Sample records for labeled tumor cells

  1. Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.

    PubMed

    Cima, Igor; Wen Yee, Chay; Iliescu, Florina S; Phyo, Wai Min; Lim, Kiat Hon; Iliescu, Ciprian; Tan, Min Han

    2013-01-01

    This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

  2. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-04

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  3. Separable Bilayer Microfiltration Device for Label-Free Enrichment of Viable Circulating Tumor Cells.

    PubMed

    Hao, Sijie; Nisic, Merisa; He, Hongzhang; Tai, Yu-Chong; Zheng, Si-Yang

    2017-01-01

    Analysis of rare circulating tumor cells enriched from metastatic cancer patients yields critical information on disease progression, therapy response, and the mechanism of cancer metastasis. Here we describe in detail a label-free enrichment process of circulating tumor cells based on its unique physical properties (size and deformability). Viable circulating tumor cells can be successfully enriched and analyzed, or easily released for further characterization due to the novel separable two-layer design.

  4. Recognition of Live Phosphatidylserine-Labeled Tumor Cells by Dendritic Cells: A Novel Approach to Immunotherapy of Skin Cancer

    PubMed Central

    Shurin, Michael R.; Potapovich, Alla I.; Tyurina, Yulia Y.; Tourkova, Irina L.; Shurin, Galina V.; Kagan, Valerian E.

    2014-01-01

    Dendritic cells (DC) loaded with tumor antigens from apoptotic/necrotic tumor cells are commonly used as vaccines for cancer therapy. However, the use of dead tumor cells may cause both tolerance and immunity, making the effect of vaccination unpredictable. To deliver live tumor “cargoes” into DC, we developed a new approach based on the “labeling” of tumors with a phospholipid “eat-me” signal, phosphatidylserine. Expression of phosphatidylserine on live tumor cells mediated their recognition and endocytosis by DC resulting in the presentation of tumor antigens to antigen-specific T cells. In mice, topical application of phosphatidylserine-containing ointment over melanoma induced tumor-specific CTL, local and systemic antitumor immunity, and inhibited tumor growth. Thus, labeling of tumors with phosphatidylserine is a promising strategy for cancer immunotherapy. PMID:19276376

  5. Escape From Tumor Cell Dormancy

    DTIC Science & Technology

    2011-10-01

    addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding, dormancy and...and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for fluorescence (months 1-6) 5. label tumor... cells for mass reporting (months 3-9) Objective 2: 1. generate liver organ bioreactors for tumor cell seeding (months 3-24) 2. seed organotypic

  6. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    PubMed Central

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  7. Escape from Tumor Cell Dormancy

    DTIC Science & Technology

    2012-10-01

    bioreactor has been developed (oxygen sensing) to improve monitoring of the physiological status of the cultures ; as cells are stimulated by inflammation...therapeutics but of prevention and possibly lifestyle avoidance. Herein, these issues are addressed using a novel organotypic bioreactor in which tumor cells ...months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for fluorescence (months 1-6) 5. label tumor cells for mass

  8. [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity.

    PubMed

    Zanzonico, Pat; Koehne, Guenther; Gallardo, Humilidad F; Doubrovin, Mikhail; Doubrovina, Ekaterina; Finn, Ronald; Blasberg, Ronald G; Riviere, Isabelle; O'Reilly, Richard J; Sadelain, Michel; Larson, Steven M

    2006-09-01

    Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [(131)I]-2'-fluoro-2'-deoxy-1-beta-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular (131)I (even at tracer levels), the nucleus absorbed dose (D ( n )) and dose-dependent immune functionality were evaluated for NIT(+) T cells labeled ex vivo in [(131)I]FIAU-containing medium. Based on in vitro kinetic studies of [(131)I]FIAU uptake by NIT(+) T cells, D ( n ) was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [(131)I]FIAU-labeled cells was assayed against (51)Cr-labeled target cells [B-lymphoblastoid cells (BLCLs)] in a standard 4-h release assay. At median nuclear absorbed doses up to 830 cGy, a (51)Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies.

  9. Intravital imaging of multicolor-labeled tumor immune microenvironment through skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2015-03-01

    Tumor immune microenvironment became very important for the tumor immunotherapy. There were several kinds of immune cells in tumor stromal, and they played very different roles in tumor growth. In order to observe the behaviors of multiple immune cells in tumor microenvironment and the interaction between immune cells and tumor cells at the same time, we generated a multicolor-labeled tumor immune microenvironment model. The tumor cells and immune cells were labeled by different fluorescent proteins. By using of skin-fold window chamber implanted into mice and intravital imaging technology, we could dynamically observe the different immune cells in tumor microenvironment. After data analysis from the video, we could know the behavior of TILs, DCs and Tregs in tumor immune microenvironment; furthermore, we could know these immune cells play different roles in the tumor microenvironment.

  10. Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging.

    PubMed

    Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J

    2012-07-01

    A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.

  11. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?

    PubMed

    Murlidhar, Vasudha; Rivera-Báez, Lianette; Nagrath, Sunitha

    2016-09-01

    The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells.

    PubMed

    Lin, Eric; Rivera-Báez, Lianette; Fouladdel, Shamileh; Yoon, Hyeun Joong; Guthrie, Stephanie; Wieger, Jacob; Deol, Yadwinder; Keller, Evan; Sahai, Vaibhav; Simeone, Diane M; Burness, Monika L; Azizi, Ebrahim; Wicha, Max S; Nagrath, Sunitha

    2017-09-27

    We present "Labyrinth," a label-free microfluidic device to isolate circulating tumor cells (CTCs) using the combination of long loops and sharp corners to focus both CTCs and white blood cells (WBCs) at a high throughput of 2.5 mL/min. The high yield (>90%) and purity (600 WBCs/mL) of Labyrinth enabled us to profile gene expression in CTCs. As proof of principle, we used previously established cancer stem cell gene signatures to profile single cells isolated from the blood of breast cancer patients. We observed heterogeneous subpopulations of CTCs expressing genes for stem cells, epithelial cells, mesenchymal cells, and cells transitioning between epithelial and mesenchymal. Labyrinth offers a cell-surface marker-independent single-cell isolation platform to study heterogeneous CTC subpopulations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    PubMed

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  14. Mn-doped Zinc Sulphide nanocrystals for immunofluorescent labeling of epidermal growth factor receptors on cells and clinical tumor tissues

    NASA Astrophysics Data System (ADS)

    J, Aswathy; V, Seethalekshmy N.; R, Hiran K.; R, Bindhu M.; K, Manzoor; Nair, Shantikumar V.; Menon, Deepthy

    2014-11-01

    The field of molecular detection and targeted imaging has evolved considerably with the introduction of fluorescent semiconductor nanocrystals. Manganese-doped zinc sulphide nanocrystals (ZnS:Mn NCs), which are widely used in electroluminescent displays, have been explored for the first time for direct immunofluorescent (IF) labeling of clinical tumor tissues. ZnS:Mn NCs developed through a facile wet chemistry route were capped using amino acid cysteine, conjugated to streptavidin and thereafter coupled to biotinylated epidermal growth factor receptor (EGFR) antibody utilizing the streptavidin-biotin linkage. The overall conjugation yielded stable EGFR antibody conjugated ZnS:Mn NCs (EGFR ZnS:Mn NCs) with a hydrodynamic diameter of 65 ± 15 nm, and having an intense orange-red fluorescence emission at 598 nm. Specific labeling of EGF receptors on EGFR+ve A431 cells in a co-culture with EGFR-ve NIH3T3 cells was demonstrated using these nanoprobes. The primary antibody conjugated fluorescent NCs could also clearly delineate EGFR over-expressing cells on clinical tumor tissues processed by formalin fixation as well as cryopreservation with a specificity of 86% and accuracy of 88%, in comparison to immunohistochemistry. Tumor tissues labeled with EGFR ZnS:Mn NCs showed good fluorescence emission when imaged after storage even at 15 months. Thus, ZnS nanobioconjugates with dopant-dependent and stable fluorescence emission show promise as an efficient, target-specific fluorophore that would enable long term IF labeling of any antigen of interest on clinical tissues.

  15. Escape from Tumor Cell Dormancy

    DTIC Science & Technology

    2011-10-01

    feature of the bioreactor has been developed (oxygen sensing) to improve monitoring of the physiological status of the cultures ; as cells are stimulated...Herein, these issues are addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding... cells (months 1-6) 3. isolate human stellate and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for

  16. Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study

    PubMed Central

    Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn

    2009-01-01

    SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523

  17. Tumor cell differentiation by label-free microscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Weber, Petra; Wagner, Michael

    2013-05-01

    Autofluorescence and Raman measurements of U251-MG glioblastoma cells prior and subsequent to activation of tumor suppressor genes are compared. While phase contrast images and fluorescence intensity patterns of the tumor (control) cells and the less malignant cells are similar, differences can be deduced from fluorescence spectra and nanosecond decay times. In particular, upon excitation around 375nm, the fluorescence ratio of the protein bound and the free coenzyme NADH depends on the state of malignancy and reflects different cytoplasmic (including lysosomal) and mitochondrial contributions. Slight differences are also observed in the Raman spectra of these cell lines, mainly originating from small granules (lysosomes) surrounding the cell nucleus. While larger numbers of fluorescence and Raman spectra are evaluated by multivariate statistical methods, additional information is obtained from spectral images and fluorescence lifetime images (FLIM).

  18. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  19. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    NASA Astrophysics Data System (ADS)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  20. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  1. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics.

    PubMed

    Warkiani, Majid Ebrahimi; Khoo, Bee Luan; Wu, Lidan; Tay, Andy Kah Ping; Bhagat, Ali Asgar S; Han, Jongyoon; Lim, Chwee Teck

    2016-01-01

    Circulating tumor cells (CTCs) are rare cancer cells that are shed from primary or metastatic tumors into the peripheral blood circulation. Phenotypic and genetic characterization of these rare cells can provide important information to guide cancer staging and treatment, and thus further research into their characteristics and properties is an area of considerable interest. In this protocol, we describe detailed procedures for the production and use of a label-free spiral microfluidic device to allow size-based isolation of viable CTCs using hydrodynamic forces that are present in curvilinear microchannels. This spiral system enables us to achieve ≥ 85% recovery of spiked cells across multiple cancer cell lines and 99.99% depletion of white blood cells in whole blood. The described spiral microfluidic devices can be produced at an extremely low cost using standard microfabrication and soft lithography techniques (2-3 d), and they can be operated using two syringe pumps for lysed blood samples (7.5 ml in 12.5 min for a three-layered multiplexed chip). The fast processing time and the ability to collect CTCs from a large patient blood volume allows this technique to be used experimentally in a broad range of potential genomic and transcriptomic applications.

  2. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    NASA Astrophysics Data System (ADS)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  3. Label-free ferrohydrodynamic cell separation of circulating tumor cells.

    PubMed

    Zhao, Wujun; Cheng, Rui; Jenkins, Brittany D; Zhu, Taotao; Okonkwo, Nneoma E; Jones, Courtney E; Davis, Melissa B; Kavuri, Sravan K; Hao, Zhonglin; Schroeder, Carsten; Mao, Leidong

    2017-09-12

    Circulating tumor cells (CTCs) have significant implications in both basic cancer research and clinical applications. To address the limited availability of viable CTCs for fundamental and clinical investigations, effective separation of extremely rare CTCs from blood is critical. Ferrohydrodynamic cell separation (FCS), a label-free method that conducted cell sorting based on cell size difference in biocompatible ferrofluids, has thus far not been able to enrich low-concentration CTCs from cancer patients' blood because of technical challenges associated with processing clinical samples. In this study, we demonstrated the development of a laminar-flow microfluidic FCS device that was capable of enriching rare CTCs from patients' blood in a biocompatible manner with a high throughput (6 mL h -1 ) and a high rate of recovery (92.9%). Systematic optimization of the FCS devices through a validated analytical model was performed to determine optimal magnetic field and its gradient, ferrofluid properties, and cell throughput that could process clinically relevant amount of blood. We first validated the capability of the FCS devices by successfully separating low-concentration (∼100 cells per mL) cancer cells using six cultured cell lines from undiluted white blood cells (WBCs), with an average 92.9% cancer cell recovery rate and an average 11.7% purity of separated cancer cells, at a throughput of 6 mL per hour. Specifically, at ∼100 cancer cells per mL spike ratio, the recovery rates of cancer cells were 92.3 ± 3.6% (H1299 lung cancer), 88.3 ± 5.5% (A549 lung cancer), 93.7 ± 5.5% (H3122 lung cancer), 95.3 ± 6.0% (PC-3 prostate cancer), 94.7 ± 4.0% (MCF-7 breast cancer), and 93.0 ± 5.3% (HCC1806 breast cancer), and the corresponding purities of separated cancer cells were 11.1 ± 1.2% (H1299 lung cancer), 10.1 ± 1.7% (A549 lung cancer), 12.1 ± 2.1% (H3122 lung cancer), 12.8 ± 1.6% (PC-3 prostate cancer), 11.9 ± 1.8% (MCF-7 breast cancer), and 12.2 ± 1

  4. 64Cu-Labeled Phosphonium Cations as PET Radiotracers for Tumor Imaging

    PubMed Central

    Zhou, Yang; Liu, Shuang

    2011-01-01

    Alteration in mitochondrial transmembrane potential (ΔΨm) is an important characteristic of cancer. The observation that the enhanced negative mitochondrial potential is prevalent in tumor cell phenotype provides a conceptual basis for development of mitochondrion-targeting therapeutic drugs and molecular imaging probes. Since plasma and mitochondrial potentials are negative, many delocalized organic cations, such as rhodamine-123 and 3H-tetraphenylphosphonium, are electrophoretically driven through these membranes, and able to localize in the energized mitochondria of tumor cells. Cationic radiotracers, such as 99mTc-Sestamibi and 99mTc-Tetrofosmin, have been clinically used for diagnosis of cancer by single photon emission computed tomography (SPECT) and noninvasive monitoring of the multidrug resistance (MDR) transport function in tumors of different origin. However, their diagnostic and prognostic values are often limited due to their insufficient tumor localization (low radiotracer tumor uptake) and high radioactivity accumulation in the chest and abdominal regions (low tumor selectivity). In contrast, the 64Cu-labeled phosphonium cations represent a new class of PET (positron emission tomography) radiotracers with good tumor uptake and high tumor selectivity. This review article will focus on our recent experiences in evaluation of 64Cu-labeled phosphonium cations as potential PET radiotracers. The main objective is to illustrate the impact of radiometal chelate on physical, chemical and biological properties of 64Cu radiotracers. It will also discuss some important issues related to their tumor selectivity and possible tumor localization mechanism. PMID:21696200

  5. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Shao, Jin-Yu; Wang, Lihong V.

    2017-04-01

    Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification in vivo. The feasibility was first demonstrated by imaging CTC cluster ex vivo. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats in vivo. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters in vivo and showed its potential for tumor metastasis study and cancer therapy.

  6. A pretargeted nanoparticle system for tumor cell labeling

    PubMed Central

    Gunn, Jonathan; Park, Steven I.; Veiseh, Omid; Press, Oliver W.; Zhang, Miqin

    2011-01-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope. PMID:21107453

  7. A pretargeted nanoparticle system for tumor cell labeling.

    PubMed

    Gunn, Jonathan; Park, Steven I; Veiseh, Omid; Press, Oliver W; Zhang, Miqin

    2011-03-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope.

  8. In Vitro Model of Tumor Cell Extravasation

    PubMed Central

    Jeon, Jessie S.; Zervantonakis, Ioannis K.; Chung, Seok; Kamm, Roger D.; Charest, Joseph L.

    2013-01-01

    Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium. PMID:23437268

  9. [Experimental study of glioma stem cell-mediated immune tolerance in tumor microenvironment].

    PubMed

    Xie, T; Ma, J W; Liu, B; Dong, J; Huang, Q

    2017-11-23

    Objective: To investigate the tumor microenvironment of immune tolerance induced by glioma stem cells (GSC). Methods: Human GSC SU3 cells transfected with red fluorescent protein (SU3-RFP) gene were implanted into the brain, subcutis (armpit and foot), liver and abdominal cavity of transgenic green fluorescence protein (GFP) nude mice to establish RFP(+) /GFP(+) dual fluorescence solid tumor model. The re-cultured cells derived from implanted tumor tissues, SU3-RFP cells co-cultured with peritoneal fluid of transgenic GFP nude mice and malignant ascites of tumor-bearing mice were observed by fluorescence microscopy and real-time video image tracing to analyze the microenvironment of immune tolerance mediated by RFP(+) /GFP(+) implanted tumor. Results: Dual fluorescence labeled frozen section showed that all of cells in the tumor microenvironment were GFP(+) , while the pressed tissue-patch showed that the tumor blood vessels exhibited a RFP(+) /GFP(+) double-positioning yellow. In the GFP single fluorescence labeled tumor tissue, all of cells in the microenvironment were green, including tumor edge, necrotic foci and blood vessel. Among them, CD68(+) , F4/80(+) , CD11c(+) , CD11b(+) and CD80(+) cells were observed. In the dual fluorescence labeled co-cultured cells, the phagocytosis and fusion between green host cells and red tumor cells were also observed, and these fusion cells might transfer to the malignant dendritic cells and macrophages. Conclusions: The tumor microenvironment of immune tolerance induced by GSC is not affected by the tissue types of tumor-inoculated sites, and the immune tolerance mediated by inflammatory cells is associated with the inducible malignant transformation, which may be driven by cell fusion.

  10. Imaging Tumor Cell Movement In Vivo

    PubMed Central

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602

  11. Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation.

    PubMed

    Lin, Ming Xian; Hyun, Kyung-A; Moon, Hui-Sung; Sim, Tae Seok; Lee, Jeong-Gun; Park, Jae Chan; Lee, Soo Suk; Jung, Hyo-Il

    2013-02-15

    Circulating tumor cells (CTCs) are identified in transit within the blood stream of cancer patients and have been proven to be a main cause of metastatic disease. Current approaches for the size-based isolation of CTCs have encountered technical challenges as some of the CTCs have a size similar to that of leukocytes and therefore CTCs are often lost in the process. Here, we propose a novel strategy where most of the CTCs are coated by a large number of microbeads to amplify their size to enable complete discrimination from leukocytes. In addition, all of the microbead labeling processes are carried out in a continuous manner to prevent any loss of CTCs during the isolation process. Thus, a microfluidic mixer was employed to facilitate the efficient and selective labeling of CTCs from peripheral blood samples. By generating secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction in our microfluidic device, CTCs were continuously and successfully coated with anti-epithelial cell adhesion molecule-conjugated beads. After the continuous labeling, the enlarged CTCs were perfectly trapped in a micro-filter whereas all of the leukocytes escaped. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.

    PubMed

    Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas

    2015-09-15

    Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.

  13. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    PubMed

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research

  14. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  15. Interleukin 1 increases thymidine labeling index of normal tissues of mic but not the tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaghloul, M.S.; Dorie, M.J.; Kallman, R.F.

    1994-07-01

    This study was conducted to investigate the action of human recombinant interleukin 1 as a radioprotector for different mouse normal cells other than bone marrow cells. Semi-continuous injections of tritiated thymidine were administered every 6 h, over 24 h to determine thymidine labeling index. Mice were injected with recombinant human interleukin 1 24 h prior to tritiated thymidine and were compared to control animals that did not receive interleukin 1. Mice were killed 1 h after the last thymidine injection. The 24 h thymidine labeling index for normal tissues and RIF-1 tumor was determined. Labeling indices were also determined 1-14more » days after a series of fractionated irradiations with or without pretreatment with a single dose of interleukin 1 administered 24 h prior to the first radiation. The thymidine labeling index of normal tissues was higher following the injection of recombinant human interleukin 1 24 h before radiolabeling. This was found in all normal tissues tested. The thymidine labeling index of RIF-1 fibrosarcoma was not affected by interleukin 1 injection. A single interleukin 1 injection 24 h before the first radiation fraction also increased the thymidine labeling indices of normal tissues after localized fractionated irradiation. The thymidine labeling index of RIF-1 tumor was not increased by interleukin 1 administration except after relatively high radiation doses (20 Gy in five fractions). The ability of interleukin 1 to enhance the thymidine labeling index declined after the first day following the completion of fractionated irradiation. Recombinant human interleukin 1 increased the 24 h thymidine labeling index in normal tissues in mice, but not in RIF-1 tumor. Fractionated irradiation could maintain the effect of a single dose of interleukin 1, administered 24 h prior to the first fraction, up to 24 h after the end of radiation. 25 refs., 3 figs., 1 tab.« less

  16. Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*

    PubMed Central

    Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus

    2014-01-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872

  17. Diffuse fluorescence tomography of exo- and endogenously labeled tumors

    NASA Astrophysics Data System (ADS)

    Balalaeva, Irina V.; Turchin, Ilya V.; Orlova, Anna G.; Plekhanov, Vladimir I.; Shirmanova, Marina V.; Kleshnin, Michail S.; Fiks, Ilya I.; Zagainova, Elena V.; Kamensky, Vladislav A.

    2007-06-01

    Strong light scattering and absorption limit observation of the internal structure of biological tissue. Only special tools for turbid media imaging, such as optical diffuse tomography, enable noninvasive investigation of the internal biological tissues, including visualization and intravital monitoring of deep tumors. In this work the preliminary results of diffuse fluorescence tomography (DFT) of small animals are presented. Usage of exogenous fluorophores, targeted specifically at tumor cells, and fluorescent proteins expressed endogenously can significantly increase the contrast of obtained images. Fluorescent compounds of different nature, such as sulphonated aluminium phthalocyanine (Photosens), red fluorescing proteins and CdTe/CdSe-core/shell nanocrystals (quantum dots) were applied. We tested diffuse fluorescence tomography method at model media, in post mortem and in vivo experiments. The animal was scanned in transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at wavelength of 532 nm or semiconductor laser at wavelength of 655 nm. Quantum dots or protein DsRed2 in glass capsules (inner diameter 2-3 mm) were placed post mortem inside the esophagus of 7-day-old hairless rats to simulate marked tumors. Photosens was injected intravenously to linear mice with metastazing Lewis lung carcinoma. The reconstruction algorithm, based on Algebraic Reconstruction Technique, was created and tested numerically in model experiments. High contrast images of tumor simulating capsules with DsRed2 concentrations about 10 -6 M and quantum dots about 5x10 -11 M have been obtained. Organ distribution of Photosens and its accumulation in tumors and surrounding tissues of animals has been examined. We have conducted the monitoring of tumors, exogenously labeled by photosensitizer. This work demonstrates potential capabilities of DFT method for intravital detection and monitoring of deep fluorescent-labeled

  18. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    PubMed

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  19. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection.

    PubMed

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J; Gao, Feng; Bouchard, Richard; Lang, Frederick F; Stafford, R Jason; Melancon, Marites P

    2018-04-20

    To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml -1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. MSCs labeled with SPIO@Au at 4 μg ml -1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and

  20. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection

    NASA Astrophysics Data System (ADS)

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J.; Gao, Feng; Bouchard, Richard; Lang, Frederick F.; Stafford, R. Jason; Melancon, Marites P.

    2018-04-01

    Objective. To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Materials and methods. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ˜82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. Results. MSCs labeled with SPIO@Au at 4 μg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Conclusions. Our results demonstrated the feasibility of tracking carotid artery

  1. Linear-array-based photoacoustic tomography for label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Wang, Lihong V.

    2017-03-01

    Circulating tumor cell (CTC) clusters arise from multicellular grouping in the primary tumor and elevate the metastatic potential by 23 to 50 fold compared to single CTCs. High throughout detection and quantification of CTC clusters is critical for understanding the tumor metastasis process and improving cancer therapy. In this work, we report a linear-array-based photoacoustic tomography (LA-PAT) system capable of label-free high-throughput CTC cluster detection and quantification in vivo. LA-PAT detects CTC clusters and quantifies the number of cells in them based on the contrast-to-noise ratios (CNRs) of photoacoustic signals. The feasibility of LA-PAT was first demonstrated by imaging CTC clusters ex vivo. LA-PAT detected CTC clusters in the blood-filled microtubes and computed the number of cells in the clusters. The size distribution of the CTC clusters measured by LA-PAT agreed well with that obtained by optical microscopy. We demonstrated the ability of LA-PAT to detect and quantify CTC clusters in vivo by imaging injected CTC clusters in rat tail veins. LA-PAT detected CTC clusters immediately after injection as well as when they were circulating in the rat bloodstreams. Similarly, the numbers of cells in the clusters were computed based on the CNRs of the photoacoustic signals. The data showed that larger CTC clusters disappear faster than the smaller ones. The results prove the potential of LA-PAT as a promising tool for both preclinical tumor metastasis studies and clinical cancer therapy evaluation.

  2. Optimization and validation of FePro cell labeling method.

    PubMed

    Janic, Branislava; Rad, Ali M; Jordan, Elaine K; Iskander, A S M; Ali, Md M; Varma, N Ravi S; Frank, Joseph A; Arbab, Ali S

    2009-06-11

    Current method to magnetically label cells using ferumoxides (Fe)-protamine (Pro) sulfate (FePro) is based on generating FePro complexes in a serum free media that are then incubated overnight with cells for the efficient labeling. However, this labeling technique requires long (>12-16 hours) incubation time and uses relatively high dose of Pro (5-6 microg/ml) that makes large extracellular FePro complexes. These complexes can be difficult to clean with simple cell washes and may create low signal intensity on T2* weighted MRI that is not desirable. The purpose of this study was to revise the current labeling method by using low dose of Pro and adding Fe and Pro directly to the cells before generating any FePro complexes. Human tumor glioma (U251) and human monocytic leukemia cell (THP-1) lines were used as model systems for attached and suspension cell types, respectively and dose dependent (Fe 25 to 100 microg/ml and Pro 0.75 to 3 microg/ml) and time dependent (2 to 48 h) labeling experiments were performed. Labeling efficiency and cell viability of these cells were assessed. Prussian blue staining revealed that more than 95% of cells were labeled. Intracellular iron concentration in U251 cells reached approximately 30-35 pg-iron/cell at 24 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. However, comparable labeling was observed after 4 h across the described FePro concentrations. Similarly, THP-1 cells achieved approximately 10 pg-iron/cell at 48 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. Again, comparable labeling was observed after 4 h for the described FePro concentrations. FePro labeling did not significantly affect cell viability. There was almost no extracellular FePro complexes observed after simple cell washes. To validate and to determine the effectiveness of the revised technique, human T-cells, human hematopoietic stem cells (hHSC), human bone marrow stromal cells (hMSC) and mouse neuronal stem cells (mNSC C17

  3. Selective in vivo metabolic cell-labeling-mediated cancer targeting

    PubMed Central

    Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun

    2017-01-01

    Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414

  4. The relationship of blood vessel proximity and time after radiolabeled thymidine administration to tumor cell population kinetics in a transplanted mouse mammary tumor.

    PubMed Central

    Pavelic, Z. P.; Allen, L. M.; Mihich, E.

    1981-01-01

    The relation between the time of administration of tritiated thymidine and the proximity of cells to blood vessels and their labeling index, grain density per labeled cells, mitotic index, and growth fraction have been determined autoradiographically in a transplanted mammary tumor of mice. The tumor was rich in blood vessels, and the cells were densely packed, showing a few glandular structures. Shortly after tritiated thymidine administration, cells closer to the blood vessels (0-70 mu) showed a higher percentage of labeled and mitotic cells, more grains per labeled cells, and a higher growth fraction than the cells located in the outer zone (70-140 mu). Eight days later the values of these parameters were similar in both areas. The cell cycle time, the duration of mitosis, the S phase, the G1 phase and the G2 phase were essentially the same in both zones. These results could be attributed either to reutilization of nucleic acid metabolites or release of the original precursor from cells. It is suggested that label redistribution, which may perturb the measurement of the apparent turnover of labeled proliferating cellular systems in the body should be considered in all cases of autoradiographic or labeled purine-pyrimidine turnover studies. Images Figure 4 Figure 5 PMID:7468761

  5. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system.

    PubMed

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-04-20

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.

  6. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.

    PubMed

    Hyun, Kyung-A; Kwon, Kiho; Han, Hyunju; Kim, Seung-Il; Jung, Hyo-Il

    2013-02-15

    Circulating tumor cells (CTCs) are dissociated from primary tumor and circulate in peripheral blood. They are regarded as the genesis of metastasis. Isolation and enumeration of CTCs serve as valuable tools for cancer prognosis and diagnosis. However, the rarity and heterogeneity of CTCs in blood makes it difficult to separate intact CTCs without loss. In this paper, we introduce a parallel multi-orifice flow fractionation (p-MOFF) device in which a series of contraction/expansion microchannels are placed parallel on a chip forming four identical channels. CTCs were continuously isolated from the whole blood of breast cancer patients by hydrodynamic forces and cell size differences. Blood samples from 24 breast cancer patients were analyzed (half were from metastatic breast cancer patients and the rest were from adjuvant breast cancer patients). The number of isolated CTCs varied from 0 to 21 in 7.5 ml of blood. Because our devices do not require any labeling processes (e.g., EpCAM antibody), heterogeneous CTCs can be isolated regardless of EpCAM expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Nuclear uptake and dosimetry of 64Cu-labeled chelator somatostatin conjugates in an SSTr2-transfected human tumor cell line.

    PubMed

    Eiblmaier, Martin; Andrews, Rebecca; Laforest, Richard; Rogers, Buck E; Anderson, Carolyn J

    2007-08-01

    64Cu radiopharmaceuticals have shown tumor growth inhibition in tumor-bearing animal models with a relatively low radiation dose that may be related to nuclear localization of the 64Cu in tumor cells. Here we address whether the nuclear localization of 64Cu from a 64Cu-labeled chelator-somatostatin conjugate is related to the dissociation of the radio-copper from its chelator. The 64Cu complex of 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) has demonstrated instability in vivo, whereas 64Cu-CB-TE2A (CB-TE2A is 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) was highly stable. Receptor binding, nuclear uptake, internalization, and efflux assays were performed to characterize the interaction with the somatostatin receptor and the intracellular fate of 64Cu-labeled chelator-peptide conjugates in A427-7 cells. From these data, the absorbed dose to cells was calculated. 64Cu-TETA-Y3-TATE (64Cu-[1]) and 64Cu-CB-TE2A-Y3-TATE (64Cu-[2]) had high affinity for somatostatin receptor subtype 2 (SSTr2) in A427-7 cells. After 3 h, 64Cu-[2] showed greater internalization (>30%) compared with 64Cu-[1] (approximately 15%). There was uptake of 64Cu-[1] in nuclei of 427-7 cells (9.4% +/- 1.7% at 24 h), whereas 64Cu-[2] showed minimal nuclear accumulation out to 24 h (1.3% +/- 0.1%). A427-7 cells were exposed to 0.40 Gy from 64Cu-[1] and exposed to 1.06 Gy from 64Cu-[2]. External beam irradiation of A427-7 cells showed <20% cell killing at 1 Gy. These results are consistent with our hypothesis that dissociation of 64Cu from TETA leads to nuclear localization. Dosimetry calculations indicated that the nuclear localization of 64Cu-[1] was not significant enough to increase the absorbed dose to the nuclei of A427-7 cells. These studies show that 64Cu localization to cell nuclei from internalizing, receptor-targeted radiopharmaceuticals is related to chelate stability.

  8. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.; Dergilev, A.

    2016-06-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 minutes at room temperature. After centrifugation of the vials with cells, the supernatant was removed. Radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B 1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 minutes. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D- glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3±0.15MBq and 1.07±0.6MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio- D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  9. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  10. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    PubMed Central

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-01-01

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472

  11. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    PubMed

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  12. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    NASA Astrophysics Data System (ADS)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  13. Label-free Rapid Viable Enrichment of Circulating Tumor Cell by Photosensitive Polymer-based Microfilter Device.

    PubMed

    Kang, Yoon-Tae; Doh, Il; Byun, Jiyoung; Chang, Hee Jin; Cho, Young-Ho

    2017-01-01

    We present a clinical device for simple, rapid, and viable isolation of circulating tumor cells (CTCs) from cancer patient bloods. In spite of the clinical importance of CTCs, the lack of easy and non-biased isolation methods is a big hurdle for implementing CTC into clinical use. The present device made of photosensitive polymer was designed to attach to conventional syringe to isolate the CTCs at minimal resources. Its unique tapered-slits on the filter are capable not only to isolate the cell based on their size and deformability, but also to increase sample flow rate, thus achieving label-free rapid viable CTC isolation. We verified our device performance using 9 different types of cancer cells at the cell concentration from 5 to 100cells/ml, showing that the device capture 77.7% of the CTCs while maintaining their viability of 80.6%. We extended our study using the 18 blood samples from lung, colorectal, pancreatic and renal cancer patients and captured 1-172 CTCs or clustered CTCs by immunofluorescent or immunohistochemical staining. The captured CTCs were also molecularly assayed by RT-PCR with three cancer-associated genes (CK19, EpCAM, and MUC1). Those comprehensive studies proved to use our device for cancer study, thereby inaugurating further in-depth CTC-based clinical researches.

  14. A Novel PET Imaging Using 64Cu-Labeled Monoclonal Antibody against Mesothelin Commonly Expressed on Cancer Cells

    PubMed Central

    Kobayashi, Kazuko; Sasaki, Takanori; Takenaka, Fumiaki; Yakushiji, Hiromasa; Fujii, Yoshihiro; Kishi, Yoshiro; Kita, Shoichi; Shen, Lianhua; Kumon, Hiromi; Matsuura, Eiji

    2015-01-01

    Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions. PMID:25883990

  15. 64Cu-Labeled Lissamine Rhodamine B: A Promising PET Radiotracer Targeting Tumor Mitochondria

    PubMed Central

    Zhou, Yang; Kim, Young-Seung; Yan, Xin; Jacobson, Orit; Chen, Xiaoyuan; Liu, Shuang

    2011-01-01

    The enhanced mitochondrial potential in carcinoma cells is an important characteristic of cancer. It is of great current interest to develop a radiotracer that is sensitive to the mitochondrial potential changes at the early stage of tumor growth. In this report, we present the synthesis and evaluation of 64Cu-labeled Lissamine Rhodamine B (LRB), 64Cu(DOTA-LRB) (DOTA-LRB = 2-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-5-(N-(2-(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-dodecan-1-yl)acetamido)ethyl)-sulfamoyl)benzenesulfonate), as a new radiotracer for imaging tumors in athymic nude mice bearing U87MG human glioma xenografts by positron emission tomography (PET). We also explored its localization mechanism using Cu(DOTA-LRB) as the fluorescent probe in both U87MG human glioma cell line and the cultured primary U87MG glioma cells. It was found that 64Cu(DOTA-LRB) had the highest tumor uptake (6.54 ± 1.50, 6.91 ± 1.26, 5.68 ± 1.13, 7.58 ± 1.96, and 5.14 ± 1.50 %ID/g at 0.5, 1, 2, 4 and 24 h post-injection, respectively) among many 64Cu-labeled organic cations evaluated in the same animal model. The cellular staining study indicated that Cu(DOTA-LRB) was able to localize in mitochondria of U87MG glioma cells due to the enhanced negative mitochondrial potential. This statement is completely supported by the results from decoupling experiment with carbonylcyanide-m-chlorophenylhydrazone (CCCP). MicroPET data showed that the U87MG glioma tumors were clearly visualized as early as 30 min post-injection with 64Cu(DOTA-LRB). 64Cu(DOTA-LRB) remained stable during renal excretion, but underwent extensive degradation during hepatobiliary excretion. On the basis of the results from this study, it was concluded that 64Cu(DOTA-LRB) represents a new class of promising PET radiotracers for noninvasive imaging of the MDR-negative tumors. PMID:21545131

  16. Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip.

    PubMed

    Charwat, Verena; Rothbauer, Mario; Tedde, Sandro F; Hayden, Oliver; Bosch, Jacobus J; Muellner, Paul; Hainberger, Rainer; Ertl, Peter

    2013-12-03

    A complementary cell analysis method has been developed to assess the dynamic interactions of tumor cells with resident tissue and immune cells using optical light scattering and impedance sensing to shed light on tumor cell behavior. The combination of electroanalytical and optical biosensing technologies integrated in a lab-on-a-chip allows for continuous, label-free, and noninvasive probing of dynamic cell-to-cell interactions between adherent and nonadherent cocultures, thus providing real-time insights into tumor cell responses under physiologically relevant conditions. While the study of adherent cocultures is important for the understanding and suppression of metastatic invasion, the analysis of tumor cell interactions with nonadherent immune cells plays a vital role in cancer immunotherapy research. For the first time, the direct cell-to-cell interactions of tumor cells with bead-activated primary T cells were continuously assessed using an effector cell to target a cell ratio of 10:1.

  17. Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use

    PubMed Central

    Gutova, Margarita; Frank, Joseph A.; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M.; Annala, Alexander J.; Metz, Marianne Z.; Abramyants, Yelena; Herrmann, Kelsey A.; Ghoda, Lucy Y.; Najbauer, Joseph; Brown, Christine E.; Blanchard, M. Suzette; Lesniak, Maciej S.; Kim, Seung U.; Barish, Michael E.

    2013-01-01

    Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking. PMID:24014682

  18. Investigations of (99m)Tc-labeled glucarate as a SPECT radiotracer for non-small cell lung cancer (NSCLC) and potential tumor uptake mechanism.

    PubMed

    Meng, Lanfang; Xiu, Yan; Li, Yanli; Xu, Xiaobo; Li, Shanqun; Li, Xiao; Pak, Koon Y; Shi, Hongcheng; Cheng, Dengfeng

    2015-07-01

    This study attempted to evaluate the feasibility of (99m)Tc-labeled glucarate ((99m)Tc-GLA) imaging in non-small cell lung cancer (NSCLC) and the potential tumor uptake mechanism. Cell lysates from two NSCLC cell lines, H292 and H1975, were immunoblotted with anti-glucose transporter 5 (GLUT5) antibody for Western blotting. Thereafter, the two cell lines were used to examine cellular uptake of (99m)Tc-GLA with or without fructose. SPECT/CT imaging studies were performed on small animals bearing H292 and H1975 tumors. Biodistribution studies were also conducted to achieve accurate tissue uptake of this tracer in two tumor models. Hematoxylin & eosin (H&E) staining and GLUT5, Ki67 and cytokeratin-7 (CK-7) immunohistochemistry (IHC) analysis were further investigated on tumor tissues. In Western blotting, H292 cells showed higher levels of GLUT5 compared to the H1975 cells. Meanwhile, the in vitro cell assays indicated GLUT5-dependent uptake of (99m)Tc-GLA in H292 and H1975 cells. The fructose competition assays showed a significant decrease in (99m)Tc-GLA uptake by H292 and H1975 cells when fructose was added. The (99m)Tc-GLA accumulation was as much as two-fold higher in H292 implanted tumors than in H1975 implanted tumors. (99m)Tc-GLA exhibited rapid clearance pharmacokinetics and reasonable uptake in human NSCLC H292 (1.69±0.37 ID%/g) and H1975 (0.89±0.06 ID%/g) implanted tumors at 30min post injection. Finally, the expression of GLUT5, Ki67 and CK-7 on tumor tissues also exhibited positive correlation with the in vitro cell test results and in vivo SPECT/CT imaging results in xenograft tumors. Both in vitro and ex vivo studies demonstrated that the uptake of (99m)Tc-GLA in NSCLC is highly related to GLUT5 expression. Imaging and further IHC results support that (99m)Tc-GLA could be a promising SPECT imaging agent for NSCLC diagnosis and prognosis evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.

    PubMed

    Waheed, Waqas; Alazzam, Anas; Mathew, Bobby; Christoforou, Nicolas; Abu-Nada, Eiyad

    2018-06-15

    This short communication introduces a continuous-flow, dielectrophoresis-based lateral fluid flow fractionation microdevice for detection/isolation of circulating tumor cells in the presence of other haematological cells. The device utilizes two sets of planar interdigitated transducer electrodes micropatterned on top of a glass wafer using standard microfabrication techniques. A microchannel with a single inlet and two outlets, realized in polydimethylsiloxane, is bonded on the glass substrate. The two sets of electrodes slightly protrude into the microchannel. Both of the electrode sets are energized with signals at different frequencies and different operating voltages ensuring that the cancer cells experience positive dielectrophoretic force from one set of the electrodes and negative dielectrophoretic force from the other array. Normal cells experience unequal negative dielectrophoretic forces from opposing sets of electrodes. The resultant dielectrophoretic forces on cancer and normal cells push them to flow towards their designed outlets. Successful isolation of green fluorescent protein-labelled MDA-MB-231 breast cancer cells from regular blood cells, both suspended in a sucrose/dextrose medium, is reported in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Pulse labeling of RNA of mammalian cells.

    PubMed

    Rovera, G; Berman, S; Baserga, R

    1970-04-01

    When cells from a hypotetraploid strain of Ehrlich ascites tumor are exposed to uridine-(3)H either in vivo or in vitro, the amount of radioactivity incorporated into RNA reaches a maximum within ten minutes, after which any further incorporation stops. (3)H-uridine triphosphate disappears from the acid soluble pool within 30 minutes and the findings indicate that the RNA of these cells can be pulse labeled without the use of any antibiotic or the need of a "chase." The stability of the pulse labeled RNA in the presence of pentobarbital (an inhibitor of RNA synthesis) indicates the virtual absence of RNA breakdown. However, actinomycin D, at a dosage of 250 mug/mouse in vivo and 10 mug/ml in vitro produces breakdown of labeled RNA, thus confirming earlier observations that the drug is not a suitable tool for RNA kinetics determinations. The pulse-labeled RNA leaves the nucleus slowly and some radioactive RNA is still present in the nuclear fraction after 24 hours. Radioactivity begins to appear in cytoplasmic ribosomal RNA after 20 minutes and continues to increase up to six hours.

  1. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor.

    PubMed

    Adams, André A; Okagbare, Paul I; Feng, Juan; Hupert, Matuesz L; Patterson, Don; Göttert, Jost; McCarley, Robin L; Nikitopoulos, Dimitris; Murphy, Michael C; Soper, Steven A

    2008-07-09

    A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.

  2. Highly Efficient Circulating Tumor Cell Isolation from Whole Blood and Label-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor

    PubMed Central

    Adams, André A.; Okagbare, Paul I.; Feng, Juan; Hupert, Matuesz L.; Patterson, Don; Göttert, Jost; McCarley, Robin L.; Nikitopoulos, Dimitris; Murphy, Michael C.; Soper, Steven A.

    2008-01-01

    A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 μm width × 150 μm depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. PMID:18557614

  3. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    PubMed

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  4. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    PubMed

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  5. Technetium-99m labeled red blood cells in the evaluation of hemangiosarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, U.A.; Jhingran, S.G.

    Imaging with Tc-99m labeled red blood cells (RBC) is increasingly being used in the detection of acute gastro-intestinal bleeding, especially in patients with intermittent bleeding. A patient is presented in whom the labeled RBC scan was helpful in the incidental discovery of a previously unsuspected probable angiosarcoma of the right femur and adjacent soft tissues of the right hip due to the blood pool or blush effect of the labeled cells. The labeled RBC scan also identified extravasation due to active gastrointestinal bleeding from a previously unknown angiosarcoma of the ascending colon. Thus, the Tc-99m labeled RBC scan was usefulmore » in simultaneously detecting extravasation and blood pool effect at two remote tumor sites in the same patient.« less

  6. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    PubMed Central

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  7. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy.

