Sample records for labeling reaction optimization

  1. Label-assisted mass spectrometry for the acceleration of reaction discovery and optimization

    NASA Astrophysics Data System (ADS)

    Cabrera-Pardo, Jaime R.; Chai, David I.; Liu, Song; Mrksich, Milan; Kozmin, Sergey A.

    2013-05-01

    The identification of new reactions expands our knowledge of chemical reactivity and enables new synthetic applications. Accelerating the pace of this discovery process remains challenging. We describe a highly effective and simple platform for screening a large number of potential chemical reactions in order to discover and optimize previously unknown catalytic transformations, thereby revealing new chemical reactivity. Our strategy is based on labelling one of the reactants with a polyaromatic chemical tag, which selectively undergoes a photoionization/desorption process upon laser irradiation, without the assistance of an external matrix, and enables rapid mass spectrometric detection of any products originating from such labelled reactants in complex reaction mixtures without any chromatographic separation. This method was successfully used for high-throughput discovery and subsequent optimization of two previously unknown benzannulation reactions.

  2. Optimal design of isotope labeling experiments.

    PubMed

    Yang, Hong; Mandy, Dominic E; Libourel, Igor G L

    2014-01-01

    Stable isotope labeling experiments (ILE) constitute a powerful methodology for estimating metabolic fluxes. An optimal label design for such an experiment is necessary to maximize the precision with which fluxes can be determined. But often, precision gained in the determination of one flux comes at the expense of the precision of other fluxes, and an appropriate label design therefore foremost depends on the question the investigator wants to address. One could liken ILE to shadows that metabolism casts on products. Optimal label design is the placement of the lamp; creating clear shadows for some parts of metabolism and obscuring others.An optimal isotope label design is influenced by: (1) the network structure; (2) the true flux values; (3) the available label measurements; and, (4) commercially available substrates. The first two aspects are dictated by nature and constrain any optimal design. The second two aspects are suitable design parameters. To create an optimal label design, an explicit optimization criterion needs to be formulated. This usually is a property of the flux covariance matrix, which can be augmented by weighting label substrate cost. An optimal design is found by using such a criterion as an objective function for an optimizer. This chapter uses a simple elementary metabolite units (EMU) representation of the TCA cycle to illustrate the process of experimental design of isotope labeled substrates.

  3. Optimizing labelling conditions of 213Bi-DOTATATE for preclinical applications of peptide receptor targeted alpha therapy.

    PubMed

    Chan, Ho Sze; de Blois, Erik; Konijnenberg, Mark W; Morgenstern, Alfred; Bruchertseifer, Frank; Norenberg, Jeffrey P; Verzijlbergen, Fred J; de Jong, Marion; Breeman, Wouter A P

    2017-01-01

    213 Bismuth ( 213 Bi, T 1/2 = 45.6 min) is one of the most frequently used α-emitters in cancer research. High specific activity radioligands are required for peptide receptor radionuclide therapy. The use of generators containing less than 222 MBq 225 Ac (actinium), due to limited availability and the high cost to produce large-scale 225 Ac/ 213 Bi generators, might complicate in vitro and in vivo applications though.Here we present optimized labelling conditions of a DOTA-peptide with an 225 Ac/ 213 Bi generator (< 222 MBq) for preclinical applications using DOTA-Tyr 3 -octreotate (DOTATATE), a somatostatin analogue. The following labelling conditions of DOTATATE with 213 Bi were investigated; peptide mass was varied from 1.7 to 7.0 nmol, concentration of TRIS buffer from 0.15 mol.L -1 to 0.34 mol.L -1 , and ascorbic acid from 0 to 71 mmol.L -1 in 800 μL. All reactions were performed at 95 °C for 5 min. After incubation, DTPA (50 nmol) was added to stop the labelling reaction. Besides optimizing the labelling conditions, incorporation yield was determined by ITLC-SG and radiochemical purity (RCP) was monitored by RP-HPLC up to 120 min after labelling. Dosimetry studies in the reaction vial were performed using Monte Carlo and in vitro clonogenic assay was performed with a rat pancreatic tumour cell line, CA20948. At least 3.5 nmol DOTATATE was required to obtain incorporation ≥ 99 % with 100 MBq 213 Bi (at optimized pH conditions, pH 8.3 with 0.15 mol.L -1 TRIS) in a reaction volume of 800 μL. The cumulative absorbed dose in the reaction vial was 230 Gy/100 MBq in 30 min. A minimal final concentration of 0.9 mmol.L -1 ascorbic acid was required for ~100 MBq (t = 0) to minimize radiation damage of DOTATATE. The osmolarity was decreased to 0.45 Osmol/L.Under optimized labelling conditions, 213 Bi-DOTATATE remained stable up to 2 h after labelling, RCP was ≥ 85 %. In vitro showed a negative correlation between ascorbic acid

