Sample records for labeling magnetic resonance

  1. In vitro labelling and detection of mesenchymal stromal cells: a comparison between magnetic resonance imaging of iron-labelled cells and magnetic resonance spectroscopy of fluorine-labelled cells.

    PubMed

    Rizzo, Stefania; Petrella, Francesco; Zucca, Ileana; Rinaldi, Elena; Barbaglia, Andrea; Padelli, Francesco; Baggi, Fulvio; Spaggiari, Lorenzo; Bellomi, Massimo; Bruzzone, Maria Grazia

    2017-01-01

    Among the various stem cell populations used for cell therapy, adult mesenchymal stromal cells (MSCs) have emerged as a major new cell technology. These cells must be tracked after transplantation to monitor their migration within the body and quantify their accumulation at the target site. This study assessed whether rat bone marrow MSCs can be labelled with superparamagnetic iron oxide (SPIO) nanoparticles and perfluorocarbon (PFC) nanoemulsion formulations without altering cell viability and compared magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) results from iron-labelled and fluorine-labelled MSCs, respectively. Of MSCs, 2 × 10 6 were labelled with Molday ION Rhodamine-B (MIRB) and 2 × 10 6 were labelled with Cell Sense. Cell viability was evaluated by trypan blue exclusion method. Labelled MSCs were divided into four samples containing increasing cell numbers (0.125 × 10 6 , 0.25 × 10 6 , 0.5 × 10 6 , 1 × 10 6 ) and scanned on a 7T MRI: for MIRB-labelled cells, phantoms and cells negative control, T1, T2 and T2* maps were acquired; for Cell Sense labelled cells, phantoms and unlabelled cells, a 19 F non-localised single-pulse MRS sequence was acquired. In total, 86.8% and 83.6% of MIRB-labelled cells and Cell Sense-labelled cells were viable, respectively. MIRB-labelled cells were visible in all samples with different cell numbers; pellets containing 0.5 × 10 6 and 1 × 10 6 of Cell Sense-labelled cells showed a detectable 19 F signal. Our data support the use of both types of contrast material (SPIO and PFC) for MSCs labelling, although further efforts should be dedicated to improve the efficiency of PFC labelling.

  2. Proximal Bright Vessel Sign on Arterial Spin Labeling Magnetic Resonance Imaging in Acute Cardioembolic Cerebral Infarction.

    PubMed

    Kato, Ayumi; Shinohara, Yuki; Kuya, Keita; Sakamoto, Makoto; Kowa, Hisanori; Ogawa, Toshihide

    2017-07-01

    The congestion of spin-labeled blood at large-vessel occlusion can present as hyperintense signals on perfusion magnetic resonance imaging with 3-dimensional pseudo-continuous arterial spin labeling (proximal bright vessel sign). The purpose of this study was to clarify the difference between proximal bright vessel sign and susceptibility vessel sign in acute cardioembolic cerebral infarction. Forty-two patients with cardioembolic cerebral infarction in the anterior circulation territory underwent magnetic resonance imaging including diffusion-weighted imaging, 3-dimensional pseudo-continuous arterial spin labeling perfusion magnetic resonance imaging, T2*-weighted imaging, and 3-dimensional time-of-flight magnetic resonance angiography using a 3-T magnetic resonance scanner. Visual assessments of proximal bright vessel sign and the susceptibility vessel sign were performed by consensus of 2 experienced neuroradiologists. The relationship between these signs and the occlusion site of magnetic resonance angiography was also investigated. Among 42 patients with cardioembolic cerebral infarction, 24 patients showed proximal bright vessel sign (57.1%) and 25 showed susceptibility vessel sign (59.5%). There were 19 cases of proximal bright vessel sign and susceptibility vessel sign-clear, 12 cases of proximal bright vessel sign and susceptibility vessel sign-unclear, and 11 mismatched cases. Four out of 6 patients with proximal bright vessel sign-unclear and susceptibility vessel sign-clear showed distal middle cerebral artery occlusion, and 2 out of 5 patients with proximal bright vessel sign-clear and susceptibility vessel sign-unclear showed no occlusion on magnetic resonance angiography. Proximal bright vessel sign is almost compatible with susceptibility vessel sign in patients with cardioembolic cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hartung, Annegret; Lisy, Marcus R.; Herrmann, Karl-Heinz; Hilger, Ingrid; Schüler, Dirk; Lang, Claus; Bellemann, Matthias E.; Kaiser, Werner A.; Reichenbach, Jürgen R.

    2007-04-01

    This work investigated macrophages labeled with magnetosomes for the possible detection of inflammations by MR molecular imaging. Pure magnetosomes and macrophages containing magnetosomes were analyzed using a clinical 1.5 T MR-scanner. Relaxivities of magnetosomes and relaxation rates of cells containing magnetosomes were determined. Peritonitis was induced in two mice. T1, T2 and T2* weighted images were acquired following injection of the probes. Pure magnetosomes and labeled cells showed slight effects on T1, but strong effects on T2 and T2* images. Labeled macrophages were located with magnetic resonance imaging (MRI) in the colon area, thus demonstrating the feasibility of the proposed approach.

  4. Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance

    PubMed Central

    Dongsheng, Liu; Xu, Rong; Cowburn, David

    2009-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474

  5. Labeling and Magnetic Resonance Imaging of Exosomes Isolated from Adipose Stem Cells.

    PubMed

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2017-06-19

    Adipose stem cells (ASC) represent a promising therapeutic approach for neurodegenerative diseases. Most biological effects of ASC are probably mediated by extracellular vesicles, such as exosomes, which influence the surrounding cells. Current development of exosome therapies requires efficient and noninvasive methods to localize, monitor, and track the exosomes. Among imaging methods used for this purpose, magnetic resonance imaging (MRI) has advantages: high spatial resolution, rapid in vivo acquisition, and radiation-free operation. To be detectable with MRI, exosomes must be labeled with MR contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIO). Here, we set up an innovative approach for exosome labeling that preserves their morphology and physiological characteristics. We show that by labeling ASC with USPIO before extraction of nanovesicles, the isolated exosomes retain nanoparticles and can be visualized by MRI. The current work aims at validating this novel USPIO-based exosome labeling method by monitoring the efficiency of the labeling with MRI both in ASC and in exosomes. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

    PubMed

    Skelton, Rhys J P; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-01

    Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts, highlighting its

  7. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats.

    PubMed

    Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q

    2017-08-01

    Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.

  8. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  9. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-01

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs ((SPIO)o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. (SPIO)o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected (SPIO)o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected (SPIO)o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected (SPIO)o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials.

  10. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  11. Magnetic Resonance Imaging of Chondrocytes Labeled with Superparamagnetic Iron Oxide Nanoparticles in Tissue-Engineered Cartilage

    PubMed Central

    Ramaswamy, Sharan; Greco, Jane B.; Uluer, Mehmet C.; Zhang, Zijun; Zhang, Zhuoli; Fishbein, Kenneth W.

    2009-01-01

    The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration–approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics. PMID:19788362

  12. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    PubMed Central

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  13. Prediction of Blood-Brain Barrier Disruption and Intracerebral Hemorrhagic Infarction Using Arterial Spin-Labeling Magnetic Resonance Imaging.

    PubMed

    Niibo, Takeya; Ohta, Hajime; Miyata, Shirou; Ikushima, Ichiro; Yonenaga, Kazuchika; Takeshima, Hideo

    2017-01-01

    Arterial spin-labeling magnetic resonance imaging is sensitive for detecting hyperemic lesions (HLs) in patients with acute ischemic stroke. We evaluated whether HLs could predict blood-brain barrier (BBB) disruption and hemorrhagic transformation (HT) in acute ischemic stroke patients. In a retrospective study, arterial spin-labeling was performed within 6 hours of symptom onset before revascularization treatment in 25 patients with anterior circulation large vessel occlusion on baseline magnetic resonance angiography. All patients underwent angiographic procedures intended for endovascular therapy and a noncontrast computed tomography scan immediately after treatment. BBB disruption was defined as a hyperdense lesion present on the posttreatment computed tomography scan. A subacute magnetic resonance imaging or computed tomography scan was performed during the subacute phase to assess HTs. The relationship between HLs and BBB disruption and HT was examined using the Alberta Stroke Program Early Computed Tomography Score locations in the symptomatic hemispheres. A HL was defined as a region where CBF relative ≥1.4 (CBF relative =CBF HL /CBF contralateral ). HLs, BBB disruption, and HT were found in 9, 15, and 15 patients, respectively. Compared with the patients without HLs, the patients with HLs had a higher incidence of both BBB disruption (100% versus 37.5%; P=0.003) and HT (100% versus 37.5%; P=0.003). Based on the Alberta Stroke Program Early Computed Tomography Score locations, 21 regions of interests displayed HLs. Compared with the regions of interests without HLs, the regions of interests with HLs had a higher incidence of both BBB disruption (42.8% versus 3.9%; P<0.001) and HT (85.7% versus 7.8%; P<0.001). HLs detected on pretreatment arterial spin-labeling maps may enable the prediction and localization of subsequent BBB disruption and HT. © 2016 American Heart Association, Inc.

  14. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging

    PubMed Central

    Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.

    2013-01-01

    Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699

  15. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  16. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    NASA Astrophysics Data System (ADS)

    Meyer, Martin H. F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Jürgen; Keusgen, Michael

    2007-04-01

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP ® polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4-10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  17. Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain.

    PubMed

    Lee, Na Kyung; Kim, Hyeong Seop; Yoo, Dongkyeom; Hwang, Jung Won; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2017-02-01

    The success of stem cell therapy is highly dependent on accurate delivery of stem cells to the target site of interest. Possible ways to track the distribution of MSCs in vivo include the use of reporter genes or nanoparticles. The U.S. Food and Drug Administration (FDA) has approved ferumoxytol (Feraheme® [USA], Rienso® [UK]) as a treatment for iron deficiency anemia. Ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) that has recently been used to track the fate of transplanted cells using magnetic resonance imaging (MRI). The major objectives of this study were to demonstrate the feasibility of labeling hUCB-MSCs with ferumoxytol and to observe, through MRI, the engraftment of ferumoxytol-labeled human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) delivered via stereotactic injection into the hippocampi of a transgenic mouse model of familial Alzheimer's disease (5XFAD). Ferumoxytol had no toxic effects on the viability or stemness of hUCB-MSCs when assessed in vitro. Through MRI, hypointense signals were discernible at the site where ferumoxytol-labeled human MSCs were injected. Iron-positive areas were also observed in the engrafted hippocampi. The results from this study support the use of nanoparticle labeling to monitor transplanted MSCs in real time as a follow-up for AD stem cell therapy in the clinical field.

  18. Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.

    2017-03-01

    4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.

  19. Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.

    PubMed

    Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P

    2017-05-01

    Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Analysis of the meal-dependent intragastric performance of a gastric-retentive tablet assessed by magnetic resonance imaging.

    PubMed

    Steingoetter, A; Kunz, P; Weishaupt, D; Mäder, K; Lengsfeld, H; Thumshirn, M; Boesiger, P; Fried, M; Schwizer, W

    2003-10-01

    Modern medical imaging modalities can trace labelled oral drug dosage forms in the gastrointestinal tract, and thus represent important tools for the evaluation of their in vivo performance. The application of gastric-retentive drug delivery systems to improve bioavailability and to avoid unwanted plasma peak concentrations of orally administered drugs is of special interest in clinical and pharmaceutical research. To determine the influence of meal composition and timing of tablet administration on the intragastric performance of a gastric-retentive floating tablet using magnetic resonance imaging in the sitting position. A tablet formulation was labelled with iron oxide particles as negative magnetic resonance contrast marker to allow the monitoring of the tablet position in the food-filled human stomach. Labelled tablet was administered, together with three different solid meals, to volunteers seated in a 0.5-T open-configuration magnetic resonance system. Volunteers were followed over a 4-h period. Labelled tablet was detectable in all subjects throughout the entire study. The tablet showed persistent good intragastric floating performance independent of meal composition. Unfavourable timing of tablet administration had a minor effect on the intragastric tablet residence time and floating performance. Magnetic resonance imaging can reliably monitor and analyse the in vivo performance of labelled gastric-retentive tablets in the human stomach.

  1. Micrometer-sized iron oxide particle labeling of mesenchymal stem cells for magnetic resonance imaging-based monitoring of cartilage tissue engineering.

    PubMed

    Saldanha, Karl J; Doan, Ryan P; Ainslie, Kristy M; Desai, Tejal A; Majumdar, Sharmila

    2011-01-01

    To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration. Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T(1ρ) sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined. MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T(1ρ) imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation. This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies. Published by Elsevier Inc.

  2. Soft tissue examination of the fetal rat and rabbit head by magnetic resonance imaging.

    PubMed

    French, Julian M; Woodhouse, Neil

    2013-01-01

    The use of magnetic resonance imaging of the fetal rat and rabbit head, as an alternative to the traditional methods of fixation and preparation of serial sections, is described. Labeled magnetic resonance images of normal head anatomy have been provided as a reference for use when evaluating the internal structures of the head.

  3. Magnetic Resonance Imaging

    MedlinePlus

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  4. Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use

    PubMed Central

    Gutova, Margarita; Frank, Joseph A.; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M.; Annala, Alexander J.; Metz, Marianne Z.; Abramyants, Yelena; Herrmann, Kelsey A.; Ghoda, Lucy Y.; Najbauer, Joseph; Brown, Christine E.; Blanchard, M. Suzette; Lesniak, Maciej S.; Kim, Seung U.; Barish, Michael E.

    2013-01-01

    Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking. PMID:24014682

  5. Liver Function Assessment by Magnetic Resonance Imaging.

    PubMed

    Ünal, Emre; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver function assessment by hepatocyte-specific contrast-enhanced magnetic resonance imaging is becoming a new biomarker. Liver function can be assessed by T1 mapping (reduction rate) and signal intensity measurement (relative enhancement ratio) before and after GD-EOB-DTPA (gadoxetic acid) administration, as alternative to Tc-99m galactosyl serum albumin scintigraphy, 99m Tc-labeled mebrofenin scintigraphy, and indocyanine green clearance test. Magnetic resonance imaging assessment of liver function can enable diagnosis of cirrhosis, nonalcoholic fatty liver disease associated fibrosis and steatohepatitis, primary sclerosing cholangitis, toxic hepatitis, and chemotherapy and radiotherapy-related changes, which may be only visible on hepatobiliary phase images. Simple visual assessment of signal intensity at hepatobiliary phase images is important for the diagnosis of different patterns of liver dysfunction including diffuse, lobar, segmental, and subsegmental forms. Furthermore, preoperative assessment of liver function is feasible before oncologic hepatic surgery, which may be important to prevent posthepatectomy liver failure and to estimate future remnant volume. Functional magnetic resonance cholangiography obtained by T1-weighted images at hepatobiliary phase can allow diagnosis of acalculous cholecystitis, biliary leakage, bile reflux to the stomach, sphincter of oddi dysfunction, and lesions with communication to biliary tree. Functional information can be easily obtained when Gd-EOB-DTPA is used for liver magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    PubMed

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  7. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    PubMed

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  8. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  9. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  10. Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells.

    PubMed

    Park, Ki-Soo; Tae, Jinsung; Choi, Bongkum; Kim, Young-Seok; Moon, Cheol; Kim, Sa-Hyun; Lee, Han-Sin; Kim, Jinhyun; Kim, Junsung; Park, Jaeberm; Lee, Jung-Hee; Lee, Jong Eun; Joh, Jae-Won; Kim, Sungjoo

    2010-04-01

    Live imaging is a powerful technique that can be used to characterize the fate and location of stem cells in animal models. Here we investigated the characteristics and in vitro cytotoxicity of human mesenchymal stem cells (MSCs) labeled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate, MNPs@SiO2(RITC). We also conducted various in vivo-uptake tests with nanoparticle-labeled human MSCs. MNPs@SiO2(RITC) showed photostability against ultraviolet light exposure and were nontoxic to human MSCs, based on the MTT, apoptosis, and cell cycle arrest assays. In addition, MNPs@SiO2(RITC) did not affect the surface phenotype or morphology of human MSCs. We also demonstrated that MNPs@SiO2(RITC) have stable retention properties in MSCs in vitro. Furthermore, using optical and magnetic resonance imaging, we successfully detected a visible signal from labeled human MSCs that were transplanted into NOD.CB17-Prkdc(SCID) (NOD-SCID) mice. These results demonstrate that MNPs@SiO2(RITC) are biocompatible and useful tools for human MSC labeling and bioimaging. The characteristics and in vitro cytotoxicity of human mesenchymal stem cells (MSCs) labeled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate, RITC were investigated in this study. RITC showed photostability against ultraviolet light exposure and was nontoxic to human MSCs. Using both optical and magnetic resonance imaging, successful detection of signal from labeled human MSCs transplanted into mice is demonstrated. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  12. Magnetic resonance imaging of single co-labeled mesenchymal stromal cells after intracardial injection in mice.

    PubMed

    Salamon, J; Wicklein, D; Didié, M; Lange, C; Schumacher, U; Adam, G; Peldschus, K

    2014-04-01

    The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0 T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. • Detection of single magnetically labeled MSC in

  13. Behaviour of adipose-derived canine mesenchymal stem cells after superparamagnetic iron oxide nanoparticles labelling for magnetic resonance imaging.

    PubMed

    Kolecka, Malgorzata Anna; Arnhold, Stefan; Schmidt, Martin; Reich, Christine; Kramer, Martin; Failing, Klaus; von Pückler, Kerstin

    2017-02-24

    Therapy with mesenchymal stem cells (MSCs) has been reported to provide beneficial effects in the treatment of neurological and orthopaedic disorders in dogs. The exact mechanism of action is poorly understood. Magnetic resonance imaging (MRI) gives the opportunity to observe MSCs after clinical administration. To visualise MSCs with the help of MRI, labelling with an MRI contrast agent is necessary. However, it must be clarified whether there is any negative influence on cell function and viability after labelling prior to clinical administration. For the purpose of the study, seven samples with canine adipose-derived stem cells were incubated with superparamagnetic iron oxide nanoparticles (SPIO: 319.2 μg/mL Fe) for 24 h. The internalisation of the iron particles occurred via endocytosis. SPIO particles were localized as free clusters in the cytoplasm or within lysosomes depending on the time of investigation. The efficiency of the labelling was investigated using Prussian blue staining and MACS assay. After 3 weeks the percentage of SPIO labelled canine stem cells decreased. Phalloidin staining showed no negative effect on the cytoskeleton. Labelled cells underwent osteogenic and adipogenic differentiation. Chondrogenic differentiation occurred to a lesser extent compared with a control sample. MTT-Test and wound healing assay showed no influence of labelling on the proliferation. The duration of SPIO labelling was assessed using a 1 Tesla clinical MRI scanner and T2 weighted turbo spin echo and T2 weighted gradient echo MRI sequences 1, 2 and 3 weeks after labelling. The hypointensity caused by SPIO lasted for 3 weeks in both sequences. An Endorem labelling concentration of 319.2 μg/mL Fe (448 μg/mL SPIO) had no adverse effects on the viability of canine ASCs. Therefore, this contrast agent could be used as a model for iron oxide labelling agents. However, the tracking ability in vivo has to be evaluated in further studies.

  14. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    PubMed

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  15. Shielded dual-loop resonator for arterial spin labeling at the neck.

    PubMed

    Hetzer, Stefan; Mildner, Toralf; Driesel, Wolfgang; Weder, Manfred; Möller, Harald E

    2009-06-01

    To construct a dual-loop coil for continuous arterial spin labeling (CASL) at the human neck and characterize it using computer simulations and magnetic resonance experiments. The labeling coil was designed as a perpendicular pair of shielded-loop resonators made from coaxial cable to obtain balanced circular loops with minimal electrical interaction with the lossy tissue. Three different excitation modes depending on the phase shift, Deltapsi, of the currents driving the two circular loops were investigated including a "Maxwell mode" (Deltapsi = 0 degrees ; ie, opposite current directions in both loops), a "quadrature mode" (Deltapsi = 90 degrees ), and a "Helmholtz mode" (Deltapsi = 180 degrees ; ie, identical current directions in both loops). Simulations of the radiofrequency field distribution indicated a high inversion efficiency at the locations of the carotid and vertebral arteries. With a 7-mm-thick polypropylene insulation, a sufficient distance from tissue was achieved to guarantee robust performance at a local specific absorption rate (SAR) well below legal safety limits. Application in healthy volunteers at 3 T yielded quantitative maps of gray matter perfusion with low intersubject variability. The coil permits robust labeling with low SAR and minimal sensitivity to different loading conditions.

  16. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed

  17. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  18. Magnetic resonance fingerprinting.

    PubMed

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  19. RTD fluxgate performance for application in magnetic label-based bioassay: preliminary results.

    PubMed

    Ando, B; Ascia, A; Baglio, S; Bulsara, A R; Trigona, C; In, V

    2006-01-01

    Magnetic bioassay is becoming of great interest in several application including magnetic separation, drug delivery, hyperthermia treatments, magnetic resonance imaging (MRI) and magnetic labelling. The latter can be used to localize bio-entities (e.g. cancer tissues) by using magnetic markers and high sensitive detectors. To this aim SQUIDs can be adopted, however this result in a quite sophisticated and complex method involving high cost and complex set-up. In this paper, the possibility to adopt RTD fluxgate magnetometers as alternative low cost solution to perform magnetic bio-sensing is investigated. Some experimental results are shown that encourage to pursue this approach in order to obtain simple devices that can detect a certain number of magnetic particles accumulated onto a small surface such to be useful for diagnosis purposes.

  20. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.

    PubMed Central

    Inbar, L; Lapidot, A

    1991-01-01

    Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C

  1. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    PubMed Central

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and

  2. Arterial Spin Labeling Magnetic Resonance Perfusion for Traumatic Brain Injury: Technical Challenges and Potentials.

    PubMed

    Andre, Jalal B

    2015-10-01

    Traumatic brain injury (TBI), including concussion, is a public health concern, as it affects over 1.7 million persons in the United States per year. Yet, the diagnosis of TBI, particularly mild TBI (mTBI), can be controversial, as neuroimaging findings can be sparse on conventional magnetic resonance and computed tomography examinations, and when present, often poorly correlate with clinical signs and symptoms. Furthermore, the discussion of TBI, concussion, and head impact exposure is immediately complicated by the many differing opinions of what constitutes each, their respective severities, and how the underlying biomechanics of the inciting head impact might alter the distribution, severity, and prognosis of the underlying brain injury. Advanced imaging methodologies hold promise in improving the sensitivity and detectability of associated imaging biomarkers that might better correlate with patient outcome and prognostication, allowing for improved triage and therapeutic guidance in the setting of TBI, particularly in mTBI. This work will examine the defining symptom complex associated with mTBI and explore changes in cerebral blood flow measured by arterial spin labeling, as a potential imaging biomarker for TBI, and briefly correlate these observations with findings identified by single photon emission computed tomography and positron emission tomography imaging.

  3. Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides

    PubMed Central

    Macaskill, A.; Chernonosov, A. A.; Koval, V. V.; Lukyanets, E. A.; Fedorova, O. S.; Smith, W. E.; Faulds, K.; Graham, D.

    2007-01-01

    The evaluation of phthalocyanine labels for the surface-enhanced resonance Raman scattering (SERRS) detection of oligonucleotides is reported. Three phthalocyanine-labelled oligonucleotides were assessed, each containing a different metal centre. Detection limits for each labelled oligonucleotide were determined using two excitation frequencies where possible. Limits of detection as low as 2.8 × 10−11 mol. dm−3 were obtained which are comparable to standard fluorescently labelled probes used in previous SERRS studies. The identification of two phthalocyanine-labelled oligonucleotides without separation was also demonstrated indicating their suitability for multiplexing. This study extends the range of labels suitable for quantitative surface-enhanced resonance Raman scattering with silver nanoparticles and offers more flexibility and choice when considering SERRS for quantitative DNA detection. PMID:17289751

  4. Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging.

    PubMed

    Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J

    2012-07-01

    A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.

  5. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    PubMed

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  6. The role of magnetic resonance diffusion-weighted imaging and three-dimensional arterial spin labelling perfusion imaging in the differentiation of parasellar meningioma and cavernous haemangioma.

    PubMed

    Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin

    2014-08-01

    To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Hyperpolarized Magnetic Resonance: A Novel Technique for the In Vivo Assessment of Cardiovascular Disease

    PubMed Central

    Schroeder, Marie A.; Clarke, Kieran; Neubauer, Stefan; Tyler, Damian J.

    2011-01-01

    Non-invasive imaging plays a central role in cardiovascular disease for determining diagnosis, prognosis, and optimizing patient management. Recent experimental studies have demonstrated that monitoring hyperpolarized 13C-labelled tracers with magnetic resonance imaging and spectroscopy (MRI and MRS) offers a new way to investigate the normal and diseased heart, and that the technology may be useful in patients with heart disease. In this review, we show how hyperpolarized 13C-labelled tracers are generated and have been applied experimentally, and outline the methodological advances currently underway to enable translation of hyperpolarized 13C MRI and MRS into the clinic. Using hyperpolarized 13C-labelled metabolites and metabolic MRI and MRS could help assessment of many human cardiovascular diseases, including coronary artery disease, heart failure and metabolic cardiomyopathies. We discuss the clinical areas in which the technology may, in the future, aid in the diagnosis and management of patients with cardiovascular diseases, including dynamic investigations of in vivo metabolism, coronary angiography and quantitative perfusion imaging. It is possible that, in the future, hyperpolarized magnetic resonance will play a major role in clinical cardiology. PMID:21969318

  8. Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein α and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance.

    PubMed

    Sugiki, Toshihiko; Furuita, Kyoko; Fujiwara, Toshimichi; Kojima, Chojiro

    2018-06-20

    Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15 N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13 C atoms experience less isotope scrambling than the main-chain 15 N atoms do. However, little is known about the side-chain 13 C atoms. Here, the 13 C scrambling profiles of the Cα and side-chain carbons were investigated for 15 N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13 Cα and 13 C side-chain labeling than in 15 N labeling. We utilized this reduced scrambling-prone character of 13 C as a simple and efficient method for amino acid selective 13 C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13 C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1 H- 15 N heteronuclear single-quantum coherence signals of the 15 N scrambling-prone amino acid were also easily filtered using 15 N-{ 13 Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.

  9. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    PubMed Central

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365

  10. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  11. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2007-02-01

    The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.

  12. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  13. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining detailed ...

  14. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  15. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  16. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  17. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  18. Magnetic field detection using magnetorheological optical resonators

    NASA Astrophysics Data System (ADS)

    Rubino, Edoardo; Ioppolo, Tindaro

    2018-02-01

    In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.

  19. Magnetic resonance for laryngeal cancer.

    PubMed

    Maroldi, Roberto; Ravanelli, Marco; Farina, Davide

    2014-04-01

    This review summarizes the most recent experiences on the integration of magnetic resonance in assessing the local extent of laryngeal cancer and detecting submucosal recurrences. Advances in magnetic resonance have been characterized by the development of technical solutions that shorten the acquisition time, thereby reducing motion artifacts, and increase the spatial resolution. Phased-array surface coils, directly applied to the neck, enable the use of parallel-imaging techniques, which greatly reduce the acquisition time, and amplify the signal intensity, being closer to the larynx. One of the most important drawbacks of this technique is the small field-of-view, restricting the imaged area to the larynx. Furthermore, diffusion-weighted imaging (DWI) has increased the set of magnetic resonance sequences. Differently from computed tomography (CT), which has only two variables (precontrast/postcontrast), magnetic resonance is based on a multiparameter analysis (T2-weighting and T1-weighting, DWI, and postcontrast acquisition). This multiparameter approach amplifies the contrast resolution. It has, also, permitted to differentiate scar tissue (after laser resection) from submucosal recurrent disease. In addition, DWI sequences have the potential of a more precise discrimination of peritumoral edema from neoplastic tissue, which may lead to improve the assessment of paraglottic space invasion. Magnetic resonance of the larynx is technically challenging. The use of surface coils and motion-reducing techniques is critical to achieve adequate image quality. The intrinsic high-contrast resolution is further increased by the integration of information from different sequences. When CT has not been conclusive, magnetic resonance is indicated in the pretreatment local assessment and in the suspicion of submucosal recurrence.

  20. Dental materials and magnetic resonance imaging.

    PubMed

    Hubálková, Hana; Hora, Karel; Seidl, Zdenek; Krásenský, Jan

    2002-09-01

    The objective of this investigation was to evaluate the reaction of selected dental materials in the magnetic field of a magnetic resonance imaging device to determine a possible health risk. The following dental materials were tested in vitro during magnetic resonance imaging: 15 dental alloys, four dental implants, one surgical splint and two wires for fixation of maxillofacial fractures. Possible artefacts (corresponding with magnetic properties), heating and force effects were tested. Results concerning movement and heating were in agreement with the literature. The artefacts seen were significant: for the surgical splint, a spherical artefact with a diameter of 55 mm; for the wires, up to 22 mm; and for the dental blade implant, an artefact of 28 x 20 mm. The results of our tests of selected dental appliances indicate that their presence in the human organism is safe for patients undergoing magnetic resonance imaging procedures. The presence of artefacts can substantially influence the magnetic resonance imaging results.

  1. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  2. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  3. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  4. Magnetic resonance imaging and cross-sectional anatomy of the normal bovine tarsus.

    PubMed

    Ehlert, A; Ferguson, J; Gerlach, K

    2011-06-01

    The aim of the study was to describe the anatomy of the bovine tarsus using magnetic resonance imaging in a low-field scanner. T1-weighted transverse and sagittal images of five isolated hindlimbs were evaluated using a 0.5 Tesla magnet and a knee coil. The MR images were compared to corresponding frozen sections of cadaver limbs. Anatomical structures were labelled at each level. The resulting images provided excellent detail of the bovine tarsus. This study should serve as a basic reference for orthopaedic problems related to the tarsus in cattle. © 2011 Blackwell Verlag GmbH.

  5. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...

  6. Torque-mixing magnetic resonance spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan T.; Diao, Zhu; Belov, Miro; Burgess, Jacob A.; Compton, Shawn R.; Hiebert, Wayne K.; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory E.; Thomson, Douglas J.; Freeman, Mark R.

    2016-10-01

    An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics. To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques. The authors are very grateful for support from NSERC, CRC, AITF, and NINT. Reference: Science 350, 798 (2015).

  7. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  8. Nanoparticle-DNA-polymer composites for hepatocellular carcinoma cell labeling, sensing, and magnetic resonance imaging.

    PubMed

    Leung, Ken Cham-Fai; Lee, Siu-Fung; Wong, Chi-Hin; Chak, Chun-Pong; Lai, Josie M Y; Zhu, Xiao-Ming; Wang, Yi-Xiang J; Sham, Kathy W Y; Cheng, Christopher H K

    2013-12-15

    This paper describes comparative studies and protocols in (1) self-assembling of ultrasmall superparamagnetic iron oxide nanoparticle (NP), circular plasmid DNA, and branched polyethylenimine (PEI) composites; (2) magnetofection; (3) gene delivery, (4) magnetic resonance imaging (MRI), and (5) cytotoxicity of the composites toward hepatocellular carcinoma HepG2 cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Synthesis, characterization, and protein labeling of difunctional magnetic nanoparticles modified with thiazole orange dye

    NASA Astrophysics Data System (ADS)

    Fei, Xuening; Zhu, Huifang; Zhou, Jianguo; Yu, Lu

    2014-03-01

    A dual functional nanoparticle was designed and synthesized by encapsulating magnetic core inside silica particles and subsequently a thiazole orange (TO) dye derivative was modified on the surface of the nanoparticles. The obtained particles were characterized by Fourier transform infrared spectroscope, Uv-Vis spectrophotometer, fluorescence spectrophotometer, transmission electron microscope, dynamic light scattering, etc. The size of preliminary magnetic particles is ca. 7 nm, but after coating a silica layer and dye, the size of particles is increased to ca. 60 nm. The hydrodynamic diameter, water dispersibility, and zeta potential were also determined. The hydrodynamic diameter of particles with silica and dye is 65.2 and 70.5 nm, respectively, with positive zeta potential (25.1, 38.5 mV). Furthermore magnetic properties of the particles were measured and the experimental results suggested that it could meet the requirement of application as magnetic resonance imaging agent. Finally to verify the availability of the particles as fluorescent labeling, protein labeling experiment was performed using bovine serum albumin (BSA) protein and the results showed that the dual functional particle has higher affinity with BSA than TO molecule itself.

  10. Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing para-Hydrogen.

    PubMed

    Korchak, Sergey; Yang, Shengjun; Mamone, Salvatore; Glöggler, Stefan

    2018-05-01

    Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para -hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para -hydrogen directly in a high magnetic field without the need for field cycling.

  11. Integrated 68Gallium Labelled Prostate-Specific Membrane Antigen-11 Positron Emission Tomography/Magnetic Resonance Imaging Enhances Discriminatory Power of Multi-Parametric Prostate Magnetic Resonance Imaging.

    PubMed

    Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel

    2018-01-01

    To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.

  12. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    PubMed

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  13. Magnetic Resonance Safety

    PubMed Central

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  14. Real-time label-free biosensing with integrated planar waveguide ring resonators

    NASA Astrophysics Data System (ADS)

    Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel

    2010-05-01

    We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.

  15. Ferritin conjugates as specific magnetic labels. Implications for cell separation.

    PubMed Central

    Odette, L L; McCloskey, M A; Young, S H

    1984-01-01

    Concanavalin A coupled to the naturally occurring iron storage protein ferritin is used to label rat erythrocytes and increase the cells' magnetic susceptibility. Labeled cells are introduced into a chamber containing spherical iron particles and the chamber is placed in a uniform 5.2 kG (gauss) magnetic field. The trajectory of cells in the inhomogeneous magnetic field around the iron particles and the polar distributions of cells bound to the iron particles compare well with the theoretical predictions for high gradient magnetic systems. On the basis of these findings we suggest that ferritin conjugated ligands can be used for selective magnetic separation of labeled cells. Images FIGURE 2 PMID:6743752

  16. Label-free optical resonant sensors for biochemical applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola

    2013-03-01

    For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.

