedure has wide applications in screening for mutations in human genes and facilitates the linking of enzymatic amplification of genes to automated sequencing. Images PMID:3174659

  20. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2016-05-01

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4-DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3-DNA complex.

  1. Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks.

    PubMed

    Bolderson, Emma; Petermann, Eva; Croft, Laura; Suraweera, Amila; Pandita, Raj K; Pandita, Tej K; Helleday, Thomas; Khanna, Kum Kum; Richard, Derek J

    2014-06-01

    Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.

  2. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells.

    PubMed Central

    Galli, A; Schiestl, R H

    1998-01-01

    Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both gamma-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas gamma-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBs but not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage. PMID:9649517

  3. Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1.

    PubMed

    Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Albeck, Shira; Unger, Tamar; Peleg, Yoav; Jacobovitch, Jossef; Michael, Yigal; Daube, Shirley; Sharon, Michal; Robinson, Carol V; Svergun, Dmitri I; Fass, Deborah; Tzfira, Tzvi; Elbaum, Michael

    2007-02-01

    Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss) DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand. PMID:17060320

  4. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    PubMed

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-01

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA. PMID:21343909

  5. Binding of a sequence-specific single-stranded DNA-binding factor to the simian virus 40 core origin inverted repeat domain is cell cycle regulated.

    PubMed Central

    Carmichael, E P; Roome, J M; Wahl, A F

    1993-01-01

    The inverted repeat domain (IR domain) within the simian virus 40 origin of replication is the site of initial DNA melting prior to the onset of DNA synthesis. The domain had previously been shown to be bound by a cellular factor in response to DNA damage. We demonstrate that two distinct cellular components bind opposite strands of the IR domain. Replication protein A (RPA), previously identified as a single-stranded DNA binding protein required for origin-specific DNA replication in vitro, is shown to have a preference for the pyrimidine-rich strand. A newly described component, IR factor B (IRF-B), specifically recognizes the opposite strand. IRF-B binding activity in nuclear extract varies significantly with cell proliferation and the cell cycle, so that binding of IRF-B to the IR domain is negatively correlated with the onset of DNA synthesis. Loss of IRF-B binding from the nucleus also occurs in response to cellular DNA damage. UV cross-linking indicates that the core binding component of IRF-B is a protein of ca. 34 kDa. We propose that RPA and IRF-B bind opposite strands of the IR domain and together may function in the regulation of origin activation. Images PMID:8380226

  6. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices

    PubMed Central

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2013-01-01

    In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° < 0). This reduced entropic cost is attributed to a cation-facilitated preordering of the two single-stranded species, which lowers the association free-energy barrier and in turn accelerates the rate of duplex formation. PMID:23931323

  7. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    PubMed

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  8. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses

    NASA Astrophysics Data System (ADS)

    Krupovic, Mart; Koonin, Eugene V.

    2014-06-01

    Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.

  9. Selection of Single-Stranded DNA Molecular Recognition Elements against Exotoxin A Using a Novel Decoy-SELEX Method and Sensitive Detection of Exotoxin A in Human Serum

    PubMed Central

    Hong, Ka Lok; Yancey, Kailey; Battistella, Luisa; Williams, Ryan M.; Hickey, Katherine M.; Bostick, Chris D.; Gannett, Peter M.; Sooter, Letha J.

    2015-01-01

    Exotoxin A is one of the virulence factors of Pseudomonas aeruginosa, a bacterium that can cause infections resulting in adverse health outcomes and increased burden to health care systems. Current methods of diagnosing P. aeruginosa infections are time consuming and can require significant preparation of patient samples. This study utilized a novel variation of the Systematic Evolution of Ligand by Exponential Enrichment, Decoy-SELEX, to identify an Exotoxin A specific single-stranded DNA (ssDNA) molecular recognition element (MRE). Its emphasis is on increasing stringency in directing binding toward free target of interest and at the same time decreasing binding toward negative targets. A ssDNA MRE with specificity and affinity was identified after fourteen rounds of Decoy-SELEX. Utilizing surface plasmon resonance measurements, the determined equilibrium dissociation constant (Kd) of the MRE is between 4.2 µM and 4.5 µM, and is highly selective for Exotoxin A over negative targets. A ssDNA MRE modified sandwich enzyme-linked immunosorbent assay (ELISA) has been developed and achieved sensitive detection of Exotoxin A at nanomolar concentrations in human serum. This study has demonstrated the proof-of-principle of using a ssDNA MRE as a clinical diagnostic tool. PMID:26636098

  10. Effective cross sections for production of single-strand breaks in plasmid DNA by 0.1 to 4.7 eV electrons.

    PubMed

    Panajotovic, Radmila; Martin, Frédéric; Cloutier, Pierre; Hunting, Darel; Sanche, Léon

    2006-04-01

    We determined effective cross sections for production of single-strand breaks (SSBs) in plasmid DNA [pGEM 3Zf(-)] by electrons of 10 eV and energies between 0.1 and 4.7 eV. After purification and lyophilization on a chemically clean tantalum foil, dry plasmid DNA samples were transferred into a high-vacuum chamber and bombarded by a monoenergetic electron beam. The amount of the circular relaxed DNA in the samples was separated from undamaged molecules and quantified using agarose gel electrophoresis. The effective cross sections were derived from the slope of the yield as a function of exposure and had values in the range of 10(-15)- 10(-14) cm2, giving an effective cross section of the order of 10(-18) cm2 per nucleotide. Their strong variation with incident electron energy and the resonant enhancement at 1 eV suggest that considerable damage is inflicted by very low-energy electrons to DNA, and it indicates the important role of pi* shape resonances in the bond-breaking process. Furthermore, the fact that the energy threshold for SSB production is practically zero implies that the sensitivity of DNA to electron impact is universal and is not limited to any particular energy range.

  11. Mutational Analysis of the T4 Gp59 Helicase Loader Reveals Its Sites for Interaction with Helicase, Single-stranded Binding Protein, and DNA*

    PubMed Central

    Dolezal, Darin; Jones, Charles E.; Lai, Xiaoqin; Brister, J. Rodney; Mueser, Timothy C.; Nossal, Nancy G.; Hinton, Deborah M.

    2012-01-01

    Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB. PMID:22427673

  12. In vitro synthesis of large peptide molecules using glucosylated single-stranded bacteriophage T4D DNA template.

    PubMed Central

    Hulen, C; Legault-Demare, J

    1975-01-01

    Denatured Bacteriophage T4D DNA is able to stimulate aminoacid incorporation into TCA-precipitable material in an in vitro protein synthesis system according to base DNA sequences. Newly synthesized polypeptides remain associated with ribosomes and have a molecular weight in range of 15,000 to 45,000 Daltons. PMID:1052527

  13. The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein.

    PubMed

    Naue, Natalie; Beerbaum, Monika; Bogutzki, Andrea; Schmieder, Peter; Curth, Ute

    2013-04-01

    During bacterial DNA replication, DnaG primase and the χ subunit of DNA polymerase III compete for binding to single-stranded DNA-binding protein (SSB), thus facilitating the switch between priming and elongation. SSB proteins play an essential role in DNA metabolism by protecting single-stranded DNA and by mediating several important protein-protein interactions. Although an interaction of SSB with primase has been previously reported, it was unclear which domains of the two proteins are involved. This study identifies the C-terminal helicase-binding domain of DnaG primase (DnaG-C) and the highly conserved C-terminal region of SSB as interaction sites. By ConSurf analysis, it can be shown that an array of conserved amino acids on DnaG-C forms a hydrophobic pocket surrounded by basic residues, reminiscent of known SSB-binding sites on other proteins. Using protein-protein cross-linking, site-directed mutagenesis, analytical ultracentrifugation and nuclear magnetic resonance spectroscopy, we demonstrate that these conserved amino acid residues are involved in the interaction with SSB. Even though the C-terminal domain of DnaG primase also participates in the interaction with DnaB helicase, the respective binding sites on the surface of DnaG-C do not overlap, as SSB binds to the N-terminal subdomain, whereas DnaB interacts with the ultimate C-terminus.

  14. Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc1Δ strains.

    PubMed

    Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I

    2014-10-01

    To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome.

  15. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae.

    PubMed

    Loconsole, Giuliana; Saldarelli, Pasquale; Doddapaneni, Harshavardhan; Savino, Vito; Martelli, Giovanni P; Saponari, Maria

    2012-10-10

    In the attempt to identify the causal agent of Citrus chlorotic dwarf disease (CCDD), a virus-like disorder of citrus, the small RNA fraction and total DNA from symptomatic citrus plants were subjected to high-throughput sequencing. DNA fragments deriving from an apparently new geminivirus-like agent were found and assembled by NGS to re-construct the entire viral genome. The newly identified virus has a circular single-stranded DNA genome comprising five open reading frames (ORFs) with sequence homologies with those encoded by geminiviruses. PCR and qPCR assays were successfully used for determining its presence in the CCDD-affected plants obtained by graft propagation. The larger genome size (3.64 vs. 2.5-3.0 kb) and a number of differences in its structural organization, identified this virus as a highly divergent member of the family Geminiviridae, to which the provisional name of Citrus chlorotic dwarf-associated virus (CCDaV) is assigned.

  16. Analysis of micronuclei and DNA single-strand breaks in mouse splenocytes and peripheral lymphocytes after oral administration of tetramethylthiuram disulfide (thiram).

    PubMed

    Villani, P; Andreoli, C; Crebelli, R; Pacchierotti, F; Zijno, A; Carere, A

    1998-03-01

    The fungicide thiram (tetramethylthiuram disulfide, TMTD) was administered by repeated oral intubations to groups of male B6C3F1 mice at 100, 300 and 900 mg/kg body weight for 4 consecutive days, or at 300 mg/kg for 8 and 12 days. 24 hr after the last treatment animals were killed, and splenocyte cultures were set up for the analysis of micronuclei by the cytokinesis-block method. DNA single strand breaks (ssb) and alkali labile sites were also analysed by the single cell gel electrophoresis (Comet) assay in splenocytes and lymphocytes of animals receiving the 8- and 12-day treatments. Parallel experiments with human peripheral lymphocytes were carried out to assess the ability of thiram to induce micronuclei and DNA ssb and alkaline labile sites under in vitro conditions. No significant increase of micronucleated splenocytes was observed in treated animals, despite some evidence of treatment-related cellular toxicity. A borderline excess of DNA damage was suggested by the Comet assay on circulating lymphocytes, whereas negative results were obtained with splenocytes. In vitro, positive results with both genetic end points were obtained in assays with human lymphocytes in the dose ranges 0.5-24 microg/ml and 0.1-8 microg/ml for micronucleus and Comet assays, respectively. These results suggest that thiram, despite its established genotoxicity in vitro, is devoid of appreciable clastogenic and/or aneugenic activity in vivo after oral administration to mice at the maximum tolerated dose.

  17. Contrasting effects of Krüppel-like factor 4 on X-ray-induced double-strand and single-strand DNA breaks in mouse astrocytes.

    PubMed

    Zhang, Ji; Cui, Fengmei; Li, Lei; Yang, Jiangtao; Zhang, Liyuan; Chen, Qiu; Tian, Ye

    2014-04-01

    Astrocytes, the most common cell type in the brain, play a principal role in the repair of damaged brain tissues during external radiotherapy of brain tumours. As a downstream gene of p53, the effects of Krüppel-like factor 4 (KLF4) in response to X-ray-induced DNA damage in astrocytes are unclear. In the present study, KLF4 expression was upregulated after the exposure of astrocytes isolated from the murine brain. Inhibition of KLF4 expression using lentiviral transduction produced less double-strand DNA breaks (DSB) determined by a neutral comet assay and flow cytometric analysis of phosphorylated histone family 2A variant and more single-strand DNA breaks (SSB) determined by a basic comet assay when the astrocytes were exposed to 4 Gy of X-ray radiation. These data suggest that radiation exposure of the tissues around brain tumour during radiation therapy causes KLF4 overexpression in astrocytes, which induces more DSB and reduces SSB. This causes the adverse effects of radiation therapy in the treatment of brain tumours.

  18. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex.

  19. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans—A Nucleic Acid Binding Protein with Broad Substrate Specificity

    PubMed Central

    Olszewski, Marcin; Balsewicz, Jan; Nowak, Marta; Maciejewska, Natalia; Cyranka-Czaja, Anna; Zalewska-Piątek, Beata; Piątek, Rafał; Kur, Józef

    2015-01-01

    Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids. PMID:25973760

  20. The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction.

    PubMed

    Sundberg, C D; Ream, W

    1999-11-01

    Agrobacterium tumefaciens transfers single-stranded DNA (ssDNA) into plants. Efficient tumorigenesis requires VirE1-dependent export of ssDNA-binding (SSB) protein VirE2. VirE1 binds VirE2 domains involved in SSB and self-association, and VirE1 may facilitate VirE2 export by preventing VirE2 aggregation and the premature binding of VirE2 to ssDNA. PMID:10542192

  1. Genetic Transformation and Mutagenesis Via Single-Stranded DNA in the Unicellular, Diazotrophic Cyanobacteria of the Genus Cyanothece

    SciTech Connect

    Min, Hongtao; Sherman, Louis A.

    2010-11-01

    We describe a genetic system for producing specific gene knockouts in Cyanothece sp. Strain PCC 7822 using a ssDNA technique (37). The first fully segregated mutant was in the nifK gene (DnifK) and the mutant was unable to grow on a medium lacking combined nitrogen and produced virtually no hydrogen.

  2. Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

    PubMed

    Bharat, Tanmay A M; Zbaida, David; Eisenstein, Miriam; Frankenstein, Ziv; Mehlman, Tevie; Weiner, Lev; Sorzano, Carlos Oscar S; Barak, Yoav; Albeck, Shira; Briggs, John A G; Wolf, Sharon G; Elbaum, Michael

    2013-07-01

    Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity. PMID:23769668

  3. Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

    PubMed

    Bharat, Tanmay A M; Zbaida, David; Eisenstein, Miriam; Frankenstein, Ziv; Mehlman, Tevie; Weiner, Lev; Sorzano, Carlos Oscar S; Barak, Yoav; Albeck, Shira; Briggs, John A G; Wolf, Sharon G; Elbaum, Michael

    2013-07-01

    Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity.

  4. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore.

    PubMed

    Perera, Rukshan T; Fleming, Aaron M; Johnson, Robert P; Burrows, Cynthia J; White, Henry S

    2015-02-20

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2'-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5' or 3' directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  5. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    NASA Astrophysics Data System (ADS)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  6. In Vitro Selection of Single-Stranded DNA Molecular Recognition Elements against S. aureus Alpha Toxin and Sensitive Detection in Human Serum

    PubMed Central

    Hong, Ka L.; Battistella, Luisa; Salva, Alysia D.; Williams, Ryan M.; Sooter, Letha J.

    2015-01-01

    Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved. PMID:25633102

  7. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against Clostridium difficile Toxin B and Sensitive Detection in Human Fecal Matter

    PubMed Central

    Maher, Eamonn; Williams, Ryan M.; Sooter, Letha J.

    2015-01-01

    Toxin B is one of the major virulence factors of Clostridium difficile, a bacterium that is responsible for a significant number of diarrhea cases in acute care settings. Due to the prevalence of C. difficile induced diarrhea, rapid and correct diagnosis is crucial in the disease management. In this study, we have employed a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE) specific for toxin B. At the end of the 12-round selection, one MRE with high affinity (Kd = 47.3 nM) for toxin B was identified. The selected MRE demonstrated low cross binding activities on negative targets: bovine serum albumin, Staphylococcus aureus alpha toxin, Pseudomonas aeruginosa exotoxin A, and cholera toxin of Vibrio cholera. A modified sandwich ELISA assay was developed utilizing the selected ssDNA MRE as the antigen capturing element and achieved a sensitive detection of 50 nM of toxin B in human fecal preparations. PMID:25734010

  8. Atomistic Free Energy Model for Nucleic Acids: Simulations of Single-Stranded DNA and the Entropy Landscape of RNA Stem-Loop Structures.

    PubMed

    Mak, Chi H

    2015-11-25

    While single-stranded (ss) segments of DNAs and RNAs are ubiquitous in biology, details about their structures have only recently begun to emerge. To study ssDNA and RNAs, we have developed a new Monte Carlo (MC) simulation using a free energy model for nucleic acids that has the atomisitic accuracy to capture fine molecular details of the sugar-phosphate backbone. Formulated on the basis of a first-principle calculation of the conformational entropy of the nucleic acid chain, this free energy model correctly reproduced both the long and short length-scale structural properties of ssDNA and RNAs in a rigorous comparison against recent data from fluorescence resonance energy transfer, small-angle X-ray scattering, force spectroscopy and fluorescence correlation transport measurements on sequences up to ∼100 nucleotides long. With this new MC algorithm, we conducted a comprehensive investigation of the entropy landscape of small RNA stem-loop structures. From a simulated ensemble of ∼10(6) equilibrium conformations, the entropy for the initiation of different size RNA hairpin loops was computed and compared against thermodynamic measurements. Starting from seeded hairpin loops, constrained MC simulations were then used to estimate the entropic costs associated with propagation of the stem. The numerical results provide new direct molecular insights into thermodynaimc measurement from macroscopic calorimetry and melting experiments.

  9. Intensive Linkage Mapping in a Wasp (Bracon Hebetor) and a Mosquito (Aedes Aegypti) with Single-Strand Conformation Polymorphism Analysis of Random Amplified Polymorphic DNA Markers

    PubMed Central

    Antolin, M. F.; Bosio, C. F.; Cotton, J.; Sweeney, W.; Strand, M. R.; Black-IV, W. C.