  4. Optimal quality (131)I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN.

    PubMed

    Visser, G W; Klok, R P; Gebbinck, J W; ter Linden, T; van Dongen, G A; Molthoff, C F

    2001-03-01

    achieved. For this labeling, 5 mg MAb were coated with 35 microg IODO-GEN during 3 min in a reaction volume of 6 mL. Also, biodistribution was optimal, and tumor accumulation was superior to that of coinjected (125)I-c-MOv18 labeled according to the conventional IODO-GEN-coated vial method. A new, facile, high-dose (131)I-labeling method was developed for production of (131)I-labeled MAbs with optimal quality for use in clinical radioimmunotherapy.

  5. Optimized small molecule antibody labeling efficiency through continuous flow centrifugal diafiltration.

    PubMed

    Cappione, Amedeo; Mabuchi, Masaharu; Briggs, David; Nadler, Timothy

    2015-04-01

    Protein immuno-detection encompasses a broad range of analytical methodologies, including western blotting, flow cytometry, and microscope-based applications. These assays which detect, quantify, and/or localize expression for one or more proteins in complex biological samples, are reliant upon fluorescent or enzyme-tagged target-specific antibodies. While small molecule labeling kits are available with a range of detection moieties, the workflow is hampered by a requirement for multiple dialysis-based buffer exchange steps that are both time-consuming and subject to sample loss. In a previous study, we briefly described an alternative method for small-scale protein labeling with small molecule dyes whereby all phases of the conjugation workflow could be performed in a single centrifugal diafiltration device. Here, we expand on this foundational work addressing functionality of the device at each step in the workflow (sample cleanup, labeling, unbound dye removal, and buffer exchange/concentration) and the implications for optimizing labeling efficiency. When compared to other common buffer exchange methodologies, centrifugal diafiltration offered superior performance as measured by four key parameters (process time, desalting capacity, protein recovery, retain functional integrity). Originally designed for resin-based affinity purification, the device also provides a platform for up-front antibody purification or albumin carrier removal. Most significantly, by exploiting the rapid kinetics of NHS-based labeling reactions, the process of continuous diafiltration minimizes reaction time and long exposure to excess dye, guaranteeing maximal target labeling while limiting the risks associated with over-labeling. Overall, the device offers a simplified workflow with reduced processing time and hands-on requirements, without sacrificing labeling efficiency, final yield, or conjugate performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. RJMCMC based Text Placement to Optimize Label Placement and Quantity

    NASA Astrophysics Data System (ADS)

    Touya, Guillaume; Chassin, Thibaud

    2018-05-01

    Label placement is a tedious task in map design, and its automation has long been a goal for researchers in cartography, but also in computational geometry. Methods that search for an optimal or nearly optimal solution that satisfies a set of constraints, such as label overlapping, have been proposed in the literature. Most of these methods mainly focus on finding the optimal position for a given set of labels, but rarely allow the removal of labels as part of the optimization. This paper proposes to apply an optimization technique called Reversible-Jump Markov Chain Monte Carlo that enables to easily model the removal or addition during the optimization iterations. The method, quite preliminary for now, is tested on a real dataset, and the first results are encouraging.