  17. Magnetic resonance imaging of the normal bovine digit.

    PubMed

    Raji, A R; Sardari, K; Mirmahmoob, P

    2009-08-01

    The purpose of this study was defining the normal structures of the digits and hoof in Holstein dairy cattle using Magnetic Resonance Image (MRI). Transverse, Sagital and Dorsoplantar MRI images of three isolated cattle cadaver digits were obtained using Gyroscan T5-NT a magnet of 0.5 Tesla and T1 Weighted sequence. The MRI images were compared to corresponding frozen cross-sections and dissect specimens of the cadaver digits. Relevant anatomical structures were identified and labeled at each level. The MRI images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of MRI images of the digits and hoof in Holstein dairy cattle, that can be used by radiologist, clinicians, surgeon or for research propose in bovine lameness.

  18. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.

    PubMed

    Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor

    2016-12-01

    Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The Efficacy of Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging Targeted Biopsy in Risk Classification for Patients with Prostate Cancer on Active Surveillance.

    PubMed

    Recabal, Pedro; Assel, Melissa; Sjoberg, Daniel D; Lee, Daniel; Laudone, Vincent P; Touijer, Karim; Eastham, James A; Vargas, Hebert A; Coleman, Jonathan; Ehdaie, Behfar

    2016-08-01

    We determined whether multiparametric magnetic resonance imaging targeted biopsies may replace systematic biopsies to detect higher grade prostate cancer (Gleason score 7 or greater) and whether biopsy may be avoided based on multiparametric magnetic resonance imaging among men with Gleason 3+3 prostate cancer on active surveillance. We identified men with previously diagnosed Gleason score 3+3 prostate cancer on active surveillance who underwent multiparametric magnetic resonance imaging and a followup prostate biopsy. Suspicion for higher grade cancer was scored on a standardized 5-point scale. All patients underwent a systematic biopsy. Patients with multiparametric magnetic resonance imaging regions of interest also underwent magnetic resonance imaging targeted biopsy. The detection rate of higher grade cancer was estimated for different multiparametric magnetic resonance imaging scores with the 3 biopsy strategies of systematic, magnetic resonance imaging targeted and combined. Of 206 consecutive men on active surveillance 135 (66%) had a multiparametric magnetic resonance imaging region of interest. Overall, higher grade cancer was detected in 72 (35%) men. A higher multiparametric magnetic resonance imaging score was associated with an increased probability of detecting higher grade cancer (Wilcoxon-type trend test p <0.0001). Magnetic resonance imaging targeted biopsy detected higher grade cancer in 23% of men. Magnetic resonance imaging targeted biopsy alone missed higher grade cancers in 17%, 12% and 10% of patients with multiparametric magnetic resonance imaging scores of 3, 4 and 5, respectively. Magnetic resonance imaging targeted biopsies increased the detection of higher grade cancer among men on active surveillance compared to systematic biopsy alone. However, a clinically relevant proportion of higher grade cancer was detected using only systematic biopsy. Despite the improved detection of disease progression using magnetic resonance imaging

  20. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  1. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging.

    PubMed

    van de Haar, Harm J; Jansen, Jacobus F A; van Osch, Matthias J P; van Buchem, Mark A; Muller, Majon; Wong, Sau May; Hofman, Paul A M; Burgmans, Saartje; Verhey, Frans R J; Backes, Walter H

    2016-09-01

    The neurovascular unit, which protects neuronal cells and supplies them with essential molecules, plays an important role in the pathophysiology of Alzheimer's Disease (AD). The aim of this study was to noninvasively investigate 2 linked functional elements of the neurovascular unit, blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), in patients with early AD and healthy controls. Therefore, both dynamic contrast-enhanced magnetic resonance imaging and arterial spin labeling magnetic resonance imaging were applied to measure BBB permeability and CBF, respectively. The patients with early AD showed significantly lower CBF and local blood volume in the gray matter, compared with controls. In the patients, we also found that a reduction in CBF is correlated with an increase in leakage rate. This finding supports the hypothesis that neurovascular damage, and in particular impairment of the neurovascular unit constitutes the pathophysiological link between CBF reduction and BBB impairment in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Homogeneous Biosensing Based on Magnetic Particle Labels

    PubMed Central

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  3. Resonance magnetoplasticity in ultralow magnetic fields

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-09-01

    Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.

  4. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.

    PubMed

    Miranda, Maria J; Olofsson, Kern; Sidaros, Karam

    2006-09-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p < 0.0001) than in cortical gray matter (19 and 16 mL/100 g/min) and white matter (15 and 10 mL/100 g/min), both in preterm neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.

  5. Interaction of magnetic resonators studied by the magnetic field enhancement

    NASA Astrophysics Data System (ADS)

    Hou, Yumin

    2013-12-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  6. Skeletonization applied to magnetic resonance angiography images

    NASA Astrophysics Data System (ADS)

    Nystroem, Ingela

    1998-06-01

    When interpreting and analyzing magnetic resonance angiography images, the 3D overall tree structure and the thickness of the blood vessels are of interest. This shape information may be easier to obtain from the skeleton of the blood vessels. Skeletonization of digital volume objects denotes either reduction to a 2D structure consisting of 3D surfaces, and curves, or reduction to a 1D structure consisting of 3D curves only. Thin elongated objects, such as blood vessels, are well suited for reduction to curve skeletons. Our results indicate that the tree structure of the vascular system is well represented by the skeleton. Positions for possible artery stenoses may be identified by locating local minima in curve skeletons, where the skeletal voxels are labeled with the distance to the original background.

  7. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  8. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging.

    PubMed

    Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2014-01-01

    In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.

  10. Direct quantitative 13 C-filtered 1 H magnetic resonance imaging of PEGylated biomacromolecules in vivo.

    PubMed

    Alvares, Rohan D A; Lau, Justin Y C; Macdonald, Peter M; Cunningham, Charles H; Prosser, R Scott

    2017-04-01

    1 H MRI is an established diagnostic method that generally relies on detection of water. Imaging specific macromolecules is normally accomplished only indirectly through the use of paramagnetic tags, which alter the water signal in their vicinity. We demonstrate a new approach in which macromolecular constituents, such as proteins and drug delivery systems, are observed directly and quantitatively in vivo using 1 H MRI of 13 C-labeled poly(ethylene glycol) ( 13 C-PEG) tags. Molecular imaging of 13 C-PEG-labeled species was accomplished by incorporating a modified heteronuclear multiple quantum coherence filter into a gradient echo imaging sequence. We demonstrate the approach by monitoring the real-time distribution of 13 C-PEG and 13 C-PEGylated albumin injected into the hind leg of a mouse. Filtering the 1 H PEG signal through the directly coupled 13 C nuclei largely eliminates background water and fat signals, thus enabling the imaging of molecules using 1 H MRI. PEGylation is widely employed to enhance the performance of a multitude of macromolecular therapeutics and drug delivery systems, and 13 C-filtered 1 H MRI of 13 C-PEG thus offers the possibility of imaging and quantitating their distribution in living systems in real time. Magn Reson Med 77:1553-1561, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Carotid Plaque Morphological Classification Compared With Biomechanical Cap Stress: Implications for a Magnetic Resonance Imaging-Based Assessment.

    PubMed

    Gijsen, Frank J H; Nieuwstadt, Harm A; Wentzel, Jolanda J; Verhagen, Hence J M; van der Lugt, Aad; van der Steen, Antonius F W

    2015-08-01

    Two approaches to target plaque vulnerability-a histopathologic classification scheme and a biomechanical analysis-were compared and the implications for noninvasive risk stratification of carotid plaques using magnetic resonance imaging were assessed. Seventy-five histological plaque cross sections were obtained from carotid endarterectomy specimens from 34 patients (>70% stenosis) and subjected to both a Virmani histopathologic classification (thin fibrous cap atheroma with <0.2-mm cap thickness, presumed vulnerable) and a peak cap stress computation (<140 kPa: presumed stable; >300 kPa: presumed vulnerable). To demonstrate the implications for noninvasive plaque assessment, numeric simulations of a typical carotid magnetic resonance imaging protocol were performed (0.62×0.62 mm(2) in-plane acquired voxel size) and used to obtain the magnetic resonance imaging-based peak cap stress. Peak cap stress was generally associated with histological classification. However, only 16 of 25 plaque cross sections could be labeled as high-risk (peak cap stress>300 kPa and classified as a thin fibrous cap atheroma). Twenty-eight of 50 plaque cross sections could be labeled as low-risk (a peak cap stress<140 kPa and not a thin fibrous cap atheroma), leading to a κ=0.39. 31 plaques (41%) had a disagreement between both classifications. Because of the limited magnetic resonance imaging voxel size with regard to cap thickness, a noninvasive identification of only a group of low-risk, thick-cap plaques was reliable. Instead of trying to target only vulnerable plaques, a more reliable noninvasive identification of a select group of stable plaques with a thick cap and low stress might be a more fruitful approach to start reducing surgical interventions on carotid plaques. © 2015 American Heart Association, Inc.

  12. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  13. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  14. Magnetic field design for selecting and aligning immunomagnetic labeled cells.

    PubMed

    Tibbe, Arjan G J; de Grooth, Bart G; Greve, Jan; Dolan, Gerald J; Rao, Chandra; Terstappen, Leon W M M

    2002-03-01

    Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the magnetic field design to achieve the best possible cell selection and alignment of magnetically labeled cells. Materials and Methods Computer simulations, in combination with experimental data, were used to optimize the design of the magnets and Ni lines to obtain the optimal magnetic configuration. A homogeneous cell distribution on the upper surface of the sample chamber was obtained with a magnet where the pole faces were tilted towards each other. The spatial distribution of magnetically aligned objects in between the Ni lines was dependent on the ratio of the diameter of the aligned object and the line spacing, which was tested with magnetically and fluorescently labeled 6 microm polystyrene beads. The best result was obtained when the line spacing was equal to or smaller than the diameter of the aligned object. The magnetic gradient of the designed permanent magnet extracts magnetically labeled cells from any cell suspension to a desired plane, providing a homogeneous cell distribution. In addition, it magnetizes ferro-magnetic Ni lines in this plane whose additional local gradient adds to the gradient of the permanent magnet. The resultant gradient aligns the magnetically labeled cells first brought to this plane. This combination makes it possible, in a single step, to extract and align cells on a surface from any cell suspension. Copyright 2002 Wiley-Liss, Inc.

  15. Analyses of cocondensation of melamine and urea through carbon 13 enriched formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Tomita Bunchiro; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde unde neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...

  16. Analysis of cocondensation of melamine and urea through carbon 13 enriched formaldehyde with C-13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-ureaformaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde under neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...

  17. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  18. High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Kerzhner, Mark; Matsuoka, Hideto; Wuebben, Christine; Famulok, Michael; Schiemann, Olav

    2018-05-10

    Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg 2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.

  19. Feasibility of islet magnetic resonance imaging using ferumoxytol in intraportal islet transplantation.

    PubMed

    Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Shim, Wooyoung; Choi, Jin Myung; Yoo, Dongkyeom; Hwang, Yong Hwa; Lee, Jung Hee; Lee, Dong Yun; Kim, Jae Hyeon

    2015-06-01

    There is a clinical need for an alternative labeling agent for magnetic resonance imaging (MRI) in islet transplantation. We aimed to evaluate the feasibility of islet MRI using ferumoxytol, which is the only clinically-available ultrasmall superparamagnetic iron oxide. We compared islet function and viability of control islets and islets labeled with ferumoxytol and/or a heparin-protamine complex (HPF). Efficacy of ferumoxytol labeling was assessed in both ex vivo and in vivo models. Labeling for 48 h with HPF, but not up to 800 μg/mL ferumoxytol, deranged ex vivo islet viability and function. The T2∗ relaxation time was optimal when islets were labeled with 800 μg/mL of ferumoxytol for 48 h. Prussian blue stain, iron content assay, transmission electron microscopy (TEM) supported internalization of ferumoxytol particles. However, the labeling intensity in the ex vivo MRI of islets labeled with ferumoxytol was much weaker than that of islets labeled with ferucarbotran. In syngeneic intraportal islet transplantation, there was a correlation between the total area of visualized islets and the transplanted islet mass. In conclusion, islet MRI using ferumoxytol was feasible in terms of in vitro and in vivo efficacy and safety. However, the weak labeling efficacy is still a hurdle for the clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Magnetic resonance imaging measurement of iron overload

    PubMed Central

    Wood, John C.

    2010-01-01

    Purpose of review To highlight recent advances in magnetic resonance imaging estimation of somatic iron overload. This review will discuss the need and principles of magnetic resonance imaging-based iron measurements, the validation of liver and cardiac iron measurements, and the key institutional requirements for implementation. Recent findings Magnetic resonance imaging assessment of liver and cardiac iron has achieved critical levels of availability, utility, and validity to serve as the primary endpoint of clinical trials. Calibration curves for the magnetic resonance imaging parameters R2 and R2* (or their reciprocals, T2 and T2*) have been developed for the liver and the heart. Interscanner variability for these techniques has proven to be on the order of 5–7%. Summary Magnetic resonance imaging assessment of tissue iron is becoming increasingly important in the management of transfusional iron load because it is noninvasive, relatively widely available and offers a window into presymptomatic organ dysfunction. The techniques are highly reproducible within and across machines and have been chemically validated in the liver and the heart. These techniques will become the standard of care as industry begins to support the acquisition and postprocessing software. PMID:17414205

  1. Analysis on cocondensation of melamine and urea through carbon 13 enriched formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method of 13C enriched formaldehyde udner neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field shifts...

  2. Virtual special issue: Magnetic resonance at low fields

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2017-01-01

    It appears to be a common understanding that low magnetic fields need to be avoided in magnetic resonance, as sensitivity and the frequency dispersion of the chemical shift increase with increasing field strength. But there many reasons to explore magnetic resonance at low fields. The instrumentation tends to be far less expensive than high-field equipment, magnets are smaller and lighter, internal gradients in heterogeneous media are smaller, conductive media and even metals become transparent at low frequencies to electromagnetic fields, and new physics and phenomena await to be discovered. On account of an increasing attention of the scientific community to magnetic resonance at low field, we have decided to launch JMR's Virtual Special Issue Series with this compilation about Low-Field Magnetic Resonance. This topic, for which we have chosen to focus on articles reporting measurements at fields lower than 2 T, is of widespread interest to our readership. We are therefore happy to offer to this constituency a selected outlook based on papers published during the last five years (volumes 214-270) in the pages of The Journal of Magnetic Resonance. A brief survey of the topics covered in this Virtual Special Issue follows.

  3. Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments.

    PubMed

    Feshitan, Jameel A; Boss, Michael A; Borden, Mark A

    2012-10-30

    Gas-filled microbubbles are potentially useful theranostic agents for magnetic resonance imaging-guided focused ultrasound surgery (MRIgFUS). Previously, MRI at 9.4 T was used to measure the contrast properties of lipid-coated microbubbles with gadolinium (Gd(III)) bound to lipid headgroups, which revealed that the longitudinal molar relaxivity (r(1)) increased after microbubble fragmentation. This behavior was attributed to an increase in water proton exchange with the Gd(III)-bound lipid fragments caused by an increase in the lipid headgroup area that accompanied the lipid shell monolayer-to-bilayer transition. In this article, we explore this mechanism by comparing the changes in r(1) and its transverse counterpart, r(2)*, after the fragmentation of microbubbles consisting of Gd(III) bound to two different locations on the lipid monolayer shell: the phosphatidylethanolamine (PE) lipid headgroup region or the distal region of the poly(ethylene glycol) (PEG) brush. Nuclear magnetic resonance (NMR) at 1.5 T was used to measure the contrast properties of the various microbubble constructs because this is the most common field strength used in clinical MRI. Results for the lipid-headgroup-labeled Gd(III) microbubbles revealed that r(1) increased after microbubble fragmentation, whereas r(2)* was unchanged. An analysis of PEG-labeled Gd(III) microbubbles revealed that both r(1) and r(2)* decreased after microbubble fragmentation. Further analysis revealed that the microbubble gas core enhanced the transverse MR signal (T(2)*) in a concentration-dependent manner but minimally affected the longitudinal (T(1)) signal. These results illustrate a new method for the use of NMR to measure the biomembrane packing structure and suggest that two mechanisms, proton-exchange enhancement by lipid membrane relaxation and magnetic field inhomogeneity imposed by the gas/liquid interface, may be used to detect and differentiate Gd(III)-labeled microbubbles and their cavitation

  4. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  5. Assessment of Alzheimer's disease risk with functional magnetic resonance imaging: an arterial spin labeling study.

    PubMed

    Bangen, Katherine J; Restom, Khaled; Liu, Thomas T; Wierenga, Christina E; Jak, Amy J; Salmon, David P; Bondi, Mark W

    2012-01-01

    Functional magnetic resonance imaging (fMRI) of older adults at risk for Alzheimer's disease (AD) by virtue of their cognitive (i.e., mild cognitive impairment [MCI]) and/or genetic (i.e., apolipoprotein E [APOE] ε4 allele) status demonstrate divergent brain response patterns during memory encoding across studies. Using arterial spin labeling MRI, we examined the influence of AD risk on resting cerebral blood flow (CBF) as well as the CBF and blood oxygenation level dependent (BOLD) signal response to memory encoding in the medial temporal lobes (MTL) in 45 older adults (29 cognitively normal [14 APOE ε4 carriers and 15 noncarriers]; 16 MCI [8 APOE ε4 carriers, 8 noncarriers]). Risk groups were comparable in terms of mean age, years of education, gender distribution, and vascular risk burden. Individuals at genetic risk for AD by virtue of the APOE ε4 allele demonstrated increased MTL resting state CBF relative to ε4 noncarriers, whereas individuals characterized as MCI showed decreased MTL resting state CBF relative to their cognitively normal peers. For percent change CBF, there was a trend toward a cognitive status by genotype interaction. In the cognitively normal group, there was no difference in percent change CBF based on APOE genotype. In contrast, in the MCI group, APOE ε4 carriers demonstrated significantly greater percent change in CBF relative to ε4 noncarriers. No group differences were found for BOLD response. Findings suggest that abnormal resting state CBF and CBF response to memory encoding may be early indicators of brain dysfunction in individuals at risk for developing AD.

  6. Sedation of Pediatric Patients in Magnetic Resonance Imaging

    DTIC Science & Technology

    2000-01-03

    f-U. 7. SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING Alesia D. Ricks APPROVED: ll^fll JohnJ>. McDonough,-CRNA, Ed.D., Chair...any copyrighted material in the thesis entitled: " Sedation of Pediatric Patients in Magnetic Resonance Imaging" beyond brief excerpts is with the...arise from such copyright violations. IV f SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING By CAPT ALESIA D. RICKS, RN, BSN, NQUSAF

  7. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance.

    PubMed

    Dinsfriend, William; Rao, Krishnasree; Matulevicius, Susan

    2016-06-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis.

  8. Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications

    PubMed Central

    Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan

    2018-01-01

    Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. PMID:28611116

  9. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  10. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  11. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  12. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.

    PubMed

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-04-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers.

  13. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation

    PubMed Central

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-01-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers. PMID:24098863

  14. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly.

    PubMed

    Parfenov, Vladislav A; Koudan, Elizaveta V; Bulanova, Elena A; Karalkin, Pavel A; Pereira, Frederico DAS; Norkin, Nikita E; Knyazeva, Alisa D; Gryadunova, Anna A; Petrov, Oleg F; Vasiliev, M M; Myasnikov, Maxim; Chernikov, Valery P; Kasyanov, Vladimir A; Marchenkov, Artem Yu; Brakke, Kenneth A; Khesuani, Yusef D; Demirci, Utkan; Mironov, Vladimir A

    2018-05-31

    Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first-time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering. . © 2018 IOP Publishing Ltd.

  15. Magnetic Resonance Fingerprinting

    PubMed Central

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L.; Duerk, Jeffrey L.; Griswold, Mark A.

    2013-01-01

    Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches. PMID:23486058

  16. Magnetic Resonance with Squeezed Microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienfait, A.; Campagne-Ibarcq, P.; Kiilerich, A. H.

    2017-10-17

    Vacuum fluctuations of the electromagnetic field set a fundamental limit to the sensitivity of a variety of measurements, including magnetic resonance spectroscopy. We report the use of squeezed microwave fields, which are engineered quantum states of light for which fluctuations in one field quadrature are reduced below the vacuum level, to enhance the detection sensitivity of an ensemble of electronic spins at millikelvin temperatures. By shining a squeezed vacuum state on the input port of a microwave resonator containing the spins, we obtain a 1.2-dB noise reduction at the spectrometer output compared to the case of a vacuum input. Thismore » result constitutes a proof of principle of the application of quantum metrology to magnetic resonance spectroscopy.« less

  17. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  18. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  19. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242

  20. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? What ...

  1. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Jie, Meng-Meng; Yang, Min; Tang, Li; Chen, Si-Yuan; Sun, Xue-Mei; Tang, Bo; Yang, Shi-Ming

    2018-04-01

    Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.

  2. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  3. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  4. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  5. Magnetic resonance enterography in pediatric celiac disease.

    PubMed

    Koc, Gonca; Doganay, Selim; Sevinc, Eylem; Deniz, Kemal; Chavhan, Govind; Gorkem, Sureyya B; Karacabey, Neslihan; Dogan, Mehmet S; Coskun, Abdulhakim; Aslan, Duran

    To assess if magnetic resonance enterography is capable of showing evidence/extent of disease in pediatric patients with biopsy-proven celiac disease by comparing with a control group, and to correlate the magnetic resonance enterography findings with anti-endomysial antibody level, which is an indicator of gluten-free dietary compliance. Thirty-one pediatric patients (mean age 11.7±3.1 years) with biopsy-proven celiac disease and 40 pediatric patients as a control group were recruited in the study. The magnetic resonance enterography images of both patients with celiac disease and those of the control group were evaluated by two pediatric radiologists in a blinded manner for the mucosal pattern, presence of wall thickening, luminal distention of the small bowel, and extra-intestinal findings. Patient charts were reviewed to note clinical features and laboratory findings. The histopathologic review of the duodenal biopsies was re-conducted. The mean duration of the disease was 5.6±1.8 years (range: 3-7.2 years). In 24 (77%) of the patients, anti-endomysial antibody levels were elevated (mean 119.2±66.6RU/mL). Magnetic resonance enterography revealed normal fold pattern in all the patients. Ten (32%) patients had enlarged mesenteric lymph nodes. Although a majority of the patients had elevated anti-endomysial antibody levels indicating poor dietary compliance, magnetic resonance enterography did not show any mucosal abnormality associated with the inability of magnetic resonance enterography to detect mild/early changes of celiac disease in children. Therefore, it may not be useful for the follow-up of pediatric celiac disease. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  7. Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy.

    PubMed

    Chen, Shu; Zhang, Yuejiao; Shih, Tien-Mo; Yang, Weimin; Hu, Shu; Hu, Xiaoyan; Li, Jianfeng; Ren, Bin; Mao, Bingwei; Yang, Zhilin; Tian, Zhongqun

    2018-04-11

    Plasmon-induced magnetic resonance has shown great potentials in optical metamaterials, chemical (bio)-sensing, and surface-enhanced spectroscopies. Here, we have theoretically and experimentally revealed (1) a correspondence of the strongest near-field response to the far-field scattering valley and (2) a significant improvement in Raman signals of probing molecules by the plasmon-induced magnetic resonance. These revelations are accomplished by designing a simple and practical metallic nanoparticle-film plasmonic system that generates magnetic resonances at visible-near-infrared frequencies. Our work may provide new insights for understanding the enhancement mechanism of various plasmon-enhanced spectroscopies and also helps further explore light-matter interactions at the nanoscale.

  8. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.

  9. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less

  10. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    NASA Astrophysics Data System (ADS)

    Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin

    2016-05-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.

  11. Measuring Cerebral Hypoperfusion Induced by Hyperventilation Challenge With Intravoxel Incoherent Motion Magnetic Resonance Imaging in Healthy Volunteers.

    PubMed

    Pavilla, Aude; Arrigo, Alessandro; Mejdoubi, Mehdi; Duvauferrier, Régis; Gambarota, Giulio; Saint-Jalmes, Hervé

    The aim of this study was to demonstrate the feasibility to assess cerebral hypoperfusion with a hyperventilation (HV) challenge protocol using intravoxel incoherent motion (IVIM) magnetic resonance imaging. Magnetic resonance imaging experiments were performed on 10 healthy volunteers at 1.5 T, with a diffusion IVIM magnetic resonance imaging protocol using a set of b-values optimized by Cramer-Rao Lower Bound analysis. Hypoperfusion was induced by an HV maneuver. Measurements were performed in normoventilation and HV conditions. Biexponential curve fitting was used to obtain the perfusion fraction (f), pseudodiffusion coefficient (D*), and the product fD* in gray matter (GM) regions of interest (ROIs). Regional cerebral blood flow in the same ROIs was also assessed with arterial spin labeling. The HV challenge led to a diminution of IVIM perfusion-related parameters, with a decrease of f and fD* in the cerebellum (P = 0.03 for f; P = 0.01 for fD*), thalamus GM (P = 0.09 for f; P = 0.01 for fD*), and lenticular nuclei (P = 0.03 for f; P = 0.02 for fD*). Mean GM cerebral blood flow (in mL/100 g tissue/min) measured with arterial spin labeling averaged over all ROIs also decreased (normoventilation: 42.7 ± 4.1 vs HV: 33.2 ± 2.2, P = 0.004) during the HV challenge. The optimized IVIM protocol proposed in the current study allows for measurements of cerebral hypoperfusion that might be of great interest for pathologies diagnosis such as ischemic stroke.

  12. Gd-EOB-DTPA-enhanced magnetic resonance imaging for focal liver lesions in Chinese patients: a multicenter, open-label, phase III study.

    PubMed

    Zeng, Meng-Su; Ye, Hui-Yi; Guo, Liang; Peng, Wei-Jun; Lu, Jian-Ping; Teng, Gao-Jun; Huan, Yi; Li, Ping; Xu, Jian-Rong; Liang, Chang-Hong; Breuer, Josy

    2013-12-01

    Contrast agents help to improve visibility in magnetic resonance (MR) imaging. However, owing to the large interstitial spaces of the liver, there is a reduction in the natural contrast gradient between lesions and healthy tissue. This study was undertaken to evaluate the efficacy and safety of the liver-specific MR imaging contrast agent gadoxetate disodium (Gd-EOB-DTPA) in Chinese patients. This was a single-arm, open-label, multicenter study in patients with known or suspected focal liver lesions referred for contrast-enhanced MR imaging. MR imaging was performed in 234 patients before and after a single intravenous bolus of Gd-EOB-DTPA (0.025 mmol/kg body weight). Images were evaluated by clinical study investigators and three independent, blinded radiologists. The primary efficacy endpoint was sensitivity in lesion detection. Gd-EOB-DTPA improved sensitivity in lesion detection by 9.46% compared with pre-contrast imaging for the average of the three blinded readers (94.78% vs 85.32% for Gd-EOB-DTPA vs pre-contrast, respectively). Improvements in detection were more pronounced in lesions less than 1 cm. Gd-EOB-DTPA improved diagnostic accuracy in lesion classification. This open-label study demonstrated that Gd-EOB-DTPA improves diagnostic sensitivity in liver lesions, particularly in those smaller than 1 cm. Gd-EOB-DTPA also significantly improves the diagnostic accuracy in lesion classification, and furthermore, Gd-EOB-DTPA is safe in Chinese patients with liver lesions.

  13. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  14. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  15. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  16. Magnetic resonance imaging of glenohumeral joint instability.

    PubMed

    Steinbach, Lynne S

    2005-03-01

    Shoulder instability is common, especially anterior subluxation and dislocation. The sequelae are well seen on magnetic resonance imaging and include tears of the labrum, glenohumeral ligaments, capsule, tendons, and muscles. This article seeks to discuss and illustrate common pitfalls and lesions associated with instability. Anatomic and technical considerations, including the use of magnetic resonance arthrography, are also addressed.

  17. Magnetic resonance imaging of cartilage repair.

    PubMed

    Potter, Hollis G; Chong, Le Roy; Sneag, Darryl B

    2008-12-01

    Magnetic resonance imaging is an important noninvasive modality in characterizing cartilage morphology, biochemistry, and function. It serves as a valuable objective outcome measure in diagnosing pathology at the time of initial injury, guiding surgical planning, and evaluating postsurgical repair. This article reviews the current literature addressing the recent advances in qualitative and quantitative magnetic resonance imaging techniques in the preoperative setting, and in patients who have undergone cartilage repair techniques such as microfracture, autologous cartilage transplantation, or osteochondral transplantation.

  18. Magnetic resonance imaging of breast implants.

    PubMed

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  19. Magnetic resonance imaging and magnetic resonance spectroscopy for detection of early Alzheimer's disease.

    PubMed

    Westman, Eric; Wahlund, Lars-Olof; Foy, Catherine; Poppe, Michaela; Cooper, Allison; Murphy, Declan; Spenger, Christian; Lovestone, Simon; Simmons, Andrew

    2011-01-01

    Alzheimer's disease is the most common form of neurodegenerative disorder and early detection is of great importance if new therapies are to be effectively administered. We have investigated whether the discrimination between early Alzheimer's disease (AD) and elderly healthy control subjects can be improved by adding magnetic resonance spectroscopy (MRS) measures to magnetic resonance imaging (MRI) measures. In this study 30 AD patients and 36 control subjects were included. High resolution T1-weighted axial magnetic resonance images were obtained from each subject. Automated regional volume segmentation and cortical thickness measures were determined for the images. 1H MRS was acquired from the hippocampus and LCModel was used for metabolic quantification. Altogether, this yielded 58 different volumetric, cortical thickness and metabolite ratio variables which were used for multivariate analysis to distinguish between subjects with AD and Healthy controls. Combining MRI and MRS measures resulted in a sensitivity of 97% and a specificity of 94% compared to using MRI or MRS measures alone (sensitivity: 87%, 76%, specificity: 86%, 83% respectively). Adding the MRS measures to the MRI measures more than doubled the positive likelihood ratio from 6 to 17. Adding MRS measures to a multivariate analysis of MRI measures resulted in significantly better classification than using MRI measures alone. The method shows strong potential for discriminating between Alzheimer's disease and controls.

  20. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    PubMed

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  1. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  2. Novel Application of Time-Spatial Labeling Inversion Pulse Magnetic Resonance Imaging for Diagnosis of External Hydrocephalus.

    PubMed

    Nakae, Shunsuke; Murayama, Kazuhiro; Adachi, Kazuhide; Kumai, Tadashi; Abe, Masato; Hirose, Yuichi

    2018-01-01

    Although a subdural fluid collection frequently is observed, diagnostic methods that differentiate between the subdural collection caused by external hydrocephalus and that caused by subdural hygroma have not been established. Here, we report a case of external hydrocephalus caused by Gliadel-induced eosinophilic meningitis that has been previously reported in only 1 case and can be diagnosed by time-spatial labeling inversion pulse magnetic resonance imaging (time-SLIP MRI). A tumor located in the left temporal was detected incidentally in an 81-year-old man by examination of a head injury. The tumor was surgically resected and diagnosed as a high-grade glioma during the surgery; Gliadel wafers subsequently were implanted. Three weeks after the resection, the patient showed disturbed consciousness, and computed tomography revealed a subdural fluid collection. The out-flow of cerebrospinal through the resection cavity was detected by time-SLIP MRI. Cerebrospinal tests indicated high white blood cell counts and high protein levels, with more than 90% of the white blood cell count comprising eosinophils. Therefore, we suspected that the subdural fluid collection was caused by external hydrocephalus because of Gliadel-induced eosinophilic meningitis. We surgically removed the Gliadel wafers and subsequently performed a surgery to insert a ventriculoperitoneal shunt. Histologic examination indicated eosinophilic accumulation around the Gliadel wafers. The patient's symptoms improved after the insertion of a ventriculoperitoneal shunt. In the present case, time-SLIP MRI was a useful and noninvasive method for diagnosing external hydrocephalus which was caused by eosinophilic meningitis because of Gliadel-induced eosinophilic meningitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  4. Magnetic Resonance Imaging-Guided, Open-Label, High-Frequency Repetitive Transcranial Magnetic Stimulation for Adolescents with Major Depressive Disorder.

    PubMed

    Wall, Christopher A; Croarkin, Paul E; Maroney-Smith, Mandie J; Haugen, Laura M; Baruth, Joshua M; Frye, Mark A; Sampson, Shirlene M; Port, John D

    2016-09-01

    Preliminary studies suggest that repetitive transcranial magnetic stimulation (rTMS) may be an effective and tolerable intervention for adolescents with treatment-resistant depression. There is limited rationale to inform coil placement for rTMS dosing in this population. We sought to examine and compare three localization techniques for coil placement in the context of an open-label trial of high-frequency rTMS for adolescents with treatment-resistant depression. Ten adolescents with treatment-resistant depression were enrolled in an open-label trial of high-frequency rTMS. Participants were offered 30 rTMS sessions (10 Hz, 120% motor threshold, left 3000 pulses applied to the dorsolateral prefrontal cortex) over 6-8 weeks. Coil placement for treatment was MRI guided. The scalp location for treatment was compared with the locations identified with standard 5 cm rule and Beam F3 methods. Seven adolescents completed 30 rTMS sessions. No safety or tolerability concerns were identified. Depression severity as assessed with the Children's Depression Rating Scale Revised improved from baseline to treatment 10, treatment 20, and treatment 30. Gains in depressive symptom improvement were maintained at 6 month follow-up visits. An MRI-guided approach for coil localization was feasible and efficient. Our results suggest that the 5 cm rule, Beam F3, and the MRI-guided localization approaches provided variable scalp targets for rTMS treatment. Open-label, high-frequency rTMS was feasible, tolerable, and effective for adolescents with treatment-resistant depression. Larger, blinded, sham-controlled trials are needed for definitive safety and efficacy data. Further efforts to understand optimal delivery, dosing, and biomarker development for rTMS treatments of adolescent depression are warranted.