    1996-01-01

    The use of random amplified polymorphic DNA from the polymerase chain reaction (RAPD-PCR) allows efficient construction of saturated linkage maps. However, when analyzed by agarose gel electrophoresis, most RAPD-PCR markers segregate as dominant alleles, reducing the amount of linkage information obtained. We describe the use of single strand conformation polymorphism (SSCP) analysis of RAPD markers to generate linkage maps in a haplodiploid parasitic wasp Bracon (Habrobracon) hebetor and a diploid mosquito, Aedes aegypti. RAPD-SSCP analysis revealed segregation of codominant alleles at markers that appeared to segregate as dominant (band presence/band absence) markers or appeared invariant on agarose gels. Our SSCP protocol uses silver staining to detect DNA fractionated on large thin polyacrylamide gels and reveals more polymorphic markers than agarose gel electrophoresis. In B. hebetor, 79 markers were mapped with 12 RAPD primers in six weeks; in A. aegypti, 94 markers were mapped with 10 RAPD primers in five weeks. Forty-five percent of markers segregated as codominant loci in B. hebetor, while 11% segregated as codominant loci in A. aegypti. SSCP analysis of RAPD-PCR markers offers a rapid and inexpensive means of constructing intensive linkage maps of many species. PMID:8844159

  10. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA.

    PubMed

    Kumar, S S; Ghosh, A; Devasagayam, T P; Chauhan, P S

    2000-09-20

    The ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, in inhibiting photosensitization-induced single-strand breaks (ssbs) in plasmid pBR322 DNA has been examined in an in vitro system, independent of DNA repair/replication processes. Photosensitization of DNA with methylene blue, visible light and oxygen, induced ssbs resulting in the production of open circular form (OC form) in a concentration-dependent manner. The yield of OC form induced by photosensitization was increased several-fold by deuteration of the buffer and was found to be inhibited by sodium azide, a scavenger of singlet oxygen (1O(2)). Vanillin, per se, did not induce but inhibited photosensitization-induced ssbs in plasmid DNA, at millimolar concentrations. The inhibitory effect of vanillin was both concentration- and time-dependent. On a molar basis, vanillin was, however, less effective than trolox, a water-soluble analogue of alpha-tocopherol. Photosensitization by methylene blue system generates singlet oxygen, as one of the major components of ROS. Therefore, interaction of singlet oxygen with vanillin was investigated. The rate constant of vanillin with 1O(2) was estimated to be 5.93x10(7)M(-1)s(-1) and that of sodium azide as 2. 7x10(8)M(-1)s(-1). The present investigations show that vanillin can protect against photosensitization-induced ssbs in the plasmid pBR322 DNA, and this effect may partly be due to its ability to scavenge 1O(2).

  11. The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels.

    PubMed

    Duckely, Myriam; Oomen, Clasien; Axthelm, Fabian; Van Gelder, Patrick; Waksman, Gabriel; Engel, Andreas

    2005-11-01

    The VirE2 protein is crucial for the transfer of single-stranded DNA (ssDNA) from Agrobacterium tumefaciens to the nucleus of the plant host cell because of its ssDNA binding activity, assistance in nuclear import and putative ssDNA channel activity. The native form of VirE2 in Agrobacterium's cytoplasm is in complex with its specific chaperone, VirE1. Here, we describe the ability of the VirE1VirE2 complex to both bind ssDNA and form channels. The affinity of the VirE1VirE2 complex for ssDNA is slightly reduced compared with VirE2, but the kinetics of binding to ssDNA are unaffected by the presence of VirE1. Upon binding of VirE1VirE2 to ssDNA, similar helical structures to those reported for the VirE2-ssDNA complex were observed by electron microscopy. The VirE1VirE2 complex can release VirE1 once the VirE2-ssDNA complexes assembled. VirE2 exhibits a low affinity for small unilamellar vesicles composed of bacterial lipids and a high affinity for lipid vesicles containing sterols and sphingolipids, typical components of animal and plant membranes. In contrast, the VirE1VirE2 complex associated similarly with all kind of lipids. Finally, black lipid membrane experiments revealed the ability of the VirE1VirE2 complex to form channels. However, the majority of the channels displayed a conductance that was a third of the conductance of VirE2 channels. Our results demonstrate that the binding of VirE1 to VirE2 does not inhibit VirE2 functions and that the effector-chaperone complex is multifunctional. PMID:16262795

  12. Rheostatic Regulation of the SERCA/Phospholamban Membrane Protein Complex Using Non-Coding RNA and Single-Stranded DNA oligonucleotides

    PubMed Central

    Soller, Kailey J.; Verardi, Raffaello; Jing, Meng; Abrol, Neha; Yang, Jing; Walsh, Naomi; Vostrikov, Vitaly V.; Robia, Seth L.; Bowser, Michael T.; Veglia, Gianluigi

    2015-01-01

    The membrane protein complex between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLN) is a prime therapeutic target for reversing cardiac contractile dysfunctions caused by calcium mishandling. So far, however, efforts to develop drugs specific for this protein complex have failed. Here, we show that non-coding RNAs and single-stranded DNAs (ssDNAs) interact with and regulate the function of the SERCA/PLN complex in a tunable manner. Both in HEK cells expressing the SERCA/PLN complex, as well as in cardiac sarcoplasmic reticulum preparations, these short oligonucleotides bind and reverse PLN’s inhibitory effects on SERCA, increasing the ATPase’s apparent Ca2+ affinity. Solid-state NMR experiments revealed that ssDNA interacts with PLN specifically, shifting the conformational equilibrium of the SERCA/PLN complex from an inhibitory to a non-inhibitory state. Importantly, we achieved rheostatic control of SERCA function by modulating the length of ssDNAs. Since restoration of Ca2+ flux to physiological levels represents a viable therapeutic avenue for cardiomyopathies, our results suggest that oligonucleotide-based drugs could be used to fine-tune SERCA function to counterbalance the extent of the pathological insults. PMID:26292938

  13. An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: a molecular dynamic simulations approach.

    PubMed

    Torabi, Raheleh; Bagherzadeh, Kowsar; Ghourchian, Hedayatollah; Amanlou, Massoud

    2016-09-14

    Type two diabetes is one of the primary health issues threatening public well-being worldwide. One of the pre-diagnosis biomarkers of this disease, retinol binding protein 4 (RBP4), has been demonstrated to be detected with a 76-mer ssDNA aptamer instead of conventional antibodies. However, there is no structural information on the RBP4 binding aptamer (RBA) and the mechanism of its binding to RBP4 still remains unexplored. The objective of the present study is to achieve a better understanding of specific binding interactions of the target protein (RBP4) and RBA, employing Molecular Dynamics simulations (MDs) to provide detailed information on fluctuations, conformational changes, critical bases and effective forces to develop regulated aptamers to be employed in designing new aptamers for many useful recognition applications. RBA was designed according to its reported base pair sequence and secondary structure. The HADDOCK on line docking program was used to predict a suitable RBP4-RBA mode of interaction to start MDs with. MDs methodology was used to analyze the final complex stability and detect interacting residues. Eventually, we conclude that single strand located bases are the key components that conduct the intercalation phenomenon with big targets rather than those involving loops and folded motifs, to encompass targets and probably inhibit their activity. Also, UV-visible, circular dichroism and fluorescence spectroscopy measurements confirmed the interactions between RBA and RBP4 and RBP4-RBA complex formation.

  14. An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: a molecular dynamic simulations approach.

    PubMed

    Torabi, Raheleh; Bagherzadeh, Kowsar; Ghourchian, Hedayatollah; Amanlou, Massoud

    2016-09-14

    Type two diabetes is one of the primary health issues threatening public well-being worldwide. One of the pre-diagnosis biomarkers of this disease, retinol binding protein 4 (RBP4), has been demonstrated to be detected with a 76-mer ssDNA aptamer instead of conventional antibodies. However, there is no structural information on the RBP4 binding aptamer (RBA) and the mechanism of its binding to RBP4 still remains unexplored. The objective of the present study is to achieve a better understanding of specific binding interactions of the target protein (RBP4) and RBA, employing Molecular Dynamics simulations (MDs) to provide detailed information on fluctuations, conformational changes, critical bases and effective forces to develop regulated aptamers to be employed in designing new aptamers for many useful recognition applications. RBA was designed according to its reported base pair sequence and secondary structure. The HADDOCK on line docking program was used to predict a suitable RBP4-RBA mode of interaction to start MDs with. MDs methodology was used to analyze the final complex stability and detect interacting residues. Eventually, we conclude that single strand located bases are the key components that conduct the intercalation phenomenon with big targets rather than those involving loops and folded motifs, to encompass targets and probably inhibit their activity. Also, UV-visible, circular dichroism and fluorescence spectroscopy measurements confirmed the interactions between RBA and RBP4 and RBP4-RBA complex formation. PMID:27511589

  15. The Single-Stranded DNA Genome of Novel Archaeal Virus Halorubrum Pleomorphic Virus 1 Is Enclosed in the Envelope Decorated with Glycoprotein Spikes▿ †

    PubMed Central

    Pietilä, Maija K.; Laurinavičius, Simonas; Sund, Jukka; Roine, Elina; Bamford, Dennis H.

    2010-01-01

    Only a few archaeal viruses have been subjected to detailed structural analyses. Major obstacles have been the extreme conditions such as high salinity or temperature needed for the propagation of these viruses. In addition, unusual morphotypes of many archaeal viruses have made it difficult to obtain further information on virion architectures. We used controlled virion dissociation to reveal the structural organization of Halorubrum pleomorphic virus 1 (HRPV-1) infecting an extremely halophilic archaeal host. The single-stranded DNA genome is enclosed in a pleomorphic membrane vesicle without detected nucleoproteins. VP4, the larger major structural protein of HRPV-1, forms glycosylated spikes on the virion surface and VP3, the smaller major structural protein, resides on the inner surface of the membrane vesicle. Together, these proteins organize the structure of the membrane vesicle. Quantitative lipid comparison of HRPV-1 and its host Halorubrum sp. revealed that HRPV-1 acquires lipids nonselectively from the host cell membrane, which is typical of pleomorphic enveloped viruses. PMID:19864380

  16. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival.

    PubMed

    Abbondandolo, A; Dogliotti, E; Lohman, P H; Berends, F

    1982-02-22

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), N-ethyl-N-nitrosourea (ENU), ethyl methanesulphonate (EMS) and diethyl sulphonate (DES). The compounds differed greatly in their potency to induce the lesions measured when compared on a molar basis, but comparison at equicytotoxic doses showed relatively small differences. Upon prolonged incubation of the DNA in alkali, the number of ssb increased considerably. DNA from untreated cells showed biphasic kinetics: slow ssb formation for about 10 h, then the rate increased and remained constant for up to 40 h. Treated cells showed an accelerated, dose-dependent linear generation of ssb for 10 h, followed by a short plateau; then ssb were formed again at a constant rate, somewhat higher than that in controls. Ssb formed in the initial phase are ascribed to phosphotriester hydrolysis, those after the plateau to unidentified causes. Zero intercepts appeared to be a measure of apurinic sites generated intracellularly. A 24-h repair period preceding lysis reduced the ENNG intercept, but not that of DES. Rapid degradation of DES during the 1-h treatment occurred, so most "apurinic-site lesions" were induced in the beginning of exposure and possibly were already repaired at the end. The types of lesion distinguished (reparable and non-reparable apurinic sites, phosphotriesters) appeared of little consequence for cell survival. PMID:7201070

  17. DNA hairpin loops in solution. Correlation between primary structure, thermostability and reactivity with single-strand-specific nuclease from mung bean.

    PubMed

    Xodo, L E; Manzini, G; Quadrifoglio, F; van der Marel, G; van Boom, J

    1991-04-11

    Hairpin structures formed by seven DNA inverted repeats have been studied by PAGE, UV(CD)-spectroscopy and nuclease cleavage. The hairpins consisted of (CG)3 stems and loops of 2, 3 and 4 residues. Thermal stabilities (Tm) have been determined in low and high ionic strength buffers, where the hairpins were structured in the B- and Z-DNA form respectively. The thermodynamic parameters of hairpin formation have been obtained by a two-state analysis of the hairpin-coil transitions. It is found that, on increasing the number of bases in the loop from 2 to 3 and 4, the Tms of the B-hairpins decrease, whereas the Tms of the same hairpins in the Z-form increase. This confirms previous evidence (1,2) that in a hairpin molecule the size and structure of the loop are modulated by the conformation of the helical stem. Moreover, B-hairpins with loops comprising 2, 3 and 4 bases have been digested with the single-strand-specific nuclease from mung bean. In our experimental conditions (0 degrees C) the nuclease preferentially cleaves the unbonded nucleotides of the loops. However, the rates of loop hydrolysis, which roughly follow a first-order kinetics, markedly depend on the size of the loop. At a ratio of 3 enzyme units/micrograms DNA, the half-lives of hairpins which are expected to form loops of 4, 3 and 2 residues are 90, 145 and 440 minutes respectively. Thermostability and enzymatic digestion data suggest that two-membered loops can be formed in B-hairpins but not in Z-hairpins. PMID:2027758

  18. Electrostatic and Hydrophobic Interactions Mediate Single-Stranded DNA Recognition and Acta2 Repression by Purine-Rich Element-Binding Protein B.

    PubMed

    Rumora, Amy E; Ferris, Lauren A; Wheeler, Tamar R; Kelm, Robert J

    2016-05-17

    Myofibroblast differentiation is characterized by an increased level of expression of cytoskeletal smooth muscle α-actin. In human and murine fibroblasts, the gene encoding smooth muscle α-actin (Acta2) is tightly regulated by a network of transcription factors that either activate or repress the 5' promoter-enhancer in response to environmental cues signaling tissue repair and remodeling. Purine-rich element-binding protein B (Purβ) suppresses the expression of Acta2 by cooperatively interacting with the sense strand of a 5' polypurine sequence containing an inverted MCAT cis element required for gene activation. In this study, we evaluated the chemical basis of nucleoprotein complex formation between the Purβ repressor and the purine-rich strand of the MCAT element in the mouse Acta2 promoter. Quantitative single-stranded DNA (ssDNA) binding assays conducted in the presence of increasing concentrations of monovalent salt or anionic detergent suggested that the assembly of a high-affinity nucleoprotein complex is driven by a combination of electrostatic and hydrophobic interactions. Consistent with the results of pH titration analysis, site-directed mutagenesis revealed several basic amino acid residues in the intermolecular (R267) and intramolecular (K82 and R159) subdomains that are essential for Purβ transcriptional repressor function in Acta2 promoter-reporter assays. In keeping with their diminished Acta2 repressor activity in fibroblasts, purified Purβ variants containing an R267A mutation exhibited reduced binding affinity for purine-rich ssDNA. Moreover, certain double and triple-point mutants were also defective in binding to the Acta2 corepressor protein, Y-box-binding protein 1. Collectively, these findings establish the repertoire of noncovalent interactions that account for the unique structural and functional properties of Purβ. PMID:27064749

  19. Role of Human DNA Glycosylase Nei-like 2 (NEIL2) and Single Strand Break Repair Protein Polynucleotide Kinase 3′-Phosphatase in Maintenance of Mitochondrial Genome*

    PubMed Central

    Mandal, Santi M.; Hegde, Muralidhar L.; Chatterjee, Arpita; Hegde, Pavana M.; Szczesny, Bartosz; Banerjee, Dibyendu; Boldogh, Istvan; Gao, Rui; Falkenberg, Maria; Gustafsson, Claes M.; Sarkar, Partha S.; Hazra, Tapas K.

    2012-01-01

    The repair of reactive oxygen species-induced base lesions and single strand breaks (SSBs) in the nuclear genome via the base excision (BER) and SSB repair (SSBR) pathways, respectively, is well characterize, and important for maintaining genomic integrity. However, the role of mitochondrial (mt) BER and SSBR proteins in mt genome maintenance is not completely clear. Here we show the presence of the oxidized base-specific DNA glycosylase Nei-like 2 (NEIL2) and the DNA end-processing enzyme polynucleotide kinase 3′-phosphatase (PNKP) in purified human mitochondrial extracts (MEs). Confocal microscopy revealed co-localization of PNKP and NEIL2 with the mitochondrion-specific protein cytochrome c oxidase subunit 2 (MT-CO2). Further, chromatin immunoprecipitation analysis showed association of NEIL2 and PNKP with the mitochondrial genes MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 3); importantly, both enzymes also associated with the mitochondrion-specific DNA polymerase γ. In cell association of NEIL2 and PNKP with polymerase γ was further confirmed by proximity ligation assays. PNKP-depleted ME showed a significant decrease in both BER and SSBR activities, and PNKP was found to be the major 3′-phosphatase in human ME. Furthermore, individual depletion of NEIL2 and PNKP in human HEK293 cells caused increased levels of oxidized bases and SSBs in the mt genome, respectively. Taken together, these studies demonstrate the critical role of NEIL2 and PNKP in maintenance of the mammalian mitochondrial genome. PMID:22130663

  20. Nucleoside diphosphate kinase from Mycobacterium tuberculosis cleaves single strand DNA within the human c-myc promoter in an enzyme-catalyzed reaction.