  7. Spin-labelled diketopiperazines and peptide-peptoid chimera by Ugi-multi-component-reactions.

    PubMed

    Sultani, Haider N; Haeri, Haleh H; Hinderberger, Dariush; Westermann, Bernhard

    2016-12-28

    For the first time, spin-labelled coumpounds have been obtained by isonitrile-based multi component reactions (IMCRs). The typical IMCR Ugi-protocols offer a simple experimental setup allowing structural variety by which labelled diketopiperazines (DKPs) and peptide-peptoid chimera have been synthesized. The reaction keeps the paramagnetic spin label intact and offers a simple and versatile route to a large variety of new and chemically diverse spin labels.

  8. Adverse drug reactions and off-label drug use in paediatric outpatients

    PubMed Central

    Horen, Benjamin; Montastruc, Jean-Louis; Lapeyre-mestre, Maryse

    2002-01-01

    Aims To investigate the potential relationship between off-label drug use and increased risk of adverse drug reactions in paediatric outpatients. Methods A prospective pharmacovigilance survey of drug prescribing in office based paediatricians was carried out in Haute-Garonne County (south west of France). Results The study involved a sample of 1419 children under 16 years old. Forty-two percent of patients were exposed to at least one off-label prescription. The incidence of adverse drug reactions was 1.41% (95% CI 0.79, 2.11). Off-label drug use was significantly associated with adverse drug reactions (relative risk 3.44; 95% CI 1.26, 9.38), particularly when it was due to an indication different than that defined in the Summary Product Characteristics (relative risk 4.42; 95% CI 1.60, 12.25). Conclusions Our data suggest an increasing risk of adverse drug reactions related to off-label drug use. This risk would be acceptable if further studies prove the potential benefit of such a drug use. PMID:12492616

  9. Optimization and quality assessment of the post-digestion 18O labeling based on urea for protein denaturation by HPLC/ESI-TOF mass spectrometry.

    PubMed

    Wang, Hongbin; Hu, Gaofei; Zhang, Yongqian; Yuan, Zheng; Zhao, Xuan; Zhu, Yong; Cai, De; Li, Yujuan; Xiao, Shengyuan; Deng, Yulin

    2010-07-15

    The post-digestion (18)O labeling method decouples protein digestion and peptide labeling. This method allows labeling conditions to be optimized separately and increases labeling efficiency. A common method for protein denaturation in proteomics is the use of urea. Though some previous studies have used urea-based protein denaturation before post-digestion (18)O labeling, the optimal (18)O labeling conditions in this case have not been yet reported. Present study investigated the effects of urea concentration and pH on the labeling efficiency and obtained an optimized protocol. It was demonstrated that urea inhibited (18)O incorporation depending on concentration. However, a urea concentration between 1 and 2M had minimal effects on labeling. It was also demonstrated that the use of FA to quench the digestion reaction severely affected the labeling efficiency. This study revealed the reason why previous studies gave different optimal pH for labeling. They neglect the effects of different digestion conditions on the labeling conditions. Excellent labeling quality was obtained at the optimized conditions using urea 1-2 M and pH 4.5, 98.4+/-1.9% for a standard protein mixture and 97.2+/-6.2% for a complex biological sample. For a 1:1 mixture analysis of the (16)O- and (18)O-labeled peptides from the same protein sample, the average abundance ratios reached 1.05+/-0.31, demonstrating a good quantitation quality at the optimized conditions. This work will benefit other researchers who pair urea-based protein denaturation with a post-digestion (18)O labeling method. 2010 Elsevier B.V. All rights reserved.

  10. Monitoring of protease catalyzed reactions by quantitative MALDI MS using metal labeling.

    PubMed

    Gregorius, Barbara; Jakoby, Thomas; Schaumlöffel, Dirk; Tholey, Andreas

    2013-05-21

    Quantitative mass spectrometry is a powerful tool for the determination of enzyme activities as it does not require labeled substrates and simultaneously allows for the identification of reaction products. However, major restrictions are the limited number of samples which can be measured in parallel due to the need for isotope labeled internal standards. Here we describe the use of metal labeling of peptides for the setup of multiplexed enzyme activity assays. After proteolytic reaction, using the protease trypsin, remaining substrates and peptide products formed in the reaction were labeled with metal chelators complexing rare earth metal ions. Labeled peptides were quantified with high accuracy and over a wide dynamic range (at least 2 orders of magnitude) using MALDI MS in case of simple peptide mixtures or by LC-MALDI MS for complex substrate mixtures and used for the monitoring of time-dependent product formation and substrate consumption. Due to multiplexing capabilities and accuracy, the presented approach will be useful for the determination of enzyme activities with a wide range of biochemical and biotechnological applications.