  5. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection.

    PubMed

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J; Gao, Feng; Bouchard, Richard; Lang, Frederick F; Stafford, R Jason; Melancon, Marites P

    2018-04-20

    To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml -1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. MSCs labeled with SPIO@Au at 4 μg ml -1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and

  6. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection

    NASA Astrophysics Data System (ADS)

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J.; Gao, Feng; Bouchard, Richard; Lang, Frederick F.; Stafford, R. Jason; Melancon, Marites P.

    2018-04-01

    Objective. To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Materials and methods. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ˜82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. Results. MSCs labeled with SPIO@Au at 4 μg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Conclusions. Our results demonstrated the feasibility of tracking carotid artery

  7. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  8. Electron Paramagnetic Resonance Studies of Spin-Labeled Hemoglobins and Their Implications to the Nature of Cooperative Oxygen Binding to Hemoglobin*

    PubMed Central

    Ho, Chien; Baldassare, Joseph J.; Charache, Samuel

    1970-01-01

    The spin label technique has been used to study human hemoglobins A, F, Zürich, and Chesapeake as a function of carbon monoxide saturation. The experimental results suggest that the changes in the electron paramagnetic resonance spectra of hemoglobin labeled with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide depend on the state of ligation of more than one heme group. For those hemoglobins with full or large cooperative ligand binding (such as A, F, and Zürich), there is a lack of isosbestic points in the spectra as a function of CO saturation. However, for those hemoglobins with little or no cooperative ligand binding (such as Chesapeake and methemoglobins), there is a sharp set of isosbestic points. These findings confirm and extend the early work of McConnell and co-workers. The absence of a set of isosbestic points in those hemoglobins with full cooperative ligand binding is consistent with the sequential model of Koshland, Némethy, and Filmer for cooperative oxygen binding to hemoglobin. The present results, with hemoglobin variants having known amino acid substitutions, also focus on the importance of the interactions among the amino acid residues located at α1-β2 or α2-β1 subunit contacts for the functioning of hemoglobin as an oxygen carrier. In addition, the resonance spectra of the spin label are very sensitive to small structural variations around the heme groups in the β- or γ-chains where the labels are attached. The results of the spin label experiment are discussed in relation to recent findings on the mechanism of oxygenation of hemoglobin from the nuclear magnetic resonance studies of this laboratory and the x-ray crystallographic analysis of Perutz and co-workers. PMID:4316679

  9. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Science.gov Websites

    Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some

  10. Clinical Benefit of 3 Tesla Magnetic Resonance Imaging Rescanning in Patients With Focal Epilepsy and Negative 1.5 Tesla Magnetic Resonance Imaging.

    PubMed

    Ladino, Lady D; Balaguera, Pedro; Rascovsky, Simon; Delgado, Jorge; Llano, Juan; Hernández-Ronquillo, Lizbeth; Gómez-Arias, Bety; Téllez-Zenteno, José F

    2016-01-01

    Magnetic resonance imaging is an essential tool in the pre-surgical evaluation of patients with drug-resistant epilepsy. Our aim was to assess the value of re-imaging patients with focal drug-resistant epilepsy. Thirty patients with negative or non-conclusive 1.5 Tesla magnetic resonance imaging were rescanned with 1.5T and 3T. All of them had previous 1.5 scans with no seizure protocol in a non-specialized center. Two neuroradiologists who were blinded to prior imaging results randomly reviewed the magnetic resonance images. Kappa score was used to assess the reliability. Mean age of patients was 30 (SD ± 11) years. The intra-observer agreement for the first radiologist was 0.74 for 1.5T and 0.71 for 3T. In the second radiologist it was 0.82 and 0.66, respectively. Three lesions (10%) were identified by general radiologists in non-specialized centers using a 1.5T standard protocol. In our center a consensus between two neuroradiologists using epilepsy protocol identified seven lesions (23%) using 1.5T and 10 (33%) using 3T (p < 0.01). In 28% of patients this additional information resulted in a change in clinical management. 3T magnetic resonance imaging rescanning improves the diagnostic yield in patients with focal epilepsy and previous negative 1.5T magnetic resonance imaging. Use of 3T magnetic resonance imaging, epilepsy protocols, and interpretation by experienced neuroradiologists is highly recommended.

  11. Magnetic resonance imaging of the knee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, J.H.; Reicher, M.A.; Crues, J.V.

    1987-01-01

    Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.

  12. Silicon photonic resonator for label-free bio-sensing application

    NASA Astrophysics Data System (ADS)

    Udomsom, Suruk; Mankong, Ukrit; Theera-Umpon, Nipon; Ittipratheep, Nattapol; Umezawa, Toshimasa; Matsumoto, Atsushi; Yamamoto, Naokatsu

    2018-03-01

    In medical diagnostics there is an increasing demand for biosensors that can specifically detect biological analytes in a fluid. Especially label-free sensing, consistings of a transducer with biorecognition molecules immobilized on its surface without relying on fluorescent dye. In this paper we study the design and fabrication of a silicon nanowire photonic ring resonator and its feasibility as a biosensor. We have simulated and fabricated racetrack ring resonators which have a few tenths of micrometer gap, up to 0.5 μm between the input / output waveguides and the resonators. It is found that the devices can be designed with large Q factors. Sensitivity to biomaterial detection has been simulated for antibody (goat anti-mouse IgG) - antigen (mouse IgG) using 3-dimensional Finite Difference Time Domain technique. The simulated results show that the ring resonator has a response 15 nm resonance shift per refractive index unit. Antibody coating method is also discussed in this paper which can be applied to other antibody-antigen types.

  13. Evaluation of engraftment of superparamagnetic iron oxide-labeled mesenchymal stem cells using three-dimensional reconstruction of magnetic resonance imaging in photothrombotic cerebral infarction models of rats.

    PubMed

    Shim, Jaehyun; Kwak, Byung Kook; Jung, Jisung; Park, Serah

    2015-01-01

    To evaluate engraftment by visualizing the location of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) three-dimensionally in photothrombotic cerebral infarction (PTCI) models of rats. Magnetic resonance imaging (MRI) of an agarose block containing superparamagnetic iron oxide (SPIO)-labeled hBM-MSCs was performed using a 3.0-T MRI, T2-(T2WI), T2(*)-(T2(*)WI), and susceptibility-weighted images (SWI). PTCI was induced in 6 rats, and 2.5 × 10(5) SPIO-labeled hBM-MSCs were infused through the ipsilateral internal carotid artery (ICA group) or tail vein (IV group). MRI was performed on days 1, 3, 7, and 14 after stem cell injection. Dark signal regions were confirmed using histology. Three-dimensional MRI reconstruction was performed using the clinical workflow solution to evaluate the engraftment of hBM-MSCs. Volumetric analysis of the engraftment was also performed. The volumes of SPIO-labeled hBM-MSCs in the phantom MRI were 129.3, 68.4, and 25.9 µL using SWI, T2(*)WI, and T2WI, respectively. SPIO-labeled hBM-MSCs appeared on day 1 after injection, encircling the cerebral infarction from the ventral side. Dark signal regions matched iron positive cells and human origin (positive) cells. The volume of the engraftment was larger in the ICA group on days 1, 3, and 7, after stem cell injection (p < 0.05 on SWI). SWI was the most sensitive MRI pulse sequence (p < 0.05). The volume of infarction decreased until day 14. The engraftment of SPIO-labeled hBM-MSCs can be visualized and evaluated three-dimensionally in PTCI models of rats. The engraftment volume was larger in the ICA group than IV group on early stage within one week.

  14. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  15. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic

  16. Detection Techniques for Biomolecules using Semi-Conductor Nanocrystals and Magnetic Beads as Labels

    NASA Astrophysics Data System (ADS)

    Chatterjee, Esha

    Continued interest in the development of miniaturized and portable analytical platforms necessitates the exploration of sensitive methods for the detection of trace analytes. Nanomaterials, on account of their unique physical and chemical properties, are not only able to overcome many limitations of traditional detection reagents but also enable the exploration of many new signal transduction technologies. This dissertation presents a series of investigations of alternative detection techniques for biomolecules, involving the use of semi-conductor nanocrystals and magnetic beads as labels. Initial research focused on the development of quantum dot-encapsulating liposomes as a novel fluorescent label for immunoassays. This hybrid nanomaterial was anticipated to overcome the drawbacks presented by traditional fluorophores as well as provide significant signal amplification. Quantum dot-encapsulating liposomes were synthesized by the method of thin film hydration and characterized. The utility of these composite nanostructures for bioanalysis was demonstrated. However, the longterm instability of the liposomes hampered quantitative development. A second approach for assay development exploited the ability of gold nanoparticles to quench the optical signals obtained from quantum dots. The goal of this study was to demonstrate the feasibility of using aptamer-linked nanostructures in FRET-based quenching for the detection of proteins. Thrombin was used as the model analyte in this study. Experimental parameters for the assay were optimized. The assay simply required the mixing of the sample with the reagents and could be completed in less than an hour. The limit of detection for thrombin by this method was 5 nM. This homogeneous assay can be easily adapted for the detection of a wide variety of biochemicals. The novel technique of ferromagnetic resonance generated in magnetic bead labels was explored for signal transduction. This inductive detection technique lends

  17. Visualization of macrophage recruitment in head and neck carcinoma model using fluorine-19 magnetic resonance imaging.

    PubMed

    Khurana, Aman; Chapelin, Fanny; Xu, Hongyan; Acevedo, Joseph R; Molinolo, Alfred; Nguyen, Quyen; Ahrens, Eric T

    2018-04-01

    To evaluate the role of infiltrating macrophages in murine models of single and double mutation head and neck tumors using a novel fluorine-19 ( 19 F) MRI technology. Tumor cell lines single-hit/SCC4 or double-hit/Cal27, with mutations of TP53 and TP53 & FHIT, respectively, were injected bilaterally into the flanks of (n = 10) female mice. With tumors established, perfluorocarbon nanoemulsion was injected intravenously, which labels in situ predominantly monocytes and macrophages. Longitudinal spin density-weighted 19 F MRI data enabled quantification of the macrophage burden in tumor and surrounding tissue. The average number of 19 F atoms within the tumors was twice as high in the Cal27 group compared with SCC4 (3.9 × 10 19 and 2.0 × 10 19 19 F/tumor, respectively; P = 0.0034) two days after contrast injection, signifying increased tumor-associated macrophages in double-hit tumors. The difference was still significant 10 days after injection. Histology stains correlated with in vivo results, exhibiting numerous perfluorocarbon-labeled macrophages in double-hit tumors and to a lesser extent in single-hit tumors. This study helps to establish 19 F MRI as a method for quantifying immune cells in the tumor microenvironment, allowing distinction between double and single-hit head and neck tumors. This technique would be extremely valuable in the clinic for pretreatment planning, prognostics, and post-treatment surveillance. Magn Reson Med 79:1972-1980, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    PubMed

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Recent trends in high spin sensitivity magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of

  20. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    PubMed

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Structural and Functional Magnetic Resonance Imaging: Mild Cognitive Impairment and Alzheimer Disease.

    PubMed

    Lockau, Hannah; Jessen, Frank; Fellgiebel, Andreas; Drzezga, Alexander

    2013-10-01

    Magnetic resonance (MR) imaging is playing an increasingly pivotal role in the clinical management of dementia, including Alzheimer disease (AD). In addition to established MR imaging procedures, the introduction of advanced instrumentation such as 7-T MR imaging, as well as novel MR imaging sequences such as arterial spin labeling, MR spectroscopy, diffusion tensor imaging, and resting-state functional MR imaging, may open new pathways toward improved diagnosis of AD even in early stages of disease such as mild cognitive impairment (MCI). This article describes the typical findings of established and new MR imaging procedures in healthy aging, MCI, and AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  3. Magnetic resonance imaging of appendicular musculoskeletal infection.

    PubMed

    Lalam, Radhesh K; Cassar-Pullicino, Victor N; Tins, Bernhard J

    2007-06-01

    Appendicular skeletal infection includes osseous and extraosseous infections. Skeletal infection needs early diagnosis and appropriate management to prevent long-term morbidity. Magnetic resonance imaging is the best imaging modality to diagnose skeletal infection early in most circumstances. This article describes the role of magnetic resonance imaging in relation to the other available imaging modalities in the diagnosis of skeletal infection. Special circumstances such as diabetic foot, postoperative infection, and chronic recurrent multifocal osteomyelitis are discussed separately.

  4. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  5. SAIL--stereo-array isotope labeling.

    PubMed

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  6. Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

    PubMed Central

    Wildgen, Sarah M.; Dunn, Robert C.

    2015-01-01

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835

  7. Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.

    PubMed

    Wildgen, Sarah M; Dunn, Robert C

    2015-03-23

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.

  8. Perfluorocarbon Particle Size Influences Magnetic Resonance Signal and Immunological Properties of Dendritic Cells

    PubMed Central

    Waiczies, Helmar; Lepore, Stefano; Janitzek, Nicole; Hagen, Ulrike; Seifert, Frank; Ittermann, Bernd; Purfürst, Bettina; Pezzutto, Antonio; Paul, Friedemann; Niendorf, Thoralf; Waiczies, Sonia

    2011-01-01

    The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models. PMID:21811551

  9. Improving labeling efficiency in automatic quality control of MRSI data.

    PubMed

    Pedrosa de Barros, Nuno; McKinley, Richard; Wiest, Roland; Slotboom, Johannes

    2017-12-01

    To improve the efficiency of the labeling task in automatic quality control of MR spectroscopy imaging data. 28'432 short and long echo time (TE) spectra (1.5 tesla; point resolved spectroscopy (PRESS); repetition time (TR)= 1,500 ms) from 18 different brain tumor patients were labeled by two experts as either accept or reject, depending on their quality. For each spectrum, 47 signal features were extracted. The data was then used to run several simulations and test an active learning approach using uncertainty sampling. The performance of the classifiers was evaluated as a function of the number of patients in the training set, number of spectra in the training set, and a parameter α used to control the level of classification uncertainty required for a new spectrum to be selected for labeling. The results showed that the proposed strategy allows reductions of up to 72.97% for short TE and 62.09% for long TE in the amount of data that needs to be labeled, without significant impact in classification accuracy. Further reductions are possible with significant but minimal impact in performance. Active learning using uncertainty sampling is an effective way to increase the labeling efficiency for training automatic quality control classifiers. Magn Reson Med 78:2399-2405, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Magnetic resonance imaging of the saccular otolithic mass.

    PubMed Central

    Sbarbati, A; Leclercq, F; Antonakis, K; Osculati, F

    1992-01-01

    The frog's inner ear was studied in vivo by high spatial resolution magnetic resonance imaging at 7 Tesla. The vestibule, the internal acoustic meatus, and the auditory tube have been identified. The large otolithic mass contained in the vestibule showed a virtual absence of magnetic resonance signal probably due to its composition of closely packed otoconia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:1295875

  11. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  12. Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.

    PubMed

    Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen

    2018-01-01

    While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.

  13. Iatrogenic hyperthermia during cardiac magnetic resonance imaging.

    PubMed

    Kussman, Barry D; Mulkern, Robert V; Holzman, Robert S

    2004-10-01

    We report the occurrence of accidental hyperthermia in a young child undergoing anesthesia for cardiac magnetic resonance imaging. Although the tendency during anesthesia is to develop hypothermia, the absorbed radiofrequency energy from magnetic resonance scanning is added to metabolic energy and must be balanced by appropriate heat loss to maintain normothermia. In addition to stressing the clinical importance of temperature monitoring, this report suggests that the recommended specific absorption rates to prevent excessive patient heating may need to be revised for infants and young children.

  14. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011

  15. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  16. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.

    PubMed

    Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M

    2009-12-22

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

  17. Suppressing magnetic island growth by resonant magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Günter, S.; Lackner, K.

    2018-05-01

    The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.

  18. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  19. Advances in stable isotope assisted labeling strategies with information science.

    PubMed

    Kigawa, Takanori

    2017-08-15

    Stable-isotope (SI) labeling of proteins is an essential technique to investigate their structures, interactions or dynamics by nuclear magnetic resonance (NMR) spectroscopy. The assignment of the main-chain signals, which is the fundamental first step in these analyses, is usually achieved by a sequential assignment method based on triple resonance experiments. Independently of the triple resonance experiment-based sequential assignment, amino acid-selective SI labeling is beneficial for discriminating the amino acid type of each signal; therefore, it is especially useful for the signal assignment of difficult targets. Various combinatorial selective labeling schemes have been developed as more sophisticated labeling strategies. In these strategies, amino acids are represented by combinations of SI labeled samples, rather than simply assigning one amino acid to one SI labeled sample as in the case of conventional amino acid-selective labeling. These strategies have proven to be useful for NMR analyses of difficult proteins, such as those in large complex systems, in living cells, attached or integrated into membranes, or with poor solubility. In this review, recent advances in stable isotope assisted labeling strategies will be discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images.

    PubMed

    Marino, Lori; Sherwood, Chet C; Delman, Bradley N; Tang, Cheuk Y; Naidich, Thomas P; Hof, Patrick R

    2004-12-01

    This article presents the first series of MRI-based anatomically labeled sectioned images of the brain of the killer whale (Orcinus orca). Magnetic resonance images of the brain of an adult killer whale were acquired in the coronal and axial planes. The gross morphology of the killer whale brain is comparable in some respects to that of other odontocete brains, including the unusual spatial arrangement of midbrain structures. There are also intriguing differences. Cerebral hemispheres appear extremely convoluted and, in contrast to smaller cetacean species, the killer whale brain possesses an exceptional degree of cortical elaboration in the insular cortex, temporal operculum, and the cortical limbic lobe. The functional and evolutionary implications of these features are discussed. (c) 2004 Wiley-Liss, Inc.

  1. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    PubMed Central

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699

  2. Artifacts Affecting Musculoskeletal Magnetic Resonance Imaging: Their Origins and Solutions.

    PubMed

    Roth, Eira; Hoff, Michael; Richardson, Michael L; Ha, Alice S; Porrino, Jack

    2016-01-01

    Among articles within the radiology literature, few present the manifestations of magnetic resonance imaging artifacts in a clinically oriented manner. Recognizing such artifacts is imperative given the increasing clinical use of magnetic resonance imaging and the emphasis by the American Board of Radiology on practical physics applications. The purpose of this article is to present magnetic resonance physics principles visually and conceptually in the context of common musculoskeletal radiology artifacts and their solutions, described using nonmathematical explanations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-09

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fluorine-19 magnetic resonance imaging probe for the detection of tau pathology in female rTg4510 mice.

    PubMed

    Yanagisawa, Daijiro; Ibrahim, Nor Faeizah; Taguchi, Hiroyasu; Morikawa, Shigehiro; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Tooyama, Ikuo

    2018-05-01

    Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging ( 19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF 3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain. © 2017 Wiley Periodicals, Inc.

  5. Granular convection observed by magnetic resonance imaging.

    PubMed

    Ehrichs, E E; Jaeger, H M; Karczmar, G S; Knight, J B; Kuperman, V Y; Nagel, S R

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  6. Magnetic resonance imaging with an optical atomic magnetometer

    PubMed Central

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-01-01

    We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

  7. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  8. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  9. Imaging of juvenile spondyloarthritis. Part II: Ultrasonography and magnetic resonance imaging

    PubMed Central

    Znajdek, Michał; Gietka, Piotr; Vasilevska-Nikodinovska, Violeta; Patrovic, Lukas; Salapura, Vladka

    2017-01-01

    Juvenile spondyloarthropathies are mainly manifested by symptoms of peripheral arthritis and enthesitis. Early involvement of sacroiliac joints and spine is exceptionally rare in children; this usually happens in adulthood. Conventional radiographs visualize late inflammatory lesions. Early diagnosis is possible with the use of ultrasonography and magnetic resonance imaging. The first part of the article presented classifications and radiographic presentation of juvenile spondyloarthropathies. This part discusses changes seen on ultrasonography and magnetic resonance imaging. In patients with juvenile spondyloarthropathies, these examinations are conducted to diagnose inflammatory lesions in peripheral joints, tendon sheaths, tendons and bursae. Moreover, magnetic resonance also shows subchondral bone marrow edema, which is considered an early sign of inflammation. Ultrasonography and magnetic resonance imaging do not show specific lesions for any rheumatic disease. Nevertheless, they are conducted for early diagnosis, treatment monitoring and identifying complications. This article presents a spectrum of inflammatory changes and discusses the diagnostic value of ultrasonography and magnetic resonance imaging. PMID:29075522

  10. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    NASA Astrophysics Data System (ADS)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  11. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    PubMed Central

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  12. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  13. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    NASA Astrophysics Data System (ADS)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  14. Electrically detected magnetic resonance in a W-band microwave cavity

    NASA Astrophysics Data System (ADS)

    Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.

    2011-03-01

    We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

  15. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments.

    PubMed

    Eng, Lars; Nygren-Babol, Linnéa; Hanning, Anders

    2016-10-01

    Surface plasmon resonance (SPR) is a well-established method for studying interactions between small molecules and biomolecules. In particular, SPR is being increasingly applied within fragment-based drug discovery; however, within this application area, the limited sensitivity of SPR may constitute a problem. This problem can be circumvented by the use of label-enhanced SPR that shows a 100-fold higher sensitivity as compared with conventional SPR. Truly label-free interaction data for small molecules can be obtained by applying label-enhanced SPR in a surface competition assay format. The enhanced sensitivity is accompanied by an increased specificity and inertness toward disturbances (e.g., bulk refractive index disturbances). Label-enhanced SPR can be used for fragment screening in a competitive assay format; the competitive format has the added advantage of confirming the specificity of the molecular interaction. In addition, label-enhanced SPR extends the accessible kinetic regime of SPR to the analysis of very fast fragment binding kinetics. In this article, we demonstrate the working principles and benchmark the performance of label-enhanced SPR in a model system-the interaction between carbonic anhydrase II and a number of small-molecule sulfonamide-based inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor

    NASA Astrophysics Data System (ADS)

    Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng

    2018-06-01

    Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.

  17. Biological effects of exposure to magnetic resonance imaging: an overview

    PubMed Central

    Formica, Domenico; Silvestri, Sergio

    2004-01-01

    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797

  18. Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?

    PubMed

    Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C

    2018-06-18

    Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.

  19. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  20. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  1. Isotope labeling for studying RNA by solid-state NMR spectroscopy.

    PubMed

    Marchanka, Alexander; Kreutz, Christoph; Carlomagno, Teresa

    2018-04-12

    Nucleic acids play key roles in most biological processes, either in isolation or in complex with proteins. Often they are difficult targets for structural studies, due to their dynamic behavior and high molecular weight. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides a unique opportunity to study large biomolecules in a non-crystalline state at atomic resolution. Application of ssNMR to RNA, however, is still at an early stage of development and presents considerable challenges due to broad resonances and poor dispersion. Isotope labeling, either as nucleotide-specific, atom-specific or segmental labeling, can resolve resonance overlaps and reduce the line width, thus allowing ssNMR studies of RNA domains as part of large biomolecules or complexes. In this review we discuss the methods for RNA production and purification as well as numerous approaches for isotope labeling of RNA. Furthermore, we give a few examples that emphasize the instrumental role of isotope labeling and ssNMR for studying RNA as part of large ribonucleoprotein complexes.

  2. Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

    DOE PAGES

    Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...

    2017-06-07

    Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less

  3. Magnetic Resonance Imaging of Tumors with the Use of Iron Oxide Magnetic Nanoparticles as a Contrast Agent.

    PubMed

    Semkina, A S; Abakumov, M A; Grinenko, N F; Lipengolts, A A; Nukolova, N V; Chekhonin, V P

    2017-04-01

    We studied the possibility of using BSA-coated magnetic iron oxide nanoparticles for magnetic resonance imaging diagnosis of C6 glioblastoma, 4T1 mammary adenocarcinoma, and RS-1 hepatic mucous carcinoma. In all three cases, magnetic nanoparticles accumulated in the tumor and its large vessels. Magnetic resonance imaging with contrast agent allows visualization of the tumor tissue and its vascularization.

  4. Low losses left-handed materials with optimized electric and magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng

    2010-03-01

    We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.

  5. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer.

    PubMed

    Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-06-01

    The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P < .001). Preoperative hepatic magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  7. Molecular aspects of magnetic resonance imaging and spectroscopy.

    PubMed

    Boesch, C

    1999-01-01

    Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.

  8. Diffusion weighted magnetic resonance imaging and its recent trend—a survey

    PubMed Central

    Chilla, Geetha Soujanya; Tan, Cher Heng

    2015-01-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements. PMID:26029644

  9. Magnetic resonance imaging diagnosis of disseminated necrotizing leukoencephalopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atlas, S.W.; Grossman, R.I.; Packer, R.J.

    1987-01-01

    Disseminated necrotizing leukoencephalopathy is a rare syndrome of progressive neurologic deterioration seen most often in patients who have received central nervous system irradiation combined with intrathecal or systemic chemotherapy in the treatment or prophylaxis of various malignancies. Magnetic resonance imaging was more sensitive than computed tomography in detecting white matter abnormalities in the case of disseminated necrotizing leukoencephalopathy reported here. Magnetic resonance imaging may be useful in diagnosing incipient white matter changes in disseminated necrotizing leukoencephalopathy, thus permitting early, appropriate therapeutic modifications.

  10. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    PubMed

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  11. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  12. Magnetic resonance imaging of chemistry.

    PubMed

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  13. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  14. Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation

    NASA Astrophysics Data System (ADS)

    Hilger, Ingrid; Kießling, Andreas; Romanus, Erik; Hiergeist, Robert; Hergt, Rudolf; Andrä, Wilfried; Roskos, Martin; Linss, Werner; Weber, Peter; Weitschies, Werner; Kaiser, Werner A.

    2004-08-01

    The minimally invasive elimination of tumours using heating as a therapeutic agent is an emerging technology in medical applications. Particularly, the intratumoural application of magnetic nanoparticles as potential heating sources when exposed to an alternating magnetic field has been demonstrated. The present work deals with the estimation of the basic relationships when the magnetic material has access and binds to structures on cell membranes of target cells at the tumour region, particularly as a consequence of administration through tumour supplying vessels. Therefore, using mouse endothelial cells in culture, the binding of dextran coated magnetic nanoparticles (mean hydrodynamic particle diameter 65 nm) was modelled using the periodate method. The efficacy of cell labelling was demonstrated by magnetorelaxometry (MRX)—a selective method for the detection of only those magnetic nanoparticles that were immobilized—as well as by electron microscopy and iron staining. The amount of iron immobilized on cells was found to be 153 ± 56 µg Fe per 1 × 107 cells as determined by atomic absorption spectrometry. Moreover, after exposure of those 1 × 107 labelled cells to an alternating magnetic field (frequency 410 kHz, amplitude 11 kA m-1) for 5 min, temperature increases of 2 °C were achieved. The consequences of particle immobilization are reflected by the results of the measurements related to the specific heating power (SHP) of the magnetic material. Basically, the heating potential is explained by the superposition of Brown and Neél relaxation while for immobilized nanoparticles the Brown contribution is absent. In the long term the data could open the door to targeted magnetic heating after further optimization of the heating potential of magnetic material as well as after functionalization with biomolecules which recognize specific structures on the surface of cells at the target region.

  15. MR imaging of magnetic ink patterns via off-resonance sensitivity.

    PubMed

    Perkins, Stephanie L; Daniel, Bruce L; Hargreaves, Brian A

    2018-03-30

    Printed magnetic ink creates predictable B 0 field perturbations based on printed shape and magnetic susceptibility. This can be exploited for contrast in MR imaging techniques that are sensitized to off-resonance. The purpose of this work was to characterize the susceptibility variations of magnetic ink and demonstrate its application for creating MR-visible skin markings. The magnetic susceptibility of the ink was estimated by comparing acquired and simulated B 0 field maps of a custom-built phantom. The phantom was also imaged using a 3D gradient echo sequence with a presaturation pulse tuned to different frequencies, which adjusts the range of suppressed frequencies. Healthy volunteers with a magnetic ink pattern pressed to the skin or magnetic ink temporary flexible adhesives applied to the skin were similarly imaged. The volume-average magnetic susceptibility of the ink was estimated to be 131 ± 3 parts per million across a 1-mm isotropic voxel (13,100 parts per million assuming a 10-μm thickness of printed ink). Adjusting the saturation frequency highlights different off-resonant regions created by the ink patterns; for example, if tuned to suppress fat, fat suppression will fail near the ink due to the off-resonance. This causes magnetic ink skin markings placed over a region with underlying subcutaneous fat to be visible on MR images. Patterns printed with magnetic ink can be imaged and identified with MRI. Temporary flexible skin adhesives printed with magnetic ink have the potential to be used as skin markings that are visible both by eye and on MR images. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Computer simulation of magnetic resonance spectra employing homotopy.

    PubMed

    Gates, K E; Griffin, M; Hanson, G R; Burrage, K

    1998-11-01

    Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.

  17. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    PubMed

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.

    PubMed

    Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G

    2013-08-01

    To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance

  19. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction

    PubMed Central

    2013-01-01

    Background Although recent studies have clearly demonstrated functional and structural abnormalities in adolescents with internet gaming addiction (IGA), less is known about how IGA affects perfusion in the human brain. We used pseudocontinuous arterial spin-labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to measure the effects of IGA on resting brain functions by comparing resting cerebral blood flow in adolescents with IGA and normal subjects. Methods Fifteen adolescents with IGA and 18 matched normal adolescents underwent structural and perfusion fMRI in the resting state. Direct subtraction, voxel-wise general linear modeling was performed to compare resting cerebral blood flow (CBF) between the 2 groups. Correlations were calculated between the mean CBF value in all clusters that survived AlphaSim correction and the Chen Internet Addiction Scale (CIAS) scores, Barratt Impulsiveness Scale-11 (BIS-11) scores, or hours of Internet use per week (hours) in the 15 subjects with IGA. Results Compared with control subjects, adolescents with IGA showed significantly higher global CBF in the left inferior temporal lobe/fusiform gyrus, left parahippocampal gyrus/amygdala, right medial frontal lobe/anterior cingulate cortex, left insula, right insula, right middle temporal gyrus, right precentral gyrus, left supplementary motor area, left cingulate gyrus, and right inferior parietal lobe. Lower CBF was found in the left middle temporal gyrus, left middle occipital gyrus, and right cingulate gyrus. There were no significant correlations between mean CBF values in all clusters that survived AlphaSim correction and CIAS or BIS-11 scores or hours of Internet use per week. Conclusions In this study, we used ASL perfusion fMRI and noninvasively quantified resting CBF to demonstrate that IGA alters the CBF distribution in the adolescent brain. The results support the hypothesis that IGA is a behavioral addiction that may share similar neurobiological

  20. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  1. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  2. Vertigo-related cerebral blood flow changes on magnetic resonance imaging.

    PubMed

    Chang, Feiyan; Li, Zhongshi; Xie, Sheng; Liu, Hui; Wang, Wu

    2014-11-01

    A prospective study using magnetic resonance imaging on a consecutive cohort of patients with cervical vertigo. To quantitatively investigate the cerebral blood flow (CBF) changes associated with cervical vertigo by using 3-dimensional pseudocontinuous arterial spin labeling. Previous studies reported blood flow velocity reduction in posterior circulation during vertigo. However, the detailed information of CBF related to cervical vertigo has not been provided. A total of 33 patients with cervical vertigo and 14 healthy volunteers were recruited in this study. Three-dimensional pseudocontinuous arterial spin labeling was performed on each subject to evaluate the CBF before and after the cervical hyperextension-hyperflexion movement tests, which was used to induce cervical vertigo. Repeated-measures analysis of variance was conducted to assess the effect of subjects and tests. There were time effects of CBF in the territory of bilateral superior cerebellar artery, bilateral posterior cerebral artery, bilateral middle cerebral artery, and right anterior cerebral artery, but no group effect was observed. The analysis of CBF revealed a significant main effect of tests (P=0.024) and participants (P=0.038) in the dorsal pons. Cervical vertigo onset may be related to CBF reduction in the dorsal pons, which sequentially evokes the vestibular nuclei. 2.

  3. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  4. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-05

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  5. Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.

    DTIC Science & Technology

    1996-12-01

    PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image

  6. Serial Magnetic Resonance Imaging in Active Surveillance of Prostate Cancer: Incremental Value.

    PubMed

    Felker, Ely R; Wu, Jason; Natarajan, Shyam; Margolis, Daniel J; Raman, Steven S; Huang, Jiaoti; Dorey, Fred; Marks, Leonard S

    2016-05-01

    We assessed whether changes in serial multiparametric magnetic resonance imaging can help predict the pathological progression of prostate cancer in men on active surveillance. A retrospective cohort study was conducted of 49 consecutive men with Gleason 6 prostate cancer who underwent multiparametric magnetic resonance imaging at baseline and again more than 6 months later, each followed by a targeted prostate biopsy, between January 2011 and May 2015. We evaluated whether progression on multiparametric magnetic resonance imaging (an increase in index lesion suspicion score, increase in index lesion volume or decrease in index lesion apparent diffusion coefficient) could predict pathological progression (Gleason 3 + 4 or greater on subsequent biopsy, in systematic or targeted cores). Diagnostic performance of multiparametric magnetic resonance imaging was determined with and without clinical data using a binary logistic regression model. The mean interval between baseline and followup multiparametric magnetic resonance imaging was 28.3 months (range 11 to 43). Pathological progression occurred in 19 patients (39%). The sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging was 37%, 90%, 69% and 70%, respectively. Area under the receiver operating characteristic curve was 0.63. A logistic regression model using clinical information (maximum cancer core length greater than 3 mm on baseline biopsy or a prostate specific antigen density greater than 0.15 ng/ml(2) at followup biopsy) had an AUC of 0.87 for predicting pathological progression. The addition of serial multiparametric magnetic resonance imaging data significantly improved the AUC to 0.91 (p=0.044). Serial multiparametric magnetic resonance imaging adds incremental value to prostate specific antigen density and baseline cancer core length for predicting Gleason 6 upgrading in men on active surveillance. Copyright © 2016

  7. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  8. Magnetic Resonance Imaging of Benign and Malignant Uterine Neoplasms.