    PubMed

    Kumar, Praveen; Verma, Anjali; Saini, Adesh Kumar; Chopra, Puneet; Chakraborti, Pradip K; Singh, Yogendra; Chowdhury, Shantanu

    2005-01-01

    The reason for secretion of nucleoside diphosphate kinase (NdK), an enzyme involved in maintaining the cellular pool of nucleoside triphosphates in both prokaryotes and eukaryotes, by Mycobacterium tuberculosis is intriguing. We recently observed that NdK from M.tuberculosis (mNdK) localizes within nuclei of HeLa and COS-1 cells and also nicks chromosomal DNA in situ (A. K. Saini, K. Maithal, P. Chand, S. Chowdhury, R. Vohra, A. Goyal, G. P. Dubey, P. Chopra, R. Chandra, A. K. Tyagi, Y. Singh and V. Tandon (2004) J. Biol. Chem., 279, 50142-50149). In the current study, using a molecular beacon approach, we demonstrate that the mNdK catalyzes the cleavage of single strand DNA. It displays Michaelis-Menten kinetics with a kcat/K(M) of 9.65 (+/-0.88) x 10(6) M(-1) s(-1). High affinity (K(d) approximately K(M) of approximately 66 nM) and sequence-specific binding to the sense strand of the nuclease hypersensitive region in the c-myc promoter was observed. This is the first study demonstrating that the cleavage reaction is also enzyme-catalyzed in addition to the enzymatic kinase activity of multifunctional NdK. Using our approach, we demonstrate that GDP competitively inhibits the nuclease activity with a K(I) of approximately 1.9 mM. Recent evidence implicates mNdK as a potent virulence factor in tuberculosis owing to its DNase-like activity. In this context, our results demonstrate a molecular mechanism that could be the basis for assessing in situ DNA damage by secretory mNdK.

  1. Bound or free: interaction of the C-terminal domain of Escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB.

    PubMed

    Su, Xun-Cheng; Wang, Yao; Yagi, Hiromasa; Shishmarev, Dmitry; Mason, Claire E; Smith, Paul J; Vandevenne, Marylène; Dixon, Nicholas E; Otting, Gottfried

    2014-04-01

    Single-stranded DNA (ssDNA)-binding protein (SSB) protects ssDNA from degradation and recruits other proteins for DNA replication and repair. Escherichia coli SSB is the prototypical eubacterial SSB in a family of tetrameric SSBs. It consists of a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain). The eight-residue C-terminal segment of SSB (C-peptide) mediates the binding of SSB to many different SSB-binding proteins. Previously published nuclear magnetic resonance (NMR) data of the monomeric state at pH 3.4 showed that the C-peptide binds to the OB-domain at a site that overlaps with the ssDNA binding site, but investigating the protein at neutral pH is difficult because of the high molecular mass and limited solubility of the tetramer. Here we show that the C-domain is highly mobile in the SSB tetramer at neutral pH and that binding of the C-peptide to the OB-domain is so weak that most of the C-peptides are unbound even in the absence of ssDNA. We address the problem of determining intramolecular binding affinities in the situation of fast exchange between two states, one of which cannot be observed by NMR and cannot be fully populated. The results were confirmed by electron paramagnetic resonance spectroscopy and microscale thermophoresis. The C-peptide-OB-domain interaction is shown to be driven primarily by electrostatic interactions, so that binding of 1 equiv of (dT)35 releases practically all C-peptides from the OB-domain tetramer. The interaction is much more sensitive to NaCl than to potassium glutamate, which is the usual osmolyte in E. coli. As the C-peptide is predominantly in the unbound state irrespective of the presence of ssDNA, long-range electrostatic effects from the C-peptide may contribute more to regulating the activity of SSB than any engagement of the C-peptide by the OB-domain.

  2. Analysis of p53 gene mutations in human gliomas by polymerase chain reaction-based single-strand conformation polymorphism and DNA sequencing.

    PubMed

    Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P

    1994-03-01

    Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Different mutagenic potential of HIV-1 restriction factors APOBEC3G and APOBEC3F is determined by distinct single-stranded DNA scanning mechanisms.

    PubMed

    Ara, Anjuman; Love, Robin P; Chelico, Linda

    2014-03-01

    The APOBEC3 deoxycytidine deaminase family functions as host restriction factors that can block replication of Vif (virus infectivity factor) deficient HIV-1 virions to differing degrees by deaminating cytosines to uracils in single-stranded (-)HIV-1 DNA. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils, thereby inducing C/G→T/A mutations that can functionally inactivate HIV-1. Although both APOBEC3F and APOBEC3G are expressed in cell types HIV-1 infects and are suppressed by Vif, there has been no prior biochemical analysis of APOBEC3F, in contrast to APOBEC3G. Using synthetic DNA substrates, we characterized APOBEC3F and found that similar to APOBEC3G; it is a processive enzyme and can deaminate at least two cytosines in a single enzyme-substrate encounter. However, APOBEC3F scanning movement is distinct from APOBEC3G, and relies on jumping rather than both jumping and sliding. APOBEC3F jumping movements were also different from APOBEC3G. The lack of sliding movement from APOBEC3F is due to an ¹⁹⁰NPM¹⁹² motif, since insertion of this motif into APOBEC3G decreases its sliding movements. The APOBEC3G NPM mutant induced significantly less mutations in comparison to wild-type APOBEC3G in an in vitro model HIV-1 replication assay and single-cycle infectivity assay, indicating that differences in DNA scanning were relevant to restriction of HIV-1. Conversely, mutation of the APOBEC3F ¹⁹¹Pro to ¹⁹¹Gly enables APOBEC3F sliding movements to occur. Although APOBEC3F ¹⁹⁰NGM¹⁹² could slide, the enzyme did not induce more mutagenesis than wild-type APOBEC3F, demonstrating that the unique jumping mechanism of APOBEC3F abrogates the influence of sliding on mutagenesis. Overall, we demonstrate key differences in the impact of APOBEC3F- and APOBEC3G-induced mutagenesis on HIV-1 that supports a model in which both the processive DNA scanning mechanism and preferred deamination motif

  4. Different Mutagenic Potential of HIV-1 Restriction Factors APOBEC3G and APOBEC3F Is Determined by Distinct Single-Stranded DNA Scanning Mechanisms

    PubMed Central

    Ara, Anjuman; Love, Robin P.; Chelico, Linda

    2014-01-01

    The APOBEC3 deoxycytidine deaminase family functions as host restriction factors that can block replication of Vif (virus infectivity factor) deficient HIV-1 virions to differing degrees by deaminating cytosines to uracils in single-stranded (−)HIV-1 DNA. Upon replication of the (−)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils, thereby inducing C/G→T/A mutations that can functionally inactivate HIV-1. Although both APOBEC3F and APOBEC3G are expressed in cell types HIV-1 infects and are suppressed by Vif, there has been no prior biochemical analysis of APOBEC3F, in contrast to APOBEC3G. Using synthetic DNA substrates, we characterized APOBEC3F and found that similar to APOBEC3G; it is a processive enzyme and can deaminate at least two cytosines in a single enzyme-substrate encounter. However, APOBEC3F scanning movement is distinct from APOBEC3G, and relies on jumping rather than both jumping and sliding. APOBEC3F jumping movements were also different from APOBEC3G. The lack of sliding movement from APOBEC3F is due to an 190NPM192 motif, since insertion of this motif into APOBEC3G decreases its sliding movements. The APOBEC3G NPM mutant induced significantly less mutations in comparison to wild-type APOBEC3G in an in vitro model HIV-1 replication assay and single-cycle infectivity assay, indicating that differences in DNA scanning were relevant to restriction of HIV-1. Conversely, mutation of the APOBEC3F 191Pro to 191Gly enables APOBEC3F sliding movements to occur. Although APOBEC3F 190NGM192 could slide, the enzyme did not induce more mutagenesis than wild-type APOBEC3F, demonstrating that the unique jumping mechanism of APOBEC3F abrogates the influence of sliding on mutagenesis. Overall, we demonstrate key differences in the impact of APOBEC3F- and APOBEC3G-induced mutagenesis on HIV-1 that supports a model in which both the processive DNA scanning mechanism and preferred deamination motif (APOBEC3F, 5

  5. Label-free detection of DNA-binding proteins based on microfluidic solid-state molecular beacon sensor.

    PubMed

    Wang, Jun; Onoshima, Daisuke; Aki, Michihiko; Okamoto, Yukihiro; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2011-05-01

    A solid-state molecular beacon using a gold support as a fluorescence quencher is combined with a polydimethylsiloxane (PDMS) microfluidic channel to construct an optical sensor for detecting single-stranded DNA binding protein (SSBP) and histone protein. The single-stranded DNA-Cy3 probe or double-stranded DNA-Cy3 probe immobilized on the gold surface is prepared for the detection of SSBP or histone, respectively. Due to the different quenching ability of gold to the immobilized single-stranded DNA-Cy3 probe and the immobilized double-stranded DNA-Cy3 probe, low fluorescence intensity of the attached single-stranded DNA-Cy3 is obtained in SSBP detection, whereas high fluorescence intensity of the attached double-stranded DNA-Cy3 is obtained in histone detection. The amounts of SSBP in sample solutions are determined from the degree of fluorescence recovery of the immobilized single-stranded DNA-Cy3 probe, whereas that of histone in sample solutions is determined from the degree of fluorescence quenching of the immobilized double-stranded DNA-Cy3 probe. Using this approach, label-free detection of target proteins at nanomolar concentrations is achieved in a convenient, general, continuous flow format. Our approach has high potential for the highly sensitive label-free detection of various proteins based on binding-induced conformation changes of immobilized DNA probes.

  6. The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity

    PubMed Central

    de la Tour, Claire Bouthier; Boisnard, Stéphanie; Norais, Cédric; Toueille, Magali; Bentchikou, Esma; Vannier, Françoise; Cox, Michael M.; Sommer, Suzanne; Servant, Pascale

    2012-01-01

    The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from E. coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also showed that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution. PMID:21968057

  7. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium.

    PubMed

    Deng, W; Chen, L; Peng, W T; Liang, X; Sekiguchi, S; Gordon, M P; Comai, L; Nester, E W

    1999-03-01

    Agrobacterium tumefaciens induces tumours on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of a single-stranded DNA (ssDNA) segment, the T-DNA, and VirD2, an endonuclease covalently attached to the 5' end of the T-DNA. A type IV secretion system encoded by the virB operon and virD4 is required for the entry of the T-complex and VirE2, a ssDNA-binding protein, into plant cells. The VirE1 protein is specifically required for the export of the VirE2 protein, as demonstrated by extracellular complementation and tumour formation. In this report, using a yeast two-hybrid system, we demonstrated that the VirE1 and VirE2 proteins interact and confirmed this interaction by in vitro binding assays. Although VirE2 is a ssDNA-binding protein, addition of ssDNA into the binding buffer did not interfere with the interaction of VirE1 and VirE2. VirE2 also interacts with itself, but the interaction between VirE1 and VirE2 is stronger than the VirE2 self-interaction, as measured in a lacZ reporter gene assay. In addition, the interaction of VirE2 with itself is inhibited by VirE1, indicating that VirE2 binds VirE1 preferentially. Analysis of various virE2 deletions indicated that the VirE1 interaction domain of VirE2 overlaps the VirE2 self-interaction domain. Incubation of extracts from Escherichia coli overexpressing His-VirE1 with the extracts of E. coli overexpressing His-VirE2 increased the yield of His-VirE2 in the soluble fraction. In a similar purified protein solubility assay, His-VirE1 increased the amount of His-VirE2 partitioning into the soluble fraction. In Agrobacterium, VirE2 was undetectable in the soluble protein fraction unless VirE1 was co-expressed. When urea was added to solubilize any large protein aggregates, a low level of VirE2 was detected. These results indicate that VirE1 prevents VirE2 from aggregating, enhances the stability of VirE2 and, perhaps, maintains VirE2 in an

  8. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS) to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands

    PubMed Central

    Bradley, Kevin M

    2014-01-01

    Summary Synthetic biologists wishing to self-assemble large DNA (L-DNA) constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson–Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS), and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting") software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology. PMID:25161743

  9. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS) to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands.

    PubMed

    Bradley, Kevin M; Benner, Steven A

    2014-01-01

    Synthetic biologists wishing to self-assemble large DNA (L-DNA) constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson-Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS), and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting") software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  10. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles.

    PubMed

    Chuang, Hsiao-Chi; Cheng, Yi-Ling; Lei, Yu-Chen; Chang, Hui-Hsien; Cheng, Tsun-Jen

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO(4); a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO(4) and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO(4) on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO(4), induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage.

  11. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    SciTech Connect

    Chuang, Hsiao-Chi; Cheng, Yi-Ling; Lei, Yu-Chen; Chang, Hui-Hsien; Cheng, Tsun-Jen

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  12. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: gp32 monomer binding.

    PubMed

    Jose, Davis; Weitzel, Steven E; Baase, Walter A; von Hippel, Peter H

    2015-10-30

    Combining biophysical measurements on T4 bacteriophage replication complexes with detailed structural information can illuminate the molecular mechanisms of these 'macromolecular machines'. Here we use the low energy circular dichroism (CD) and fluorescent properties of site-specifically introduced base analogues to map and quantify the equilibrium binding interactions of short (8 nts) ssDNA oligomers with gp32 monomers at single nucleotide resolution. We show that single gp32 molecules interact most directly and specifically near the 3'-end of these ssDNA oligomers, thus defining the polarity of gp32 binding with respect to the ssDNA lattice, and that only 2-3 nts are directly involved in this tight binding interaction. The loss of exciton coupling in the CD spectra of dimer 2-AP (2-aminopurine) probes at various positions in the ssDNA constructs, together with increases in fluorescence intensity, suggest that gp32 binding directly extends the sugar-phosphate backbone of this ssDNA oligomer, particularly at the 3'-end and facilitates base unstacking along the entire 8-mer lattice. These results provide a model (and 'DNA map') for the isolated gp32 binding to ssDNA targets, which serves as the nucleation step for the cooperative binding that occurs at transiently exposed ssDNA sequences within the functioning T4 DNA replication complex. PMID:26275775

  13. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination.

    PubMed

    Hegde, S P; Qin, M H; Li, X H; Atkinson, M A; Clark, A J; Rajagopalan, M; Madiraju, M V

    1996-12-10

    The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF-RecO-RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF-RecO-Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF-RecO-RecR complex functions as an anti-Ssb factor. PMID:8962075

  14. Enzymatic Polymerization on DNA Modified Gold Nanowire for Label-Free Detection of Pathogen DNA

    PubMed Central

    Jeong, Jaepil; Kim, Hyejin; Lee, Jong Bum

    2015-01-01

    This paper presents a label-free biosensor for the detection of single-stranded pathogen DNA through the target-enhanced gelation between gold nanowires (AuNW) and the primer DNAs branched on AuNW. The target DNA enables circularization of the linear DNA template, and the primer DNA is elongated continuously via rolling circle amplification. As a result, in the presence of the target DNA, a macroscopic hydrogel was fabricated by the entanglement of the elongated DNA with AuNWs as a scaffold fiber for effective gelation. In contrast, very small separate particles were generated in the absence of the target DNA. This label-free biosensor might be a promising tool for the detection of pathogen DNAs without any devices for further analysis. Moreover, the biosensor based on the weaving of AuNW and DNAs suggests a novel direction for the applications of AuNWs in biological engineering. PMID:26084045

  15. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    SciTech Connect

    Kim, Seongman; Chul Ahn, Byung; O'Callaghan, Dennis J.; Kim, Seong Kee

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  16. Structure-function analysis of a lupus anti-DNA autoantibody: central role of the heavy chain complementarity-determining region 3 Arg in binding of double- and single-stranded DNA.

    PubMed

    Li, Z; Schettino, E W; Padlan, E A; Ikematsu, H; Casali, P

    2000-07-01

    To determine the contribution of the somatic point mutations and that of the complementarity-determining region (CDR)3 Arg to DNA binding, we engineered the germline V(H) and V(kappa) gene revertant and site-mutagenized the CDR3 Arg residues of the mutated and "antigen-selected" mAb 412.67. This anti-DNA autoantibody was derived from B-1 cells of a lupus patient and bore two H-CDR3 Arg, Arg105 and Arg107, encoded by N segment additions, and one kappa-CDR3 Arg, Arg97, resulting from a point mutation (Kasaian et al. 1994. J. Immunol. 152: 3137-3151; Kasaian et al. 1995. Ann. N.Y Acad. Sci. 764: 410-423). The germ-line revertant bound double-stranded (ds) DNA and single-stranded (ss) DNA as effectively as its wild-type counterpart (relative avidity: 6.4x10(-7) and 9.9x10(-9) vs. 6.7x10(-7) and 9.1 x10(-9) g/microl), raising the possibility that an antigen other than DNA was responsible for the selection of the mAb 412.67 V(H) and V(kappa) point mutations. H-CDR3 Arg105 and Arg107 were both required for dsDNA binding, but either Arg105 or Arg107 was sufficient for ssDNA binding. The central role of Arg105 and Arg107 in DNA binding reflected their solvent-exposed orientation at the apex of the H-CDR3 main loop. Consistent with its inward orientation afar from the antigen-binding surface, the kappa-CDR3 Arg97 played no role in either dsDNA or ssDNA binding.

  17. Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth.