  11. Optimizing Chemical Reactions with Deep Reinforcement Learning.

    PubMed

    Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N

    2017-12-27

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

  12. Optimizing Chemical Reactions with Deep Reinforcement Learning

    PubMed Central

    2017-01-01

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability. PMID:29296675

  13. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    PubMed

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Evaluating Varied Label Designs for Use with Medical Devices: Optimized Labels Outperform Existing Labels in the Correct Selection of Devices and Time to Select.

    PubMed

    Bix, Laura; Seo, Do Chan; Ladoni, Moslem; Brunk, Eric; Becker, Mark W

    2016-01-01

    Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling. Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding) to optimize a label for comparison with those typical of commercial medical devices. Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not). Participants were instructed to select the label along a given criteria (e.g., latex containing) as quickly as possible. Dependent variables were binary (correct selection) and continuous (time to correct selection). Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST) conferences, and using a targeted e-mail of AST members. Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05). Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05). Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols) were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001) LSM; UCL, LCL: 97.3%; 98.4%, 95.5%)), as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3%) and time to selection. Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance the performance of medical device labels.

  15. An artificial test substrate for evaluating electron microscopic immunocytochemical labeling reactions.

    PubMed

    Gagne, G D; Miller, M F

    1987-08-01

    We describe an artificial substrate system for optimization of labeling parameters in electron microscope immunocytochemical studies. The system involves use of blocks of glutaraldehyde-polymerized BSA into which a desired antigen is incorporated by a simple soaking procedure. The resulting antigen-impregnated artificial substrate can then be fixed and embedded identically to a piece of tissue. The BSA substrate can also be dried and then sectioned for immunolabeling with or without chemical fixation and without exposing the antigen to dehydrating agents and embedding resins. The effects of various fixation and embedding procedures can thus be evaluated separately. Other parameters affecting immunocytochemical labeling, such as antibody and conjugate concentration, can also be evaluated. We used this system, along with immunogold labeling, to determine quantitatively the optimal fixation and embedding conditions for labeling of hepatitis B surface antigen (HbsAg), human IgG, and horseradish peroxidase. Using unfixed and unembedded HBsAg, we were able to detect antigen concentrations below 20 micrograms/ml. We have shown that it is not possible to label HBsAg within resin-embedded cells using conventional aldehyde fixation protocols and polyclonal antibodies.

  16. Sequential Injection Analysis for Optimization of Molecular Biology Reactions

    PubMed Central

    Allen, Peter B.; Ellington, Andrew D.

    2011-01-01

    In order to automate the optimization of complex biochemical and molecular biology reactions, we developed a Sequential Injection Analysis (SIA) device and combined this with a Design of Experiment (DOE) algorithm. This combination of hardware and software automatically explores the parameter space of the reaction and provides continuous feedback for optimizing reaction conditions. As an example, we optimized the endonuclease digest of a fluorogenic substrate, and showed that the optimized reaction conditions also applied to the digest of the substrate outside of the device, and to the digest of a plasmid. The sequential technique quickly arrived at optimized reaction conditions with less reagent use than a batch process (such as a fluid handling robot exploring multiple reaction conditions in parallel) would have. The device and method should now be amenable to much more complex molecular biology reactions whose variable spaces are correspondingly larger. PMID:21338059

  17. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling.

    PubMed

    Chigrinova, Mariya; MacKenzie, Douglas A; Sherratt, Allison R; Cheung, Lawrence L W; Pezacki, John Paul; Pezacki, Paul

    2015-04-16

    The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  18. INVESTIGATION OF ARSINE-GENERATING REACTIONS USING DEUTERIUM-LABELED REAGENTS AND MASS SPECTROMETRY

    EPA Science Inventory

    Mass spectrometry was used to detect transfer of deuterium from labeled reagents to arsines following hydride-generation reactions. The arsine gases liberated from the reactions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid with HC1 and NaBD4 in H2O, or with...