    PubMed

    Leursen, Gustavo; Gardner, Carly Susan; Sagebiel, Tara; Patnana, Madhavi; de CastroFaria, Silvana; Devine, Catherine E; Bhosale, Priya R

    2015-08-01

    Benign and malignant uterine masses can be seen in the women. Some of these are asymptomatic and incidentally discovered, whereas others can be symptomatic. With the soft tissue contrast resolution magnetic resonance imaging can render a definitive diagnosis, which can further help streamline patient management. In this article we show magnetic resonance imaging examples of benign and malignant masses of the uterus and their treatment strategies. Published by Elsevier Inc.

  9. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    PubMed

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  10. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  11. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  12. Magnetic resonance imaging findings in Ménière's disease.

    PubMed

    Patel, V A; Oberman, B S; Zacharia, T T; Isildak, H

    2017-07-01

    To identify and evaluate cranial magnetic resonance imaging findings associated with Ménière's disease. Seventy-eight patients with a documented diagnosis of Ménière's disease and 35 controls underwent 1.5 T or 3 T magnetic resonance imaging of the brain. Patients also underwent otological, vestibular and audiometric examinations. Lack of visualisation of the left and right vestibular aqueducts was identified as statistically significant amongst Ménière's disease patients (left, p = 0.0001, odds ratio = 0.02; right, p = 0.0004, odds ratio = 0.03). Both vestibular aqueducts were of abnormal size in the Ménière's disease group, albeit with left-sided significance (left, p = 0.008, odds ratio = 10.91; right, p = 0.49, odds ratio = 2.47). Lack of vestibular aqueduct visualisation on magnetic resonance imaging was statistically significant in Ménière's disease patients compared to the general population. The study findings suggest that magnetic resonance imaging can be useful to rule out retrocochlear pathology and provide radiological data to support the clinical diagnosis of Ménière's disease.

  13. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair.

    PubMed

    Potter, Hollis G; Foo, Li F

    2006-04-01

    The assessment of articular cartilage using magnetic resonance imaging has seen considerable advances in recent years. Cartilage morphologic characteristics can now be evaluated with a high degree of accuracy and reproducibility using dedicated pulse sequences, which are becoming standard at many institutions. These techniques detect clinically unsuspected traumatic cartilage lesions, allowing the physician to study their natural history with longitudinal evaluation and also to assess disease status in degenerative osteoarthritis. Magnetic resonance imaging also provides a more objective assessment of cartilage repair to augment the information obtained from more subjective clinical outcome instruments. Newly developed methods that provide detail at an ultrastructural level offer an important addition to cartilage evaluation, particularly in the detection of early alterations in the extracellular matrix. These methods have created an undeniably important role for magnetic resonance imaging in the reproducible, noninvasive, and objective evaluation and monitoring of cartilage. An overview of the advances, current techniques, and impact of magnetic resonance imaging in the setting of trauma, degenerative arthritides, and surgical treatment for cartilage injury is presented.

  14. Magnetization hysteresis electron paramagnetic resonance. A new null phase insensitive saturation transfer EPR technique with high sensitivity to slow motion.

    PubMed Central

    Vistnes, A I

    1983-01-01

    In electron paramagnetic resonance (EPR) nonlinear phenomena with respect to magnetic-field modulation are often studied by out-of-phase spectra recordings. The existence of a nonzero out-of-phase signal implies that the EPR signal is phase shifted relative to the modulation signal. This phase shift is called a magnetization hysteresis. The hysteresis angle varies during a sweep through the resonance conditions for a free radical. By recording this variation, a magnetization hysteresis (MH) spectrum results. In practice, a MH spectrum is computer calculated from two EPR spectra detected with a 90 degree difference in phase setting. There is no need for a careful null-phase calibration like that in traditional analysis of nonlinearities. The MH spectra calculated from second harmonic EPR spectra of spin labels were highly dependent on the rotational correlation time. The technique can therefore be used to study slow molecular motion. In the present work MH spectra and Hemminga and deJager's magnitude saturation transfer EPR spectra (Hemminga, M. A., and P. A. deJager, 1981, J. Magn. Reson., 43:324-327) have been analyzed to define parameters that can describe variations in the rotational correlation time. A novel modification of the sample holder and temperature regulation equipment is described. PMID:6309263

  15. Observation of resonant and non-resonant magnetic braking in the n = 1 non-axisymmetric configurations on KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Kimin; Choe, W.; In, Y.; Ko, W. H.; Choi, M. J.; Bak, J. G.; Kim, H. S.; Jeon, Y. M.; Kwak, J. G.; Yoon, S. W.; Oh, Y. K.; Park, J.-K.

    2017-12-01

    Toroidal rotation braking by neoclassical toroidal viscosity driven by non-axisymmetric (3D) magnetic fields, called magnetic braking, has great potential to control rotation profile, and thereby modify tokamak stability and performance. In order to characterize magnetic braking in the various 3D field configurations, dedicated experiments have been carried out in KSTAR, applying a variety of static n=1 , 3D fields of different phasing of -90 , 0, and +90 . Resonant-type magnetic braking was achieved by -90 phasing fields, accompanied by strong density pump-out and confinement degradation, and explained by excitation of kink response captured by ideal plasma response calculation. Strong resonant plasma response was also observed under +90 phasing at q95 ∼ 6 , leading to severe confinement degradation and eventual disruption by locked modes. Such a strong resonant transport was substantially modified to non-resonant-type transport at higher q95 ∼ 7.2 , as the resonant particle transport was significantly reduced and the rotation braking was pushed to plasma edge. This is well explained by ideal perturbed equilibrium calculations indicating the strong kink coupling at lower q95 is reduced at higher q95 discharge. The 0 phasing fields achieved quiescent magnetic braking without density pump-out and confinement degradation, which is consistent with vacuum and ideal plasma response analysis predicting deeply penetrating 3D fields without an excitation of strong kink response.

  16. Diagnostic value of three-dimensional magnetic resonance imaging of inner ear after intratympanic gadolinium injection, and clinical application of magnetic resonance imaging scoring system in patients with delayed endolymphatic hydrops.

    PubMed

    Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X

    2014-01-01

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.

  17. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  18. Image Guided Focal Therapy for Magnetic Resonance Imaging Visible Prostate Cancer: Defining a 3-Dimensional Treatment Margin Based on Magnetic Resonance Imaging Histology Co-Registration Analysis.

    PubMed

    Le Nobin, Julien; Rosenkrantz, Andrew B; Villers, Arnauld; Orczyk, Clément; Deng, Fang-Ming; Melamed, Jonathan; Mikheev, Artem; Rusinek, Henry; Taneja, Samir S

    2015-08-01

    We compared prostate tumor boundaries on magnetic resonance imaging and radical prostatectomy histological assessment using detailed software assisted co-registration to define an optimal treatment margin for achieving complete tumor destruction during image guided focal ablation. Included in study were 33 patients who underwent 3 Tesla magnetic resonance imaging before radical prostatectomy. A radiologist traced lesion borders on magnetic resonance imaging and assigned a suspicion score of 2 to 5. Three-dimensional reconstructions were created from high resolution digitalized slides of radical prostatectomy specimens and co-registered to imaging using advanced software. Tumors were compared between histology and imaging by the Hausdorff distance and stratified by the magnetic resonance imaging suspicion score, Gleason score and lesion diameter. Cylindrical volume estimates of treatment effects were used to define the optimal treatment margin. Three-dimensional software based registration with magnetic resonance imaging was done in 46 histologically confirmed cancers. Imaging underestimated tumor size with a maximal discrepancy between imaging and histological boundaries for a given tumor of an average ± SD of 1.99 ± 3.1 mm, representing 18.5% of the diameter on imaging. Boundary underestimation was larger for lesions with an imaging suspicion score 4 or greater (mean 3.49 ± 2.1 mm, p <0.001) and a Gleason score of 7 or greater (mean 2.48 ± 2.8 mm, p = 0.035). A simulated cylindrical treatment volume based on the imaging boundary missed an average 14.8% of tumor volume compared to that based on the histological boundary. A simulated treatment volume based on a 9 mm treatment margin achieved complete histological tumor destruction in 100% of patients. Magnetic resonance imaging underestimates histologically determined tumor boundaries, especially for lesions with a high imaging suspicion score and a high Gleason score. A 9 mm treatment margin around a lesion

  19. Gadolinium-enhanced magnetic resonance angiography in renal artery stenosis: comparison with digital subtraction angiography.

    PubMed

    Law, Y M; Tay, K H; Gan, Y U; Cheah, F K; Tan, B S

    2008-04-01

    To evaluate the accuracy of gadolinium-enhanced magnetic resonance angiography in assessing renal artery stenosis compared to catheter digital subtraction angiography. Retrospective study. Singapore General Hospital. Records of patients who underwent magnetic resonance angiography as well as digital subtraction angiography for assessment of renal artery stenosis from January 2003 to December 2005 were reviewed. There were 27 patients (14 male, 13 female) with a mean age of 62 (range, 44-77) years. There were 10 patients with renal transplants; their native renal arteries were not evaluated. Each of the two experienced interventional and body magnetic resonance radiologists, who were blinded to the results, reviewed the digital subtraction angiography and magnetic resonance angiography images respectively. Digital subtraction angiography was used as the standard of reference. A total of 39 renal arteries from these 27 patients were evaluated. One of the arteries was previously stented and could not be assessed with magnetic resonance angiography due to severe artefacts. Of the remaining 38 renal arteries, two were graded as normal, seven as having mild stenosis (<50%), eight as having moderate stenosis (> or =50% but <75%), and 21 as having severe stenosis (> or =75%). Magnetic resonance angiography and digital subtraction angiography were concordant in 89% of the arteries; magnetic resonance angiography overestimated the degree of stenosis in 8% and underestimated it in 3% of them. In the evaluation of clinically significant renal artery stenosis (> or =50%) with magnetic resonance angiography, the overall sensitivity, specificity, positive predictive value, and negative predictive value were 97%, 67%, 90%, and 86% respectively. The sensitivity and specificity of magnetic resonance angiography in transplant renal artery stenosis was 100%. CONCLUSION. Our experience suggested that gadolinium-enhanced magnetic resonance angiography is a sensitive non

  20. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions.

    PubMed

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-09-15

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including nonalcoholic fatty liver disease, will be elaborated.

  1. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    PubMed Central

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  2. Identification of cortex in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    VanMeter, John W.; Sandon, Peter A.

    1992-06-01

    The overall goal of the work described here is to make available to the neurosurgeon in the operating room an on-line, three-dimensional, anatomically labeled model of the patient brain, based on pre-operative magnetic resonance (MR) images. A stereotactic operating microscope is currently in experimental use, which allows structures that have been manually identified in MR images to be made available on-line. We have been working to enhance this system by combining image processing techniques applied to the MR data with an anatomically labeled 3-D brain model developed from the Talairach and Tournoux atlas. Here we describe the process of identifying cerebral cortex in the patient MR images. MR images of brain tissue are reasonably well described by material mixture models, which identify each pixel as corresponding to one of a small number of materials, or as being a composite of two materials. Our classification algorithm consists of three steps. First, we apply hierarchical, adaptive grayscale adjustments to correct for nonlinearities in the MR sensor. The goal of this preprocessing step, based on the material mixture model, is to make the grayscale distribution of each tissue type constant across the entire image. Next, we perform an initial classification of all tissue types according to gray level. We have used a sum of Gaussian's approximation of the histogram to perform this classification. Finally, we identify pixels corresponding to cortex, by taking into account the spatial patterns characteristic of this tissue. For this purpose, we use a set of matched filters to identify image locations having the appropriate configuration of gray matter (cortex), cerebrospinal fluid and white matter, as determined by the previous classification step.

  3. Magnetic resonances in perovskite-type layer structures

    NASA Astrophysics Data System (ADS)

    Strobel, K.; Geick, R.

    1981-08-01

    We have studied the q=0 magnetic excitations of the perovskite-type layer structures A 2MnCl 4 with A=Rb, C nH 2n+1NH 3 (n=1,2,3), and NH 3(CH 2) mNH 3MnCl 4 (m=2,4,5) in the antiferromagnetic and in the spin flop regime by means of magnetic resonance in the mm-wave range (30-130GHz) and microwave range (9.2GHz). The length of the organic molecules determines the separation of the MnCl 6 octahedra. With increasing separation the Néel temperature and the antiferromagnetic resonance frequency decrease, which mainly originates from a decrease of the anisotropy field.

  4. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.

    PubMed

    Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E

    2017-09-13

    Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

  5. Correlation between Clinical Features and Magnetic Resonance Imaging Findings in Lumbar Disc Prolapse.

    PubMed

    Thapa, S S; Lakhey, R B; Sharma, P; Pokhrel, R K

    2016-05-01

    Magnetic resonance imaging is routinely done for diagnosis of lumbar disc prolapse. Many abnormalities of disc are observed even in asymptomatic patient.This study was conducted tocorrelate these abnormalities observed on Magnetic resonance imaging and clinical features of lumbar disc prolapse. A This prospective analytical study includes 57 cases of lumbar disc prolapse presenting to Department of Orthopedics, Tribhuvan University Teaching Hospital from March 2011 to August 2012. All patientshad Magnetic resonance imaging of lumbar spine and the findings regarding type, level and position of lumbar disc prolapse, any neural canal or foraminal compromise was recorded. These imaging findings were then correlated with clinical signs and symptoms. Chi-square test was used to find out p-value for correlation between clinical features and Magnetic resonance imaging findings using SPSS 17.0. This study included 57 patients, with mean age 36.8 years. Of them 41(71.9%) patients had radicular leg pain along specific dermatome. Magnetic resonance imaging showed 104 lumbar disc prolapselevel. Disc prolapse at L4-L5 and L5-S1 level constituted 85.5%.Magnetic resonance imaging findings of neural foramina compromise and nerve root compression were fairly correlated withclinical findings of radicular pain and neurological deficit. Clinical features and Magnetic resonance imaging findings of lumbar discprolasehad faircorrelation, but all imaging abnormalities do not have a clinical significance.

  6. Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.

    PubMed

    Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun

    2017-01-01

    Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.

  7. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  8. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    NASA Astrophysics Data System (ADS)

    López, M.; Vázquez, F.; Solís-Nájera, S.; Rodriguez, A. O.

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions.

  9. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    PubMed

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  10. Diagnostic Accuracy of Lumbosacral Spine Magnetic Resonance Image Reading by Chiropractors, Chiropractic Radiologists, and Medical Radiologists.

    PubMed

    de Zoete, Annemarie; Ostelo, Raymond; Knol, Dirk L; Algra, Paul R; Wilmink, Jan T; van Tulder, Maurits W

    2015-06-01

    A cross-sectional diagnostic accuracy study was conducted in 2 sessions. It is important to know whether it is possible to accurately detect "specific findings" on lumbosacral magnetic resonance (MR) images and whether the results of different observers are comparable. Health care providers frequently use magnetic resonance imaging in the diagnostic process of patients with low back pain. The use of MR scans is increasing. This leads to an increase in costs and to an increase in risk of inaccurately labeling patients with an anatomical diagnosis that might not be the actual cause of symptoms. A set of 300 blinded MR images was read by medical radiologists, chiropractors, and chiropractic radiologists in 2 sessions. Each assessor read 100 scans in round 1 and 50 scans in round 2. The reference test was an expert panel.For all analyses, the magnetic resonance imaging findings were dichotomized into "specific findings" or "no specific findings." For the agreement, percentage agreement and κ values were calculated and for validity, sensitivity, and specificity. Sensitivity analysis was done for classifications A and B (prevalence of 31% and 57%, respectively). The intraobserver κ values for chiropractors, chiropractic radiologists, and medical radiologists were 0.46, 0.49, and 0.69 for A and 0.55, 0.75, and 0.64 for B, respectively.The interobserver κ values were lowest for chiropractors (0.28 for A, 0.37 for B) and highest for chiropractic radiologists (0.50 for A, 0.49 for B).The sensitivities of the medical radiologists, chiropractors, and chiropractic radiologists were 0.62, 0.71, and 0.75 for A and 0.70, 0.74, 0.84 for B, respectively.The specificities of medical radiologists, chiropractic radiologists, and chiropractors were 0.82, 0.77, and 0.70 for A and 0.74, 0.52, and 0.61 for B, respectively. Agreement and validity of MR image readings of chiropractors and chiropractic and medical radiologists is modest at best. This study supports recommendations in

  11. Polymer dual ring resonators for label-free optical biosensing using microfluidics.

    PubMed

    Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M

    2013-04-18

    We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.

  12. Resonant magnetic scattering of polarized soft x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of themore » first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.« less

  13. Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images

    DTIC Science & Technology

    2009-04-01

    GEOMETRIC COMPUTATION OF HUMAN GYRIFICATION INDEXES FROM MAGNETIC RESONANCE IMAGES By Shu Su Tonya White Marcus Schmidt Chiu-Yen Kao and Guillermo...00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images 5a. CONTRACT NUMBER... Geometric Computation of Gyrification Indexes Chiu-Yen Kao 1 Geometric Computation of Human Gyrification

  14. Performance of magnetic resonance imaging in the evaluation of first-time and reoperative primary hyperparathyroidism.

    PubMed

    Kluijfhout, Wouter P; Venkatesh, Shriya; Beninato, Toni; Vriens, Menno R; Duh, Quan-Yang; Wilson, David M; Hope, Thomas A; Suh, Insoo

    2016-09-01

    Preoperative imaging in patients with primary hyperparathyroidism and a previous parathyroid operation is essential; however, performance of conventional imaging is poor in this subgroup. Magnetic resonance imaging appears to be a good alternative, though overall evidence remains scarce. We retrospectively investigated the performance of magnetic resonance imaging in patients with and without a previous parathyroid operation, with a separate comparison for dynamic gadolinium-enhanced magnetic resonance imaging. All patients undergoing magnetic resonance imaging prior to parathyroidectomy for primary hyperparathyroidism (first time or recurrent) between January 2000 and August 2015 at a high-volume, tertiary care, referral center for endocrine operations were included. We compared the sensitivity and positive predictive value of magnetic resonance imaging with conventional ultrasound and sestamibi on a per-lesion level. A total of 3,450 patients underwent parathyroidectomy, of which 84 patients with recurrent (n = 10) or persistent (n = 74) disease and 41 patients with a primary operation were included. Magnetic resonance imaging had a sensitivity and positive predictive value of 79.9% and 84.7%, respectively, and performance was good in both patients with and without a previous parathyroid operation. Adding magnetic resonance imaging to the combination of ultrasound and sestamibi resulted in a significant increase in sensitivity from 75.2% to 91.5%. Dynamic magnetic resonance imaging produced excellent results in the reoperative group, with sensitivity and a positive predictive value of 90.1%. Technologic advances have enabled faster and more accurate magnetic resonance imaging protocols, making magnetic resonance imaging an excellent alternative modality without associated ionizing radiation. Our study shows that the sensitivity of multimodality imaging for parathyroid adenomas improved significantly with the use of conventional and dynamic magnetic resonance

  15. A technique for magnetic resonance imaging of equine cadaver specimens.

    PubMed

    Widmer, W R; Buckwalter, K A; Hill, M A; Fessler, J F; Ivancevich, S

    1999-01-01

    We tested an adaptation of a technique for performing magnetic resonance (MR) imaging of human cadaver limbs in the horse. The forelimbs from a normal horse were collected, frozen, and sealed with a paraffin-polymer combination prior to imaging with either a high- or midfield magnetic resonance scanner. Each forelimb was defrosted, scanned, and refrozen on two separate occasions. A five-point scale was used to evaluate the quality of each set of sagittal and transverse, T1-weighted images of each digit. There was no difference in image quality between first and second scans of either specimen (p > 0.05). We conclude that this technique allows investigators to bank tissue specimens for future magnetic resonance imaging without significant loss of image quality.

  16. Simple SPION Incubation as an Efficient Intracellular Labeling Method for Tracking Neural Progenitor Cells Using MRI

    PubMed Central

    D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen

    2013-01-01

    Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856

  17. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  18. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  19. Optical investigation of domain resonances in magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Bahlmann, N.; Gerhardt, R.; Dötsch, H.

    1996-08-01

    Magnetic garnet films of composition (Y,Bi) 3(Fe,Al) 5O 12 are grown by liquid phase epitaxy on [111] oriented substrates of Gd 3Ga 5O 12. Lattices of parallel stripe domains are stabilized by a static induction applied in the film plane. The two branches DR ± of the domain resonance and the domain wall resonance DWR are excited by microwave magnetic fields in the frequency range up to 6 GHz. Light passing the stripe domain lattice parallel to the film normal is modulated at the excitation frequency. A modulation bandwidth of more than 2 GHz is observed. The resonances can be calculated with high accuracy by a hybridization model, if the quality factor Q of the film exceeds 0.5. For Q < 0.5 a simple approximation is used to describe the superposition of the DR + and DR - resonances. The superposition model predicts two stability states of the resonance DR + which are observed experimentally. From the optical measurements precession angles of the resonance DR - of nearly 6° and wall oscillation amplitudes up to 25 nm are derived.

  20. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  1. Methotrexate-conjugated magnetic nanoparticles for thermochemotherapy and magnetic resonance imaging of tumor

    NASA Astrophysics Data System (ADS)

    Gao, Fuping; Yan, Zixing; Zhou, Jing; Cai, Yuanyuan; Tang, Jintian

    2012-10-01

    There is significant interest in recent years in developing magnetic nanoparticles (MNPs) having multifunctional characteristics with complimentary roles. In this study, methotrexate (MTX) was conjugated on the iron oxide magnetic nanoparticles surface via a poly(ethyleneimine) self-assembled monolayer (MTX-MNPs). The novel platform combined cancer chemotherapy, hyperthermia and potential monitoring of the progression of disease through magnetic resonance imaging (MRI). The conjugation of MTX on the magnetite surface was confirmed by Fourier transform infrared spectroscopy and change of zeta potential. Transmission electron microscope (TEM) showed that MTX-MNPs were morphologically spherical. The average diameter of MTX-MNPs was 30.1 ± 5.2 nm determined by dynamic light scattering. Magnetic measurements revealed that the saturation magnetization of MTX-MNPs reached 68.8 emu/g and the nanoparticles were superparamagnetic. The MTX-MNPs had good heating properties in an alternating magnetic field. TEM results showed that a larger number of MTX-MNPs were internalized into the MCF-7 cellular cytoplasm compared with the MNPs. The MTX-MNPs demonstrated highly synergistic antiproliferative effects of simultaneous chemotherapy and hyperthermia in MCF-7 breast cancer cells. A significant negative contrast enhancement was observed with magnetic resonance phantom imaging for MCF-7 cells over L929cells, when both were cultured with the nanoconjugate. The MTX-MNPs with combined characteristics of thermochemotherapy and MRI could be of high clinical significance in the treatment of tumor.

  2. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    PubMed

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  3. Magnetic resonance imaging of the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-02-26

    This report reviews the current applications of magnetic resonance imaging of the central nervous system. Since its introduction into the clinical environment in the early 1980's, this technology has had a major impact on the practice of neurology. It has proved to be superior to computed tomography for imaging many diseases of the brain and spine. In some instances it has clearly replaced computed tomography. It is likely that it will replace myelography for the assessment of cervicomedullary junction and spinal regions. The magnetic field strengths currently used appear to be entirely safe for clinical application in neurology except inmore » patients with cardiac pacemakers or vascular metallic clips. Some shortcomings of magnetic resonance imaging include its expense, the time required for scanning, and poor visualization of cortical bone.« less

  4. Magnetic resonance T1 gradient-echo imaging in hepatolithiasis.

    PubMed

    Safar, F; Kamura, T; Okamuto, K; Sasai, K; Gejyo, F

    2005-01-01

    We examined the role of magnetic resonance T1-weighted gradient-echo (MRT1-GE) imaging in hepatolithiasis. MRT1-GE, precontrast computed tomography (CT), and magnetic resonance cholangiopancreatography (MRCP) of 10 patients with hepatolithiasis were compared for their diagnostic accuracies in the detection and localization of intrahepatic calculi. The diagnosis of hepatolithiasis was confirmed by surgery. For localization of the stone, we divided the bile ducts into six areas: right and left hepatic ducts and bile ducts of the lateral, medial, right anterior, and right posterior segments of the liver. Chemical analysis of the stones was performed in eight patients. The total number of segments proved by surgery to contain stones was 18. Although not significantly different, the sensitivity of MRT1-GE was 77.8% (14 of 18 segments), higher than that of MRCP (66.7%, 12 of 18 segments) and that of CT (50%, nine of 18 segments). The sensitivity of magnetic resonance imaging (MRCP + MRT1) was significantly higher than that of CT (p < 0.01). Multiple logistic regression analysis showed that the result of surgery was significantly affected only by the result of magnetic resonance imaging. On MRT1-GE, all the depicted stones appeared as high-intensity signal areas within the low-intensity bile duct irrespective of their chemical composition. MRT1-GE imaging provides complementary information concerning hepatolithiasis.

  5. The resonant radio-frequency magnetic probe tuned by coaxial cable.

    PubMed

    Sun, B; Huo, W G; Ding, Z F

    2012-08-01

    In this paper, the resonant rf magnetic probe is upgraded by replacing the rotary capacitor in the old version with the series-connected coaxial cable. The numerical calculation and the measurement with the prototype probe show that the rf magnetic probe can achieve resonance at a middle length of the series-connected coaxial cable. The good electrical symmetry of the new rf magnetic probe is ensured by both the identity of series-connected coaxial cables and the new structure of the primary winding. Practical measurements conduced on an rf inductively coupled plasma source demonstrate that performances of the new rf magnetic probe are good.

  6. Miniature Magnet for Electron Spin Resonance Experiments

    ERIC Educational Resources Information Center

    Rupp, L. W.; And Others

    1976-01-01

    Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

  7. Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging

    PubMed Central

    Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun

    2017-01-01

    Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542

  8. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetrymore » has several features which are out of phase with the fine structure of the total yield.« less

  9. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  10. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    PubMed

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p < 0.0001) and 0.81 (p < 0.0001) for direct and reconstructed measurements, respectively. For magnetic resonance imaging, direct measures of tumour thickness (mean ± standard deviation, 18.2 ± 7.3 mm) did not significantly differ from the reconstructed measures (mean ± standard deviation, 17.9 ± 7.2 mm; r = 0.879). Moreover, 3 Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  11. A Japanese Encephalitis Patient Presenting with Parkinsonism with Corresponding Laterality of Magnetic Resonance and Dopamine Transporter Imaging Findings.

    PubMed

    Tadokoro, Koh; Ohta, Yasuyuki; Sato, Kota; Maeki, Takahiro; Sasaki, Ryo; Takahashi, Yoshiaki; Shang, Jingwei; Takemoto, Mami; Hishikawa, Nozomi; Yamashita, Toru; Lim, Chang Kweng; Tajima, Shigeru; Abe, Koji

    2018-03-09

    Japanese encephalitis (JE) survivors often present with nigrostriatal aftereffects with parkinsonian features. A 67-year-old woman with JE showed right-dominant clinical parkinsonism and left-dominant substantia nigra lesions after magnetic resonance imaging (MRI). Dopamine transporter (DAT) imaging using 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane ( 123 I-FP-CIT) revealed a corresponding left-dominant decrease. The present case is the first to reveal a clear match of laterality between clinical parkinsonism, MRI-based substantia nigra lesions, and impaired DAT in presynaptic dopaminergic neurons in JE.

  12. Human tooth and root canal morphology reconstruction using magnetic resonance imaging.

    PubMed

    Drăgan, Oana Carmen; Fărcăşanu, Alexandru Ştefan; Câmpian, Radu Septimiu; Turcu, Romulus Valeriu Flaviu

    2016-01-01

    Visualization of the internal and external root canal morphology is very important for a successful endodontic treatment; however, it seems to be difficult considering the small size of the tooth and the complexity of the root canal system. Film-based or digital conventional radiographic techniques as well as cone beam computed tomography provide limited information on the dental pulp anatomy or have harmful effects. A new non-invasive diagnosis tool is magnetic resonance imaging, due to its ability of imaging both hard and soft tissues. The aim of this study was to demonstrate magnetic resonance imaging to be a useful tool for imaging the anatomic conditions of the external and internal root canal morphology for endodontic purposes. The endodontic system of one freshly extracted wisdom tooth, chosen for its well-known anatomical variations, was mechanically shaped using a hybrid technique. After its preparation, the tooth was immersed into a recipient with saline solution and magnetic resonance imaged immediately. A Bruker Biospec magnetic resonance imaging scanner operated at 7.04 Tesla and based on Avance III radio frequency technology was used. InVesalius software was employed for the 3D reconstruction of the tooth scanned volume. The current ex-vivo experiment shows the accurate 3D volume rendered reconstruction of the internal and external morphology of a human extracted and endodontically treated tooth using a dataset of images acquired by magnetic resonance imaging. The external lingual and vestibular views of the tooth as well as the occlusal view of the pulp chamber, the access cavity, the distal canal opening on the pulp chamber floor, the coronal third of the root canals, the degree of root separation and the apical fusion of the two mesial roots, details of the apical region, root canal curvatures, furcal region and interradicular root grooves could be clearly bordered. Magnetic resonance imaging offers 3D image datasets with more information than the

  13. Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kausaite, A.; van Dijk, M.; Castrop, J.

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without labeling. The system can therefore be used to determine both affinity and rate constants for interactions between various types of molecules. Here, we describe the application of a surface plasmon resonance biosensor for label-free investigation of the interaction between an immobilized antigen bovine serum albumin (BSA) and antibodymore » rabbit anti-cow albumin IgG1 (anti-BSA). The formation of a self-assembled monolayer (SAM) over a gold surface is introduced into this laboratory training protocol as an effective immobilization method, which is very promising in biosensing systems based on detection of affinity interactions. In the next step, covalent attachment via artificially formed amide bonds is applied for the immobilization of proteins on the formed SAM surface. These experiments provide suitable experience for postgraduate students to help them understand immobilization of biologically active materials via SAMs, fundamentals of surface plasmon resonance biosensor applications, and determination of non-covalent biomolecular interactions. The experiment is designed for master and/or Ph.D. students. In some particular cases, this protocol might be adoptable for bachelor students that already have completed an extended biochemistry program that included a background in immunology.« less

  14. Early Rivaroxaban Use After Cardioembolic Stroke May Not Result in Hemorrhagic Transformation: A Prospective Magnetic Resonance Imaging Study.

    PubMed

    Gioia, Laura C; Kate, Mahesh; Sivakumar, Leka; Hussain, Dulara; Kalashyan, Hayrapet; Buck, Brian; Bussiere, Miguel; Jeerakathil, Thomas; Shuaib, Ashfaq; Emery, Derek; Butcher, Ken

    2016-07-01

    Early anticoagulation after cardioembolic stroke remains controversial because of the potential for hemorrhagic transformation (HT). We tested the safety and feasibility of initiating rivaroxaban ≤14 days after cardioembolic stroke/transient ischemic attack. A prospective, open-label study of patients with atrial fibrillation treated with rivaroxaban ≤14 days of transient ischemic attack or ischemic stroke (National Institute of Health Stroke Scale <9). All patients underwent magnetic resonance imaging <24 hours of rivaroxaban initiation and day 7. The primary end point was symptomatic HT at day 7. Sixty patients (mean±SD age 71±19 years, 82% stroke/18% transient ischemic attack) were enrolled. Median (interquartile range) time from onset to rivaroxaban was 3 (5) days. At treatment initiation, median National Institute of Health Stroke Scale was 2 (4), and median diffusion-weighted imaging volume was 7.9 (13.7) mL. At baseline, HT was present in 25 (42%) patients (hemorrhagic infarct [HI]1=19, HI2=6). On follow-up magnetic resonance imaging, no patients developed symptomatic HT. New asymptomatic HI1 developed in 3 patients, and asymptomatic progression from HI1 to HI2 occurred in 5 patients; otherwise, HT remained unchanged at day 7. These data support the safety of rivaroxaban initiation ≤14 days of mild-moderate cardioembolic stroke/transient ischemic attack. Magnetic resonance imaging evidence of petechial HT, which is common, does not appear to increase the risk of symptomatic HT. © 2016 American Heart Association, Inc.

  15. Magnetic Resonance-Based Electrical Property Tomography (MR-EPT) for Prostate Cancer Grade Imaging

    DTIC Science & Technology

    2016-07-01

    Award Number: W81XWH-13-1-0127 TITLE: Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0127 Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...developing Magnetic Resonance – Electrical Property Tomography (MR-EPT) specifically for prostate imaging. MR-EPT is an imaging modality that may enable

  16. Magnetic field response of doubly clamped magnetoelectric microelectromechanical AlN-FeCo resonators

    NASA Astrophysics Data System (ADS)

    Bennett, S. P.; Baldwin, J. W.; Staruch, M.; Matis, B. R.; LaComb, J.; van't Erve, O. M. J.; Bussmann, K.; Metzler, M.; Gottron, N.; Zappone, W.; LaComb, R.; Finkel, P.

    2017-12-01

    Magnetoelectric (ME) cantilever resonators have been successfully employed as magnetic sensors to measure low magnetic fields; however, high relative resolution enabling magnetometry in high magnetic fields is lacking. Here, we present on-chip silicon based ME microelectromechanical (MEMS) doubly clamped resonators which can be utilized as high sensitivity, low power magnetic sensors. The resonator is a fully suspended thin film ME heterostructure composed of an active magnetoelastic layer (Fe0.3Co0.7), which is strain coupled to a piezoelectric signal/excitation layer (AlN). By controlling uniaxial stress arising from the large magnetoelastic properties of magnetostrictive FeCo, a magnetically driven shift of the resonance frequency of the first fundamental flexural mode is observed. The theoretical intrinsic magnetic noise floor of such sensors reaches a minimum value of 35 p T /√{H z }. This approach shows a magnetic field sensitivity of ˜5 Hz/mT in a bias magnetic field of up to 120 mT. Such sensors have the potential in applications required for enhanced dynamic sensitivity in high-field magnetometry.