    PubMed

    Song, Xuejiao; Liang, Chao; Feng, Liangzhu; Yang, Kai; Liu, Zhuang

    2017-08-22

    Combining different therapeutic functions within single tumor-targeted nanoscale delivery systems is promising to overcome the limitations of conventional cancer therapies. Herein, transferrin that recognizes transferrin receptors up-regulated on tumor cells is pre-labeled with iodine-131 ( 131 I) and then utilized as the stabilizer in the fabrication of polypyrrole (PPy) nanoparticles. The obtained transferrin-capped PPy@Tf- 131 I nanoparticles could be used for tumor-targeted radioisotope therapy (RIT) and photothermal therapy (PTT), by employing beta-emission from 131 I and the intrinsic high near-infrared (NIR) absorbance of PPy, respectively. Owing to the transferrin-mediated tumor targeting, PPy@Tf- 131 I nanoparticles exhibit obviously enhanced in vitro cancer cell binding and in vivo tumor uptake compared to its non-targeting counterpart. The combined RIT and PTT based on PPy@Tf- 131 I nanoparticles is then conducted, achieving a remarkable synergistic therapeutic effect. This work thus demonstrates a rather simple one-step approach to fabricate tumor-targeting nanoparticles based on protein-capped conjugated polymers, promising for combination cancer therapy with great efficacy and high safety.

  8. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  9. Imaging Lung Clearance of Radiolabeled Tumor Cells to Study Mice with Normal, Activated or Depleted Natural Killer (NK) Cells

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. V.; Bennett, M.; Constantinescu, A.; Arora, V.; Viguet, M.; Antich, P.; Parkey, R. W.; Mathews, D.; Mason, R. P.; Oz, O. K.

    2003-08-01

    Lung clearance of 51CR and 125I iododeoxyuridine (IUDR) labeled cancer cells assess NK cell activity. It is desirable to develop noninvasive imaging technique to assess NK activity in mice. We labeled target YAC-1 tumor cells with 125I, 111In, 99mTc, or 67Ga and injected I.V. into three groups of BALB/c mice. Animals were treated with medium (group I), 300mg/kg cyclophosmamide (CY) to kill NK cell (group II), or anti-LY49C/1) (ab')2 mAb to augment NK function (group III). Lungs were removed 15 min or 2 h later for tissue counting. Control and treated mice were imaged every 5 min with a scintillating camera for 1 h after 15 min of infusion of the 111In labeled cells. Lung clearance increased after 15 min (lodging: 60-80%) and (2 h retention: 3-7%). Similar results were obtained with all the isotopes studied. Images distinguished the control and treated mice for lung activity. Cells labeled with 111In, 99mTc or 67Ga are cleared similar to those labeled with 51Cr or 125I. NK cell destruction of tumor cells may be assessed by noninvasive imaging method either by SPECT (99mTc, 111In, 67Ga) or by PET (68Ga).

  10. Acoustic separation of circulating tumor cells

    PubMed Central

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I.; Drabick, Joseph J.; El-Deiry, Wafik S.; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-01-01

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state. PMID:25848039

  11. Acoustic separation of circulating tumor cells.

    PubMed

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I; Drabick, Joseph J; El-Deiry, Wafik S; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-04-21

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.

  12. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  13. Reassembly of 89 Zr-Labeled Cancer Cell Membranes into Multicompartment Membrane-Derived Liposomes for PET-Trackable Tumor-Targeted Theranostics.

    PubMed

    Yu, Bo; Goel, Shreya; Ni, Dalong; Ellison, Paul A; Siamof, Cerise M; Jiang, Dawei; Cheng, Liang; Kang, Lei; Yu, Faquan; Liu, Zhuang; Barnhart, Todd E; He, Qianjun; Zhang, Han; Cai, Weibo

    2018-03-01

    Nanoengineering of cell membranes holds great potential to revolutionize tumor-targeted theranostics, owing to their innate biocompatibility and ability to escape from the immune and reticuloendothelial systems. However, tailoring and integrating cell membranes with drug and imaging agents into one versatile nanoparticle are still challenging. Here, multicompartment membrane-derived liposomes (MCLs) are developed by reassembling cancer cell membranes with Tween-80, and are used to conjugate 89 Zr via deferoxamine chelator and load tetrakis(4-carboxyphenyl) porphyrin for in vivo noninvasive quantitative tracing by positron emission tomography imaging and photodynamic therapy (PDT), respectively. Radiolabeled constructs, 89 Zr-Df-MCLs, demonstrate excellent radiochemical stability in vivo, target 4T1 tumors by the enhanced permeability and retention effect, and are retained long-term for efficient and effective PDT while clearing gradually from the reticuloendothelial system via hepatobiliary excretion. Toxicity evaluation confirms that the MCLs do not impose acute or chronic toxicity in intravenously injected mice. Additionally, 89 Zr-labeled MCLs can execute rapid and highly sensitive lymph node mapping, even for deep-seated sentinel lymph nodes. The as-developed cell membrane reassembling route to MCLs could be extended to other cell types, providing a versatile platform for disease theranostics by facilely and efficiently integrating various multifunctional agents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands.

    PubMed

    He, Wei; Kularatne, Sumith A; Kalli, Kimberly R; Prendergast, Franklyn G; Amato, Robert J; Klee, George G; Hartmann, Lynn C; Low, Philip S

    2008-10-15

    Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients. A CTC-enriched fraction was isolated from the peripheral blood of ovarian and prostate cancer patients by an optimized density gradient centrifugation protocol and labeled with the aforementioned fluorescent ligands. CTCs were then quantitated by flow cytometry. CTCs were detected in 18 of 20 ovarian cancer patients (mean 222 CTCs/ml; median 15 CTCs/ml; maximum 3,118 CTCs/ml), whereas CTC numbers in 16 gender-matched normal volunteers were negligible (mean 0.4 CTCs/ml; median 0.3 CTCs/ml; maximum 1.5 CTCs/ml; p < 0.001, chi(2)). CTCs were also detected in 10 of 13 prostate cancer patients (mean 26 CTCs/ml, median 14 CTCs/ml, maximum 94 CTCs/ml) but not in 18 gender-matched healthy donors (mean 0.8 CTCs/ml, median 1, maximum 3 CTC/ml; p < 0.0026, chi(2)). Tumor-specific fluorescent antibodies were much less efficient in quantitating CTCs because of their lower CTC labeling efficiency. Use of tumor-specific fluorescent ligands to label CTCs in peripheral blood can provide a simple, accurate and sensitive method for determining the number of cancer cells circulating in the bloodstream.

  15. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    PubMed

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  16. Comparative assessment of a 99mTc labeled H1299.2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging.

    PubMed

    Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal

    2017-05-01

    Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Alteration of Radiosensitivity of Quiescent Cell Populations in Solid Tumors Irradiated with X‐Rays Twice at Various Intervals

    PubMed Central

    Ono, Koji; Mitsumori, Michihide; Abe, Mitsuyuki

    1993-01-01

    5‐Bromo‐2′‐deoxyuridine (BUdR) was injected into SCC VII or EMT6/KU tumor‐bearing mice intraperitoneally to label all the proliferating tumor cells. First, the mice were irradiated with X‐rays at a dose of 10 Gy, followed by a dose of 0–20 Gy at 0, 12, 24 or 48 h later. During the interval, no BUdR was injected. Immediately after the second irradiation, the tumors were excised and trypsinized. The micronucleus (MN) frequency in cells without BUdR labeling was determined by means of incubation with cytochalasin‐B (a cytokinesis‐blocker) and immunoftuorescence staining for BUdR. When the tumors were not pretreated with BUdR before the first irradiation, the MN frequency in all tumor cells was determined. To determine the labeling indices of SCC VII and EMT6/KU tumors at the time of the second irradiation, each group also included mice that were continuously administered BUdR until just before the second irradiation using mini‐osmotic pumps which had been implanted subcutaneously 5 days before the first irradiation. The MN frequency of all tumor cell populations obtained immediately after the second irradiation decreased in proportion to the increase in interval time. However, in both tumor systems, the MN frequency of unlabeled cell populations, which could be regarded as quiescent cells in the tumors at the time of the first irradiation, was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings support the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. PMID:8276718

  18. Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells

    PubMed Central

    Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.

    2014-01-01

    Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137

  19. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging.

    PubMed

    Ma, Wenhui; Fu, Fanfan; Zhu, Jingyi; Huang, Rui; Zhu, Yizhou; Liu, Zhenwei; Wang, Jing; Conti, Peter S; Shi, Xiangyang; Chen, Kai

    2018-03-29

    We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.

  20. 64Cu-Labeled Repebody Molecules for Imaging of Epidermal Growth Factor Receptor-Expressing Tumors.

    PubMed

    Pyo, Ayoung; Yun, Misun; Kim, Hyeon Sik; Kim, Tae-Yoon; Lee, Joong-Jae; Kim, Jung Young; Lee, Sunwoo; Kwon, Seong Young; Bom, Hee-Seung; Kim, Hak-Sung; Kim, Dong-Yeon; Min, Jung-Joon

    2018-02-01

    The epidermal growth factor receptor (EGFR) is a member of the erbB family of receptors and is overexpressed in many tumor types. A repebody is a newly designed nonantibody protein scaffold for tumor targeting that contains leucine-rich repeat modules. In this study, 3 64 Cu-labeled anti-EGFR repebodies with different chelators were synthesized, and their biologic characteristics were assessed in cultured cells and tumor-bearing mice. Methods: Repebodies were synthesized with the chelators 2-( p -isothiocyanatobenzyl)-1,4,7-triazacyclononane- N,N',N,″- triacetic acid trihydrochloride ([ p -SCN-Bn]-NOTA), 2,2',2″-(10-(2-(2,5-dioxopyrrolidin-1-yloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (DOTA- N -hydroxysuccinimide ester), or 1-( p -isothiocyanatobenzyl)diethylenetriamine pentaacetic acid trihydrochloride ([ p -SCN-Bn]-DTPA) in 1.0 M NaHCO 3 buffer (pH 9.2) for 24 h. Purified NOTA-, DOTA-, and DTPA-conjugated repebody were radiolabeled with 64 Cu in 0.1 M NH 4 OAc buffer (pH 5.5). To compare the EGFR-binding affinities of the repebodies, cellular uptake studies were performed with the human non-small cell lung cancer cell line H1650 (high expression of EGFR) and the human colon adenocarcinoma cell line SW620 (low expression of EGFR). Biodistribution and small-animal PET imaging studies were performed using H1650 tumor-bearing mice. Results: Radiochemical yields of the 64 Cu-labeled repebodies were approximately 70%-80%. Cellular uptake of the NOTA-, DOTA-, and DTPA-repebodies was over 4-fold higher in H1650 cells than in SW620 cells at 1 h. The 3 repebodies had accumulated specifically in H1650 tumor-bearing nude mice by 1 h after intravenous injection and were retained for over 24 h, as measured by the percentage injected dose per gram of tissue (%ID/g). Tumor uptake of all repebodies increased from 1 to 6 h (at 1 h, 6.28, 8.46, and 6.91 %ID/g for NOTA-, DOTA-, and DTPA-repebody, respectively; at 6 h, 9.4, 8.28, and 10.1 %ID

  1. In-vivo NMR studies of deuterium-labeled photosensitizers in mice tumor model

    NASA Astrophysics Data System (ADS)

    Ramaprasad, Subbaraya; Liu, Y. H.; Pandey, R. K.; Shiau, Fuu-Yau; Smith, Kevin M.

    1993-06-01

    Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of cancer. We are using newly synthesized and chemically defined and characterized porphyrin photosensitizers that are specifically labeled with deuterium to perform in vivo NMR studies in a murine tumor model. In vivo magnetic resonance offers the potential for repetitive, safe, noninvasive evaluation of photosensitizers, tumor metabolism, and the effect of PDT on the tumor metabolism. In an effort to monitor noninvasively the photosensitizers in an in vivo tumor model, we are synthesizing several deuterium labeled photosensitizers which absorb red light at or above 630 nm. Development of methods to test these photosensitizers directly in humans is not feasible at this time, since these photosensitizers are new and we do not yet understand the side effects. In addition, we do not understand the potential benefits compared with Photofrin II, the widely used photosensitizer. To perform our in vivo deuterium NMR studies on mouse foot tumors, we have constructed a solenoid coil which operates at 30.7 MHz for the deuterium nucleus. We have been able to detect the deuterium labeled photosensitizer in the tumor after a direct intra-tumor injection. The use of 31P NMR to predict the possible outcome of PDT in these tumors is also discussed.

  2. In vitro labelling and detection of mesenchymal stromal cells: a comparison between magnetic resonance imaging of iron-labelled cells and magnetic resonance spectroscopy of fluorine-labelled cells.

    PubMed

    Rizzo, Stefania; Petrella, Francesco; Zucca, Ileana; Rinaldi, Elena; Barbaglia, Andrea; Padelli, Francesco; Baggi, Fulvio; Spaggiari, Lorenzo; Bellomi, Massimo; Bruzzone, Maria Grazia

    2017-01-01

    Among the various stem cell populations used for cell therapy, adult mesenchymal stromal cells (MSCs) have emerged as a major new cell technology. These cells must be tracked after transplantation to monitor their migration within the body and quantify their accumulation at the target site. This study assessed whether rat bone marrow MSCs can be labelled with superparamagnetic iron oxide (SPIO) nanoparticles and perfluorocarbon (PFC) nanoemulsion formulations without altering cell viability and compared magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) results from iron-labelled and fluorine-labelled MSCs, respectively. Of MSCs, 2 × 10 6 were labelled with Molday ION Rhodamine-B (MIRB) and 2 × 10 6 were labelled with Cell Sense. Cell viability was evaluated by trypan blue exclusion method. Labelled MSCs were divided into four samples containing increasing cell numbers (0.125 × 10 6 , 0.25 × 10 6 , 0.5 × 10 6 , 1 × 10 6 ) and scanned on a 7T MRI: for MIRB-labelled cells, phantoms and cells negative control, T1, T2 and T2* maps were acquired; for Cell Sense labelled cells, phantoms and unlabelled cells, a 19 F non-localised single-pulse MRS sequence was acquired. In total, 86.8% and 83.6% of MIRB-labelled cells and Cell Sense-labelled cells were viable, respectively. MIRB-labelled cells were visible in all samples with different cell numbers; pellets containing 0.5 × 10 6 and 1 × 10 6 of Cell Sense-labelled cells showed a detectable 19 F signal. Our data support the use of both types of contrast material (SPIO and PFC) for MSCs labelling, although further efforts should be dedicated to improve the efficiency of PFC labelling.

  3. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  4. Glioblastoma cells labeled by robust Raman tags for enhancing imaging contrast.

    PubMed

    Huang, Li-Ching; Chang, Yung-Ching; Wu, Yi-Syuan; Sun, Wei-Lun; Liu, Chan-Chuan; Sze, Chun-I; Chen, Shiuan-Yeh

    2018-05-01

    Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

  5. Glioblastoma cells labeled by robust Raman tags for enhancing imaging contrast

    PubMed Central

    Huang, Li-Ching; Chang, Yung-Ching; Wu, Yi-Syuan; Sun, Wei-Lun; Liu, Chan-Chuan; Sze, Chun-I; Chen, Shiuan-Yeh

    2018-01-01

    Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and “broadcasts” stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery. PMID:29760976

  6. Remnant living cells that escape cell loss in late-stage tumors exhibit cancer stem cell-like characteristics

    PubMed Central

    Chen, Y-L; Wang, S-Y; Liu, R-S; Wang, H-E; Chen, J-C; Chiou, S-H; Chang, C A; Lin, L-T; Tan, D T W; Lee, Y-J

    2012-01-01

    A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-𝒟-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo. PMID:23034334

  7. PET Imaging of Tumor-Associated Macrophages with 89Zr-Labeled High-Density Lipoprotein Nanoparticles

    PubMed Central

    Pérez-Medina, Carlos; Tang, Jun; Abdel-Atti, Dalya; Hogstad, Brandon; Merad, Miriam; Fisher, Edward A.; Fayad, Zahi A.; Lewis, Jason S.; Mulder, Willem J.M.; Reiner, Thomas

    2015-01-01

    Tumor-associated macrophages (TAMs) are increasingly investigated in cancer immunology and are considered a promising target for better and tailored treatment of malignant growth. Although TAMs also have high diagnostic and prognostic value, TAM imaging still remains largely unexplored. Here, we describe the development of reconstituted high-density lipoprotein (rHDL)–facilitated TAM PET imaging in a breast cancer model. Methods Radiolabeled rHDL nanoparticles incorporating the long-lived positron-emitting nuclide 89Zr were developed using 2 different approaches. The nanoparticles were composed of phospholipids and apolipoprotein A-I (apoA-I) in a 2.5:1 weight ratio. 89Zr was complexed with deferoxamine (also known as desferrioxamine B, desferoxamine B), conjugated either to a phospholipid or to apoA-I to generate 89Zr-PL-HDL and 89Zr-AI-HDL, respectively. In vivo evaluation was performed in an orthotopic mouse model of breast cancer and included pharmacokinetic analysis, biodistribution studies, and PET imaging. Ex vivo histologic analysis of tumor tissues to assess regional distribution of 89Zr radioactivity was also performed. Fluorescent analogs of the radiolabeled agents were used to determine cell-targeting specificity using flow cytometry. Results The phospholipid- and apoA-I–labeled rHDL were produced at 79% ± 13% (n = 6) and 94% ± 6% (n = 6) radiochemical yield, respectively, with excellent radiochemical purity (>99%). Intravenous administration of both probes resulted in high tumor radioactivity accumulation (16.5 ± 2.8 and 8.6 ± 1.3 percentage injected dose per gram for apoA-I– and phospholipid-labeled rHDL, respectively) at 24 h after injection. Histologic analysis showed good colocalization of radioactivity with TAM-rich areas in tumor sections. Flow cytometry revealed high specificity of rHDL for TAMs, which had the highest uptake per cell (6.8-fold higher than tumor cells for both DiO@Zr-PL-HDL and DiO@Zr-AI-HDL) and accounted for 40.7% and

  8. Nuclear and Fluorescent Labeled PD-1-Liposome-DOX-64Cu/IRDye800CW Allows Improved Breast Tumor Targeted Imaging and Therapy.

    PubMed

    Du, Yang; Liang, Xiaolong; Li, Yuan; Sun, Ting; Jin, Zhengyu; Xue, Huadan; Tian, Jie

    2017-11-06

    The overexpression of programmed cell death-1 (PD-1) in tumors as breast cancer makes it a possible target for cancer imaging and therapy. Advances in molecular imaging, including radionuclide imaging and near-infrared fluorescence (NIRF) imaging, enable the detection of tumors with high sensitivity. In this study, we aim to develop a novel PD-1 antibody targeted positron emission tomography (PET) and NIRF labeled liposome loaded with doxorubicin (DOX) and evaluate its application for in vivo cancer imaging and therapy. IRDye800CW and 64 Cu were conjugated to liposomes with PD-1 antibody labeling, and DOX was inside the liposomes to form theranostic nanoparticles. The 4T1 tumors were successfully visualized with PD-1-Liposome-DOX- 64 Cu/IRDye800CW using NIRF/PET imaging. The bioluminescent imaging (BLI) results showed that tumor growth was significantly inhibited in the PD-1-Liposome-DOX-treated group than the IgG control. Our results highlight the potential of using dual-labeled theranostic PD-1 mAb-targeted Liposome-DOX- 64 Cu/IRDye800CW for the management of breast tumor.

  9. Label-free isolation of a prostate cancer cell among blood cells and the single-cell measurement of drug accumulation using an integrated microfluidic chip.

    PubMed

    Khamenehfar, A; Beischlag, T V; Russell, P J; Ling, M T P; Nelson, C; Li, P C H

    2015-11-01

    Circulating tumor cells (CTCs) are found in the blood of patients with cancer. Although these cells are rare, they can provide useful information for chemotherapy. However, isolation of these rare cells from blood is technically challenging because they are small in numbers. An integrated microfluidic chip, dubbed CTC chip, was designed and fabricated for conducting tumor cell isolation. As CTCs usually show multidrug resistance (MDR), the effect of MDR inhibitors on chemotherapeutic drug accumulation in the isolated single tumor cell is measured. As a model of CTC isolation, human prostate cancer cells were mixed with mouse blood cells and the label-free isolation of the tumor cells was conducted based on cell size difference. The major advantages of the CTC chip are the ability for fast cell isolation, followed by multiple rounds of single-cell measurements, suggesting a potential assay for detecting the drug responses based on the liquid biopsy of cancer patients.

  10. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    NASA Astrophysics Data System (ADS)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  11. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  12. In vivo imaging of tumor vascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  13. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    NASA Astrophysics Data System (ADS)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  14. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    PubMed Central

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  15. A (99m) Tc-tricine-HYNIC-labeled peptide targeting the neurotensin receptor for single-photon imaging in malignant tumors.

    PubMed

    Erfani, Mostafa; Zarrabi Ahrabi, Nakisa; Shafiei, Mohammad; Shirmardi, Seyed Pezhman

    2014-03-01

    In this study, a new neurotensin (NT) analog was labeled with (99m) Tc via HYNIC chelator and tricine as coligand and investigated further. An NT (7-13) analog was prepared, and labeling with (99m) Tc was performed. The internalization rate and biodistribution of radiopeptide were studied in HT-29 cells and nude mice bearing tumor, respectively. Radiolabeling with (99m) Tc was performed at high specific activities (54 MBq/nmol) with an acceptable labeling yield (>95%). In vitro cell line studies showed a specific internalization uptake up to 13.23 ± 0.45% during 4 h which was blocked in the presence of excess cold peptide to 0.83 ± 0.15%. In biodistribution studies, uptake was observed in NT receptor-positive organs so that after 1 h the uptakes in mouse intestine and tumor were 1.23 ± 0.16% ID/g and 1.12 ± 0.11% ID/g, respectively. In animals co-injected with excess cold peptide, reduction uptake in tumor and intestines were 73% (1.10% vs. 0.29% ID/g at 4 h) and 61% (1.22% vs. 0.47% ID/g at 4 h) respectively. Predominant renal excretion pathway with a highest accumulation of activity in bladder was observed for this radiopeptide. This radiolabeled peptide could be a candidate for detection of NT positive tumors. Copyright © 2014 John Wiley & Sons, Ltd.

  16. A microfluidic device for label-free, physical capture of circulating tumor cell-clusters

    PubMed Central

    Sarioglu, A. Fatih; Aceto, Nicola; Kojic, Nikola; Donaldson, Maria C.; Zeinali, Mahnaz; Hamza, Bashar; Engstrom, Amanda; Zhu, Huili; Sundaresan, Tilak K.; Miyamoto, David T.; Luo, Xi; Bardia, Aditya; Wittner, Ben S.; Ramaswamy, Sridhar; Shioda, Toshi; Ting, David T.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet

    2015-01-01

    Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC-clusters). Existing technologies for CTC enrichment are designed primarily to isolate single CTCs, and while CTC-clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here, we developed a microchip technology (Cluster-Chip) specifically designed to capture CTC-clusters independent of tumor-specific markers from unprocessed blood. CTC-clusters are isolated through specialized bifurcating traps under low shear-stress conditions that preserve their integrity and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identify CTC-clusters in 30–40% of patients with metastatic cancers of the breast, prostate and melanoma. RNA sequencing of CTC-clusters confirms their tumor origin and identifies leukocytes within the clusters as tissue-derived macrophages. Together, the development of a device for efficient capture of CTC-clusters will enable detailed characterization of their biological properties and role in cancer metastasis. PMID:25984697

  17. Developments in label-free microfluidic methods for single-cell analysis and sorting.

    PubMed

    Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L

    2018-04-24

    Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.

  18. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles.

    PubMed

    Kalber, Tammy L; Ordidge, Katherine L; Southern, Paul; Loebinger, Michael R; Kyrtatos, Panagiotis G; Pankhurst, Quentin A; Lythgoe, Mark F; Janes, Sam M

    2016-01-01

    Magnetic hyperthermia - a potential cancer treatment in which superparamagnetic iron oxide nanoparticles (SPIONs) are made to resonantly respond to an alternating magnetic field (AMF) and thereby produce heat - is of significant current interest. We have previously shown that mesenchymal stem cells (MSCs) can be labeled with SPIONs with no effect on cell proliferation or survival and that within an hour of systemic administration, they migrate to and integrate into tumors in vivo. Here, we report on some longer term (up to 3 weeks) post-integration characteristics of magnetically labeled human MSCs in an immunocompromized mouse model. We initially assessed how the size and coating of SPIONs dictated the loading capacity and cellular heating of MSCs. Ferucarbotran(®) was the best of those tested, having the best like-for-like heating capability and being the only one to retain that capability after cell internalization. A mouse model was created by subcutaneous flank injection of a combination of 0.5 million Ferucarbotran-loaded MSCs and 1.0 million OVCAR-3 ovarian tumor cells. After 2 weeks, the tumors reached ~100 µL in volume and then entered a rapid growth phase over the third week to reach ~300 µL. In the control mice that received no AMF treatment, magnetic resonance imaging (MRI) data showed that the labeled MSCs were both incorporated into and retained within the tumors over the entire 3-week period. In the AMF-treated mice, heat increases of ~4°C were observed during the first application, after which MRI indicated a loss of negative contrast, suggesting that the MSCs had died and been cleared from the tumor. This post-AMF removal of cells was confirmed by histological examination and also by a reduced level of subsequent magnetic heating effect. Despite this evidence for an AMF-elicited response in the SPION-loaded MSCs, and in contrast to previous reports on tumor remission in immunocompetent mouse models, in this case, no significant differences were

  19. Biophysical isolation and identification of circulating tumor cells.

    PubMed

    Che, James; Yu, Victor; Garon, Edward B; Goldman, Jonathan W; Di Carlo, Dino

    2017-04-11

    Isolation and enumeration of circulating tumor cells (CTCs) from blood is important for determining patient prognosis and monitoring treatment. Methods based on affinity to cell surface markers have been applied to both purify (via immunoseparation) and identify (via immunofluorescence) CTCs. However, variability of cell biomarker expression associated with tumor heterogeneity and evolution and cross-reactivity of antibody probes have long complicated CTC enrichment and immunostaining. Here, we report a truly label-free high-throughput microfluidic approach to isolate, enumerate, and characterize the biophysical properties of CTCs using an integrated microfluidic device. Vortex-mediated deformability cytometry (VDC) consists of an initial vortex region which enriches large CTCs, followed by release into a downstream hydrodynamic stretching region which deforms the cells. Visualization and quantification of cell deformation with a high-speed camera revealed populations of large (>15 μm diameter) and deformable (aspect ratio >1.2) CTCs from 16 stage IV lung cancer samples, that are clearly distinguished by increased deformability compared to contaminating blood cells and rare large cells isolated from healthy patients. The VDC technology demonstrated a comparable positive detection rate of putative CTCs above healthy baseline (93.8%) with respect to standard immunofluorescence (71.4%). Automation allows full enumeration of CTCs from a 10 mL vial of blood within <1 h after sample acquisition, compared with 4+ hours with standard approaches. Moreover, cells are released into any collection vessel for further downstream analysis. VDC shows potential for accurate CTC enumeration without labels and confirms the unique highly deformable biophysical properties of large CTCs circulating in blood.

  20. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA delivery.

    PubMed

    Chen, Gang; Zhu, Jun-Yi; Zhang, Zhi-Ling; Zhang, Wei; Ren, Jian-Gang; Wu, Min; Hong, Zheng-Yuan; Lv, Cheng; Pang, Dai-Wen; Zhao, Yi-Fang

    2015-01-12

    Cell-derived microparticles (MPs) have been recently recognized as critical intercellular information conveyors. However, further understanding of their biological behavior and potential application has been hampered by the limitations of current labeling techniques. Herein, a universal donor-cell-assisted membrane biotinylation strategy was proposed for labeling MPs by skillfully utilizing the natural membrane phospholipid exchange of their donor cells. This innovative strategy conveniently led to specific, efficient, reproducible, and biocompatible quantum dot (QD) labeling of MPs, thereby reliably conferring valuable traceability on MPs. By further loading with small interference RNA, QD-labeled MPs that had inherent cell-targeting and biomolecule-conveying ability were successfully employed for combined bioimaging and tumor-targeted therapy. This study provides the first reliable and biofriendly strategy for transforming biogenic MPs into functionalized nanovectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biodistribution, pharmacokinetics, and nuclear imaging studies of 111In-labeled rGel/BLyS fusion toxin in SCID mice bearing B cell lymphoma.

    PubMed

    Wen, Xiaoxia; Lyu, Mi-Ae; Zhang, Rui; Lu, Wei; Huang, Qian; Liang, Dong; Rosenblum, Michael G; Li, Chun

    2011-08-01

    We examined the biodistribution and pharmacokinetics of (111)In-labeled rGel/BLyS, a gelonin toxin (rGel)-B lymphocyte stimulator (BLyS) fusion protein. rGel/BLyS was labeled with In-111 through DTPA with a labeling efficiency >95%. Biodistribution/imaging studies were obtained in severe-combined immunodeficiency mice bearing diffuse large B cell lymphoma OCI-Ly10. Pharmacokinetic studies were performed in BALB/c mice. In vitro, DTPA-conjugated rGel/BLyS displayed selective cytotoxicity against OCI-Ly10 cells and mantle cell lymphoma JeKo cells. In vivo, rGel/BLyS exhibited a tri-exponential disposition with a rapid initial mean distribution followed by an extensive mean distribution and a long terminal elimination phase. At 48 h after injection, uptake of the radiotracer in tumors was 1.25 %ID/g, with a tumor-to-blood ratio of 13. Tumors were clearly visualized at 24-72 h post-injection. Micro-SPECT-CT images and ex vivo analyses confirmed the accumulation of rGel/BLyS in OCI-Ly10 tumors. (111)In-DTPA-rGel/BLyS are distributed to B cell tumors and induce apoptosis in tumors. Preclinical antitumor studies using rGel/BLyS should use a twice-per-week treatment schedule.

  2. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics.

    PubMed

    Del Ben, Fabio; Turetta, Matteo; Celetti, Giorgia; Piruska, Aigars; Bulfoni, Michela; Cesselli, Daniela; Huck, Wilhelm T S; Scoles, Giacinto

    2016-07-18

    The number of circulating tumor cells (CTCs) in blood is strongly correlated with the progress of metastatic cancer. Current methods to detect CTCs are based on immunostaining or discrimination of physical properties. Herein, a label-free method is presented exploiting the abnormal metabolic behavior of cancer cells. A single-cell analysis technique is used to measure the secretion of acid from individual living tumor cells compartmentalized in microfluidically prepared, monodisperse, picoliter (pL) droplets. As few as 10 tumor cells can be detected in a background of 200 000 white blood cells and proof-of-concept data is shown on the detection of CTCs in the blood of metastatic patients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and evaluation of Tc-99m and fluorescence-labeled elastin-derived peptide, VAPG for multimodal tumor imaging in murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2017-12-01

    We developed a Tc-99m and fluorescence-labeled peptide, Tc-99m TAMRA-GHEG-ECG-VAPG to target tumor cells and evaluated the diagnostic performance as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-VAPG was synthesized by using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-VAPG with Tc-99m was done by using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with SW620 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry by using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-VAPG complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-VAPG determined by saturation binding was 16.8 ± 3.6 nM. Confocal microscopy images of SW620 cells incubated with TAMRA-GHEG-ECG-VAPG showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of VAPG. Specific uptake of Tc-99m TAMRA-GHEG-ECG-VAPG was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumor cells. Tc-99m TAMRA-GHEG-ECG-VAPG has potential as a dual-modality tumor imaging agent. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  5. Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics

    PubMed Central

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666

  6. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics.

    PubMed

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.

  7. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    PubMed

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-13

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Circulating tumor cells in patients with testicular germ cell tumors.

    PubMed

    Nastały, Paulina; Ruf, Christian; Becker, Pascal; Bednarz-Knoll, Natalia; Stoupiec, Małgorzata; Kavsur, Refik; Isbarn, Hendrik; Matthies, Cord; Wagner, Walter; Höppner, Dirk; Fisch, Margit; Bokemeyer, Carsten; Ahyai, Sascha; Honecker, Friedemann; Riethdorf, Sabine; Pantel, Klaus

    2014-07-15

    Germ cell tumors (GCTs) represent the most frequent malignancies among young men, but little is known about circulating tumor cells (CTCs) in these tumors. Considering their heterogeneity, CTCs were investigated using two independent assays targeting germ cell tumor and epithelial cell-specific markers, and results were correlated with disease stage, histology, and serum tumor markers. CTCs were enriched from peripheral blood (n = 143 patients) and testicular vein blood (TVB, n = 19 patients) using Ficoll density gradient centrifugation. For CTC detection, a combination of germ cell tumor (anti-SALL4, anti-OCT3/4) and epithelial cell-specific (anti-keratin, anti-EpCAM) antibodies was used. In parallel, 122 corresponding peripheral blood samples were analyzed using the CellSearch system. In total, CTCs were detected in 25 of 143 (17.5%) peripheral blood samples, whereas only 11.5% of patients were CTC-positive when considering exclusively the CellSearch assay. The presence of CTCs in peripheral blood correlated with clinical stage (P < 0.001) with 41% of CTC positivity in patients with metastasized tumors and 100% in patients with relapsed and chemotherapy-refractory disease. Histologically, CTC-positive patients suffered more frequently from nonseminomatous primary tumors (P < 0.001), with higher percentage of yolk sac (P < 0.001) and teratoma (P = 0.004) components. Furthermore, CTC detection was associated with elevated serum levels of α-fetoprotein (AFP; P = 0.025), β-human chorionic gonadotropin (βHCG; P = 0.002), and lactate dehydrogenase (LDH; P = 0.002). Incidence and numbers of CTCs in TVB were much higher than in peripheral blood. The inclusion of germ cell tumor-specific markers improves CTC detection in GCTs. CTCs occur frequently in patients with more aggressive disease, and there is a gradient of CTCs with decreasing numbers from the tumor-draining vein to the periphery. ©2014 American Association for Cancer Research.

  9. Practical cell labeling with magnetite cationic liposomes for cell manipulation.

    PubMed

    Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki

    2010-07-01

    Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.

  10. Enhanced In Vivo Tumor Detection by Active Tumor Cell Targeting Using Multiple Tumor Receptor-Binding Peptides Presented on Genetically Engineered Human Ferritin Nanoparticles.

    PubMed

    Kwon, Koo Chul; Ko, Ho Kyung; Lee, Jiyun; Lee, Eun Jung; Kim, Kwangmeyung; Lee, Jeewon

    2016-08-01

    Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    PubMed

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on

  12. Robust and brilliant Raman tags based on core-satellite assemblies for brain tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Ching; Huang, Li-Ching; Sun, Wei-Lun; Chuang, Shih Yi; Lin, Tien-Hsin; Wu, Yi-Syuan; Sze, Chun-I.; Chen, Shiuan-Yeh

    2018-02-01

    GBM (Glioblastoma Multiforme), a fatal brain tumor, is highly infiltrative and difficult to be completely removed by the surgery. In this work, the Raman tags based on the plasmonic core-satellite assemblies with 1 nm internal gap accompanied by extremely high gap field have been fabricated and applied to GBM cell labeling. The brightness of the Raman tags is comparable to the fluorophores. The GBM cells with overexpression of EGFR are labeled with these Raman tags and can be distinguished from the normal cells through Raman imaging.

  13. Interruption of the Sequential Release of Small and Large Molecules from Tumor Cells by Low Temperature During Cytolysis Mediated by Immune T-Cells or Complement

    PubMed Central

    Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj

    1974-01-01

    Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327

  14. Benchtop Technologies for Circulating Tumor Cells Separation Based on Biophysical Properties

    PubMed Central

    Low, Wan Shi; Wan Abas, Wan Abu Bakar

    2015-01-01

    Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies. PMID:25977918

  15. Benchtop technologies for circulating tumor cells separation based on biophysical properties.

    PubMed

    Low, Wan Shi; Wan Abas, Wan Abu Bakar

    2015-01-01

    Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.

  16. The Nephrologist’s Tumor: Basic Biology and Management of Renal Cell Carcinoma

    PubMed Central

    Hu, Susie L.; Chang, Anthony; Perazella, Mark A.; Okusa, Mark D.; Jaimes, Edgar A.

    2016-01-01

    Kidney cancer, or renal cell carcinoma (RCC), is a disease of increasing incidence that is commonly seen in the general practice of nephrology. However, RCC is under-recognized by the nephrology community, such that its presence in curricula and research by this group is lacking. In the most common form of RCC, clear cell renal cell carcinoma (ccRCC), inactivation of the von Hippel–Lindau tumor suppressor is nearly universal; thus, the biology of ccRCC is characterized by activation of hypoxia-relevant pathways that lead to the associated paraneoplastic syndromes. Therefore, RCC is labeled the internist’s tumor. In light of this characterization and multiple other metabolic abnormalities recently associated with ccRCC, it can now be viewed as a metabolic disease. In this review, we discuss the basic biology, pathology, and approaches for treatment of RCC. It is important to distinguish between kidney confinement and distant spread of RCC, because this difference affects diagnostic and therapeutic approaches and patient survival, and it is important to recognize the key interplay between RCC, RCC therapy, and CKD. Better understanding of all aspects of this disease will lead to optimal patient care and more recognition of an increasingly prevalent nephrologic disease, which we now appropriately label the nephrologist’s tumor. PMID:26961346

  17. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.

    PubMed

    Warkiani, Majid Ebrahimi; Guan, Guofeng; Luan, Khoo Bee; Lee, Wong Cheng; Bhagat, Ali Asgar S; Chaudhuri, Parthiv Kant; Tan, Daniel Shao-Weng; Lim, Wan Teck; Lee, Soo Chin; Chen, Peter C Y; Lim, Chwee Teck; Han, Jongyoon

    2014-01-07

    The enumeration and characterization of circulating tumor cells (CTCs), found in the peripheral blood of cancer patients, provide a potentially accessible source for cancer diagnosis and prognosis. This work reports on a novel spiral microfluidic device with a trapezoidal cross-section for ultra-fast, label-free enrichment of CTCs from clinically relevant blood volumes. The technique utilizes the inherent Dean vortex flows present in curvilinear microchannels under continuous flow, along with inertial lift forces which focus larger CTCs against the inner wall. Using a trapezoidal cross-section as opposed to a traditional rectangular cross-section, the position of the Dean vortex core can be altered to achieve separation. Smaller hematologic components are trapped in the Dean vortices skewed towards the outer channel walls and eventually removed at the outer outlet, while the larger CTCs equilibrate near the inner channel wall and are collected from the inner outlet. By using a single spiral microchannel with one inlet and two outlets, we have successfully isolated and recovered more than 80% of the tested cancer cell line cells (MCF-7, T24 and MDA-MB-231) spiked in 7.5 mL of blood within 8 min with extremely high purity (400-680 WBCs mL(-1); ~4 log depletion of WBCs). Putative CTCs were detected and isolated from 100% of the patient samples (n = 10) with advanced stage metastatic breast and lung cancer using standard biomarkers (CK, CD45 and DAPI) with the frequencies ranging from 3-125 CTCs mL(-1). We expect this simple and elegant approach can surmount the shortcomings of traditional affinity-based CTC isolation techniques as well as enable fundamental studies on CTCs to guide treatment and enhance patient care.

  18. Differential arrest and adhesion of tumor cells and microbeads in the microvasculature

    PubMed Central

    Guo, Peng; Cai, Bin; Lei, Ming; Liu, Yang

    2013-01-01

    To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93% of rigid beads were arrested either at arteriole–capillary intersections or in capillaries. Only 3% were at the capillary–postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule–postcapillary venule intersections and in postcapillary venules. Only 12% of tumor cells were arrested at the arteriole–capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a χ2 test (p < 0.001). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis. PMID:23880911

  19. Differential arrest and adhesion of tumor cells and microbeads in the microvasculature.

    PubMed

    Guo, Peng; Cai, Bin; Lei, Ming; Liu, Yang; Fu, Bingmei M

    2014-06-01

    To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93% of rigid beads were arrested either at arteriole-capillary intersections or in capillaries. Only 3% were at the capillary-postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule-postcapillary venule intersections and in postcapillary venules. Only 12% of tumor cells were arrested at the arteriole-capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a χ(2) test (p < 0.001). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis.

  20. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  1. Size-based separation methods of circulating tumor cells.

    PubMed

    Hao, Si-Jie; Wan, Yuan; Xia, Yi-Qiu; Zou, Xin; Zheng, Si-Yang

    2018-02-01

    Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. Compared to other "liquid biopsy" portfolios such as exosome, circulating tumor DNA/RNA (ctDNA/RNA), CTCs have incomparable advantages in analyses of transcriptomics, proteomics, and signal colocalization. Hence, CTCs hold the key to understanding the biology of metastasis and play a vital role in cancer diagnosis, treatment monitoring, and prognosis. Size-based enrichment features are prominent in CTC isolation. It is a label-free, simple and fast method. Enriched CTCs remain unmodified and viable for a wide range of subsequent analyses. In this review, we comprehensively summarize the differences of size and deformability between CTCs and blood cells, which would facilitate the development of technologies of size-based CTC isolation. Then we review representative size-/deformability-based technologies available for CTC isolation and highlight the recent achievements in molecular analysis of isolated CTCs. To wrap up, we discuss the substantial challenges facing the field, and elaborate on prospects. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams.

    PubMed

    Masunaga, Shin-Ichiro; Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Sakurai, Yoshinori; Tanaka, Hiroki; Tano, Keizo; Sanada, Yu; Suzuki, Minoru; Maruhashi, Akira; Ono, Koji

    2015-08-01

    The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon-ion beam irradiation. With RDRI

  3. The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams

    PubMed Central

    Masunaga, Shin-ichiro; Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Sakurai, Yoshinori; Tanaka, Hiroki; Tano, Keizo; Sanada, Yu; Suzuki, Minoru; Maruhashi, Akira; Ono, Koji

    2015-01-01

    Background The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. Methods Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2’-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. Results The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon

  4. Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy.

    PubMed

    Wang, Jidong; Lu, Wenjing; Tang, Chuanhao; Liu, Yi; Sun, Jiashu; Mu, Xuan; Zhang, Lin; Dai, Bo; Li, Xiaoyan; Zhuo, Hailong; Jiang, Xingyu

    2015-12-01

    We develop an inertial-based microfluidic cell sorter combined with an integrated membrane filter, allowing for size-based, label-free, and high-efficiency separation and enrichment of circulating tumor cells (CTCs) in whole blood. The cell sorter is composed of a double spiral microchannel that hydrodynamically focuses and separates large CTCs from small blood cells. The focused CTCs with the equilibrium position around the midline of microchannel are further captured and enriched by a membrane filter (pore size of 8 μm) attached at the middle outlet. This integrated microfluidic device can process 1 mL of whole blood containing spiked tumor cells (A549, human lung adenocarcinoma epithelial cell line) within 15 min, with the capture efficiency of 74.4% at the concentration as low as tens of A549 cells per mL of whole blood. This microfluidic cell sorter is further adopted for isolation of CTCs from peripheral blood samples of patients with metastatic lung cancer. The immunostaining and CK-19 mRNA detection are applied for identification of captured CTCs, showing that our method can detect 90% of metastatic lung cancer patients before therapy, whereas the commercially used system can only detect 40% of the same patients. We also use the expression of CK-19 mRNA from captured CTCs as an indicator for monitoring the therapeutic efficiency, which correlates well with X-ray computed tomography (CT) assessment of the disease.