    PubMed

    Chilukuri, L N; Bartlett, D H

    1997-04-01

    The ssb gene, coding for single-stranded-DNA-binding protein (SSB), was cloned from four marine Shewanella strains that differed in their temperature and pressure optima and ranges of growth. All four Shewanella ssb genes complemented Escherichia coli ssb point and deletion mutants, with efficiencies that varied with temperature and ssb gene source. The Shewanella SSBs are the largest bacterial SSBs identified to date (24.9-26.3 kDa) and may be divided into conserved amino- and carboy-terminal regions and a highly variable central region. Greater amino acid sequence homology was observed between the Shewanella SSBs as a group (72-87%) than with other bacterial SSBs (52-69%). Analysis of the amino acid composition of the Shewanella SSBs revealed several features that could correlate with pressure or temperature adaptation. SSBs from the three low-temperature-adapted Shewanella strains were an order of magnitude more hydrophilic than that from the mesophilic strain, and differences in the distribution of eight amino acids were identified which could contribute to either the temperature or pressure adaptation of the proteins. The SSBs from all four Shewanella strains were overproduced and partially purified based upon their ability to bind single-stranded DNA. The differences found among the Shewanella SSBs suggest that these proteins will provide a useful system for exploring the adaptation of protein-protein and protein-DNA interactions at low temperature and high pressure. PMID:9141679

  18. Ortho-Stabilized (18) F-Azido Click Agents and their Application in PET Imaging with Single-Stranded DNA Aptamers.

    PubMed

    Wang, Lu; Jacobson, Orit; Avdic, Din; Rotstein, Benjamin H; Weiss, Ido D; Collier, Lee; Chen, Xiaoyuan; Vasdev, Neil; Liang, Steven H

    2015-10-19

    Azido (18) F-arenes are important and versatile building blocks for the radiolabeling of biomolecules via Huisgen cycloaddition ("click chemistry") for positron emission tomography (PET). However, routine access to such clickable agents is challenged by inefficient and/or poorly defined multistep radiochemical approaches. A high-yielding direct radiofluorination for azido (18) F-arenes was achieved through the development of an ortho-oxygen-stabilized iodonium derivative (OID). This OID strategy addresses an unmet need for a reliable azido (18) F-arene clickable agent for bioconjugation reactions. A ssDNA aptamer was radiolabeled with this agent and visualized in a xenograft mouse model of human colon cancer by PET, which demonstrates that this OID approach is a convenient and highly efficient way of labeling and tracking biomolecules.

  19. Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens.

    PubMed

    Jayaswal, R K; Veluthambi, K; Gelvin, S B; Slightom, J L

    1987-11-01

    The virD locus of Agrobacterium tumefaciens Ti plasmid pTiA6 was sequenced. Computer analysis of the sequence indicated five possible open reading frames (ORFs) within this locus. Two additional ORFs were identified distal to this locus. However, only two polypeptides of apparent molecular masses 16 and 56 kilodaltons, the products of ORFs 1 and 2, were detected in Escherichia coli, both in vivo and in an in vitro coupled transcription-translation system. The virD locus was cloned in expression vector pKK223.3 under control of a tac promoter and introduced into an E. coli strain harboring mini-Ti plasmid pAL1050. When induced with isopropyl-beta-D-thiogalactopyranoside, the virD gene products exhibited double-stranded T-DNA border-specific endonuclease activity. Deletion analysis demonstrated that this activity is encoded within the 5'-proximal 1.7-kilobase-pair portion of the virD locus that carries ORF 1 and most of ORF 2. Neither ORF 1 nor ORF 2 independently showed endonuclease activity; complementation studies indicated that the products of ORFs 1 and 2 together have this activity. The expression of this 1.7-kilobase-pair region of the virD locus caused double-stranded cleavage of the T-DNA at or near the borders and generated single-stranded T-DNA molecules with approximately equal frequencies in E. coli.

  20. Reparation in unicellular green algae during chronic exposure to the action of mutagenic factors. II. Restoration of single-stranded DNA breaks following exposure of Chlamydomonas reinchardii to gamma-irradiation

    SciTech Connect

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-12-01

    The restoration of single-stranded breaks in the DNA in different strains of unicellular green algae (chlamydomonads) during chronic exposure to the action of mutagenic factors following ..gamma..-irradiation was investigated. It was shown that the restoration of DNA breaks was most effective in the case of strain M ..gamma../sup mt/sup +//, which is resistant to radiation. Strains, that were sensitive to UV irradiation showed a similar order of DNA break restoration as the wild-type strain. Strain UVS-1 showed a higher level of restoration than the wild-type strain. The data indicated that chlamydomonads have different pathways of reparation, which lead to the restoration of breaks induced by ..gamma..-irradiation and UV-rays.

  1. Characterization of mucosa-associated bacterial communities of the mouse intestine by terminal restriction fragment length polymorphism: Utility of sampling strategies and methods to reduce single-stranded DNA artifacts.

    PubMed

    Costa, Estela; Puhl, Nathan J; Selinger, L Brent; Inglis, G Douglas

    2009-08-01

    Terminal restriction fragment length polymorphism (T-RFLP) is a molecular technique used for comparative analysis of microbial community structure and dynamics. We evaluated three sampling methods for recovering bacterial community DNA associated with intestinal mucosa of mice (i.e. mechanical agitation with PBS, hand washing with PBS containing Tween 80, and direct DNA extraction from mucosal plugs). In addition, the utility of two methods (i.e. Klenow fragment and mung-bean nuclease) to reduce single-stranded DNA artifacts was tested. T-RFLP analysis indicated that diverse communities of bacteria are associated with mucosa of the ileum, cecum, and descending colon of mice. Although there was no significant difference in bacterial community structure between the mechanical agitation and direct DNA extraction methods regardless of intestinal location, community diversity was reduced for the hand wash method in the colon. The use of Klenow fragment and mung-bean nuclease have been reported to eliminate single-stranded DNA artifacts (i.e. pseudo-T-restriction fragments), but neither method was beneficial for characterizing mucosa-associated bacterial communities of the mouse cecum. Our study showed that the mechanical agitation and direct plug extraction methods yielded equivalent bacterial community DNA from the mucosa of the small and large intestines of mice, but the latter method was superior for logistical reasons. We also applied a combination of different statistical approaches to analyze T-RFLP data, including statistical detection of true peaks, analysis of variance for peak number, and group significance test, which provided a quantitative improvement for the interpretation of the T-RFLP data.

  2. Library construction for ancient genomics: single strand or double strand?

    PubMed

    Bennett, E Andrew; Massilani, Diyendo; Lizzo, Giulia; Daligault, Julien; Geigl, Eva-Maria; Grange, Thierry

    2014-06-01

    A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts.

  3. Library construction for ancient genomics: single strand or double strand?

    PubMed

    Bennett, E Andrew; Massilani, Diyendo; Lizzo, Giulia; Daligault, Julien; Geigl, Eva-Maria; Grange, Thierry

    2014-06-01

    A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts. PMID:24924389

  4. The involvement of topoisomerase I in the induction of DNA-protein crosslinks and DNA single-strand breaks in cells of ultraviolet-irradiated human and frog cell lines.

    PubMed

    Rosenstein, B S; Subramanian, D; Muller, M T

    1997-12-01

    Exposure of GM 4390 human skin fibroblasts and ICR 2A frog cells to 10 kJ m(-2) of ultraviolet B (UVB) radiation resulted in the formation of DNA-protein crosslinks (DPCs) and DNA single-strand breaks (SSBs). However, upon incubation, there were rapid increases in the yields of both DPCs and SSBs. An enhancement in these DNA alterations was detected within 12 min after irradiation and their levels continued to rise by 5-8-fold within 15 h after exposure to UV radiation. Using an antibody-based assay that measures covalent complex formation between topoisomerase (topo) I and genomic DNA, it was found that topo I is one of the proteins involved in these DPCs induced by UV radiation. The levels and rate of increase of topo I-DNA covalent complexes were similar to the UV-radiation-dependent formation of DPCs and SSBs. A UV-radiation-sensitive mutant frog cell line, DRP 153, was also examined and was found to be deficient in this induction of DPCs and SSBs by UV radiation. When these cells were transfected with the human SUVCC3 gene, the resulting transformant displayed kinetics for the induction of DPCs and SSBs similar to the human and parental frog cells. However, human topo I was not defected in the transformed frog cells, indicating that SUVCC3 does not encode topo I. It is likely that SUVCC3 encodes an associated enzymatic activity which permits normal stimulation of topo I-DNA covalent complexes in UV-irradiated cells. PMID:9399703

  5. Models for the binary complex of bacteriophage T4 gp59 helicase loading protein: gp32 single-stranded DNA-BINDING protein and ternary complex with pseudo-Y junction DNA.

    PubMed

    Hinerman, Jennifer M; Dignam, J David; Mueser, Timothy C

    2012-05-25

    Bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596-18607).

  6. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    SciTech Connect

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  7. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA

    PubMed Central

    Miura, Hiromi; Gurumurthy, Channabasavaiah B; Sato, Takehito; Sato, Masahiro; Ohtsuka, Masato

    2015-01-01

    Knockdown mouse models, where gene dosages can be modulated, provide valuable insights into gene function. Typically, such models are generated by embryonic stem (ES) cell-based targeted insertion, or pronuclear injection, of the knockdown expression cassette. However, these methods are associated with laborious and time-consuming steps, such as the generation of large constructs with elements needed for expression of a functional RNAi-cassette, ES-cell handling, or screening for mice with the desired knockdown effect. Here, we demonstrate that reliable knockdown models can be generated by targeted insertion of artificial microRNA (amiRNA) sequences into a specific locus in the genome [such as intronic regions of endogenous eukaryotic translation elongation factor 2 (eEF-2) gene] using the Clustered Regularly Interspaced Short Palindromic Repeats/Crispr associated 9 (CRISPR/Cas9) system. We used in vitro synthesized single-stranded DNAs (about 0.5-kb long) that code for amiRNA sequences as repair templates in CRISPR/Cas9 mutagenesis. Using this approach we demonstrate that amiRNA cassettes against exogenous (eGFP) or endogenous [orthodenticle homeobox 2 (Otx2)] genes can be efficiently targeted to a predetermined locus in the genome and result in knockdown of gene expression. We also provide a strategy to establish conditional knockdown models with this method. PMID:26242611

  8. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA.

    PubMed

    Miura, Hiromi; Gurumurthy, Channabasavaiah B; Sato, Takehito; Sato, Masahiro; Ohtsuka, Masato

    2015-08-05

    Knockdown mouse models, where gene dosages can be modulated, provide valuable insights into gene function. Typically, such models are generated by embryonic stem (ES) cell-based targeted insertion, or pronuclear injection, of the knockdown expression cassette. However, these methods are associated with laborious and time-consuming steps, such as the generation of large constructs with elements needed for expression of a functional RNAi-cassette, ES-cell handling, or screening for mice with the desired knockdown effect. Here, we demonstrate that reliable knockdown models can be generated by targeted insertion of artificial microRNA (amiRNA) sequences into a specific locus in the genome [such as intronic regions of endogenous eukaryotic translation elongation factor 2 (eEF-2) gene] using the Clustered Regularly Interspaced Short Palindromic Repeats/Crispr associated 9 (CRISPR/Cas9) system. We used in vitro synthesized single-stranded DNAs (about 0.5-kb long) that code for amiRNA sequences as repair templates in CRISPR/Cas9 mutagenesis. Using this approach we demonstrate that amiRNA cassettes against exogenous (eGFP) or endogenous [orthodenticle homeobox 2 (Otx2)] genes can be efficiently targeted to a predetermined locus in the genome and result in knockdown of gene expression. We also provide a strategy to establish conditional knockdown models with this method.

  9. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involving in mitochondrial biogenesis

    SciTech Connect

    Tiranti, V.; Rossi, G.; DiDonato, S.

    1995-01-20

    By using a PCR-based screening of a somatic cell hybrid panel and FISH, we have assigned the loci of mitochondrial single-stranded DNA-binding protein (SSBP), mitochondrial transcription factor A (TCF6), and mitochondrial endonuclease G (ENDOG) genes to human chromosomes 7q34, 10q21, and 9q34.1, respectively. The products of these three genes are involved in fundamental aspects of mitochondrial biogenesis, such as replication and transcription of the mitochondrial genome. The chromosomal localization of these genes is important to testing whether the corresponding proteins may play a role in the etiopathogenesis of human disorders associated with qualitative or quantitative abnormalities of mitochondrial DNA. 20 refs., 1 fig., 2 tabs.

  10. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. PMID:26805035

  11. Pyrene-labeled deoxyguanosine as a fluorescence sensor to discriminate single and double stranded DNA structures: design of ends free molecular beacons.

    PubMed

    Matsumoto, Katsuhiko; Shinohara, Yuta; Bag, Subhendu S; Takeuchi, Yoshiki; Morii, Takashi; Saito, Yoshio; Saito, Isao

    2009-11-15

    A novel fluorescent DNA probe containing pyrene-labeled C8 alkylamino-substituted 2'-deoxyguanosine was designed in order to discriminate single stranded and double stranded regions in DNA. This fluorescent sensor was used for the design of practically useful 3'- and 5'-ends free self-quenched molecular beacon (MB). Unique MB detectable by pyrene excimer fluorescence was also demonstrated.

  12. Yellow mosaic symptom caused by the nuclear shuttle protein gene of mungbean yellow mosaic virus is associated with single-stranded DNA accumulation and mesophyll spread of the virus.

    PubMed

    Kuruba, B L; Buvani, A P; Veluthambi, K

    2016-01-01

    Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, causes yellow mosaic disease in blackgram and mungbean. Two variable DNA-B components, KA22 and KA27, cause distinct symptoms in blackgram [V. mungo (L.) Hepper] with the same DNA-A component. KA22 + DNA-A-agroinoculated blackgram plants displayed yellow mosaic symptom and accumulated high levels of viral single-stranded (ss) DNA. KA27 + DNA-A-agroinoculated blackgram plants displayed severe stunting symptom and accumulated very low levels of viral ssDNA. However, in mungbean [V. radiata (L.) Wilczek], KA27 + DNA-A caused yellow mosaic symptom and a high level of viral ssDNA accumulated. Swapping of KA27 DNA-B with the nuclear shuttle protein gene (NSP) of KA22 DNA-B (KA27xKA22 NSP) caused yellow mosaic symptom in blackgram, suggesting that KA22 NSP is the determinant of yellow mosaic symptom. Interestingly, KA27xKA22 NSP-infected blackgram plants accumulated high levels of viral ssDNA, comparable to that of KA22 DNA-B infection, suggesting that the KA22 NSP is responsible for accumulation of high levels of viral ssDNA. MYMV distribution was studied in blackgram and mungbean plants by leaf tissue hybridization, which showed mesophyll spread of the virus in KA22-infected blackgram leaflets and in KA27-infected mungbean leaflets, both of which displayed yellow mosaic symptom. However, the virus did not accumulate in the mesophyll in the case of KA27-infected blackgram leaflets. Interestingly, the swapped KA27xKA22 NSP-infected blackgram leaflets showed mesophyll accumulation of the virus, suggesting that KA22 NSP determines its mesophyll spread. PMID:27640432

  13. Yellow mosaic symptom caused by the nuclear shuttle protein gene of mungbean yellow mosaic virus is associated with single-stranded DNA accumulation and mesophyll spread of the virus.

    PubMed

    Kuruba, B L; Buvani, A P; Veluthambi, K

    2016-01-01

    Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, causes yellow mosaic disease in blackgram and mungbean. Two variable DNA-B components, KA22 and KA27, cause distinct symptoms in blackgram [V. mungo (L.) Hepper] with the same DNA-A component. KA22 + DNA-A-agroinoculated blackgram plants displayed yellow mosaic symptom and accumulated high levels of viral single-stranded (ss) DNA. KA27 + DNA-A-agroinoculated blackgram plants displayed severe stunting symptom and accumulated very low levels of viral ssDNA. However, in mungbean [V. radiata (L.) Wilczek], KA27 + DNA-A caused yellow mosaic symptom and a high level of viral ssDNA accumulated. Swapping of KA27 DNA-B with the nuclear shuttle protein gene (NSP) of KA22 DNA-B (KA27xKA22 NSP) caused yellow mosaic symptom in blackgram, suggesting that KA22 NSP is the determinant of yellow mosaic symptom. Interestingly, KA27xKA22 NSP-infected blackgram plants accumulated high levels of viral ssDNA, comparable to that of KA22 DNA-B infection, suggesting that the KA22 NSP is responsible for accumulation of high levels of viral ssDNA. MYMV distribution was studied in blackgram and mungbean plants by leaf tissue hybridization, which showed mesophyll spread of the virus in KA22-infected blackgram leaflets and in KA27-infected mungbean leaflets, both of which displayed yellow mosaic symptom. However, the virus did not accumulate in the mesophyll in the case of KA27-infected blackgram leaflets. Interestingly, the swapped KA27xKA22 NSP-infected blackgram leaflets showed mesophyll accumulation of the virus, suggesting that KA22 NSP determines its mesophyll spread.

  14. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors

    NASA Astrophysics Data System (ADS)

    Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian

    2006-01-01

    We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor

  15. Bacillus subtilis DprA Recruits RecA onto Single-stranded DNA and Mediates Annealing of Complementary Strands Coated by SsbB and SsbA*

    PubMed Central

    Yadav, Tribhuwan; Carrasco, Begoña; Hejna, James; Suzuki, Yuki; Takeyasu, Kunio; Alonso, Juan C.

    2013-01-01

    Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation. PMID:23779106

  16. Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA.

    PubMed

    Yadav, Tribhuwan; Carrasco, Begoña; Hejna, James; Suzuki, Yuki; Takeyasu, Kunio; Alonso, Juan C

    2013-08-01

    Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation. PMID:23779106

  17. Molecular dynamics simulation of a tumorigenic benzo[a]pyrene metabolite bound to DNA at a single strand-double strand junction

    SciTech Connect

    Singh, S.B.; Li, B.; Shapiro, R.