  19. Optimal multisensory decision-making in a reaction-time task.

    PubMed

    Drugowitsch, Jan; DeAngelis, Gregory C; Klier, Eliana M; Angelaki, Dora E; Pouget, Alexandre

    2014-06-14

    Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have time-varying reliability. Using a reaction-time version of a visual/vestibular heading discrimination task, we show that behavior is clearly sub-optimal when quantified with traditional optimality metrics that ignore reaction times. We created a computational model that accumulates evidence optimally across both cues and time, and trades off accuracy with decision speed. This model quantitatively explains subjects's choices and reaction times, supporting the hypothesis that subjects do, in fact, accumulate evidence optimally over time and across sensory modalities, even when the reaction time is under the subject's control.

  20. Reactions to FDA-Proposed Graphic Warning Labels Affixed to U.S. Smokers’ Cigarette Packs

    PubMed Central

    Kreuter, Matthew W.; Boyum, Sonia; Thompson, Vetta S.; Caburnay, Charlene A.; Waters, Erika A.; Kaphingst, Kimberly A.; Rath, Suchitra; Fu, Qiang

    2015-01-01

    Introduction: Graphic warning labels have been shown to be more effective than text-only labels in increasing attention and perceived health risks, but most U.S. studies have involved single exposures in laboratory or Internet settings. Methods: We recruited a convenience sample (N = 202) of U.S. adult smokers from population subgroups with higher rates of smoking and smoking-related deaths who had participated in a larger survey about graphic warning labels. Participants were randomized to get 1 of 9 graphic + text labels or a text-only label. Research staff affixed a warning label sticker to participants’ cigarette pack(s) at enrollment. Color graphic labels covered slightly more than the lower half of packs. Black and white labels of current U.S. text-only warnings covered the existing side warning to prompt attention to the label (i.e., attention control). Participants received extra stickers of the same label for subsequent packs, and completed 3 telephone interviews in 1 week. Results: Participants reported low avoidance (<34%) and consistent use of the stickers (91%). Smokers consistently paid more attention to graphic than text-only labels. Only 5 of the 9 graphic warning labels were significantly associated with greater thoughts of health risks. Thinking about quitting and stopping smoking did not differ by label. Qualitative data illustrated differences in the “stickiness,” self-referencing, and counterarguments of graphic warning labels. Conclusions: U.S. smokers’ reactions to graphic warning labels on their own packs were similar to other, more controlled studies. Qualitative findings underscore the need for warning labels that encourage self-referential processing without increasing defensive reactions. PMID:25589676

  1. Reactions to FDA-Proposed Graphic Warning Labels Affixed to U.S. Smokers' Cigarette Packs.

    PubMed

    McQueen, Amy; Kreuter, Matthew W; Boyum, Sonia; Thompson, Vetta S; Caburnay, Charlene A; Waters, Erika A; Kaphingst, Kimberly A; Rath, Suchitra; Fu, Qiang

    2015-07-01

    Graphic warning labels have been shown to be more effective than text-only labels in increasing attention and perceived health risks, but most U.S. studies have involved single exposures in laboratory or Internet settings. We recruited a convenience sample (N = 202) of U.S. adult smokers from population subgroups with higher rates of smoking and smoking-related deaths who had participated in a larger survey about graphic warning labels. Participants were randomized to get 1 of 9 graphic + text labels or a text-only label. Research staff affixed a warning label sticker to participants' cigarette pack(s) at enrollment. Color graphic labels covered slightly more than the lower half of packs. Black and white labels of current U.S. text-only warnings covered the existing side warning to prompt attention to the label (i.e., attention control). Participants received extra stickers of the same label for subsequent packs, and completed 3 telephone interviews in 1 week. Participants reported low avoidance (<34%) and consistent use of the stickers (91%). Smokers consistently paid more attention to graphic than text-only labels. Only 5 of the 9 graphic warning labels were significantly associated with greater thoughts of health risks. Thinking about quitting and stopping smoking did not differ by label. Qualitative data illustrated differences in the "stickiness," self-referencing, and counterarguments of graphic warning labels. U.S. smokers' reactions to graphic warning labels on their own packs were similar to other, more controlled studies. Qualitative findings underscore the need for warning labels that encourage self-referential processing without increasing defensive reactions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Emotional reaction facilitates the brain and behavioural impact of graphic cigarette warning labels in smokers.