  17. Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.

    PubMed

    Gladden, Lynn F; Sederman, Andrew J

    2017-06-07

    This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to <1 s, magnetic resonance is finding increasing application in chemical engineering research.

  18. Base pair mismatch recognition using plasmon resonant particle labels.

    PubMed

    Oldenburg, Steven J; Genick, Christine C; Clark, Keith A; Schultz, David A

    2002-10-01

    We demonstrate the use of silver plasmon resonant particles (PRPs), as reporter labels, in a microarray-based DNA hybridization assay in which we screen for a known polymorphic site in the breast cancer gene BRCA1. PRPs (40-100 nm in diameter) image as diffraction-limited points of colored light in a standard microscope equipped with dark-field illumination, and can be individually identified and discriminated against background scatter. Rather than overall intensity, the number of PRPs counted in a CCD image by a software algorithm serves as the signal in these assays. In a typical PRP hybridization assay, we achieve a detection sensitivity that is approximately 60 x greater than that achieved by using fluorescent labels. We conclude that single particle counting is robust, generally applicable to a wide variety of assay platforms, and can be integrated into low-cost and quantitative detection systems for single nucleotide polymorphism analysis.

  19. Magnetic resonance imaging for the study of mummies.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Carnieri, Emiliano; Salvadori, Piero A

    2016-07-01

    Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology. More recently, multinuclear magnetic resonance spectroscopy (MRS) was demonstrated able to detect numerous organic biochemicals from such remains. Although the quality of these images is not yet comparable to that of clinical magnetic resonance (MR) images, and further research will be needed for determining the full capacity of MR in this topic, the information obtained with MR can be viewed as complementary to the one provided by CT and useful for paleoradiological studies of mummies. This work contains an overview of the state of art of the emerging uses of MRI in paleoradiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Patient burden and patient preference: comparing magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy.

    PubMed

    Wiarda, Bart M; Stolk, Mark; Heine, Dimitri G N; Mensink, Peter; Thieme, Mai E; Kuipers, Ernst J; Stoker, Jaap

    2013-03-01

    We aimed to prospectively determine patient burden and patient preference for magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy in patients with suspected or known Crohn's disease (CD) or occult gastrointestinal bleeding (OGIB).  Consecutive consenting patients with CD or OGIB underwent magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy. Capsule endoscopy was only performed if magnetic resonance enteroclysis showed no high-grade small bowel stenosis. Patient preference and burden was evaluated by means of standardized questionnaires at five moments in time. From January 2007 until March 2009, 76 patients were included (M/F 31/45; mean age 46.9 years; range 20.0-78.4 years): 38 patients with OGIB and 38 with suspected or known CD. Seventeen patients did not undergo capsule endoscopy because of high-grade stenosis. Ninety-five percent (344/363) of the questionnaires were suitable for evaluation. Capsule endoscopy was significantly favored over magnetic resonance enteroclysis and balloon-assisted enteroscopy with respect to bowel preparation, swallowing of the capsule (compared to insertion of the tube/scope), burden of the entire examination, duration and accordance with the pre-study information. Capsule endoscopy and magnetic resonance enteroclysis were significantly preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, and magnetic resonance enteroclysis was significantly preferred over balloon-assisted enteroscopy for bowel preparation, painfulness and burden of the entire examination. Balloon-assisted enteroscopy was significantly favored over magnetic resonance enteroclysis for insertion of the scope and procedure duration. Pre- and post-study the order of preference was capsule endoscopy, magnetic resonance enteroclysis and balloon-assisted enteroscopy. Capsule endoscopy was preferred to magnetic resonance enteroclysis and balloon-assisted enteroscopy

  1. Cardiac magnetic resonance imaging has limited additional yield in cryptogenic stroke evaluation after transesophageal echocardiography.

    PubMed

    Liberman, Ava L; Kalani, Rizwan E; Aw-Zoretic, Jessie; Sondag, Matthew; Daruwalla, Vistasp J; Mitter, Sumeet S; Bernstein, Richard; Collins, Jeremy D; Prabhakaran, Shyam

    2017-12-01

    Background The use of cardiac magnetic resonance imaging is increasing, but its role in the diagnostic work-up following ischemic stroke has received limited study. We aimed to explore the added yield of cardiac magnetic resonance imaging to identify cardio-aortic sources not detected by transesophageal echocardiography among patients with cryptogenic stroke. Methods A retrospective single-center cohort study was performed from 01 January 2009 to 01 March 2013. Consecutive patients who had both a stroke protocol cardiac magnetic resonance imaging and a transesophageal echocardiography preformed during a single hospitalization were included. All cardiac magnetic resonance imaging studies underwent independent, blinded review by two investigators. We applied the causative classification system for ischemic stroke to all patients, first blinded to cardiac magnetic resonance imaging results; we then reapplied the causative classification system using cardiac magnetic resonance imaging. Standard statistical tests to evaluate stroke subtype reclassification rates were used. Results Ninety-three patients were included in the final analysis; 68.8% were classified as cryptogenic stroke after initial diagnostic evaluation. Among patients with cryptogenic stroke, five (7.8%) were reclassified due to cardiac magnetic resonance imaging findings: one was reclassified as "cardio-aortic embolism evident" due to the presence of a patent foramen ovale and focal cardiac infarct and four were reclassified as "cardio-aortic embolism possible" due to mitral valve thickening (n = 1) or hypertensive cardiomyopathy (n = 3). Overall, findings on cardiac magnetic resonance imaging reduced the percentage of patients with cryptogenic stroke by slightly more than 1%. Conclusion Our stroke subtype reclassification rate after the addition of cardiac magnetic resonance imaging results to a diagnostic work-up which includes transesophageal echocardiography was very low. Prospective studies

  2. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    DTIC Science & Technology

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING Kyle

  3. Basic physics of nuclear magnetic resonance.

    PubMed

    Patz, S

    1986-01-01

    This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.

  4. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  5. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  6. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields duringmore » the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.« less

  7. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  8. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus Videos and Cool Tools

    ... mild sedative prior to the examination. For more information about Magnetic Resonance Angiography of MRA or any ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  9. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia.

    PubMed

    Drees, R; Forrest, L J; Chappell, R

    2009-07-01

    Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.

  10. The Diagnostic Performance of Multiparametric Magnetic Resonance Imaging to Detect Significant Prostate Cancer.

    PubMed

    Thompson, J E; van Leeuwen, P J; Moses, D; Shnier, R; Brenner, P; Delprado, W; Pulbrook, M; Böhm, M; Haynes, A M; Hayen, A; Stricker, P D

    2016-05-01

    We assess the accuracy of multiparametric magnetic resonance imaging for significant prostate cancer detection before diagnostic biopsy in men with an abnormal prostate specific antigen/digital rectal examination. A total of 388 men underwent multiparametric magnetic resonance imaging, including T2-weighted, diffusion weighted and dynamic contrast enhanced imaging before biopsy. Two radiologists used PI-RADS to allocate a score of 1 to 5 for suspicion of significant prostate cancer (Gleason 7 with more than 5% grade 4). PI-RADS 3 to 5 was considered positive. Transperineal template guided mapping biopsy of 18 regions (median 30 cores) was performed with additional manually directed cores from magnetic resonance imaging positive regions. The anatomical location, size and grade of individual cancer areas in the biopsy regions (18) as the primary outcome and in prostatectomy specimens (117) as the secondary outcome were correlated to the magnetic resonance imaging positive regions. Of the 388 men who were enrolled in the study 344 were analyzed. Multiparametric magnetic resonance imaging was positive in 77.0% of patients, 62.5% had prostate cancer and 41.6% had significant prostate cancer. The detection of significant prostate cancer by multiparametric magnetic resonance imaging had a sensitivity of 96%, specificity of 36%, negative predictive value of 92% and positive predictive value of 52%. Adding PI-RADS to the multivariate model, including prostate specific antigen, digital rectal examination, prostate volume and age, improved the AUC from 0.776 to 0.879 (p <0.001). Anatomical concordance analysis showed a low mismatch between the magnetic resonance imaging positive regions and biopsy positive regions (4 [2.9%]), and the significant prostate cancer area in the radical prostatectomy specimen (3 [3.3%]). In men with an abnormal prostate specific antigen/digital rectal examination, multiparametric magnetic resonance imaging detected significant prostate cancer

  11. Imaging vulnerable plaques by targeting inflammation in atherosclerosis using fluorescent-labeled dual-ligand microparticles of iron oxide and magnetic resonance imaging.

    PubMed

    Chan, Joyce M S; Monaco, Claudia; Wylezinska-Arridge, Marzena; Tremoleda, Jordi L; Cole, Jennifer E; Goddard, Michael; Cheung, Maggie S H; Bhakoo, Kishore K; Gibbs, Richard G J

    2018-05-01

    Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-α-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by in vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow in vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this in vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (r = 0.69; P = .014), P-selectin (r = 0.65; P = .022), and macrophage content (r = 0.59; P = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. These molecular MRI probes constitute a novel imaging tool for in vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future. Copyright © 2017 Society for Vascular Surgery. Published by

  12. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    PubMed

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  13. Comparison of radiography and magnetic resonance imaging for evaluating the extent of nasal neoplasia in dogs.

    PubMed

    Petite, A F B; Dennis, R

    2006-09-01

    Magnetic resonance imaging (MRI) is increasingly used in veterinary practice and, in some centres, is part of the diagnostic work-up of small animals with nasal disease. However, there are no published studies which critically evaluate the use of magnetic resonance imaging for this purpose. The purpose of this work was to assess the changes seen using magnetic resonance imaging and to compare them with radiography. The study included 12 dogs that had undergone both radiography and magnetic resonance imaging of the nasal cavity and had a histopathological diagnosis of malignant nasal neoplasia. Two pairs of board-certified radiologists scored the radiographs and the MRI scans, evaluating 10 signs of abnormality using a simple scoring system. Magnetic resonance imaging features were described in detail, and radiographic and magnetic resonance imaging scores for each sign as well as total scores were compared. Magnetic resonance imaging often showed that the tumour was more extensive than it had appeared on radiography but occasionally showed that radiographs had overestimated its size. Although radiography was reliable for assessment of the presence and size of a mass and for the extent of turbinate destruction, it usually failed to show occlusion of the major airway passages that were evident on magnetic resonance imaging. Extension of the tumour into the opposite nasal cavity, frontal sinus, orbit and cranial cavity was shown much better on magnetic resonance imaging. Minor but significant extension beyond the nasal cavity, which is important for treatment planning and prognosis, requires magnetic resonance imaging for demonstration, although radiography shows major changes reliably.

  14. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    PubMed

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging

    USDA-ARS?s Scientific Manuscript database

    In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...

  16. Multiparametric magnetic resonance imaging findings of prostatic pure leiomyomas.

    PubMed

    Mussi, Thais Caldara; Costa, Yves Bohrer; Obara, Marcos Takeo; Queiroz, Marcos Roberto Gomes de; Garcia, Rodrigo Gobbo; Longo, José Antonio Domingos Cianciarulo; Lemos, Gustavo Caserta; Baroni, Ronaldo Hueb

    2016-01-01

    To describe the imaging findings of prostatic tumors nonadenocarcinoma on multiparametric magnetic resonance imaging. A total of 200 patients underwented multiparametric magnetic resonance imaging of the prostate for screening for prostate cancer, from August 2013 to September 2014, followed by biopsy with ultrasound/magnetic resonance imaging fusion. We found three pathologic proved cases of prostatic pure leiomyomas (0.02%) in our series and described the multiparametric magnetic resonance imaging features of these prostatic leiomyomas. The imaging findings had similar features to lesions with moderate or high suspicion for significant cancer (Likert 4 or 5) when localized both in the transitional zone or in the peripheral zone of the gland. Pure prostatic leiomyomas had imaging findings on multiparametric magnetic resonance imaging that mimicked usual adenocarcinomas on this test. Radiologists, urologists and pathologists must be aware of this entity and its imaging features. Descrever os achados de imagem de tumores prostáticos não adenocarcinoma na ressonância magnética multiparamétrica. Realizaram ressonância magnética multiparamétrica da próstata para detecção de câncer de próstata 200 pacientes de agosto de 2013 a setembro de 2014, seguida por biópsia com fusão de imagens de ultrassonografia/ressonância magnética. Encontramos três casos confirmados histologicamente de leiomiomas prostáticos puros (0,02%) em nossa casuística e descrevemos os achados da ressonância magnética multiparamétrica destes casos de leiomiomas. Os achados de imagem foram semelhantes aos de lesões com moderada ou alta suspeição para neoplasia clinicamente significante (Likert 4 ou 5) quando localizados na zona de transição ou zona periférica da próstata. Leiomiomas puros da próstata tiveram achados de imagem na ressonância magnética multiparamétrica que mimetizaram adenocarcinomas. Radiologistas, urologistas e patologistas devem estar cientes destas

  17. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  18. In vivo experiences with magnetic resonance imaging scans in Vibrant Soundbridge type 503 implantees.

    PubMed

    Todt, I; Mittmann, P; Ernst, A; Mutze, S; Rademacher, G

    2018-05-01

    To observe the effects of magnetic resonance imaging scans in Vibrant Soundbridge 503 implantees at 1.5T in vivo. In a prospective case study of five Vibrant Soundbridge 503 implantees, 1.5T magnetic resonance imaging scans were performed with and without a headband. The degree of pain was evaluated using a visual analogue scale. Scan-related pure tone audiogram and audio processor fitting changes were assessed. In all patients, magnetic resonance imaging scans were performed without any degree of pain or change in pure tone audiogram or audio processor fitting, even without a headband. In this series, 1.5T magnetic resonance imaging scans were performed with the Vibrant Soundbridge 503 without complications. Limitations persist in terms of magnetic artefacts.

  19. Dynamics of paramagnetic agents by off-resonance rotating frame technique

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang

    2006-12-01

    Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields ( B0 > 3 T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude ω1 and pulse duration τ. The choices of ω1 and τ are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle θ and off-resonance pulse duration τ. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R1 ρ/ R1, the ratio of the off-resonance rotating frame relaxation rate constant R1 ρ verse the laboratory frame relaxation rate constant R1, three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time τR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.

  20. Magnetic forces and localized resonances in electron transfer through quantum rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  1. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  2. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  3. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  4. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    NASA Astrophysics Data System (ADS)

    Firpo, M.-C.; Constantinescu, D.

    2011-03-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  5. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    DOT National Transportation Integrated Search

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  6. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  7. Surprising connections: the diverse world of magnetic resonance

    NASA Astrophysics Data System (ADS)

    Callaghan, Paul

    2004-10-01

    When Rutherford discovered the atomic nucleus he could not possibly have imagined that it might be a window to understanding molecular biology, or how the brain works. And yet so it has come to pass. It is the through the magnetism of the nucleus that these insights, and so much more, are possible. The phenomenon of ``Nuclear Magnetic Resonance'' has proven an essential tool in physics, it has revolutionised chemistry and biochemistry, it has made astonishing contributions to medicine, and is now making an impact in geophysics, chemical engineering and food technology. It is even finding applications in new security technologies and in testing fundamental ideas concerning quantum computing. But the story of Magnetic Resonance is much more than the application of a well-established method to new areas of science. The technique itself continues to evolve. Magnetic Resonance has now garnered 6 Nobel prizes, two of them in the last two years. For a technique that has been around for nearly 60 years, it is really quite extraordinary that such accolades are still being given to new developments in the methodology. This talk will explain why the nuclear spin is so ubiquitous and interdisciplinary, and so rich in its fundamental physics. It will illustrate how unpredictable and surprising are the consequences of a major scientific discovery. For funding agencies determined to direct research activities towards predicted benefits, the conclusion drawn may provide a salutary lesson.

  8. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  9. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    USDA-ARS?s Scientific Manuscript database

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  10. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Yu, Dindi; Ruangchaithaweesuk, Songtham; Yao, Li; Xu, Shoujun

    2012-09-01

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/√Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 μm with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 μm, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  11. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  12. Preoperative Magnetic Resonance Imaging in Patients With Stage I Invasive Ductal Breast Cancer: A Prospective Randomized Study.

    PubMed

    Brück, N; Koskivuo, I; Boström, P; Saunavaara, J; Aaltonen, R; Parkkola, R

    2018-03-01

    Preoperative magnetic resonance imaging has become an important complementary imaging technique in patients with breast cancer, providing additional information for preoperative local staging. Magnetic resonance imaging is recommended selectively in lobular breast cancer and in patients with dense breast tissue in the case when mammography and ultrasound fail to fully evaluate the lesion, but the routine use of magnetic resonance imaging in all patients with invasive ductal carcinoma is controversial. The purpose of this randomized study was to investigate the diagnostic value of preoperative magnetic resonance imaging and its impact on short-term surgical outcome in newly diagnosed unifocal stage I invasive ductal carcinoma. A total of 100 patients were randomized to either receive preoperative breast magnetic resonance imaging or to be scheduled directly to operation without magnetic resonance imaging on a 1:1 basis. There were 50 patients in both study arms. In 14 patients (28%), breast magnetic resonance imaging detected an additional finding and seven of them were found to be malignant. Six additional cancer foci were found in the ipsilateral breast and one in the contralateral breast. Magnetic resonance imaging findings caused a change in planned surgical management in 10 patients (20%). Mastectomy was performed in six patients (12%) in the magnetic resonance imaging group and in two patients (4%) in the control group ( p = 0.140). The breast reoperation rate was 14% in the magnetic resonance imaging group and 24% in the control group ( p = 0.202). The mean interval between referral and first surgical procedure was 34 days in the magnetic resonance imaging group and 21 days in the control group ( p < 0.001). Preoperative magnetic resonance imaging may be beneficial for some patients with early-stage invasive ductal carcinoma, but its routine use is not recommended without specific indications.

  13. Magnetic resonance imaging of the nose and paranasal sinuses.

    PubMed Central

    Lloyd, G A

    1989-01-01

    Seventy-five patients with a wide range of sinus disease have been investigated by magnetic resonance (MR): these included congenital conditions, allergic and inflammatory sinus disease, fungus infections, and the necrotizing granulomata. In addition, a variety of benign and malignant tumours have been examined, and in the more recent sinus malignancies the paramagnetic contrast agent, Gadolinium (Gd) DTPA (Schering Health Care) has been used. This experience of magnetic resonance scanning has shown that it is superior to computed tomography in demonstrating the extent of malignant disease in the nose and sinuses; most especially when Gd DTPA is used, reaching an accuracy of over 96% by biopsy correlation. An additional advantage of this technique is the wide coverage of the head and neck for the assessment of malignant disease, provided by direct 3 plane imaging and the multislice facility. The main disadvantage of magnetic resonance of the sinuses is the poor demonstration of calcification and bone. For this reason the MR scans may need to be augmented by high resolution CT performed specifically to show bone detail. Images Figure 2. Figure 3. PMID:2926770

  14. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    PubMed

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    NASA Astrophysics Data System (ADS)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  16. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  17. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  18. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giagkiozis, I.; Verth, G.; Goossens, M.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configurationmore » of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.« less

  2. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia

    PubMed Central

    Drees, R.; Forrest, L. J.; Chappell, R.

    2009-01-01

    Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490

  3. [Magnetic Resonance Imaging Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis].

    PubMed

    Peixoto, Sara; Abreu, Pedro

    2016-11-01

    Clinically isolated syndrome may be the first manifestation of multiple sclerosis, a chronic demyelinating disease of the central nervous system, and it is defined by a single clinical episode suggestive of demyelination. However, patients with this syndrome, even with long term follow up, may not develop new symptoms or demyelinating lesions that fulfils multiple sclerosis diagnostic criteria. We reviewed, in clinically isolated syndrome, what are the best magnetic resonance imaging findings that may predict its conversion to multiple sclerosis. A search was made in the PubMed database for papers published between January 2010 and June 2015 using the following terms: 'clinically isolated syndrome', 'cis', 'multiple sclerosis', 'magnetic resonance imaging', 'magnetic resonance' and 'mri'. In this review, the following conventional magnetic resonance imaging abnormalities found in literature were included: lesion load, lesion location, Barkhof's criteria and brain atrophy related features. The non conventional magnetic resonance imaging techniques studied were double inversion recovery, magnetization transfer imaging, spectroscopy and diffusion tensor imaging. The number and location of demyelinating lesions have a clear role in predicting clinically isolated syndrome conversion to multiple sclerosis. On the other hand, more data are needed to confirm the ability to predict this disease development of non conventional techniques and remaining neuroimaging abnormalities. In forthcoming years, in addition to the established predictive value of the above mentioned neuroimaging abnormalities, different clinically isolated syndrome neuroradiological findings may be considered in multiple sclerosis diagnostic criteria and/or change its treatment recommendations.

  4. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    PubMed

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Retrospective review of 50 canine nasal tumours evaluated by low-field magnetic resonance imaging.

    PubMed

    Avner, A; Dobson, J M; Sales, J I; Herrtage, M E

    2008-05-01

    Low-field magnetic resonance imaging machines are being used more often in veterinary practice for the investigation of sinonasal disease. The aim of this retrospective study was to describe and characterise the low-field magnetic resonance imaging features of nasal tumours in dogs. The Queen's Veterinary School Hospital magnetic resonance imaging database (2001-2005) was searched for dogs with a magnetic resonance imaging diagnosis of a nasal tumour. Fifty cases with histological diagnosis of nasal tumour were found. The appearance and extent of the nasal tumour as well as the involvement of adjacent anatomic structures were examined against a checklist. The most common magnetic resonance imaging findings were as follows. (1) Soft tissue mass replacing the destroyed nasal conchae and/or ethmoturbinates (98 per cent of cases). (2) Nasal septum destruction (68 per cent of cases). (3) Retained secretions with or without mass caudally in frontal sinuses (62 per cent of cases). (4) Nasal/frontal bone destruction (52 per cent of cases). Low-field magnetic resonance imaging allowed differentiation of tumour tissue from retained secretions or necrotic tissue. Magnetic resonance imaging was invaluable in assessing the extension of the tumour into the maxillary recesses, caudal recesses, nasopharynx, adjacent bones and cranial cavity. The tumour often extended caudally into the frontal sinuses, nasopharynx and perhaps most importantly into the caudal recesses. Tumour extension into the cranial cavity was not common (16 per cent), and only three of these cases showed neurological signs. However, 54 per cent of cases showed focal meningeal (dural) hyperintensity, although the significance of this is unclear. A significant difference (P<0.05) in tumour signal intensity between the sarcomas and carcinomas was found. The use of a low-field magnetic resonance imaging technique is excellent for the diagnosis and determination of extent of sinonasal tumours.

  6. Calculation of ferromagnetic resonance spectra for chains of magnetic particles

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2010-12-01

    Magnetotactic bacteria are a taxonomically diverse group of bacteria that have chains of ferromagnetic crystals inside. These bacteria mostly live in the oxic-anoxic interface (OAI) of aquatic environments. The magnetic chains orient the bacteria parallel to the Earth's magnetic field and help them to maintain their position near the OAI. These chains show the fingerprint of natural selection acting to optimize the magnetic moment per unit iron. This is achieved in a number of ways: the alignment in chains, a narrow size range, crystallographic perfection and chemical purity. Because of these distinctive characteristics, the particles can still be identified after the bacteria have died. Such magnetofossils are useful both as records of bacterial evolution and environmental markers. They can most reliably be identified by microscopy, but that is very labor-intensive. A number of magnetic measurements have been developed to identify magnetofossils quickly and non-invasively. However, the only test that can specifically identify the chain structure is ferromagnetic resonance (FMR), which measures the response to a magnetic field oscillating at microwave frequencies. Although the experimental side of ferromagnetic resonance is well developed, the theoretical models for interpreting them have been limited. A new method is presented for calculating resonance frequencies as well as complete power spectra for chains of interacting magnetic particles. Spectra are calculated and compared with data for magnetotactic bacteria.

  7. Proton magnetic resonance spectroscopy of tubercular breast abscess: report of a case.

    PubMed

    Das, Chandan Jyoti; Medhi, Kunjahari

    2008-01-01

    In vivo proton magnetic resonance spectroscopy (H-MRS) is a functional imaging modality. When magnetic resonance imaging is coupled with H-MRS, it results in accurate metabolic characterization of various lesions. Proton magnetic resonance spectroscopy has an established role in evaluating malignant breast lesions, and the increasing number of published literature supports the role of H-MRS in patients with breast cancer. However, H-MRS can be of help in evaluating benign breast disease. We present a case of tubercular breast abscess, initial diagnosis of which was suggested based on characteristic lipid pick on H-MRS and was subsequently confirmed by fine needle aspiration biopsy of the breast lesion.

  8. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    DOE PAGES

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; ...

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifiesmore » the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.« less

  9. Development of magnetic resonance technology for noninvasive boron quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  10. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    PubMed

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  11. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    PubMed Central

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    Introduction. An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods. PMID:23606951

  12. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging

    PubMed Central

    Cabrera-García, Alejandro; Vidal-Moya, Alejandro; Bernabeu, Ángela; Pacheco-Torres, Jesús; Checa-Chavarria, Elisa; Fernández, Eduardo; Botella, Pablo

    2016-01-01

    We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images. PMID:28335240

  13. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    PubMed

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Magnetic resonance imaging in the assessment of anomalous pulmonary venous connections.

    PubMed

    Bernal Garnes, N; Méndez Díaz, C; Soler Fernández, R; Rodríguez García, E

    2016-01-01

    To illustrate the morphological and functional magnetic resonance findings for total and partial anomalous pulmonary venous connections as well as of the most common complications after surgery. The magnetic resonance findings are fundamental in defining the type of anomalous connection, deciding on the treatment, planning the surgery, and detecting postsurgical complications. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  15. Cardiac magnetic resonance radiofrequency tissue tagging for diagnosis of constrictive pericarditis: A proof of concept study.

    PubMed

    Power, John A; Thompson, Diane V; Rayarao, Geetha; Doyle, Mark; Biederman, Robert W W

    2016-05-01

    Invasive cardiac catheterization is the venerable "gold standard" for diagnosing constrictive pericarditis. However, its sensitivity and specificity vary dramatically from center to center. Given the ability to unequivocally define segments of the pericardium with the heart via radiofrequency tissue tagging, we hypothesize that cardiac magnetic resonance has the capability to be the new gold standard. All patients who were referred for cardiac magnetic resonance evaluation of constrictive pericarditis underwent cardiac magnetic resonance radiofrequency tissue tagging to define visceral-parietal pericardial adherence to determine constriction. This was then compared with intraoperative surgical findings. Likewise, all preoperative cardiac catheterization testing was reviewed in a blinded manner. A total of 120 patients were referred for clinical suspicion of constrictive pericarditis. Thirty-nine patients were defined as constrictive pericarditis positive solely via radiofrequency tissue-tagging cardiac magnetic resonance, of whom 21 were positive, 4 were negative, and 1 was equivocal for constrictive pericarditis, as defined by cardiac catheterization. Of these patients, 16 underwent pericardiectomy and were surgically confirmed. There was 100% agreement between cardiac magnetic resonance-defined constrictive pericarditis positivity and postsurgical findings. No patients were misclassified by cardiac magnetic resonance. In regard to the remaining constrictive pericarditis-positive patients defined by cardiac magnetic resonance, 10 were treated medically, declined, were ineligible for surgery, or were lost to follow-up. Long-term follow-up of those who were constrictive pericarditis negative by cardiac magnetic resonance showed no early or late crossover to the surgery arm. Cardiac magnetic resonance via radiofrequency tissue tagging offers a unique, efficient, and effective manner of defining clinically and surgically relevant constrictive pericarditis

  16. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  18. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  19. Magnetic resonance imaging in laboratory petrophysical core analysis

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating

  20. Fluorine-19 Labeling of Stromal Vascular Fraction Cells for Clinical Imaging Applications

    PubMed Central

    Rose, Laura C.; Kadayakkara, Deepak K.; Wang, Guan; Bar-Shir, Amnon; Helfer, Brooke M.; O’Hanlon, Charles F.; Kraitchman, Dara L.; Rodriguez, Ricardo L.

    2015-01-01

    Stromal vascular fraction (SVF) cells are used clinically for various therapeutic targets. The location and persistence of engrafted SVF cells are important parameters for determining treatment failure versus success. We used the GID SVF-1 platform and a clinical protocol to harvest and label SVF cells with the fluorinated (19F) agent CS-1000 as part of a first-in-human phase I trial (clinicaltrials.gov identifier NCT02035085) to track SVF cells with magnetic resonance imaging during treatment of radiation-induced fibrosis in breast cancer patients. Flow cytometry revealed that SVF cells consisted of 25.0% ± 15.8% CD45+, 24.6% ± 12.5% CD34+, and 7.5% ± 3.3% CD31+ cells, with 2.1 ± 0.7 × 105 cells per cubic centimeter of adipose tissue obtained. Fluorescent CS-1000 (CS-ATM DM Green) labeled 87.0% ± 13.5% of CD34+ progenitor cells compared with 47.8% ± 18.5% of hematopoietic CD45+ cells, with an average of 2.8 ± 2.0 × 1012 19F atoms per cell, determined using nuclear magnetic resonance spectroscopy. The vast majority (92.7% ± 5.0%) of CD31+ cells were also labeled, although most coexpressed CD34. Only 16% ± 22.3% of CD45−/CD31−/CD34− (triple-negative) cells were labeled with CS-ATM DM Green. After induction of cell death by either apoptosis or necrosis, >95% of 19F was released from the cells, indicating that fluorine retention can be used as a surrogate marker for cell survival. Labeled-SVF cells engrafted in a silicone breast phantom could be visualized with a clinical 3-Tesla magnetic resonance imaging scanner at a sensitivity of approximately 2 × 106 cells at a depth of 5 mm. The current protocol can be used to image transplanted SVF cells at clinically relevant cell concentrations in patients. Significance Stromal vascular fraction (SVF) cells harvested from adipose tissue offer great promise in regenerative medicine, but methods to track such cell therapies are needed to ensure correct administration and monitor survival. A clinical protocol

  1. Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation.

    PubMed

    Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C

    2008-09-30

    A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.

  2. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Label-free, real-time interaction and adsorption analysis 1: surface plasmon resonance.

    PubMed

    Fee, Conan J

    2013-01-01

    A key requirement for the development of proteins for use in nanotechnology is an understanding of how individual proteins bind to other molecules as they assemble into larger structures. The introduction of labels to enable the detection of biomolecules brings the inherent risk that the labels themselves will influence the nature of biomolecular interactions. Thus, there is a need for label-free interaction and adsorption analysis. In this and the following chapter, two biosensor techniques are reviewed: surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM). Both allow real-time analysis of biomolecular interactions and both are label-free. The first of these, SPR, is an optical technique that is highly sensitive to the changes in refractive index that occur with protein (or other molecule) accumulation near an illuminated gold surface. Unlike QCM ( Chapter 18 ) SPR is not affected by the water that may be associated with the adsorbed layer nor by conformational changes in the adsorbed species. SPR thus provides unique information about the interaction of a protein with its binding partners.

  4. Magnetic bead-sensing-platform-based chemiluminescence resonance energy transfer and its immunoassay application.

    PubMed

    Qin, Guoxin; Zhao, Shulin; Huang, Yong; Jiang, Jing; Ye, Fanggui

    2012-03-20

    A competitive immunoassay based on chemiluminescence resonance energy transfer (CRET) on the magnetic beads (MBs) is developed for the detection of human immunoglobulin G (IgG). In this protocol, carboxyl-modified MBs were conjugated with horseradish peroxidase (HRP)-labeled goat antihuman IgG (HRP-anti-IgG) and incubated with a limited amount of fluorescein isothiocyanate (FITC)-labeled human IgG to immobilize the antibody-antigen immune complex on the surface of the MBs, which was further incubated with the target analyte (human IgG) for competitive immunoreaction and separated magnetically to remove the supernatant. The chemiluminescence (CL) buffer (containing luminol and H(2)O(2)) was then added, and the CRET from donor luminol to acceptor FITC in the immunocomplex on the surface of MBs occured immediately. The present protocol was evaluated for the competitive immunoassay of human IgG, and a linear relationship between CL intensity ratio (R = I(425)/I(525)) and human IgG concentration in the range of 0.2-4.0 nM was obtained with a correlation coefficient of 0.9965. The regression equation was expressed as R = 1.9871C + 2.4616, and a detection limit of 2.9 × 10(-11) M was obtained. The present method was successfully applied for the detection of IgG in human serum. The results indicate that the present protocol is quite promising for the application of CRET in immunoassays. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies.

  5. Magnetically driven oscillator and resonance: a teaching tool

    NASA Astrophysics Data System (ADS)

    Erol, M.; Çolak, İ. Ö.

    2018-05-01

    This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an ordinary function generator, an oscilloscope and a smartphone. Driven oscillation and resonance is basically managed by applying a sinusoidal voltage to the coil and tuning the driving frequency to the natural frequency of the pendulum. The resultant oscillation is recorded by a smartphone video application and analyzed via a video analysis programme. The designed apparatus can easily be employed in basic physics laboratories to achieve an enhanced and deeper understanding of driven oscillation and resonance.