    1994-12-31

    It is widely believed that cancer can be initiated when certain biochemically activated chemical substances bind to DNA to produce a covalently linked adduct. Attachment of the substance to DNA can affect the DNA shape, leading to unfortunate biological consequences. These may include replication errors, which could be among the events that start the cellular processes ultimately yielding malignant tumors. Consequently, an understanding at the molecular level of how the DNA shape is affected by such chemicals is critical to understanding the primary event in chemical carcinogenesis. If one could establish structural hallmarks that distinguish DNA bound by a malignant chemical from DNA bound by a benign one, it might ultimately be possible to employ computational tools, instead of bacterial or animal testing, to screen chemical substances for mutagenic and tumorigenic potential.

  18. The hypothetical protein 'All4779', and not the annotated 'Alr0088' and 'Alr7579' proteins, is the major typical single-stranded DNA binding protein of the cyanobacterium, Anabaena sp. PCC7120.

    PubMed

    Kirti, Anurag; Rajaram, Hema; Apte, Shree Kumar

    2014-01-01

    Single-stranded DNA binding (SSB) proteins are essential for all DNA-dependent cellular processes. Typical SSB proteins have an N-terminal Oligonucleotide-Binding (OB) fold, a Proline/Glycine rich region, followed by a C-terminal acidic tail. In the genome of the heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120, alr0088 and alr7579 are annotated as coding for SSB, but are truncated and have only the OB-fold. In silico analysis of whole genome of Anabaena sp. strain PCC7120 revealed the presence of another ORF 'all4779', annotated as a hypothetical protein, but having an N-terminal OB-fold, a P/G-rich region and a C-terminal acidic tail. Biochemical characterisation of all three purified recombinant proteins revealed that they exist either as monomer or dimer and bind ssDNA, but differently. The All4779 bound ssDNA in two binding modes i.e. (All4779)35 and (All4779)66 depending on salt concentration and with a binding affinity similar to that of Escherichia coli SSB. On the other hand, Alr0088 bound in a single binding mode of 50-mer and Alr7579 only to large stretches of ssDNA, suggesting that All4779, in all likelihood, is the major typical bacterial SSB in Anabaena. Overexpression of All4779 in Anabaena sp. strain PCC7120 led to enhancement of tolerance to DNA-damaging stresses, such as γ-rays, UV-irradiation, desiccation and mitomycinC exposure. The tolerance appears to be a consequence of reduced DNA damage or efficient DNA repair due to increased availability of All4779. The ORF all4779 is proposed to be re-annotated as Anabaena ssb gene.

  19. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    PubMed

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. PMID:26178261

  20. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    PubMed

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce.

  1. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    PubMed

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments.

  2. Binding stoichiometry of the gene 32 protein of phage T4 in the complex with single stranded DNA deduced from boundary sedimentation.

    PubMed

    Scheerhagen, M A; Vlaanderen, C A; Blok, J; van Grondelle, R

    1986-04-01

    Short 145 base DNA fragments in complex with the helix destabilizing protein of bacteriophage T4, GP32, have been studied with boundary sedimentation. The sedimentation coefficient was determined as a function of concentration, protein-nucleic acid ratio, temperature and salt concentration. It can be concluded that the measured values reflect the properties of the saturated DNA-GP32 complex. A combination of the earlier obtained translational diffusion coefficient of the complex with the sedimentation coefficient yields its anhydrous molecular weight (Mw = 5.4.10(5) D), which corresponds to a size of the binding site of 10 nucleotides per protein. This procedure is not sensitive to the presence of non-binding protein molecules and to the assumed protein concentration, and therefore, it seems more reliable than a determination from titration experiments. Similar sedimentation measurements were performed with tRNA-complexes containing 76 nucleotides. The translational diffusion coefficient can be calculated from the measured rotational diffusion coefficient and assuming the same hydrodynamic diameter for this complex as obtained for the 145 b DNA complex. The molecular weight derived from the data then also leads to a binding site size of about 10 nucleotides. This suggests that also the short tRNA-complex forms an open, strongly solvated structure, as was proposed for the 145 b DNA-GP32 complex.

  3. Molecular dosimetry of DNA damage caused by alkylation. II. The induction and repair of different classes of single-strand breaks in cultured mammalian cells treated with ethylating agents.

    PubMed

    Dogliotti, E; Lakhanisky, T; van der Schans, G P; Lohman, P H

    1984-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (SSB) or alkali-labile sites were measured by elution through membrane filters at pH 12.0 and pH 12.6, and by centrifugation in alkaline sucrose gradients after 1 h and 21 h lysis in alkali. Two agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and diethyl sulphate (DES). The compounds differed greatly in their potency to induce lesions, but the ratios of SSB, measured with different methods after a treatment for 30 min, did not differ significantly. This suggested that the spectrum of lesions induced by the two compounds is very similar. However, when both agents were studied with alkaline elution at pH 12.0 after a short treatment time (5 min) only ENNG was found to induce rapidly-repairable SSB. Most of these were rejoined already within 5 min after treatment. These results suggest that rapidly-repairable lesions occurring in DNA after treatment of mammalian cells with ethylating agents are due mainly to alkylation at O-atoms. PMID:6472317

  4. Electrostatic Origin of Single-Stranded Genome Packing in Viruses

    NASA Astrophysics Data System (ADS)

    Belyi, Vladimir; Muthukumar, M.

    2006-03-01

    We develop an electrostatic model for single-stranded RNA/DNA viruses that bind their genome via highly basic semiflexible peptide arms. We show that genome-capsid binding is dominated by non-specific electrostatic interactions, rather than actual amino-acid content. Proposed model explains many universal features of the viral genome. Good agreement is found with wide range of qualified wild-type and mutant viruses.

  5. Complex formation between the adenovirus DNA-binding protein and single-stranded poly(rA). Cooperativity and salt dependence.

    PubMed

    Kuil, M E; van Amerongen, H; van der Vliet, P C; van Grondelle, R

    1989-12-12

    The complex formed between adenovirus DNA-binding protein (AdDBP) and poly(rA) was investigated with circular dichroism spectroscopy. The binding process was studied at a variety of salt concentrations, and the titration curves were analyzed according to the contiguous cooperative binding model given by McGhee and von Hippel [McGhee, J.D., & von Hippel, P.H. (1974) J. Mol. Biol. 86, 469-489]. The cooperativity factor omega of the binding process is low (omega approximately 20-30) and independent of the salt concentration. This in contrast to the binding constant K for which a moderately strong salt dependence is observed: delta log (K omega)/delta log [NaCl] = -3.1. The size of the binding site was consistently calculated to be about 13. We also studied the C-terminal 39-kDa fragment which is sufficient for DNA replication in vitro. Complex formation between this fragment of AdDBP and poly(rA) appeared to be characterized by spectroscopic and binding properties similar to those of the intact protein. Only, the binding constant in 50 mM NaCl is a factor of 5 lower.

  6. Feral swine virome is dominated by single-stranded DNA viruses and contains a novel Orthopneumovirus which circulates both in feral and domestic swine.

    PubMed

    Hause, Ben M; Padmanabhan, Aiswaria; Pedersen, Kerri; Gidlewski, Thomas

    2016-09-01

    Feral swine are known reservoirs for various pathogens that can adversely affect domestic animals. To assess the viral ecology of feral swine in the USA, metagenomic sequencing was performed on 100 pooled nasal swabs. The virome was dominated by small, ssDNA viruses belonging to the families Circoviridae, Anelloviridae and Parvovirinae. Only four RNA viruses were identified: porcine kobuvirus, porcine sapelovirus, atypical porcine pestivirus and a novel Orthopneumovirus, provisionally named swine orthopneumovirus (SOV). SOV shared ~90 % nucleotide identity to murine pneumonia virus (MPV) and canine pneumovirus. A modified, commercially available ELISA for MPV found that approximately 30 % of both feral and domestic swine sera were positive for antibodies cross-reactive with MPV. Quantitative reverse transcription-PCR identified two (2 %) and four (5.0 %) positive nasal swab pools from feral and domestic swine, respectively, confirming that SOV circulates in both herds. PMID:27417702

  7. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2′-Amino-α-L-LNA Adenine Monomers: High-affinity Targeting of Single-Stranded DNA

    PubMed Central

    Andersen, Nicolai K.; Anderson, Brooke A.; Wengel, Jesper

    2014-01-01

    Development of conformationally restricted nucleotide building blocks continues to attract considerable interest due to their successful use within antisense, antigene and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-L-LNA are two interesting examples hereof. Oligonucleotides modified with these units display greatly increased affinity toward nucleic acid targets, improved binding specificity and enhanced enzymatic stability relative to unmodified strands. Here, we present the synthesis and biophysical characterization of oligodeoxyribonucleotides (ONs) modified with 2′-amino-α-L-LNA adenine monomers W–Z. The synthesis of target phosphoramidites 1–4 initiates from pentafuranose 5, which upon Vorbrüggen glycosylation, O2′-deacylation, O2′-activation and C2′-azide introduction yields nucleoside 8. A one-pot tandem Staudinger/intramolecular nucleophilic substitution converts 8 into 2′-amino-α-L-LNA adenine intermediate 9, which after a series of non-trivial protecting group manipulations affords key intermediate 15. Subsequent chemoselective N2′-functionalization and O3′-phosphitylation gives targets 1–4 in ~1–3% overall yield over eleven steps from 5. ONs modified with pyrene-functionalized 2′-amino-α-L-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation. These characteristics render N2′-pyrene-functionalized 2′-amino-α-L-LNA of considerable interest for DNA-targeting applications. PMID:24304240

  8. Comparison of high pressure-induced dissociation of single-stranded DNA-binding protein (SSB) from high pressure-sensitive and high pressure-adapted marine Shewanella species.

    PubMed

    Chilukuri, Lakshmi N; Bartlett, Douglas H; Fortes, P A George

    2002-10-01

    The effects of hydrostatic pressure on protein quaternary structure were compared for recombinant single-stranded DNA-binding protein (SSB) derived from piezosensitive, piezotolerant, and obligately piezophilic ("pressure-loving") marine Shewanella strains. The pressure-induced dissociation of the oligomeric SSB proteins was investigated using fluorescence anisotropy. The SSBs all exhibited striking similarity in the pressure-dependent behavior of the fluorescence intensity and emission spectrum as well as in their dissociation constants at atmospheric pressure. The free energies of subunit association into tetramers for all SSBs were between -27 and -30 kcal mol(-1). However, SSB from the piezosensitive Shewanella strain S. hanedai was more sensitive to pressure than that of the SSB proteins from the piezotolerant or piezophilic bacteria. The volume change of association obtained from the pressure dependence of dissociation at a fixed protein concentration (Delta V(p)) for SSB from S. hanedai was 394-402 ml mol(-1). The Delta V(p) values for SSB from the deeper-living Shewanellas were smaller and ranged from 253 to 307 ml mol(-1). Differences between the primary structures of the SSB proteins that could correlate with differences in sensitivity to pressure-induced dissociation were examined. PMID:12382113

  9. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.

    PubMed

    Swanson, Colby A; Sliwinski, Marek K

    2013-09-01

    DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples.

  10. Caffeine-derived N-nitroso compounds. III: Mutagenicity in S. typhimurium and in vitro induction of DNA single-strand breaks in rat hepatocytes by mononitrosocaffeidine and dinitrosocaffeidine.

    PubMed

    Erdinger, L; Schmezer, P; Razdan, R; Kumar, R; Spiegelhalder, B; Preussmann, R; Siddiqi, M

    1993-08-01

    Mutagenesis in S. typhimurium and in vitro induction of DNA single-strand breaks in primary rat hepatocytes (DNA-SSB) have been investigated for two new N-nitroso compounds, mononitrosocaffeidine (MNC) and dinitrosocaffeidine (DNC). Mononitrosamidocaffeidine (MNAC) and tert.-(butyloxy)carbonyl-mononitrosamidocaffeidine (t-BOC-MNAC), both nitrosated derivatives of caffeidine with nitrosation at methylcarboxamide-N only, were also similarly studied. MNC, an asymmetric nitrosamine, failed to show mutagenicity in any of the tester strains used, and also did not induce DNA-SSB in rat hepatocytes. DNC, having both N-nitrosamide and N-nitrosamine groups in the molecule, showed direct mutagenicity in TA100, TA1535 and TA102. The mutagenic potential of the compound was found to increase on S9 activation. However, it was non-mutagenic in TA98 and TA1537. DNC also exhibited a high potential for inducing alkali-labile DNA-SSB in rat hepatocytes (70-78% C-T value) and was cytotoxic at concentrations over 0.1 mumole/ml. Both MNC and DNC were found to produce formaldehyde on S9 activation. MNAC was not mutagenic directly but showed weak mutagenicity on metabolic activation, whereas t-BOC-MNAC was mutagenic both with and without S9 activation in TA100, TA1535 and TA102. t-BOC-MNAC was more cytotoxic to hepatocytes than MNAC, though both caused DNA-SSB to the same extent (62% C-T value). On the basis of the presented data it is inferred that while DNC is a direct-acting mutagen in TA100, TA1535 and TA102 due to the presence of a reactive N-methylnitrosamido group, its mutagenic potential is greatly enhanced in the presence of S9 possibly due to the synergistic influence of an activated N-methylnitrosamino group in the molecule. Additionally, the study shows a qualitative consistency between Salmonella mutagenicity, genotoxicity in hepatocytes and the reactivity of the methyl group at the nitrosamido-N in nitrosated caffeidine compounds.

  11. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-10-21

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.

  12. Time-resolved FRET and PCT in cationic conjugated polymer/dye-labeled DNA complex

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kim, Jihoon; Kim, Bumjin; Kang, Mijeong; Woo, Han Young; Kyhm, Kwangseuk

    2011-12-01

    The energy transfer mechanism between cationic conjugated polyelectrolytes and a single stranded DNA labeled with fluorescein was investigated in terms of Förster resonance energy transfer (FRET) and photo-induced charge transfer (PCT) by time-resolved fluorescence. Both FRET and PCT rate efficiencies were obtained by phenomenological coupled rate equations, which are in excellent agreement with experiments. We found the total energy transfer in the complex is maximized as a consequence of FRET and PCT at an optimum distance 32.7Å.

  13. Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction.

    PubMed

    Zhou, X R; Christie, P J

    1999-07-01

    The VirE2 single-stranded DNA-binding protein (SSB) of Agrobacterium tumefaciens is required for delivery of T-DNA to the nuclei of susceptible plant cells. By yeast two-hybrid and immunoprecipitation analyses, VirE2 was shown to self-associate and to interact with VirE1. VirE2 mutants with small deletions or insertions of a 31-residue oligopeptide (i31) at the N or C terminus or with an i31 peptide insertion at Leu236 retained the capacity to form homomultimers. By contrast, VirE2 mutants with modifications outside a central region located between residues 320 and 390 retained the capacity to interact with VirE1. These findings suggest the tertiary structure of VirE2 is important for homomultimer formation whereas a central domain mediates formation of a complex with VirE1. The capacity of VirE2 mutants to interact with full-length VirE2 in the yeast Saccharomyces cerevisiae correlated with the abundance of the mutant proteins in A. tumefaciens, suggesting that VirE2 is stabilized by homomultimerization in the bacterium. We further characterized the promoter and N- and C-terminal sequence requirements for synthesis of functional VirE2. A PvirB::virE2 construct yielded functional VirE2 protein as defined by complementation of a virE2 null mutation. By contrast, PvirE or Plac promoter constructs yielded functional VirE2 only if virE1 was coexpressed with virE2. Deletion of 10 or 9 residues from the N or C terminus of VirE2, respectively, or addition of heterologous peptides or proteins to either terminus resulted in a loss of protein function. However, an i31 peptide insertion at Tyr39 had no effect on protein function as defined by the capacity of the mutant protein to (i) interact with native VirE2, (ii) interact with VirE1, (iii) accumulate at abundant levels in A. tumefaciens, and (iv) restore wild-type virulence to a virE2 null mutant. We propose that Tyr39 of VirE2 corresponds to a permissive site for insertion of heterologous peptides or proteins of interest

  14. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    NASA Astrophysics Data System (ADS)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  15. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Vrudhula, Amey; Johnson, A T Charlie

    2016-09-27

    Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way. PMID:27532480

  16. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Vrudhula, Amey; Johnson, A T Charlie

    2016-09-27

    Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way.