    PubMed

    Wang, An-Li; Lowen, Steven B; Romer, Daniel; Giorno, Mario; Langleben, Daniel D

    2015-05-01

    Warning labels on cigarette packages are an important venue for information about the hazards of smoking. The 2009 US Family Smoking Prevention and Tobacco Control Act mandated replacing the current text-only labels with graphic warning labels. However, labels proposed by the Food and Drug Administration (FDA) were challenged in court by the tobacco companies, who argued successfully that the proposed labels needlessly encroached on their right to free speech, in part because they included images of high emotional salience that indiscriminately frightened rather than informed consumers. We used functional MRI to examine the effects of graphic warning labels' emotional salience on smokers' brain activity and cognition. Twenty-four smokers viewed a random sequence of blocks of graphic warning labels that have been rated high or low on an 'emotional reaction' scale in previous research. We found that labels rated high on emotional reaction were better remembered, associated with reduction in the urge to smoke, and produced greater brain response in the amygdala, hippocampi, inferior frontal gyri and the insulae. Recognition memory and craving are, respectively, correlates of effectiveness of addiction-related public health communications and interventions, and amygdala activation facilitates the encoding of emotional memories. Thus, our results suggest that emotional reaction to graphic warning labels contributes to their public health impact and may be an integral part of the neural mechanisms underlying their effectiveness. Given the urgency of the debate about the constitutional risks and public health benefits of graphic warning labels, these preliminary findings warrant consideration while longitudinal clinical studies are underway. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Improved Photoinduced Fluorogenic Alkene-Tetrazole Reaction for Protein Labeling.

    PubMed

    Shang, Xin; Lai, Rui; Song, Xi; Li, Hui; Niu, Wei; Guo, Jiantao

    2017-11-15

    The 1,3-dipolar cycloaddition reaction between an alkene and a tetrazole represents one elegant and rare example of fluorophore-forming bioorthogonal chemistry. This is an attractive reaction for imaging applications in live cells that requires less intensive washing steps and/or needs spatiotemporal resolutions. In the present work, as an effort to improve the fluorogenic property of the alkene-tetrazole reaction, an aromatic alkene (styrene) was investigated as the dipolarophile. Over 30-fold improvement in quantum yield of the reaction product was achieved in aqueous solution. According to our mechanistic studies, the observed improvement is likely due to an insufficient protonation of the styrene-tetrazole reaction product. This finding provides useful guidance to the future design of alkene-tetrazole reactions for biological studies. Fluorogenic protein labeling using the styrene-tetrazole reaction was demonstrated both in vitro and in vivo. This was realized by the genetic incorporation of an unnatural amino acid containing the styrene moiety. It is anticipated that the combination of styrene with different tetrazole derivatives can generally improve and broaden the application of alkene-tetrazole chemistry in real-time imaging in live cells.

  4. Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries

    PubMed Central

    Zimmerman, Sandra G; Peters, Nathaniel C; Altaras, Ariel E; Berg, Celeste A

    2014-01-01

    In situ hybridization (ISH) is a powerful technique for detecting nucleic acids in cells and tissues. Here we describe three ISH procedures that are optimized for Drosophila ovaries: whole-mount, digoxigenin-labeled RNA ISH; RNA fluorescent ISH (FISH); and protein immunofluorescence (IF)–RNA FISH double labeling (IF/FISH). Each procedure balances conflicting requirements for permeabilization, fixation and preservation of antigenicity to detect RNA and protein expression with high resolution and sensitivity. The ISH protocol uses alkaline phosphatase–conjugated digoxigenin antibodies followed by a color reaction, whereas FISH detection involves tyramide signal amplification (TSA). To simultaneously preserve antigens for protein detection and enable RNA probe penetration for IF/FISH, we perform IF before FISH and use xylenes and detergents to permeabilize the tissue rather than proteinase K, which can damage the antigens. ISH and FISH take 3 d to perform, whereas IF/FISH takes 5 d. Probe generation takes 1 or 2 d to perform. PMID:24113787