  6. Study of magnetic resonance with parametric modulation in a potassium vapor cell

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wang, Zhiguo; Peng, Xiang; Li, Wenhao; Li, Songjian; Guo, Hong; Cream Team

    2017-04-01

    A typical magnetic-resonance scheme employs a static bias magnetic field and an orthogonal driving magnetic field oscillating at the Larmor frequency, at which the atomic polarization precesses around the static magnetic field. We demonstrate in a potassium vapor cell the variations of the resonance condition and the spin precession dynamics resulting from the parametric modulation of the bias field, which are in well agreement with theoretical predictions from the Bloch equation. We show that, the driving magnetic field with the frequency detuned by different harmonics of the parametric modulation frequency can lead to resonance as well. Also, a series of frequency sidebands centered at the driving frequency and spaced by the parametric modulation frequency can be observed in the precession of the atomic polarization. These effects could be used in different atomic magnetometry applications. This work is supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003) and the National Natural Science Foundation of China (Grant Nos. 61531003 and 61571018).

  7. Magnetic resonance imaging-ultrasound fusion biopsy for prediction of final prostate pathology.

    PubMed

    Le, Jesse D; Stephenson, Samuel; Brugger, Michelle; Lu, David Y; Lieu, Patricia; Sonn, Geoffrey A; Natarajan, Shyam; Dorey, Frederick J; Huang, Jiaoti; Margolis, Daniel J A; Reiter, Robert E; Marks, Leonard S

    2014-11-01

    We explored the impact of magnetic resonance imaging-ultrasound fusion prostate biopsy on the prediction of final surgical pathology. A total of 54 consecutive men undergoing radical prostatectomy at UCLA after fusion biopsy were included in this prospective, institutional review board approved pilot study. Using magnetic resonance imaging-ultrasound fusion, tissue was obtained from a 12-point systematic grid (mapping biopsy) and from regions of interest detected by multiparametric magnetic resonance imaging (targeted biopsy). A single radiologist read all magnetic resonance imaging, and a single pathologist independently rereviewed all biopsy and whole mount pathology, blinded to prior interpretation and matched specimen. Gleason score concordance between biopsy and prostatectomy was the primary end point. Mean patient age was 62 years and median prostate specific antigen was 6.2 ng/ml. Final Gleason score at prostatectomy was 6 (13%), 7 (70%) and 8-9 (17%). A tertiary pattern was detected in 17 (31%) men. Of 45 high suspicion (image grade 4-5) magnetic resonance imaging targets 32 (71%) contained prostate cancer. The per core cancer detection rate was 20% by systematic mapping biopsy and 42% by targeted biopsy. The highest Gleason pattern at prostatectomy was detected by systematic mapping biopsy in 54%, targeted biopsy in 54% and a combination in 81% of cases. Overall 17% of cases were upgraded from fusion biopsy to final pathology and 1 (2%) was downgraded. The combination of targeted biopsy and systematic mapping biopsy was needed to obtain the best predictive accuracy. In this pilot study magnetic resonance imaging-ultrasound fusion biopsy allowed for the prediction of final prostate pathology with greater accuracy than that reported previously using conventional methods (81% vs 40% to 65%). If confirmed, these results will have important clinical implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by

  8. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.

    PubMed

    Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming

    2009-01-01

    An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.

  9. Magnetic resonance imaging findings of cellular angiofibroma of the tunica vaginalis of the testis: a case report.

    PubMed

    Ntorkou, Alexandra A; Tsili, Athina C; Giannakis, Dimitrios; Batistatou, Anna; Stavrou, Sotirios; Sofikitis, Nikolaos; Argyropoulou, Maria I

    2016-03-31

    Cellular angiofibroma represents a rare mesenchymal tumor typically involving the inguinoscrotal area in middle-aged men. Although the origin of this benign tumor is unknown, it is histologically classified as an angiomyxoid tumor. Cellular angiofibroma is characterized by a diversity of pathological and imaging features. An accurate preoperative diagnosis is challenging. Magnetic resonance imaging examination of the scrotum has been reported as a valuable adjunct modality in the investigation of scrotal pathology. The technique by providing both structural and functional information is useful in the differentiation between extratesticular and intratesticular diseases and in the preoperative characterization of the histologic nature of various scrotal lesions. There are few reports in the English literature addressing the magnetic resonance imaging findings of cellular angiofibroma of the scrotum and no reports on functional magnetic resonance imaging data. Here we present the first case of a cellular angiofibroma arising from the tunica vaginalis of the testis and we discuss the value of a multiparametric magnetic resonance protocol, including diffusion-weighted imaging, magnetization transfer imaging and dynamic contrast-enhanced magnetic resonance imaging in the preoperative diagnosis of this rare neoplasm. A 47-year Greek man presented with a painless left scrotal swelling, which had gradually enlarged during the last 6 months. Magnetic resonance imaging of his scrotum displayed a left paratesticular mass, in close proximity to the tunica vaginalis, with heterogeneous high signal intensity on T2-weighted images and no areas of restricted diffusion. The tumor was hypointense on magnetization transfer images, suggestive for the presence of macromolecules. On dynamic contrast-enhanced magnetic resonance imaging the mass showed intense heterogeneous enhancement with a type II curve. Magnetic resonance imaging findings were strongly suggestive of a benign

  10. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy.

    PubMed

    Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A

    2011-08-01

    Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.

  11. Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amonio acid and in crystallne sperm whale (Physeter catodon) myoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keniry, M.A.; Rothgeb, T.M.; Smith, R.L.

    1983-04-12

    Deuterium (/sup 2/H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T/sub 1/) were obtained of L-(epsilon-/sup 2/H/sub 3/)methionine, L-(epsilon-/sup 2/H/sub 3/)methionine in a D,L lattice, and (S-methyl-/sup 2/H/sub 3/)methionine in the crystalline solid state, as a function of temperature, in addition to obtaining /sup 2/H T/sub 1/ and line-width results as a function of temperature on (epsilon-/sup 2/H/sub 3/)methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were /sup 13/C cross-polarization ''magic-angle'' sample-spinning NMR spectra of (epsilon-/sup 13/C)methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T)more » and of the same protein in aqueous solution. (JMT)« less

  12. Self-assembled mPEG-PCL-g-PEI micelles for multifunctional nanoprobes of doxorubicin delivery and magnetic resonance imaging and optical imaging.

    PubMed

    Guo, Qingfa; Kuang, Lei; Cao, Hui; Li, Weizhong; Wei, Jing

    2015-12-01

    In this paper, a novel bifunctional nanoprobe based on polyethylene glycol(MPEG)-poly(ϵ-caprolactone)(ϵ-CL)-polyethylenimine(PEI) labeled with FITC (MPEG-PCL-PEI-FITC, PCIF) were prepared to provide tumor therapy and simultaneous diagnostic information via magnetic resonance imaging (MRI) and optical imaging. Superparamagnetic iron oxide (SPIO) and doxorubicin (DOX) loaded PCIF (PCIF/SPIO/DOX) nanoprobes were prepared by self-assembling into micelles, which had uniformly distributed particle size of 130 ± 5 nm and a zeta potential of +35 ± 2 mV. Transmission electronic microscopy(TEM) showed that SPIO NPs were loaded into PCIF micelles. The PCIF/SPIO/DOX nanoprobes were superparamagnetic at 300 K with saturated magnetization of 20.5 emu/g Fe by vibrating-sample-magnetomete (VSM). Studies on cellular uptake of PCIF/SPIO/DOX nanoprobes demonstrated that SPIO NPs, DOX and FITC labeled MPEG-PCL-PEI were simultaneously taken up by the breast cancer (4T1) cells. After intravenous injection of PCIF/SPIO/DOX nanoprobes in 4T1 tumor-bearing mice, SPIO NPs, DOX and FITC labeled MPEG-PCL-PEI micelles were simultaneously delivered into tumor tissue by histochemisty. This work is important for the applications to multimodal diagnostic and theragnosis as nanomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    PubMed

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  14. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    PubMed

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  15. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  16. LC and ferromagnetic resonance in soft/hard magnetic microwires

    NASA Astrophysics Data System (ADS)

    Tian, Bin; Vazquez, Manuel

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.

  17. Magnetic resonance imaging based clinical research in Alzheimer's disease.

    PubMed

    Fayed, Nicolás; Modrego, Pedro J; Salinas, Gulillermo Rojas; Gazulla, José

    2012-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in elderly people in western countries. However important goals are unmet in the issue of early diagnosis and the development of new drugs for treatment. Magnetic resonance imaging (MRI) and volumetry of the medial temporal lobe structures are useful tools for diagnosis. Positron emission tomography is one of the most sensitive tests for making an early diagnosis of AD but the cost and limited availability are important caveats for its utilization. The importance of magnetic resonance techniques has increased gradually to the extent that most clinical works based on AD use these techniques as the main aid to diagnosis. However, the accuracy of structural MRI as biomarker of early AD generally reaches an accuracy of 80%, so additional biomarkers should be used to improve predictions. Other structural MRI (diffusion weighted, diffusion-tensor MRI) and functional MRI have also added interesting contribution to the understanding of the pathophysiology of AD. Magnetic resonance spectroscopy has proven useful to monitor progression and response to treatment in AD, as well as a biomarker of early AD in mild cognitive impairment.

  18. Magnetic resonance imaging atlas of the cervical spine musculature.

    PubMed

    Au, John; Perriman, Diana M; Pickering, Mark R; Buirski, Graham; Smith, Paul N; Webb, Alexandra L

    2016-07-01

    The anatomy of the cervical spine musculature visible on magnetic resonance (MR) images is poorly described in the literature. However, the correct identification of individual muscles is clinically important because certain conditions of the cervical spine, for example whiplash associated disorders, idiopathic neck pain, cervical nerve root avulsion and cervical spondylotic myelopathy, are associated with different morphological changes in specific muscles visible on MR images. Knowledge of the precise structure of different cervical spine muscles is crucial when comparisons with the contralateral side or with normal are required for accurate description of imaging pathology, management and assessment of treatment efficacy. However, learning the intricate arrangement of 27 muscles is challenging. A multi-level cross-sectional depiction combined with three-dimensional reconstructions could facilitate the understanding of this anatomically complex area. This paper presents a comprehensive series of labeled axial MR images from one individual and serves as a reference atlas of the cervical spine musculature to guide clinicians, researchers, and anatomists in the accurate identification of these muscles on MR imaging. Clin. Anat. 29:643-659, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Transurethral prostate magnetic resonance elastography: prospective imaging requirements.

    PubMed

    Arani, Arvin; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Tissue stiffness is known to undergo alterations when affected by prostate cancer and may serve as an indicator of the disease. Stiffness measurements can be made with magnetic resonance elastography performed using a transurethral actuator to generate shear waves in the prostate gland. The goal of this study was to help determine the imaging requirements of transurethral magnetic resonance elastography and to evaluate whether the spatial and stiffness resolution of this technique overlapped with the requirements for prostate cancer detection. Through the use of prostate-mimicking gelatin phantoms, frequencies of at least 400 Hz were necessary to obtain accurate stiffness measurements of 10 mm diameter inclusions, but the detection of inclusions with diameters as small as 4.75 mm was possible at 200 Hz. The shear wave attenuation coefficient was measured in vivo in the canine prostate gland, and was used to predict the detectable penetration depth of shear waves in prostate tissue. These results suggested that frequencies below 200 Hz could propagate to the prostate boundary with a signal to noise ratio (SNR) of 60 and an actuator capable of producing 60 μm displacements. These requirements are achievable with current imaging and actuator technologies, and motivate further investigation of magnetic resonance elastography for the targeting of prostate cancer. Copyright © 2010 Wiley-Liss, Inc.

  20. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  1. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  2. Monitoring of monocyte recruitment in reperfused myocardial infarction with intramyocardial hemorrhage and microvascular obstruction by combined fluorine 19 and proton cardiac magnetic resonance imaging.

    PubMed

    Ye, Yu-Xiang; Basse-Lüsebrink, Thomas C; Arias-Loza, Paula-Anahi; Kocoski, Vladimir; Kampf, Thomas; Gan, Qiang; Bauer, Elisabeth; Sparka, Stefanie; Helluy, Xavier; Hu, Kai; Hiller, Karl-Heinz; Boivin-Jahns, Valerie; Jakob, Peter M; Jahns, Roland; Bauer, Wolfgang R

    2013-10-22

    Monocytes and macrophages are indispensable in the healing process after myocardial infarction (MI); however, the spatiotemporal distribution of monocyte infiltration and its correlation to prognostic indicators of reperfused MI have not been well described. With combined fluorine 19/proton ((1)H) magnetic resonance imaging, we noninvasively visualized the spatiotemporal recruitment of monocytes in vivo in a rat model of reperfused MI. Blood monocytes were labeled by intravenous injection of (19)F-perfluorocarbon emulsion 1 day after MI. The distribution patterns of monocyte infiltration were correlated to the presence of microvascular obstruction (MVO) and intramyocardial hemorrhage. In vivo, (19)F/(1)H magnetic resonance imaging performed in series revealed that monocyte infiltration was spatially inhomogeneous in reperfused MI areas. In the absence of MVO, monocyte infiltration was more intense in MI regions with serious ischemia-reperfusion injuries, indicated by severe intramyocardial hemorrhage; however, monocyte recruitment was significantly impaired in MVO areas accompanied by severe intramyocardial hemorrhage. Compared with MI with isolated intramyocardial hemorrhage, MI with MVO resulted in significantly worse pump function of the left ventricle 28 days after MI. Monocyte recruitment was inhomogeneous in reperfused MI tissue. It was highly reduced in MVO areas defined by magnetic resonance imaging. The impaired monocyte infiltration in MVO regions could be related to delayed healing and worse functional outcomes in the long term. Therefore, monocyte recruitment in MI with MVO could be a potential diagnostic and therapeutic target that could be monitored noninvasively and longitudinally by (19)F/(1)H magnetic resonance imaging in vivo.

  3. Magneto-impedance based detection of magnetically labeled cancer cells and bio-proteins

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Howell, M.; Mohapatra, S.; Nhung, T. H.; Mukherjee, P.; Srikanth, H.; Phan, M. H.

    2015-03-01

    A magnetic biosensor with enhanced sensitivity and immobilized magnetic markers is essential for a reliable analysis of the presence of a biological entity in a fluid. Based on conventional approaches, however, it is quite challenging to create such a sensor. We report on a novel magnetic biosensor using the magneto-impedance (MI) effect of a Co-based amorphous ribbon with a microhole-patterned surface that fulfils these requirements. The sensor probe was fabricated by patterning four microholes, each of diameter 2 μm and depth 2 μm, on the ribbon surface using FIB lithography. The magnetically labeled Luis Lung Carcinoma (LLC) cancer cells and Bovine serum albumin (BSA) proteins were drop-casted on the ribbon surface, and MI was measured over 0.1 - 10 MHz frequency range. As the analytes were trapped into the microholes, their physical motion was minimized and interaction among the magnetic fields was strengthened, thus yielding a more reliable and sensitive detection of the biological entities. The presence of magnetically labeled LLC cells (8.25x105 cells/ml, 10 μl) and BSA proteins (2x1011 particles/ml, 10 μl) were found to result in a ~ 2% change in MI with respect to the reference signal.

  4. Magnetic island and plasma rotation under external resonant magnetic perturbation in the T-10 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, L. G.; Ivanov, N. V., E-mail: ivanov-nv@nrcki.ru; Kakurin, A. M.

    2015-05-15

    Experimental comparison of the m = 2, n = 1 mode and plasma rotation velocities at q = 2 magnetic surface in a wide range of the mode amplitudes is presented. Phase velocity of the mode rotation is measured with a set of poloidal magnetic field sensors located at the inner side of the vacuum vessel wall. Plasma rotation velocity at the q = 2 magnetic surface in the direction of the mode phase velocity is measured with the heavy ion beam probe diagnostics. In the presence of a static Resonant Magnetic Perturbation (RMP), the rotation is irregular that appears as cyclical variations of the mode and plasmamore » instantaneous velocities. The period of these variations is equal to the period of the mode oscillations. In the case of high mode amplitude, the rotation irregularity of the mode is consistent with the rotation irregularity of the resonant plasma layer. On the contrary, the observed rise of the mode rotation irregularity in the case of low mode amplitude occurs without an increase of the rotation irregularity of the resonant plasma layer. The experimental results are simulated and analyzed with the TEAR code based on the two-fluid MHD approximation. Calculated irregularities of the mode and plasma rotation depend on the mode amplitude similar to the experimental data. For large islands, the rotation irregularity is attributed to oscillations of the electromagnetic torque applied to the resonant plasma layer. For small islands, the deviation of the mode rotation velocity from the plasma velocity occurs due to the effect of finite plasma resistivity.« less

  5. Magnetic resonance imaging for staging and treatment planning in cervical cancer.

    PubMed

    López-Carballeira, A; Baleato-González, S; García-Figueiras, R; Otero-Estévez, I; Villalba-Martín, C

    2016-01-01

    To review the key points that are essential for the correct staging of cervical cancer by magnetic resonance imaging. Magnetic resonance imaging is the method of choice for locoregional staging of cervical cancer. Thorough evaluation of prognostic factors such as tumor size, invasion of adjacent structures, and the presence of lymph node metastases is fundamental for planning appropriate treatment. Copyright © 2015 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Magnetoresistive DNA chips based on ac field focusing of magnetic labels

    NASA Astrophysics Data System (ADS)

    Ferreira, H. A.; Cardoso, F. A.; Ferreira, R.; Cardoso, S.; Freitas, P. P.

    2006-04-01

    A study was made on the sensitivity of a magnetoresistive DNA-chip platform being developed for cystic fibrosis diagnostics. The chip, comprised of an array of 2.5×80 μm2 U-shaped spin-valve sensors integrated within current line structures for magnetic label manipulation, enabled the detection at 30 Hz of 250 nm magnetic nanoparticles from 100 pM down to the pM range (or a target DNA concentration of 500 pM). It was observed that the sensor response increased linearly with label concentration. Noise spectra obtained for these sensors showed a thermal noise of 10-17 V2/Hz with a 1/f knee at 50 kHz at a 1 mA sense current, showing that lower detection limits are possible.

  7. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  8. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions.

    PubMed

    Zhu, Jian; Katine, J A; Rowlands, Graham E; Chen, Yu-Jin; Duan, Zheng; Alzate, Juan G; Upadhyaya, Pramey; Langer, Juergen; Amiri, Pedram Khalili; Wang, Kang L; Krivorotov, Ilya N

    2012-05-11

    We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.

  9. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    ERIC Educational Resources Information Center

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  10. Enhancement of integrated photonic biosensing by magnetic controlled nano-particles

    NASA Astrophysics Data System (ADS)

    Peserico, N.; Sharma, P. Pratim; Belloni, A.; Damin, F.; Chiari, M.; Bertacco, R.; Melloni, A.

    2018-02-01

    Integrated Mach-Zehnder interferometers, ring resonators, Bragg reflectors or simple waveguides are commonly used as photonic biosensing elements. They can be used for label-free detection relating the changes in the optical signal in realtime, as optical power or spectral response, to the presence and even the quantity of a target analyte on the surface of the photonic waveguide. The label-free method has advantages in term of sample preparation but it is more sensitive to spurious effects such as temperature and refractive index sample variation, biological noise, etc. Label methods can be more robust, more sensitive and able to manipulate the biological targets. In this work, we present an innovative labeled biosensing technique exploiting magnetic nano-beads for enhancement of sensitivity over integrated optic microrings. A sandwich binding is exploited to bring the magnetic labels close to the surface of the optical waveguide and interact with the optical evanescent field. The proximity and the quantity of the magnetic nano-beads are seen as a shift in the resonance of the microring. Detection of antibodies permits to reach a high level of sensitivity, down to 8 pM with a high confidence level. The sizes of the nano-beads are 50 to 250 nm. Furthermore, time-varying magnetic fields permit to manipulate the beads and even induce specific signals on the detected light to easy the processing and provide a reliable identification of the presence of the desired analyte. Multiple analytes detection is also possible.

  11. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T). Copyright 2002 Wiley-Liss, Inc.

  12. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  13. Magnetic resonance imaging of semicircular canals.

    PubMed Central

    Sbarbati, A; Leclercq, F; Zancanaro, C; Antonakis, K

    1992-01-01

    The present paper reports the results of the first investigation of the semicircular canals in a living, small animal by means of high spatial resolution magnetic resonance imaging. This procedure is noninvasive and allows identification of the endolymphatic and perilymphatic spaces yielding a morphology quite consistent with direct anatomical examination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1506290

  14. Comparison of magnetic resonance imaging and computed tomography in suspected lesions in the posterior cranial fossa.

    PubMed Central

    Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.

    1989-01-01

    OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the

  15. Beam induced electron cloud resonances in dipole magnetic fields

    DOE PAGES

    Calvey, J. R.; Hartung, W.; Makita, J.; ...

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. Thesemore » measurements are supported by both analytical models and computer simulations.« less

  16. Basic Principles of Magnetic Resonance Imaging—An Update

    PubMed Central

    Scherzinger, Ann L.; Hendee, William R.

    1985-01-01

    Magnetic resonance (MR) imaging technology has undergone many technologic advances over the past few years. Many of these advances were stimulated by the wealth of information emerging from nuclear magnetic resonance research in the areas of new and optimal scanning methods and radio-frequency coil design. Other changes arose from the desire to improve image quality, ease siting restrictions and generally facilitate the clinical use of MR equipment. Many questions, however, remain unanswered. Perhaps the most controversial technologic question involves the optimal field strength required for imaging or spectroscopic applications or both. Other issues include safety and clinical efficacy. Technologic issues affect all aspects of MR use including the choice of equipment, examination procedure and image interpretation. Thus, an understanding of recent changes and their theoretic basis is necessary. ImagesFigure 9. PMID:3911591

  17. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  18. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  19. Biotin-Streptavidin Binding Interactions of Dielectric Filled Silicon Bulk Acoustic Resonators for Smart Label-Free Biochemical Sensor Applications

    PubMed Central

    Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung

    2014-01-01

    Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests. PMID:24608003

  20. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  1. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  2. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Kumari, Shweta; Kuanr, Bijoy K.

    2018-05-01

    M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR) response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd) and samarium (Sm), with cobalt (Co) as base, doped hexaferrite nanoparticles (NPs). X-ray diffractometry, vibrating sample magnetometer (VSM), and ferromagnetic resonance (FMR) techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.

  3. Quantum speed limit time in a magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ivanchenko, E. A.

    2017-12-01

    A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.

  4. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  5. Magnetic resonance imaging-directed transperineal limited-mapping prostatic biopsies to diagnose prostate cancer: a Scottish experience.

    PubMed

    Mukherjee, Ankur; Morton, Simon; Fraser, Sioban; Salmond, Jonathan; Baxter, Grant; Leung, Hing Y

    2014-11-01

    Transperineal prostatic biopsy is firmly established as an important tool in the diagnosis of prostate cancer. The benefit of additional imaging (magnetic resonance imaging) to target biopsy remains to be fully addressed. Using a cohort of consecutive patients undergoing transperineal template mapping biopsies, we studied positive biopsies in the context of magnetic resonance imaging findings and examined the accuracy of magnetic resonance imaging in predicting the location of transperineal template mapping biopsies-detected prostate cancer. Forty-four patients (mean age: 65 years, range 53-78) underwent transperineal template mapping biopsies. Thirty-four patients had 1-2 and 10 patients had ≥3 previous transrectal ultrasound scan-guided biopsies. The mean prostate-specific antigen was 15 ng/mL (range 2.5-79 ng/mL). High-grade prostatic intraepithelial neoplasia was found in 12 (27%) patients and prostate cancer with Gleason <7, 7 and >7 in 13, 10 and 8 patients, respectively. Suspicious lesions on magnetic resonance imaging scans were scored from 1 to 5. In 28 patients, magnetic resonance imaging detected lesions with score ≥3. Magnetic resonance imaging correctly localised transperineal template mapping biopsies-detected prostate cancer in a hemi-gland approach, particularly in a right to left manner (79% positive prediction rate), but not in a quadrant approach (33% positive prediction rate). Our findings support the notion of magnetic resonance imaging-based selection of patients for transperineal template mapping biopsies and that lesions revealed by magnetic resonance imaging are likely useful for targeted biopsies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Vortices at the magnetic equator generated by hybrid Alfvén resonant waves

    NASA Astrophysics Data System (ADS)

    Hiraki, Yasutaka

    2015-01-01

    We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.

  7. Magnetic resonance imaging of tablet dissolution.

    PubMed

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Magnetic resonance angiography detection of abnormal carotid artery plaque in patients with cryptogenic stroke.

    PubMed

    Gupta, Ajay; Gialdini, Gino; Lerario, Michael P; Baradaran, Hediyeh; Giambrone, Ashley; Navi, Babak B; Marshall, Randolph S; Iadecola, Costantino; Kamel, Hooman

    2015-06-15

    Magnetic resonance imaging of carotid plaque can aid in stroke risk stratification in patients with carotid stenosis. However, the prevalence of complicated carotid plaque in patients with cryptogenic stroke is uncertain, especially as assessed by plaque imaging techniques routinely included in acute stroke magnetic resonance imaging protocols. We assessed whether the magnetic resonance angiography-defined presence of intraplaque high-intensity signal (IHIS), a marker of intraplaque hemorrhage, is associated with ipsilateral cryptogenic stroke. Cryptogenic stroke patients with magnetic resonance imaging evidence of unilateral anterior circulation infarction and without hemodynamically significant (≥50%) stenosis of the cervical carotid artery were identified from a prospective stroke registry at a tertiary-care hospital. High-risk plaque was assessed by evaluating for IHIS on routine magnetic resonance angiography source images using a validated technique. To compare the presence of IHIS on the ipsilateral versus contralateral side within individual patients, we used McNemar's test for correlated proportions. A total of 54 carotid arteries in 27 unique patients were included. A total of 6 patients (22.2%) had IHIS-positive nonstenosing carotid plaque ipsilateral to the side of ischemic stroke compared to 0 patients who had IHIS-positive carotid plaques contralateral to the side of stroke (P=0.01). Stroke severity measures, diagnostic evaluations, and prevalence of vascular risk factors were not different between the IHIS-positive and IHIS-negative groups. Our findings suggest that a proportion of strokes classified as cryptogenic may be mechanistically related to complicated, nonhemodynamically significant cervical carotid artery plaque that can easily be detected by routine magnetic resonance imaging/magnetic resonance angiography acute stroke protocols. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. [Surface coils for magnetic-resonance images].

    PubMed

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  10. Magnetic resonance in studies of glaucoma

    PubMed Central

    Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł

    2011-01-01

    Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626

  11. Carbon-Based Nanostructures as Advanced Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Ananta Narayanan, Jeyarama S.

    2011-12-01

    Superparamagnetic carbon-based nanostructures are presented as contrast agents (CAs) for advanced imaging applications such as cellular and molecular imaging using magnetic resonance imaging (MRI). Gadolinium-loaded, ultra-short single-walled carbon nanotubes (gadonanotubes; GNTs) are shown to have extremely high r1 relaxivities (contrast enhancement efficacy), especially at low-magnetic field strengths. The inherent lipophilicity of GNTs provides them the ability to image cells at low magnetic field strength. A carboxylated dextran-coated GNT (GadoDex) has been synthesized and proposed as a new biocompatible high-performance MRI CA. The r1 relaxivity is ca. 20 times greater than for other paramagnetic Gd-based CAs. This enhanced relaxivity for GadoDex is due to the synergistic effects of an increased molecular tumbling time (tauR) and a faster proton exchange rate (taum). GNTs also exhibit very large transverse relaxivities (r2) at high magnetic fields (≥ 3 T). The dependence of the transverse relaxation rates (especially R2*) of labeled cells on GNT concentration offers the possibility to quantify cell population in vivo using R2* mapping. The cell-labeling efficiency and high transverse relaxivities of GNTs has enabled the first non-iron oxide-based single-cell imaging using MRI. The residual metal catalyst particles of SWNT materials also have transverse relaxation properties. All of the SWNT materials exhibit superior transverse relaxation properties. However, purified SWNTs and US-tubes with less residual metal content exhibit better transverse relaxivities (r2), demonstrating the importance of the SWNT structure for enhanced MRI CA performance. A strategy to improve the r1 relaxivity of Gd-CAs by geometrically confining them within porous silicon particles (SiMPs) has been investigated. The enhancement in relaxivity is attributed to the slow diffusion of water molecules through the pores and the increase in the molecular tumbling time of the nanoconstruct

  12. Diagnosis of Nipple Discharge: Value of Magnetic Resonance Imaging and Ultrasonography in Comparison with Ductoscopy.

    PubMed

    Yılmaz, Ravza; Bender, Ömer; Çelik Yabul, Fatma; Dursun, Menduh; Tunacı, Mehtap; Acunas, Gülden

    2017-04-05

    Pathologic nipple discharge, which is a common reason for referral to the breast imaging service, refers to spontaneous or bloody nipple discharge that arises from a single duct. The most common cause of nipple discharge is benign breast lesions, such as solitary intraductal papilloma and papillomatosis. Nevertheless, in rare cases, a malignant cause of nipple discharge can be found. To study the diagnostic value of ultrasonography, magnetic resonance imaging, and ductoscopy in patients with pathologic nipple discharge, compare their efficacy, and investigate the importance of magnetic resonance imaging in the diagnosis of intraductal pathologies. Diagnostic accuracy study. Fifty patients with pathologic nipple discharge were evaluated by ultrasonography and magnetic resonance imaging. Of these, 44 ductoscopic investigations were made. The patients were classified according to magnetic resonance imaging, ultrasonography, and ductoscopy findings. A total of 25 patients, whose findings were reported as intraductal masses, underwent surgery oincluding endoscopic excision for two endoscopic excision. Findings were compared with the pathology results that were accepted as the gold standard in the description of the aetiology of nipple discharge. In addition, magnetic resonance imaging, ultrasonography and ductoscopy findings were analysed comparatively in patients who had no surgery. Intraductal masses were reported in 26 patients, 20 of whom operated and established accurate diagnosis of 18 patients on magnetic resonance imaging. According to the ultrasonography, intraductal masses were identified in 22 patients, 17 of whom underwent surgery. Ultrasonography established accurate diagnoses in 15 patients. Intraductal mass was identified in 22 patients and ductoscopy established accurate diagnoses based on histopathologic results in 16 patients. The sensitivities of methods were 75% in ultrasonography, 90% in magnetic resonance imaging, and 94.6% in ductoscopy. The

  13. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  14. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  15. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns

    PubMed Central

    Spencer, J.; Schwarzacher, W.

    2016-01-01

    ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved

  16. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns.

    PubMed

    Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M

    2016-06-15

    In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This

  17. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    PubMed

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  18. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging.

    PubMed

    Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong

    2016-09-15

    Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Magnetic Resonance Imaging to Visualize Disintegration of Oral Formulations.

    PubMed

    Curley, Louise; Hinton, Jordan; Marjoribanks, Cameron; Mirjalili, Ali; Kennedy, Julia; Svirskis, Darren

    2017-03-01

    This article demonstrates that magnetic resonance imaging can visualize the disintegration of a variety of paracetamol containing oral formulations in an in vitro setting and in vivo in the human stomach. The different formulations had unique disintegration profiles which could be imaged both in vitro and in vivo. No special formulation approaches or other contrast agents were required. These data demonstrate the potential for further use of magnetic resonance imaging to investigate and understand the disintegration behavior of different formulation types in vivo, and could potentially be used as a teaching tool in pharmaceutical and medical curricula. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Magnetic resonance imaging based functional imaging in paediatric oncology.

    PubMed

    Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C

    2017-02-01

    Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less

  2. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    PubMed

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  3. 36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source.

    PubMed

    Sun, L T; Zhao, H W; Zhang, Z M; Wang, H; Ma, B H; Zhang, X Z; Li, X X; Feng, Y C; Li, J Y; Guo, X H; Shang, Y; Zhao, H Y

    2007-05-01

    Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given.

  4. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  5. An Open-Label Exploratory Study with Memantine: Correlation between Proton Magnetic Resonance Spectroscopy and Cognition in Patients with Mild to Moderate Alzheimer's Disease

    PubMed Central

    Gordon, Marc L.; Kingsley, Peter B.; Goldberg, Terry E.; Koppel, Jeremy; Christen, Erica; Keehlisen, Lynda; Kohn, Nina; Davies, Peter

    2012-01-01

    Aim To characterize progression of Alzheimer's disease (AD) using proton magnetic resonance spectroscopy (1H MRS). Methods Eleven subjects with mild to moderate AD underwent neurocognitive testing and single-voxel 1H MRS from the precuneus and posterior cingulate region at baseline, after 24 weeks of monotherapy with a cholinesterase inhibitor, and after another 24 weeks of combination therapy with open-label memantine and a cholinesterase inhibitor. Baseline metabolites [N-acetylaspartate (NAA), myo-inositol (mI), choline (Cho), and creatine (Cr)] and their ratios in AD subjects were compared with those of an age-matched control group of 28 cognitively normal subjects. Results AD subjects had significantly higher mI/Cr and lower NAA, NAA/Cr, NAA/Cho, and NAA/mI. Baseline Alzheimer's Disease Cooperative Study Activities of Daily Living (ADCS-ADL) scores significantly correlated with NAA/Cr, mI/Cr, and NAA/mI. There was an increase in mI and a decrease in NAA/mI, but no significant change in other metabolites or ratios, or neurocognitive measures, when memantine was added to a cholinesterase inhibitor. Conclusion Metabolite ratios significantly differed between AD and control subjects. Baseline metabolite ratios correlated with function (ADCS-ADL). There was an increase in mI and a decrease in NAA/mI, but no changes in other metabolites, ratios, or cognitive measures, when memantine was added to a cholinesterase inhibitor. PMID:22962555

  6. Magnetic resonance imaging in children presenting migraine with aura: Association of hypoperfusion detected by arterial spin labelling and vasospasm on MR angiography findings.