  17. Single strand transposition at the host replication fork

    PubMed Central

    Lavatine, Laure; He, Susu; Caumont-Sarcos, Anne; Guynet, Catherine; Marty, Brigitte; Chandler, Mick; Ton-Hoang, Bao

    2016-01-01

    Members of the IS200/IS605 insertion sequence family differ fundamentally from classical IS essentially by their specific single-strand (ss) transposition mechanism, orchestrated by the Y1 transposase, TnpA, a small HuH enzyme which recognizes and processes ss DNA substrates. Transposition occurs by the ‘peel and paste’ pathway composed of two steps: precise excision of the top strand as a circular ss DNA intermediate; and subsequent integration into a specific ssDNA target. Transposition of family members was experimentally shown or suggested by in silico high-throughput analysis to be intimately coupled to the lagging strand template of the replication fork. In this study, we investigated factors involved in replication fork targeting and analysed DNA-binding properties of the transposase which can assist localization of ss DNA substrates on the replication fork. We showed that TnpA interacts with the β sliding clamp, DnaN and recognizes DNA which mimics replication fork structures. We also showed that dsDNA can facilitate TnpA targeting ssDNA substrates. We analysed the effect of Ssb and RecA proteins on TnpA activity in vitro and showed that while RecA does not show a notable effect, Ssb inhibits integration. Finally we discuss the way(s) in which integration may be directed into ssDNA at the replication fork. PMID:27466393

  18. Sequence-Dependent Fluorescence of Cy3- and Cy5-Labeled Double-Stranded DNA

    PubMed Central

    2016-01-01

    The fluorescent intensity of Cy3 and Cy5 dyes is strongly dependent on the nucleobase sequence of the labeled oligonucleotides. Sequence-dependent fluorescence may significantly influence the data obtained from many common experimental methods based on fluorescence detection of nucleic acids, such as sequencing, PCR, FRET, and FISH. To quantify sequence dependent fluorescence, we have measured the fluorescence intensity of Cy3 and Cy5 bound to the 5′ end of all 1024 possible double-stranded DNA 5mers. The fluorescence intensity was also determined for these dyes bound to the 5′ end of fixed-sequence double-stranded DNA with a variable sequence 3′ overhang adjacent to the dye. The labeled DNA oligonucleotides were made using light-directed, in situ microarray synthesis. The results indicate that the fluorescence intensity of both dyes is sensitive to all five bases or base pairs, that the sequence dependence is stronger for double- (vs single-) stranded DNA, and that the dyes are sensitive to both the adjacent dsDNA sequence and the 3′-ssDNA overhang. Purine-rich sequences result in higher fluorescence. The results can be used to estimate measurement error in experiments with fluorescent-labeled DNA, as well as to optimize the fluorescent signal by considering the nucleobase environment of the labeling cyanine dye. PMID:26895222

  19. Preliminary studies on palladium nanoparticle as a novel label for DNA microarray and their corresponding detection.

    PubMed

    Wang, Zhifei; Li, Hongyin; Zhen, Shuang; Zhang, Yuanying; He, Nongyue

    2013-06-01

    This paper firstly describes the preliminary results achieved by using palladium nanoparticle (Pd NP) as a novel label for the detection of DNA hybridization in DNA microarray. And two signal amplification procedures based on "the silver staining" or "the cobalt staining" are presented during above analysis. The results show that the label Pd NP-ssDNA (target) (single strand DNA(target)) performs high single base pair mismatch-discrimination capability. The succeeding silver staining or cobalt staining procedure greatly amplifies such a signal through the catalysis of Pd. For "the silver staining:' the background staining is very low and the silver deposition only occurs around Pd NPs. So such a procedure provides a alternative for "Gold Label Silver Stain" presented by Mirkin C. A. For "the cobalt staining," not only a colorimetric array but also a magnetic sensor (such as Magnetic Tunnel Junction sensor, MTJ) can be used to detect the obtained cobalt dot due to its strong magnetic property, which provides a new strategy for DNA microarray detection. So as the proof-of-concept investigations, this work proved the feasibility of the application of Pd NPs as the label in DNA microarray assay.

  20. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets

    PubMed Central

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-01-01

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434

  1. Identification of the RecR Toprim domain as the binding site for both RecF and RecO. A role of RecR in RecFOR assembly at double-stranded DNA-single-stranded DNA junctions.

    PubMed

    Honda, Masayoshi; Inoue, Jin; Yoshimasu, Masatoshi; Ito, Yutaka; Shibata, Takehiko; Mikawa, Tsutomu

    2006-07-01

    The RecR protein forms complexes with RecF or RecO that direct the specific loading of RecA onto gapped DNA. However, the binding sites of RecF and RecO on RecR have yet to be identified. In this study, a Thermus thermophilus RecR dimer model was constructed by NMR analysis and homology modeling. NMR titration analysis suggested that the hairpin region of the helix-hairpin-helix motif in the cavity of the RecR dimer is a binding site for double-stranded DNA (dsDNA) and that the acidic cluster region of the Toprim domain is a RecO binding site. Mutations of Glu-84, Asp-88, and Glu-144 residues comprising that acidic cluster were generated. The E144A and E84A mutations decreased the binding affinity for RecO, but the D88A did not. Interestingly, the binding ability to RecF was abolished by E144A, suggesting that the region surrounding the RecR Glu-144 residue could be a binding site not only for RecO but also for RecF. Furthermore, RecR and RecF formed a 4:2 heterohexamer in solution that was unaffected by adding RecO, indicating a preference by RecR for RecF over RecO. The RecFR complex is considered to be involved in the recognition of the dsDNA-ssDNA junction, whereas RecO binds single-stranded DNA (ssDNA) and ssDNA-binding protein. Thus, the RecR Toprim domain may contribute to the RecO interaction with RecFR complexes at the dsDNA-ssDNA junction site during recombinational DNA repair mediated by the RecFOR. PMID:16675461

  2. Stable isotope labeling methods for DNA.

    PubMed

    Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A

    2016-08-01

    NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. PMID:27573183

  3. Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes.

    PubMed Central

    Randolph, J B; Waggoner, A S

    1997-01-01

    In this work, we studied the fluorescence and hybridization of multiply-labeled DNA probes which have the hydrophilic fluorophore 1-(straightepsilon-carboxypentynyl)-1'-ethyl- 3,3,3', 3'-tetramethylindocarbocyanine-5,5'-disulfonate (Cy3) attached via either a short or long linker at the C-5 position of deoxyuridine. We describe the effects of labeling density, fluorophore charge and linker length upon five properties of the probe: fluorescence intensity, the change in fluorescence upon duplex formation, the quantum yield of fluorescence (Phif), probe-target stability and specificity. For the hydrophilic dye Cy3, we have demonstrated that the fluorescence intensity andPhifare maximized when labeling every 6th base using the long linker. With a less hydrophilic dye, a labeling density this high could not be achieved without serious quenching of the fluorescence. The target specificity of multiply-labeled DNA probes was just as high as compared to the unmodified control probe, however, a less stable probe-target duplex is formed that exhibits a lower melting temperature. A mechanism that accounts for this destabilization is proposed which is consistent with our data. It involves dye-dye and dye-nucleotide interactions which appear to stabilize a single-stranded conformation of the probe. PMID:9207044

  4. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-09-01

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide

  5. Full-length single-stranded PCR product mediated chromosomal integration in intact Bacillus subtilis.

    PubMed

    Wen, Sai; Yang, Jianguo; Tan, Tianwei

    2013-03-01

    The research introduced a novel method for gene replacement in intact Bacillus subtilis by employing full-length single-stranded (ss) DNA constructs and electro-transformation. 5' phosphorothioated lagging-strand targeting ssDNA construct was demonstrated to be highly recombinogenic, and the utility of the system was illustrated by introducing a heterologous lipase YlLip2 into amyE locus of B. subtilis through our method.

  6. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  7. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  8. The genetics of amphibian declines: population substructure and molecular differentiation in the yosemite toad, Bufo canorus (Anura, bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data.

    PubMed

    Shaffer, H B; Fellers, G M; Magee, A; Voss, S R

    2000-03-01

    We present a comprehensive survey of genetic variation across the range of the narrowly distributed endemic Yosemite toad Bufo canorus, a declining amphibian restricted to the Sierra Nevada of California. Based on 322 bp of mitochondrial cytochrome b sequence data, we found limited support for the monophyly of B. canorus and its closely related congener B. exsul to the exclusion of the widespread western toad B. boreas. However, B. exsul was always phylogenetically nested within B. canorus, suggesting that the latter may not be monophyletic. SSCP (single-strand conformation polymorphism) analysis of 372 individual B. canorus from 28 localities in Yosemite and Kings Canyon National Parks revealed no shared haplotypes among these two regions and lead us to interpret these two parks as distinct management units for B. canorus. Within Yosemite, we found significant genetic substructure both at the level of major drainages and among breeding ponds. Kings Canyon samples show a different pattern, with substantial variation among breeding sites, but no substructure among drainages. Across the range of B. canorus as well as among Yosemite ponds, we found an isolation-by-distance pattern suggestive of a stepping stone model of migration. However, in Kings Canyon we found no hint of such a pattern, suggesting that movement patterns of toads may be quite different in these nearby parklands. Our data imply that management for B. canorus should focus at the individual pond level, and effective management may necessitate reintroductions if local extirpations occur. A brief review of other pond-breeding anurans suggests that highly structured populations are often the case, and thus that our results for B. canorus may be general for other species of frogs and toads.

  9. The genetics of amphibian decline: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data

    USGS Publications Warehouse

    Shaffer, H. Bradley; Fellers, Gary M.; Magee, Allison; Voss, S. Randal

    2000-01-01

    We present a comprehensive survey of genetic variation across the range of the narrowly distributed endemic Yosemite toad Bufo canorus, a declining amphibian restricted to the Sierra Nevada of California. Based on 322 bp of mitochondrial cytochrome b sequence data, we found limited support for the monophyly of B. canorus and its closely related congener B. exsul to the exclusion of the widespread western toad B. boreas. However, B. exsul was always phylogenetically nested within B. canorus, suggesting that the latter may not be monophyletic. SSCP (single-strand conformation polymorphism) analysis of 372 individual B. canorus from 28 localities in Yosemite and Kings Canyon National Parks revealed no shared haplotypes among these two regions and lead us to interpret these two parks as distinct management units for B. canorus. Within Yosemite, we found significant genetic substructure both at the level of major drainages and among breeding ponds. Kings Canyon samples show a different pattern, with substantial variation among breeding sites, but no substructure among drainages. Across the range of B. canorus as well as among Yosemite ponds, we found an isolation-by-distance pattern suggestive of a stepping stone model of migration. However, in Kings Canyon we found no hint of such a pattern, suggesting that movement patterns of toads may be quite different in these nearby parklands. Our data imply that management for B. canorus should focus at the individual pond level, and effective management may necessitate reintroductions if local extirpations occur. A brief review of other pond-breeding anurans suggests that highly structured populations are often the case, and thus that our results for B. canorus may be general for other species of frogs and toads.

  10. The genetics of amphibian declines: Population substructure and molecular differentiation in the Yosemite Toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data

    USGS Publications Warehouse

    Bradley, Shaffer H.; Fellers, G.M.; Magee, A.; Randal, Voss S.

    2000-01-01

    We present a comprehensive survey of genetic variation across the range of the narrowly distributed endemic Yosemite toad Bufo canorus, a declining amphibian restricted to the Sierra Nevada of California. Based on 322 bp of mitochondrial cytochrome b sequence data, we found limited support for the monophyly of B. canorus and its closely related congener B. exsul to the exclusion of the widespread western toad B. boreas. However, B. exsul was always phylogenetically nested within B. canorus, suggesting that the latter may not be monophyletic. SSCP (single-strand conformation polymorphism) analysis of 372 individual B. canorus from 28 localities in Yosemite and Kings Canyon National Parks revealed no shared haplotypes among these two regions and lead us to interpret these two parks as distinct management units for B. canorus. Within Yosemite, we found significant genetic substructure both at the level of major drainages and among breeding ponds. Kings Canyon samples show a different pattern, with substantial variation among breeding sites, but no substructure among drainages. Across the range of B. canorus as well as among Yosemite ponds, we found an isolation-by-distance pattern suggestive of a stepping stone model of migration. However, in Kings Canyon we found no hint of such a pattern, suggesting that movement patterns of toads may be quite different in these nearby parklands. Our data imply that management for B. canorus should focus at the individual pond level, and effective management may necessitate reintroductions if local extirpations occur. A brief review of other pond-breeding anurans suggests that highly structured populations are often the case, and thus that our results for B. canorus may be general for other species of frogs and toads.

  11. Detection of N-ras gene mutations in radiation-induced murine myeloid leukemia by the PCR-single strand based technique

    SciTech Connect

    Rithidech, K.; Dunn, J.J.; Bond, V.P.; Cronkite, E.P.; Gordon, C.R.

    1994-12-31

    We used the PCR-single strand conformation polymorphism (PCR-SSCP) technique as a rapid screening method for N-ras gene mutations in radiation-induced myeloid leukemic (ML) cells. We focused our analyses to: (i) a 128 base-pair (bp) long, portion of Exon I (codons 2-37); (ii) and a 103 bp long, portion of Exon II (condons 38-82). Twelve cases of radiation-induced ML were included in this study (4 neutron- and 8 photon-induced ML). DNA isolated from ML cells of these mice and from bone marrow cells of normal mice were used as templates for PCR amplification. The amplified products were purified and labeled with {gamma}-{sup 32}P daTP prior to SSCP analysis. No mobility shifts were detected with Exon I DNA. However, mobility shifts of Exon II DNA bands were observed in all ML samples. These results indicate the involvement of mutations in Exon II, but not in Exon I, of the N-ras gene in radiation leukemogenesis. Moreover, the mobility of single strand DNA isolated from neutron-induced ML was distinct from that of photon-induced ML. This finding suggests that mutational spectra of the N-ras gene differ in ML induced by different types of radiation. Analysis of mutational spectra (transitions or transversions) is underway.

  12. DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments.

    PubMed Central

    Lee, L G; Connell, C R; Woo, S L; Cheng, R D; McArdle, B F; Fuller, C W; Halloran, N D; Wilson, R K

    1992-01-01

    The incorporation of fluorescently labeled dideoxynucleotides by T7 DNA polymerase is optimized by the use of Mn2+, fluorescein analogs and four 2'-deoxyribonucleoside 5'-O-(1-thiotriphosphates) (dNTP alpha S's). The one-tube extension protocol was tested on single-stranded templates, as well as PCR fragments which were made single-stranded by digestion with T7 gene 6 exonuclease. Dye primer sequencing using four dNTP alpha S's was shown to give uniform termination patterns which were comparable to four dNTPs. Efficiency of the polymerase also appeared to improve with the dNTP alpha S's. A mathematical model was developed to predict the pattern of termination based on enzyme activity and ratios of ddNTP/dNTPs. This method can be used to optimize sequencing reactions and to estimate enzyme discrimination constants of chain terminators. Images PMID:1598205

  13. The immunologically protective P-4 antigen of Leishmania amastigotes. A developmentally regulated single strand-specific nuclease associated with the endoplasmic reticulum.

    PubMed

    Kar, S; Soong, L; Colmenares, M; Goldsmith-Pestana, K; McMahon-Pratt, D

    2000-12-01

    The purified membrane-associated Leishmania pifanoi amastigote protein P-4 has been shown to induce protective immunity against infection and to elicit preferentially a T helper 1-like response in peripheral blood mononuclear cells of patients with American cutaneous leishmaniasis. As this molecule is potentially important for future vaccine studies, the L. pifanoi gene encoding the P-4 membrane protein was cloned and sequenced. Southern blot analyses indicate the presence of six tandemly arrayed copies of the P-4 gene in L. pifanoi; homologues of the P-4 gene are found in all other species of the genus Leishmania examined. DNA-derived protein sequence data indicated an identity to the P1 zinc-dependent nuclease of Penicillium citrinum (20.8%) and the C-terminal domain of the 3' nucleotidase of Leishmania donovani (33.7%). Consistent with these sequence analyses, purified L. pifanoi P-4 protein possesses single strand nuclease (DNA and RNA) and phosphomonoesterase activity, with a preference for UMP > TMP > AMP > CMP. Double-labeling immunofluorescence microscopic analyses employing anti-binding protein antibodies revealed that the P-4 protein is localized in the endoplasmic reticulum of the amastigote. Northern blot analyses indicated that the gene is selectively expressed in the intracellular amastigote stage (mammalian host) but not in the promastigote stage (insect) of the parasite. Based upon its subcellular localization and single-stranded specific nuclease activity, possible roles of the P-4 nuclease in the amastigote in RNA stability (gene expression) or DNA repair are discussed.

  14. Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor.

    PubMed

    Zhang, Decai; Yan, Yurong; Li, Qing; Yu, Tianxiao; Cheng, Wei; Wang, Long; Ju, Huangxian; Ding, Shijia

    2012-08-31

    A method based on surface plasmon resonance (SPR) DNA biosensor has been developed for label-free and high-sensitive detection of Salmonella. A biotinylated single-stranded oligonucleotide probe was designed to target a specific sequence in the invA gene of Salmonella and then immobilized onto a streptavidin coated dextran sensor surface. The invA gene was isolated from bacterial cultures and amplified using a modified semi-nested asymmetric polymerase chain reaction (PCR) technique. In order to investigate the hybridization detection, experiments with different concentration of synthetic target DNA sequences have been performed. The calibration curve of synthetic target DNA had good linearity from 5 nM to 1000 nM with a detection limit of 0.5 nM. The proposed method was applied successfully to the detection of single-stranded invA amplicons from three serovars of Salmonella, i.e., Typhimurium, Enterica and Derby, and the responses to PCR products were related to different S. typhimurium concentrations in the range from 10(2) to 10(10) CFU mL(-1). While with this system to detect E. coli and S. aureus, no significant signal was observed, demonstrating good selectivity of the method. In addition, the hybridization can be completed within 15 min, and the excellent sensor surface regeneration allows at least 300 assay cycles without obvious loss of performance.