  5. Nonparametric variational optimization of reaction coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banushkina, Polina V.; Krivov, Sergei V., E-mail: s.krivov@leeds.ac.uk

    State of the art realistic simulations of complex atomic processes commonly produce trajectories of large size, making the development of automated analysis tools very important. A popular approach aimed at extracting dynamical information consists of projecting these trajectories into optimally selected reaction coordinates or collective variables. For equilibrium dynamics between any two boundary states, the committor function also known as the folding probability in protein folding studies is often considered as the optimal coordinate. To determine it, one selects a functional form with many parameters and trains it on the trajectories using various criteria. A major problem with such anmore » approach is that a poor initial choice of the functional form may lead to sub-optimal results. Here, we describe an approach which allows one to optimize the reaction coordinate without selecting its functional form and thus avoiding this source of error.« less

  6. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  7. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    PubMed

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Clinical relevance of positive patch test reactions to the 26 EU-labelled fragrances.

    PubMed

    van Oosten, Eleonoor J; Schuttelaar, Marie-Louise A; Coenraads, Pieter Jan

    2009-10-01

    Fragrance mix I (FM I) and fragrance mix II (FM II) in the European baseline series are used as screening tools for fragrance contact allergy. In 2005 the European Union (EU) required labelling of 26 fragrances when present in cosmetic products. INCI nomenclature is obligatory for such labelling. To describe frequencies of contact allergy to these 26 fragrance substances, and to evaluate clinical relevance of these positive reactions. Three hundred and twenty patients with eczema suspected of being contact allergy to fragrances or cosmetics were patch tested with the EU-declared fragrance chemicals, FM I and FM II. There were 76 positive reactions in 33 patients. Most reactions were seen to [corrected] hydroxyisohexyl 3-cyclohexene carboxaldehyde in 3.1%, followed by Evernia furfuracea (2.5%) and cinnamyl alcohol (2.5%). Twelve reactions to FM I and II were not confirmed by separate ingredients. Clinical relevance of positive reactions to fragrances was certain in 20/33 (61%). 10.3% of the patients had positive patch tests in the EU-list. Hydroxyisohexyl 3-cyclohexene carboxaldehyde, a component of FM II, was the most frequent allergen, followed by Evernia furfuracea. Since Evernia furfuracea is not part of FM I or FM II, relevant reactions can be missed when only the European baseline series is used.

  9. Emotional reaction facilitates the brain and behavioral impact of graphic cigarette warning labels in smokers

    PubMed Central

    Wang, An-Li; Lowen, Steven B; Romer, Daniel; Giorno, Mario; Langleben, Daniel D

    2015-01-01

    Background Warning labels on cigarette packages are an important venue for information about the hazards of smoking. The 2009 US Family Smoking Prevention and Tobacco Control Act mandated replacing the current text-only labels with graphic warning labels. However, labels proposed by the Food and Drug Administration (FDA) were challenged in court by the tobacco companies, who argued successfully that the proposed labels needlessly encroached on their right to free speech, in part because they included images of high emotional salience that indiscriminately frightened rather than informed consumers. Methods We used functional MRI to examine the effects of graphic warning labels' emotional salience on smokers' brain activity and cognition. Twenty-four smokers viewed a random sequence of blocks of graphic warning labels that have been rated high or low on an ‘emotional reaction’ scale in previous research. Results We found that labels rated high on emotional reaction were better remembered, associated with reduction in the urge to smoke, and produced greater brain response in the amygdala, hippocampi, inferior frontal gyri and the insulae. Conclusions Recognition memory and craving are, respectively, correlates of effectiveness of addiction related public health communications and interventions, and amygdala activation facilitates the encoding of emotional memories. Thus, our results suggest that emotional reaction to graphic warning labels contributes to their public health impact and may be an integral part of the neural mechanisms underlying their effectiveness. Given the urgency of the debate about the constitutional risks and public health benefits of graphic warning labels, these preliminary findings warrant consideration while longitudinal clinical studies are underway PMID:25564288