  5. Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen

    Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body.more » Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.« less

  6. In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the La autoantigen.

    PubMed

    Al-Ejeh, Fares; Darby, Jocelyn M; Pensa, Katherine; Diener, Kerrilyn R; Hayball, John D; Brown, Michael P

    2007-09-15

    To investigate the potential of the La-specific monoclonal antibody (mAb) 3B9 as an in vivo tumor-targeting agent. The murine EL4 lymphoma cell line was used for in vitro studies and the EL4 model in which apoptosis was induced with cyclophosphamide and etoposide was used for in vivo studies. In vitro studies compared 3B9 binding in the EL4 cell with that in its counterpart primary cell type of the thymocyte. For in vivo studies, 3B9 was intrinsically or extrinsically labeled with carbon-14 or 1,4,7,10-tetra-azacylododecane-N,N',N'',N''''-tetraacetic acid-indium-111, respectively, and biodistribution of the radiotracers was investigated in EL4 tumor-bearing mice, which were treated or not with chemotherapy. La-specific 3B9 mAb bound EL4 cells rather than thymocytes, and binding was detergent resistant. 3B9 binding to dead EL4 cells in vitro was specific, rapid, and saturable. Significantly, more 3B9 bound dead EL4 tumor explant cells after host mice were treated with chemotherapy, which suggested that DNA damage induced 3B9 binding. Tumor binding of 3B9 in vivo was antigen specific and increased significantly after chemotherapy. Tumor accumulation of 3B9 peaked at approximately 50% of the injected dose per gram of tumor 72 h after chemotherapy and correlated with increased tumor cell death. Tumor/organ ratios of 3B9 biodistribution, which included the tumor/blood ratio, exceeded unity 48 or more hours after chemotherapy. La-specific mAb selectively targeted dead tumor cells in vivo, and targeting was augmented by cytotoxic chemotherapy. This novel cell death radioligand may be useful both for radioimmunoscintigraphy and radioimmunotherapy.

  7. GPER-targeted, 99mTc-labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding

    PubMed Central

    Nayak, Tapan K.; Ramesh, Chinnasamy; Hathaway, Helen J.; Norenberg, Jeffrey P.; Arterburn, Jeffrey B.; Prossnitz, Eric R.

    2014-01-01

    Our understanding of estrogen (E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER1/GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial and ovarian cancers, establishing the importance of non-invasive methods to evaluate GPER expression in vivo. Herein, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor and for GPER visualization in whole animals. A series of 99mTc(I)-labeled non-steroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10–30 nM range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1 %ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, mammary tissue) as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/ image-guided drug delivery. PMID:25030373

  8. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line.

    PubMed

    Dolgova, Evgeniya V; Potter, Ekaterina A; Proskurina, Anastasiya S; Minkevich, Alexandra M; Chernych, Elena R; Ostanin, Alexandr A; Efremov, Yaroslav R; Bayborodin, Sergey I; Nikolin, Valeriy P; Popova, Nelly A; Kolchanov, Nikolay A; Bogachev, Sergey S

    2016-05-25

    Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 μg DNA/10(6) cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340-2600 copies of intact plasmid material, or up to 3.097 ± 0.044×10(6) plasmid copies (intact or not), as detected by quantitative PCR. The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of

  9. Proteolysis during Tumor Cell Extravasation In Vitro: Metalloproteinase Involvement across Tumor Cell Types

    PubMed Central

    Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama

    2013-01-01

    To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929

  10. Brachytherapy with Intratumoral Injections of Radiometal-Labeled Polymers That Thermoresponsively Self-Aggregate in Tumor Tissues.

    PubMed

    Sano, Kohei; Kanada, Yuko; Kanazaki, Kengo; Ding, Ning; Ono, Masahiro; Saji, Hideo

    2017-09-01

    Brachytherapy is a type of radiotherapy wherein titanium capsules containing therapeutic radioisotopes are implanted within tumor tissues, enabling high-dose radioirradiation to tumor tissues around the seeds. Although marked therapeutic effects have been demonstrated, brachytherapy needs a complicated implantation technique under general anesthesia and the seeds could migrate to other organs. The aim of this study was to establish a novel brachytherapy using biocompatible, injectable thermoresponsive polymers (polyoxazoline [POZ]) labeled with 90 Y, which can self-aggregate above a specific transition temperature (Tt), resulting in long-term intratumoral retention of radioactivity and therapeutic effect. Therefore, we evaluated the tumor retention of radiolabeled POZ derivatives and their therapeutic effects. Methods: Using oxazoline derivatives with ethyl (Et), isopropyl (Isp), and propyl (Pr) side chains, we synthesized EtPOZ, IspPOZ, Isp-PrPOZ (heteropolymer), and PrPOZ and measured their characteristic Tts. The intratumoral retention of 111 In-labeled POZ was evaluated until 7 d after injection in nude mice bearing PC-3 human prostate cancer. The intratumoral localization of 111 In-labeled POZ derivatives was investigated by an autoradiographic study. Furthermore, a therapeutic study using 90 Y-labeled Isp-PrPOZ was performed, and tumor growth and survival rate were evaluated. Results: The Tts of EtPOZ, IspPOZ, Isp-PrPOZ, and PrPOZ (∼20 kDa) were greater than 70°C, 34°C, 25°C, and 19°C, respectively. In the intratumoral injection study, Isp-PrPOZ and PrPOZ (2,000 μM) with Tts lower than tumor temperature (33.5°C under anesthesia) showed a significantly higher retention of radioactivity at 1 d after injection (73.6% and 73.9%, respectively) than EtPOZ (5.6%) and IspPOZ (15.8%). Even at low injected dose (100 μM), Isp-PrPOZ exhibited high retention (68.3% at 1 d). The high level of radioactivity of Isp-PrPOZ was retained in the tumor 7 d after injection

  11. Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells.

    PubMed

    Dhar, Manjima; Pao, Edward; Renier, Corinne; Go, Derek E; Che, James; Montoya, Rosita; Conrad, Rachel; Matsumoto, Melissa; Heirich, Kyra; Triboulet, Melanie; Rao, Jianyu; Jeffrey, Stefanie S; Garon, Edward B; Goldman, Jonathan; Rao, Nagesh P; Kulkarni, Rajan; Sollier-Christen, Elodie; Di Carlo, Dino

    2016-10-14

    Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60-100% for cytology, and 80% for immunostaining based enumeration.

  12. Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells

    PubMed Central

    Dhar, Manjima; Pao, Edward; Renier, Corinne; Go, Derek E.; Che, James; Montoya, Rosita; Conrad, Rachel; Matsumoto, Melissa; Heirich, Kyra; Triboulet, Melanie; Rao, Jianyu; Jeffrey, Stefanie S.; Garon, Edward B.; Goldman, Jonathan; Rao, Nagesh P.; Kulkarni, Rajan; Sollier-Christen, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60–100% for cytology, and 80% for immunostaining based enumeration. PMID:27739521

  13. Development of a (99m)Tc-labeled lactam bridge-cyclized alpha-MSH derivative peptide as a possible single photon imaging agent for melanoma tumors.

    PubMed

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad

    2015-10-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.

  14. Immunohistochemical expression of E-cadherin does not distinguish canine cutaneous histiocytoma from other canine round cell tumors.

    PubMed

    Ramos-Vara, J A; Miller, M A

    2011-05-01

    Immunohistochemistry for E-cadherin (ECAD) has been used to distinguish canine cutaneous histiocytoma from other leukocytic neoplasms ("round cell tumors"). To determine the specificity of this test, 5 types of canine cutaneous round cell tumors were evaluated for immunohistochemical expression of ECAD. Tumors of all 5 types had variable cytoplasmic, plasma membrane, and/or paranuclear ECAD expression: All 13 cutaneous histiocytomas were ECAD+; all but 1 of 14 mast cell tumors expressed ECAD; 10 of 12 epitheliotropic lymphomas reacted with E-cadherin antibody; of 72 plasmacytomas, 54 were ECAD+; and 5 of 5 histiocytic sarcomas were positive. Conclusions based on these results include the following: First, immunoreactivity for ECAD is not limited to leukocytes of cutaneous histiocytoma; second, antibody to ECAD also labels neoplastic cells in most mast cell tumors, plasmacytomas, cutaneous histiocytic sarcomas, and epitheliotropic lymphomas; third, although most histiocytomas have membranous ECAD expression, the immunoreactivity varies among round cell tumors and is frequently concurrent in different cellular compartments; fourth, the distinctively paranuclear ECAD expression pattern in epitheliotropic lymphomas might distinguish them from other round cell tumors; and, fifth, ECAD should be used with other markers (eg, MUM1 for plasmacytomas, KIT for mast cell tumors, CD3 and CD79a for lymphomas) to distinguish among canine round cell tumors.

  15. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions.

    PubMed

    de Souza, Ana Luiza Ribeiro; Marra, Kayla; Gunn, Jason; Samkoe, Kimberley S; Hoopes, P Jack; Feldwisch, Joachim; Paulsen, Keith D; Pogue, Brian W

    2017-02-01

    Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3-4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1-48 h) and varying injection doses from 25 to 122 μg/kg (from human protein microdose equivalent to five times microdose levels). The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. These results suggest

  16. Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood.

    PubMed

    Ran, Ran; Li, Longyun; Wang, Mengzhao; Wang, Shulan; Zheng, Zhi; Lin, Peter Ping

    2013-09-01

    A minimally invasive and repeatable approach for real-time epidermal growth factor receptor (EGFR) mutation surveillance would be highly beneficial for individualized therapy of late stage lung cancer patients whose surgical specimens are often not available. We aim to develop a viable method to detect EGFR mutations in single circulating tumor cells (CTCs). Using a model CTC system of spiked tumor cells in whole blood, we evaluated EGFR mutation determination in single tumor cells enriched from blood. We used magnetic beads labeled with antibody against leukocyte surface antigens to deplete leukocytes and enrich native CTCs independent of epithelial marker expression level. We then used laser cell microdissection (LCM) to isolate individual CTCs, followed by whole-genome amplification of the DNA for exon 19 microdeletion, L858R and T790M mutation detection by PCR sequencing. EGFR mutations were successfully measured in individual spiked tumor cells enriched from 7.5 ml whole blood. Whole-genome amplification provided sufficient DNA for mutation determination at multiple sites. Ninety-five percent of the single CTCs microdissected by LCM (19/20) yielded PCR amplicons for at least one of the three mutation sites. The amplification success rates were 55 % (11/20) for exon 19 deletion, 45 % (9/20) for T790M, and 85 % (17/20) for L858R. Sequencing of the amplicons showed allele dropout in the amplification reactions, but mutations were correctly identified in 80 % of the amplicons. EGFR mutation determination from single captured tumor cells from blood is feasible with the approach described here. However, to overcome allele dropout and to obtain reliable information about the tumor's EGFR status, multiple individual tumor cells should be assayed.

  17. Sertoli-Leydig cell tumor

    MedlinePlus

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  18. Growth fraction in non-small cell lung cancer estimated by proliferating cell nuclear antigen and comparison with Ki-67 labeling and DNA flow cytometry data.

    PubMed Central

    Fontanini, G.; Pingitore, R.; Bigini, D.; Vignati, S.; Pepe, S.; Ruggiero, A.; Macchiarini, P.

    1992-01-01

    Results generated by the immunohistochemical staining with PC10, a new monoclonal antibody recognizing PCNA (a nuclear protein associated with cell proliferation) in formalin-fixed and paraffin-embedded tissue were compared with those of Ki-67 labeling and DNA flow cytometry in 47 consecutive non-small cell lung cancer (NSCLC). PCNA reactivity was observed in all samples and confined to the nuclei of cancer cells. Its frequency ranged from 0 to 80% (37.7 +/- 23.6) and larger sized, early-staged and DNA aneuploid tumors expressed a significant higher number of PCNA-reactive cells. The PCNA and Ki-67 labeling rates were closely correlated (r = 0.383, P = 0.009). By flow cytometry, we observed a good correlation among PCNA labeling and S-phase fraction (r = 0.422, P = .0093) and G1 phase (r = 0.303, P = .051) of the cell cycle. Results indicate that PCNA labeling with PC10 is a simple method for assessing the proliferative activity in formalin-fixed, paraffin-embedded tissue of NSCLC and correlates well with Ki-67 labeling and S-phase fraction of the cell cycle. Images Figure 2 PMID:1361306

  19. Synthesis and evaluation of novel Tc-99m labeled NGR-containing hexapeptides as tumor imaging agents.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2015-02-01

    Asparagine-glycine-arginine (NGR)-containing peptides targeting aminopeptidase N (APN)/CD13 can be an excellent candidate for targeting ligands in molecular tumor imaging. In this study, we developed two NGR-containing hexapeptides, and evaluated the diagnostic performance of Tc-99m labeled hexapeptides as molecular imaging agents in an HT-1080 fibrosarcoma-bearing murine model. Peptides were synthesized using Fmoc solid-phase peptide synthesis. Radiochemical purity of Tc-99m was evaluated using instant thin-layer chromatography. The uptake of two NGR-containing hexapeptides within HT-1080 cells was evaluated in vitro. In HT-1080 fibrosarcoma tumor-bearing mice, gamma images were acquired. A biodistribution study was performed to calculate percentage of the injected dose per gram of tissue (%ID/g). Two hexapeptides, glutamic acid-cysteine-glycine (ECG)-NGR and NGR-ECG were successfully synthesized. After radiolabeling procedures with Tc-99m, the complexes Tc-99m hexapeptides were prepared in high yield. The uptake of Tc-99m ECG-NGR within the tumor cells had been assured by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-NGR was accumulated substantially in the subcutaneously engrafted tumor. However, Tc-99m NGR-ECG was accumulated minimally in the tumor. Two NGR-containing hexapeptides, ECG-NGR and NGR-ECG were developed as molecular imaging agents to target APN/CD13 in HT-1080 fibrosarcoma. Tc-99m ECG-NGR showed a significant uptake in the tumor, and it is a good candidate for tumor imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  20. A novel Tc-99m and fluorescence-labeled arginine-arginine-leucine-containing peptide as a multimodal tumor imaging agent in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung

    2018-06-15

    We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Synthesis and evaluation of novel 18 F-labeled quinazoline derivatives with low lipophilicity for tumor PET imaging.

    PubMed

    Chong, Yan; Chang, Jin; Zhao, Wenwen; He, Yong; Li, Yuqiao; Zhang, Huabei; Qi, Chuanmin

    2018-02-01

    Four novel 18 F-labeled quinazoline derivatives with low lipophilicity, [ 18 F]4-(2-fluoroethoxy)-6,7-dimethoxyquinazoline ([ 18 F]I), [ 18 F]4-(3-((4-(2-fluoroethoxy)-7-methoxyquinazolin-6-yl)oxy)propyl)morpholine ([ 18 F]II), [ 18 F]4-(2-fluoroethoxy)-7-methoxy-6-(2-methoxyethoxy)quinazoline ([ 18 F]III), and [ 18 F]4-(2-fluoroethoxy)-6,7-bis(2-methoxyethoxy)quinazoline ([ 18 F]IV), were synthesized via a 2-step radiosynthesis procedure with an overall radiochemical yield of 10% to 38% (without decay correction) and radiochemical purities of >98%. The lipophilicity and stability of labeled compounds were tested in vitro. The log P values of the 4 radiotracers ranged from 0.52 to 1.07. We then performed ELISA to measure their affinities to EGFR-TK; ELISA assay results indicated that each inhibitor was specifically bounded to EGFR-TK in a dose-dependent manner. The EGFR-TK autophosphorylation IC 50 values of [ 18 F]I, [ 18 F]II, [ 18 F]III, and [ 18 F]IV were 7.732, 0.4698, 0.1174, and 0.1176 μM, respectively. All labeled compounds were evaluated via cellular uptake and blocking studies in HepG2 cell lines in vitro. Cellular uptake and blocking experiment results indicated that [ 18 F]I and [ 18 F]III had excellent cellular uptake at 120-minute postinjection in HepG2 carcinoma cells (51.80 ± 3.42%ID/mg protein and 27.31 ± 1.94%ID/mg protein, respectively). Additionally, biodistribution experiments in S180 tumor-bearing mice in vivo indicated that [ 18 F]I had a very fast clearance in blood and a relatively high uptake ratio of tumor to blood (4.76) and tumor to muscle (1.82) at 60-minute postinjection. [ 18 F]III had a quick clearance in plasma, and its highest uptake ratio of tumor to muscle was 2.55 at 15-minute postinjection. These experimental results and experiences were valuable for the further exploration of novel radiotracers of quinazoline derivatives. Copyright © 2017 John Wiley & Sons, Ltd.

  2. 64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents.

    PubMed

    Wang, Jianjun; Yang, Chang-Tong; Kim, Young-Seung; Sreerama, Subramanya G; Cao, Qizhen; Li, Zi-Bo; He, Zhengjie; Chen, Xiaoyuan; Liu, Shuang

    2007-10-18

    This report presents synthesis and evaluation of the 64Cu-labeled triphenylphosphonium (TPP) cations as new radiotracers for imaging tumors by positron emission tomography. Biodistribution properties of 64Cu-L1, 64Cu-L2, 64Cu-L3, and 99mTc-Sestamibi were evaluated in athymic nude mice bearing U87MG human glioma xenografts. The most striking difference is that 64Cu-L1, 64Cu-L2, and 64Cu-L3 have much lower heart uptake (<0.6% ID/g) than 99mTc-Sestamibi ( approximately 18% ID/g) at >30 min p.i. Their tumor/heart ratios increase steadily from approximately 1 at 5 min p.i. to approximately 5 at 120 min p.i. The tumor/heart ratio of 64Cu-L3 is approximately 40 times better than that of 99mTc-Sestamibi at 120 min postinjection. Results from in vitro assays show that 64Cu-L1 is able to localize in tumor mitochondria. The tumor is clearly visualized in the tumor-bearing mice administered with 64Cu-L1 as 30 min postinjection. The 64Cu-labeled TPP/TPA cations are very selective radiotracers that are able to provide the information of mitochondrial bioenergetic function in tumors by monitoring mitochondrial potential in a noninvasive fashion.

  3. Synthesis and evaluation of a 99mTc-labeled tubulin-binding agent for tumor imaging.

    PubMed

    Erfani, Mostafa; Shamsaei, Mojtaba; Mohammadbaghery, Faiyaz; Shirmardi, Seyed Pezhman

    2014-05-30

    Cholchicine and its derivatives are very potent tubulin-binding compounds and can be used as a potential tumor targeting agents. In this study, colchicine was labeled with (99m) Tc via hydrazinonicotinic acid (HYNIC) and was investigated further. HYNIC/cholchicine was synthesized and labeling with (99m)Tc was performed at 95 °C for 15 min and radiochemical analysis included HPLC method. The stability of radiconjugate was checked in the presence of human serum at 37 °C up to 24 h. Biodistribution was studied in breast tumor-bearing mice. Labeling yield of 95.8 ± 0.54% was obtained corresponding to a specific activity of 54 MBq/µmol. Radioconjugate showed good stability in the presence of human serum. Biodistribution studies in tumor-bearing mice showed that (99m) Tc/HYNIC/colchicine conjugate accumulated in tumor with good uptake (3.17 ± 0.14% g/g at 1 h post-injection). The radioconjugate was cleared fast from normal organs and showed clearance through urinary and hepatobiliary systems with accumulation of activity in kidneys and intestine. This radioconjugate may be useful to assess the presence of tumor by imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Enhancement of tumor-to-nontumor localization ratios by hepatocyte-directed blood clearance of antibodies labeled with certain residualizing radiolabels.

    PubMed

    Patel, S; Stein, R; Ong, G L; Goldenberg, D M; Mattes, M J

    1999-08-01

    To increase tumor-to-nontumor localization ratios of injected radiolabeled antibodies (Abs), several interrelated methods were used. The model systems used were two human carcinoma xenografts grown in nude mice, targeted by antibodies RS11 (antiepithelial glycoprotein-2) or MN-14 (anticarcinoembryonic antigen). The Abs were conjugated with biotin and 111In-benzyl diethylenetriamine pentaacetic acid, and, at various times after injection, were cleared by intraperitoneal injection of galactosylated streptavidin, which delivers the complexes to hepatocytes. The radiolabel used was selected because it is retained within tumors after catabolism of the Ab by the tumor cell but is quite rapidly excreted from hepatocytes into bile. With blood clearance induced at 24 h, and dissection 5 h later, high tumor-to-nontumor ratios were attained. Depending on the model used, tumor-to-blood ratios were 16:1 to 31:1, and tumor-to-nontumor ratios for the kidney, lungs and bone were also high and greatly increased by the clearance regimen. Despite clearance into the liver, tumor-to-liver ratios remained >1, due to fairly rapid biliary excretion of the label. The absolute antibody uptake by the tumors was also high, because 24 h was allowed for the Ab to penetrate and bind to cells within the subcutaneous tumors. The method described produced high tumor-to-nontumor ratios at 1 d after injection and may be advantageous for tumor imaging with antibodies. Radiation dosimetry calculations indicate that there is only a slight advantage with this approach for radioimmunotherapy.

  5. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    PubMed Central

    Man, Yan-gao; Stojadinovic, Alexander; Mason, Jeffrey; Avital, Itzhak; Bilchik, Anton; Bruecher, Bjoern; Protic, Mladjan; Nissan, Aviram; Izadjoo, Mina; Zhang, Xichen; Jewett, Anahid

    2013-01-01

    It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness. PMID:23386907

  6. DNA in Uninfected and Virus-Infected Cells Complementary to Avian Tumor Virus RNA

    PubMed Central

    Rosenthal, Peter N.; Robinson, Harriet L.; Robinson, William S.; Hanafusa, Teruko; Hanafusa, Hidesaburo

    1971-01-01

    The 70S RNA component of several avian tumor viruses was hybridized with DNA extracted from avian tumor virus-infected and uninfected chicken and Japanese quail cells. Tritium-labeled 70S RNAs from Rous sarcoma virus (RSV), Rous associated virus-1 (RAV-1), RAV-60, and Schmidt-Ruppin-RSV (SR-RSV) hybridize from 3 to 10 times more with DNA from uninfected chicken cells than with DNA from Escherichia coli, calfthymus, or baby hamster kidney cells. After infection of chicken cells with RSV(RAV-1), SR-RSV, or RAV-2, the amount of 70S avian tumor virus [3H]RNA hybridized increases by 1.6 times. The specificity of the hybridization reaction was shown by the specific competition of 70S SR-RSV [3H]RNA with 70S RNA from RSV(RAV-1), and not with RNA from Sendai virus or chicken cells. There was no difference in the hybridization of 70S RNA from RSV (RAV-1), RAV-1, or RAV-60 with DNA either from chicken cells that contain RAV-60 in a nonreplicating form or from chicken cells that do not appear to contain RAV-60. These results indicate that both types of uninfected chicken cells contain DNA that is complementary to RNA from several avian tumor viruses and that the amount of complementary DNA increases in such cells after infection with an avian tumor virus. The RNAs of genetically different avian tumor viruses appear to have indistinguishable base sequences by this technique. PMID:4332808

  7. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer.

    PubMed

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-09-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.

  8. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression.

    PubMed

    Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-03-01

    Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake

  9. GPER-targeted, 99mTc-labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding.

    PubMed

    Nayak, Tapan K; Ramesh, Chinnasamy; Hathaway, Helen J; Norenberg, Jeffrey P; Arterburn, Jeffrey B; Prossnitz, Eric R

    2014-11-01

    Our understanding of estrogen (17β-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. These studies provide a molecular basis to evaluate GPER expression and function

  10. Tumor stem cells: A new approach for tumor therapy (Review)

    PubMed Central

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  11. NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?

    PubMed Central

    Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina

    2016-01-01

    Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158

  12. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles

    PubMed Central

    Ma, Jingwei; Zhang, Yi; Tang, Ke; Zhang, Huafeng; Yin, Xiaonan; Li, Yong; Xu, Pingwei; Sun, Yanling; Ma, Ruihua; Ji, Tiantian; Chen, Junwei; Zhang, Shuang; Zhang, Tianzhen; Luo, Shunqun; Jin, Yang; Luo, Xiuli; Li, Chengyin; Gong, Hongwei; Long, Zhixiong; Lu, Jinzhi; Hu, Zhuowei; Cao, Xuetao; Wang, Ning; Yang, Xiangliang; Huang, Bo

    2016-01-01

    Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications. PMID:27167569

  13. In vivo fluorescence imaging of an orthotopic rat bladder tumor model indicates differential uptake of intravesically instilled near-infrared labeled 2-deoxyglucose analog by neoplastic urinary bladder tissues

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.

    2017-02-01

    Bladder cancer is one of the most expensive cancers to manage due to frequent recurrences requiring life-long surveillance and treatment. A near-infrared labeled 2-deoxy-d-glucose probe IRDye800CW-DG targeting glucose metabolism pathway has shown to enhance the sensitivity of diagnosing several types of cancers as tested on tumor models not including bladder tumor. This pilot study has explored differential uptake of intravesically administered IRDye800CW-DG in an orthotopic rat bladder tumor model. Twenty-five female Fischer rats were randomly grouped to four conditions: no-tumor-control (n=3), no-tumor-control intravesically instilled with IRDye800CWDG (n=6), rats bearing GFP-labeled AY-27 rat bladder urothelial cell carcinoma cells and washed with saline (n=5), and rats bearing AY-27 tumors and intravesically instilled with IRDye800CW-DG (n=11). Near-infrared fluorescence was measured from the opened bladder wall of anesthetized rat at an excitation wavelength of 750nm and an emission wavelength of 776nm, by using an in-house fluorescence imaging system. There is no statistically significant difference of the peak fluorescence intensity among the no-tumor-control bladders (n=3), the no-tumorcontrol bladders instilled with IRDye800CW-DG (n=6), and the GFP-labeled AY-27 treated bladders washed by saline (n=5). When compared to that of the no-tumor-control bladders instilled with IRDye800CW-DG (n=6), the fluorescence intensity of GFP-labeled AY-27 treated bladders instilled with IRDye800CW-DG and with histology confirmed neoplastic bladder tissue (n=11) was remarkably more intense (3.34 fold of over the former) and was also statistically significant (p<0.0001). The differential uptake of IRDye800CW-DG by the neoplastic urinary bladder tissues suggests the potential for cystoscopy-adaptation to enhance diagnosis and guiding surgical management of flat urinary bladder cancer.

  14. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  15. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in situ Based on Dual-Labeled DNAzyme.

    PubMed

    Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi

    2018-01-01

    Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.

  16. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    PubMed Central

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  17. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells.

    PubMed

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-07-07

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.

  18. Round Cell Tumors: Classification and Immunohistochemistry.

    PubMed

    Sharma, Shweta; Kamala, R; Nair, Divya; Ragavendra, T Raju; Mhatre, Swapnil; Sabharwal, Robin; Choudhury, Basanta Kumar; Rana, Vivek

    2017-01-01

    Round cell tumors as the name suggest are comprised round cells with increased nuclear-cytoplasmic ratio. This group of tumor includes entities such as peripheral neuroectodermal tumor, rhabdomyosarcoma, synovial sarcoma, non-Hodgkin's lymphoma, neuroblastoma, hepatoblastoma, Wilms' tumor, and desmoplastic small round cell tumor. These round cells tumors are characterized by typical histological pattern, immunohistochemical, and electron microscopic features that can help in differential diagnosis. The present article describes the classification and explains the histopathology and immunohistochemistry of some important round cell tumors.

  19. Controlled viable release of selectively captured label-free cells in microchannels.

    PubMed

    Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan

    2011-12-07

    Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological

  20. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  1. Parasagittal solitary fibrous tumor resembling hemangiopericytoma.

    PubMed

    Shidoh, Satoka; Yoshida, Kazunari; Takahashi, Satoshi; Mikami, Shuji; Mukai, Makio; Kawase, Takeshi

    2010-04-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal tumor in the central nervous system, and the clinical behavior of this tumor is similar to that of meningioma. We report the case of a Japanese woman with parasagittal SFT that resembled hemangiopericytoma (HPC). Histological examination revealed that the tumor was highly cellular, with cells containing oval- or spindle-shaped nuclei arranged in sheets or a pattern-less growth mode. Focal vascular proliferation was also observed. Some areas showed intercellular stroma containing remarkable eosinophilic collagens. Tumor cells showed a strong immunoreactivity for CD34 but were negative for S-100 protein and epithelial membrane antigen. MIB-1 labeling index of the tumor was 6.6%. Owing to the high cellularity, high MIB-1 labeling index, and focal vascular proliferation, it was difficult to distinguish this lesion from HPC. However, the tumor was finally diagnosed as SFT on the basis of the strong immunostaining for CD34 and absence of pericellular reticulin.

  2. Microenvironmental pH is a key factor for exosome traffic in tumor cells.

    PubMed

    Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano

    2009-12-04

    Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.

  3. Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells*

    PubMed Central

    Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano

    2009-01-01

    Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies. PMID:19801663

  4. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. (89)Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies.

    PubMed

    Sato, Noriko; Wu, Haitao; Asiedu, Kingsley O; Szajek, Lawrence P; Griffiths, Gary L; Choyke, Peter L

    2015-05-01

    To develop a clinically translatable method of cell labeling with zirconium 89 ((89)Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. This study was approved by the institutional animal care committee. (89)Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of (89)Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444-555 kBq/[5 × 10(6)] cells, n = 5) and CTLs (185 kBq/[5 × 10(6)] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 10(6)] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. (89)Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%-43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. (89)Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P < .05 on day 7). We have developed a (89)Zr-oxine complex cell tracking technique

  6. 89Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies

    PubMed Central

    Wu, Haitao; Asiedu, Kingsley O.; Szajek, Lawrence P.; Griffiths, Gary L.; Choyke, Peter L.

    2015-01-01

    Purpose To develop a clinically translatable method of cell labeling with zirconium 89 (89Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. Materials and Methods This study was approved by the institutional animal care committee. 89Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of 89Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444–555 kBq/[5 × 106] cells, n = 5) and CTLs (185 kBq/[5 × 106] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 106] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. Results 89Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%–43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. 89Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P < .05 on day 7). Conclusion We have developed a 89Zr

  7. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    PubMed

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  8. In vitro Method to Observe E-selectin-mediated Interactions Between Prostate Circulating Tumor Cells Derived From Patients and Human Endothelial Cells

    PubMed Central

    Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.

    2014-01-01

    Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373

  9. Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver.

    PubMed

    Decker, Ningling Kang; Abdelmoneim, Soha S; Yaqoob, Usman; Hendrickson, Helen; Hormes, Joe; Bentley, Mike; Pitot, Henry; Urrutia, Raul; Gores, Greg J; Shah, Vijay H

    2008-10-01

    Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.

  10. Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.

    PubMed

    Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie

    2017-11-14

    Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.

  11. SIB-DOTA: a trifunctional prosthetic group potentially amenable for multi-modal labeling that enhances tumor uptake of internalizing monoclonal antibodies.

    PubMed

    Vaidyanathan, G; White, B J; Affleck, D J; Zhao, X G; Welsh, P C; McDougald, D; Choi, J; Zalutsky, M R

    2012-12-15

    A major drawback of internalizing monoclonal antibodies (mAbs) radioiodinated with direct electrophilic approaches is that tumor retention of radioactivity is compromised by the rapid washout of iodo-tyrosine, the primary labeled catabolite for mAbs labeled via this strategy. In our continuing efforts to develop more versatile residualizing labels that could overcome this problem, we have designed SIB-DOTA, a prosthetic labeling template that combines the features of the prototypical, dehalogenation-resistant N-succinimidyl 3-iodobenzoate (SIB) with DOTA, a useful macrocyclic chelator for labeling with radiometals. Herein we describe the synthesis of the unlabeled standard of this prosthetic moiety, its protected tin precursor, and radioiodinated SIB-DOTA. An anti-EGFRvIII-reactive mAb, L8A4 was radiolabeled with [(131)I]SIB-DOTA in 27.1±6.2% (n=2) conjugation yields and its targeting properties to the same mAb labeled with [(125)I]SGMIB both in vitro and in vivo using U87MG·ΔEGFR cells and xenografts were compared. In vitro paired-label internalization assays showed that the intracellular radioactivity from [(131)I]SIB-DOTA-L8A4 was 21.4±0.5% and 26.2±1.1% of initially bound radioactivity at 16 and 24h, respectively. In comparison, these values for [(125)I]SGMIB-L8A4 were 16.7±0.5% and 14.9±1.1%. Similarly, the SIB-DOTA prosthetic group provided better tumor targeting in vivo than SGMIB over 8 d period. These results suggest that SIB-DOTA warrants further evaluation as a residualizing agent for labeling internalizing mAbs including those targeted to EGFRvIII. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    PubMed

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    PubMed Central

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  14. Synthesis and biological evaluation of ¹⁸F-labeled fluoropropyl tryptophan analogs as potential PET probes for tumor imaging.

    PubMed

    Chiotellis, Aristeidis; Mu, Linjing; Müller, Adrienne; Selivanova, Svetlana V; Keller, Claudia; Schibli, Roger; Krämer, Stefanie D; Ametamey, Simon M

    2013-01-01

    In the search for an efficient, fluorine-18 labeled amino acid based radiotracer for tumor imaging with positron emission tomography (PET), two new tryptophan analogs were synthesized and characterized in vitro and in vivo. Both are tryptophan alkyl-derivatives, namely 2-(3-[(18)F]fluoropropyl)-DL-tryptophan ([(18)F]2-FPTRP) and 5-(3-[(18)F]fluoro-propyl)-DL-tryptophan ([(18)F]5-FPTRP). Standard reference compounds and precursors were prepared by multi step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [(18)F]fluorination in 29-34% decay corrected yields with radiochemical purity over 99%. In vitro cell uptake assays showed that both compounds are substrates for amino acid transport and enter small cell lung cancer cells (NCI-H69) most probably almost exclusively via large neutral amino acids transporter(s) (LAT). Small animal PET imaging with xenograft bearing mice revealed high tumor/background ratios for [(18)F]2-FPTRP comparable to the well established tyrosine analog O-(2-[(18)F]fluroethyl)-L-tyrosine ([(18)F]FET). Radiometabolite studies showed no evidence of involvement of a biotransformation step in tumor accumulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    PubMed

    Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  16. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

    PubMed Central

    Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246

  17. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  18. Nanosphere-based one-step strategy for efficient and nondestructive detection of circulating tumor cells.

    PubMed

    Wu, Ling-Ling; Wen, Cong-Ying; Hu, Jiao; Tang, Man; Qi, Chu-Bo; Li, Na; Liu, Cui; Chen, Lan; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-08-15

    Detecting viable circulating tumor cells (CTCs) without disruption to their functions for in vitro culture and functional study could unravel the biology of metastasis and promote the development of personalized anti-tumor therapies. However, existing CTC detection approaches commonly include CTC isolation and subsequent destructive identification, which damages CTC viability and functions and generates substantial CTC loss. To address the challenge of efficiently detecting viable CTCs for functional study, we develop a nanosphere-based cell-friendly one-step strategy. Immunonanospheres with prominent magnetic/fluorescence properties and extraordinary stability in complex matrices enable simultaneous efficient magnetic capture and specific fluorescence labeling of tumor cells directly in whole blood. The collected cells with fluorescent tags can be reliably identified, free of the tedious and destructive manipulations from conventional CTC identification. Hence, as few as 5 tumor cells in ca. 1mL of whole blood can be efficiently detected via only 20min incubation, and this strategy also shows good reproducibility with the relative standard deviation (RSD) of 8.7%. Moreover, due to the time-saving and gentle processing and the minimum disruption of immunonanospheres to cells, 93.8±0.1% of detected tumor cells retain cell viability and proliferation ability with negligible changes of cell functions, capacitating functional study on cell migration, invasion and glucose uptake. Additionally, this strategy exhibits successful CTC detection in 10/10 peripheral blood samples of cancer patients. Therefore, this nanosphere-based cell-friendly one-step strategy enables viable CTC detection and further functional analyses, which will help to unravel tumor metastasis and guide treatment selection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  20. Polydopamine-based functional composite particles for tumor cell targeting and dual-mode cellular imaging.

    PubMed

    Zhou, Yalei; Zhou, Jie; Wang, Feng; Yang, Haifeng

    2018-05-01

    Particles which bear tumor cell targeting and multimode imaging capabilities are promising in tumor diagnosis and cancer therapy. A simple and versatile method to fabricate gold/polydopamine-Methylene Blue@Bovine Serum Albumin-glutaraldehyde-Transferrin composite particles (Au/PDA-MB@BSA-GA-Tf NPs) for tumor cell targeting and fluorescence (FL) / surface-enhanced Raman scattering (SERS) dual-modal imaging were reported in this work. Polydopamine (PDA) spheres played an important role in gold ion reduction, gold nanoparticle (Au NPs) binding and methylene blue (MB) adsorption, MB were employed as both fluorescence label and Raman reporter. In addition, glutaraldehyde (GA) crosslinked bovine serum albumin (BSA) in the outer layer of Au/PDA-MB nanoparticles can prevent MB from dissociation and leakage. The composite nanoparticles were further conjugated with transferrin (Tf) to target transferrin receptor (TfR)-overexpressed cancer cells. The targeting ability as well as the intracellular location of the probe was investigated through SERS mapping and fluorescence imaging. Their excellent biocompatibility was demonstrated by low cytotoxicity against breast cancer cell (4T1 cell). Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes.

    PubMed

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker

    2016-10-01

    Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.

  2. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  3. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors

    DOE PAGES

    Su, Xinhui; Cheng, Kai; Jeon, Jongho; ...

    2014-06-27

    The epidermal growth factor receptor (EGFR) serves as an attractive target for cancer molecular imaging and therapy. Our previous positron emission tomography (PET) studies showed that the EGFR-targeting affibody molecules 64Cu-DOTA-Z EGFR:1907 and 18F-FBEM-Z EGFR:1907 can discriminate between high and low EGFR-expression tumors and have the potential for patient selection for EGFR-targeted therapy. Compared with 64Cu, 18F may improve imaging of EGFR-expression and is more suitable for clinical application, but the labeling reaction of 18F-FBEM-Z EGFR:1907 requires a long synthesis time. The aim of the present study is to develop a new generation of 18F labeled affibody probes (Al 18F-NOTA-Zmore » EGFR:1907 and 18F-CBT-Z EGFR:1907) and to determine whether they are suitable agents for imaging of EGFR expression. The first approach consisted of conjugating Z EGFR:1907 with NOTA and radiolabeling with Al 18F to produce Al 18F-NOTA-Z EGFR:1907. In a second approach the prosthetic group 18F-labeled-2-cyanobenzothiazole ( 18F-CBT) was conjugated to Cys-Z EGFR:1907 to produce 18F-CBT-Z EGFR:1907. Binding affinity and specificity of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 to EGFR were evaluated using A431 cells. Biodistribution and PET studies were conducted on mice bearing A431 xenografts after injection of Al 18F-NOTA-Z EGFR:1907 or 18F-CBT-Z EGFR:1907 with or without coinjection of unlabeled affibody proteins. The radiosyntheses of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 were completed successfully within 40 and 120 min with a decay-corrected yield of 15% and 41% using a 2-step, 1-pot reaction and 2-step, 2-pot reaction, respectively. Both probes bound to EGFR with low nanomolar affinity in A431 cells. Although 18F-CBT-Z EGFR:1907 showed instability in vivo, biodistribution studies revealed rapid and high tumor accumulation and quick clearance from normal tissues except the bones. In contrast, Al 18F-NOTA-Z EGFR:1907 demonstrated high in vitro and in

  4. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xinhui; Cheng, Kai; Jeon, Jongho

    The epidermal growth factor receptor (EGFR) serves as an attractive target for cancer molecular imaging and therapy. Our previous positron emission tomography (PET) studies showed that the EGFR-targeting affibody molecules 64Cu-DOTA-Z EGFR:1907 and 18F-FBEM-Z EGFR:1907 can discriminate between high and low EGFR-expression tumors and have the potential for patient selection for EGFR-targeted therapy. Compared with 64Cu, 18F may improve imaging of EGFR-expression and is more suitable for clinical application, but the labeling reaction of 18F-FBEM-Z EGFR:1907 requires a long synthesis time. The aim of the present study is to develop a new generation of 18F labeled affibody probes (Al 18F-NOTA-Zmore » EGFR:1907 and 18F-CBT-Z EGFR:1907) and to determine whether they are suitable agents for imaging of EGFR expression. The first approach consisted of conjugating Z EGFR:1907 with NOTA and radiolabeling with Al 18F to produce Al 18F-NOTA-Z EGFR:1907. In a second approach the prosthetic group 18F-labeled-2-cyanobenzothiazole ( 18F-CBT) was conjugated to Cys-Z EGFR:1907 to produce 18F-CBT-Z EGFR:1907. Binding affinity and specificity of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 to EGFR were evaluated using A431 cells. Biodistribution and PET studies were conducted on mice bearing A431 xenografts after injection of Al 18F-NOTA-Z EGFR:1907 or 18F-CBT-Z EGFR:1907 with or without coinjection of unlabeled affibody proteins. The radiosyntheses of Al 18F-NOTA-Z EGFR:1907 and 18F-CBT-Z EGFR:1907 were completed successfully within 40 and 120 min with a decay-corrected yield of 15% and 41% using a 2-step, 1-pot reaction and 2-step, 2-pot reaction, respectively. Both probes bound to EGFR with low nanomolar affinity in A431 cells. Although 18F-CBT-Z EGFR:1907 showed instability in vivo, biodistribution studies revealed rapid and high tumor accumulation and quick clearance from normal tissues except the bones. In contrast, Al 18F-NOTA-Z EGFR:1907 demonstrated high in vitro and in

  5. Exploring the Potential of (99m)Tc(CO)3-Labeled Triazolyl Peptides for Tumor Diagnosis.

    PubMed

    Gaonkar, Raghuvir H; Ganguly, Soumya; Baishya, Rinku; Dewanjee, Saikat; Sinha, Samarendu; Gupta, Amit; Ganguly, Shantanu; Debnath, Mita C

    2016-04-01

    In recent years the authors have reported on (99m)Tc(CO)3-labeled peptides that serve as carriers for biomolecules or radiopharmaceuticals to the tumors. In continuation of that work they report the synthesis of a pentapeptide (Met-Phe-Phe-Gly-His; pep-1), a hexapeptide (Met-Phe-Phe-Asp-Gly-His; pep-2), and a tetrapeptide (Asp-Gly-Arg-His; pep-3) and the attachment of 3-amino-1,2,4-triazole to the β carboxylic function of the aspartic acid unit of pep-2 and pep-3. The pharmacophores were radiolabeled in high yields with [(99m)Tc(CO)3(H2O)3](+) metal aqua ion, characterized for their stability in serum and saline, as well as in His solution, and found to be substantially stable. B16F10 cell line binding studies showed favorable uptake and internalization. In vivo behavior of the radiolabeled triazolyl peptides was assessed in mice bearing induced tumor. The (99m)Tc(CO)3-triazolyl pep-3 demonstrated rapid urinary clearance and comparatively better tumor uptake. Imaging studies showed visualization of the tumor using (99m)Tc(CO)3-triazolyl pep-3, but due to high abdominal background, low delineation occurred. Based on the results further experiments will be carried out for targeting tumor with triazolyl peptides.

  6. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines.

    PubMed

    Tai, Kuo-Feng; Chen, Ding-Shinn; Hwang, Lih-Hwa

    2004-01-01

    In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  7. Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology.