  15. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  16. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  17. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions). PMID:25728944

  18. A human systemic lupus erythematosus-related anti-cardiolipin/single-stranded DNA autoantibody is encoded by a somatically mutated variant of the developmentally restricted 51P1 V[sub H] gene

    SciTech Connect

    Van Es, J.H.; Aanstoot, H.; Gmelig-Meyling, F.H.J.; Derksen, R.H.W.M.; Logtenberg, T. )

    1992-09-15

    The authors report the Ig H and L chain V region sequences from the cDNAs encoding a monoclonal human IgG anti-cardiolipin/ssDNA autoantibody (R149) derived from a patient with active SLE. Comparison with the germ-line V-gene repertoire of this patient revealed that R149 likely arose as a consequence of an Ag-driven selection process. The Ag-binding portions of the V regions were characterized by a high number of arginine residues, a property that has been associated with anti-dsDNA autoantibodies from lupus-prone mice and patients with SLE. The V[sub H] gene encoding autoantibody R149 was a somatically mutated variant of the 51P1 gene segment, which is frequently associated with the restricted fetal B cell repertoire, malignant CD5 B cells, and natural antibodies. These data suggest that in SLE patients a common antigenic stimulus may evoke anti-DNA and anti-cardiolipin autoantibodies and provide further evidence that a small set of developmentally restricted V[sub H] genes can give rise to disease-associated autoantibodies through Ag-selected somatic mutations. 42 refs., 5 figs.

  19. A Single-Stranded Junction Modulates Nanosecond Motional Ordering of the Substrate Recognition Duplex of a Group I Ribozyme

    PubMed Central

    Nguyen, Phuong; Shi, Xuesong; Sigurdsson, Snorri Th.; Herschlag, Daniel

    2013-01-01

    Rigid spinning: Site-directed spin-labeling studies using a rigid nitroxide spin label (Ç) reveal that both length and sequence of a single-stranded junction (J1/2) modulate nanosecond motional ordering of the substrate-recognition duplex (P1) of the 120 kD group I ribozyme. The studies demonstrate an approach for experimental measurements of nanosecond dynamics in high-molecular-weight RNA complexes. PMID:23900919

  20. Fluorescently labeled circular DNA molecules for DNA topology and topoisomerases

    PubMed Central

    Gu, Maxwell; Berrido, Andrea; Gonzalez, Walter G.; Miksovska, Jaroslava; Chambers, Jeremy W.; Leng, Fenfei

    2016-01-01

    DNA topology plays essential roles in several fundamental biological processes, such as DNA replication, recombination, and transcription. Typically agarose gel electrophoresis is employed to study DNA topology. Since gel electrophoresis is time-consuming and labor intensive, it is desirable to develop other methods, such as fluorescence-based methods, for such studies. In this paper we report the synthesis of a type of unique fluorescence-labeled DNA molecules that can be used to study DNA topology and topoisomerases by fluorescence resonance energy transfer (FRET). Specifically, we inserted an 82 nt. synthetic DNA oligomer FL905 carrying a 42 nt. AT sequence with fluorescein and dabcyl labels into a gapped DNA molecule to generate relaxed and supercoiled pAB1_FL905. Since the fluorescence intensity of pAB1_FL905 is dependent on its supercoiling status, pAB1_FL905 is a powerful tool to study DNA topology and topoisomerases by FRET. pAB1_FL905 can also be developed into rapid and efficient high-throughput screening assays to identify inhibitors that target various DNA topoisomerases. PMID:27796331

  1. Enzymatic Synthesis of Single-Stranded Clonal Pure Oligonucleotides.

    PubMed

    Ducani, Cosimo; Högberg, Björn

    2017-01-01

    Single-stranded oligonucleotides, or oligodeoxyribonucleotides (ODNs), are very important in several fields of science such as molecular biology, diagnostics, nanotechnology, and gene therapy. They are usually chemically synthesized. Here we describe an enzymatic method which enables us to synthesize pure oligonucleotides which can be up to several hundred long bases. PMID:27671934

  2. Graphene-Assisted Label-Free Homogeneous Electrochemical Biosensing Strategy based on Aptamer-Switched Bidirectional DNA Polymerization.

    PubMed

    Wang, Wenxiao; Ge, Lei; Sun, Ximei; Hou, Ting; Li, Feng

    2015-12-30

    In this contribution, taking the discrimination ability of graphene over single-stranded (ss) DNA/double-stranded (ds) DNA in combination with the electrochemical impedance transducer, we developed a novel label-free homogeneous electrochemical biosensor using graphene-modified glassy carbon electrode (GCE) as the sensing platform. To convert the specific aptamer-target recognition into ultrasensitive electrochemical signal output, a novel aptamer-switched bidirectional DNA polymerization (BDP) strategy, capable of both target recycling and exponential signal amplification, was compatibly developed in this study. In this strategy, all the designed DNA structures could be adsorbed on the graphene/GCE and, thus, serve as the electrochemical impedance signal reporter, while the target acts as a trigger of this BDP reaction, in which these designed DNA structures are bound together and, then, converted to long dsDNA duplex. The distinct difference in electrochemical impedance spectroscopy between the designed structures and generated long dsDNA duplex on the graphene/GCE allows label-free and homogeneous detection of target down to femto-gram level. The target can be displaced from aptamer through the polymerization to initiate the next recognition-polymerization cycle. Herein, the design and signaling principle of aptamer-switched BDP amplification system were elucidated, and the working conditions were optimized. This method not only provides a universal platform for electrochemical biosensing but also shows great potential in biological process researches and clinic diagnostics.

  3. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    SciTech Connect

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd; Ahmad, Haslina; Harun, Siti Norain

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  4. Characterization of Citrus Tristeza Virus Isolates by Single-strand Conformation Polymorphism Analysis of the Coat Protein Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method is needed to rapidly assess Citrus tristeza virus (CTV) strains and to identify mixed populations in tristeza-infected trees. Single-strand conformation polymorphism (SSCP) can detect point mutations in DNA fragments and determine the structure of viral populations. Previous reports utili...

  5. SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair

    PubMed Central

    Hudson, Jessica J.R.; Chiang, Shih-Chieh; Wells, Owen S.; Rookyard, Chris; El-Khamisy, Sherif F.

    2012-01-01

    Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress. PMID:22415824

  6. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo.

    PubMed Central

    Michelotti, G A; Michelotti, E F; Pullner, A; Duncan, R C; Eick, D; Levens, D

    1996-01-01

    Transcription activation and repression of eukaryotic genes are associated with conformational and topological changes of the DNA and chromatin, altering the spectrum of proteins associated with an active gene. Segments of the human c-myc gene possessing non-B structure in vivo located with enzymatic and chemical probes. Sites hypertensive to cleavage with single-strand-specific S1 nuclease or the single-strand-selective agent potassium permanganate included the major promoters P1 and P2 as well as the far upstream sequence element (FUSE) and CT elements, which bind, respectively, the single-strand-specific factors FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K in vitro. Active and inactive c-myc genes yielded different patterns of S1 nuclease and permanganate sensitivity, indicating alternative chromatin configurations of active and silent genes. The melting of specific cis elements of active c-myc genes in vivo suggested that transcriptionally associated torsional strain might assist strand separation and facilitate factor binding. Therefore, the interaction of FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K with supercoiled DNA was studied. Remarkably, both proteins recognize their respective elements torsionally strained but not as liner duplexes. Single-strand- or supercoil-dependent gene regulatory proteins may directly link alterations in DNA conformation and topology with changes in gene expression. PMID:8649373

  7. Single-stranded structures are present within plasmids containing the Epstein-Barr virus latent origin of replication.

    PubMed Central

    Orlowski, R; Miller, G

    1991-01-01

    The Epstein-Barr virus (EBV) latent origin of plasmid replication (oriP) contains two essential regions, a family of repeats with 20 imperfect copies of a 30-bp sequence and a dyad symmetry element with four similar 30-bp repeats. Each of the repeats has an internal palindromic sequence and can bind EBNA 1, a protein that together with oriP constitutes the only viral element necessary for EBV maintenance and replication. Using single-strand-specific nucleases, we have probed plasmids containing oriP-derived sequences for the presence of secondary structural elements. Multiple single-stranded structures were detected within the oriP region. Of the two essential elements of oriP, the family of repeats seemed to extrude these structures at a much higher frequency than did sequences within the dyad symmetry region. Though negative supercoiling was found to stabilize the single-stranded structures, they showed significant stability even after linearization of the oriP plasmids. Two major single-stranded structures detected involved approximately 12 bp of DNA. These loci could be transiently unwound regions that form because of negative supercoiling and the high A + T content of this region of DNA, or they could be cruciform structures extruded within the palindromic sequences of oriP that may be important sites for protein-DNA interactions in the EBV oriP. Images PMID:1846191

  8. Single-stranded oligonucleotide adducts formed by Pt complexes favoring left-handed base canting: steric effect of flanking residues and relevance to DNA adducts formed by Pt anticancer drugs.

    PubMed

    Saad, Jamil S; Marzilli, Patricia A; Intini, Francesco P; Natile, Giovanni; Marzilli, Luigi G

    2011-09-01

    Platinum anticancer drug binding to DNA creates large distortions in the cross-link (G*G*) and the adjacent XG* base pair (bp) steps (G* = N7-platinated G). These distortions, which are responsible for anticancer activity, depend on features of the duplex (e.g., base pairing) and of the cross-link moiety (e.g., the position and canting of the G* bases). The duplex structure stabilizes the head-to-head (HH) over the head-to-tail (HT) orientation and right-handed (R) over left-handed (L) canting of the G* bases. To provide fundamental chemical information relevant to the assessment of such duplex effects, we examine (S,R,R,S)-BipPt(oligo) adducts (Bip = 2,2'-bipiperidine with S,R,R,S chiral centers at the N, C, C, and N chelate ring atoms, respectively; oligo = d(G*pG*) with 3'- and/or 5'-substituents). The moderately bulky (S,R,R,S)-Bip ligand favors L canting and slows rotation about the Pt-G* bonds, and the (S,R,R,S)-BipPt(oligo) models provide more useful data than do dynamic models derived from active Pt drugs. All 5'-substituents in (S,R,R,S)-BipPt(oligo) adducts favor the normal HH conformer (∼97%) by destabilizing the HT conformer through clashes with the 3'-G* residue rather than through favorable H-bonding interactions with the carrier ligand in the HH conformer. For all (S,R,R,S)-BipPt(oligo) adducts, the S pucker of the 5'-X residue is retained. For these adducts, a 5'-substituent had only modest effects on the degree of L canting for the (S,R,R,S)-BipPt(oligo) HH conformer. This small flanking 5'-substituent effect on an L-canted HH conformer contrasts with the significant decrease in the degree of R canting previously observed for flanking 5'-substituents in the R-canted (R,S,S,R)-BipPt(oligo) analogues. The present data support our earlier hypothesis that the distortion distinctive to the XG* bp step (S to N pucker change and movement of the X residue) is required for normal stacking and X·X' WC H bonding and to prevent XG* residue clashes.

  9. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J.

    2015-03-01

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization

  10. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. PMID:27295571

  11. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer.

    PubMed

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J

    2015-04-14

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. PMID:25771844

  12. PCR synthesis of double stranded DNA labeled with 5-bromouridine. A step towards finding a bromonucleoside for clinical trials.

    PubMed

    Michalska, Barbara; Sobolewski, Ireneusz; Polska, Katarzyna; Zielonka, Justyna; Zylicz-Stachula, Agnieszka; Skowron, Piotr; Rak, Janusz

    2011-12-01

    Incorporation of 5-bromouridine (5BrdU) into DNA makes it sensitive to UV and ionizing radiation, which opens up a prospective route for the clinical usage of 5-bromouridine and other halonucleosides. In the present work the polymerase chain reaction (PCR) protocol, which enables a long DNA fragment (resembling DNA synthesized in the cell in the presence of halonucleosides) to be completely substituted with 5BrdU, was optimized. Using HPLC coupled to enzymatic digestion, it was demonstrated that the actual amounts of native nucleosides and 5BrdU correspond very well to those calculated from the sequence of PCR products. The synthesized DNA is photosensitive to photons of 300nm. HPLC analysis demonstrated that the photolysis of labeled PCR products leads to a significant decrease in the 5BrdU signal and the simultaneous occurrence of a uridine peak. Agarose and polyacrylamide gel electrophoresis suggest that single strand breaks and cross-links are formed as a result of UV irradiation. The PCR protocol described in the current paper may be employed for labeling DNA not only with BrdU but also with other halonucleosides.

  13. Transfection in Pneumococcus: Single-Strand Intermediates in the Formation of Infective Centers

    PubMed Central

    Porter, Ronald D.; Guild, Walter R.

    1978-01-01

    Transfection has been found and characterized in pneumococcus. For replicating ω3 phage DNA extracted from infected cells, transfection was relatively efficient and rose linearly with DNA concentration and quadratically with time, according to T(T - 3.5) min2. For mature DNA extracted from phage particles, transfection was hardly detectable below 1 μg/ml but increased about as the cube of the DNA concentration up to 100 μg/ml, and was still rising at concentrations over 200 μg/ml. The kinetics suggest a dependence on a mixed cubic function of the time of exposure of cells to mature DNA. Cell and phage DNAs competed with each other for transformation and transfection. Transfection was reduced much more strongly than transformation in cells that were deficient in the membrane-bound endonuclease required for conversion of donor duplex DNA to intracellular single strands; these data agree with the kinetic data in implying that independent entry of segments of two strands is necessary for transfection by replicating ω3 phage DNA and entry of at least three strands is necessary for transfection by mature DNA. To reconcile differing DNA concentration dependences of transfection and transformation with a common entry path, it was necessary to reexamine data on transformation and to recognize that this process continued to rise slowly through the concentration region usually described as “plateau.” These results and the transfection data reflect multiple binding and nicking events that occurred on the cell surface before entry. Our conclusion is that transfection in pneumococcus occurs by association inside the cell of segments of single strands of phage DNA that have entered independently, creating gapped structures that need repair synthesis to create infective centers. Physical recombination is therefore automatically a prerequisite to transfection. PMID:23440

  14. In vivo role of Escherichia coli single-strand exonucleases in SOS induction by gamma radiation.

    PubMed

    Serment-Guerrero, Jorge; Breña-Valle, Matilde; Espinosa-Aguirre, J Javier

    2008-07-01

    Ionizing radiation causes different types of genetic damage, ranging from base modifications to single- and double-stranded DNA breaks, which may be deleterious or even lethal to the cell. There are different repair or tolerance mechanisms to counteract the damage. Among them is the Escherichia coli SOS system: a set of genes that becomes activated upon DNA damage to confer better opportunities for cell survival. However, since this response is triggered by single-stranded DNA regions, most lesions have to be processed or modified prior to SOS activation. Several genes such as recO, recB and recJ that seem to be required to induce the response have already been reported. The results of this work indicate that the four known E.coli single-strand exonucleases take part in processing gamma radiation damage, though RecJ and ExoI proved to be more important than ExoVII or ExoX. In addition, ExoV as well as glycosylases such as Nth and, to a lesser extent, Fpg are also required. A model intended to explain the role of all these genes in damage processing is presented. PMID:18407965

  15. Simple and fast electrochemical detection of sequence-specific DNA via click chemistry-mediated labeling of hairpin DNA probes with ethynylferrocene.

    PubMed

    Hu, Qiong; Deng, Xianbao; Kong, Jinming; Dong, Yuanyuan; Liu, Qianrui; Zhang, Xueji

    2015-06-21

    A universal and straightforward electrochemical biosensing strategy for the detection and identification of sequence-specific DNA via click chemistry-mediated labeling of hairpin DNA probes (hairpins) with ethynylferrocene was reported. In the target-unbound form, the immobilized hairpins were kept in the folded stem-loop configuration with their azido terminals held in close proximity of the electrode surface, making them difficult to be labeled with ethynylferrocene due to the remarkable steric hindrance of the densely packed hairpins. Upon hybridization, they were unfolded and underwent a large conformational change, thus enabling the azido terminals to become available for its subsequent conjugation with ethynylferrocene via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). After that, the quantitatively labeled ethynylferrocene could be exploited as the electroactive probes to monitor the DNA hybridization. As the unfolded hairpins were labeled in a stoichiometric ratio of 1 : 1, the electrochemical measurement based on differential pulse voltammetry enabled a reliable quantification of sequence-specific DNA. Under optimal conditions, the strategy could detect target single-stranded DNA (ssDNA) down to 0.296 pM with a good linear response over the range from 1 pM to 1 nM, and had excellent specificity in the genotyping of single-nucleotide polymorphisms. Furthermore, it also exhibited good detection reliability in serum samples and required no complicated protocols. More importantly, the simplicity of this strategy together with its compatibility with microfluidic chips makes it show great potential in clinical applications, where simple procedures are generally preferred.

  16. Bis-pyrene-labeled molecular beacon: a monomer-excimer switching probe for the detection of DNA base alteration.

    PubMed

    Yamana, Kazushige; Ohshita, Yoshikazu; Fukunaga, Yudai; Nakamura, Mitsunobu; Maruyama, Atsushi

    2008-01-01

    A new bis-pyrene-labeled oligonucleotide probe (BP-probe) has been designed for the detection of a single base mismatch in single strand (ss) DNA as a target. The sequence of BP-probe was chosen to form stem-loop structure similar to a molecular beacon (MB-probe), yielding bis-pyrene-labeled molecular beacon (BP-MB-probe). Partially double stranded (ds) BP-MB-probes were prepared by complexation with oligonucleotides whose sequences are complementary to the loop segment but not to the stem and exchangeable with the target DNA. The partially ds BP-MB-probes were shown to exhibit monomer fluorescence as major fluorescence, while the ss BP-MB-probe in the stem-loop form displays strong excimer fluorescence. The strand exchange reactions between partially ds BP-MB-probe and target ss DNA in the presence of cationic comb-type copolymer as a catalyst were monitored by the excimer fluorescence changes. The existence of a mismatched base can be determined by the slower PASE rates compared with fully matched DNA.

  17. [Application of DNA labeling technology in forensic botany].