    PubMed

    Cadiot, Domitille; Longuet, Romain; Bruneau, Bertrand; Treguier, Catherine; Carsin-Vu, Aline; Corouge, Isabelle; Gomes, Constantin; Proisy, Maïa

    2018-04-01

    Objective A child presenting with a first attack of migraine with aura usually undergoes magnetic resonance imaging (MRI) to rule out stroke. The purpose of this study was to report vascular and brain perfusion findings in children suffering from migraine with aura on time-of-flight MR angiography (TOF-MRA) and MR perfusion imaging using arterial spin labelling (ASL). Methods We retrospectively included all children who had undergone an emergency MRI examination with ASL and TOF-MRA sequences for acute neurological deficit and were given a final diagnosis of migraine with aura. The ASL perfusion maps and TOF-MRA images were independently assessed by reviewers blinded to clinical data. A mean cerebral blood flow (CBF) value was obtained for each cerebral lobe after automatic data post-processing. Results Seventeen children were finally included. Hypoperfusion was identified in one or more cerebral lobes on ASL perfusion maps by visual assessment in 16/17 (94%) children. Vasospasm was noted within the intracranial vasculature on the TOF-MRA images in 12/17 (71%) children. All (100%) of the abnormal TOF-MRA images were associated with homolateral hypoperfusion. Mean CBF values were significantly lower ( P < 0.05) in visually hypoperfused lobes than in normally perfused lobes. Conclusion ASL and TOF-MRA are two totally non-invasive, easy-to-use MRI sequences for children in emergency settings. Hypoperfusion associated with homolateral vasospasm may suggest a diagnosis of migraine with aura.

  7. Resonance-Based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sushruth, Manu; Ding, Junjia; Duczynski, Jeremy; Woodward, Robert C.; Begley, Ryan A.; Fangohr, Hans; Fuller, Rebecca O.; Adeyeye, Adekunle O.; Kostylev, Mikhail; Metaxas, Peter J.

    2016-10-01

    Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to a device's (quasi-)static magnetic configuration. There are however potential advantages to be gained from using field dependent, high frequency resonant magnetization dynamics for magnetic particle detection. Here, we demonstrate the use of nanoconfined ferromagnetic resonances in periodically nanopatterned magnetic films for the detection of adsorbed magnetic particles having diameters ranging from 6 nm to 4 μ m . The nanopatterned films contain arrays of holes which appear to act as preferential adsorption sites for small particles. Hole-localized particles act in unison to shift the frequencies of the patterned layer's ferromagnetic-resonance modes, with shift polarities determined by the localization of each mode within the nanopattern's repeating unit cell. The same polarity shifts are observed for a large range of coverages, even when quasicontinuous particle sheets form above the hole-localized particles. For large particles, preferential adsorption no longer occurs, leading to resonance shifts with polarities that are independent of the mode localization, and amplitudes that are comparable to those seen in continuous layers. Indeed, for nanoparticles adsorbed onto a continuous layer, the particle-induced shift of the layer's fundamental mode is up to 10 times less than that observed for nanoconfined modes in the nanopatterned systems, the low shift being induced by relatively weak fields emanating beyond the particle in the direction of the static applied field. This result highlights the importance of having particles consistently positioned in the close vicinity of confined modes.

  8. Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled Cardiosphere-Derived Cells in Myocardial Infarction

    PubMed Central

    Cheng, Ke; Li, Tao-Sheng; Malliaras, Konstantinos; Davis, Darryl; Zhang, Yiqiang; Marbán, Eduardo

    2010-01-01

    Rationale The success of cardiac stem cell therapies is limited by low cell retention, due at least in part to washout via coronary veins. Objective We sought to counter the efflux of transplanted cells by rendering them magnetically-responsive and imposing an external magnetic field on the heart during and immediately after injection. Methods and Results Cardiosphere-derived cells (CDCs) were labeled with superparamagnetic microspheres (SPMs). In vitro studies revealed that cell viability and function were minimally affected by SPM labeling. SPM-labeled rat CDCs were injected intramyocardially, with and without a superimposed magnet. With magnetic targeting, cells were visibly attracted towards the magnet and accumulated around the ischemic zone. In contrast, the majority of non-targeted cells washed out immediately after injection. Fluorescence imaging revealed more retention of transplanted cells in the heart, and less migration into other organs, in the magnetically-targeted group. Quantitative PCR confirmed that magnetic targeting enhanced cell retention (at 24 hours) and engraftment (at 3 weeks) in the recipient hearts by ∼3-fold compared to non-targeted cells. Morphometric analysis revealed maximal attenuation of LV remodeling, and echocardiography showed the greatest functional improvement, in the magnetic targeting group. Histologically, more engrafted cells were evident with magnetic targeting, but there was no incremental inflammation. Conclusion Magnetic targeting enhances cell retention, engraftment and functional benefit. This novel method to improve cell therapy outcomes offers the potential for rapid translation into clinical applications. PMID:20378859

  9. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  10. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  11. Neurilemmoma of the glans penis: ultrasonography and magnetic resonance imaging findings.

    PubMed

    Jung, Dae Chul; Hwang, Sung Il; Jung, Sung Il; Kim, Sun Ho; Kim, Seung Hyup

    2006-01-01

    Neurilemmoma of the glans penis is rare, and no imaging findings have been reported. A case of neurilemmoma of the glans penis is presented. Ultrasonography (US) and magnetic resonance imaging revealed a well-defined small mass in the glans penis. The mass appeared hypoechoic on gray-scale US and hypervascular on color Doppler US. Magnetic resonance imaging revealed high signal intensity of the mass on a T2-weighted image and strong enhancement on a contrast-enhanced T1-weighted image.

  12. Measurement of temperature changes in cooling dead rats using magnetic resonance thermometry.

    PubMed

    Kuribayashi, Hideto; Cui, Fanlai; Hirakawa, Keiko; Kanawaku, Yoshimasa; Ohno, Youkichi

    2011-11-01

    Magnetic resonance imaging thermometry has been introduced as a technique for measurement of temperature changes in cooling dead rats. Rat pelvic magnetic resonance images were acquired sequentially more than 2h after euthanasia by halothane overdose. A series of temperature difference maps in cooling dead rats was obtained with calculating imaging phase changes induced by the water proton frequency shift caused by temperature changes. Different cooling processes were monitored by the temperature difference maps in the rats. Magnetic resonance imaging thermometry applied in the study of laboratory animals could theoretically reproduce a variety of causes of death with different environmental conditions. Outcomes from experimental animal studies could be translated into a temperature-based time of death estimation in forensics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Magnetic resonance force microscopy with a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  14. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  15. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  16. A Rare Complication of Cochlear Implantation After Magnetic Resonance Imaging: Reversion of the Magnet.

    PubMed

    Öztürk, Erkan; Doruk, Can; Orhan, Kadir Serkan; Çelik, Mehmet; Polat, Beldan; Güldiken, Yahya

    2017-06-01

    Cochlear implants are mechanical devices used for patients with severe sensory-neural hearing loss, which has an inner magnet. It is proven that 1.5 Tesla magnetic resonance imaging (MRI) scanners are safe to use in patients with cochlear implant. In our patient, the authors aim to introduce a rare complication caused after a 1.5 Tesla MRI scanning and the management of this situation; the reversion of the magnet of the implant without displacement and significance of surgery in management.

  17. Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Youssef, Jamal Ben; Brosseau, Christian

    2006-12-01

    The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface

  18. A variable torque motor compatible with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Roeck, W. W.; Ha, S.-H.; Farmaka, S.; Nalcioglu, O.

    2009-04-01

    High magnetic fields used in magnetic resonance imaging (MRI) do not allow the employment of conventional motors due to various incompatibility issues. This paper reports on a new motor that can operate in or near high field magnets used for MRI. The motor was designed to be operational with the MRI equipment and could be used in a rotating imaging gantry inside the magnet designed for dual modality imaging. Furthermore, it could also be used for image guided robotic interventional procedures inside a MRI system if so desired. The prototype motor was developed using magnetic resonance (MR) compatible materials, and its functionality with MR imaging was evaluated experimentally by measuring the performance of the motor and its effect on the MR image quality. Since in our application, namely, single photon emission tomography, the motor has to perform precise stepping of the gantry in small angular steps the most important parameter is the start-up torque. The experimental results showed that the motor has a start-up torque up to 1.37 Nm and rotates at 196 rpm when a constant voltage difference of 12 V is applied at a magnetic field strength of 1 T. The MR image quality was quantified by measuring the signal-to-noise of images acquired under different conditions. The results presented here indicate that the motor is MR compatible and could be used for rotating an imaging gantry or a surgical device inside the magnet.

  19. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets.

    PubMed

    Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Suh, Sunghwan; Bae, Ji Cheol; Lee, Jung Hee; Lee, Myung-Shik; Lee, Moon-Kyu; Kim, Kwang-Won; Kim, Jae Hyeon

    2014-01-01

    While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P < 0.05) and the number of hypointense spots larger than 1.758 mm(2) (P < 0.05) were higher in the PEGylated islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.

  20. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  1. Magnetic Resonance Imaging of the Lung as an Alternative for a Pregnant Woman with Pulmonary Tuberculosis.

    PubMed

    Schloß, Manuel; Heckrodt, Jan; Schneider, Christian; Discher, Thomas; Krombach, Gabriele Anja

    2015-05-01

    We report a case of a pregnant 21-year-old woman with pulmonary tuberculosis in which magnetic resonance imaging of the lung was used to assess the extent and characteristics of the pathological changes. Although the lung has been mostly ignored in magnetic resonance imaging for many decades, today technical development enables detailed examinations of the lung. The technique is now entering the clinical arena and its indications are increasing. Magnetic resonance imaging of the lung is not only an alternative method without radiation exposure, it can provide additional information in pulmonary imaging compared to other modalities including computed tomography. We describe a successful application of magnetic resonance imaging of the lung and the imaging appearance of post-primary tuberculosis. This case report indicates that magnetic resonance imaging of the lung can potentially be the first choice imaging technique in pregnant women with suspected pulmonary tuberculosis.

  2. Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: current state of the art and novel approaches.

    PubMed

    Postal, M; Lapa, A Tamires; Reis, F; Rittner, L; Appenzeller, S

    2017-04-01

    Systemic lupus erythematosus is a chronic, inflammatory, immune-mediated disease affecting 0.1% of the general population. Neuropsychiatric manifestations in systemic lupus erythematosus have been more frequently recognized and reported in recent years, occurring in up to 75% of patients during the disease course. Magnetic resonance imaging is known to be a useful tool for the detection of structural brain abnormalities in neuropsychiatric systemic lupus erythematosus patients because of the excellent soft-tissue contrast observed with MRI and the ability to acquire multiplanar images. In addition to conventional magnetic resonance imaging techniques to evaluate the presence of atrophy and white matter lesions, several different magnetic resonance imaging techniques have been used to identify microstructural or functional abnormalities. This review will highlight different magnetic resonance imaging techniques, including the advanced magnetic resonance imaging methods used to determine central nervous system involvement in systemic lupus erythematosus.

  3. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  4. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  5. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.

    PubMed

    Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang

    2010-04-21

    A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.

  6. Prospective heart tracking for whole-heart magnetic resonance angiography.

    PubMed

    Moghari, Mehdi H; Geva, Tal; Powell, Andrew J

    2017-02-01

    To develop a prospective respiratory-gating technique (Heart-NAV) for use with contrast-enhanced three-dimensional (3D) inversion recovery (IR) whole-heart magnetic resonance angiography (MRA) acquisitions that directly tracks heart motion without creating image inflow artifact. With Heart-NAV, one of the startup pulses for the whole-heart steady-state free precession MRA sequence is used to collect the centerline of k-space, and its one-dimensional reconstruction is fed into the standard diaphragm-navigator (NAV) signal analysis process to prospectively gate and track respiratory-induced heart displacement. Ten healthy volunteers underwent non-contrast whole-heart MRA acquisitions using the conventional diaphragm-NAV and Heart-NAV with 5 and 10-mm acceptance windows in a 1.5T scanner. Five patients underwent contrast-enhanced IR whole-heart MRA using a diaphragm-NAV and Heart-NAV with a 5-mm acceptance window. For non-contrast whole-heart MRA with both the 5 and 10-mm acceptance windows, Heart-NAV yielded coronary artery vessel sharpness and subjective visual scores that were not significantly different than those using a conventional diaphragm-NAV. Scan time for Heart-NAV was 10% shorter (p < 0.05). In patients undergoing contrast-enhanced IR whole-heart MRA, inflow artifact was seen with the diaphragm-NAV but not with Heart-NAV. Compared with a conventional diaphragm-NAV, Heart-NAV achieves similar image quality in a slightly shorter scan time and eliminates inflow artifact. Magn Reson Med 77:759-765, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    PubMed

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer.

    PubMed

    Baco, Eduard; Rud, Erik; Vlatkovic, Ljiljana; Svindland, Aud; Eggesbø, Heidi B; Hung, Andrew J; Matsugasumi, Toru; Bernhard, Jean-Christophe; Gill, Inderbir S; Ukimura, Osamu

    2015-02-01

    Tumor contact length is defined as the amount of prostate cancer in contact with the prostatic capsule. We evaluated the ability of magnetic resonance imaging determined tumor contact length to predict microscopic extracapsular extension compared to existing predictors of extracapsular extension. We retrospectively analyzed the records of 111 consecutive patients with magnetic resonance imaging/ultrasound fusion targeted, biopsy proven prostate cancer who underwent radical prostatectomy from January 2010 to July 2013. Median patient age was 64 years and median prostate specific antigen was 8.9 ng/ml. Clinical stage was cT1 in 93 cases (84%) and cT2 in 18 (16%). Postoperative pathological analysis confirmed pT2 in 71 patients (64%) and pT3 in 40 (36%). We evaluated 1) in the radical prostatectomy specimen the correlation of microscopic extracapsular extension with pathological cancer volume, pathological tumor contact length and Gleason score, 2) the correlation between microscopic extracapsular extension and magnetic resonance imaging tumor contact length, and 3) the ability of preoperative variables to predict microscopic extracapsular extension. Logistic regression analysis revealed that pathological tumor contact length correlated better with microscopic extracapsular extension than the predictive power of pathological cancer volume (0.821 vs 0.685). The Spearman correlation between pathological and magnetic resonance imaging tumor contact length was r = 0.839 (p <0.0001). ROC AUC analysis revealed that magnetic resonance imaging tumor contact length outperformed cancer core involvement on targeted biopsy and the Partin tables to predict microscopic extracapsular extension (0.88 vs 0.70 and 0.63, respectively). At a magnetic resonance imaging tumor contact length threshold of 20 mm the accuracy for diagnosing microscopic extracapsular extension was superior to that of conventional magnetic resonance imaging criteria (82% vs 67%, p = 0.015). We developed a

  9. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  10. Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking.

    PubMed

    Flexman, J A; Minoshima, S; Kim, Y; Cross, D J

    2006-01-01

    Neural stem cell therapy for neurological pathologies, such as Alzheimer's and Parkinson's disease, may delay the onset of symptoms, replace damaged neurons and/or support the survival of endogenous cells. Magnetic resonance imaging (MRI) can be used to track magnetically labeled cells in vivo to observe migration. Prior to transplantation, labeled cells must be characterized to show that they retain their intrinsic properties, such as cell proliferation into neurospheres in a supplemented environment. In vivo images must also be correlated to sensitive, histological markers. In this study, we show that fetus-derived neural stem cells can be co-labeled with superparamagnetic iron oxide and PKH26, a fluorescent dye. Labeled cells retain the ability to proliferate into neurospheres in culture, but labeling prevents neurospheres from merging in a non-adherent culture environment. After labeled NSCs were transplantation into the rat brain, their location and subsequent migration along the corpus callosum was detected using MRI. This study demonstrates an imaging paradigm with which to develop an in vivo assay for quantitatively evaluating fetal neural stem cell migration.

  11. Proton magnetic resonance spectroscopy for assessment of human body composition.

    PubMed

    Kamba, M; Kimura, K; Koda, M; Ogawa, T

    2001-02-01

    The usefulness of magnetic resonance spectroscopy (MRS)-based techniques for assessment of human body composition has not been established. We compared a proton MRS-based technique with the total body water (TBW) method to determine the usefulness of the former technique for assessment of human body composition. Proton magnetic resonance spectra of the chest to abdomen, abdomen to pelvis, and pelvis to thigh regions were obtained from 16 volunteers by using single, free induction decay measurement with a clinical magnetic resonance system operating at 1.5 T. The MRS-derived metabolite ratio was determined as the ratio of fat methyl and methylene proton resonance to water proton resonance. The peak areas for the chest to abdomen and the pelvis to thigh regions were normalized to an external reference (approximately 2200 g benzene) and a weighted average of the MRS-derived metabolite ratios for the 2 positions was calculated. TBW for each subject was determined by the deuterium oxide dilution technique. The MRS-derived metabolite ratios were significantly correlated with the ratio of body fat to lean body mass estimated by TBW. The MRS-derived metabolite ratio for the abdomen to pelvis region correlated best with the ratio of body fat to lean body mass on simple regression analyses (r = 0.918). The MRS-derived metabolite ratio for the abdomen to pelvis region and that for the pelvis to thigh region were selected for a multivariate regression model (R = 0.947, adjusted R(2) = 0.881). This MRS-based technique is sufficiently accurate for assessment of human body composition.

  12. The predictive value of magnetic resonance imaging of retinoblastoma for the likelihood of high-risk pathologic features.

    PubMed

    Hiasat, Jamila G; Saleh, Alaa; Al-Hussaini, Maysa; Al Nawaiseh, Ibrahim; Mehyar, Mustafa; Qandeel, Monther; Mohammad, Mona; Deebajah, Rasha; Sultan, Iyad; Jaradat, Imad; Mansour, Asem; Yousef, Yacoub A

    2018-06-01

    To evaluate the predictive value of magnetic resonance imaging in retinoblastoma for the likelihood of high-risk pathologic features. A retrospective study of 64 eyes enucleated from 60 retinoblastoma patients. Contrast-enhanced magnetic resonance imaging was performed before enucleation. Main outcome measures included demographics, laterality, accuracy, sensitivity, and specificity of magnetic resonance imaging in detecting high-risk pathologic features. Optic nerve invasion and choroidal invasion were seen microscopically in 34 (53%) and 28 (44%) eyes, respectively, while they were detected in magnetic resonance imaging in 22 (34%) and 15 (23%) eyes, respectively. The accuracy of magnetic resonance imaging in detecting prelaminar invasion was 77% (sensitivity 89%, specificity 98%), 56% for laminar invasion (sensitivity 27%, specificity 94%), 84% for postlaminar invasion (sensitivity 42%, specificity 98%), and 100% for optic cut edge invasion (sensitivity100%, specificity 100%). The accuracy of magnetic resonance imaging in detecting focal choroidal invasion was 48% (sensitivity 33%, specificity 97%), and 84% for massive choroidal invasion (sensitivity 53%, specificity 98%), and the accuracy in detecting extrascleral extension was 96% (sensitivity 67%, specificity 98%). Magnetic resonance imaging should not be the only method to stratify patients at high risk from those who are not, eventhough it can predict with high accuracy extensive postlaminar optic nerve invasion, massive choroidal invasion, and extrascleral tumor extension.

  13. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment.

    PubMed

    Bjurlin, Marc A; Meng, Xiaosong; Le Nobin, Julien; Wysock, James S; Lepor, Herbert; Rosenkrantz, Andrew B; Taneja, Samir S

    2014-09-01

    Optimization of prostate biopsy requires addressing the shortcomings of standard systematic transrectal ultrasound guided biopsy, including false-negative rates, incorrect risk stratification, detection of clinically insignificant disease and the need for repeat biopsy. Magnetic resonance imaging is an evolving noninvasive imaging modality that increases the accurate localization of prostate cancer at the time of biopsy, and thereby enhances clinical risk assessment and improves the ability to appropriately counsel patients regarding therapy. In this review we 1) summarize the various sequences that comprise a prostate multiparametric magnetic resonance imaging examination along with its performance characteristics in cancer detection, localization and reporting standards; 2) evaluate potential applications of magnetic resonance imaging targeting in prostate biopsy among men with no previous biopsy, a negative previous biopsy and those with low stage cancer; and 3) describe the techniques of magnetic resonance imaging targeted biopsy and comparative study outcomes. A bibliographic search covering the period up to October 2013 was conducted using MEDLINE®/PubMed®. Articles were reviewed and categorized based on which of the 3 objectives of this review was addressed. Data were extracted, analyzed and summarized. Multiparametric magnetic resonance imaging consists of anatomical T2-weighted imaging coupled with at least 2 functional imaging techniques. It has demonstrated improved prostate cancer detection sensitivity up to 80% in the peripheral zone and 81% in the transition zone. A prostate cancer magnetic resonance imaging suspicion score has been developed, and is depicted using the Likert or PI-RADS (Prostate Imaging Reporting and Data System) scale for better standardization of magnetic resonance imaging interpretation and reporting. Among men with no previous biopsy, magnetic resonance imaging increases the frequency of significant cancer detection to 50

  14. Assessment of mitral regurgitation in dogs: comparison of results of echocardiography with magnetic resonance imaging.

    PubMed

    Sargent, J; Connolly, D J; Watts, V; Mõtsküla, P; Volk, H A; Lamb, C R; Fuentes, V Luis

    2015-11-01

    Echocardiography is used routinely to assess mitral regurgitation severity, but echocardiographic measures of mitral regurgitation in dogs have not been compared with other quantitative methods. The study aim was to compare echocardiographic measures of mitral regurgitation with cardiac magnetic resonance imaging-derived mitral regurgitant fraction in small-breed dogs. Dogs with myxomatous mitral valve disease scheduled for magnetic resonance imaging assessment of neurological disease were recruited. Correlations were tested between cardiac magnetic resonance imaging-derived mitral regurgitant fraction and the following echocardiographic measures: vena contracta/aortic diameter, transmitral E-wave velocity, amplitude of mitral prolapse/aortic diameter, diastolic left ventricular diameter:aortic diameter, left atrium:aortic diameter, mitral regurgitation jet area ratio and regurgitant fraction calculated using the proximal isovelocity surface area method. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction was attempted in 21 dogs. Twelve consecutive, complete studies were obtained and 10 dogs were included in the final analysis: vena contracta/aortic diameter (r = 0 · 89, p = 0 · 001) and E-wave velocity (r = 0 · 86, p = 0 · 001) had the strongest correlations with cardiac magnetic resonance imaging-derived mitral regurgitant fraction. E velocity had superior repeatability and could be measured in all dogs. The presence of multiple jets precluded vena contracta/aortic diameter measurement in one dog. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction is feasible but technically demanding. The echocardiographic measures that correlated most closely with cardiac magnetic resonance imaging-derived mitral regurgitant fraction were vena contracta/aortic diameter and E-wave velocity. © 2015 British Small Animal Veterinary Association.

  15. Nanohybrids with Magnetic and Persistent Luminescence Properties for Cell Labeling, Tracking, In Vivo Real-Time Imaging, and Magnetic Vectorization.

    PubMed

    Teston, Eliott; Maldiney, Thomas; Marangon, Iris; Volatron, Jeanne; Lalatonne, Yoann; Motte, Laurence; Boisson-Vidal, Catherine; Autret, Gwennhael; Clément, Olivier; Scherman, Daniel; Gazeau, Florence; Richard, Cyrille

    2018-04-01

    Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator.

    PubMed

    Secoli, Riccardo; Robinson, Matthew; Brugnoli, Michele; Rodriguez y Baena, Ferdinando

    2015-03-01

    To perform minimally invasive surgical interventions with the aid of robotic systems within a magnetic resonance imaging scanner offers significant advantages compared to conventional surgery. However, despite the numerous exciting potential applications of this technology, the introduction of magnetic resonance imaging-compatible robotics has been hampered by safety, reliability and cost concerns: the robots should not be attracted by the strong magnetic field of the scanner and should operate reliably in the field without causing distortion to the scan data. Development of non-conventional sensors and/or actuators is thus required to meet these strict operational and safety requirements. These demands commonly result in expensive actuators, which mean that cost effectiveness remains a major challenge for such robotic systems. This work presents a low-cost, high-field-strength magnetic resonance imaging-compatible actuator: a pneumatic stepper motor which is controllable in open loop or closed loop, along with a rotary encoder, both fully manufactured in plastic, which are shown to perform reliably via a set of in vitro trials while generating negligible artifacts when imaged within a standard clinical scanner. © IMechE 2015.

  17. New presentation method for magnetic resonance angiography images based on skeletonization

    NASA Astrophysics Data System (ADS)

    Nystroem, Ingela; Smedby, Orjan

    2000-04-01

    Magnetic resonance angiography (MRA) images are usually presented as maximum intensity projections (MIP), and the choice of viewing direction is then critical for the detection of stenoses. We propose a presentation method that uses skeletonization and distance transformations, which visualizes variations in vessel width independent of viewing direction. In the skeletonization, the object is reduced to a surface skeleton and further to a curve skeleton. The skeletal voxels are labeled with their distance to the original background. For the curve skeleton, the distance values correspond to the minimum radius of the object at that point, i.e., half the minimum diameter of the blood vessel at that level. The following image processing steps are performed: resampling to cubic voxels, segmentation of the blood vessels, skeletonization ,and reverse distance transformation on the curve skeleton. The reconstructed vessels may be visualized with any projection method. Preliminary results are shown. They indicate that locations of possible stenoses may be identified by presenting the vessels as a structure with the minimum radius at each point.

  18. Computerized tomography versus magnetic resonance imaging: a comparative study in hypothalamic-pituitary and parasellar pathology.

    PubMed

    Webb, S M; Ruscalleda, J; Schwarzstein, D; Calaf-Alsina, J; Rovira, A; Matos, G; Puig-Domingo, M; de Leiva, A

    1992-05-01

    We wished to analyse the relative value of computerized tomography and magnetic resonance in patients referred for evaluation of pituitary and parasellar lesions. We performed a separate evaluation by two independent neuroradiologists of computerized tomography and magnetic resonance images ordered numerically and anonymously, with no clinical data available. We studied 40 patients submitted for hypothalamic-pituitary study; 31 were carried out preoperatively, of which histological confirmation later became available in 14. The remaining nine patients were evaluated postoperatively. Over 40 parameters relating to the bony margins, cavernous sinuses, carotid arteries, optic chiasm, suprasellar cisterns, pituitary, pituitary stalk and extension of the lesion were evaluated. These reports were compared with the initial ones offered when the scans were ordered, and with the final diagnosis. Concordance between initial computerized tomography and magnetic resonance was observed in 27 cases (67.5%); among the discordant cases computerized tomography showed the lesion in two, magnetic resonance in 10, while in the remaining case reported to harbour a microadenoma on computerized tomography the differential diagnosis between a true TSH-secreting microadenoma and pituitary resistance to thyroid hormones is still unclear. Both neuroradiologists coincided in their reports in 32 patients (80%); when the initial report was compared with those of the neuroradiologists, concordance was observed with at least one of them in 34 instances (85%). Discordant results were observed principally in microadenomas secreting ACTH or PRL and in delayed puberty. In the eight patients with Cushing's disease (histologically confirmed in six) magnetic resonance was positive in five and computerized tomography in two; the abnormal image correctly identified the side of the lesion at surgery. In patients referred for evaluation of Cushing's syndrome or hyperprolactinaemia (due to microadenomas) or

  19. [Possibilities of a software-based hybrid single photon emission computed tomography/magnetic resonance imaging in the diagnosis of complicated diabetic foot syndrome].

    PubMed

    Zavadovskaya, V D; Zorkal'tsev, M A; Udodov, V D; Zamyshevskaya, M A; Kilina, O Yu; Kurazhov, A P; Popov, K M

    2015-01-01

    To give the results of a software-based hybrid single photon emission computed tomography/magnetic resonance imaging (SPECT/MRI) in detecting osteomyelitis (OM) in patients with diabetic foot syndrome (DFS). Seventy-six patients (35 men and 41 women) (mean age, 59.4 +/- 7.1 years) with type 1 and 2 diabetes mellitus and suspected OM were examined. The investigation enrolled patients with neuropathic (n = 25), ischemic (n = 13), and mixed (n = 38) DFS. All the patients underwent (99m)Tc-HMPAO/ (99m)Tc-technefit labeled leukocyte scintigraphy; magnetic resonance imaging was performed in 30 patients. The results were combined using RView 9.06 software (Colin Studholme). Labeled leukocyte SPECT to Diagnose OM yielded 255 true positive (TP), 38 true negative (TN), 12 false negative (FP), and 1 false negative (FN) results. The accuracy of the technique was 82.9%. The FP results were due to the low resolution of the technique and to the small sizes of the object under study. One FN result was detected in a patient with ischemic DFS because of reduced blood flow. MRI to identify OM in patients with DFS provided 20 TP, 16 TN, 4 FP, and 2 FN results. Its diagnostic accuracy was 85.7%. The relative low specificity of MRI was associated with the presence of FP results due to the complexity of differential diagnosis of bone marrow edema and inflammatory infiltration. Assessing 42 hybrid SPECT/MR-images revealed 21 TP, 17 TN, 3 FP, and I FN results. The diagnostic accuracy was equal to 95.9%. Thus, comparing MRI (90.9% sensitivity and 80.0% specificity), labeled leukocyte scintigraphy (96.2% sensitivity and 76.0% specificity), and hybrid SPECT/MRI (95.5% sensitivity and 85.0% specificity) showed the high diagnostic efficiency of the latter.

  20. Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging.

    PubMed

    Slowik, T J; Green, B L; Thorvilson, H G

    1997-01-01

    Red imported fire ant (Solenopsis invicta) workers, queens, and alates were analyzed by magnetic resonance imaging (MRI) for the presence of natural magnetism. Images of ants showed distortion patterns similar to those of honey bees and monarch butterflies, both of which possess ferromagnetic material. The bipolar ring patterns of MRI indicated the presence in fire ants of small amounts of internal magnetic material, which may be used in orientation behaviors, as in the honey bees.

  1. [Magnetic resonance imaging of brain tumors].

    PubMed

    Prayer, Daniela; Brugger, P C

    2002-01-01

    Investigating intracranial tumors, different MR-related methods permit not only morphological visualization of lesions but also give insights into their metabolism, resulting in information about the biological qualities of the respective tumor. Magnetic resonance protocols are selected based on the type and timing of onset of clinical signs. Combined information from imaging studies and spectroscopy facilitates the differential diagnosis between blastomatous and non-blastomatous lesions before and after therapy.

  2. Breast cancer cells synchronous labeling and separation based on aptamer and fluorescence-magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun

    2018-01-01

    In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.

  3. AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.

    PubMed

    Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S

    2017-09-01

    Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Accessible magnetic resonance imaging.

    PubMed

    Kaufman, L; Arakawa, M; Hale, J; Rothschild, P; Carlson, J; Hake, K; Kramer, D; Lu, W; Van Heteren, J

    1989-10-01

    The cost of magnetic resonance imaging (MRI) is driven by magnetic field strength. Misperceptions as to the impact of field strength on performance have led to systems that are more expensive than they need to be. Careful analysis of all the factors that affect diagnostic quality lead to the conclusion that field strength per se is not a strong determinant of system performance. Freed from the constraints imposed by high-field operation, it is possible to exploit a varied set of opportunities afforded by low-field operation. In addition to lower costs and easier siting, we can take advantage of shortened T1 times, higher contrast, reduced sensitivity to motion, and reduced radiofrequency power deposition. These conceptual advantages can be made to coalesce onto practical imaging systems. We describe a low-cost MRI system that utilizes a permanent magnet of open design. Careful optimization of receiving antennas and acquisition sequences permit performance levels consistent with those needed for an effective diagnostic unit. Ancillary advantages include easy access to the patient, reduced claustrophobia, quiet and comfortable operation, and absence of a missile effect. The system can be sited in 350 sq ft and consumes a modest amount of electricity. MRI equipment of this kind can widen the population base than can access this powerful and beneficial diagnostic modality.

  5. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  6. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  7. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-opticalmore » rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.« less

  8. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging.

    PubMed

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-12-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  9. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  10. Task-oriented lossy compression of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  11. Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging.

    PubMed

    Zhu, Haitao; Demachi, Kazuyuki; Sekino, Masaki

    2011-09-01

    Positive contrast imaging methods produce enhanced signal at large magnetic field gradient in magnetic resonance imaging. Several postprocessing algorithms, such as susceptibility gradient mapping and phase gradient mapping methods, have been applied for positive contrast generation to detect the cells targeted by superparamagnetic iron oxide nanoparticles. In the phase gradient mapping methods, smoothness condition has to be satisfied to keep the phase gradient unwrapped. Moreover, there has been no discussion about the truncation artifact associated with the algorithm of differentiation that is performed in k-space by the multiplication with frequency value. In this work, phase gradient methods are discussed by considering the wrapping problem when the smoothness condition is not satisfied. A region-growing unwrapping algorithm is used in the phase gradient image to solve the problem. In order to reduce the truncation artifact, a cosine function is multiplied in the k-space to eliminate the abrupt change at the boundaries. Simulation, phantom and in vivo experimental results demonstrate that the modified phase gradient mapping methods may produce improved positive contrast effects by reducing truncation or wrapping artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  13. Measurement of skeletal muscle perfusion dynamics with pseudo-continuous arterial spin labeling (pCASL): Assessment of relative labeling efficiency at rest and during hyperemia, and comparison to pulsed arterial spin labeling (PASL).

    PubMed

    Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2016-10-01

    To compare calf skeletal muscle perfusion measured with pulsed arterial spin labeling (PASL) and pseudo-continuous arterial spin labeling (pCASL) methods, and to assess the variability of pCASL labeling efficiency in the popliteal artery throughout an ischemia-reperfusion paradigm. At 3T, relative pCASL labeling efficiency was experimentally assessed in five subjects by measuring the signal intensity of blood in the popliteal artery just distal to the labeling plane immediately following pCASL labeling or control preparation pulses, or without any preparation pulses throughout separate ischemia-reperfusion paradigms. The relative label and control efficiencies were determined during baseline, hyperemia, and recovery. In a separate cohort of 10 subjects, pCASL and PASL sequences were used to measure reactive hyperemia perfusion dynamics. Calculated pCASL labeling and control efficiencies did not differ significantly between baseline and hyperemia or between hyperemia and recovery periods. Relative to the average baseline, pCASL label efficiency was 2 ± 9% lower during hyperemia. Perfusion dynamics measured with pCASL and PASL did not differ significantly (P > 0.05). Average leg muscle peak perfusion was 47 ± 20 mL/min/100g or 50 ± 12 mL/min/100g, and time to peak perfusion was 25 ± 3 seconds and 25 ± 7 seconds from pCASL and PASL data, respectively. Differences of further metrics parameterizing the perfusion time course were not significant between pCASL and PASL measurements (P > 0.05). No change in pCASL labeling efficiency was detected despite the almost 10-fold increase in average blood flow velocity in the popliteal artery. pCASL and PASL provide precise and consistent measurement of skeletal muscle reactive hyperemia perfusion dynamics. J. MAGN. RESON. IMAGING 2016;44:929-939. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Magnetic resonance-guided prostate interventions.