    PubMed

    Renier, Corinne; Pao, Edward; Che, James; Liu, Haiyan E; Lemaire, Clementine A; Matsumoto, Melissa; Triboulet, Melanie; Srivinas, Sandy; Jeffrey, Stefanie S; Rettig, Matthew; Kulkarni, Rajan P; Di Carlo, Dino; Sollier-Christen, Elodie

    2017-01-01

    There has been increased interest in utilizing non-invasive "liquid biopsies" to identify biomarkers for cancer prognosis and monitoring, and to isolate genetic material that can predict response to targeted therapies. Circulating tumor cells (CTCs) have emerged as such a biomarker providing both genetic and phenotypic information about tumor evolution, potentially from both primary and metastatic sites. Currently, available CTC isolation approaches, including immunoaffinity and size-based filtration, have focused on high capture efficiency but with lower purity and often long and manual sample preparation, which limits the use of captured CTCs for downstream analyses. Here, we describe the use of the microfluidic Vortex Chip for size-based isolation of CTCs from 22 patients with advanced prostate cancer and, from an enumeration study on 18 of these patients, find that we can capture CTCs with high purity (from 1.74 to 37.59%) and efficiency (from 1.88 to 93.75 CTCs/7.5 mL) in less than 1 h. Interestingly, more atypical large circulating cells were identified in five age-matched healthy donors (46-77 years old; 1.25-2.50 CTCs/7.5 mL) than in five healthy donors <30 years old (21-27 years old; 0.00 CTC/7.5 mL). Using a threshold calculated from the five age-matched healthy donors (3.37 CTCs/mL), we identified CTCs in 80% of the prostate cancer patients. We also found that a fraction of the cells collected (11.5%) did not express epithelial prostate markers (cytokeratin and/or prostate-specific antigen) and that some instead expressed markers of epithelial-mesenchymal transition, i.e., vimentin and N-cadherin. We also show that the purity and DNA yield of isolated cells is amenable to targeted amplification and next-generation sequencing, without whole genome amplification, identifying unique mutations in 10 of 15 samples and 0 of 4 healthy samples.

  8. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  9. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

    PubMed

    Barresi, Valeria; Branca, Giovanni; Ieni, Antonio; Rigoli, Luciana; Tuccari, Giovanni; Caruso, Rosario Alberto

    2015-05-14

    To identify those with a micropapillary pattern, ascertain relative frequency and document clinicopathological characteristics by reviewing gastric carcinomas. One hundred and fifty-one patients diagnosed with gastric cancer who underwent gastrectomy were retrospectively studied and the presence of a regional invasive micropapillary component was evaluated by light microscopy. All available hematoxylin-eosin (HE)-stained slides were histologically reviewed and 5 tumors were selected as putative micropapillary carcinoma when cancer cell clusters without a vascular core within empty lymphatic-like space comprised at least 5% of the tumor. Tumor tissues from these 5 invasive gastric carcinomas were immunostained using an anti-mucin 1 (MUC1) antibody (clone MA695) to detect the characteristic inside-out pattern and with D2-40 antibody to determine the presence of intratumoral lymph vessels. Detection of intraepithelial neutrophil apoptosis was evaluated in consecutive histological tissue sections by three independent methods, namely light microscopy with HE staining, the conventional terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemistry for activated caspase-3 (clone C92-605). Among 151 gastric cancers resected for cure, 5 (3.3%) were adenocarcinomas with a micropapillary component. Four of the patients died of disease from 6 to 23 mo and one patient was alive with metastases at 9 mo. All patients had advanced-stage cancer (≥ pT2) and lymph node metastasis. Positive MUC1 immunostaining on the stroma-facing surface (inside-out pattern) of the carcinomatous cluster cells, together with negative immunostaining for D2-40 in the cells limiting lymphatic-like spaces, confirmed the true micropapillary pattern in these gastric neoplasms. In all five cases, several micropapillae were infiltrated by neutrophils. HE staining, TUNEL assay and immunostaining for caspase-3 demonstrated apoptotic neutrophils within

  10. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    PubMed

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  11. Metastatic potential of tumor-initiating cells in solid tumors.

    PubMed

    Adhikari, Amit S; Agarwal, Neeraj; Iwakuma, Tomoo

    2011-01-01

    The lethality of cancer is mainly caused by its properties of metastasis, drug resistance, and subsequent recurrence. Understanding the mechanisms governing these properties and developing novel strategies to overcome them will greatly improve the survival of cancer patients. Recent findings suggest that tumors are comprised of heterogeneous cell populations, and only a small fraction of these are tumorigenic with the ability to self-renew and produce phenotypically diverse tumor cell populations. Cells in this fraction are called tumor-initiating cells (TICs) or cancer stem cells (CSCs). TICs have been identified from many types of cancer. They share several similarities with normal adult stem cells including sphere-forming ability, self-renewability, and expression of stem cell surface markers and transcription factors. TICs have also been proposed to be responsible for cancer metastasis, however, scarce evidence for their metastatic potential has been provided. In this review article, we have attempted to summarize the studies which have examined the metastatic potential of TICs in solid tumors.

  12. Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI

    PubMed Central

    Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid

    2015-01-01

    Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892

  13. In vivo evaluation of a radiogallium-labeled bifunctional radiopharmaceutical, Ga-DOTA-MN2, for hypoxic tumor imaging.

    PubMed

    Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro

    2013-01-01

    On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.

  14. A magnetic micropore chip for rapid (<1 hour) unbiased circulating tumor cell isolation and in situ RNA analysis.

    PubMed

    Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David

    2017-09-12

    The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).

  15. Different processing of LH/hCG receptors in cultured rat luteal cells and murine Leydig tumor cells (MLTC-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellokumpu, S.

    1987-02-01

    The metabolic fate of LH/hCG receptors after exposure to human chorionic gonadotropin (hCG) was examined in cultured rat luteal cells and murine Leydig tumor cells (MLTC-1). Kinetic studies performed after pulse-labelling of the cells with (/sup 125/I)hCG indicated that the bound hormone was lost much more rapidly from the tumor cells than from the luteal cells. The tumor cells were also found to internalize and degrade the hormone more effectively than the luteal cells. Chemical cross-linking and analyses by SDS-PAGE of this material revealed that both cell types also released, in addition to intact hCG, two previously characterized receptor fragment-(/supmore » 125/I)hCG complexes (M/sub r/ 96,000 and 74,000) into the medium, although their amount was negligible in MLTC-1 cells. Possibly due to rapid discharge of the ligand from its receptor, no similar complexes could be detected inside the MLTC-1 cells, suggesting that they were released directly from the cell surface. However, the M/sub r/ 74,000 complex was observed inside MLTC-1 cells if chloroquine, a lysosomotropic agent, was present during the incubations. This suggests that the internalized receptor also becomes degraded, at least when complexed to hCG. The results thus provide evidence that there exist two different mechanisms for proteolytic processing of LH/hCG receptors in these target cells. In tumor cells, the degradation seems to occur almost exclusively intracellularly, whereas in luteal cells a substantial portion of the receptors is also degraded at the cell surface.« less

  16. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    PubMed

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  17. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma

    PubMed Central

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J.; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-01-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of 111In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies. PMID:27357626

  18. The Epigenetic Factor KDM2B Regulates EMT and Small GTPases in Colon Tumor Cells.

    PubMed

    Zacharopoulou, Nefeli; Tsapara, Anna; Kallergi, Galatea; Schmid, Evi; Alkahtani, Saad; Alarifi, Saud; Tsichlis, Philip N; Kampranis, Sotirios C; Stournaras, Christos

    2018-05-14

    The epigenetic factor KDM2B is a histone demethylase expressed in various tumors. Recently, we have shown that KDM2B regulates actin cytoskeleton organization, small Rho GTPases signaling, cell-cell adhesion and migration of prostate tumor cells. In the present study, we addressed its role in regulating EMT and small GTPases expression in colon tumor cells. We used RT-PCR for the transcriptional analysis of various genes, Western blotting for the assessment of protein expression and immunofluorescence microscopy for visualization of fluorescently labeled proteins. We report here that KDM2B regulates EZH2 and BMI1 in HCT116 colon tumor cells. Knockdown of this epigenetic factor induced potent up-regulation of the protein levels of the epithelial markers E-cadherin and ZO-1, while the mesenchymal marker N-cadherin was downregulated. On the other hand, KDM2B overexpression downregulated the levels of both epithelial markers and upregulated the mesenchymal marker, suggesting control of EMT by KDM2B. In addition, RhoA, RhoB and RhoC protein levels diminished upon KDM2B-knockdown, while all three small GTPases became upregulated in KDM2B-overexpressing HCT116 cell clones. Interestingly, Rac1 GTPase level increased upon KDM2B-knockdown and diminished in KDM2B-overexpressing HCT116 colon tumor- and DU-145 prostate cancer cells. These results establish a clear functional role of the epigenetic factor KDM2B in the regulation of EMT and small-GTPases expression in colon tumor cells and further support the recently postulated oncogenic role of this histone demethylase in various tumors. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Leydig cell tumor

    MedlinePlus

    Tumor - Leydig cell; Testicular tumor - Leydig; Testicular neoplasm ... your provider if you have symptoms of testicular cancer. ... Philadelphia, PA: Elsevier Saunders; 2014:chap 86. National Cancer ... cancer treatment (PDQ) - health professional version. www.cancer. ...

  20. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    PubMed

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  1. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF

    PubMed Central

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-01-01

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF. PMID:26416452

  2. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF.

    PubMed

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-10-20

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.

  3. The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients.

    PubMed

    Zhuo, Minglei; Chen, Hanxiao; Zhang, Tianzhuo; Yang, Xue; Zhong, Jia; Wang, Yuyan; An, Tongtong; Wu, Meina; Wang, Ziping; Huang, Jing; Zhao, Jun

    2018-05-04

    The PD-L1 antibody atezolizumab has shown promising efficacy in patients with advanced non-small cell lung cancer. But the predictive marker of clinical benefit has not been identified. This study aimed to search for potential predictive factors in circulating blood of patients receiving atezolizumab. Ten patients diagnosed with advanced non-small cell lung cancer were enrolled in this open-label observing study. Circulating immune cells and plasma tumor markers were examined in peripheral blood from these patients before and after atezolizumab treatment respectively. Relation between changes in circulating factors and anti-tumor efficacy were analyzed. Blood routine test showed that atezolizumab therapy induced slightly elevation of white blood cells count generally. The lymphocyte ratio was increased slightly in disease controlled patients but decreased prominently in disease progressed patients in response to atezolizumab therapy. Flow cytometric analysis revealed changes in percentage of various immune cell types, including CD4+ T cell, CD8+ T cell, myeloid-derived suppressor cell, regulatory T cell and PD-1 expressing T cell after atezolizumab. Levels of plasma tumor marker CEA, CA125 and CA199 were also altered after anti-PD-L1 therapy. In comparison with baseline, the disease progressed patients showed sharp increase in tumor marker levels, while those disease controlled patients were seen with decreased regulatory T cell and myeloid-derived suppressor cell ratios. The circulating immune cell ratios and plasma tumor marker levels were related with clinical efficacy of atezolizumab therapy. These factors could be potential predictive marker for anti-PD-L1 therapy in advanced non-small cell lung cancer.

  4. In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands.

    PubMed

    Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J

    2003-02-01

    The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved

  5. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  6. Bioimaging of Fluorescence-Labeled Mitochondria in Subcutaneously Grafted Murine Melanoma Cells by the “In Vivo Cryotechnique”

    PubMed Central

    Lei, Ting; Huang, Zheng; Ohno, Nobuhiko; Wu, Bao; Sakoh, Takashi; Saitoh, Yurika; Saiki, Ikuo

    2014-01-01

    The microenvironments of organs with blood flow affect the metabolic profiles of cancer cells, which are influenced by mitochondrial functions. However, histopathological analyses of these aspects have been hampered by technical artifacts of conventional fixation and dehydration, including ischemia/anoxia. The purpose of this study was to combine the in vivo cryotechnique (IVCT) with fluorescent protein expression, and examine fluorescently labeled mitochondria in grafted melanoma tumors. The intensity of fluorescent proteins was maintained well in cultured B16-BL6 cells after cryotechniques followed by freeze-substitution (FS). In the subcutaneous tumors of mitochondria-targeted DsRed2 (mitoDsRed)-expressing cells, a higher number of cancer cells were found surrounding the widely opened blood vessels that contained numerous erythrocytes. Such blood vessels were immunostained positively for immunoglobulin M and ensheathed by basement membranes. MitoDsRed fluorescence was detected in scattering melanoma cells using the IVCT-FS method, and the total mitoDsRed volume in individual cancer cells was significantly decreased with the expression of markers of hypoxia. MitoDsRed was frequently distributed throughout the cytoplasm and in processes extending along basement membranes. IVCT combined with fluorescent protein expression is a useful tool to examine the behavior of fluorescently labeled cells and organelles. We propose that the mitochondrial volume is dynamically regulated in the hypoxic microenvironment and that mitochondrial distribution is modulated by cancer cell interactions with basement membranes. PMID:24394469

  7. Tumor cell migration in complex microenvironments

    PubMed Central

    Polacheck, William J.; Zervantonakis, Ioannis K.; Kamm, Roger D.

    2012-01-01

    Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable. PMID:22926411

  8. ⁸⁹Zr-Labeled Versus ¹²⁴I-Labeled αHER2 Fab with Optimized Plasma Half-Life for High-Contrast Tumor Imaging In Vivo.

    PubMed

    Mendler, Claudia T; Gehring, Torben; Wester, Hans-Jürgen; Schwaiger, Markus; Skerra, Arne

    2015-07-01

    Immuno-PET imaging of the tumor antigen HER2/neu allows for the noninvasive detection and monitoring of oncogene expression; such detection and monitoring are of prognostic value in patients with breast cancer. Compared with the full-size antibody trastuzumab, smaller protein tracers with more rapid blood clearance permit higher imaging contrast at earlier time points. Antigen-binding fragments (Fabs) of antibodies with moderately prolonged circulation achieved through the genetic fusion with a long, conformationally disordered chain of the natural amino acids Pro, Ala, and Ser (PASylation)-a biologic alternative to chemical conjugation with polyethylene glycol, PEG-offer a promising tracer format with improved pharmacokinetics for in vivo imaging. Recently, the transition metal radionuclide (89)Zr has attracted increasing interest for immuno-PET studies, complementing the conventional halogen radionuclide (124)I. To allow direct comparison of these 2 radioactive labels for the same protein tracer, the recombinant αHER2 Fab fused with 200 Pro, Ala, and Ser (PAS200) residues was either conjugated with (124)I via an iodination reagent or coupled with deferoxamine (Df) and complexed with (89)Zr. After confirmation of the stability of both radioconjugates and quality control in vitro, immuno-PET and biodistribution studies were performed with CD1-Foxn1(nu) mice bearing HER2-positive human tumor xenografts. (89)Zr⋅Df-Fab-PAS200 and (124)I-Fab-PAS200 showed specific tumor uptake of 11 and 2.3 percentage injected dose per gram 24 h after injection, respectively; both led to high tumor-to-blood (3.6 and 4.4, respectively) and tumor-to-muscle (20 and 43, respectively) ratios. With regard to off-target accumulation, overt (124)I activity was seen in the thyroid, as expected, whereas high kidney uptake was evident for (89)Zr; the latter was probably due to glomerular filtration and reabsorption of the protein tracer in proximal tubular cells. Both (89)Zr- and (124)I-labeled

  9. Mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor in a ferret

    PubMed Central

    INOUE, Saki; YONEMARU, Kayoko; YANAI, Tokuma; SAKAI, Hiroki

    2014-01-01

    A 5-year-old male ferret presented with an enlarged canalicular testis in the left inguinal region. Microscopically, the enlarged testis consisted of a diffuse intimately admixed proliferation of c-kit-positive germ cell-like and Wilms tumor-1 protein-positive Sertoli cell-like components, but no Call-Exner body was detected. In addition, the compact proliferation of steroidogenic acute regulatory protein-intense positive interstitial cells was identified in a separate peripheral area of the mass. Based on histopathological and immunohistochemical findings, the tumor was diagnosed as a mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor. PMID:25311985

  10. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  11. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells.

    PubMed

    Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P

    1991-03-01

    CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.

  12. Novel receptor-targeted contrast agents for optical imaging of tumors

    NASA Astrophysics Data System (ADS)

    Becker, Andreas; Hessenius, Carsten; Bhargava, Sarah; Ebert, Bernd; Sukowski, Uwe; Rinneberg, Herbert H.; Wiedenmann, Bertram; Semmler, Wolfhard; Licha, Kai

    2000-04-01

    Many gastroenteropancreatic tumors express receptors for somatostatin (SST) and/or vasoactive intestinal peptide (VIP). These receptors can be used as molecular targets for the delivery of contrast agents for tumor diagnostics. We have synthesized conjugates consisting of a cyanine dye and an SST analogue or VIP for use as contrast agents in optical imaging. Receptor binding and internalization of these compounds were examined with optical methods in transfected RIN38 tumor cells expressing the SST2 receptor or a GFP- labeled VIP (VPAC1) receptor. Furthermore, biodistribution of the conjugates was examined by laser-induced fluorescence imaging in nude mice bearing SST2 or VPAC1 receptor- expressing tumors. After incubation of RIN38 SSTR2 cells in the presence of 100 nM indotricarbocyanine-SST analogue, cell-associated fluorescence increased, whereas no increase was observed when receptor-medicated endocytosis was inhibited. Indodicarbocyanine-VIP accumulated in RIN38 VPAC1 cells and co-localization with the GFP-labeled VPAC1 receptor was observed. After injection of indotricarbocyanine-SST analogue into tumor-bearing nude mice, SST2 receptor-positive tumors could be visualized for a time period from 10 min to at least 48 h. After application of indodicarbocyanine-VIP, a fluorescence signal in VIP1 receptor-expressing tumors was only detected during the first hour. We conclude that cyanine dye-labeled VIP and SST analogue are novel, targeted contrast agents for the optical imaging of tumors expressing the relevant receptor.

  13. Near Infrared Optical Visualization of Epidermal Growth Factor Receptors Levels in COLO205 Colorectal Cell Line, Orthotopic Tumor in Mice and Human Biopsies

    PubMed Central

    Cohen, Gadi; Lecht, Shimon; Oron-Herman, Mor; Momic, Tatjana; Nissan, Aviram; Lazarovici, Philip

    2013-01-01

    In this study, we present the applicability of imaging epidermal growth factor (EGF) receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR). The near infrared (NIR) bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6–9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner. PMID:23857061

  14. Near infrared optical visualization of epidermal growth factor receptors levels in COLO205 colorectal cell line, orthotopic tumor in mice and human biopsies.

    PubMed

    Cohen, Gadi; Lecht, Shimon; Oron-Herman, Mor; Momic, Tatjana; Nissan, Aviram; Lazarovici, Philip

    2013-07-12

    In this study, we present the applicability of imaging epidermal growth factor (EGF) receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR). The near infrared (NIR) bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6-9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.

  15. Stem Cell Monitoring with a Direct or Indirect Labeling Method.

    PubMed

    Kim, Min Hwan; Lee, Yong Jin; Kang, Joo Hyun

    2016-12-01

    The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.

  16. Evolution of cooperation among tumor cells.

    PubMed

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-05

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  17. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    PubMed

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Label-free in vitro prostate cancer cell detection via photonic-crystal biosensor

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFei; Sagredo, Ismael; Bustamante, Gilbert; Sun, Lu-Zhe; Ye, Jing Yong

    2018-02-01

    Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free imaging system, which allows for the detection of individual prostate cancer cells utilizing cellular RI as the only contrast parameter. Noncancerous prostate (BPH-1) cells and prostate cancer (PC-3) cells were mixed at varied ratios and measured concurrently. Additionally, we isolated and induced PC-3 cells to undergo epithelial-mesenchymal transition (EMT) by exposing these cells to soluble factors such as TGF-β1. The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced PC-3 cells as well as BPH-1 cells. EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. Our study shows promising clinical potential in utilizing the PC-TIR biosensor imaging system to not only detect prostate cancer cells, but also evaluate prostate cancer progression.

  19. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  20. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    PubMed

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  1. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model.

    PubMed

    Song, In Ho; Lee, Tae Sup; Park, Yong Serk; Lee, Jin Sook; Lee, Byung Chul; Moon, Byung Seok; An, Gwang Il; Lee, Hae Won; Kim, Kwang Il; Lee, Yong Jin; Kang, Joo Hyun; Lim, Sang Moo

    2016-07-01

    Immuno-PET provides valuable information about tumor location, phenotype, susceptibility to therapy, and treatment response, especially to targeted radioimmunotherapy. In this study, we prepared antiepidermal growth factor receptor (EGFR) antibody via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with (64)Cu or (177)Lu to evaluate the EGFR expression levels using immuno-PET and the feasibility of radioimmunotherapy in an esophageal squamous cell carcinoma (ESCC) model. Cetuximab was conjugated with p-SCN-Bn-PCTA and radiolabeled with (64)Cu or (177)Lu. In vitro EGFR expression levels were determined and compared using flow cytometry and cell binding assay. In vivo EGFR expression levels were evaluated via immuno-PET imaging of (64)Cu-cetuximab and biodistribution analysis. Micro-SPECT/CT imaging, biodistribution, and radioimmunotherapy studies of (177)Lu-cetuximab were performed in the ESCC model. Therapeutic responses were monitored using (18)F-FDG PET and immunohistochemical staining. (64)Cu- or (177)Lu-labeled antibodies showed high radiolabeling yield (>98%), stability (>90%), and favorable immunoreactivity. In vitro EGFR status measured by cell binding assay was correlated with the flow cytometry data. Immuno-PET, micro-SPECT/CT, and biodistribution demonstrated specific uptake in ESCC tumors depending on the EGFR expression levels. Tumor accumulation of (64)Cu- and (177)Lu-cetuximab was peaked at 48 and 120 h, respectively. Radioimmunotherapy with (177)Lu-cetuximab showed significant inhibition of tumor growth (P < 0.01) and marked reduction of (18)F-FDG SUV compared with that of control (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity and Ki-67 staining indices increased and decreased, respectively, in the radioimmunotherapy group compared with other groups (P < 0.01). (64)Cu-cetuximab immuno-PET represented EGFR expression levels in ESCC tumors, and

  2. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  3. Preclinical Comparison of Near-Infrared-Labeled Cetuximab and Panitumumab for Optical Imaging of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Day, Kristine E.; Sweeny, Larissa; Kulbersh, Brian; Zinn, Kurt R.; Rosenthal, Eben L.

    2014-01-01

    Purpose: Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC). Procedures: Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n=22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology. Results: Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (KD=0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p=0.08 SPY, p=0.48 Pearl; SCC-1: p=0.77 SPY, p=0.59 Pearl; paired t tests). Conclusions: There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC. PMID:23715932

  4. ME-10TUMOR MICROENVIRONMENT INFILTRATING MYELOID DERIVED SUPPRESSOR CELLS INHIBIT ANTI-TUMOR T CELL RESPONSES

    PubMed Central

    Kamran, Neha; Ayala, Mariela; Li, Youping; Assi, Hikmat; Candolfi, Marianela; Dzaman, Marta; Lowenstein, Pedro; Castro, Maria

    2014-01-01

    MDSCs represent a population of immature myeloid cells at various stages of differentiation that inhibit anti-tumor T cell-mediated responses. We demonstrate the accumulation of MDSCs in GL26 induced glioma and B16 melanoma bearing mice. Absolute numbers of Ly-6G+ (Gr-1high) MDSCs showed a 200 fold increase within the tumor microenvironment (TME) 28 days post-tumor implantation. The numbers of Ly-6C+ (Gr-1low) MDSCs also showed a similar trend within the TME. While this massive influx of MDSCs was noted within intracranial tumors, MDSC levels did not increase in the dLNs, spleen or bone marrow (BM) of intracranial tumor bearing mice. MDSCs numbers were significantly elevated in the blood of GL26 intracranial tumor bearing mice at 28 days. Mice bearing B16 tumors in the flank showed a ∼5 fold increased influx of Ly-6G+ MDSCs while the Ly6C+ MDSCs increased marginally by 1.1 fold within the tumor mass. Levels of circulating MDSCs also increased by ∼10 fold, while the levels of splenic MDSCs did not change. While both Ly-6G+ and Ly6C+ MDSCs isolated from the brain TME of GL26 intracranial tumor bearing mice inhibited antigen-specific T cell proliferation, Ly6C+ MDSC were found to be more efficient. Ly6G+ or Ly6C+ MDSCs from the bone marrow of intracranial tumor bearing mice failed to suppress antigen-specific T cell proliferation. Splenic and bone marrow MDSCs from naïve mice also did not inhibit antigen-specific T cell proliferation suggesting that TME derived factors may activate MDSCs to exert their immune-suppressive properties. Microarray analysis of glioma cell lines showed elevated levels of CXCL1 mRNA and splenic MDSCs from GL26 tumor mice showed upregulation of the CXCR2 mRNA. Preliminary experiments indicate that CXCR2 signaling mediates MDSC chemotaxis. Overall, our data suggests that strategies that inhibit MDSC recruitment to the TME and/or block their activity could enhance the T cell mediated tumor clearance.

  5. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    PubMed

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Identification of Metastatic Tumor Stem Cell

    DTIC Science & Technology

    2010-09-01

    addition to a tumor stem cell , an existence of a metastatic stem cell is predicted. Despite the critical importance of the concept, this idea has not been...isolating stem cell population from a unique set of breast tumor cell lines and by examining their metastatic behavior in an animal model. The overall...will (i) isolate stem - cell population from non-metastatic and metastatic cells of a pair of syngenic breast tumor cell lines, and test their metastatic

  7. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  8. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  9. Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor.

    PubMed

    Chen, Xuejuan; Pan, Yangang; Liu, Huiqing; Bai, Xiaojing; Wang, Nan; Zhang, Bailin

    2016-05-15

    Liver cancer is one of the most common and highly malignant cancers in the world. There are no effective therapeutic options if an early liver cancer diagnosis is not achieved. In this work, detection of HepG2 cells by label-free microcantilever array aptasensor was developed. The sensing microcantilevers were functionalized by HepG2 cells-specific aptamers. Meanwhile, to eliminate the interferences induced by the environment, the reference microcantilevers were modified with 6-mercapto-1-hexanol self-assembled monolayers. The aptasensor exhibits high specificity over not only human liver normal cells, but also other cancer cells of breast, bladder, and cervix tumors. The linear relation ranges from 1×10(3) to 1×10(5)cells/mL, with a detection limit of 300 cells/mL (S/N=3). Our work provides a simple method for detection of liver cancer cells with advantages in terms of simplicity and stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma.

    PubMed

    Song, Hai; Lin, Chuwen; Yao, Erica; Zhang, Kuan; Li, Xiaoling; Wu, Qingzhe; Chuang, Pao-Tien

    2017-03-03

    Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRP CreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53 , Rb , and Pten , in mature parafollicular C cells via an inducible Cre recombinase from CGRP CreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53 / Rb -induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRP CreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    PubMed

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  12. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-11-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress

  13. Proteomic characterization of EL4 lymphoma-derived tumors upon chemotherapy treatment reveals potential roles for lysosomes and caspase-6 during tumor cell death in vivo.

    PubMed

    Kramer, David A; Eldeeb, Mohamed A; Wuest, Melinda; Mercer, John; Fahlman, Richard P

    2017-06-01

    The murine mouse lymphoblastic lymphoma cell line (EL4) tumor model is an established in vivo apoptosis model for the investigation of novel cancer imaging agents and immunological treatments due to the rapid and significant response of the EL4 tumors to cyclophosphamide and etoposide combination chemotherapy. Despite the utility of this model system in cancer research, little is known regarding the molecular details of in vivo tumor cell death. Here, we report the first in-depth quantitative proteomic analysis of the changes that occur in these tumors upon cyclophosphamide and etoposide treatment in vivo. Using a label-free quantitative proteomic approach a total of 5838 proteins were identified in the treated and untreated tumors, of which 875 were determined to change in abundance with statistical significance. Initial analysis of the data reveals changes that may have been predicted, such as the downregulation of ribosomes, but demonstrates the robustness of the dataset. Analysis of the dataset also reveals the unexpected downregulation of caspase-3 and an upregulation of caspase-6 in addition to a global upregulation of lysosomal proteins in the bulk of the tumor. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Opportunities and Challenges for Pancreatic Circulating Tumor Cells.

    PubMed

    Nagrath, Sunitha; Jack, Rhonda M; Sahai, Vaibhav; Simeone, Diane M

    2016-09-01

    Sensitive and reproducible platforms have been developed for detection, isolation, and enrichment of circulating tumor cells (CTCs)-rare cells that enter the blood from solid tumors, including those of the breast, prostate gland, lung, pancreas, and colon. These might be used as biomarkers in diagnosis or determination of prognosis. CTCs are no longer simply detected and quantified; they are now used in ex vivo studies of anticancer agents and early detection. We review what we have recently learned about CTCs from pancreatic tumors, describing advances in their isolation and analysis and challenges to their clinical utility. We summarize technologies used to isolate CTCs from blood samples of patients with pancreatic cancer, including immunoaffinity and label-free physical attribute-based capture. We explain methods of CTC analysis and how findings from these studies might be used to detect cancer at earlier stages, monitor disease progression, and determine prognosis. We review studies that have expanded CTCs for testing of anticancer agents and how these approaches might be used to personalize treatment. Advances in the detection, isolation, and analysis of CTCs have increased our understanding of the dissemination and progression of pancreatic cancer. However, standardization of methodologies and prospective studies are needed for this emerging technology to have a significant effect on clinical care. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Mesenchymal stem cells in tumor development

    PubMed Central

    Cuiffo, Benjamin G.; Karnoub, Antoine E.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma. PMID:22863739

  16. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice.

    PubMed

    Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick

    2008-03-01

    A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.

  17. Synthesis and preliminary evaluation of a new (99m)tc labeled substance p analogue as a potential tumor imaging agent.

    PubMed

    Mozaffari, Saeed; Erfani, Mostafa; Beiki, Davood; Johari Daha, Fariba; Kobarfard, Farzad; Balalaie, Saeed; Fallahi, Babak

    2015-01-01

    Neurokinin 1 receptors (NK1R) are overexpressed on several types of important human cancer cells. Substance P (SP) is the most specific endogenous ligand known for NK1Rs. Accordingly,a new SP analogue was synthesized and evaluated for detection of NK1R positive tumors.[6-hydrazinopyridine-3-carboxylic acid (HYNIC)-Tyr(8)-Met(O)(11)-SP] was synthesized and radiolabeled with (99m)Tc using ethylenediamine-N,N'-diacetic acid (EDDA)and Tricine as coligands. Common physicochemical properties of radioconjugate were studied and in-vitro cell line biological tests were accomplished to determine the receptor mediated characteristics. In-vivo biodistribution in normal and tumor bearingnude mice was also assessed. The cold peptide was prepared in high purity (>99%) and radiolabeled with (99m)Tc at high specific activities (84-112GBq/µmol) with an acceptable labeling yield (>95%). The radioconjugate was stable in-vitro in the presence of human serum and showed 44% protein binding to human serumalbumin. In-vitro cell line studies on U373MG cells showed an acceptable uptake up to 4.91 ± 0.22% with the ratio of 60.21 ± 1.19% for its specific fraction and increasing specific internalization during 4 h. Receptor binding assays on U373MG cells indicated a mean Kd of 2.46 ± 0.43 nM and Bmax of 128925 ± 8145 sites/cell. In-vivo investigations determined the specific tumor uptake in 3.36 percent of injected dose per gram (%ID/g) for U373MG cells and noticeable accumulations of activity in the intestines and lung. Predominant renal excretion pathway was demonstrated. Therefore, this new radiolabeled peptide could be a promising radiotracer for detection of NK1R positive primary or secondary tumors.

  18. Synthesis and Preliminary Evaluation of a New 99mTc Labeled Substance P Analogue as a Potential Tumor Imaging Agent

    PubMed Central

    Mozaffari, Saeed; Erfani, Mostafa; Beiki, Davood; Johari Daha, Fariba; Kobarfard, Farzad; Balalaie, Saeed; Fallahi, Babak

    2015-01-01

    Neurokinin 1 receptors (NK1R) are overexpressed on several types of important human cancer cells. Substance P (SP) is the most specific endogenous ligand known for NK1Rs. Accordingly,a new SP analogue was synthesized and evaluated for detection of NK1R positive tumors.[6-hydrazinopyridine-3-carboxylic acid (HYNIC)-Tyr8-Met(O)11-SP] was synthesized and radiolabeled with 99mTc using ethylenediamine-N,N'-diacetic acid (EDDA)and Tricine as coligands. Common physicochemical properties of radioconjugate were studied and in-vitro cell line biological tests were accomplished to determine the receptor mediated characteristics. In-vivo biodistribution in normal and tumor bearingnude mice was also assessed. The cold peptide was prepared in high purity (>99%) and radiolabeled with 99mTc at high specific activities (84-112GBq/µmol) with an acceptable labeling yield (>95%). The radioconjugate was stable in-vitro in the presence of human serum and showed 44% protein binding to human serumalbumin. In-vitro cell line studies on U373MG cells showed an acceptable uptake up to 4.91 ± 0.22% with the ratio of 60.21 ± 1.19% for its specific fraction and increasing specific internalization during 4 h. Receptor binding assays on U373MG cells indicated a mean Kd of 2.46 ± 0.43 nM and Bmax of 128925 ± 8145 sites/cell. In-vivo investigations determined the specific tumor uptake in 3.36 percent of injected dose per gram (%ID/g) for U373MG cells and noticeable accumulations of activity in the intestines and lung. Predominant renal excretion pathway was demonstrated. Therefore, this new radiolabeled peptide could be a promising radiotracer for detection of NK1R positive primary or secondary tumors. PMID:25561916

  19. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  20. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    PubMed Central

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  1. Synthesis and evaluation of an 18 F-labeled trifluoroborate derivative of 2-nitroimidazole for imaging tumor hypoxia with positron emission tomography.

    PubMed

    Nunes, Paulo Sérgio Gonçalves; Zhang, Zhengxing; Kuo, Hsiou-Ting; Zhang, Chengcheng; Rousseau, Julie; Rousseau, Etienne; Lau, Joseph; Kwon, Daniel; Carvalho, Ivone; Bénard, François; Lin, Kuo-Shyan

    2018-04-01

    2-Nitroimidazole-based hypoxia imaging tracers such as 18 F-FMISO are normally imaged at late time points (several hours post-injection) due to their slow clearance from background tissues. Here, we investigated if a hydrophilic zwitterion-based ammoniomethyl-trifluoroborate derivative of 2-nitroimidazole, 18 F-AmBF 3 -Bu-2NI, could have the potential to image tumor hypoxia at earlier time points. AmBF 3 -Bu-2NI was prepared in 4 steps. 18 F labeling was conducted via 18 F- 19 F isotope exchange reaction, and 18 F-AmBF 3 -Bu-2NI was obtained in 14.8 ± 0.4% (n = 3) decay-corrected radiochemical yield with 24.5 ± 5.2 GBq/μmol specific activity and >99% radiochemical purity. Imaging and biodistribution studies in HT-29 tumor-bearing mice showed that 18 F-AmBF 3 -Bu-2NI cleared quickly from blood and was excreted via the hepatobiliary and renal pathways. However, the tumor was not visualized in PET images until 3 hours post-injection due to low tumor uptake (0.54 ± 0.13 and 0.19 ± 0.04%ID/g at 1 and 3 hours post-injection, respectively). The low tumor uptake is likely due to the highly hydrophilic motif of ammoniomethyl-trifluoroborate that prevents free diffusion of 18 F-AmBF 3 -Bu-2NI across the cell membrane. Our results suggest that highly hydrophilic 18 F-labeled ammoniomethyl-trifluoroborate derivatives might not be suitable for imaging intracellular targets including nitroreductase, a common tumor hypoxia imaging target. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  3. Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells.

    PubMed

    Faget, Julien; Biota, Cathy; Bachelot, Thomas; Gobert, Michael; Treilleux, Isabelle; Goutagny, Nadège; Durand, Isabelle; Léon-Goddard, Sophie; Blay, Jean Yves; Caux, Christophe; Ménétrier-Caux, Christine

    2011-10-01

    In breast carcinomas, patient survival seems to be negatively affected by the recruitment of regulatory T cells (T(reg)) within lymphoid aggregates by CCL22. However, the mechanisms underpinning this process, which may be of broader significance in solid tumors, have yet to be described. In this study, we determined how CCL22 production is controlled in tumor cells. In human breast carcinoma cell lines, CCL22 was secreted at low basal levels that were strongly increased in response to inflammatory signals [TNF-α, IFN-γ, and interleukin (IL)-1β], contrasting with CCL17. Primary breast tumors and CD45(+) infiltrating immune cells appeared to cooperate in driving CCL22 secretion, as shown clearly in cocultures of breast tumor cell lines and peripheral blood mononuclear cells (PBMC) or their supernatants. We determined that monocyte-derived IL-1β and TNF-α are key players as monocyte depletion or neutralization of these cytokines attenuated secretion of CCL22. However, when purified monocytes were used, exogenous human IFN-γ was also required to generate this response suggesting a role for IFN-γ-producing cells within PBMCs. In this setting, we found that human IFN-γ could be replaced by the addition of (i) IL-2 or K562-activated natural killer (NK) cells or (ii) resting NK cells in the presence of anti-MHC class I antibody. Taken together, our results show a dialogue between NK and tumor cells leading to IFN-γ secretion, which in turn associates with monocyte-derived IL-1β and TNF-α to drive production of CCL22 by tumor cells and subsequent recruitment of T(reg). As one validation of this conclusion in primary breast tumors, we showed that NK cells and macrophages tend to colocalize within tumors. In summary, our findings suggest that at early times during tumorigenesis, the detection of tumor cells by innate effectors (monocytes and NK cells) imposes a selection for CCL22 secretion that recruits T(reg) to evade this early antitumor immune response.

  4. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  5. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  6. Progesterone receptor antagonism inhibits progestogen-related carcinogenesis and suppresses tumor cell proliferation.

    PubMed

    Lee, Oukseub; Choi, Mi-Ran; Christov, Konstantin; Ivancic, David; Khan, Seema A

    2016-07-01

    Blockade of the progestogen-progesterone receptor (PR) axis is a novel but untested strategy for breast cancer prevention. We report preclinical data evaluating telapristone acetate (TPA), ulipristal acetate (UPA), and mifepristone. Tumors were induced with medroxyprogesterone acetate (MPA) plus 7,12-dimethylbenz[a]anthracene (DMBA) in mice, and MPA or progesterone plus N-methyl-N-nitrosourea (MNU) in rats. Mammary gland histology, tumor incidence, latency, multiplicity, burden and histology were evaluated, along with immunohistochemical labeling of pHH3 (proliferation), CD34 (angiogenesis), and estrogen and progesterone receptors (ER and PR). A concentration gradient of TPA, UPA, and mifepristone was tested for growth inhibition of T47D spheroids. In mouse mammary glands, no tumors formed, but TPA opposed the pro-hyperplastic effects of MPA (p = 0.002). In rats, TPA decreased tumor incidence (p = 0.037 for MPA + TPA vs. MPA, and p = 0.032 for progesterone + TPA vs. progesterone) and tumor burden (p = 0.042 for progesterone + TPA vs. progesterone), with significant decreases in pHH3 and CD34 positive cells. TPA and UPA were superior to mifepristone in growth inhibition of T47D spheroids. TPA has consistent anti-tumorigenic effects in several models, which are accompanied by decreases in cell proliferation, angiogenesis, and hormone receptor expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. [Inhibitory effect of ¹³¹I-CD133mAb combined with cisplatin on liver cancer cells in vitro and in a tumor-bearing mouse model].

    PubMed

    Chen, Xingyue; Hou, Yanli; Duan, Liqun; Tang, Min; Kang, Qiangqiang; Shu, Jin; Peng, Zhiping; Li, Shaolin

    2014-06-01

    To study the inhibitory effect of CD133 monoclonal antibody labeled with ¹³¹I (¹³¹I-CD133mAb) on Huh-7 human liver cancer cell line overexpressing CD133 antigen in vitro and in mouse models bearing the tumor cell xenograft. ¹³¹I-CD133mAb was prepared by chloramines-T method and evaluated for its stability. Flow cytometry and immunohistochemistry were used to detect the expression of CD133 in Huh-7 cells and in Huh-7 cell-derived tumors, respectively. Huh-7 cells treated with ¹³¹I-CD133mAb plus cisplatin (DDP), ¹³¹I -CD133mAb, DDP, or no treatment (blank control) were examined for cell proliferation suppression by MTT assay with the IC₅₀ calculated. BALB/c mice bearing subcutaneous Huh-7 cell xenograft in the right forelegs were treated with ¹³¹I -CD133mAb, DDP, or both every two days for two weeks. The tumor size and volume were measured twice a week, and pathological examination of the tumor was carried out after the treatments. The tumor inhibition rate was calculated and tumor cell apoptosis observed with HE staining. The labeling ratio of ¹³¹I-CD133mAb was 90.25% and the radiochemical purity was 97.78%. Huh-7 cells showed obviously higher CD133 expression than HepG2 cells. ¹³¹I-CD133mAb combined with DDP group resulted in a significantly higher tumor inhibition rate than other treatments in the tumor-bearing mice. ¹³¹I-CD133mAb can inhibit the growth of liver cancer cells with a high CD133 expression both in vivo and in vitro.

  8. Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells

    PubMed Central

    Stagge, Franziska; Mitronova, Gyuzel Y.; Belov, Vladimir N.; Wurm, Christian A.; Jakobs, Stefan

    2013-01-01

    Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6′-carboxy isomers and not the 5′-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of 1H NMR spectra to discriminate between 6′- and 5′-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae. PMID:24205303

  9. Alteration by prolactin of surface charge and membrane fluidity of rat 13762 mammary ascites tumor cells.

    PubMed

    Zarkower, D A; Plank, L D; Kunze, E; Keith, A; Todd, P; Hymer, W C

    1984-03-01

    Intraperitoneal injection of ovine prolactin (100 micrograms/d) in Fischer 344 rats bearing transplantable 13762 mammary ascites tumor (MAT) cells modifies the surface charge density and membrane fluidity of the tumor cells. In each of five experiments the mean electrophoretic mobility (epm) of MAT cells taken from prolactin-treated rats was significantly lower than that of cells from nonhormone-treated controls. Prolactin concentrations were increased in vivo by (a) direct intraperitoneal injection of ovine prolactin; (b) subcutaneous implantation of diethylstilbestrol-containing silastic capsules to produce pituitary prolactin secreting tumors; or (c) a single subcutaneous injection of polyestradiol phosphate, a long-acting estrogen. In an effort to establish that the prolactin effect was a direct one, two in vivo protocols were used: (a) MAT cells were coincubated with anterior pituitary halves obtained from nontumor-bearing littermates; or (b) rat or ovine prolactin was added to serum-free culture media containing MAT cells. In both protocols, the epm of the prolactin-treated cells was significantly lower. The isoelectric focusing pH of whole cells was increased by prolactin treatment from 4.93 to 5.12, consistent with a reduction in the number of surface carboxyl groups. The fluidity of membranes of treated cells was drastically increased, as measured by spin-label probe rotation rates. These combined results imply that the hormone exerts its effect by stimulating events in the cell that lead to a reduction of the average density of carboxylic acid residues on the tumor cell surface.