    PubMed

    Znang, Xian; Li, Jing-Lin; Zhang, Xiang-Yu

    2008-12-01

    Forensic botany is a study of judicial plant evidence. Recently, researches on DNA labeling technology have been a mainstream of forensic botany. The article systematically reviews various types of DNA labeling techniques in forensic botany with enumerated practical cases, as well as the potential forensic application of each individual technique. The advantages of the DNA labeling technology over traditional morphological taxonomic methods are also summarized.

  18. Localized single-stranded bubble mechanism for cyclization of short DNAs

    NASA Astrophysics Data System (ADS)

    Marko, John

    2005-03-01

    Recent experiments (T.E. Cloutier, J. Widom, Mol. Cell 14, 355-62 2004) indicate that double-stranded DNA molecules of approximately 100 base pairs in length have a probability of cyclization which is up to 10^5 times larger than that expected based on the known bending modulus of the double helix. We argue that for short molecules, formation of small (few base pair) regions of single-stranded DNA can provide `flexible hinges' that facilitate loop formation. A statistical-mechanical calculation using a transfer-matrix approach, which treats disordered double helix regions as thermally excited, highly flexible joints, indicates that this mechanism can explain the experimental data. Applications of this type of model and calculation to other situations where localized double helix structural defects may play a important role in DNA higher-order structure will also be discussed. This research was supported by NSF Grant DMR-0203963.

  19. Monitoring of Eco RI-catalyzed cleavage reaction of fluorescent-labeled heterochiral DNA.

    PubMed

    Urata, Hidehito; Tamaki, Chihiro; Matsuno, Miki; Wada, Shun-Ichi; Akagi, Masao

    2007-01-01

    We have found the unusual reactivity of a heterochiral oligodeoxynucleotide toward restriction endonuclease Eco RI. To conduct the kinetic analysis of the reaction, fluorescent-labeled single-stranded oligodeoxynucleotide molecular beacons were designed and synthesized. The beacons showed a remarkable fluorescence response by addition of Eco RI. The results promise that the beacon could be an effective tool for the kinetic analysis of Eco RI-catalyzed cleavage reaction of the heterochiral oligodeoxynucleotide.

  20. Incorporation of reporter-labeled nucleotides by DNA polymerases.

    PubMed

    Anderson, Jon P; Angerer, Bernhard; Loeb, Lawrence A

    2005-02-01

    The incorporation of fluorescently labeled nucleotides into DNA by DNA polymerases has been used extensively for tagging genes and for labeling DNA. However, we lack studies comparing polymerase efficiencies for incorporating different fluorescently labeled nucleotides. We analyzed the incorporation of fluorescent deoxynucleoside triphosphates by 10 different DNA polymerases, representing a cross-section of DNA polymerases from families A, B, and reverse transcriptase. The substitution of one or more different reporter-labeled nucleotides for the cognate nucleotides was initially investigated by using an in vitro polymerase extension filter-binding assay with natural DNA as a template. Further analysis on longer DNA fragments containing one or more nucleotide analogs was performed using a newly developed extension cut assay. The results indicate that incorporation of fluorescent nucleotides is dependent on the DNA polymerase, fluorophore, linker between the nucleotide and the fluorophore, and position for attachment of the linker and the cognate nucleotide. Of the polymerases tested, Taq and Vent exo DNA polymerases were most efficient at incorporating a variety of fluorescently labeled nucleotides. This study suggests that it should be feasible to copy DNA with reactions mixtures that contain all four fluorescently labeled nucleotides allowing for high-density labeling of DNA. PMID:15727132

  1. Electrophoresis of end-labeled DNA: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lau, Henry W.; Archer, Lynden A.

    2010-03-01

    The dynamic behavior of end-labeled DNA during free-solution electrophoresis is investigated using a simple dumbbell model for the labeled DNA. We study the effect of the applied field, label size, and chain stiffness on DNA conformation and electrophoretic mobility. High applied fields are predicted to magnify the size-dependence of mobility and to yield a nonmonotonic dependence of electrophoretic mobility on applied field. The effectiveness of leveraging label size and DNA chain stiffness for improving resolution is also discussed in the context of DNA deformation. To evaluate the most salient model predictions, we use capillary electrophoresis experiments to characterize the size- and field-dependent mobility of dsDNA fragments (300 bp-2 kbp) end-functionalized with streptavidin. Our experimental results are found to be in generally good accord with expectations based on the dumb-bell model. We discuss implications of these findings for fast, size-based separation of DNA in free solution.

  2. A thermodynamic approach for the targeting of nucleic acid structures using their complementary single strands.

    PubMed

    Lee, Hui-Ting; Carr, Caroline; Siebler, Hollie; Waters, Lela; Khutsishvili, Irine; Iseka, Fany; Domack, Brian; Olsen, Chris M; Marky, Luis A

    2011-01-01

    The main focus of our investigations is to further our understanding of the physicochemical properties of nucleic acid structures. We report on a thermodynamic approach to study the reaction of a variety of intramolecular nucleic acid structures with their respective complementary strands. Specifically, we have used a combination of isothermal titration (ITC) and differential scanning calorimetry (DSC) and spectroscopy techniques to determine standard thermodynamic profiles for the reaction of a triplex, G-quadruplex, hairpin loops, pseudoknot, and three-arm junctions with their complementary strands. Reaction enthalpies are measured directly in ITC titrations, and compared with those obtained indirectly from Hess cycles using DSC unfolding data. All reactions investigated yielded favorable free energy contributions, indicating that each single strand is able to invade and disrupt the corresponding intramolecular DNA structure. These favorable free energy terms are enthalpy-driven, resulting from a favorable compensation of exothermic contributions due to the formation of additional base-pair stacks in the duplex product, and endothermic contributions, from the disruption of base stacking contributions of the reactant single strands. The overall results provide a thermodynamic approach that can be used in the targeting of nucleic acids, especially the secondary structures formed by mRNA, with oligonucleotides for the control of gene expression.

  3. Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides.

    PubMed

    Pescina, Silvia; Antopolsky, Maxim; Santi, Patrizia; Nicoli, Sara; Murtomäki, Lasse

    2013-05-13

    Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.

  4. Double strand binding – single strand incision mechanism for human flap endonuclease: implications for the superfamily

    PubMed Central

    Tsutakawa, Susan E.; Tainer, John A.

    2012-01-01

    Detailed structural, mutational, and biochemical analyses of human FEN1/DNA complexes have revealed the mechanism for recognition of 5′ flaps formed during lagging strand replication and DNA repair. FEN1 processes 5′ flaps through a previously unknown, but structurally elegant double-stranded (ds) recognition/single stranded (ss) incision mechanism that both selects for 5′ flaps and selects against ss DNA or RNA, intact dsDNA, and 3′ flaps. Two major DNA binding interfaces, including a K+ bridge between the DNA and the H2TH motif, are spaced one helical turn apart and together select for substrates with dsDNA. A conserved helical gateway and a helical cap protects the two-metal active site and selects for ss flaps with free termini. Structures of substrate and product reveal an unusual step between binding substrate and incision that involves a double base unpairing with incision occurring in the resulting unpaired DNA or RNA. Ordering of the active site requires a disorder-to-order transition induced by binding of an unpaired 3′ flap, which ensures that the product is ligatable. Comparison with FEN superfamily members, including XPG, EXO1, and GEN1, identifies superfamily motifs such as the helical gateway that select for ss-dsDNA junctions and provides key biological insights into nuclease specificity and regulation. PMID:22244820

  5. Conjugation of γ-Fe 2O 3 nanoparticles with single strand oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, C. W.; Huang, K. T.; Wei, P. K.; Yao, Y. D.

    2006-09-01

    Following the thermodecomposition synthetic route, water soluble γ-Fe 2O 3 nanoparticles have been successfully prepared, with average size 8.8±1.3 nm. Based on the process we developed, the magnetic particles have carboxyl group on their surfaces. By using 1-ethyl-3-(3-dimrthylaminopropyl)carbodiimide hydrochloride [EDC] as a liker reagent, we successfully modified a protein, streptavidin, on the surface of γ-Fe 2O 3 nanoparticles. With the strong affinity between biotin with streptavidin, we could use the streptavidin-modified magnetic nanoparticles to separate the rare biotin functionalized molecules from the mixed solution. On the other hand, streptavidin functionalized Fe 2O 3 can catch a biotin labeled single strand oligonucleotides through the strong affinity between streptavidin and biotin. The oligonucleotides functionalized magnetic nanoparticle would separate a specific oligonucleotide from a mixture. This design may be used to create a technique to detect diseases in the future.

  6. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes.

    PubMed

    Ren, Xiaomei; El-Sagheer, Afaf H; Brown, Tom

    2016-05-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  7. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes.

    PubMed

    Ren, Xiaomei; El-Sagheer, Afaf H; Brown, Tom

    2016-05-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX.

  8. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  9. Ultrafast dynamics of Förster resonance energy transfer and photo-induced charge transfer in cationic polyfluorene/dye-labeled DNA complex.

    PubMed

    Kyhm, Kwangseuk; Kim, Inhong; Kang, Mijeong; Woo, Han Young

    2012-10-01

    The ultrafast dynamics of Förster resonance energy transfer (FRET) and photo-induced charge transfer (PCT) has been investigated in an electrostatic complex of a fluorescein-labeled single-stranded DNA (as a FRET acceptor) and a cationic polyfluorene copolymer (as a FRET donor). The donor-acceptor intermolecular distance and total energy transfer efficiency are determined for a polymer/DNA complex with two different counter-ions and compared with those obtained using a theoretical model by considering the competition between FRET and PCT processes. The maximum total energy transfer efficiency (0.47) was estimated at the optimum donor-acceptor intermolecular distance of 39.6 A.

  10. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  11. DNA Hybridization: Nonradioactive Labeling Now Available for the Laboratory.

    ERIC Educational Resources Information Center

    Freeman, Lenore Gardner

    1984-01-01

    The advantages of DNA hybridization procedures for classroom and clinical use can now be realized by the recent development of nonradioactive DNA labeling/detection procedures. These methods (which are described) can replace the use of isotopes in standard DNA hybridization procedures. (JN)

  12. Assembling long heteroduplexes by asymmetric polymerase chain reaction and annealing the resulting single-stranded DNAs.

    PubMed

    Wang, Mugui; Wei, Chuchu; Ye, Xiufen; Liu, Jianping; Zhang, Cuicui; Chen, Hao; Zhang, Xiaobo; Tu, Jumin

    2015-04-15

    We developed an effective protocol for generating high-purity heteroduplexes via annealing single-stranded DNAs (ssDNAs) derived from plasmid DNA by asymmetric polymerase chain reaction (A-PCR). With the addition of dimethyl sulfoxide, a one-step A-PCR procedure can generate ssDNAs stably at a range of reaction temperatures. Several annealing buffers can anneal two ssDNAs into heteroduplexes effectively. We further developed a simple strategy to create d(GATC) hemimethylated heteroduplexes by annealing fully methylated homoduplexes in the presence of excessive unmethylated ssDNAs. The constructed heteroduplexes have been well tested as substrates for mismatch repair in Escherichia coli and, thus, can be used in various biotechnology applications. PMID:25575760

  13. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    PubMed Central

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  14. Directly labeled fluorescent DNA probes for chromosome mapping

    SciTech Connect

    Marrone, B.L.; Deaven, L.L.; Chen, D.J.; Park, Min S.; MacInnes, M.A.; Salzman, G.C.; Yoshida, T.M.

    1995-12-31

    A new strategy is briefly described for employing nucleic acid probes that are directly labeled with fluorochromes in fluorescence in situ hybridization techniques. These probes will permit the detection, quantitation, and high-precision spatial analysis of multiple DNA sequences along a single chromosome using video-enhanced fluorescence microscopy and digital image processing and analysis. Potential advantages of direct labeled DNA probes for fluorescence in situ hybridization far surpass currently available, indirect DNA probe labeling techniques in ease of use, versatility, and increased signal- to-noise ratio.

  15. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation.

    PubMed

    Egawa, Edgar Y; Kitamura, Narufumi; Nakai, Ryusuke; Arima, Yusuke; Iwata, Hiroo

    2015-06-01

    Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20-oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20-SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully

  16. Mutations induced by methylene blue plus light in single-stranded M13mp2.

    PubMed Central

    McBride, T J; Schneider, J E; Floyd, R A; Loeb, L A

    1992-01-01

    Reactive oxygen species are generated by a variety of cellular processes. These endogenously generated, reactive intermediates produce a multiplicity of DNA alterations and mutations and have been implicated in the pathogenesis of several human diseases. We report here that treatment of single-stranded M13mp2 bacteriophage DNA with methylene blue and white light generates increased levels of 8-hydroxydeoxyguanosine and that mutagenesis is both highly specific and dependent on the SOS response. Lesions produced block the progression of DNA synthesis one base preceding template guanines. In SOS-induced Escherichia coli, 97% of all methylene blue-induced mutations in the lacZ alpha gene of M13mp2 DNA are single-base substitutions opposite template guanines. The most frequent mutations are G----C transversions. The G----T transversions expected from the presence of 8-hydroxydeoxyguanosine in the template strand occur, but at a lower frequency. Sequence data together with SOS dependency and the presence of replication blockage demonstrate that while 8-hydroxydeoxyguanosine may serve as an important marker to monitor oxygen-induced DNA damage in humans, it does not account for either the observed blockage to replication or the mutagenesis by methylene blue plus light in SOS-induced E. coli. Instead, an as yet unidentified lesion generated by active oxygen species is a more potent mutagenic event. Images PMID:1495976

  17. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    SciTech Connect

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  18. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. PMID:27392233

  19. Prenatal diagnosis of Crigler-Najjar syndrome type I by single-strand conformation polymorphism (SSCP).

    PubMed

    Francoual, Jeanne; Trioche, Pascale; Mokrani, Chahnez; Seboui, Hassen; Khrouf, Naïma; Chalas, Jacqueline; Clement, Marina; Capel, Liliane; Tachdjian, Gérard; Labrune, Philippe

    2002-10-01

    Crigler-Najjar syndrome type I (CN-I) is a rare and severe inherited disorder of bilirubin metabolism, caused by the total deficiency of bilirubin-UDP-glucuronosyltransferase (UGT) activity. Enzymatic diagnosis cannot be performed in chorionic villi or amniocytes as UGT is not active in these tissues. The cloning of the UGT1 gene and the identification of disease-causing mutations have led to the possibility of performing DNA-based diagnosis. Here we report DNA-based prenatal diagnosis of CN-I in two Tunisian families in whom CN-I patients were diagnosed. As we had previously shown that CN-I was, in Tunisia, associated with homozygosity for the Q357R mutation within the UGT1 gene, we were able to detect this mutation in both families and to show that it was easily recognized by single-strand conformation polymorphism (SSCP) analysis. In both cases, SSCP analysis of fetal DNA showed that the fetus was heterozygous for the Q357R mutation. In one family, the pregnancy was carried to term and a healthy baby was born, whereas, in the other family, the pregnancy is still continuing. Thus the prenatal diagnosis of CN-I is possible, provided disease-causing mutations have been identified. SSCP analysis of DNA prepared either from amniocytes or from chorionic villi is a simple, reliable and fast method for prenatal diagnosis.

  20. Label-free DNA sensing using millimeter-wave silicon WGM resonator.

    PubMed

    Taeb, Aidin; Basha, Mohammed A; Gigoyan, Suren; Marsden, Mungo; Safavi-Naeini, Safieddin

    2013-08-26

    A planar dielectric waveguide based structure for bio-sensing purpose is introduced. The proposed device is a silicon-based WGM disc resonator operating within the range of 75-110 GHz (W-band). The sensor is an integrated, miniaturized, low-cost, and easy-to-fabricate bio-sensor structure. The proposed sensor can be used for a number of DNA characterization tasks including Mutation in DNA oligonucleotide. Two types of DNAs, single strand and double strand DNAs, are successfully tested by our integrated sensor. The measurement repeatability and selectivity of the proposed sensor are examined through the different experimental lab-tests.

  1. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  2. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully.

  3. Cold shock domain protein from Philosamia ricini prefers single-stranded nucleic acids binding.

    PubMed

    Mani, Ashutosh; Yadava, P K; Gupta, Dwijendra K

    2012-01-01

    The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.

  4. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Zohar, Hagar; Muller, Susan J.

    2011-08-01

    This review is a practical guide for experimentalists interested in specifically labeling internal sequences on double-stranded (ds) DNA molecules for single-molecule experiments. We describe six labeling approaches demonstrated in a single-molecule context and discuss the merits and drawbacks of each approach with particular attention to the amount of specialized training and reagents required. By evaluating each approach according to criteria relevant to single-molecule experiments, including labeling yield and compatibility with cofactors such as Mg2+, we provide a simple reference for selecting a labeling method for given experimental constraints. Intended for non-specialists seeking accessible solutions to DNA labeling challenges, the approaches outlined emphasize simplicity, robustness, suitability for use by non-biologists, and utility in diverse single-molecule experiments.

  5. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  6. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Souza, M T; Carvalho-Zilse, G A

    2014-07-25

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species.

  7. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Souza, M T; Carvalho-Zilse, G A

    2014-01-01

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species. PMID:25117306

  8. Rapid detection of medium chain acyl-CoA dehydrogenase gene mutations by non-radioactive, single strand conformation polymorphism minigels.

    PubMed Central

    Iolascon, A; Parrella, T; Perrotta, S; Guardamagna, O; Coates, P M; Sartore, M; Surrey, S; Fortina, P

    1994-01-01

    Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a common inherited metabolic disorder affecting fatty acid beta oxidation. Identification of carriers is important since the disease can be fatal and is readily treatable on