    PubMed

    Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C

    2005-10-01

    We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement.

  15. A combined confocal and magnetic resonance microscope for biological studies

    NASA Astrophysics Data System (ADS)

    Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Holtom, Gary R.; Hopkins, Derek F.; Parkinson, Christopher I.; Weber, Thomas J.; Wind, Robert A.

    2002-12-01

    Complementary data acquired with different microscopy techniques provide a basis for establishing a more comprehensive understanding of cell function in health and disease, particularly when results acquired with different methodologies can be correlated in time and space. In this article, a novel microscope is described for studying live cells simultaneously with both confocal scanning laser fluorescence optical microscopy and magnetic resonance microscopy. The various design considerations necessary for integrating these two complementary techniques are discussed, the layout and specifications of the instrument are given, and examples of confocal and magnetic resonance images of large frog cells and model tumor spheroids obtained with the compound microscope are presented.

  16. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  17. Magnetic Resonance Imaging of Liver Metastasis.

    PubMed

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less

  19. Probing dynamics of micro-magnets with multi-mode superconducting resonator

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Shchetinin, I. V.; Dzhumaev, P. S.; Averkin, A. S.; Kozlov, S. N.; Golubov, A. A.; Ryazanov, V. V.; Ustinov, A. V.

    2018-05-01

    In this work, we propose and explore a sensitive technique for investigation of ferromagnetic resonance and corresponding magnetic properties of individual micro-scaled and/or weak ferromagnetic samples. The technique is based on coupling the investigated sample to a high-Q transmission line superconducting resonator, where the response of the sample is studied at eigen frequencies of the resonator. The high quality factor of the resonator enables sensitive detection of weak absorption losses at multiple frequencies of the ferromagnetic resonance. Studying the microwave response of individual micro-scaled permalloy rectangles, we have confirmed the superiority of fluxometric demagnetizing factor over the commonly accepted magnetometric one and have depicted the demagnetization of the sample, as well as magnetostatic standing wave resonance.

  20. Midbrain and spinal cord magnetic resonance imaging (MRI) changes in poliomyelitis.

    PubMed

    Choudhary, Anita; Sharma, Suvasini; Sankhyan, Naveen; Gulati, Sheffali; Kalra, Veena; Banerjee, Bidisha; Kumar, Atin

    2010-04-01

    Poliomyelitis, though eradicated from most parts of the world, continues to occur in India. There is paucity of data on the magnetic resonance imaging (MRI) changes in poliomyelitis. We report a 3(1/2)-year-old boy who presented with subacute onset flaccid paralysis and altered sensorium. Stool culture was positive for wild polio virus type 3. Magnetic resonance imaging revealed signal changes in bilateral substantia nigra and anterior horns of the spinal cord. These MRI changes may be of potential diagnostic significance in a child with poliomyelitis.

  1. Fluorochrome-functionalized magnetic nanoparticles for high-sensitivity monitoring of the polymerase chain reaction by magnetic resonance.

    PubMed

    Alcantara, David; Guo, Yanyan; Yuan, Hushan; Goergen, Craig J; Chen, Howard H; Cho, Hoonsung; Sosnovik, David E; Josephson, Lee

    2012-07-09

    Easy to find: magnetic nanoparticles bearing fluorochromes (red) that intercalate with DNA (green) form microaggregates with DNA generated by the polymerase chain reaction (PCR). These aggregates can be detected at low cycle numbers by magnetic resonance (MR). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Focal Laser Ablation of Prostate Cancer: Feasibility of Magnetic Resonance Imaging-Ultrasound Fusion for Guidance.

    PubMed

    Natarajan, Shyam; Jones, Tonye A; Priester, Alan M; Geoghegan, Rory; Lieu, Patricia; Delfin, Merdie; Felker, Ely; Margolis, Daniel J A; Sisk, Anthony; Pantuck, Allan; Grundfest, Warren; Marks, Leonard S

    2017-10-01

    Focal laser ablation is a potential treatment in some men with prostate cancer. Currently focal laser ablation is performed by radiologists in a magnetic resonance imaging unit (in bore). We evaluated the safety and feasibility of performing focal laser ablation in a urology clinic (out of bore) using magnetic resonance imaging-ultrasound fusion for guidance. A total of 11 men with intermediate risk prostate cancer were enrolled in this prospective, institutional review board approved pilot study. Magnetic resonance imaging-ultrasound fusion was used to guide laser fibers transrectally into regions of interest harboring intermediate risk prostate cancer. Thermal probes were inserted for real-time monitoring of intraprostatic temperatures during laser activation. Multiparametric magnetic resonance imaging (3 Tesla) was done immediately after treatment and at 6 months along with comprehensive fusion biopsy. Ten of 11 patients were successfully treated while under local anesthesia. Mean procedure time was 95 minutes (range 71 to 105). Posttreatment magnetic resonance imaging revealed a confined zone of nonperfusion in all 10 men. Mean zone volume was 4.3 cc (range 2.1 to 6.0). No CTCAE grade 3 or greater adverse events developed and no changes were observed in urinary or sexual function. At 6 months magnetic resonance imaging-ultrasound fusion biopsy of the treatment site showed no cancer in 3 patients, microfocal Gleason 3 + 3 in another 3 and persistent intermediate risk prostate cancer in 4. Focal laser ablation of prostate cancer appears safe and feasible with the patient under local anesthesia in a urology clinic using magnetic resonance imaging-ultrasound fusion for guidance and thermal probes for monitoring. Further development is necessary to refine out of bore focal laser ablation and additional studies are needed to determine appropriate treatment margins and oncologic efficacy. Copyright © 2017 American Urological Association Education and Research, Inc

  3. Fabrication of Magnetic Barcoded Microcarriers for Biomolecular Labeling: SU-8 Encapsulated Magnetic Tags

    NASA Astrophysics Data System (ADS)

    Palfreyman, Justin J.; Beldon, Patrick; Hong, Bingyan; Vyas, Kunal N.; Cooper, Joshaniel F. K.; Mitrelias, Thanos; Barnes, Crispin H. W.

    2010-12-01

    Rows of rectangular magnetic elements with different aspect ratio are encapsulated in polymer microcarriers to form a novel magnetic label, or tag, for multiplexed biological and chemical assays. We demonstrate that each tag can be encoded using an external magnetic field applied to the whole tag, which will allow for in-flow writing, thanks to shape-anisotropy controlled coercivity of the individual bits. This paper focuses on the fabrication of our 2nd generation tags, which facilitate optical trapping, do not require a sacrificial release layer, and the alignment procedure has been simplified to a single step. A new procedure is described for recovering a functional surface from fully cross-linked SU-8 via a cerium (IV) ammonium nitrate based chemical etch, and a novel method for releasing patterned photoresist from a bare Si wafer is discussed. In addition, a series of homobifunctional amine spacer compounds are compared as a method of increasing the binding efficiency of surface probe molecules.

  4. Breast Volume Measurement by Recycling the Data Obtained From 2 Routine Modalities, Mammography and Magnetic Resonance Imaging.

    PubMed

    Itsukage, Shizu; Sowa, Yoshihiro; Goto, Mariko; Taguchi, Tetsuya; Numajiri, Toshiaki

    2017-01-01

    Objective: Preoperative prediction of breast volume is important in the planning of breast reconstructive surgery. In this study, we prospectively estimated the accuracy of measurement of breast volume using data from 2 routine modalities, mammography and magnetic resonance imaging, by comparison with volumes of mastectomy specimens. Methods: The subjects were 22 patients (24 breasts) who were scheduled to undergo total mastectomy for breast cancer. Preoperatively, magnetic resonance imaging volume measurement was performed using a medical imaging system and the mammographic volume was calculated using a previously proposed formula. Volumes of mastectomy specimens were measured intraoperatively using a method based on Archimedes' principle and Newton's third law. Results: The average breast volumes measured on magnetic resonance imaging and mammography were 318.47 ± 199.4 mL and 325.26 ± 217.36 mL, respectively. The correlation coefficients with mastectomy specimen volumes were 0.982 for magnetic resonance imaging and 0.911 for mammography. Conclusions: Breast volume measurement using magnetic resonance imaging was highly accurate but requires data analysis software. In contrast, breast volume measurement with mammography requires only a simple formula and is sufficiently accurate, although the accuracy was lower than that obtained with magnetic resonance imaging. These results indicate that mammography could be an alternative modality for breast volume measurement as a substitute for magnetic resonance imaging.

  5. Breast Volume Measurement by Recycling the Data Obtained From 2 Routine Modalities, Mammography and Magnetic Resonance Imaging

    PubMed Central

    Itsukage, Shizu; Goto, Mariko; Taguchi, Tetsuya; Numajiri, Toshiaki

    2017-01-01

    Objective: Preoperative prediction of breast volume is important in the planning of breast reconstructive surgery. In this study, we prospectively estimated the accuracy of measurement of breast volume using data from 2 routine modalities, mammography and magnetic resonance imaging, by comparison with volumes of mastectomy specimens. Methods: The subjects were 22 patients (24 breasts) who were scheduled to undergo total mastectomy for breast cancer. Preoperatively, magnetic resonance imaging volume measurement was performed using a medical imaging system and the mammographic volume was calculated using a previously proposed formula. Volumes of mastectomy specimens were measured intraoperatively using a method based on Archimedes’ principle and Newton's third law. Results: The average breast volumes measured on magnetic resonance imaging and mammography were 318.47 ± 199.4 mL and 325.26 ± 217.36 mL, respectively. The correlation coefficients with mastectomy specimen volumes were 0.982 for magnetic resonance imaging and 0.911 for mammography. Conclusions: Breast volume measurement using magnetic resonance imaging was highly accurate but requires data analysis software. In contrast, breast volume measurement with mammography requires only a simple formula and is sufficiently accurate, although the accuracy was lower than that obtained with magnetic resonance imaging. These results indicate that mammography could be an alternative modality for breast volume measurement as a substitute for magnetic resonance imaging. PMID:29308107

  6. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  7. Circular Samples as Objects for Magnetic Resonance Imaging - Mathematical Simulation, Experimental Results

    NASA Astrophysics Data System (ADS)

    Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš

    2015-12-01

    Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.

  8. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study.

    PubMed

    Silva, Guilherme; Citterio, Alberto

    2017-10-01

    Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.

  9. Ultra-fast stem cell labelling using cationised magnetoferritin

    NASA Astrophysics Data System (ADS)

    Correia Carreira, S.; Armstrong, J. P. K.; Seddon, A. M.; Perriman, A. W.; Hartley-Davies, R.; Schwarzacher, W.

    2016-03-01

    Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised magnetoferritin did not adversely affect the membrane integrity, proliferation and multi-lineage differentiation capacity of hMSCs, which provides the first detailed evidence for the biocompatibility of magnetoferritin. The combination of synthetic ease and flexibility, the rapidity of labelling and absence of cytotoxicity make this novel nanoparticle system an easily accessible and versatile platform for a range of cell-based therapies in regenerative medicine.Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised

  10. Cardiac magnetic resonance in myocardial disease.

    PubMed

    Sechtem, U; Mahrholdt, H; Vogelsberg, H

    2007-12-01

    For a number of patients it is difficult to diagnose the cause of cardiac disease. In such patients cardiac magnetic resonance is useful for helping to make a differential diagnosis between ischaemic and dilated cardiomyopathy; identifying patients with myocarditis; diagnosing cardiac involvement in sarcoidosis and Chagas' disease; identifying patients with unusual forms of hypertrophic cardiomyopathy and those with continuing myocardial damage; and defining the sequelae of ablation treatment for hypertrophic obstructive cardiomyopathy.

  11. A silicon dioxide modified magnetic nanoparticles-labeled lateral flow strips for HBs antigen.

    PubMed

    Zhang, Xueqing; Jiang, Lin; Zhang, Chunlei; Li, Ding; Wang, Can; Gao, Feng; Cui, Daxiang

    2011-12-01

    Herein we reported a new type of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for detection of HBs antigen in sera. The SiO2 wrapped Fe3O4 nanocomposites were prepared and characterized by HR-TEM, FTIR and magnetometer. As-prepared nanocomposites were used to label anti-HBV surface monoclonal antibody, the lateral flow strips were constructed, and 100 specimens of sera were collected and tested. Results showed that the prepared SiO2 wrapped Fe3O4 nanocomposites were shell/core structure, well dispersed, with the size of 25 nm in diameter, the thickness of the shell was about 3 nm, their magnetic saturation intensity was 44.3 meu g(-1). Clinical sera specimens test results showed that the prepared lateral flow strips were with the detection limitation of 5 pg/mL by naked eye observation, and 0.1 pg/mL by CCD reader or MAR Analyzer, specificity was 100%. In conclusion, one kind of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for ultrasensitive detection of HBs antigen was successfully developed, its ease of use, sensitiveness and low-cost make it well-suited for population-based on-the-site hepatitis B screening.

  12. Magnetically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Davis, J. Kenneth; Thundat, Thomas G.; Wachter, Eric A.

    2001-01-01

    Methods and apparatus for detecting particular frequencies of vibration utilize a magnetically-tunable beam element having a stress-sensitive coating and means for providing magnetic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the magnetically-tunable beam element to the vibration to which the beam is exposed whether or not a particular frequency or frequencies of vibration are detected.

  13. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Stursa, J.; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesladek, M.

    2017-01-01

    The core issue for the implementation of NV center qubit technology is a sensitive readout of the NV spin state. We present here a detailed theoretical and experimental study of NV center photoionization processes, used as a basis for the design of a dual-beam photoelectric method for the detection of NV magnetic resonances (PDMR). This scheme, based on NV one-photon ionization, is significantly more efficient than the previously reported single-beam excitation scheme. We demonstrate this technique on small ensembles of ˜10 shallow NVs implanted in electronic grade diamond (a relevant material for quantum technology), on which we achieve a cw magnetic resonance contrast of 9%—three times enhanced compared to previous work. The dual-beam PDMR scheme allows independent control of the photoionization rate and spin magnetic resonance contrast. Under a similar excitation, we obtain a significantly higher photocurrent, and thus an improved signal-to-noise ratio, compared to single-beam PDMR. Finally, this scheme is predicted to enhance magnetic resonance contrast in the case of samples with a high proportion of substitutional nitrogen defects, and could therefore enable the photoelectric readout of single NV spins.

  14. Label-Free Biological and Chemical Sensing Using Whispering Gallery Mode Optical Resonators: Past, Present, and Future

    PubMed Central

    Su, Judith

    2017-01-01

    Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed. PMID:28282881

  15. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  16. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  17. Ferromagnetic resonance and magnetic properties of ALHA 81005

    NASA Technical Reports Server (NTRS)

    Morris, R. V.

    1983-01-01

    Seven chips of primarily matrix material from the Antarctic meteorite ALHA 81005 were analyzed by ferromagnetic resonance (FMR) and magnetic hysteresis techniques. The FMR spectra of two chips have a resonance at g of about 2.1 that resembles the g of about 2.1 resonance that is characteristic of lunar soils. Thus the FMR spectra are consistent with the lunar regolith being a progenitor for the matrix material. For the two chips, the FMR surface exposure (maturity) index was about 5 units, which is equivalent to a value for an immature lunar soil. The total concentration of metallic iron is on the order of 0.11 equivalent wt. pct, which is within the observed range for Apollo 16 rocks and soils.

  18. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  19. Magnetic Fano resonances by design in symmetry broken THz meta-foils

    PubMed Central

    Wu, Jianfeng; Moser, Herbert O.; Li, Rujiang; Yang, Yihao; Jing, Liqiao; Chen, Hongsheng; Breese, Mark B. H.

    2017-01-01

    Magnetic Fano resonances in there-dimensional symmetry broken meta-foils at THz frequencies are theoretically and experimentally studied. Sharp Fano resonances occur due to the interference between different resonances and can be designed by choosing geometric parameters of the meta-foil. At the Fano resonances, the meta-foil supports antisymmetric modes, whereas, at the main resonance, only a symmetric mode exists. The meta-foil is left-handed at the Fano resonances and shows sharp peaks of the real part of the refractive index in transmission with small effective losses opening a way to very sensitive high-speed sensing of dielectric changes in the surrounding media and of mechanical configuration. PMID:28150797

  20. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    PubMed

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  1. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging.

    PubMed

    Toth, Gerda B; Varallyay, Csanad G; Horvath, Andrea; Bashir, Mustafa R; Choyke, Peter L; Daldrup-Link, Heike E; Dosa, Edit; Finn, John Paul; Gahramanov, Seymur; Harisinghani, Mukesh; Macdougall, Iain; Neuwelt, Alexander; Vasanawala, Shreyas S; Ambady, Prakash; Barajas, Ramon; Cetas, Justin S; Ciporen, Jeremy; DeLoughery, Thomas J; Doolittle, Nancy D; Fu, Rongwei; Grinstead, John; Guimaraes, Alexander R; Hamilton, Bronwyn E; Li, Xin; McConnell, Heather L; Muldoon, Leslie L; Nesbit, Gary; Netto, Joao P; Petterson, David; Rooney, William D; Schwartz, Daniel; Szidonya, Laszlo; Neuwelt, Edward A

    2017-07-01

    Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material. Published by Elsevier Inc.

  2. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu

    2018-04-01

    We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

  3. Comparison of conventional 2D ultrasound to magnetic resonance imaging for prenatal estimation of birthweight in twin pregnancy.

    PubMed

    Kadji, Caroline; Bevilacqua, Elisa; Hurtado, Ivan; Carlin, Andrew; Cannie, Mieke M; Jani, Jacques C

    2018-01-01

    During prenatal follow-up of twin pregnancies, accurate identification of birthweight and birthweight discordance is important to identify the high-risk group and plan perinatal care. Unfortunately, prenatal evaluation of birthweight discordance by 2-dimensional ultrasound has been far from optimal. The objective of the study was to prospectively compare estimates of fetal weight based on 2-dimensional ultrasound (ultrasound-estimated fetal weight) and magnetic resonance imaging (magnetic resonance-estimated fetal weight) with actual birthweight in women carrying twin pregnancies. Written informed consent was obtained for this ethics committee-approved study. Between September 2011 and December 2015 and within 48 hours before delivery, ultrasound-estimated fetal weight and magnetic resonance-estimated fetal weight were conducted in 66 fetuses deriving from twin pregnancies at 34.3-39.0 weeks; gestation. Magnetic resonance-estimated fetal weight derived from manual measurement of fetal body volume. Comparison of magnetic resonance-estimated fetal weight and ultrasound-estimated fetal weight measurements vs birthweight was performed by calculating parameters as described by Bland and Altman. Receiver-operating characteristic curves were constructed for the prediction of small-for-gestational-age neonates using magnetic resonance-estimated fetal weight and ultrasound-estimated fetal weight. For twins 1 and 2 separately, the relative error or percentage error was calculated as follows: (birthweight - ultrasound-estimated fetal weight (or magnetic resonance-estimated fetal weight)/birthweight) × 100 (percentage). Furthermore, ultrasound-estimated fetal weight, magnetic resonance-estimated fetal weight, and birthweight discordance were calculated as 100 × (larger estimated fetal weight-smaller estimated fetal weight)/larger estimated fetal weight. The ultrasound-estimated fetal weight discordance and the birthweight discordance were correlated using linear regression

  4. Ezetimibe for the Treatment of Nonalcoholic Steatohepatitis: Assessment by Novel Magnetic Resonance Imaging and Magnetic Resonance Elastography in a Randomized Trial (MOZART Trial)

    PubMed Central

    Loomba, Rohit; Sirlin, Claude B; Ang, Brandon; Bettencourt, Ricki; Jain, Rashmi; Salotti, Joanie; Soaft, Linda; Hooker, Jonathan; Kono, Yuko; Bhatt, Archana; Hernandez, Laura; Nguyen, Phirum; Noureddin, Mazen; Haufe, William; Hooker, Catherine; Yin, Meng; Ehman, Richard; Lin, Grace Y; Valasek, Mark A; Brenner, David A; Richards, Lisa

    2015-01-01

    Ezetimibe inhibits intestinal cholesterol absorption and lowers low-density lipoprotein cholesterol. Uncontrolled studies have suggested that it reduces liver fat as estimated by ultrasound in nonalcoholic steatohepatitis (NASH). Therefore, we aimed to examine the efficacy of ezetimibe versus placebo in reducing liver fat by the magnetic resonance imaging-derived proton density-fat fraction (MRI-PDFF) and liver histology in patients with biopsy-proven NASH. In this randomized, double-blind, placebo-controlled trial, 50 patients with biopsy-proven NASH were randomized to either ezetimibe 10 mg orally daily or placebo for 24 weeks. The primary outcome was a change in liver fat as measured by MRI-PDFF in colocalized regions of interest within each of the nine liver segments. Novel assessment by two-dimensional and three-dimensional magnetic resonance elastography was also performed. Ezetimibe was not significantly better than placebo at reducing liver fat as measured by MRI-PDFF (mean difference between the ezetimibe and placebo arms -1.3%, P = 0.4). Compared to baseline, however, end-of-treatment MRI-PDFF was significantly lower in the ezetimibe arm (15%-11.6%, P < 0.016) but not in the placebo arm (18.5%-16.4%, P = 0.15). There were no significant differences in histologic response rates, serum alanine aminotransferase and aspartate aminotransferase levels, or longitudinal changes in two-dimensional and three-dimensional magnetic resonance elastography-derived liver stiffness between the ezetimibe and placebo arms. Compared to histologic nonresponders (25/35), histologic responders (10/35) had a significantly greater reduction in MRI-PDFF (-4.35 ± 4.9% versus -0.30 ± 4.1%, P < 0.019). Conclusions: Ezetimibe did not significantly reduce liver fat in NASH. This trial demonstrates the application of colocalization of MRI-PDFF-derived fat maps and magnetic resonance elastography-derived stiffness maps of the liver before and after treatment to noninvasively assess

  5. Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics

    NASA Astrophysics Data System (ADS)

    Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen

    2017-05-01

    In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.

  6. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments

    NASA Astrophysics Data System (ADS)

    Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.

    2013-09-01

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 μm diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

  7. Magnetic resonance imaging in the evaluation of sports injuries of the foot and ankle: a pictorial essay.

    PubMed

    Riley, Geoffrey M

    2007-01-01

    Magnetic resonance imaging is playing an increasingly important role in evaluation of the injured athlete's foot and ankle. Magnetic resonance imaging allows accurate detection of bony abnormalities, such as stress fractures, and soft-tissue abnormalities, including ligament tears, tendon tears, and tendinopathy. The interpreter of magnetic resonance images should systematically review the images, noting normal structures and accounting for changes in soft-tissue and bony signal.

  8. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    PubMed

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  9. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule

    NASA Astrophysics Data System (ADS)

    Teeling-Smith, Richelle M.; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A.; Šimon, Marek; Bhallamudi, Vidya P.; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

    2016-05-01

    A key limitation of electron paramagnetic resonance (EPR), an established and powerful tool for studying atomic-scale biomolecular structure and dynamics is its poor sensitivity, samples containing in excess of 10^12 labeled biomolecules are required in typical experiments. In contrast, single molecule measurements provide improved insights into heterogeneous behaviors that can be masked by ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. We report EPR measurements of a single labeled biomolecule that merge these two powerful techniques. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy (NV) centers, and optically detect the paramagnetic resonance of NV spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic time scale for reorientation of the nanodiamond probe is slow compared to the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond labeled DNA provides the foundation for the development of single molecule magnetic resonance studies of complex biomolecular systems.

  10. High-contrast grating resonators for label-free detection of disease biomarkers

    PubMed Central

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-01-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI. PMID:27265624

  11. High-contrast grating resonators for label-free detection of disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-06-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI.

  12. Effect of ECRH and resonant magnetic fields on formation of magnetic islands in the T-10 tokamak plasma

    NASA Astrophysics Data System (ADS)

    Shestakov, E. A.; Savrukhin, P. V.

    2017-10-01

    Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.

  13. Osteochondral transplantation of the talus: long-term clinical and magnetic resonance imaging evaluation.

    PubMed

    Imhoff, Andreas B; Paul, Jochen; Ottinger, Benjamin; Wörtler, Klaus; Lämmle, Lena; Spang, Jeffrey; Hinterwimmer, Stefan

    2011-07-01

    Osteochondral lesions of the ankle are a common injury after ankle sprains, especially in young and active patients. The Osteochondral Autograft Transfer System (OATS) is the only 1-step surgical technique designed to replace the entire osteochondral unit. This study was conducted to evaluate the long-term clinical and radiographic outcomes of the OATS procedure for the talus and compare the results of patients who have had prior surgical interventions with patients for whom OATS represents the primary surgical treatment. Case series; Level of evidence, 4. The authors retrospectively analyzed 26 talus OATS procedures (25 patients) with an average follow-up of 84 months (range, 53-124 months); 9 patients had OATS as a second surgical intervention. The patients completed the American Orthopaedic Foot & Ankle Society (AOFAS) and Tegner scores plus the visual analog scale (VAS) preoperatively and at follow-up. Magnetic resonance imaging examinations were conducted on a 1.5-T whole-body magnet that assessed transplant congruency, adjacent surface of the talus, the corresponding distal tibia, and joint effusion. The authors found significant increases for the AOFAS score (50 to 78 points, P < .01) and the Tegner score (3.1 to 3.7, P < .05) and a significant decrease for the VAS (7.8 to 1.5, P < .01) from preoperative to postoperative. Patients with normal integration or minor incongruity of the transplant on magnetic resonance imaging (81%) had significantly better AOFAS scores (P = .03). Other magnetic resonance imaging criteria did not predict clinical results. Patients for whom OATS represented a second procedure had significantly worse clinical AOFAS and Tegner scores plus a higher VAS. Long-term clinical and magnetic resonance imaging results after osteochondral transplantation are good and patients significantly benefit from this surgery. Magnetic resonance imaging should not be a routine control but appears to be indicated when clinical symptoms persist after

  14. Stereoelectroencephalography Using Magnetic Resonance Angiography for Avascular Trajectory Planning: Technical Report.

    PubMed

    Minkin, Krasimir; Gabrovski, Kaloyan; Penkov, Marin; Todorov, Yuri; Tanova, Rositsa; Milenova, Yoana; Romansky, Kiril; Dimova, Petia

    2017-10-01

    Stereoelectroencephalography (SEEG) requires high-quality angiographic studies because avascular trajectory planning is a prerequisite for the safety of this procedure. Some epilepsy surgery groups have begun to use computed tomography angiography and magnetic resonance T1-weighted sequence with contrast enhancement for this purpose. To present the first series of patients with avascular trajectory planning of SEEG based on magnetic resonance angiography (MRA). Thirty-six SEEG explorations for drug-resistant focal epilepsy were performed from January 2013 to December 2015. A retrospective analysis of this consecutive surgical series was then performed. Magnetic resonance imaging included MRA with a modified contrast-enhanced magnetic resonance venography (MRV) protocol with a short acquisition delay, which allowed simultaneous arterial and venous visualization. Our criteria for satisfactory MRA were the visualization of at least first-order branches of the angular artery, paracentral and calcarine artery, and third-order tributaries of the superficial Sylvian vein, vein of Labbe, and vein of Trolard. Thirty-four patients underwent 36 SEEG explorations with 369 electrodes carrying 4321 contacts. Contrast-enhanced MRA using the MRV protocol was judged satisfactory for SEEG planning in all explorations. Postoperative complications were not observed in our series of 36 SEEG explorations, which included 50 transopercular insular trajectories. MRA using an MRV protocol may be applied for avascular trajectory planning during SEEG procedures. This technique provides a simultaneous visualization of cortical arteries and veins without the need for additional radiation exposure or intra-arterial catheter placement. Copyright © 2017 by the Congress of Neurological Surgeons

  15. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system

    PubMed Central

    Akki, Ashwin; Gupta, Ashish

    2013-01-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease. PMID:23292717

  16. Fast magnetic resonance imaging based on high degree total variation

    NASA Astrophysics Data System (ADS)

    Wang, Sujie; Lu, Liangliang; Zheng, Junbao; Jiang, Mingfeng

    2018-04-01

    In order to eliminating the artifacts and "staircase effect" of total variation in Compressive Sensing MRI, high degree total variation model is proposed for dynamic MRI reconstruction. the high degree total variation regularization term is used as a constraint to reconstruct the magnetic resonance image, and the iterative weighted MM algorithm is proposed to solve the convex optimization problem of the reconstructed MR image model, In addtion, one set of cardiac magnetic resonance data is used to verify the proposed algorithm for MRI. The results show that the high degree total variation method has a better reconstruction effect than the total variation and the total generalized variation, which can obtain higher reconstruction SNR and better structural similarity.

  17. Magnetic resonance imaging of spinal infection.

    PubMed

    Tins, Bernhard J; Cassar-Pullicino, Victor N; Lalam, Radhesh K

    2007-06-01

    This article reviews the pathophysiology of spinal infection and its relevance for imaging. Magnetic resonance imaging (MRI) is the modality with by far the best sensitivity and specificity for spinal infection. The imaging appearances of spinal infection in MRI are outlined, and imaging techniques are discussed. The problems of clinical diagnosis are outlined. There is some emphasis on the MRI differentiation of pyogenic and nonpyogenic infection and on the differential diagnosis of spinal infection centered on the imaging presentation.

  18. Clinical implications of a multiparametric magnetic resonance imaging based nomogram applied to prostate cancer active surveillance.

    PubMed

    Siddiqui, M Minhaj; Truong, Hong; Rais-Bahrami, Soroush; Stamatakis, Lambros; Logan, Jennifer; Walton-Diaz, Annerleim; Turkbey, Baris; Choyke, Peter L; Wood, Bradford J; Simon, Richard M; Pinto, Peter A

    2015-06-01

    Multiparametric magnetic resonance imaging may be beneficial in the search for rational ways to decrease prostate cancer intervention in patients on active surveillance. We applied a previously generated nomogram based on multiparametric magnetic resonance imaging to predict active surveillance eligibility based on repeat biopsy outcomes. We reviewed the records of 85 patients who met active surveillance criteria at study entry based on initial biopsy and who then underwent 3.0 Tesla multiparametric magnetic resonance imaging with subsequent magnetic resonance imaging/ultrasound fusion guided prostate biopsy between 2007 and 2012. We assessed the accuracy of a previously published nomogram in patients on active surveillance before confirmatory biopsy. For each cutoff we determined the number of biopsies avoided (ie reliance on magnetic resonance imaging alone without rebiopsy) over the full range of nomogram cutoffs. We assessed the performance of the multiparametric magnetic resonance imaging active surveillance nomogram based on a decision to perform biopsy at various nomogram generated probabilities. Based on cutoff probabilities of 19% to 32% on the nomogram the number of patients who could be spared repeat biopsy was 27% to 68% of the active surveillance cohort. The sensitivity of the test in this interval was 97% to 71% and negative predictive value was 91% to 81%. Multiparametric magnetic resonance imaging based nomograms may reasonably decrease the number of repeat biopsies in patients on active surveillance by as much as 68%. Analysis over the full range of nomogram generated probabilities allows patient and caregiver preference based decision making on the risk assumed for the benefit of fewer repeat biopsies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Comparative Effectiveness of Targeted Prostate Biopsy Using Magnetic Resonance Imaging Ultrasound Fusion Software and Visual Targeting: a Prospective Study.

    PubMed

    Lee, Daniel J; Recabal, Pedro; Sjoberg, Daniel D; Thong, Alan; Lee, Justin K; Eastham, James A; Scardino, Peter T; Vargas, Hebert Alberto; Coleman, Jonathan; Ehdaie, Behfar

    2016-09-01

    We compared the diagnostic outcomes of magnetic resonance-ultrasound fusion and visually targeted biopsy for targeting regions of interest on prostate multiparametric magnetic resonance imaging. Patients presenting for prostate biopsy with regions of interest on multiparametric magnetic resonance imaging underwent magnetic resonance imaging targeted biopsy. For each region of interest 2 visually targeted cores were obtained, followed by 2 cores using a magnetic resonance-ultrasound fusion device. Our primary end point was the difference in the detection of high grade (Gleason 7 or greater) and any grade cancer between visually targeted and magnetic resonance-ultrasound fusion, investigated using McNemar's method. Secondary end points were the difference in detection rate by biopsy location using a logistic regression model and the difference in median cancer length using the Wilcoxon signed rank test. We identified 396 regions of interest in 286 men. The difference in the detection of high grade cancer between magnetic resonance-ultrasound fusion biopsy and visually targeted biopsy was -1.4% (95% CI -6.4 to 3.6, p=0.6) and for any grade cancer the difference was 3.5% (95% CI -1.9 to 8.9, p=0.2). Median cancer length detected by magnetic resonance-ultrasound fusion and visually targeted biopsy was 5.5 vs 5.8 mm, respectively (p=0.8). Magnetic resonance-ultrasound fusion biopsy detected 15% more cancers in the transition zone (p=0.046) and visually targeted biopsy detected 11% more high grade cancer at the prostate base (p=0.005). Only 52% of all high grade cancers were detected by both techniques. We found no evidence of a significant difference in the detection of high grade or any grade cancer between visually targeted and magnetic resonance-ultrasound fusion biopsy. However, the performance of each technique varied in specific biopsy locations and the outcomes of both techniques were complementary. Combining visually targeted biopsy and magnetic resonance

  20. A personal computer-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.