  10. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less

  11. Improving label-free detection of circulating melanoma cells by photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Wang, Qiyan; Pang, Kai; Zhou, Quanyu; Yang, Ping; He, Hao; Wei, Xunbin

    2018-02-01

    Melanoma is a kind of a malignant tumor of melanocytes with the properties of high mortality and high metastasis rate. The circulating melanoma cells with the high content of melanin can be detected by light absorption to diagnose and treat cancer at an early stage. Compared with conventional detection methods such as in vivo flow cytometry (IVFC) based on fluorescence, the in vivo photoacoustic flow cytometry (PAFC) utilizes melanin cells as biomarkers to collect the photoacoustic (PA) signals without toxic fluorescent dyes labeling in a non-invasive way. The information of target tumor cells is helpful for data analysis and cell counting. However, the raw signals in PAFC system contain numerous noises such as environmental noise, device noise and in vivo motion noise. Conventional denoising algorithms such as wavelet denoising (WD) method and means filter (MF) method are based on the local information to extract the data of clinical interest, which remove the subtle feature and leave many noises. To address the above questions, the nonlocal means (NLM) method based on nonlocal data has been proposed to suppress the noise in PA signals. Extensive experiments on in vivo PA signals from the mice with the injection of B16F10 cells in caudal vein have been conducted. All the results indicate that the NLM method has superior noise reduction performance and subtle information reservation.

  12. Biodistribution of iodine-125 and indium-111 labeled OV-TL 3 intact antibodies and F(ab')2 fragments in tumor-bearing athymic mice.

    PubMed

    Massuger, L F; Boerman, O C; Corstens, F H; Verheijen, R H; Claessens, R A; Poels, L G; van den Broek, W J; Kenemans, P

    1991-01-01

    The monoclonal antibody OV-TL 3, directed against an ovarian carcinoma-associated antigenic determinant, was tested as a vehicle for radioimmunolocalization of ovarian carcinomas in athymic mice bearing NIH:OVCAR-3 xenografts. The biodistribution of intact. OV-TL 3 was compared with the distribution of OC 125. Tumor uptake with OV-TL 3 was significantly higher than with OC 125, and almost 7 times higher than with a non-specific control antibody (OV-TL 19). Administration of a mixture of intact OV-TL 3 and OC 125 did not improve tumor uptake in comparison with OV-TL 3 alone. Subsequently, intact OV-TL 3 and its F(ab')2 fragments were labeled with either 111In or 125I. The highest tumor uptake was obtained with 111In-labeled intact OV-TL 3 (14.7% ID/g, 48 hr p.i.). For both antibody forms uptake of 111In in liver, spleen and kidneys was very high. Furthermore, 111In cleared more slowly from most tissues than 125I. As a result, tumor/tissue ratios with 111In-labeled OV-TL 3 were lower than with 125I-labeled OV-TL 3. The highest tumor/tissue ratios (6.9 to 53) were obtained with 125I-labeled OV-TL 3 F(ab')2 fragments, 48 hr post injection. 111In-labeled OV-TL 3 F(ab')2 has already been shown to be a clinically useful label for the detection of ovarian cancer. The results of our comparative animal study suggest that these clinical results may even be improved by using 123I-labeled OV-TL 3 F(ab')2.

  13. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells.

    PubMed

    Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M

    2015-12-01

    A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.

  14. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  15. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-13-1-0461 TITLE: Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells PRINCIPAL INVESTIGATOR: Daotai...29 2016 4. TITLE AND SUBTILE Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER...the c-MYC oncogene. POU5F1B is a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due

  16. Cell migration in microengineered tumor environments.

    PubMed

    Um, Eujin; Oh, Jung Min; Granick, Steve; Cho, Yoon-Kyoung

    2017-12-05

    Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.

  17. Augmentation of immune cell activity against tumor cells by Rauwolfia radix.

    PubMed

    Jin, Guang-Bi; Hong, Tie; Inoue, Satoshi; Urano, Tomohiko; Cho, Shigefumi; Otsu, Koji; Kitahara, Maya; Ouchi, Yasuyoshi; Cyong, Jong-Chol

    2002-08-01

    In this study, we investigated the effect of Rauwolfia radix on heat shock protein (HSP) 70 expression and cytotoxicity against tumor cells in activated human T cells. When activated T cells were cultured with Rauwolfia radix for 18 h, HSP70 expression after heat shock was remarkably increased, and cytotoxicity against T98G tumor cells was augmented. Moreover, Rauwolfia radix also enhanced the cytotoxicity of heat shocked activated T cells against Molt-4 and T98G tumor cells. Secretions of interferon-gamma (IFN-gamma) and tumor necrosis alpha (TNF-alpha), due to Concanavalin A (Con A) stimulation, were increased by Rauwolfia radix in activated T cells. To investigate the antitumor effect in vivo, EL-4 tumor-bearing mice were administered with Rauwolfia radix in drinking water. The survival period of the Rauwolfia radix treatment group was significantly prolonged compared with that of the control group. Reserpine, the major active ingredient of Rauwolfia radix, also enhanced the cytotoxicity of activated T cells against Molt-4 and T98G tumor cells, and prolonged the survival period of EL-4 tumor-bearing mice. Taken together, our results suggest that Rauwolfia radix can enhance the activity of immune cells against tumor cells.

  18. Melanoma targeting with alpha-melanocyte stimulating hormone analogs labeled with fac-[99mTc(CO)3]+: effect of cyclization on tumor-seeking properties.

    PubMed

    Raposinho, Paula D; Xavier, Catarina; Correia, João D G; Falcão, Soraia; Gomes, Paula; Santos, Isabel

    2008-03-01

    Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled alpha-melanocyte stimulating hormone (alpha-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized alpha-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of alpha-MSH (Ac-Nle-cyclo[Asp-His-DPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of alpha-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide betaAla-Nle-cyclo[Asp-His-D-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog betaAla-Nle-Asp-His-DPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of betaAla, and the resulting pz-peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 degrees C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 +/- 0.83 and 11.31 +/- 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz-peptide presented lower values for

  19. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex.

    PubMed

    Wang, Hongliang; Tang, Xiaolan; Tang, Ganghua; Huang, Tingting; Liang, Xiang; Hu, Kongzhen; Deng, Huaifu; Yi, Chang; Shi, Xinchong; Wu, Kening

    2013-08-01

    The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An (18)F-labeled DPAZn2 complex (4-(18)F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), (18)F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of (18)F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2'-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[(18)F]-fluorobenzoate ((18)F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of (18)F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of (18)F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of (18)F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that (18)F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of (18)F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.

  20. High efficiency labeling of glycoproteins on living cells

    PubMed Central

    Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.

    2010-01-01

    We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450

  1. Copper-64-labeled anti-bcl-2 PNA-peptide conjugates selectively localize to bcl-2-positive tumors in mouse models of B-cell lymphoma.

    PubMed

    Jia, Fang; Balaji, Baghavathy S; Gallazzi, Fabio; Lewis, Michael R

    2015-11-01

    The bcl-2 gene is overexpressed in non-Hodgkin's lymphoma (NHL). We have reported micro-SPECT/CT imaging of Mec-1 human lymphoma xenografts in SCID mice, using [(111)In]DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate. In order to reduce normal organ accumulation and improve imaging contrast, modified monomers with neutral hydrophilic (serine, TS) or negatively charged (aspartic acid, TD) residues were synthesized as substitutes for glycine at T(14) in the PNA sequence. The parent and modified PNA-peptide conjugates were labeled with (64)Cu and evaluated in biodistribution studies and high resolution PET/CT imaging of SCID mice bearing bcl-2-positive Mec-1 xenografts as well as bcl-2-negative Ramos xenografts. Mice were administered the (64)Cu-labeled conjugates for biodistribution and imaging studies. Biodistributions were obtained from 1 to 48 h post-injection. Mice were imaged from 1 to 48 h post-injection. The parent glycine conjugate and two modified conjugates all showed selective tumor uptake in Mec-1 xenografts. The liver uptake of the serine conjugate was significantly reduced compared to the two other PNA conjugates. Its kidney uptake was highest of the three at 47.1% ID/g at 1h and dropped to 20.6% ID/g at 24h. [Copper-64]DOTA-anti-bcl-2-TS-PNA-Tyr(3)-octreotate showed tumor uptake of 1.38% ID/g at 1h and 1.06% ID/g at 24h. The tumor-to-blood ratio was increased by factor of 2 from 1h to 24h. This compound detected Mec-1 tumors by micro-PET/CT as early as 1h post-injection and at time points out to 48 h. However, the negative control Ramos tumor could not be detected. These (64)Cu-labeled, amino acid-modified PNA conjugates showed selective tumor targeting in vivo, and tumor xenografts were detected by micro-PET/CT as early as 1h post-injection, suggesting that bcl-2 expression at the mRNA level can detected by PET in mouse models of NHL. Advances in knowledge and implications for patient care Down-regulating bcl-2, an anti-apoptotic proto-oncogene, is a mechanism

  2. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  3. Evaluating mononuclear cells as nanoparticle delivery vehicles for the treatment of breast tumors

    NASA Astrophysics Data System (ADS)

    Murton, Jaclyn K.; Hu, Chelin; Ahmed, Mona M.; Hathaway, Helen J.; Nysus, Monique; Anderson Daniels, Tamara; Norenberg, Jeffrey P.; Adolphi, Natalie L.

    2015-08-01

    In breast cancer, certain types of circulating immune cells respond to long-range chemical signals from tumors by leaving the blood stream to actively infiltrate tumor tissue. The aim of this study was to evaluate whether immune cells could be used to deliver therapeutic nanoparticles into breast tumors in mice. Mononuclear splenocytes (MS) were harvested from donor mice, labeled with Indium-111, injected intravenously into immune-competent recipient mice (3 tumor-bearing and 3 control), and imaged longitudinally by SPECT/CT. For comparison, the biodistribution of bonemarrow derived macrophages (BMDM) in one pair of mice was also imaged. Quantitative analysis of the SPECT images demonstrates that, after 24 hours, the concentration of MS detected in mammary tumors is more than 3-fold higher than the concentration detected in normal mammary glands. The ratio of MS concentration in mammary tissue to MS concentration in non-target tissues (muscle, lung, heart, liver, spleen, and kidney) was enhanced in tumor-bearing mice (compared to controls), with statistical significance achieved for mammary/muscle (p<0.01), mammary/lung (p<0.05), and mammary/kidney (p<0.05). By contrast, BMDM did not show a different affinity for tumors relative to normal mammary tissue. MS were incubated with 100 nm red fluorescent nanoparticles, and flow cytometry demonstrated that ~35% of the MS population exhibited strong phagocytic uptake of the nanoparticles. After intravenous injection into tumor-bearing mice, fluorescence microscopy images of tumor sections show qualitatively that nanoparticle-loaded MS retain the ability to infiltrate mammary tumors. Taken together, these results suggest that MS carriers are capable of actively targeting therapeutic nanoparticles to breast tumors.

  4. Arterial spin labeling perfusion-weighted MR imaging: correlation of tumor blood flow with pathological degree of tumor differentiation, clinical stage and nodal metastasis of head and neck squamous cell carcinoma.

    PubMed

    Abdel Razek, Ahmed Abdel Khalek; Nada, Nadia

    2018-05-01

    The prognostic parameters of head and neck squamous cell carcinoma (HNSCC) include the pathological degree of tumor differentiation, clinical staging, and presence of metastatic cervical lymph nodes. To correlate tumor blood flow (TBF) acquired from arterial spin labeling (ASL) perfusion-weighted MR imaging with pathological degree of tumor differentiation, clinical stage, and nodal metastasis of HNSCC. Retrospective analysis of 43 patients (31 male, 12 female with a mean age of 65 years) with HNSCC that underwent ASL of head and neck and TBF of HNSCC was calculated. Tumor staging and metastatic lymph nodes were determined. The stages of HNSCC were stage 1 (n = 7), stage II (n = 12), stage III (n = 11) and stage IV (n = 13). Metastatic cervical lymph nodes were seen in 24 patients. The degree of tumor differentiation was determined through pathological examination. The mean TBF of poorly and undifferentiated HNSCC (157.4 ± 6.7 mL/100 g/min) was significantly different (P = 0.001) than that of well-to-moderately differentiated (142.5 ± 5.7 mL/100 g/min) HNSCC. The cut-off TBF used to differentiate well-moderately differentiated from poorly and undifferentiated HNSCC was 152 mL/100 g/min with an area under the curve of 0.658 and accuracy of 88.4%. The mean TBF of stages I, II (146.10 ± 9.1 mL/100 g/min) was significantly different (P = 0.014) than that of stages III, IV (153.33 ± 9.3 mL/100 g/min) HNSCC. The cut-off TBF used to differentiate stages I, II from stages III and IV was 148 mL/100 g/min with an area under the curve of 0.701 and accuracy of 69.8%. The TBF was higher in patients with metastatic cervical lymph nodes. The cut-off TBF suspect metastatic node was 147 mL/100 g/min with an area under the curve of 0.671 and accuracy of 67.4%. TBF is a non-invasive imaging parameter that well correlated with pathological degree of tumor differentiation, clinical stage of tumor and nodal metastasis of HNSCC.

  5. Administration of 6-gingerol greatly enhances the number of tumor-infiltrating lymphocytes in murine tumors.

    PubMed

    Ju, Seong-A; Park, Sang-Min; Lee, Yea-Sol; Bae, Jun-Hyeong; Yu, Rina; An, Won G; Suh, Jae-Hee; Kim, Byung-Sam

    2012-06-01

    Tumor-infiltrating lymphocytes (TILs) play critical roles in host antitumor immune responses. It is known that cancer patients with tumor-reactive lymphocyte infiltration in their tumors have better prognoses, while patients with tumors infiltrated by immunosuppressive cells have worse prognoses. We found that administration of 6-gingerol, which is a component of ginger, inhibited tumor growth in several types of murine tumors, such as B16F1 melanomas, Renca renal cell carcinomas and CT26 colon carcinomas, which were established by inoculating tumor cells on the flanks of mice. However, administration of 6-gingerol did not lead to complete eradication of the tumors. 6-Gingerol treatment of tumor-bearing mice caused massive infiltration of CD4 and CD8 T-cells and B220(+) B-cells, but reduced the number of CD4(+) Foxp3(+) regulatory T-cells. The CD8 tumor-infiltrating T lymphocytes in 6-gingerol-treated mice strongly expressed IFN-γ, a marker of activation of cytotoxic T lymphocytes (CTL) CD107a and chemokine receptors that are expressed on T(H) 1 cells, such as CXCR3 and CCR5. To test whether 6-gingerol could promote infiltration of tumor antigen-specific CD8 T-cells into tumors, we adoptively transferred CFSE-labeled OT-1 CD8 T-cells into EG7 tumor-bearing mice. We found that CD8 T cells isolated from 6-gingerol pretreated OT-1 mice, but not from control OT-1 mice, massively infiltrated tumors and tumor draining lymph nodes and divided several times. Our results strongly suggest that 6-gingerol can be used in tumor immunotherapy to increase the number of TILs. Copyright © 2011 UICC.

  6. Role of Axumin PET Scan in Germ Cell Tumor

    ClinicalTrials.gov

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  7. [Isolation of circulating tumor cells in blood by means of "Isolation by SizE of Tumor cells (ISET)"].

    PubMed

    Liadov, V K; Skrypnikova, M A; Popova, O P

    2014-01-01

    There is evidence of the importance of circulating tumor cells in bloodstream as a factor of poor prognosis of cancer. The optimum method for isolating and studying of these cells is not defined. The most common methods are either based on the isolation of tumor genetic material from blood or on immune-mediated isolation of epithelial tumor cells. The first group of methods is characterized by a lack of specificity, while the latter do not allow identifying a pool of cells undergone in bloodstream epithelial-mesenchymal transformation. There is presented an overview of results of clinical trials of a new technique of isolation of tumor cells from bloodstream based on the patients' blood filtration through a membrane with defined pore sizes (ISET-Isolation by SizE of Tumor cells).

  8. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models.

    PubMed

    Shao, Haibo; Zhang, Jian; Sun, Ziping; Chen, Feng; Dai, Xu; Li, Yaming; Ni, Yicheng; Xu, Ke

    2015-06-10

    A viable rim of tumor cells surrounding central necrosis always exists and leads to tumor recurrence after vascular disrupting treatment (VDT). A novel necrosis targeted radiotherapy (NTRT) using iodine-131-labeled hypericin (131I-Hyp) was specifically designed to treat viable tumor rim and improve tumor control after VDT in rabbit models of multifocal VX2 tumors. NTRT was administered 24 hours after VDT. Tumor growth was significantly slowed down by NTRT with a smaller tumor volume and a prolonged tumor doubling time (14.4 vs. 5.7 days), as followed by in vivo magnetic resonance imaging over 12 days. The viable tumor rims were well inhibited in NTRT group compared with single VDT control group, as showed on tumor cross sections at day 12 (1 vs. 3.7 in area). High targetability of 131I-Hyp to tumor necrosis was demonstrated by in vivo SPECT as high uptake in tumor regions lasting over 9 days with 4.26 to 98 times higher radioactivity for necrosis versus the viable tumor and other organs by gamma counting, and with ratios of 7.7-11.7 and 10.5-13.7 for necrosis over peri-tumor tissue by autoradiography and fluorescence microscopy, respectively. In conclusion, NTRT improved the anticancer efficacy of VDT in rabbits with VX2 tumors.

  9. Deep Learning in Label-free Cell Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  10. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  11. Deep Learning in Label-free Cell Classification

    DOE PAGES

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  12. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  13. Two tumor models of curative adoptive chemoimmunotherapy using tumor-infiltrated spleen cells with potent antitumor cytotoxicity stimulated by antigen-sharing tumors.

    PubMed

    Laude, M; Russo, K L; Mokyr, M B; Dray, S

    1993-07-01

    Previously we have established curative protocols for adoptive chemoimmunotherapy (ACIT) of mice bearing different plasmacytomas that are known to bear cross-reacting antigens: (a) the cure of mice bearing an early-stage, nonpalpable MOPC-315 tumor by a very low dose of cyclophosphamide (10 mg/kg) and cultured MOPC-315-tumor-infiltrated (TI) spleen cells (25 x 10(6)) and (b) the cure of mice bearing a late-stage, relatively drug-resistant, highly metastatic RPC-5 tumor with cyclophosphamide (100 mg/kg) and cultured RPC-5 TI spleen cells (25 x 10(6) - 50 x 10(6)). In both models, the spleen cells were obtained from mice bearing a late-stage tumor and were cultured for 5 days in the presence of polyethyleneglycol 6000 and autochthonous tumor cells as a source of tumor antigen. Here we show that RPC-5 tumor cells could substitute for MOPC-315 tumor cells in the 5-day culture of MOPC-315 TI spleen cells so that they became curative in ACIT for mice bearing an early-stage MOPC-315 tumor. Similarly, MOPC-315 tumor cells could substitute for RPC-5 tumor cells in the 5-day culture of RPC-5 TI spleen cells so that they became curative in ACIT of mice bearing a late-stage RPC-5 tumor. In addition, RPC-5 TI spleen cells cultured with either MOPC-315 or RPC-5 tumor cells were effective in curing all mice bearing an early-stage MOPC-315 tumor by ACIT. However, MOPC-315 TI spleen cells whether cultured with MOPC-315 or RPC-5 tumor cells, were much less effective than cultured RPC-5 TI spleen cells in curing mice bearing a late-stage RPC-5 tumor by ACIT (although the survival of these mice was extended significantly). Interestingly, whereas RPC-5 TI spleen cells cultured with either MOPC-315 or RPC-5 tumor cells were as effective as MOPC-315 TI spleen cells cultured under the same conditions in lysing MOPC-315 tumor cells in vitro, MOPC-315 TI spleen cells that had been cultured with either MOPC-315 or RPC-5 tumor cells exerted a much weaker in vitro cytotoxic T lymphocyte

  14. Regulation of apoptosis by low serum in cells of different stages of neoplastic progression: enhanced susceptibility after loss of a senescence gene and decreased susceptibility after loss of a tumor suppressor gene.

    PubMed

    Preston, G A; Lang, J E; Maronpot, R R; Barrett, J C

    1994-08-01

    A cell culture model system has been used to study the susceptibility of cells to apoptotic cell death during different stages of neoplastic progression. This system consists of normal diploid Syrian hamster embryo (SHE) cells, two preneoplastic cell lines [tumor suppressor stage I (sup +I) and non-tumor suppressor stage II (sup -II)], and hamster tumor cell lines. Stage I preneoplastic cells are nontumorigenic immortal clones that suppress tumorigenicity when hybridized to tumor cells, whereas stage II cells have lost the ability to suppress tumorigenicity in cell hybrids. We refer to these two types of preneoplastic cells as sup +I and sup -II, respectively. Neoplastic progression is generally associated with cellular alterations in growth factor responsiveness. Therefore, to study the regulation of apoptosis in the system described above, cells were cultured in low serum (0.2%) as a means of withdrawing growth factors. In low serum, normal SHE cells were quiescent (labeling index of 0.2%), with little cell death. The sup +I cells showed a relatively low labeling index (1.6%) but, in contrast to the normal cells, died at a high rate (55% cell loss after 48 h) by apoptosis, as evidenced by morphology, DNA fragmentation, and in situ end-labeling of fragmented DNA. The apoptotic cells did not go through a replicative cycle while in low serum, implying that apoptosis was initiated in the G0/G1 phase of the cell cycle. The sup -II cell line showed a high labeling index (40%) after 48 h, but cell growth was balanced by cell death that occurred at approximately the same rate. The cells died, however, predominantly by necrosis. The tumor cell lines continued to proliferate in low serum, with high labeling indices (ranging from 27% to 43%) and a low level of apoptotic or necrotic cell death. To determine the relative ability of these cells to survive in vivo, normal SHE cells, sup +I cells, and sup -II cells were injected s.c. into nude mice. At 5 or 21 days after

  15. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    PubMed Central

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  16. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.

    PubMed

    Ford, Catriona A; Petrova, Sofia; Pound, John D; Voss, Jorine J L P; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L; Gallimore, Awen M; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E; Dunbar, Donald R; Murray, Paul G; Ruckerl, Dominik; Allen, Judith E; Hume, David A; van Rooijen, Nico; Goodlad, John R; Freeman, Tom C; Gregory, Christopher D

    2015-03-02

    Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a tumor but spare the stem-like cells, allowing the tumor to re-grow once chemotherapy is stopped. If, however, the cancer-initiating cells could be successfully targeted, cancer recurrence could be prevented.

  18. In vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Wang, Cheng; Hu, Cheng; Wang, Xueding; Wei, Xunbin

    2014-02-01

    Melanoma, a malignant tumor of melanocytes, is the most serious type of skin cancer in the world. It accounts for about 80% of deaths of all skin cancer. For cancer detection, circulating tumor cells (CTCs) serve as a marker for metastasis development, cancer recurrence, and therapeutic efficacy. Melanoma tumor cells have high content of melanin, which has high light absorption and can serve as endogenous biomarker for CTC detection without labeling. Here, we have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of melanoma cancer by counting CTCs of melanoma tumor bearing mice in vivo. To test in vivo PAFC's capability of detecting melanoma cancer, we have constructed a melanoma tumor model by subcutaneous inoculation of highly metastatic murine melanoma cancer cells, B16F10. In order to effectively distinguish the targeting PA signals from background noise, we have used the algorithm of Wavelet denoising method to reduce the background noise. The in vivo flow cytometry (IVFC) has shown a great potential for detecting circulating tumor cells quantitatively in the blood stream. Compared with fluorescence-based in vivo flow cytometry (IVFC), PAFC technique can be used for in vivo, label-free, and noninvasive detection of circulating tumor cells (CTCs).

  19. Chemotherapeutic tumor microparticles combining low-dose irradiation reprogram tumor-promoting macrophages through a tumor-repopulating cell-curtailing pathway

    PubMed Central

    Sun, Yanling; Zheng, Zu'an; Zhang, Huafeng; Yu, Yuandong; Ma, Jingwei; Tang, Ke; Xu, Pingwei; Ji, Tiantian; Liang, Xiaoyu; Chen, Degao; Jin, Xun; Zhang, Tianzhen; Long, Zhixiong; Liu, Yuying; Huang, Bo

    2017-01-01

    ABSTRACT Stem cell-like tumor-repopulating cells (TRCs) have a critical role in establishing a tumor immunosuppressive microenvironment. However, means to enhance antitumor immunity by disrupting TRCs are absent. Our previous studies have shown that tumor cell-derived microparticles (T-MPs) preferentially abrogate TRCs by delivering antitumor drugs into nuclei of TRCs. Here, we show that low dose irradiation (LDI) enhances the effect of cisplatin-packaging T-MPs (Cis-MPs) on TRCs, leading to inhibiting tumor growth in different tumor models. This antitumor effect is not due to the direct killing of tumor cells but is T cell-dependent and relies on macrophages for their efficacy. The underlying mechanism is involved in therapeutic reprograming macrophages from tumor-promotion to tumor-inhibition by disrupting TRCs and curtailing their vicious education on macrophages. These findings provide a novel strategy to reset macrophage polarization and confer their function more like M1 than M2 types with highly promising potential clinical applications. PMID:28680743

  20. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    PubMed

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  1. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.

    PubMed

    Schmidt, Felix; Efferth, Thomas

    2016-06-16

    Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  2. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries.

    PubMed

    Villano, J Lee; Propp, Jennifer M; Porter, Kimberly R; Stewart, Andrew K; Valyi-Nagy, Tibor; Li, Xinyu; Engelhard, Herbert H; McCarthy, Bridget J

    2008-04-01

    The exact incidence of pineal germ-cell tumors is largely unknown. The tumors are rare, and the number of patients with these tumors, as reported in clinical series, has been limited. The goal of this study was to describe pineal germ-cell tumors in a large number of patients, using data from available brain tumor databases. Three different databases were used: Surveillance, Epidemiology, and End Results (SEER) database (1973-2001); Central Brain Tumor Registry of the United States (CBTRUS; 1997-2001); and National Cancer Data Base (NCDB; 1985-2003). Tumors were identified using the International Classification of Diseases for Oncology, third edition (ICD-O-3), site code C75.3, and categorized according to histology codes 9060-9085. Data were analyzed using SAS/STAT release 8.2, SEER*Stat version 5.2, and SPSS version 13.0 software. A total of 1,467 cases of malignant pineal germ-cell tumors were identified: 1,159 from NCDB, 196 from SEER, and 112 from CBTRUS. All three databases showed a male predominance for pineal germ-cell tumors (>90%), and >72% of patients were Caucasian. The peak number of cases occurred in the 10- to 14-year age group in the CBTRUS data and in the 15- to 19-year age group in the SEER and NCDB data, and declined significantly thereafter. The majority of tumors (73%-86%) were germinomas, and patients with germinomas had the highest survival rate (>79% at 5 years). Most patients were treated with surgical resection and radiation therapy or with radiation therapy alone. The number of patients included in this study exceeds that of any study published to date. The proportions of malignant pineal germ-cell tumors and intracranial germ-cell tumors are in range with previous studies. Survival rates for malignant pineal germ-cell tumors are lower than results from recent treatment trials for intracranial germ-cell tumors, and patients that received radiation therapy in the treatment plan either with surgery or alone survived the longest.

  3. Heat-directed tumor cell fusion.

    PubMed

    Brade, Anthony M; Szmitko, Paul; Ngo, Duc; Liu, Fei-Fei; Klamut, Henry J

    2003-03-20

    In previous studies we demonstrated that a modified human HSP70b promoter (HSE.70b) directs high levels of gene expression to tumor cells after mild hyperthermia treatment in the range of 41.5-44 degrees C. This transcriptional targeting system exhibits low basal activity at 37 degrees C, is highly induced (950-fold) after mild heat treatment (43 degrees C/30 min), and returns to basal activity levels within 12-24 hours of activation. Here we describe heat-directed targeting of an activated form of the Gibbon ape leukemia virus env protein (GALV FMG) to tumor cells. GALV FMG mediates cell-cell fusion, and when expressed in tumor cells can produce bystander effects of up to 1:200. Transient transfection of a HSE70b.GALV FMG minigene caused extensive syncytia formation in HeLa and HT-1080 cells following mild heat treatment (44 degrees C/30 min). Stable transfection into HT-1080 cells produced a cell line (HG5) that exhibits massive syncytia formation and a 60% reduction in viability relative to a vector-only control (CI1) following heat treatment in vitro. Mild hyperthermia also resulted in syncytia formation, necrosis, and complete macroscopic regression of HG5 xenograft tumors grown in the footpads of mice with severe combined immunodeficiency disorders (SCID). Median survival increased from 12.5 (in heated CI1 controls) to 52 days after a single heat treatment. Heat-directed tumor cell fusion may prove to be a highly beneficial adjunct to existing cancer treatment strategies that take advantage of the synergistic interaction between mild hyperthermia and radiation or chemotherapeutic drugs.

  4. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer

    PubMed Central

    Gupta, Harshita B; Clark, Curtis A; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J

    2016-01-01

    As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885

  5. Labeling Human Mesenchymal Stem Cells with Gold Nanocages for in vitro and in vivo Tracking by Two-Photon Microscopy and Photoacoustic Microscopy

    PubMed Central

    Zhang, Yu Shrike; Wang, Yu; Wang, Lidai; Wang, Yucai; Cai, Xin; Zhang, Chi; Wang, Lihong V.; Xia, Younan

    2013-01-01

    Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo. PMID:23946820

  6. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus

    PubMed Central

    Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki

    2016-01-01

    Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)–expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus–adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell–specific microRNA, miR-142-3p, were incorporated into the 3′-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699

  7. Cryo-image Analysis of Tumor Cell Migration, Invasion, and Dispersal in a Mouse Xenograft Model of Human Glioblastoma Multiforme

    PubMed Central

    Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.

    2012-01-01

    Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093

  8. Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer.

    PubMed

    Mo, Lijun; Chen, Qianmei; Zhang, Xinji; Shi, Xiaojun; Wei, Lili; Zheng, Dianpeng; Li, Hongwei; Gao, Jimin; Li, Jinlong; Hu, Zhiming

    2017-10-13

    ICOS + Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS + Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8 + and CD4 + T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS + Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DNA Tumor Viruses and Cell Metabolism

    PubMed Central

    Mushtaq, Muhammad; Darekar, Suhas

    2016-01-01

    Viruses play an important role in cancerogenesis. It is estimated that approximately 20% of all cancers are linked to infectious agents. The viral genes modulate the physiological machinery of infected cells that lead to cell transformation and development of cancer. One of the important adoptive responses by the cancer cells is their metabolic change to cope up with continuous requirement of cell survival and proliferation. In this review we will focus on how DNA viruses alter the glucose metabolism of transformed cells. Tumor DNA viruses enhance “aerobic” glycolysis upon virus-induced cell transformation, supporting rapid cell proliferation and showing the Warburg effect. Moreover, viral proteins enhance glucose uptake and controls tumor microenvironment, promoting metastasizing of the tumor cells. PMID:27034740

  10. In Vitro and In Vivo Evaluation of a 18F-Labeled High Affinity NOTA Conjugated Bombesin Antagonist as a PET Ligand for GRPR-Targeted Tumor Imaging

    PubMed Central

    Velikyan, Irina; Lindeberg, Gunnar; Sörensen, Jens; Larhed, Mats; Antoni, Gunnar; Sandström, Mattias; Tolmachev, Vladimir; Orlova, Anna

    2013-01-01

    Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological

  11. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  12. Does Arterial Spin-labeling MR Imaging–measured Tumor Perfusion Correlate with Renal Cell Cancer Response to Antiangiogenic Therapy in a Mouse Model?

    PubMed Central

    Schor-Bardach, Rachel; Alsop, David C.; Pedrosa, Ivan; Solazzo, Stephanie A.; Wang, Xiaoen; Marquis, Robert P.; Atkins, Michael B.; Regan, Meredith; Signoretti, Sabina; Lenkinski, Robert E.; Goldberg, S. Nahum

    2009-01-01

    Purpose: To determine whether arterial spin-labeling (ASL) magnetic resonance (MR) imaging findings at baseline and early during antiangiogenic therapy can predict later resistance to therapy. Materials and Methods: Protocol was approved by an institutional animal care and use committee. Caki-1, A498, and 786-0 human renal cell carcinoma (RCC) xenografts were implanted in 39 nude mice. Animals received 80 mg sorafenib per kilogram of body weight once daily once tumors measured 12 mm. ASL imaging was performed at baseline and day 14, with additional imaging performed for 786-0 and A498 (3 days to 12 weeks). Mean blood flow values and qualitative differences in spatial distribution of blood flow were analyzed and compared with histopathologic findings for viability and microvascular density. t Tests were used to compare differences in mean tumor blood flow. Bonferroni-adjusted P values less than .05 denoted significant differences. Results: Baseline blood flow was 80.1 mL/100 g/min ± 23.3 (standard deviation) for A498, 75.1 mL/100 g/min ± 28.6 for 786-0, and 10.2 mL/100 g/min ± 9.0 for Caki-1. Treated Caki-1 showed no significant change (14.9 mL/100 g/min ± 7.6) in flow, whereas flow decreased in all treated A498 on day 14 (47.9 mL/100 g/min ± 21.1) and in 786-0 on day 3 (20.3 mL/100 g/min ± 8.7) (P = .003 and .03, respectively). For A498, lowest values were measured at 28–42 days of receiving sorafenib. Regions of increased flow occurred on days 35–49, 17–32 days before documented tumor growth and before significant increases in mean flow (day 77). Although 786-0 showed new, progressive regions with signal intensity detected as early as day 5 that correlated to viable tumor at histopathologic examination, no significant changes in mean flow were noted when day 3 was compared with all subsequent days (P > .99). Conclusion: ASL imaging provides clinically relevant information regarding tumor viability in RCC lines that respond to sorafenib. © RSNA, 2009

  13. Simulating Heterogeneous Tumor Cell Populations

    PubMed Central

    Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620

  14. An active learning approach for rapid characterization of endothelial cells in human tumors.

    PubMed

    Padmanabhan, Raghav K; Somasundar, Vinay H; Griffith, Sandra D; Zhu, Jianliang; Samoyedny, Drew; Tan, Kay See; Hu, Jiahao; Liao, Xuejun; Carin, Lawrence; Yoon, Sam S; Flaherty, Keith T; Dipaola, Robert S; Heitjan, Daniel F; Lal, Priti; Feldman, Michael D; Roysam, Badrinath; Lee, William M F

    2014-01-01

    Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

  15. Probing Tumor Microenvironment with In Vivo Phage Display

    DTIC Science & Technology

    2014-09-01

    becomes so dense that it blocks the access of anti-tumor drugs to tumor cells (Kalluri and Zeisberg, 2006; Sund and Kalluri, 2009). Tumor vessels are...together with synthetic iRGD peptide or 15 min after iRGD injection to facilitate extravasation of the phage pool within the breast tumor tissue. Co...populations within the tumor tissue (arrows). 6 Co-injection of non-labeled iRGD peptide enhanced the extravasation of FAM-CIS into the tumor

  16. [Prevalence and clinicopathological characteristics of giant cell tumors].

    PubMed

    Estrada-Villaseñor, E G; Linares-González, L M; Delgado-Cedillo, E A; González-Guzmán, R; Rico-Martínez, G

    2015-01-01

    The frequency of giant cell tumors reported in the literature is very variable. Considering that our population has its own features, which distinguish it from the Anglo-Saxon and Asian populations, we think that both the frequency and the clinical characteristics of giant cell tumors in our population are different. The major aim of this paper was to determine the frequency and clinicopathological characteristics of giant cell tumors of the bone. A cross-sectional descriptive study was conducted of the cases diagnosed at our service as giant cell tumors of the bone from January to December 2013. The electronic clinical records, radiologic records and histologic slides from each case were reviewed. Giant cell tumors represented 17% of total bone tumors and 28% of benign tumors. Patients included 13 females and 18 males. The most frequent locations of giant cell tumors were: the proximal tibia, 9 cases (29%), and the distal femur, 6 cases (19%). Forty-five percent of giant cell tumors were associated with aneurysmal bone cyst (ABC) (14 cases) and one case (3%) was malignant. The frequency of giant cell tumors in this case series was intermediate, that is, higher than the one reported in Anglo-Saxon countries (usually low), but without reaching the frequency rates reported in Asian countries (high).

  17. Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma

    PubMed Central

    Tamosaityte, Sandra; Leipnitz, Elke; Geiger, Kathrin D.; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Background Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors. Methods Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic mouse model. Cryosections were investigated by CARS imaging tuned to probe C-H molecular vibrations, thereby addressing the lipid content of the sample. Raman microspectroscopy was used as reference. Histopathology provided information about the tumor's localization, cell proliferation and vascularization. Results The morphochemical contrast of CARS images enabled identifying brain tumors irrespective of the tumor type and properties: All tumors were characterized by a lower CARS signal intensity than the normal parenchyma. On this basis, tumor borders and infiltrations could be identified with cellular resolution. Quantitative analysis revealed that the tumor-related reduction of CARS signal intensity was more pronounced in glioblastoma than in metastases. Raman spectroscopy enabled relating the CARS intensity variation to the decline of total lipid content in the tumors. The analysis of the immunohistochemical stainings revealed no correlation between tumor-induced cytological changes and the extent of CARS signal intensity reductions. The results were confirmed on samples of human glioblastoma. Conclusions CARS imaging enables label-free, rapid and objective identification of primary and secondary brain tumors. Therefore, it is a potential tool for diagnostic neuropathology as well as for intraoperative tumor delineation. PMID:25198698

  18. Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.

    PubMed

    Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas

    2018-04-03

    With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.

  19. Antigen localization controls T cell-mediated tumor immunity.

    PubMed

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  20. The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors.

    PubMed

    Chang, Chun-Jung; Tai, Kuo-Feng; Roffler, Steve; Hwang, Lih-Hwa

    2004-11-15

    Tumor cells engineered to secrete cytokines, referred to as tumor cell vaccines, can often generate systemic antitumor immunity and, in many cases, cause tumor regression. We compared the efficacy of s.c. immunization or intrahepatic immunization of GM-CSF-expressing tumor cell vaccines on the growth of s.c. or orthotopic liver tumors. A chemically transformed hepatic epithelial cell line, GP7TB, derived from Fischer 344 rats, was used to generate tumor models and tumor cell vaccines. Our results demonstrated that two s.c. injections of an irradiated tumor cell vaccine significantly controlled the growth of s.c. tumors, but was completely ineffective against orthotopic liver tumors. Effector cell infiltration in liver tumors was markedly reduced compared with s.c. tumors. Enhanced apoptosis of some effector cells was observed in the liver tumors compared with the s.c. tumors. Furthermore, the T cells induced by s.c. immunization preferentially migrated to s.c. tumor sites, as demonstrated by adoptive transfer experiments. In contrast, intrahepatic immunization, using parental tumor cells admixed with adenoviruses carrying the GM-CSF gene, yielded significantly better therapeutic effects on the liver tumors than on the s.c. tumors. Adoptive transfer experiments further confirmed that the T cells induced by liver immunization preferentially migrated to the liver tumor sites. Our results demonstrate that distinct T cell populations are induced by different immunization routes. Thus, the homing behavior of T cells depends on the route of immunization and is an important factor determining the efficacy of immunotherapy for regional tumors.

  1. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopwood, L.E.; Moulder, J.E.

    1989-11-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not formore » ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance.« less

  2. 6-Gingerol Mediates its Anti Tumor Activities in Human Oral and Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest.

    PubMed

    Kapoor, Vaishali; Aggarwal, Sadhna; Das, Satya N

    2016-04-01

    6-Gingerol, a potent nutraceutical, has been shown to have antitumor activity in different tumors, although its mechanism of action is not well understood. In this study, we evaluated antitumor activities of 6-gingerol on human oral (SCC4, KB) and cervical cancer (HeLa) cell lines with or without wortmannin, rapamycin, and cisplatin. Tumor cell proliferation was observed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, cell cycle analysis by propidium iodide labeling and flow cytometry, apoptosis by Annexin-V binding assay, and caspase activity by chemiluminescence assay. 6-Gingerol showed dose-dependent cytotoxicity in all three cell lines. Combinations of 6-gingerol with wortmannin and cisplatin showed additive effects, while with rapamycin, it showed 50% cytotoxicity that was equivalent to IC50 of 6-gingerol alone. Treatment with 6-gingerol resulted in G2-phase arrest in KB and HeLa cells and S-phase arrest in SCC4 cells. 6-Gingerol, wortmannin, and rapamycin treatment showed almost two-fold higher expression of caspase 3 in all cell lines. The results imply that 6-gingerol either alone or in combination with PI-3 K inhibitor and cisplatin may provide better therapeutic effects in oral and cervical carcinoma. Thus, 6-gingerol appears to be a safe and potent chemotherapeutic/chemopreventive compound acting through cell cycle arrest and induction of apoptosis in human oral and cervical tumor cells. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Silencing of p130Cas in Ovarian Carcinoma: A Novel Mechanism for Tumor Cell Death

    PubMed Central

    Nick, Alpa M.; Stone, Rebecca L.; Armaiz-Pena, Guillermo; Ozpolat, Bulent; Tekedereli, Ibrahim; Graybill, Whitney S.; Landen, Charles N.; Villares, Gabriel; Vivas-Mejia, Pablo; Bottsford-Miller, Justin; Kim, Hye Sun; Lee, Ju-Seog; Kim, Soo Mi; Baggerly, Keith A.; Ram, Prahlad T.; Deavers, Michael T.; Coleman, Robert L.; Lopez-Berestein, Gabriel

    2011-01-01

    Background We investigated the clinical and biological significance of p130cas, an important cell signaling molecule, in ovarian carcinoma. Methods Expression of p130cas in ovarian tumors, as assessed by immunohistochemistry, was associated with tumor characteristics and patient survival. The effects of p130cas gene silencing with small interfering RNAs incorporated into neutral nanoliposomes (siRNA-DOPC), alone and in combination with docetaxel, on in vivo tumor growth and on tumor cell proliferation (proliferating cell nuclear antigen) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling) were examined in mice bearing orthotopic taxane-sensitive (HeyA8 and SKOV3ip1) or taxane-resistant (HeyA8-MDR) ovarian tumors (n = 10 per group). To determine the specific mechanisms by which p130cas gene silencing abrogates tumor growth, we measured cell viability (MTT assay), apoptosis (fluorescence-activated cell sorting), autophagy (immunoblotting, fluorescence, and transmission electron microscopy), and cell signaling (immunoblotting) in vitro. All statistical tests were two-sided. Results Of 91 ovarian cancer specimens, 70 (76%) had high p130cas expression; and 21 (24%) had low p130cas expression. High p130cas expression was associated with advanced tumor stage (P < .001) and higher residual disease (>1 cm) following primary cytoreduction surgery (P = .007) and inversely associated with overall survival and progression-free survival (median overall survival: high p130cas expression vs low expression, 2.14 vs 9.1 years, difference = 6.96 years, 95% confidence interval = 1.69 to 9.48 years, P < .001; median progression-free survival: high p130cas expression vs low expression, 1.04 vs 2.13 years, difference = 1.09 years, 95% confidence interval = 0.47 to 2.60 years, P = .01). In mice bearing orthotopically implanted HeyA8 or SKOV3ip1 ovarian tumors, treatment with p130cas siRNA-DOPC in combination with docetaxel chemotherapy resulted in the greatest

  4. ZnO-Based Nanoplatforms for Labeling and Treatment of Mouse Tumors without Detectable Toxic Side Effects.

    PubMed

    Ye, Dai-Xin; Ma, Ying-Ying; Zhao, Wei; Cao, Hong-Mei; Kong, Ji-Lie; Xiong, Huan-Ming; Möhwald, Helmuth

    2016-04-26

    ZnO quantum dots (QDs) were synthesized with polymer shells, coordinated with Gd(3+) ions and adsorbed doxorubicin (DOX) together to form a new kind of multifunctional ZnO-Gd-DOX nanoplatform. Such pH sensitive nanoplatforms were shown to release DOX to cancer cells in vitro and to mouse tumors in vivo, and reveal better specificity and lower toxicity than free DOX, and even better therapeutic efficacy than an FDA approved commercial DOX-loading drug DOX-Liposome Injection (DOXIL, NDA#050718). The ZnO-Gd-DOX nanoplatforms exhibited strong red fluorescence, which benefited the fluorescent imaging on live mice. Due to the special structure of ZnO-Gd-DOX nanoparticles, such nanoplatforms possessed a high longitudinal relaxivity r1 of 52.5 mM(-1) s(-1) at 0.55 T, which was superior to many other Gd(3+) based nanoparticles. Thus, both fluorescence labeling and magnetic resonance imaging could be applied simultaneously on the tumor bearing mice along with drug delivery. After 36 days of treatment on these mice, ZnO-Gd-DOX nanoparticles greatly inhibited the tumor growth without causing any appreciable abnormality in major organs. The most important merit of ZnO-Gd-DOX was that such a nanoplatform was biodegraded completely and showed no toxic side effects after H&E (hematoxylin and eosin) staining of tumor slices and ICP-AES (inductively coupled plasma atomic emission spectrometry) bioanalyses.

  5. Promotion of Tumor-Initiating Cells in Primary and Recurrent Breast Tumors

    DTIC Science & Technology

    2014-10-01

    confer stemness . We hypothesize that inhibition of IKK/NF-κB will reduce or eliminate breast camcer TICs, blocking tumorigenesis. Furthermore, we...Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011 Oct;121(10):3804-9. Review...cells and sub- population of cells termed cancer stem cells or tumor-initiating cells (TICs).1 The primary characteristic of TICs is their ability to

  6. Nanoparticle Imaging of Integrins on Tumor Cells1

    PubMed Central

    Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee

    2006-01-01

    Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415

  7. NKT Cells as an Ideal Anti-Tumor Immunotherapeutic

    PubMed Central

    Fujii, Shin-ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-01-01

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  8. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  9. Brick by brick: metabolism and tumor cell growth

    PubMed Central

    DeBerardinis, Ralph J.; Sayed, Nabil; Ditsworth, Dara; Thompson, Craig B.

    2008-01-01

    Summary Tumor cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. Classical work in tumor cell metabolism focused on bioenergetics, particularly enhanced glycolysis and suppressed oxidative phosphorylation (the ‘Warburg effect’). But the biosynthetic activities required to create daughter cells are equally important for tumor growth, and recent studies are now bringing these pathways into focus. In this review, we discuss how tumor cells achieve high rates of nucleotide and fatty acid synthesis, how oncogenes and tumor suppressors influence these activities, and how glutamine metabolism enables macromolecular synthesis in proliferating cells. PMID:18387799

  10. Tumor-stem cells interactions by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  11. Segmentation of Vasculature from Fluorescently Labeled Endothelial Cells in Multi-Photon Microscopy Images.

    PubMed

    Bates, Russell; Irving, Benjamin; Markelc, Bostjan; Kaeppler, Jakob; Brown, Graham; Muschel, Ruth J; Brady, Sir Michael; Grau, Vicente; Schnabel, Julia A

    2017-08-09

    Vasculature is known to be of key biological significance, especially in the study of tumors. As such, considerable effort has been focused on the automated segmentation of vasculature in medical and pre-clinical images. The majority of vascular segmentation methods focus on bloodpool labeling methods, however, particularly in the study of tumors it is of particular interest to be able to visualize both perfused and non-perfused vasculature. Imaging vasculature by highlighting the endothelium provides a way to separate the morphology of vasculature from the potentially confounding factor of perfusion. Here we present a method for the segmentation of tumor vasculature in 3D fluorescence microscopy images using signals from the endothelial and surrounding cells. We show that our method can provide complete and semantically meaningful segmentations of complex vasculature using a supervoxel-Markov Random Field approach. We show that in terms of extracting meaningful segmentations of the vasculature, our method out-performs both a state-ofthe- art method, specific to these data, as well as more classical vasculature segmentation methods.

  12. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  13. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines.

    PubMed

    Kishimoto, Takuya Evan; Yashima, Shoko; Nakahira, Rei; Onozawa, Eri; Azakami, Daigo; Ujike, Makoto; Ochiai, Kazuhiko; Ishiwata, Toshiyuki; Takahashi, Kimimasa; Michishita, Masaki

    2017-07-07

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 10 3 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.

  14. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    PubMed

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  15. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis

    PubMed Central

    Herrera, Victoria LM; Colby, Aaron H; Tan, Glaiza AL; Moran, Ann M; O’Brien, Michael J; Colson, Yolonda L; Ruiz-Opazo, Nelson; Grinstaff, Mark W

    2016-01-01

    Aim: To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. Methods & materials: A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. Results: The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. Conclusion: eNPs are a promising tool for the detection and treatment of PPC. PMID:27078118

  16. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    PubMed

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  17. Glycophenotype evaluation in cutaneous tumors using lectins labeled with acridinium ester.

    PubMed

    Lima, Luiza Rayanna Amorim; Bezerra, Matheus Filgueira; Almeida, Sinara Mônica Vitalino; Silva, Lúcia Patrícia Bezerra Gomes; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra

    2013-01-01

    Tumor cells show alterations in their glycosylation patterns when compared to normal cells. Lectins can be used to evaluate these glycocode changes. Chemiluminescence assay is an effective technique for quantitative analysis of proteins, nucleic acids, and carbohydrates due to its high sensitivity, specificity, and rapid testing. To use histochemiluminescence based on lectin conjugated to acridinium ester (AE) for the investigation of glycophenotype changes in cutaneous tumors. Concanavalin A (Con A), Peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I), and Maackia amurensis agglutinin (MAA) were conjugated to acridinium ester. Biopsies of cutaneous tumors and normal skin were incubated with the lectins-AE, and chemiluminescence was quantified and expressed as Relative Light Units (RLU). Results. Actinic keratosis (AK), keratoacanthoma (KA), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) showed lower expression of α -D-glucose/mannose and α -L-fucose residues compared to normal tissue. Cutaneous tumors displayed higher expression of Gal- β (1-3)-GalNAc residues than normal tissue. AK and SCC exhibited higher expression of Neu5Ac- α (2,3)Gal residues than normal epidermis. KA and BCC showed equivalent RLU values compared to normal tissue. Lectin histochemiluminescence allowed quantitative assessment of the carbohydrate expression in cutaneous tissues, contributing to eliminate the subjectivity of conventional techniques used in the histopathological diagnosis.

  18. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell

    PubMed Central

    Chen, Jiang; Li, Hong-Yu; Wang, Di; Shao, Xiao-Dong

    2015-01-01

    Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination. PMID:25736302

  19. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  20. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2017-04-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK IL-12 ) produced high amounts of IFNγ. The addition of a low number of A-NK IL-12 cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK IL-12 cells. OT-I-CTLs and A-NK IL-12 cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK IL-12 cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase tumor

  1. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a

  2. Cotransfecting norepinephrine transporter and vesicular monoamine transporter 2 genes for increased retention of metaiodobenzylguanidine labeled with iodine 131 in malignant hepatocarcinoma cells.

    PubMed

    Zhao, Yanlin; Zhong, Xiao; Ou, Xiaohong; Cai, Huawei; Wu, Xiaoai; Huang, Rui

    2017-03-01

    Norepinephrine transporter (NET) transfection leads to significant uptake of iodine-131-labeled metaiodobenzylguanidine ( 131 I-MIBG) in non-neuroendocrine tumors. However, the use of 131 I-MIBG is limited by its short retention time in target cells. To prolong the retention of 131 I-MIBG in target cells, we infected hepatocarcinoma (HepG2) cells with Lentivirus-encoding human NET and vesicular monoamine transporter 2 (VMAT2) genes to obtain NET-expressing, NET-VMAT2-coexpressing, and negative-control cell lines. We evaluated the uptake and efflux of 131 I-MIBG both in vitro and in vivo in mice bearing transfected tumors. NET-expressing and NET-VMAT2-coexpressing cells respectively showed 2.24 and 2.22 times higher 131 I-MIBG uptake than controls. Two hours after removal of 131 I-MIBG-containing medium, 25.4% efflux was observed in NET-VMAT2-coexpressing cells and 38.6% in NET-expressing cells. In vivo experiments were performed in nude mice bearing transfected tumors; results revealed that NET-VMAT2-coexpressing tumors had longer 131 I-MIBG retention time than NET-expressing tumors. Meanwhile, NET-VMAT2-coexpressing and NET-expressing tumors displayed 0.54% and 0.19%, respectively, of the injected dose per gram of tissue 24 h after 131 I-MIBG administration. Cotransfection of HepG2 cells with NET and VMAT2 resulted in increased 131 I-MIBG uptake and retention. However, the degree of increase was insufficient to be therapeutically effective in target cells.

  3. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  4. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines

    PubMed Central

    KISHIMOTO, Takuya Evan; YASHIMA, Shoko; NAKAHIRA, Rei; ONOZAWA, Eri; AZAKAMI, Daigo; UJIKE, Makoto; OCHIAI, Kazuhiko; ISHIWATA, Toshiyuki; TAKAHASHI, Kimimasa; MICHISHITA, Masaki

    2017-01-01

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 103 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis. PMID:28529244

  5. Effects of linker modification on tumor-to-kidney contrast of 68Ga-labeled PSMA-targeted imaging probes.

    PubMed

    Kuo, Hsiou-Ting; Pan, Jinhe; Zhang, Zhengxing; Lau, Joseph; Merkens, Helen; Zhang, Chengcheng; Colpo, Nadine; Lin, Kuo-Shyan; Benard, Francois

    2018-06-19

    68Ga-PSMA-11 is currently the most popular prostate-specific membrane antigen (PSMA) radioligand used in the clinic to detect prostate cancer and metastases. However, the high uptake of 68Ga-PSMA-11 in kidneys can create halo-artifacts resulting in lower detection sensitivity for lesions adjacent to the kidneys. In this study, we developed two 68Ga-labeled PSMA-targeted tracers, 68Ga-HTK01166 and 68Ga-HTK01167, based on 68Ga-PSMA-617 with the goal of improving tumor-to-kidney ratio compared to 68Ga-PSMA-11. The 2-naphthylalanine (2-Nal) in PSMA-617 was replaced with 2-indanylglycine (Igl) or 3,3-diphenylalanine (Dip) to synthesize HTK01166 and HTK01167, respectively. Binding affinities (Ki) of Ga-PSMA-11, Ga-PSMA-617, Ga-HTK01166 and Ga-HTK01167 to PSMA were 3.13 ± 0.40, 1.23 ± 0.08, 5.74 ± 2.48 and 25.7 ± 9.84 nM, respectively, as determined by in vitro competition binding assays. 68Ga labeling was performed in HEPES buffer with microwave heating, and 68Ga-labeled PSMA-11, PSMA-617, HTK01166 and HTK01167 were obtained in 46 - 69% average decay-corrected radiochemical yield with >99% radiochemical purity and 62.9 - 152 GBq/μmol average specific activity. PET imaging and biodistribution studies were performed in mice bearing PSMA-expressing LNCap prostate cancer xenografts. All tracers enabled clear visualization of tumors in PET images with excellent tumor-to-background contrast. The uptake values (%ID/g) for tumor and kidneys at 1 h post-injection were 8.91 ± 0.86 and 204 ± 70.6 for 68Ga-PSMA-11, 16.7 ± 2.30 and 29.2 ± 5.14 for 68Ga-PSMA-617, 14.1 ± 4.40 and 147 ± 59.6 for 68Ga-HTK01166, and 7.79 ± 1.65 and 4.30 ± 1.80 for 68Ga-HTK01167. The tumor-to-kidney ratios for 68Ga-labeled PSMA-11, PSMA-617, HTK01166 and HTK01167 were 0.05 ± 0.02, 0.63 ± 0.10, 0.10 ± 0.02 and 1.98 ± 0.63, respectively. Compared with 68Ga-PSMA-617, 68Ga-HTK01166 showed comparable tumor uptake, and almost 5-fold higher kidney uptake; whereas 68Ga-HTK01167 exhibited lower

  6. Ferritin conjugates as specific magnetic labels. Implications for cell separation.

    PubMed Central

    Odette, L L; McCloskey, M A; Young, S H

    1984-01-01

    Concanavalin A coupled to the naturally occurring iron storage protein ferritin is used to label rat erythrocytes and increase the cells' magnetic susceptibility. Labeled cells are introduced into a chamber containing spherical iron particles and the chamber is placed in a uniform 5.2 kG (gauss) magnetic field. The trajectory of cells in the inhomogeneous magnetic field around the iron particles and the polar distributions of cells bound to the iron particles compare well with the theoretical predictions for high gradient magnetic systems. On the basis of these findings we suggest that ferritin conjugated ligands can be used for selective magnetic separation of labeled cells. Images FIGURE 2 PMID:6743752

  7. A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model.

    PubMed

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2016-11-01

    The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin α V β 3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin α V β 3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin α V β 3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin α V β 3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin α V β 3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Effect of Chelator Conjugation Level and Injection Dose on Tumor and Organ Uptake of 111In Labeled MORAb-009, an Anti-mesothelin Antibody

    PubMed Central

    Shin, I. S.; Lee, S.-M.; Kim, H. S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K. T.; Hassan, R.; Campo, M. F.; Albone, E. F.; Choyke, P. L.; Pastan, I.; Paik, C. H.

    2012-01-01

    Introduction Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin and the effect of MORAb dose on the biodistribution of 111In labeled MORAb-009. Methods We used nude mice bearing A431/K5 tumor as a mesothelin-positive tumor model and A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5, and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed-mesothelin in the circulation, the biodistribution studies were performed after the i.v. co-injection of the 111In labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses, 0.2, 2, and 30 μg of MORAb-009. Results The tumor uptake in A431/K5 tumor was 4 times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin-mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in biodistribution of the 111In label. The 111In labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake, and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30 μg dose produced higher tumor uptake than the 0.2 and 2 μg doses whereas the 30 μg dose produced lower liver and spleen uptakes than the 0.2 μg dose. Conclusion This study

  9. Effect of chelator conjugation level and injection dose on tumor and organ uptake of 111In-labeled MORAb-009, an anti-mesothelin antibody.

    PubMed

    Shin, In Soo; Lee, Sang-Myung; Kim, Hyung Sub; Yao, Zhengsheng; Regino, Celeste; Sato, Noriko; Cheng, Kenneth T; Hassan, Raffit; Campo, Melissa F; Albone, Earl F; Choyke, Peter L; Pastan, Ira; Paik, Chang H

    2011-11-01

    Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor-targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin, and the effect of MORAb dose on the biodistribution of (111)In-labeled MORAb-009. We used nude mice bearing the A431/K5 tumor as a mesothelin-positive tumor model and the A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5 and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed mesothelin in the circulation, biodistribution studies were performed after the intravenous co-injection of (111)In-labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses: 0.2, 2 and 30 μg of MORAb-009. The tumor uptake in A431/K5 tumor was four times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in the biodistribution of the (111)In label. The (111)In-labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30-μg dose produced higher tumor uptake than the 0.2- and 2-μg doses, whereas the 30-μg dose produced lower liver and spleen uptakes than the 0.2-μg dose. This study demonstrates that the

  10. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response.

    PubMed

    Ning, Yongling; Shen, Kai; Wu, Qiyong; Sun, Xiao; Bai, Yu; Xie, Yewen; Pan, Jie; Qi, Chunjian

    2018-07-01

    Tumors can induce the generation and accumulation of immunosuppression in a tumor microenvironment, contributing to the tumor's escape from immunological surveillance. Although tumor antigen-pulsed dendritic cell can improve anti-tumor immune responses, tumor associated regulatory dendritic cells are involved in the induction of immune tolerance. The current study sought to investigate whether exosomes produced by tumor cells had any effect on DCs in immune suppression. In this study, we examined the effect of tumor exosomes on DCs and found that exosomes from LLC Lewis lung carcinoma or 4T1 breast cancer cell blocked the differentiation of myeloid precursor cells into CD11c + DCs and induced cell apoptosis. Tumor exosome treatment inhibited the maturation and migration of DCs and promoted the immune suppression of DCs. The treatment of tumor exosomes drastically decreased CD4 + IFN-γ + Th1 differentiation but increased the rates of regulatory T (Treg) cells. The immunosuppressive ability of tumor exosome-treated DCs were partially restored with PD-L1 blockage. These data suggested that PD-L1 played a role in tumor exosome-induced DC-associated immune suppression. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Tissue Regeneration in the Chronically Inflamed Tumor Environment: Implications for Cell Fusion Driven Tumor Progression and Therapy Resistant Tumor Hybrid Cells.

    PubMed

    Dittmar, Thomas; Zänker, Kurt S

    2015-12-19

    The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that "accidental" tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells.

  12. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  13. Photodynamic therapy and knocking out of single tumor cells by multiphoton excitation processes

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Fischer, Peter; Koenig, Karsten

    2004-09-01

    Near infrared (NIR) ultrashort laser pulses of 780 nm have been used to induce intracellular photodynamic reactions by nonlinear excitation of porphyrin photosensitizers. Intracellular accumulation and photobleaching of the fluorescent photosensitizers protoporphyrin IX and Photofrin (PF) have been studied by non-resonant two-photon fluorescence excitation of PF and aminolevulinic acid (ALA)-labeled Chinese hamster ovary (CHO) cells. To testify the efficacy of both substrates to induce irreversible destructive effects, the cloning efficiency (CE) of cells exposed to femtosecond pulses of a multiphoton laser scanning microscope (40x/1.3) was determined. In the case of Photofrin accumulation, CEs of 50% and 0% were obtained after 17 laserscans (2 mW?, 16 s/ frame) and 50 scans, respectively. All cells exposed to 50 scans died within 48h after laser exposure. 100 scans were required to induce lethal effects in ALA labeled cells. Sensitizer-free control cells could be scanned 250 times (1.1 h) and more without impact on the reproduction behavior, morphology, and vitality. In addition to the slow phototoxic effect by photooxidation processes, another destructive but immediate effect based on optical breakdown was induced when employing high intense NIR femtosecond laser beams. This was used to optically knock out single tumor cells in living mice (solid Ehrlich-Carcinoma) in a depth of 10 to 100 μm.

  14. Tumor-homing effect of human mesenchymal stem cells in a TH-MYCN mouse model of neuroblastoma.

    PubMed

    Kimura, Koseki; Kishida, Tsunao; Wakao, Junko; Tanaka, Tomoko; Higashi, Mayumi; Fumino, Shigehisa; Aoi, Shigeyoshi; Furukawa, Taizo; Mazda, Osam; Tajiri, Tatsuro

    2016-12-01

    Human mesenchymal stem cells (hMSCs) are multipotent stem-like cells that are reported to have tumor-suppression effects and migration ability toward damaged tissues or tumors. The aim of this study was to analyze the tumor-homing ability of hMSCs and antitumor potency in a transgenic TH-MYCN mouse model of neuroblastoma (NB). hMSCs (3×10 6 ) labeled with DiR, a lipophilic near-infrared dye, were intraperitoneally (i.p.) or intravenously (i.v.) administered to the TH-MYCN mice. hMSC in vivo kinetics were assayed using the IVIS® imaging system for 24h after injection. Immunohistochemistry using human CD90 antibody was also performed to confirm the location of hMSCs in various organs and tumors. Furthermore, the survival curve of TH-MYCN mice treated with hMSCs was compared to a control group administered PBS. i.p. hMSCs were recognized in the tumors of TH-MYCN mice by IVIS. hMSCs were also located inside the tumor tissue. Conversely, most of the i.v. hMSCs were captured by the lungs, and migration into the tumors was not noted. There was no significant difference in the survival between the hMSC and control groups. The present study suggested that hMSCs may be potential tumor-specific therapeutic delivery vehicles in NB according to their homing potential to tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Long‐term effects of crizotinib in ALK‐positive tumors (excluding NSCLC): A phase 1b open‐label study

    PubMed Central

    Orlov, Sergey; Zhang, Li; Braiteh, Fadi; Huang, Huiqiang; Esaki, Taito; Horibe, Keizo; Ahn, Jin‐Seok; Beck, Joseph T.; Edenfield, William Jeffrey; Shi, Yuankai; Taylor, Matthew; Tamura, Kenji; Van Tine, Brian A.; Wu, Shang‐Ju; Paolini, Jolanda; Selaru, Paulina; Kim, Tae Min

    2018-01-01

    Abstract Crizotinib, an inhibitor of anaplastic lymphoma kinase (ALK), MET, and ROS1, is approved for treatment of patients with ALK‐positive or ROS1‐positive advanced non‐small‐cell lung cancer (NSCLC). However, ALK rearrangements are also implicated in other malignancies, including anaplastic large‐cell lymphoma and inflammatory myofibroblastic tumors (IMTs). In this ongoing, multicenter, single‐arm, open‐label phase 1b study (PROFILE 1013; NCT01121588), patients with ALK‐positive advanced malignancies other than NSCLC were to receive a starting dose of crizotinib 250 mg twice daily. Primary endpoints were safety and objective responses based on Response Evaluation Criteria in Solid Tumors version 1.1 or National Cancer Institute International Response Criteria. Forty‐four patients were enrolled (lymphoma, n = 18; IMT, n = 9; other tumors, n = 17). The objective response rate was 53% (95% confidence interval [CI], 28–77) for lymphoma, with 8 complete responses (CRs) and 1 partial response (PR); 67% (95% CI, 30–93) for IMTs, with 1 CR and 5 PRs; and 12% (95% CI, 2–36) for other tumors, with 2 PRs in patients affected by colon carcinoma and medullary thyroid cancer, respectively. The median duration of treatment was almost 3 years for patients with lymphoma and IMTs, with 2‐year progression‐free survival of 63% and 67%, respectively. The most common treatment‐related adverse events were diarrhea (45.5%) and vision disorders (45.5%), mostly grade 1. These findings indicate strong and durable activity of crizotinib in ALK‐positive lymphomas and IMTs. The safety profile was consistent with the known safety profile of crizotinib even with long‐term treatment. PMID:29352732

  16. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  17. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    PubMed

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  18. Fluorescent Photo-conversion: A second chance to label unique cells

    PubMed Central

    Mellott, Adam J.; Shinogle, Heather E.; Moore, David S.; Detamore, Michael S.

    2014-01-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the “unique” cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population. PMID:25914756

  19. Fluorescent Photo-conversion: A second chance to label unique cells.

    PubMed

    Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S

    2015-03-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.

  20. Label Structured Cell Proliferation Models

    DTIC Science & Technology

    2010-06-16

    and (, + ) are the cell proliferation and death rates , respectively, relative to the moving label coordinate system + . Daughter...proliferation and death rates relative to this new coordinate system. While not common in the biological sciences, it is altogether common in the physical

  1. Anti-tumor therapy with macroencapsulated endostatin producer cells

    PubMed Central

    2010-01-01

    Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that immunoisolation devices

  2. Anti-tumor therapy with macroencapsulated endostatin producer cells.

    PubMed

    Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia

    2010-03-02

    Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin

  3. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and p<0.001 for the 750 dyes). Human pancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (p<0.001 for the 650 dyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  4. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2017-12-07

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  5. Copine-III interacts with ErbB2 and promotes tumor cell migration.

    PubMed

    Heinrich, C; Keller, C; Boulay, A; Vecchi, M; Bianchi, M; Sack, R; Lienhard, S; Duss, S; Hofsteenge, J; Hynes, N E

    2010-03-18

    ErbB2 amplification and overexpression in breast cancer correlates with aggressive disease and poor prognosis. To find novel ErbB2-interacting proteins, we used stable isotope labeling of amino acids in cell culture followed by peptide affinity pull-downs and identified specific binders using relative quantification by mass spectrometry. Copine-III, a member of a Ca(2+)-dependent phospholipid-binding protein family, was identified as binding to phosphorylated Tyr1248 of ErbB2. In breast cancer cells, Copine-III requires Ca(2+) for binding to the plasma membrane, where it interacts with ErbB2 upon receptor stimulation, an interaction that is dependent on receptor activity. Copine-III also binds receptor of activated C kinase 1 and colocalizes with phosphorylated focal adhesion kinase at the leading edge of migrating cells. Importantly, knockdown of Copine-III in T47D breast cancer cells causes a decrease in Src kinase activation and ErbB2-dependent wound healing. Our data suggest that Copine-III is a novel player in the regulation of ErbB2-dependent cancer cell motility. In primary breast tumors, high CPNE3 RNA levels significantly correlate with ERBB2 amplification. Moreover, in an in situ tissue microarray analysis, we detected differential protein expression of Copine-III in normal versus breast, prostate and ovarian tumors, suggesting a more general role for Copine-III in carcinogenesis.

  6. 64Cu-Labeled Trastuzumab Fab-PEG24-EGF Radioimmunoconjugates Bispecific for HER2 and EGFR: Pharmacokinetics, Biodistribution, and Tumor Imaging by PET in Comparison to Monospecific Agents.

    PubMed

    Kwon, Luke Yongkyu; Scollard, Deborah A; Reilly, Raymond M

    2017-02-06

    Heterodimerization of EGFR with HER2 coexpressed in breast cancer (BC) promotes tumor growth, and increased EGFR expression is associated with trastuzumab resistance. Our aim was to construct 64 Cu-labeled bispecific radioimmunoconjugates (bsRIC) composed of trastuzumab Fab, which binds HER2 linked through a polyethylene glycol (PEG 24 ) spacer to EGF, and to compare their pharmacokinetic, biodistribution, and tumor imaging characteristics by positron-emission tomography (PET). bsRICs were generated by linking maleimide modified trastuzumab Fab with thiolated EGF through a thioether bond. HER2 and EGFR binding were assessed in vitro in MDA-MB-231 (EGFR mod /HER2 low ), MDA-MB-468 (EGFR high /HER2 neg ), MDA-MB-231-H2N (EGFR mod /HER2 mod ), and SKOV3 (EGFR low /HER2 high ) cells by competition and saturation cell binding assays to estimate the dissociation constant (K d ). The elimination of the 64 Cu-NOTA-trastuzumab Fab-PEG 24 -EGF bsRICs from the blood of Balb/c mice was compared to monospecific 64 Cu-NOTA-trastuzumab Fab and 64 Cu-NOTA-EGF. MicroPET/CT imaging was performed in NOD/SCID mice bearing subcutaneous MDA-MB-468, MDA-MB-231/H2N, or SKOV3 human BC xenografts at 24 and 48 h postinjection (p.i.) of bsRICs. Tumor and normal tissue uptake were quantified by biodistribution studies and compared to monospecific agents. The binding of bsRICs to MDA-MB-231 cells was decreased to 24.5 ± 5.2% by excess EGF, while the binding of bsRICs to SKOV3 cells was decreased to 38.6 ± 5.4% by excess trastuzumab Fab, demonstrating specific binding to both EGFR and HER2. 64 Cu-labeled bsRICs incorporating the PEG 24 spacer were eliminated more slowly from the blood than 64 Cu-bsRICs without the PEG spacer and were cleared much more slowly than 64 Cu-NOTA-Fab or 64 Cu-NOTA-EGF. All three tumor xenografts were visualized by microPET/CT at 24 and 48 h p.i. of bsRICs. Biodistribution studies at 48 h p.i. in NOD/SCID mice with MDA-MB-231/H2N tumors demonstrated significantly

  7. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines

    PubMed Central

    Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.

    2016-01-01

    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769

  8. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  9. CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice

    PubMed Central

    Trempus, Carol S.; Morris, Rebecca J.; Ehinger, Matthew; Elmore, Amy; Bortner, Carl D.; Ito, Mayumi; Cotsarelis, George; Nijhof, Joanne G.W.; Peckham, John; Flagler, Norris; Kissling, Grace; Humble, Margaret M.; King, Leon C.; Adams, Linda D.; Desai, Dhimant; Amin, Shantu; Tennant, Raymond W.

    2007-01-01

    The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice. PMID:17483328

  10. Glycophenotype Evaluation in Cutaneous Tumors Using Lectins Labeled with Acridinium Ester

    PubMed Central

    Lima, Luiza Rayanna Amorim; Almeida, Sinara Mônica Vitalino; Silva, Lúcia Patrícia Bezerra Gomes; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra

    2013-01-01

    Background. Tumor cells show alterations in their glycosylation patterns when compared to normal cells. Lectins can be used to evaluate these glycocode changes. Chemiluminescence assay is an effective technique for quantitative analysis of proteins, nucleic acids, and carbohydrates due to its high sensitivity, specificity, and rapid testing. Objective. To use histochemiluminescence based on lectin conjugated to acridinium ester (AE) for the investigation of glycophenotype changes in cutaneous tumors. Methods. Concanavalin A (Con A), Peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I), and Maackia amurensis agglutinin (MAA) were conjugated to acridinium ester. Biopsies of cutaneous tumors and normal skin were incubated with the lectins-AE, and chemiluminescence was quantified and expressed as Relative Light Units (RLU). Results. Actinic keratosis (AK), keratoacanthoma (KA), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) showed lower expression of α-D-glucose/mannose and α-L-fucose residues compared to normal tissue. Cutaneous tumors displayed higher expression of Gal-β(1-3)-GalNAc residues than normal tissue. AK and SCC exhibited higher expression of Neu5Ac-α(2,3)Gal residues than normal epidermis. KA and BCC showed equivalent RLU values compared to normal tissue. Conclusions. Lectin histochemiluminescence allowed quantitative assessment of the carbohydrate expression in cutaneous tissues, contributing to eliminate the subjectivity of conventional techniques used in the histopathological diagnosis. PMID:24167360

  11. Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters.

    PubMed

    Bithi, Swastika S; Vanapalli, Siva A

    2017-02-02

    Drug assays with patient-derived cells such as circulating tumor cells requires manipulating small sample volumes without loss of rare disease-causing cells. Here, we report an effective technology for isolating and analyzing individual tumor cells and their clusters from minute sample volumes using an optimized microfluidic device integrated with pipettes. The method involves using hand pipetting to create an array of cell-laden nanoliter-sized droplets immobilized in a microfluidic device without loss of tumor cells during the pipetting process. Using this technology, we demonstrate single-cell analysis of tumor cell response to the chemotherapy drug doxorubicin. We find that even though individual tumor cells display diverse uptake profiles of the drug, the onset of apoptosis is determined by accumulation of a critical intracellular concentration of doxorubicin. Experiments with clusters of tumor cells compartmentalized in microfluidic drops reveal that cells within a cluster have higher viability than their single-cell counterparts when exposed to doxorubicin. This result suggests that circulating tumor cell clusters might be able to better survive chemotherapy drug treatment. Our technology is a promising tool for understanding tumor cell-drug interactions in patient-derived samples including rare cells.

  12. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    PubMed

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  13. Evaluating the efficacy of subcellular fractionation of blast cells using live cell labeling and 2D DIGE.

    PubMed

    Ho, Yin Ying; Penno, Megan; Perugini, Michelle; Lewis, Ian; Hoffmann, Peter

    2012-01-01

    Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel.

  14. [Circulating tumor cells: cornerstone of personalized medicine].

    PubMed

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  15. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    PubMed Central

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-01-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394

  16. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging

    PubMed Central

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-01-01

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375

  17. Tumor Expression of CD200 Inhibits IL-10 Production by Tumor-Associated Myeloid Cells and Prevents Tumor Immune Evasion of CTL Therapy

    PubMed Central

    Wang, Lixin; Liu, Jin-Qing; Talebian, Fatemeh; El-Omrani, Hani Y.; Khattabi, Mazin; Yu, Li; Bai, Xue-Feng

    2010-01-01

    CD200 is a cell-surface glycoprotein that functions through interaction with the CD200 receptor (CD200R) on myeloid lineage cells to regulate myeloid cell functions. Expression of CD200 has been implicated in multiple types of human cancer, however the impact of tumor expression of CD200 on tumor immunity remains poorly understood. To evaluate this issue, we generated CD200-positive mouse plasmacytoma J558 and mastocytoma P815 cells. We found that established CD200-positive tumors were often completely rejected by adoptively transferred CTL without tumor recurrence; in contrast, CD200-negative tumors were initially rejected by adoptively transferred CTL but the majority of tumors recurred. Tumor expression of CD200 significantly inhibited suppressive activity and IL-10 production by tumor-associated myeloid cells (TAMC), and as a result, more CTL accumulated in the tumor and exhibited a greater capacity to produce IFN-γ in CD200-positive tumors than in CD200-negative tumors. Neutralization of IL-10 significantly inhibited the suppressor activity of TAMC, and IL-10-deficiency allowed TAMC to kill cancer cells and their antigenic variants, which prevented tumor recurrence during CTL therapy. Thus, tumor expression of CD200 prevents tumor recurrence via inhibiting IL-10 production by TAMC. PMID:20662098

  18. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips†

    PubMed Central

    Earhart, Christopher M.; Hughes, Casey E.; Gaster, Richard S.; Ooi, Chin Chun; Wilson, Robert J.; Zhou, Lisa Y.; Humke, Eric W.; Xu, Lingyun; Wong, Dawson J.; Willingham, Stephen B.; Schwartz, Erich J.; Weissman, Irving L.; Jeffrey, Stefanie S.; Neal, Joel W.; Rohatgi, Rajat; Wakelee, Heather A.; Wang, Shan X.

    2014-01-01

    Detection and characterization of circulating tumor cells (CTCs) may reveal insights into the diagnosis and treatment of malignant disease. Technologies for isolating CTCs developed thus far suffer from one or more limitations, such as low throughput, inability to release captured cells, and reliance on expensive instrumentation for enrichment or subsequent characterization. We report a continuing development of a magnetic separation device, the magnetic sifter, which is a miniature microfluidic chip with a dense array of magnetic pores. It offers high efficiency capture of tumor cells, labeled with magnetic nanoparticles, from whole blood with high throughput and efficient release of captured cells. For subsequent characterization of CTCs, an assay, using a protein chip with giant magnetoresistive nanosensors, has been implemented for mutational analysis of CTCs enriched with the magnetic sifter. The use of these magnetic technologies, which are separate devices, may lead the way to routine preparation and characterization of “liquid biopsies” from cancer patients. PMID:23969419

  19. Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.

    PubMed

    Perera, Yasser; Costales, Heydi C; Diaz, Yakelin; Reyes, Osvaldo; Farina, Hernan G; Mendez, Lissandra; Gómez, Roberto E; Acevedo, Boris E; Gomez, Daniel E; Alonso, Daniel F; Perea, Silvio E

    2012-04-01

    CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  20. Alstonine as a potential fluorescent marker for tiny tumor detection and imaging

    NASA Astrophysics Data System (ADS)

    Viallet, Pierre M.; Vo-Dinh, Tuan; Salmon, Jean-Marie; Watts, Wendi; Rocchi, Emmanuelle; Isola, Narayana R.; Rebillard, Xavier

    1997-06-01

    3,4,5,6,16,17-Hexadehydro-16-(methoxycarbolyl)-19(alpha) - methyl-20(alpha) -oxyohimbanium (alstonine) is a fluorescent alcaloid which is known to stain tumor cells more efficiently than normal. The interactions between alstonine and biological macromolecules were first investigated to provide the rationale for preferential labelling. Molecular filtration and spectrosfluorometric techniques with different macromolecules and isopolynucleotides have demonstrated that binding occurs only in the presence of uridyl rings. For the binding affect only the fluorescence intensity of alstonine it can be assumed that it involves only the side chain of the fluorescent compound. The capability for preferential staining was verified in culture using SK-OV-3 cells and rat hepatocarcinoma cells as tumor cells and Mouse fibroblasts or rat liver cells as controls. Techniques of image analysis have demonstrated the efficiency of cellular labelling even in aggregates of rat hepatocarcinoma. These experiments lead the way to the detection of tiny tumors developed on thin visceral walls, using a fiber optic device.

  1. STRESS IN THE CLASSIFICATION OF PITUITARY TUMORS. FOCUS ON AGGRESSIVE PITUITARY ADENOMAS.

    PubMed

    Kovács, Kálmán; Rotondo, Fabio; Horváth, Eva; Syro, Luis V

    2014-03-30

    After a brief summary of the stress concept and the contribution of Dr. Hans Selye, this publication focuses on the classification of pituitary neoplasms and the difficulties to provide conclusive information on the prognosis of various pituitary tumor types. The term "aggressive pituitary tumors" was introduced. These tumors have a rapid cell proliferation rate. At present, the assessment of Ki-67 nuclear labeling index appears to be the simplest and most reliable method to evaluate tumor cell multiplication. Further studies on pituitary tumor biomarkers are needed.

  2. Selective dye-labeling of newly synthesized proteins in bacterial cells.

    PubMed

    Beatty, Kimberly E; Xie, Fang; Wang, Qian; Tirrell, David A

    2005-10-19

    We describe fluorescence labeling of newly synthesized proteins in Escherichia coli cells by means of Cu(I)-catalyzed cycloaddition between alkynyl amino acid side chains and the fluorogenic dye 3-azido-7-hydroxycoumarin. The method involves co-translational labeling of proteins by the non-natural amino acids homopropargylglycine (Hpg) or ethynylphenylalanine (Eth) followed by treatment with the dye. As a demonstration, the model protein barstar was expressed and treated overnight with Cu(I) and 3-azido-7-hydroxycoumarin. Examination of treated cells by confocal microscopy revealed that strong fluorescence enhancement was observed only for alkynyl-barstar treated with Cu(I) and the reactive dye. The cellular fluorescence was punctate, and gel electrophoresis confirmed that labeled barstar was localized in inclusion bodies. Other proteins showed little fluorescence. Examination of treated cells by fluorimetry demonstrated that cultures supplemented with Eth or Hpg showed an 8- to 14-fold enhancement in fluorescence intensity after labeling. Addition of a protein synthesis inhibitor reduced the emission intensity to levels slightly above background, confirming selective labeling of newly synthesized proteins in the bacterial cell.

  3. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    PubMed

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  4. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis.

    PubMed

    Nieva, Jorge; Wendel, Marco; Luttgen, Madelyn S; Marrinucci, Dena; Bazhenova, Lyudmila; Kolatkar, Anand; Santala, Roger; Whittenberger, Brock; Burke, James; Torrey, Melissa; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Sampling circulating tumor cells (CTCs) from peripheral blood is ideally accomplished using assays that detect high numbers of cells and preserve them for downstream characterization. We sought to evaluate a method using enrichment free fluorescent labeling of CTCs followed by automated digital microscopy in patients with non-small cell lung cancer. Twenty-eight patients with non-small cell lung cancer and hematogenously seeded metastasis were analyzed with multiple blood draws. We detected CTCs in 68% of analyzed samples and found a propensity for increased CTC detection as the disease progressed in individual patients. CTCs were present at a median concentration of 1.6 CTCs ml⁻¹ of analyzed blood in the patient population. Higher numbers of detected CTCs were associated with an unfavorable prognosis.

  5. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing.

    PubMed

    Demeulemeester, Jonas; Kumar, Parveen; Møller, Elen K; Nord, Silje; Wedge, David C; Peterson, April; Mathiesen, Randi R; Fjelldal, Renathe; Zamani Esteki, Masoud; Theunis, Koen; Fernandez Gallardo, Elia; Grundstad, A Jason; Borgen, Elin; Baumbusch, Lars O; Børresen-Dale, Anne-Lise; White, Kevin P; Kristensen, Vessela N; Van Loo, Peter; Voet, Thierry; Naume, Bjørn

    2016-12-09

    Single-cell micro-metastases of solid tumors often occur in the bone marrow. These disseminated tumor cells (DTCs) may resist therapy and lay dormant or progress to cause overt bone and visceral metastases. The molecular nature of DTCs remains elusive, as well as when and from where in the tumor they originate. Here, we apply single-cell sequencing to identify and trace the origin of DTCs in breast cancer. We sequence the genomes of 63 single cells isolated from six non-metastatic breast cancer patients. By comparing the cells' DNA copy number aberration (CNA) landscapes with those of the primary tumors and lymph node metastasis, we establish that 53% of the single cells morphologically classified as tumor cells are DTCs disseminating from the observed tumor. The remaining cells represent either non-aberrant "normal" cells or "aberrant cells of unknown origin" that have CNA landscapes discordant from the tumor. Further analyses suggest that the prevalence of aberrant cells of unknown origin is age-dependent and that at least a subset is hematopoietic in origin. Evolutionary reconstruction analysis of bulk tumor and DTC genomes enables ordering of CNA events in molecular pseudo-time and traced the origin of the DTCs to either the main tumor clone, primary tumor subclones, or subclones in an axillary lymph node metastasis. Single-cell sequencing of bone marrow epithelial-like cells, in parallel with intra-tumor genetic heterogeneity profiling from bulk DNA, is a powerful approach to identify and study DTCs, yielding insight into metastatic processes. A heterogeneous population of CNA-positive cells is present in the bone marrow of non-metastatic breast cancer patients, only part of which are derived from the observed tumor lineages.

  6. Tissue Regeneration in the Chronically Inflamed Tumor Environment: Implications for Cell Fusion Driven Tumor Progression and Therapy Resistant Tumor Hybrid Cells

    PubMed Central

    Dittmar, Thomas; Zänker, Kurt S.

    2015-01-01

    The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that “accidental” tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells. PMID:26703575

  7. Destruction of solid tumors by immune cells

    NASA Astrophysics Data System (ADS)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  8. Synthesis and Evaluation of a Novel 64Cu- and 67Ga-Labeled Neurokinin 1 Receptor Antagonist for in Vivo Targeting of NK1R-Positive Tumor Xenografts.

    PubMed

    Zhang, Hanwen; Kanduluru, Ananda Kumar; Desai, Pooja; Ahad, Afruja; Carlin, Sean; Tandon, Nidhi; Weber, Wolfgang A; Low, Philip S

    2018-04-18

    Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64 Cu (or 67 Ga for in vitro studies) in the presence of CH 3 COONH 4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64 Cu and >5.0 GBq/μmol for 67 Ga. Both 64 Cu- and 67 Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [ 64 Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [ 64 Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [ 64 Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.

  9. Role of curcumin-dependent modulation of tumor microenvironment of a murine T cell lymphoma in altered regulation of tumor cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2011-05-01

    Using a murine model of a T cell lymphoma, in the present study, we report that tumor growth retarding action of curcumin involves modulation of some crucial parameters of tumor microenvironment regulating tumor progression. Curcumin-administration to tumor-bearing host caused an altered pH regulation in tumor cells associated with alteration in expression of cell survival and apoptosis regulatory proteins and genes. Nevertheless, an alteration was also observed in biophysical parameters of tumor microenvironment responsible for modulation of tumor growth pertaining to hypoxia, tumor acidosis, and glucose metabolism. The study thus sheds new light with respect to the antineoplastic action of curcuminmore » against a tumor-bearing host with progressively growing tumor of hematological origin. This will help in optimizing application of the drug and anticancer research and therapy. - Graphical Abstract: Display Omitted« less

  10. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells.

    PubMed

    Testa, Ugo; Castelli, Germana; Pelosi, Elvira

    2017-11-20

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.

  11. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.

    PubMed

    Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul

    2016-05-01

    This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy

    PubMed Central

    TANIGUCHI, Masaru; HARADA, Michishige; DASHTSOODOL, Nyambayar; KOJO, Satoshi

    2015-01-01

    Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type. Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model. PMID:26194854

  13. Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kulkarni, Rahul; Sen, Shamik

    2016-06-01

    Tumors consist of multiple cell sub-populations including cancer stem cells (CSCs), transiently amplifying cells and terminally differentiated cells (TDCs), with the CSC fraction dictating the aggressiveness of the tumor and drug sensitivity. In epithelial cancers, tumor growth is influenced greatly by properties of the extracellular matrix (ECM), with cancer progression associated with an increase in ECM density. However, the extent to which increased ECM confinement induced by an increase in ECM density influences tumor growth and post treatment relapse dynamics remains incompletely understood. In this study, we use a cellular automata-based discrete modeling approach to study the collective influence of ECM density, cell motility and ECM proteolysis on tumor growth, tumor heterogeneity, and tumor relapse after drug treatment. We show that while increased confinement suppresses tumor growth and the spatial scattering of CSCs, this effect can be reversed when cells become more motile and proteolytically active. Our results further suggest that, in addition to the absolute number of CSCs, their spatial positioning also plays an important role in driving tumor growth. In a nutshell, our study suggests that, in confined environments, cell motility and ECM proteolysis are two key factors that regulate tumor growth and tumor relapse dynamics by altering the number and spatial distribution of CSCs.

  14. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior

    PubMed Central

    Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.

    2016-01-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization. PMID:27596933

  15. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior

    NASA Astrophysics Data System (ADS)

    Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.

    2016-09-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.

  16. Monoclonal TCR-redirected tumor cell killing.

    PubMed

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  17. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment.

    PubMed

    Hockemeyer, K; Janetopoulos, C; Terekhov, A; Hofmeister, W; Vilgelm, A; Costa, Lino; Wikswo, J P; Richmond, A

    2014-07-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the "single file" pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12.

  18. In vitro evaluation of (99m)Tc-EDDA/tricine-HYNIC-Q-Litorin in gastrin-releasing peptide receptor positive tumor cell lines.

    PubMed

    Yurt Lambrecht, Fatma; Durkan, Kübra; Ozgür, Aykut; Gündüz, Cumhur; Avcı, Cığır Biray; Susluer, Sunde Yılmaz

    2013-05-01

    Bombesin and its derivatives exhibit a high affinity for gastrin-releasing peptide receptor (GRPr), which is over-expressed in a variety of human cancers (prostate, pancreatic, lung, etc.). The aim of this study was to investigate the in vitro potential of the hydrazinonicotinamide (HYNIC)-Q-Litorin. (99m)Tc labeling was performed by using different co-ligands: tricine and ethylenediamine diacetic acid (EDDA). The radiochemical stability of radiolabeled peptide conjugates was checked at room temperature and in cysteine solution up to 24 h. The in vitro cell uptake of (99m)Tc-EDDA-HYNIC-Q-Litorin and (99m)Tc-tricine-HYNIC-Q-Litorin were evaluated on pancreatic tumor and control cell lines. Optimum specific activity and incubation time were determined for all the cell lines. The results showed that the cell uptake of the radiolabeled peptide conjugates in tumor cell lines were higher than in the control cell line. The findings of this study indicated the need for further development of in vivo study as a radiopharmaceutical for pancreatic tumor imaging.

  19. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway

    PubMed Central

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-01-01

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned ‘ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials. PMID:27893712

  20. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    PubMed Central

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  1. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.

    PubMed

    Huang, Song-Bin; Wu, Min-Hsien; Lin, Yen-Heng; Hsieh, Chia-Hsun; Yang, Chih-Liang; Lin, Hung-Chih; Tseng, Ching-Ping; Lee, Gwo-Bin

    2013-04-07

    Negative selection-based circulating tumor cell (CTC) isolation is believed valuable to harvest more native, and in particular all possible CTCs without biases relevant to the properties of surface antigens on the CTCs. Under such a cell isolation strategy, however, the CTC purity is normally compromised. To address this issue, this study reports the integration of optically-induced-dielectrophoretic (ODEP) force-based cell manipulation, and a laminar flow regime in a microfluidic platform for the isolation of untreated, and highly pure CTCs after conventional negative selection-based CTC isolation. In the design, six sections of moving light-bar screens were continuously and simultaneously exerted in two parallel laminar flows to concurrently separate the cancer cells from the leukocytes based on their size difference and electric properties. The separated cell populations were further partitioned, delivered, and collected through the two flows. With this approach, the cancer cells can be isolated in a continuous, effective, and efficient manner. In this study, the operating conditions of ODEP for the manipulation of prostate cancer (PC-3) and human oral cancer (OEC-M1) cells, and leukocytes with minor cell aggregation phenomenon were first characterized. Moreover, performances of the proposed method for the isolation of cancer cells were experimentally investigated. The results showed that the presented CTC isolation scheme was able to isolate PC-3 cells or OEC-M1 cells from a leukocyte background with high recovery rate (PC-3 cells: 76-83%, OEC-M1 cells: 61-68%), and high purity (PC-3 cells: 74-82%, OEC-M1 cells: 64-66%) (set flow rate: 0.1 μl min(-1) and sample volume: 1 μl). The latter is beyond what is currently possible in the conventional CTC isolations. Moreover, the viability of isolated cancer cells was evaluated to be as high as 94 ± 2%, and 95 ± 3% for the PC-3, and OEC-M1 cells, respectively. Furthermore, the isolated cancer cells were also shown

  2. Tumor-associated myeloid cells as guiding forces of cancer cell stemness.

    PubMed

    Sica, Antonio; Porta, Chiara; Amadori, Alberto; Pastò, Anna

    2017-08-01

    Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.

  3. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.

    PubMed

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2015-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-γ production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S., E-mail: khillan@pitt.edu

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibitmore » mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.« less

  5. Characterization of tumor infiltrating Natural Killer cell subset

    PubMed Central

    Nissan, Aviram; Darash-Yahana, Merav; Peretz, Tamar; Mandelboim, Ofer; Rachmilewitz, Jacob

    2015-01-01

    The presence of tumor-infiltrating Natural Killer (NK) within a tumor bed may be indicative of an ongoing immune response toward the tumor. However, many studies have shown that an intense NK infiltration, is associated with advanced disease and may even facilitate cancer development. The exact role of the tumor infiltrating NK cells and the correlation between their presence and poor prognosis remains unclear. Interestingly, during pregnancy high numbers of a specific NK subset, CD56brightCD16dim, are accumulated within first trimester deciduas. These decidual NK (dNK) cells are unique in their gene expression pattern secret angiogenic factors that induce vascular growth. In the present study we demonstrate a significant enrichment of a CD56brighCD16dim NK cells within tumors. These NK cells express several dNK markers including VEGF. Hence, this study adds new insights into the identity of tumor residual NK cells, which has clear implications for the treatment of human cancer. PMID:26079948

  6. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate.

    PubMed

    Bak, S Peter; Barnkob, Mike Stein; Wittrup, K Dane; Chen, Jianzhu

    2013-12-01

    Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells. ©2013 AACR.

  7. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-05-24

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.

  8. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    PubMed Central

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  9. Malignant perivascular epithelioid cell tumor of the retroperitoneum.

    PubMed

    Wu, Ji-Hua; Zhou, Jin-Lian; Cui, Yan; Jing, Qing-Ping; Shang, Le; Zhang, Jian-Zhong

    2013-01-01

    Perivascular epithelioid cell tumors (PEComas) are a rare type of mesenchymal neoplasms characterized by a proliferation of perivascular cells with an epithelioid phenotype and expression of myo-melanocytic markers. The majority of PEComas seem to be benign and usually their prognosis is good. Malignant cases are extremely rare, exhibiting a malignant course with local recurrences and distant metastases. We herein report a case of a malignant PEComa arising in the retroperitoneum. The patient was a 55-year-old woman experiencing abdominal discomfort for approximately one month. Ultrasound and computer tomography (CT) scans of the abdomen revealed a solid mass arising from the retroperitoneum. Microscopically, the tumor was composed of epithelioid cells mixed with spindled cells. The nucleus had significant atypia, and the mitoses were obvious. The focal intravascular tumor embolus was visible. Immunohistochemically, the epithelioid tumor cells were positive for HMB45 and Melan-A, and the spindled tumor celLs were positive for SMA and desmin. Seven months after a surgical resection, an ultrasound revealed liver metastases. In conclusion, the malignant PEComas of the retroperitoneum is a very rare neoplasm with unique morphological and immunohistochemical characteristics. It should be differentiated from other epithelioid cell tumors of the retroperitoneum.

  10. Xanthine crystals induced by topiroxostat, a xanthine oxidoreductase inhibitor, in rats, cause transitional cell tumors.

    PubMed

    Shimo, Takeo; Moto, Mitsuyoshi; Ashizawa, Naoki; Matsumoto, Koji; Iwanaga, Takashi; Saito, Kazuhiro

    2014-04-01

    The present study was performed to elucidate the underlying mechanism of transitional cell tumors found in the carcinogenicity testing of topiroxostat, a xanthine oxidoreductase inhibitor, in which topiroxostat was orally given to F344 rats at 0.3, 1, and 3 mg/kg for 2 years. In the urinary bladder, transitional cell papillomas and/or carcinomas were seen in males receiving 0.3, 1, and 3 mg/kg (1/49, 3/49, and 10/50, respectively). In the kidney, transitional cell papillomas and/or carcinomas in the pelvis were seen in 2/50 males and 1/50 females receiving 3 mg/kg. In the mechanistic study by 52-week oral treatment with topiroxostat at 3 mg/kg to F344 male rats, with and without citrate, simple and papillary transitional cell hyperplasias of the urinary bladder epithelium were observed in 5/17 in the topiroxostat-alone treatment group, along with xanthine-induced nephropathy, in contrast to neither xanthine crystals nor lesions in urinary organs by co-treatment group with citrate. As for sex differences of urinary bladder tumors, the BrdU labeling index for epithelial cells of the urinary bladder by 5-week oral treatment with topiroxostat at 10 mg/kg to F344 rats was increased in males only, showing consistency with histopathological findings. Therefore, the present study indicates that transitional cell tumors induced by topiroxostat in rats were due to physical stimulation to transitional cells of xanthine crystals/calculi and provides that other factors were not implicated in this tumorigenesis. Furthermore, the present study suggests that such tumors do not predict for humans since topiroxostat-induced xanthine deposition is a rodent-specific event.

  11. [Clinicopathologic characteristics of hemangiopericytoma/solitary fibrous tumor with giant cells].

    PubMed

    Wang, Hai-yan; Fan, Qin-he; Gong, Qi-xing; Wang, Zheng

    2009-03-01

    To study the pathological characteristics, diagnosis and differential diagnoses of hemangiopericytoma-solitary fibrous tumor with giant cells. Pathological characteristics of seven cases of orbital and extraorbital hemangiopericytoma-solitary fibrous tumors with giant cells were evaluated by HE and immunohistochemistry (EnVision method). Two cases were located in the orbit, one of which had recurred. Five cases were located in the extraorbital regions. Histologically, the tumors were well-circumscribed and composed of non-atypical, round to spindle cells with collagen deposition in the stroma. The tumors had prominent vasculatures and in areas, pseudovascular spaces lined by multinucleated giant cells lining which were also present in the stroma. Immunohistochemically, both neoplastic cells and multinucleate giant cells expressed CD34. Seven patients underwent tumor excision and were well and without tumor recurrence upon the clinical follow-up. Hemangiopericytoma-solitary fibrous tumor with giant cells is an intermediate soft tissue tumor. It typically involves the orbital or extraorbital regions. Histologically, the tumor should be distinguished from giant cell fibroblastoma, pleomorphic hyalinzing angiectatic tumor of soft part and angiomatoid fibrous histiocytoma.

  12. Mast cells: potential positive and negative roles in tumor biology.

    PubMed

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  13. Siloxane nanoprobes for labeling and dual modality imaging of neural stem cells

    PubMed Central

    Addington, Caroline P.; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E.; Kodibagkar, Vikram D.

    2015-01-01

    Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality (1H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μl/104 cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by 1H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast 1H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability. PMID:26597417

  14. [Therapeutic strategies targeting brain tumor stem cells].

    PubMed

    Toda, Masahiro

    2009-07-01

    Progress in stem cell research reveals cancer stem cells to be present in a variety of malignant tumors. Since they exhibit resistance to anticancer drugs and radiotherapy, analysis of their properties has been rapidly carried forward as an important target for the treatment of intractable malignancies, including brain tumors. In fact, brain cancer stem cells (BCSCs) have been isolated from brain tumor tissue and brain tumor cell lines by using neural stem cell culture methods and isolation methods for side population (SP) cells, which have high drug-efflux capacity. Although the analysis of the properties of BCSCs is the most important to developing methods in treating BCSCs, the absence of BCSC purification methods should be remedied by taking it up as an important research task in the immediate future. Thus far, there are no effective treatment methods for BCSCs, and several treatment methods have been proposed based on the cell biology characteristics of BCSCs. In this article, I outline potential treatment methods damaging treatment-resistant BCSCs, including immunotherapy which is currently a topic of our research.

  15. Mesenchymal-Epithelial Transition and Circulating Tumor Cells in Small Cell Lung Cancer.

    PubMed

    Hamilton, Gerhard; Rath, Barbara

    2017-01-01

    Cancer patients die of metastatic disease but knowledge regarding individual steps of this complex process of intravasation, spread and extravasation leading to secondary lesions is incomplete. Subpopulations of tumor cells are supposed to undergo an epithelial-mesenchymal transition (EMT), to enter the bloodstream and eventually establish metastases in a reverse process termed mesenchymal-epithelial transition (MET). Small cell lung cancer (SCLC) represents a unique model to study metastatic spread due to early dissemination and relapse, as well as availability of a panel of circulating cancer cell (CTC) lines recently. Additionally, chemosensitive SCLC tumor cells switch to a completely resistant phenotype during cancer recurrence. In advanced disease, SCLC patients display extremely high blood counts of CTCs in contrast to other tumors, like breast, prostate and colon cancer. Local inflammatory conditions at the primary tumor site and recruitment of macrophages seem to increase the shedding of tumor cells into the circulation in processes which may proceed independently of EMT. Since millions of cells are released by tumors into the circulation per day, analysis of a limited number of CTCs at specific time points are difficult to be related to the development of metastatic lesions which may occur approximately one year later. We have obtained a panel of SCLC CTC cell line from patients with relapsing disease, which share characteristic markers of this malignancy and a primarily epithelial phenotype with unique formation of large tumorospheres, containing quiescent and hypoxic cells. Although smoking and inflammation promote EMT, partial expression of vimentin indicates a transitional state with partial EMT in these cell lines at most. The CTC lines exhibit high expression of EpCAM , absent phosphorylation of β-catenin and background levels of Snail. Provided that these tumor cells had ever undergone EMT, here in advanced disease MET seem to have occurred

  16. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors.

    PubMed

    Yachida, Shinichi; Vakiani, Efsevia; White, Catherine M; Zhong, Yi; Saunders, Tyler; Morgan, Richard; de Wilde, Roeland F; Maitra, Anirban; Hicks, Jessica; Demarzo, Angelo M; Shi, Chanjuan; Sharma, Rajni; Laheru, Daniel; Edil, Barish H; Wolfgang, Christopher L; Schulick, Richard D; Hruban, Ralph H; Tang, Laura H; Klimstra, David S; Iacobuzio-Donahue, Christine A

    2012-02-01

    Poorly differentiated neuroendocrine carcinomas (NECs) of the pancreas are rare malignant neoplasms with a poor prognosis. The aim of this study was to determine the clinicopathologic and genetic features of poorly differentiated NECs and compare them with other types of pancreatic neoplasms. We investigated alterations of KRAS, CDKN2A/p16, TP53, SMAD4/DPC4, DAXX, ATRX, PTEN, Bcl2, and RB1 by immunohistochemistry and/or targeted exomic sequencing in surgically resected specimens of 9 small cell NECs, 10 large cell NECs, and 11 well-differentiated neuroendocrine tumors (PanNETs) of the pancreas. Abnormal immunolabeling patterns of p53 and Rb were frequent (p53, 18 of 19, 95%; Rb, 14 of 19, 74%) in both small cell and large cell NECs, whereas Smad4/Dpc4, DAXX, and ATRX labeling was intact in virtually all of these same carcinomas. Abnormal immunolabeling of p53 and Rb proteins correlated with intragenic mutations in the TP53 and RB1 genes. In contrast, DAXX and ATRX labeling was lost in 45% of PanNETs, whereas p53 and Rb immunolabeling was intact in these same cases. Overexpression of Bcl-2 protein was observed in all 9 small cell NECs (100%) and in 5 of 10 (50%) large cell NECs compared with only 2 of 11 (18%) PanNETs. Bcl-2 overexpression was significantly correlated with higher mitotic rate and Ki67 labeling index in neoplasms in which it was present. Small cell NECs are genetically similar to large cell NECs, and these genetic changes are distinct from those reported in PanNETs. The finding of Bcl-2 overexpression in poorly differentiated NECs, particularly small cell NEC, suggests that Bcl-2 antagonists/inhibitors may be a viable treatment option for these patients.

  17. Mesenchymal Stem Cell Preparation and Transfection-free Ferumoxytol Labeling for MRI Cell Tracking.

    PubMed

    Liu, Li; Ho, Chien

    2017-11-15

    Mesenchymal stem cells (MSCs) are multipotent cells and are the most widely studied cell type for stem cell therapies. In vivo cell tracking of MSCs labeled with an FDA-approved superparamagnetic iron-oxide (SPIO) particle by magnetic resonance imaging (MRI) provides essential information, e.g., MSC engraftment, survival, and fate, thus improving cell therapy accuracy. However, current methodology for labeling MSCs with Ferumoxytol (Feraheme ® ), the only FDA-approved SPIO particle, needs transfection agents. This unit describes a new "bio-mimicry" protocol to prepare more native MSCs by using more "in vivo environment" of MSCs, so that the phagocytic activity of cultured MSCs is restored and expanded MSCs can be labeled with Ferumoxytol, without the need for transfection agents and/or electroporation. Moreover, MSCs re-size to a more native size, reducing from 32.0 to 19.5 μm. The MSCs prepared from this protocol retain more native properties and would be useful for biomedical applications and MSC-tracking studies by MRI. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Clinical relevance and biology of circulating tumor cells

    PubMed Central

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  19. High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washburn, L. C.; Sun, T. T.; Byrd, B. L.

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two othersmore » for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.« less

  20. General Information about Extragonadal Germ Cell Tumors

    MedlinePlus

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  1. Treatment Option Overview (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  2. Investigating Associations Between Proliferation Indices, C-kit, and Lymph Node Stage in Canine Mast Cell Tumors.

    PubMed

    Krick, Erika Lauren; Kiupel, Matti; Durham, Amy C; Thaiwong, Tuddow; Brown, Dorothy C; Sorenmo, Karin U

    Previous studies have evaluated cellular proliferation indices, KIT expression, and c-kit mutations to predict the clinical behavior of canine mast cell tumors (MCTs). The study purpose was to retrospectively compare mitotic index, argyrophilic nucleolar organizer regions (AgNORs)/nucleus, Ki-67 index, KIT labeling pattern, and internal tandem duplication mutations in c-KIT between stage I and stage II grade II MCTs. Medical records and tumor biopsy samples from dogs with Grade II MCTs with cytological or histopathological regional lymph node evaluation were included. Signalment, tumor location and stage, and presence of a recurrent versus de novo tumor were recorded. Mitotic index, AgNORs/nucleus, Ki-67, KIT staining pattern, and internal tandem duplication mutations in exon 11 of c-KIT were evaluated. Sixty-six tumors (51 stage I; 15 stage II) were included. Only AgNORs/nucleus and recurrent tumors were significantly associated with stage (odds ratio 2.8, 95% confidence interval [CI] 1.0-8.0, P = .049; odds ratio 8.8, 95% CI 1.1-69.5; P = .039). Receiver-operator characteristic analysis showed that the sensitivity and specificity of AgNORs/cell ≥ 1.87 were 93.3% and 27.4%, respectively, (area under the curve: 0.65) for predicting stage. Recurrent tumors and higher AgNORs/nucleus are associated with stage II grade II MCTs; however, an AgNOR cutoff value that reliably predicts lymph node metastasis was not determined.

  3. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    PubMed Central

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  4. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    PubMed

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  5. Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology.

    PubMed

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; Caminada de Toledo, Silvia Regina; Mara de Oliveira, Daniela; Cabral, Francisco Romero; Gabriel de Souza, Jean; Boufleur, Pamela; Marti, Luciana C; Malheiros, Jackeline Moraes; Ferreira da Cruz, Edgar; Paiva, Fernando F; Malheiros, Suzana M F; de Paiva Neto, Manoel A; Tannús, Alberto; Mascarenhas de Oliveira, Sérgio; Silva, Nasjla Saba; Cappellano, Andrea Maria; Petrilli, Antonio Sérgio; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2018-04-24

    Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients ( n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

  6. Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; Caminada de Toledo, Silvia Regina; Mara de Oliveira, Daniela; Cabral, Francisco Romero; Gabriel de Souza, Jean; Boufleur, Pamela; Marti, Luciana C.; Malheiros, Jackeline Moraes; Ferreira da Cruz, Edgar; Paiva, Fernando F.; Malheiros, Suzana M.F.; de Paiva Neto, Manoel A.; Tannús, Alberto; Mascarenhas de Oliveira, Sérgio; Silva, Nasjla Saba; Cappellano, Andrea Maria; Petrilli, Antonio Sérgio; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2018-01-01

    Background Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model. PMID:29774098

  7. Reduced H3K27me3 expression in Merkel cell polyoma virus-positive tumors.

    PubMed

    Busam, Klaus J; Pulitzer, Melissa P; Coit, Daniel C; Arcila, Maria; Leng, Danielle; Jungbluth, Achim A; Wiesner, Thomas

    2017-06-01

    Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma, which once metastatic is difficult to treat. Recent mutation analyses of Merkel cell carcinoma revealed a low number of mutations in Merkel cell polyomavirus-associated tumors, and a high number of mutations in virus-negative combined squamous cell and neuroendocrine carcinomas of chronically sun-damaged skin. We speculated that the paucity of mutations in virus-positive Merkel cell carcinoma may reflect a pathomechanism that depends on derangements of chromatin without alterations in the DNA sequence (epigenetic dysregulation). One central epigenetic regulator is the Polycomb repressive complex 2 (PRC2), which silences genomic regions by trimethylating (me3) lysine (K) 27 of histone H3, and thereby establishes the histone mark H3K27me3. Recent experimental research data demonstrated that PRC2 loss in mice skin results in the formation of Merkel cells. Prompted by these findings, we explored a possible contribution of PRC2 loss in human Merkel cell carcinoma. We examined the immunohistochemical expression of H3K27me3 in 35 Merkel cell carcinomas with pure histological features (22 primary and 13 metastatic lesions) and in 5 combined squamous and neuroendocrine carcinomas of the skin. We found a strong reduction of H3K27me3 staining in tumors with pure histologic features and virus-positive Merkel cell carcinomas. Combined neuroendocrine carcinomas had no or only minimal loss of H3K27me3 labeling. Our findings suggest that a PRC2-mediated epigenetic deregulation may play a role in the pathogenesis of virus-positive Merkel cell carcinomas and in tumors with pure histologic features.

  8. Phagocytosis of Candida albicans Enhances Malignant Behavior of Murine Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ginsburg, Isaac; Fligiel, Suzanne E. G.; Kunkel, Robin G.; Riser, Bruce L.; Varani, James

    1987-12-01

    Murine tumor cells were induced to phagocytize either Candida albicans or group A streptococcal cells. The presence of microbial particles within the tumor cell cytoplasm had no effect on in vitro tumor cell growth. However, when Candida albicans-infected tumor cells were injected into syngeneic mice, they formed tumors that grew faster, invaded the surrounding normal tissue more rapidly and metastasized more rapidly than control tumor cells. Tumor cells infected with group A streptococcal particles did not grow faster or show increased malignant behavior. These data indicate that the in vivo behavior of malignant tumor cells can be modulated by microbial particles, which are often present in the microenvironment of the growing tumor.

  9. Migratory neighbors and distant invaders: tumor-associated niche cells

    PubMed Central

    Wels, Jared; Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David

    2008-01-01

    The cancer environment is comprised of tumor cells as well as a wide network of stromal and vascular cells participating in the cellular and molecular events necessary for invasion and metastasis. Tumor secretory factors can activate the migration of host cells, both near to and far from the primary tumor site, as well as promote the exodus of cells to distant tissues. Thus, the migration of stromal cells and tumor cells among specialized microenvironments takes place throughout tumor and metastatic progression, providing evidence for the systemic nature of a malignancy. Investigations of the tumor–stromal and stromal–stromal cross-talk involved in cellular migration in cancer may lead to the design of novel therapeutic strategies. PMID:18316475

  10. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells

    PubMed Central

    Castelli, Germana; Pelosi, Elvira

    2017-01-01

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells. PMID:29156643

  11. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  12. Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking.

    PubMed

    Flexman, J A; Minoshima, S; Kim, Y; Cross, D J

    2006-01-01

    Neural stem cell therapy for neurological pathologies, such as Alzheimer's and Parkinson's disease, may delay the onset of symptoms, replace damaged neurons and/or support the survival of endogenous cells. Magnetic resonance imaging (MRI) can be used to track magnetically labeled cells in vivo to observe migration. Prior to transplantation, labeled cells must be characterized to show that they retain their intrinsic properties, such as cell proliferation into neurospheres in a supplemented environment. In vivo images must also be correlated to sensitive, histological markers. In this study, we show that fetus-derived neural stem cells can be co-labeled with superparamagnetic iron oxide and PKH26, a fluorescent dye. Labeled cells retain the ability to proliferate into neurospheres in culture, but labeling prevents neurospheres from merging in a non-adherent culture environment. After labeled NSCs were transplantation into the rat brain, their location and subsequent migration along the corpus callosum was detected using MRI. This study demonstrates an imaging paradigm with which to develop an in vivo assay for quantitatively evaluating fetal neural stem cell migration.

  13. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    PubMed

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging.

    PubMed

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-10-15

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. © 2017 Schvartz et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing

    PubMed Central

    Liang, Hua; Deng, Liufu; Chmura, Steven; Burnette, Byron; Liadis, Nicole; Darga, Thomas; Beckett, Michael A.; Lingen, Mark W.; Witt, MaryEllyn; Weichselbaum, Ralph R.; Fu, Yang-Xin

    2013-01-01

    Local failures following radiation therapy are multifactorial and the contributions of the tumor and the host are complex. Current models of tumor equilibrium suggest that a balance exists between cell birth and cell death due to insufficient angiogenesis, immune effects, or intrinsic cellular factors. We investigated whether host immune responses contribute to radiation induced tumor equilibrium in animal models. We report an essential role for immune cells and their cytokines in suppressing tumor cell regrowth in two experimental animal model systems. Depletion of T cells or neutralization of interferon-gamma reversed radiation-induced equilibrium leading to tumor regrowth. We also demonstrate that PD-L1 blockade augments T cell responses leading to rejection of tumors in radiation induced equilibrium. We identify an active interplay between tumor cells and immune cells that occurs in radiation-induced tumor equilibrium and suggest a potential role for disruption of the PD-L1/PD-1 axis in increasing local tumor control. PMID:23630355

  16. Detection and Characterization of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Bruce, Richard

    2009-03-01

    Circulating tumor cells (CTCs) occur in blood below the concentration of 1 cell in a hundred thousand white blood cells and can provide prognostic and diagnostic information about the underlying disease. While numeration of CTCs has provided useful information on progression-free and overall survival, it does not provide guidance of treatment choice. Since CTCs are presumed contain features of the metastatic tissue, characterization of cancer markers on these cells could help selection of treatment. At such low concentrations, reliable location and identification of these cells represents a significant technical challenge. Automated digital microscopy (ADM) provides high levels of sensitivity, but the analysis time is prohibitively long for a clinical assay. Enrichment methods have been developed to reduce sample size but can result in cell loss. A major barrier in reliable enrichment stems from the biological heterogeneity of CTCs, exhibited in a wide range of genetic, biochemical, immunological and biological characteristics. We have developed an approach that uses fiber-optic array scanning technology (FAST) to detect CTCs. Here, laser-printing optics are used to excite 300,000 cells/sec, and fluorescence from immuno-labels is collected in an array of optical fibers that forms a wide collection aperture. The FAST cytometer can locate CTCs at a rate that is 500 times faster than an ADM with comparable sensitivity and improved specificity. With this high scan rate, no enrichment of CTCs is required. The target can be a cytoplasm protein with a very high expression level, which reduces sensitivity to CTC heterogeneity. We use this method to measure expression levels of multiple markers on CTCs to help predict effective cancer treatment.

  17. Labeling tetracysteine-tagged proteins with biarsenical dyes for live cell imaging.

    PubMed

    Gaietta, Guido M; Deerinck, Thomas J; Ellisman, Mark H

    2011-01-01

    Correlation of real-time or time-lapse light microscopy (LM) with electron microscopy (EM) of cells can be performed with biarsenical dyes. These dyes fluorescently label tetracysteine-tagged proteins so that they can be imaged with LM and, upon fluorescent photoconversion of 3,3'-diaminobenzidine tetrahydrochloride (DAB), with EM as well. In the following protocol, cells expressing tetracysteine-tagged proteins are labeled for 1 h with biarsenical dyes. The volumes indicated are for a single 30-mm culture dish containing 2 mL of labeling medium. Scale the suggested volumes up or down depending upon the size of the culture dish used in the labeling. The same procedure can be adapted for longer labeling times by lowering the amount of dye used to 50-100 nM; however, the amount of the competing dithiol EDT is maintained at 10-20 μM. Longer labeling times often produce higher signal-to-noise ratios and cause less trauma to the treated cells prior to imaging.

  18. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma

    PubMed Central

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors. PMID:24040358

  19. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Jie, Meng-Meng; Yang, Min; Tang, Li; Chen, Si-Yuan; Sun, Xue-Mei; Tang, Bo; Yang, Shi-Ming

    2018-04-01

    Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.

  20. Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness

    PubMed Central

    Hashizume, Hiroya; Baluk, Peter; Morikawa, Shunichi; McLean, John W.; Thurston, Gavin; Roberge, Sylvie; Jain, Rakesh K.; McDonald, Donald M.

    2000-01-01

    Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2–2 μm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 μm. Some branched cells were separated by intercellular openings (mean diameter 1.7 μm; range, 0.3–4.7 μm). Transcellular holes (mean diameter 0.6 μm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells. PMID:10751361

  1. Malignant perivascular epithelioid cell tumor of the retroperitoneum

    PubMed Central

    Wu, Ji-Hua; Zhou, Jin-Lian; Cui, Yan; Jing, Qing-Ping; Shang, Le; Zhang, Jian-Zhong

    2013-01-01

    Perivascular epithelioid cell tumors (PEComas) are a rare type of mesenchymal neoplasms characterized by a proliferation of perivascular cells with an epithelioid phenotype and expression of myo-melanocytic markers. The majority of PEComas seem to be benign and usually their prognosis is good. Malignant cases are extremely rare, exhibiting a malignant course with local recurrences and distant metastases. We herein report a case of a malignant PEComa arising in the retroperitoneum. The patient was a 55-year-old woman experiencing abdominal discomfort for approximately one month. Ultrasound and computer tomography (CT) scans of the abdomen revealed a solid mass arising from the retroperitoneum. Microscopically, the tumor was composed of epithelioid cells mixed with spindled cells. The nucleus had significant atypia, and the mitoses were obvious. The focal intravascular tumor embolus was visible. Immunohistochemically, the epithelioid tumor cells were positive for HMB45 and Melan-A, and the spindled tumor celLs were positive for SMA and desmin. Seven months after a surgical resection, an ultrasound revealed liver metastases. In conclusion, the malignant PEComas of the retroperitoneum is a very rare neoplasm with unique morphological and immunohistochemical characteristics. It should be differentiated from other epithelioid cell tumors of the retroperitoneum. PMID:24133607

  2. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging.

    PubMed

    Briat, Arnaud; Wenk, Christiane H F; Ahmadi, Mitra; Claron, Michael; Boturyn, Didier; Josserand, Véronique; Dumy, Pascal; Fagret, Daniel; Coll, Jean-Luc; Ghezzi, Catherine; Sancey, Lucie; Vuillez, Jean-Philippe

    2012-06-01

    Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches. © 2012 Japanese Cancer Association.

  3. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer.

    PubMed

    Elhami, Esmat; Goertzen, Andrew L; Xiang, Bo; Deng, Jixian; Stillwell, Chris; Mzengeza, Shadreck; Arora, Rakesh C; Freed, Darren; Tian, Ganghong

    2011-07-01

    Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, (18)F-fluoro-2-deoxy-D: -glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10(5) ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent

  4. Classifying Non-Small Cell Lung Cancer by Status of Programmed Cell Death Ligand 1 and Tumor-Infiltrating Lymphocytes on Tumor Cells.

    PubMed

    Cui, Shaohua; Dong, Lili; Qian, Jialin; Ye, Lin; Jiang, Liyan

    2018-01-01

    Purpose: To explore the possible correlation between programmed death ligand 1 (PD-L1)/tumor-infiltrating lymphocytes (TIL) status and clinical factors in non-small cell lung (NSCLC). Materials and Methods: A total of 126 surgical NSCLC samples with stage I to IIIA were retrospectively collected and analyzed. Immunohistochemistry (IHC) assays were used to detect PD-L1 protein expression. PD-L1 positivity on tumor cells was defined by positive tumor cell (TC) percentage using 5% cutoff value. Results: Thirty-seven patients (29.4%), thirty patients (23.8%), six patients (4.8%) and fifty-three patients (42%) were classified as type I (PD-L1+, TIL+), type II (PD-L1-, TIL-), type III (PD-L1+, TIL-) and type IV (PD-L1-, TIL+) tumor environments according to PD-L1/TIL status, respectively. Statistical differences could be observed in factors including gender ( P <0.001), smoking status ( P <0.001), age ( P =0.002), histological types ( P <0.001), EGFR mutation ( P =0.008) and KRAS mutation ( P =0.003) across the four type tumors. Type I tumors were associated with ever smoking, non-adenocarcinoma histological types and KRAS mutation. Type II tumors were associated with female gender, never-smoking, adenocarcinoma histological types and EGFR mutation. Type III tumors were associated with ever smoking and type IV tumors were associated with female gender and EGFR mutation. Conclusion: Clinical factors associated with NSCLC microenvironment types based on PD-L1/TIL differed a lot across different types. The findings of this study may help to facilitate the understanding of the relationship between tumor microenvironment and clinical factors, and also the selecting of patients for combination immunotherapies.

  5. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    DTIC Science & Technology

    2017-12-01

    Nie, POU5F1B, an OCT4 Retrogene, Suppresses Uncontrolled Tumor Growth. Keystone Meeting on Molecular and Cellular Basis of Growth and Regeneration...Daotai Nie. Cancer Stem Cells in Resistance to Cytotoxic Drugs: Implications in Chemotherapy. B. Bonavida (ed.), Molecular Mechanisms of Tumor Cell...retrogene of the master embryonic stem cell gene POU5F1 is associated with prostate cancer susceptibility. American journal of human genetics 94

  6. Label-free and live cell imaging by interferometric scattering microscopy.

    PubMed

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  7. Persistence of Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy

    PubMed Central

    Zhou, Juhua; Dudley, Mark E.; Rosenberg, Steven A.; Robbins, Paul F.

    2007-01-01

    Summary The authors recently reported that adoptive immunotherapy with autologous tumor-reactive tumor infiltrating lymphocytes (TILs) immediately following a conditioning nonmyeloablative chemotherapy regimen resulted in an enhanced clinical response rate in patients with metastatic melanoma. These observations led to the current studies, which are focused on a detailed analysis of the T-cell antigen reactivity as well as the in vivo persistence of T cells in melanoma patient 2098, who experienced a complete regression of all metastatic lesions in lungs and soft tissues following therapy. Screening of an autologous tumor cell cDNA library using transferred TILs resulted in the identification of novel mutated growth arrest-specific gene 7 (GAS7) and glyceral-dehyde-3-phosphate dehydrogenase (GAPDH) gene transcripts. Direct sequence analysis of the expressed T-cell receptor beta chain variable regions showed that the transferred TILs contained multiple T-cell clonotypes, at least six of which persisted in peripheral blood for a month or more following transfer. The persistent T cells recognized both the mutated GAS7 and GAPDH. These persistent tumor-reactive T-cell clones were detected in tumor cell samples obtained from the patient following adoptive cell transfer and appeared to be represented at higher levels in the tumor sample obtained 1 month following transfer than in the peripheral blood obtained at the same time. Overall, these results indicate that multiple tumor-reactive T cells can persist in the peripheral blood and at the tumor site for prolonged times following adoptive transfer and thus may be responsible for the complete tumor regression in this patient. PMID:15614045

  8. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  9. Basaloid tumors in nevus sebaceus revisited: the follicular stem cell marker PHLDA1 (TDAG51) indicates that most are basal cell carcinomas and not trichoblastomas.

    PubMed

    Sellheyer, Klaus; Cribier, Bernard; Nelson, Paula; Kutzner, Heinz; Rütten, Arno

    2013-05-01

    Until the 1990s, basal cell carcinoma (BCC) was viewed as the most common epithelial neoplasm developing in association with nevus sebaceus (NS). Currently, trichoblastoma is thought of as the most prevalent basaloid neoplasm in NS. The follicular stem cell marker pleckstrin homology-like domain, family A, member 1 (PHLDA1) also known as T-cell death-associated gene 51 (TDAG51) labels trichoepithelioma (TE) but not BCC. Therefore, we explored its usefulness in basaloid neoplasms developing in NS. We studied immunohistochemically PHLDA1 in 10 nodular BCCs, 11 TEs, 11 trichoblastomas and 25 NS with basaloid tumors. Additionally, we examined the expression of BCC marker BerEP4 and the distribution of Merkel cells that function as surrogate markers for benign follicular neoplasms. Nineteen of the 25 basaloid tumors in NS were PHLDA1-negative comparable to BCC arising de novo and six tumors were PHLDA1-positive comparable to solitary trichoblastomas and TEs. Fewer Merkel cells were seen in BCCs associated with NS when compared with trichoblastoma. BerEP4 did not discriminate between the neoplasms. We raise concern that the unquestioned assessment that basaloid tumors developing in association with NS represent mostly trichoblastomas and not BCC may not be true. This influences clinical care, as it is paramount in the decision of whether to excise these lesions or not. Copyright © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  10. Different responses of tumor and normal cells to low-dose radiation

    PubMed Central

    Liu, Ning; Wang, Hao; Shang, Qingjun; Jiang, Peng; Zhang, Yuanmei

    2013-01-01

    Aim of the study We demonstrated stimulation of both erythrocyte immune function and superoxide dismutase activity in tumor-bearing mice in response to whole-body 75 mGy X-rays. In addition, we enhanced the chemotherapeutic effect by exposing tumor-bearing mice to low-dose radiation (LDR). This study aims to investigate the different responses of tumor cells and normal cells to LDR. Material and methods Survival fraction, micronucleus frequency, and cell cycle of Lewis cells and primary human fibroblast AG01522 cells were measured. S180 sarcoma cells were implanted in mice, and tumor sizes were measured in vivo. Results In response to LDR exposure in vitro, a stimulating effect was observed in AG01522 cells but not in Lewis cells. Low-dose radiation did not cause an adaptive response in the Lewis cell cycle. Lack of an LDR-induced radioadaptive response in tumor cells was observed in tumor-bearing mouse models. Furthermore, a higher apoptotic effect and lower expression of the anti-apoptosis gene Bcl-2 were found in tumor cells of tumor-bearing mice exposed to D1 + D2 than those in tumor cells of tumor-bearing mice exposed to D2 alone. Conclusions Different responses of tumor cells and normal cells to LDR were found. Low-dose radiation was found to stimulate the growth of normal cells but not of tumor cells in vitro and in vivo, which is a very important and clinically relevant phenomenon. PMID:24592123

  11. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    NASA Astrophysics Data System (ADS)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (p<0.05) for control, TBHP, and NAC. Encouragingly, partial least squares discriminant analysis applied to our data showed high sensitivity and specificity for identification of control (87.3%, 71.7%), NAC (92.3%, 85.1%) and TBHP (86.9%, 92.9%). These results suggest that confocal Raman micro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  12. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    NASA Astrophysics Data System (ADS)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  13. Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors.

    PubMed

    Xin, Gang; Schauder, David M; Jing, Weiqing; Jiang, Aimin; Joshi, Nikhil S; Johnson, Bryon; Cui, Weiguo

    2017-01-24

    Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors.

  14. Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors

    PubMed Central

    Xin, Gang; Schauder, David M.; Jing, Weiqing; Jiang, Aimin; Joshi, Nikhil S.; Johnson, Bryon; Cui, Weiguo

    2017-01-01

    Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors. PMID:28069963

  15. Magnetic field design for selecting and aligning immunomagnetic labeled cells.

    PubMed

    Tibbe, Arjan G J; de Grooth, Bart G; Greve, Jan; Dolan, Gerald J; Rao, Chandra; Terstappen, Leon W M M

    2002-03-01

    Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the magnetic field design to achieve the best possible cell selection and alignment of magnetically labeled cells. Materials and Methods Computer simulations, in combination with experimental data, were used to optimize the design of the magnets and Ni lines to obtain the optimal magnetic configuration. A homogeneous cell distribution on the upper surface of the sample chamber was obtained with a magnet where the pole faces were tilted towards each other. The spatial distribution of magnetically aligned objects in between the Ni lines was dependent on the ratio of the diameter of the aligned object and the line spacing, which was tested with magnetically and fluorescently labeled 6 microm polystyrene beads. The best result was obtained when the line spacing was equal to or smaller than the diameter of the aligned object. The magnetic gradient of the designed permanent magnet extracts magnetically labeled cells from any cell suspension to a desired plane, providing a homogeneous cell distribution. In addition, it magnetizes ferro-magnetic Ni lines in this plane whose additional local gradient adds to the gradient of the permanent magnet. The resultant gradient aligns the magnetically labeled cells first brought to this plane. This combination makes it possible, in a single step, to extract and align cells on a surface from any cell suspension. Copyright 2002 Wiley-Liss, Inc.

  16. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  17. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less

  18. Identification of a Population of Epidermal Squamous Cell Carcinoma Cells with Enhanced Potential for Tumor Formation

    PubMed Central

    Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R.; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L.; Eckert, Richard L.

    2013-01-01

    Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation. PMID:24376802

  19. Vaccine of engineered tumor cells secreting stromal cell-derived factor-1 induces T-cell dependent antitumor responses.

    PubMed

    Shi, Meiqing; Hao, Siguo; Su, Liping; Zhang, Xueshu; Yuan, Jinying; Guo, Xuling; Zheng, Changyu; Xiang, Jim

    2005-08-01

    The CXC chemokine SDF-1 has been characterized as a T-cell chemoattractant both in vitro and in vivo. To determine whether SDF-1 expression within tumors can influence tumor growth, we transfected an expression vector pCI-SDF-1 for SDF-1 into J558 myeloma cells and tested their ability to form tumors in BALB/c. Production of biologically active SDF-1 (1.2 ng/mL) was detected in the culture supernatants of cells transfected with the expression vector pCI-SDF-1. J558 cells gave rise to a 100% tumor incidence, whereas SDF-1-expressing J558/SDF-1 tumors invariably regressed in BALB/c mice and became infiltrated with CD4(+) and CD8(+) T cells. Regression of the J558/SDF-1 tumors was dependent on both CD4(+) and CD8(+) T-cells. Our data also indicate that TIT cells containing both CD4(+) and CD8(+) T-cells within J558/SDF-1 tumors express the SDF-1 receptor CXCR4, and that SDF-1 specifically chemoattracts these cells in vitro. Furthermore, immunization of mice with engineered J558/SDF-1 cells elicited the most potent protective immunity against 0.5 x 10(6) cells J558 tumor challenge in vivo, compared to immunization with the J558 alone, and this antitumor immunity mediated by J558/SDF-1 tumor cell vaccination in vivo appeared to be dependent on CD8(+) CTL. Thus, SDF-1 has natural adjuvant activities that may augment antitumor responses through their effects on T-cells and thereby could be important in gene transfer immunotherapies for some cancers.

  20. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation.

    PubMed

    Huang, Y; Yu, P; Li, W; Ren, G; Roberts, A I; Cao, W; Zhang, X; Su, J; Chen, X; Chen, Q; Shou, P; Xu, C; Du, L; Lin, L; Xie, N; Zhang, L; Wang, Y; Shi, Y

    2014-07-17

    p53 is one of the most studied genes in cancer biology, and mutations in this gene may be predictive for the development of many types of cancer in humans and in animals. However, whether p53 mutations in non-tumor stromal cells can affect tumor development has received very little attention. In this study, we show that B16F0 melanoma cells form much larger tumors in p53-deficient mice than in wild-type mice, indicating a potential role of p53 deficiency in non-tumor cells of the microenvironment. As mesenchymal stem cells (MSCs) are attracted to tumors and form a major component of the tumor microenvironment, we examined the potential role of p53 status in MSCs in tumor development. We found that larger tumors resulted when B16F0 melanoma cells were co-injected with bone marrow MSCs derived from p53-deficient mice rather than MSCs from wild-type mice. Interestingly, this tumor-promoting effect by p53-deficient MSCs was not observed in non-obese diabetic/severe combined immunodeficiency mice, indicating the immune response has a critical role. Indeed, in the presence of inflammatory cytokines, p53-deficient MSCs expressed more inducible nitric oxide synthase (iNOS) and exhibited greater immunosuppressive capacity. Importantly, tumor promotion by p53-deficient MSCs was abolished by administration of S-methylisothiourea, an iNOS inhibitor. Therefore, our data demonstrate that p53 status in tumor stromal cells has a key role in tumor development by modulating immune responses.

  1. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  2. Enumeration of Circulating Tumor Cells and Disseminated Tumor Cells in Blood and Bone Marrow by Immunomagnetic Enrichment and Flow Cytometry (IE/FC).

    PubMed

    Magbanua, Mark Jesus M; Solanki, Tulasi I; Ordonez, Andrea D; Hsiao, Feng; Park, John W

    2017-01-01

    Enumerating circulating tumor cells (CTCs) in blood and disseminated tumor cells (DTCs) in bone marrow has shown to be clinically useful, as elevated numbers of these cells predict poor clinical outcomes. Accurate detection and quantification is, however, difficult and technically challenging because CTCs and DTCs are extremely rare. We have developed a novel quantitative detection method for enumeration of CTCs and DTCs. Our approach consists of two steps: (1) EPCAM-based immunomagnetic enrichment followed by (2) flow cytometry (IE/FC). The assay takes approximately 2 h to complete. In addition to tumor cell enumeration, IE/FC offers opportunities for direct isolation of highly pure tumor cells for downstream molecular characterization.

  3. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells

    PubMed Central

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-01-01

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment. PMID:28187434

  4. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    PubMed

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  5. Opposite Effects of Coinjection and Distant Injection of Mesenchymal Stem Cells on Breast Tumor Cell Growth.

    PubMed

    Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin

    2016-09-01

    : Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.

  6. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival.

    PubMed

    Zheng, Qiao; Dunlap, Sarah M; Zhu, Jinling; Downs-Kelly, Erinn; Rich, Jeremy; Hursting, Stephen D; Berger, Nathan A; Reizes, Ofer

    2011-08-01

    Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.

  7. Perioperative circulating tumor cell detection: Current perspectives

    PubMed Central

    Kaifi, Jussuf T.; Li, Guangfu; Clawson, Gary; Kimchi, Eric T.; Staveley-O'Carroll, Kevin F.

    2016-01-01

    ABSTRACT Primary cancer resections and in selected cases surgical metastasectomies significantly improve survival, however many patients develop recurrences. Circulating tumor cells (CTCs) function as an independent marker that could be used in the prognostication of different cancers. Sampling of blood and bone marrow compartments during cancer resections is a unique opportunity to increase individual tumor cell capture efficiency. This review will address the diagnostic and therapeutic potentials of perioperative tumor isolation and highlight the focus of future studies on characterization of single disseminated cancer cells to identify targets for molecular therapy and immune escape mechanisms. PMID:27045201

  8. The Human Cell Surfaceome of Breast Tumors

    PubMed Central

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  9. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: a possible radioimmunotherapy to prostate carcinoma.

    PubMed

    Wang, Hsin-Yi; Lin, Wan-Yu; Chen, Mei-Chih; Lin, Teh; Chao, Chih-Hao; Hsu, Fu-Ning; Lin, Eugene; Huang, Chih-Yang; Luo, Tsai-Yueh; Lin, Ho

    2013-05-01

    Herceptin is widely used in treating Her2-overexpressing breast cancer. However, the application of Herceptin in prostate cancer is still controversial. Our previous results have indicated the relevance of Her2 in the transition of the androgen requirement in prostate cancer cells. In this study, the effects of radioimmunotherapy against Her2 in prostate cancer were investigated. DU145, an androgen receptor-negative prostate cancer cell line, was used in vitro and in vivo to evaluate the effects of Herceptin labeled with a beta emitter, Rhenium-188 (Re-188). Its effects on cell growth, extent of apoptosis, the bio-distribution of Re-188 labeled Herceptin (Re-H), and protein levels were determined. Treatments with Re-188 and Re-H reduced the proliferation of DU145 cells in dose- and time-dependent manners compared to the Herceptin-treated group. Growth inhibition and apoptosis were induced after Re-H treatment; growth inhibition was more distinct in cells with high Her2/p-Her2 levels. Our in vivo xenograft studies revealed that Re-H treatment significantly retarded tumor growth and altered the levels of apoptosis-related proteins. The bio-distribution of Re-H in mice demonstrated a tissue-specific pattern. Importantly, the levels of p35 protein, which is related to cancer cell survival and invasion, dramatically decreased after Re-H treatment. Our data demonstrate that Re-188-labeled Herceptin effectively inhibited the growth of DU145 cells compared to the Herceptin- and Re-188-treated cohorts. This implies that targeting Her2 by both radio- and immuno- therapy might be a potential strategy for treating patients with androgen-independent prostate cancer.

  10. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.

    PubMed

    Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F

    2011-01-01

    Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.

  11. Hypofractionation Results in Reduced Tumor Cell Kill Compared to Conventional Fractionation for Tumors With Regions of Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, David J., E-mail: david.j.carlson@yale.ed; Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT; Keall, Paul J.

    2011-03-15

    Purpose: Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. Methods and Materials: A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels ofmore » hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Results: Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10{sup 5} over a distance of 130 {mu}m. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of {approx}10{sup 3} as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Conclusions: Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia.« less

  12. Computed tomography and magnetic resonance imaging findings of intraorbital granular cell tumor (Abrikossoff's tumor): a case report.

    PubMed

    Yuan, Wei-Hsin; Lin, Tai-Chi; Lirng, Jiing-Feng; Guo, Wan-You; Chang, Fu-Pang; Ho, Donald Ming-Tak

    2016-05-13

    Granular cell tumors are rare neoplasms which can occur in any part of the body. Granular cell tumors of the orbit account for only 3 % of all granular cell tumor cases. Computed tomography and magnetic resonance imaging of the orbit have proven useful for diagnosing orbital tumors. However, the rarity of intraorbital granular cell tumors poses a significant diagnostic challenge for both clinicians and radiologists. We report a case of a 37-year-old Chinese woman with a rare intraocular granular cell tumor of her right eye presenting with diplopia, proptosis, and restriction of ocular movement. Preoperative orbital computed tomography and magnetic resonance imaging with contrast enhancement revealed an enhancing solid, ovoid, well-demarcated, retrobulbar nodule. In addition, magnetic resonance imaging features included an intraorbital tumor which was isointense relative to gray matter on T1-weighted imaging and hypointense on T2-weighted imaging. No diffusion restriction of water was noted on either axial diffusion-weighted images or apparent diffusion coefficient maps. Both computed tomography and magnetic resonance imaging features suggested an intraorbital hemangioma. However, postoperative pathology (together with immunohistochemistry) identified an intraorbital granular cell tumor. When intraorbital T2 hypointensity and free diffusion of water are observed on magnetic resonance imaging, a granular cell tumor should be included in the differential diagnosis of an intraocular tumor.

  13. Dissecting social cell biology and tumors using Drosophila genetics.

    PubMed

    Pastor-Pareja, José Carlos; Xu, Tian

    2013-01-01

    Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.

  14. CD4 cells can be more efficient at tumor rejection than CD8 cells.

    PubMed

    Perez-Diez, Ainhoa; Joncker, Nathalie T; Choi, Kyungho; Chan, William F N; Anderson, Colin C; Lantz, Olivier; Matzinger, Polly

    2007-06-15

    Researchers designing antitumor treatments have long focused on eliciting tumor-specific CD8 cytotoxic T lymphocytes (CTL) because of their potent killing activity and their ability to reject transplanted organs. The resulting treatments, however, have generally been surprisingly poor at inducing complete tumor rejection, both in experimental models and in the clinic. Although a few scattered studies suggested that CD4 T "helper" cells might also serve as antitumor effectors, they have generally been studied mostly for their ability to enhance the activity of CTL. In this mouse study, we compared monoclonal populations of tumor-specific CD4 and CD8 T cells as effectors against several different tumors, and found that CD4 T cells eliminated tumors that were resistant to CD8-mediated rejection, even in cases where the tumors expressed major histocompatibility complex (MHC) class I molecules but not MHC class II. MHC class II expression on host tissues was critical, suggesting that the CD4 T cells act indirectly. Indeed, the CD4 T cells partnered with NK cells to obtain the maximal antitumor effect. These findings suggest that CD4 T cells can be powerful antitumor effector cells that can, in some cases, outperform CD8 T cells, which are the current "gold standard" effector cell in tumor immunotherapy.

  15. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy

    PubMed Central

    Chacon, Jessica Ann; Sarnaik, Amod A; Chen, Jie Qing; Creasy, Caitlin; Kale, Charuta; Robinson, John; Weber, Jeffrey; Hwu, Patrick; Pilon-Thomas, Shari; Radvanyi, Laszlo

    2014-01-01

    Purpose Cultured tumor fragments from melanoma metastases have been used for years as a source of tumor-infiltrating lymphocytes (TIL) for adoptive cell therapy. The expansion of tumor-reactive CD8+ T cells with IL-2 in these early cultures is critical in generating clinically active TIL infusion products, with a population of activated 4-1BB CD8+ T cells recently found to constitute the majority of tumor-specific T cells. Experimental Design We used an agonistic anti-4-1BB antibody added during the initial tumor fragment cultures to provide in situ 4-1BB co-stimulation. Results We found that addition of an agonistic anti-4-1BB antibody could activate 4-1BB signaling within early cultured tumor fragments and accelerated the rate of memory CD8+ TIL outgrowth that were highly enriched for melanoma antigen specificity. This was associated with NFκB activation and the induction of T-cell survival and memory genes, as well as enhanced IL-2 responsiveness, in the CD8+ T cells in the fragments and emerging from the fragments. Early provision of 4-1BB co-stimulation also affected the dendritic cells (DC) by activating NFκB in DC and promoting their maturation inside the tumor fragments. Blocking HLA class I prevented the enhanced outgrowth of CD8+ T cells with anti-4-1BB, suggesting that an ongoing HLA class I-mediated antigen presentation in early tumor fragment cultures plays a role in mediating tumor-specific CD8+ TIL outgrowth. Conclusions Our results highlight a previously unrecognized concept in TIL adoptive cell therapy that the tumor microenvironment can be dynamically regulated in the initial tumor fragment cultures to regulate the types of T cells expanded and their functional characteristics. PMID:25472998

  16. Ultra-fast stem cell labelling using cationised magnetoferritin

    NASA Astrophysics Data System (ADS)

    Correia Carreira, S.; Armstrong, J. P. K.; Seddon, A. M.; Perriman, A. W.; Hartley-Davies, R.; Schwarzacher, W.

    2016-03-01

    Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised magnetoferritin did not adversely affect the membrane integrity, proliferation and multi-lineage differentiation capacity of hMSCs, which provides the first detailed evidence for the biocompatibility of magnetoferritin. The combination of synthetic ease and flexibility, the rapidity of labelling and absence of cytotoxicity make this novel nanoparticle system an easily accessible and versatile platform for a range of cell-based therapies in regenerative medicine.Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised

  17. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2012-09-01

    According to the recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re- growth is triggered by...shifting of microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize...the stem cell . We have established necessary mouse colonies and also developed the method to generate TAM. We have also shown that TAM indeed

  18. Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling.

    PubMed

    Kumashiro, Yoshikazu; Ishihara, Jun; Umemoto, Terumasa; Itoga, Kazuyoshi; Kobayashi, Jun; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-02-11

    A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 μm striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion

    PubMed Central

    Hussein, Deema; Punjaruk, Wiyada; Storer, Lisa C.D.; Shaw, Lucy; Ottoman, Ramadan; Peet, Andrew; Miller, Suzanne; Bandopadhyay, Gagori; Heath, Rachel; Kumari, Rajendra; Bowman, Karen J.; Braker, Paul; Rahman, Ruman; Jones, George D.D.; Watson, Susan; Lowe, James; Kerr, Ian D.; Grundy, Richard G.; Coyle, Beth

    2011-01-01

    Reliable model systems are needed to elucidate the role cancer stem cells (CSCs) play in pediatric brain tumor drug resistance. The majority of studies to date have focused on clinically distinct adult tumors and restricted tumor types. Here, the CSC component of 7 newly established primary pediatric cell lines (2 ependymomas, 2 medulloblastomas, 2 gliomas, and a CNS primitive neuroectodermal tumor) was thoroughly characterized. Comparison of DNA copy number with the original corresponding tumor demonstrated that genomic changes present in the original tumor, typical of that particular tumor type, were retained in culture. In each case, the CSC component was approximately 3–4-fold enriched in neurosphere culture compared with monolayer culture, and a higher capacity for multilineage differentiation was observed for neurosphere-derived cells. DNA content profiles of neurosphere-derived cells expressing the CSC marker nestin demonstrated the presence of cells in all phases of the cell cycle, indicating that not all CSCs are quiescent. Furthermore, neurosphere-derived cells demonstrated an increased resistance to etoposide compared with monolayer-derived cells, having lower initial DNA damage, potentially due to a combination of increased drug extrusion by ATP-binding cassette multidrug transporters and enhanced rates of DNA repair. Finally, orthotopic xenograft models reflecting the tumor of origin were established from these cell lines. In summary, these cell lines and the approach taken provide a robust model system that can be used to develop our understanding of the biology of CSCs in pediatric brain tumors and other cancer types and to preclinically test therapeutic agents. PMID:20978004

  20. Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion.

    PubMed

    Hussein, Deema; Punjaruk, Wiyada; Storer, Lisa C D; Shaw, Lucy; Othman, Ramadhan; Ottoman, Ramadan; Peet, Andrew; Miller, Suzanne; Bandopadhyay, Gagori; Heath, Rachel; Kumari, Rajendra; Bowman, Karen J; Braker, Paul; Rahman, Ruman; Jones, George D D; Watson, Susan; Lowe, James; Kerr, Ian D; Grundy, Richard G; Coyle, Beth

    2011-01-01

    Reliable model systems are needed to elucidate the role cancer stem cells (CSCs) play in pediatric brain tumor drug resistance. The majority of studies to date have focused on clinically distinct adult tumors and restricted tumor types. Here, the CSC component of 7 newly established primary pediatric cell lines (2 ependymomas, 2 medulloblastomas, 2 gliomas, and a CNS primitive neuroectodermal tumor) was thoroughly characterized. Comparison of DNA copy number with the original corresponding tumor demonstrated that genomic changes present in the original tumor, typical of that particular tumor type, were retained in culture. In each case, the CSC component was approximately 3-4-fold enriched in neurosphere culture compared with monolayer culture, and a higher capacity for multilineage differentiation was observed for neurosphere-derived cells. DNA content profiles of neurosphere-derived cells expressing the CSC marker nestin demonstrated the presence of cells in all phases of the cell cycle, indicating that not all CSCs are quiescent. Furthermore, neurosphere-derived cells demonstrated an increased resistance to etoposide compared with monolayer-derived cells, having lower initial DNA damage, potentially due to a combination of increased drug extrusion by ATP-binding cassette multidrug transporters and enhanced rates of DNA repair. Finally, orthotopic xenograft models reflecting the tumor of origin were established from these cell lines. In summary, these cell lines and the approach taken provide a robust model system that can be used to develop our understanding of the biology of CSCs in pediatric brain tumors and other cancer types and to preclinically test therapeutic agents.

  1. Anterior uveal spindle cell tumor in a cat.

    PubMed

    Evans, Paige M; Lynch, Gwendolyn L; Dubielzig, Richard R

    2010-11-01

    To describe a case of anterior uveal spindle cell tumor in a cat with features similar to spindle cell tumor of blue eyed dogs. A 10-year-old female spayed domestic short-haired cat was referred for an iris mass OS. The mass was solitary, nodular, nonpigmented, located medially, and causing dyscoria. A diagnosis of a benign epithelial tumor was suggested by a FNA of the mass. The cat was lost to follow-up for 2 years, after which time she re-presented with glaucoma, blindness and grossly evident iridal mass enlargement OS. Transconjunctival enucleation was performed and the globe submitted for histopathology. Histopathology of the enucleated globe revealed the superior iris to be infiltrated and effaced by a large population of neoplastic spindle cells. The cells were arranged in streams and bundles and exhibited Antoni-A and Antoni-B tissue patterns, which are characteristic of Schwann cell tumors. Mitotic figures were rare and cellular pleomorphism moderate. Immunohistochemical staining was positive for S-100 protein and glial fibrillary acidic protein (GFAP), and negative for Melan-A. Interestingly, there was no histological evidence of glaucoma. Based on its histopathologic characteristics, this iris tumor was diagnosed as a Schwann cell variant of a peripheral nerve sheath tumor (PNST) closely resembling the spindle cell tumor of blue-eyed dogs. Anterior uveal PNST has not been previously reported in cats to the authors' knowledge. The presence of Antoni type A and type B tissue patterns along with immunohistochemical staining may facilitate a diagnosis of PNST and rule out malignant melanoma. © 2010 American College of Veterinary Ophthalmologists.

  2. The current status and clinical value of circulating tumor cells and circulating cell-free tumor DNA in bladder cancer

    PubMed Central

    Soave, Armin; Rink, Michael

    2017-01-01

    Urothelial carcinoma of the bladder (UCB) is a complex disease, which is associated with highly aggressive tumor biologic behavior, especially in patients with muscle-invasive and advanced tumors. Despite multimodal therapy options including surgery, radiotherapy and chemotherapy, UCB patients frequently suffer from poor clinical outcome. Indeed, the potential of diverse opportunities for modern targeted therapies is not sufficiently elucidated in UCB yet. To improve the suboptimal treatment situation in UCB, biomarkers are urgently needed that help detecting minimal residual disease (MRD), predicting therapy response and subsequently prognosis as well as enabling patient stratification for further therapies and therapy monitoring, respectively. To date, decision making regarding treatment planning is mainly based on histopathologic evaluation of biopsies predominantly derived from the primary tumors and on clinical staging. However, both methods are imperfect for sufficient outcome prediction. During disease progression, individual disseminated tumor cells and consecutively metastases can acquire characteristics that do not match those of the corresponding primary tumors, and often are only hardly assessable for further evaluation. Therefore, during recent years, strong efforts were directed to establish non-invasive biomarkers from liquid biopsies. Urine cytology and serum tumor markers have been established for diagnostic purposes, but are still insufficient as universal biomarkers for decision-making and treatment of UCB patients. To date, the clinical relevance of various newly established blood-based biomarkers comprising circulating tumor cells (CTCs), circulating cell-free nucleic acids or tumor-educated platelets is being tested in cancer patients. In this review we summarize the current state and clinical application of CTCs and circulating cell-free tumor DNA originating from blood as biomarkers in patients with different UCB stages. PMID:29354496

  3. Labeling proteins inside living cells using external fluorophores for microscopy.

    PubMed

    Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R

    2016-12-09

    Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.

  4. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma.

    PubMed

    Mete, Ozgur; Lopes, Maria Beatriz; Asa, Sylvia L

    2013-11-01

    Pituicytomas are neoplasms that arise from pituicytes, which are specialized glia of the posterior pituitary. Pituicytes have 5 ultrastructural variants: light, dark, granular, ependymal, and oncocytic. Granular cell tumors of the pituitary gland are thought to arise from granular pituicytes. Spindle cell oncocytomas are considered to arise from folliculostellate cells, which are sustentacular cells of the adenohypophysis. Recent data suggest that, whereas pituicytes and all 3 tumor types are positive for TTF-1, folliculostellate cells are negative for TTF-1. We investigated 7 spindle cell oncocytomas, 4 pituicytomas, and 3 granular cell tumors for their genetic (BRAF(V600E) mutation and BRAF-KIAA fusion), immunohistochemical (GFAP, vimentin, S100 protein, olig2, IDH1-R132H, NF, galectin-3, chromogranin-A, CD56, EMA, CAM5.2, CD68, TTF-1, and bcl-2), and ultrastructural features to refine their classification. All tumors had nuclear positivity for TTF-1 and were negative for CAM5.2, chromogranin-A, and NF. GFAP, vimentin, S100, galectin-3, EMA, and CD68 were variably positive in the majority of the 3 tumor groups. Olig2 was only positive in 1 pituicytoma. Whereas granular cell tumors were negative for bcl-2 and CD56, pituicytomas and spindle cell oncocytomas showed variable positivity. All tumors were negative with the IDH1-R132H mutation-specific antibody, and none had evidence of BRAF alterations (BRAF(V600E) mutation and BRAF-KIAA fusion). Diffuse TTF-1 expression in nontumorous pituicytes, pituicytomas, spindle cell oncocytomas, and granular cell tumors indicates a common pituicyte lineage. The ultrastructural variants of pituicytes are reflected in these 3 morphologic variants of tumors arising from these cells. We propose the terminology "oncocytic pituicytomas" and "granular cell pituicytomas" to refine the classification of these lesions.

  5. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.

  6. A Comparison of Exogenous Labels for the Histological Identification of Transplanted Neural Stem Cells

    PubMed Central

    Nicholls, Francesca J.; Liu, Jessie R.; Modo, Michel

    2017-01-01

    The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2′-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (<2%) of false positives, but a significant amount of false negatives (~30%), with little change between 1 and 7 days. Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations. PMID:27938486

  7. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    PubMed Central

    Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr

    2008-01-01

    Background The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Methods Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Results Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Conclusion Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor

  8. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium.

    PubMed

    Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr

    2008-07-22

    The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can

  9. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  10. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    PubMed

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  11. TH9 cells in anti-tumor immunity.

    PubMed

    Rivera Vargas, Thaiz; Humblin, Etienne; Végran, Frédérique; Ghiringhelli, François; Apetoh, Lionel

    2017-01-01

    IL-9 was initially identified as a T cell growth factor with a potential oncogenic activity. Accordingly, IL-9 drives tumor growth in most hematological cancers. However, the links between IL-9 and cancer progression have been recently revisited following the discovery of T H 9 cells. T H 9 cells, which have been characterized in 2008 as a proinflammatory CD4 T cell subset that promotes protection against parasites and drives tissue inflammation in colitis, actually harbor potent IL-9-dependent anti-cancer properties in solid tumors and especially melanoma. While the molecular mechanisms underlying these observations are still being investigated, T H 9 cells were demonstrated to activate both innate and adaptive immune responses, thereby favoring anti-cancer immunity and tumor elimination. Human T H 9 cells have also been identified in cancer tissues, but their functions remain elusive. The present review aims to discuss the anti-cancer potential of T H 9 cells and their possible clinical relevance for cancer immunotherapy.

  12. Solid tumor therapy by selectively targeting stromal endothelial cells

    PubMed Central

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J.; Yu, Zuxi; Bugge, Thomas H.; Finkel, Toren; Leppla, Stephen H.

    2016-01-01

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors. PMID:27357689

  13. Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps.

    PubMed

    Qin, Xi; Park, Sunyoung; Duffy, Simon P; Matthews, Kerryn; Ang, Richard R; Todenhöfer, Tilman; Abdi, Hamid; Azad, Arun; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2015-05-21

    The enumeration and capture of circulating tumor cells (CTCs) are potentially of great clinical value as they offer a non-invasive means to access tumor materials to diagnose disease and monitor treatment efficacy. Conventional immunoenrichment of CTCs may fail to capture cells with low surface antigen expression. Micropore filtration presents a compelling label-free alternative that enriches CTCs using their biophysical rather than biochemical characteristics. However, this strategy is prone to clogging of the filter microstructure, which dramatically reduces the selectivity after processing large numbers of cells. Here, we use the resettable cell trap (RCT) mechanism to separate cells based on their size and deformability using an adjustable aperture that can be periodically cleared to prevent clogging. After separation, the output sample is stained and analyzed using multi-spectral analysis, which provides a more sensitive and unambiguous method to identify CTC biomarkers than traditional immunofluorescence. We tested the RCT device using blood samples obtained from 22 patients with metastatic castrate-resistant prostate cancer while comparing the results with the established CellSearch® system. The RCT mechanism was able to capture ≥5 CTCs in 18/22 (82%) patients with a mean count of 257 in 7.5 ml of whole blood, while the CellSearch system found ≥5 CTCs in 9/22 (41%) patients with a mean count of 25. The ~10× improvement in the CTC capture rate provides significantly more materials for subsequent analysis of these cells such as immunofluorescence, propagation by tissue culture, and genetic profiling.

  14. Training stem cells for treatment of malignant brain tumors

    PubMed Central

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. PMID:25258664

  15. Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition

    PubMed Central

    Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei

    2013-01-01

    We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants. PMID:24109183

  16. Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition.

    PubMed

    Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei

    2013-01-01

    We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium-tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.

  17. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    PubMed

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  18. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization.

    PubMed

    Green, Chad E; Liu, Tiffany; Montel, Valerie; Hsiao, Gene; Lester, Robin D; Subramaniam, Shankar; Gonias, Steven L; Klemke, Richard L

    2009-08-21

    Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1alpha and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.

  19. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    PubMed

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  20. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI

    PubMed Central

    Kadayakkara, Deepak K.K.; Janjic, Jelena M.; Pusateri, Lisa B.; Young, Won-Bin; Ahrens, Eric T.

    2010-01-01

    Preclinical development of therapeutic agents against cancer could greatly benefit from noninvasive markers of tumor killing. Potentially, the intracellular partial pressure of oxygen (pO2) can be used as an early marker of anti-tumor efficacy. Here, the feasibility of measuring intracellular pO2 of CNS glioma cells in vivo using 19F magnetic resonance techniques is examined. Rat 9L glioma cells were labeled with perfluoro-15-crown-5-ether (PCE) ex vivo and then implanted into the rat striatum. 19F MRI was used to visualize tumor location in vivo. The mean 19F T1 of the implanted cells was measured using localized, single-voxel spectroscopy. The intracellular pO2 in tumor cells was determined from an in vitro calibration curve. The basal pO2 of 9L cells (day 3) was determined to be 45.3±5 mm Hg (n=6). Rats were then treated with a 1× LD10 dose of bischloroethylnitrosourea (BCNU) intravenously, and changes in intracellular pO2 were monitored. The pO2 increased significantly (p=0.042, paired T-test) to 141.8±3 mm Hg within 18 hours after BCNU treatment (day 4) and remained elevated (165±24 mm Hg) for at least 72 hours (day 6). Intracellular localization of the PCE emulsion in 9L cells before and after BCNU treatment was confirmed by histological examination and fluorescence microscopy. Overall, non-invasive 19F magnetic resonance techniques may provide a valuable preclinical tool for monitoring therapeutic response against CNS or other deep-seated tumors. PMID:20860007

  1. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  2. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy.

    PubMed

    Chacon, Jessica Ann; Sarnaik, Amod A; Chen, Jie Qing; Creasy, Caitlin; Kale, Charuta; Robinson, John; Weber, Jeffrey; Hwu, Patrick; Pilon-Thomas, Shari; Radvanyi, Laszlo

    2015-02-01

    Cultured tumor fragments from melanoma metastases have been used for years as a source of tumor-infiltrating lymphocytes (TIL) for adoptive cell therapy (ACT). The expansion of tumor-reactive CD8(+) T cells with interleukin-2 (IL2) in these early cultures is critical in generating clinically active TIL infusion products, with a population of activated 4-1BB CD8(+) T cells recently found to constitute the majority of tumor-specific T cells. We used an agonistic anti-4-1BB antibody added during the initial tumor fragment cultures to provide in situ 4-1BB costimulation. We found that addition of an agonistic anti-4-1BB antibody could activate 4-1BB signaling within early cultured tumor fragments and accelerated the rate of memory CD8(+) TIL outgrowth that were highly enriched for melanoma antigen specificity. This was associated with NFκB activation and the induction of T-cell survival and memory genes, as well as enhanced IL2 responsiveness, in the CD8(+) T cells in the fragments and emerging from the fragments. Early provision of 4-1BB costimulation also affected the dendritic cells (DC) by activating NFκB in DC and promoting their maturation inside the tumor fragments. Blocking HLA class I prevented the enhanced outgrowth of CD8(+) T cells with anti-4-1BB, suggesting that an ongoing HLA class I-mediated antigen presentation in early tumor fragment cultures plays a role in mediating tumor-specific CD8(+) TIL outgrowth. Our results highlight a previously unrecognized concept in TIL ACT that the tumor microenvironment can be dynamically regulated in the initial tumor fragment cultures to regulate the types of T cells expanded and their functional characteristics. ©2014 American Association for Cancer Research.

  3. Labeling single cell for in-vivo study of cell fate mapping and lineage tracing

    NASA Astrophysics Data System (ADS)

    He, Sicong; Xu, Jin; Wu, Yi; Tian, Ye; Sun, Qiqi; Wen, Zilong; Qu, Jianan Y.

    2018-02-01

    Cell fate mapping and lineage tracing are significant ways to understanding the developmental origins of biological tissues. It requires labeling individual cells and tracing the development of their progeny. We develop an infrared laser-evoked gene operator heat-shock microscope system to achieve single-cell labeling in zebrafish. With a fluorescent thermometry technique, we measure the temperature increase in zebrafish tissues induced by infrared laser and identify the optimal heat shock conditions for single-cell gene induction in different types of zebrafish cells. We use this technique to study the fate mapping of T lymphocytes and discover the distinct waves of lymphopoiesis during the zebrafish development.

  4. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  5. Tumor suppressive action of indomethacin is NK-cell-independent.

    PubMed

    Cvetkovska, E; Asea, A; Hellstrand, K; Edström, S

    1997-01-01

    This study was undertaken to determine whether NK-cells constitute a necessary mediator for the suppression of tumor growth by indomethacin. C57Bl mice with a methylcholantrene (MCG 101) tumor were studied. Indomethacin treatment was provided by daily subcutaneous injections (1 microgram/g body weight). NK-cells were depleted by treatment with a monoclonal antibody to NK1.1. Consecutive indomethacin injections prolonged survival in tumor bearing animals. Indomethacin was equally effective in animals with intact NK-cells as in NK-cell-depleted animals. Further, the MCG cells were apparently insensitive to the lytic activity of NK-cells in vivo. Thus, the clearance of intravenously injected MCG cells from lungs was not affected by depletion of NK-cells in vivo; in contrast, the corresponding clearance of NK-cell-sensitive YAC-1 lymphoma cells was strikingly reduced by the depletion of NK-cells. Our data suggest that NK cells are not a necessary mediator for the suppression of tumor growth by indomethacin.

  6. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors

    PubMed Central

    Zhang, Ying; Ertl, Hildegund C.J.

    2016-01-01

    The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice. PMID:26943036

  7. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors.

    PubMed

    Zhang, Ying; Ertl, Hildegund C J

    2016-04-26

    The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice.

  8. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    PubMed

    Hege, Kristen M; Bergsland, Emily K; Fisher, George A; Nemunaitis, John J; Warren, Robert S; McArthur, James G; Lin, Andy A; Schlom, Jeffrey; June, Carl H; Sherwin, Stephen A

    2017-01-01

    T cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s. Patients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 10 10 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72. Fourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111 Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72

  9. A novel facile method of labeling octreotide with (18)F-fluorine.

    PubMed

    Laverman, Peter; McBride, William J; Sharkey, Robert M; Eek, Annemarie; Joosten, Lieke; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C

    2010-03-01

    Several methods have been developed to label peptides with (18)F. However, in general these are laborious and require a multistep synthesis. We present a facile method based on the chelation of (18)F-aluminum fluoride (Al(18)F) by 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The method is characterized by the labeling of NOTA-octreotide (NOTA-d-Phe-cyclo[Cys-Phe-d-Trp-Lys-Thr-Cys]-Throl (MH(+) 1305) [IMP466]) with (18)F. Octreotide was conjugated with the NOTA chelate and labeled with (18)F in a 2-step, 1-pot method. The labeling procedure was optimized with regard to the labeling buffer, peptide, and aluminum concentration. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice and compared with that of (68)Ga-labeled IMP466. In addition, small-animal PET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 50% yield. The labeled product was purified by high-performance liquid chromatography to remove unbound Al(18)F and unlabeled peptide. The radiolabeling, including purification, was performed in 45 min. The specific activity was 45,000 GBq/mmol, and the peptide was stable in serum for 4 h at 37 degrees C. Labeling was performed at pH 4.1 in sodium citrate, sodium acetate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 2-(N-morpholino)ethanesulfonic acid buffer and was optimal in sodium acetate buffer. The apparent 50% inhibitory concentration of the (19)F-labeled IMP466 determined on AR42J cells was 3.6 nM. Biodistribution studies at 2 h after injection showed a high tumor uptake of (18)F-IMP466 (28.3 +/- 5.2 percentage injected dose per gram [%ID/g]; tumor-to-blood ratio, 300 +/- 90), which could be blocked by an excess of unlabeled peptide (8.6 +/- 0.7 %ID/g), indicating that the accumulation in the tumor was receptor-mediated. Biodistribution of (68)Ga-IMP466 was similar to that of (18)F-IMP466. (18)F

  10. Single cell systems biology by super-resolution imaging and combinatorial labeling

    PubMed Central

    Lubeck, Eric; Cai, Long

    2012-01-01

    Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral separability of fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using Fluorescence in situ Hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured the mRNA levels of 32 genes simultaneously in single S. cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells provides a natural approach to bring systems biology into single cells. PMID:22660740

  11. Monitoring circulating prostate tumor cells after tumor resection by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Ding, Nan; Zhu, Xi; Xie, Chengying; Wei, Dan; Yang, Zhangru; Suo, Yuanzhen; Wei, Xunbin

    2018-02-01

    Prostate cancer has already become the biggest threat among all cancer types for male people and many people died because of its bone metastases. Circulating tumor cells (CTCs) can be used as early metastasis marker so that the detection of CTCs in blood is meaningful for early diagnosis and treatment. However, the relationship between these therapies and metastasis has not been fully clarified yet. Hence, we built PC3 subcutaneous tumor model and developed in vivo flow cytometer (IVFC) platform to record the dynamics of CTC before and after tumor resection. We found out that tumor resection can reduce CTC quantities instantaneously while having a good control of metastasis. CTC re-occurred 7 days after surgery, which might be correlated with early disseminated and deposited tumors. In conclusion, in vivo flow cytometry (IVFC) is capable of detecting CTC dynamics in prostate subcutaneous tumor model and this method could facilitate further research about relationship between other cancer therapies and circulating tumor cells.

  12. Origin of tumor-promoter released fibronectin in fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrous, B.A.; Wolf, G.

    1986-05-01

    Previous work from the laboratory showed that the chemical tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated release of the cell surface glycoprotein, fibronectin (FN) from human lung fibroblasts (HLF), leading to depletion of cell surface FN, while FN synthesis is not altered by TPA. To further investigate the mechanism(s) by which TPA stimulates FN release, two types of experiments were performed. In the first, HLF were pulsed with /sup 35/S-methionine-labeled medium with or without TPA. In the second, cell-surface proteins were labeled by iodination (/sup 125/I) and then incubated in unlabeled medium with or without TPA. In both cases, the fate ofmore » labeled FN was followed over 12 hr. The /sup 35/S-meth-labeled HLF showed a rapid loss of labeled FN, first into a small, highly-labeled pool of cell surface FN (1 hr), later into the medium (4 hr or longer). Specific activities showed that this small pool in the cell surface turned over rapidly. TPA treatment resulted in more rapid movement of /sup 35/S-meth pulse-labeled FN to the cell surface and into the medium than in control cells. TPA thus affected the fate of intracellular FN. TPA treatment of HLF also resulted in more rapid removal of /sup 125/I-cell surface-labeled FN into the medium than in control cells. Thus, TPA affects the fate of preexisting cell surface FN in HLF. From these results, they hypothesize that TPA has two separate effects: it stimulates depletion of preexisting intracellular FN during the first hr of treatment, and it stimulates release of preexisting cell surface FN over all treatment times.« less

  13. Cell sorting apparatus

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1980-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  14. NK cell heparanase controls tumor invasion and immune surveillance

    PubMed Central

    Putz, Eva M.; Mayfosh, Alyce J.; Barkauskas, Deborah S.; Nakamura, Kyohei; Town, Liam; Goodall, Katharine J.; Yee, Dean Y.; Poon, Ivan K.H.; Baschuk, Nikola; Souza-Fonseca-Guimaraes, Fernando; Hulett, Mark D.; Smyth, Mark J.

    2017-01-01

    NK cells are highly efficient at preventing cancer metastasis but are infrequently found in the core of primary tumors. Here, have we demonstrated that freshly isolated mouse and human NK cells express low levels of the endo-β-D-glucuronidase heparanase that increase upon NK cell activation. Heparanase deficiency did not affect development, differentiation, or tissue localization of NK cells under steady-state conditions. However, mice lacking heparanase specifically in NK cells (Hpsefl/fl NKp46-iCre mice) were highly tumor prone when challenged with the carcinogen methylcholanthrene (MCA). Hpsefl/fl NKp46-iCre mice were also more susceptible to tumor growth than were their littermate controls when challenged with the established mouse lymphoma cell line RMA-S-RAE-1β, which overexpresses the NK cell group 2D (NKG2D) ligand RAE-1β, or when inoculated with metastatic melanoma, prostate carcinoma, or mammary carcinoma cell lines. NK cell invasion of primary tumors and recruitment to the site of metastasis were strictly dependent on the presence of heparanase. Cytokine and immune checkpoint blockade immunotherapy for metastases was compromised when NK cells lacked heparanase. Our data suggest that heparanase plays a critical role in NK cell invasion into tumors and thereby tumor progression and metastases. This should be considered when systemically treating cancer patients with heparanase inhibitors, since the potential adverse effect on NK cell infiltration might limit the antitumor activity of the inhibitors. PMID:28581441

  15. PARTICIPATION OF THE COAGULATION MECHANISM IN TUMOR LOCALIZATION OF I$sup 131$-LABELLED FIBRINOGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaeffer, J.R.

    A transplantable tumor of the rat, the Murphy-Sturm lymphosarcoma, was found to contain 15 to 25% of the adminlstered radioactive dose 18 hours after intravenous injection of I/sup 131/-labeled rat fibrinogen in a rat bearing a tumor in the 2 to 12 gm weight range. At this time the concentration of radioactivity per gm of tumor was found to be some 4 to 15 times that of such vascular organs as the liver and kidney, smaller tumors (2 to 5 gm) localizing much more of the injected radioactive dose per gm than larger tumors (8 to 12 gm). These tumorsmore » did not concentrate radioactivity after intravenous injection of either I/sup 131/ gamma -globulin or inorganic NaI/sup 131/. The administration of heparin or warfarin in dosages adequate to completely inhibit the blood coagulation mechanism throughout the 18-hour experimental period decreased this specific tumor localization of I/sup 131/ fibrinogen by 60 to 80%. It is concluded that the coagulation mechanism participates in the localization of I/ sup 131/ fibrinogen in the Murphy-Sturm lymphosarcoma. Physiological mechanisms of action other than the anticoagulative one which could possibly explain the effect of heparin and warfarin on tumor localization are discussed. No experimental evidence for an enhancement of fibrinolysis as the mechanism of tumor I/sup 131/ localization decrease by the drugs was found. In particular, these anticoagulants did not decrease whole--body radioactivity retention, and the radioactivity retained in the tumor-bearing rats receiving anticoagulant was highly clottable 18 hours after injection of I/sup 131/ fibrinogen. (auth)« less

  16. Molecular characterization of circulating colorectal tumor cells defines genetic signatures for individualized cancer care.

    PubMed

    Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y; Lim, Bing; Tan, Min-Han; Hillmer, Axel M

    2017-09-15

    Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3 , FBXW7 and ERBB2 . In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions.

  17. Molecular characterization of circulating colorectal tumor cells defines genetic signatures for individualized cancer care

    PubMed Central

    Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.

    2017-01-01

    Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093

  18. Detection of circulating tumor cells from cryopreserved human sarcoma peripheral blood mononuclear cells.

    PubMed

    Li, Heming; Meng, Qing H; Noh, Hyangsoon; Batth, Izhar Singh; Somaiah, Neeta; Torres, Keila E; Xia, Xueqing; Wang, Ruoyu; Li, Shulin

    2017-09-10

    Circulating tumor cells (CTCs) enter the vasculature or lymphatic system after shedding from the primary tumor. CTCs may serve as "seed" cells for tumor metastasis. The utility of CTCs in clinical applications for sarcoma is not fully investigated, partly owing to the necessity for fresh blood samples and the lack of a CTC-specific antibody. To overcome these drawbacks, we developed a technique for sarcoma CTCs capture and detection using cryopreserved peripheral blood mononuclear cells (PBMCs) and our proprietary cell-surface vimentin (CSV) antibody 84-1, which is specific to tumor cells. This technique was validated by sarcoma cell spiking assay, matched CTCs comparison between fresh and cryopreserved PBMCs, and independent tumor markers in multiple types of sarcoma patient blood samples. The reproducibility was maximized when cryopreserved PBMCs were prepared from fresh blood samples within 2 h of the blood draw. In summary, as far as we are aware, ours is the first report to capture and detect CTCs from cryopreserved PBMCs. Further validation in other types of tumor may help boost the feasibility and utility of CTC-based diagnosis in a centralized laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Intravital characterization of tumor cell migration in pancreatic cancer

    PubMed Central

    Beerling, Evelyne; Oosterom, Ilse; Voest, Emile; Lolkema, Martijn; van Rheenen, Jacco

    2016-01-01

    ABSTRACT Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior. PMID:28243522

  20. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056