  10. Constellation labeling optimization for bit-interleaved coded APSK

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  11. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  12. An improved reaction path optimization method using a chain of conformations

    NASA Astrophysics Data System (ADS)

    Asada, Toshio; Sawada, Nozomi; Nishikawa, Takuya; Koseki, Shiro

    2018-05-01

    The efficient fast path optimization (FPO) method is proposed to optimize the reaction paths on energy surfaces by using chains of conformations. No artificial spring force is used in the FPO method to ensure the equal spacing of adjacent conformations. The FPO method is applied to optimize the reaction path on two model potential surfaces. The use of this method enabled the optimization of the reaction paths with a drastically reduced number of optimization cycles for both potentials. It was also successfully utilized to define the MEP of the isomerization of the glycine molecule in water by FPO method.

  13. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1997-07-05

    The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.

  14. Novel cyanine dyes with vinylsulfone group for labeling biomolecules.

    PubMed

    Park, Jin Woo; Kim, YoungSoo; Lee, Kee-Jung; Kim, Dong Jin

    2012-03-21

    Novel vinylsulfone cyanine dyes (em. 550-850 nm) were designed and synthesized for fluorescent labeling of biomolecules via 1,2-addition reaction in aqueous conditions. Due to the virtue of chemical structures of both fluorophore and reactive group, these dyes could be significantly stable and reactive in various aqueous/organic conditions. A wide variety of pH, temperature, buffer concentration, and protein were tested for the optimal labeling condition.

  15. Rapid Verification of Candidate Serological Biomarkers Using Gel-based, Label-free Multiple Reaction Monitoring

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Barnhart, Kurt T.; Speicher, David W.

    2011-01-01

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves, quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1-D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μl serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers. PMID:21726088

  16. Rapid verification of candidate serological biomarkers using gel-based, label-free multiple reaction monitoring.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Barnhart, Kurt T; Speicher, David W

    2011-09-02

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μL of serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers.

  17. Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.

    PubMed

    Khavrutskii, Ilja V; Smith, Jason B; Wallqvist, Anders

    2013-10-28

    Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.

  18. Reactions of Chinese adults to warning labels on cigarette packages: A survey in Jiangsu Province

    PubMed Central

    2011-01-01

    Background To compare reactions to warning labels presented on cigarette packages with a specific focus on whether the new Chinese warning labels are better than the old labels and international labels. Methods Participants aged 18 and over were recruited in two cities of Jiangsu Province in 2008, and 876 face-to-face interviews were completed. Participants were shown six types of warning labels found on cigarette packages. They comprised one old Chinese label, one new label used within the Chinese market, and one Chinese overseas label and three foreign brand labels. Participants were asked about the impact of the warning labels on: their knowledge of harm from smoking, giving cigarettes as a gift, and quitting smoking. Results Compared with the old Chinese label, a higher proportion of participants said the new label provided clear information on harm caused by smoking (31.2% vs 18.3%). Participants were less likely to give cigarettes with the new label on the package compared with the old label (25.2% vs 20.8%). These proportions were higher when compared to the international labels. Overall, 26.8% of participants would quit smoking based on information from the old label and 31.5% from the new label. When comparing the Chinese overseas label and other foreign labels to the new Chinese label with regard to providing knowledge of harm warning, impact of quitting smoking and giving cigarettes as a gift, the overseas labels were more effective. Conclusion Both the old and the new Chinese warning label are not effective in this target population. PMID:21349205

  19. Optimization by infusion of multiple reaction monitoring transitions for sensitive quantification of peptides by liquid chromatography/mass spectrometry.

    PubMed

    Alghanem, Bandar; Nikitin, Frédéric; Stricker, Thomas; Duchoslav, Eva; Luban, Jeremy; Strambio-De-Castillia, Caterina; Muller, Markus; Lisacek, Frédérique; Varesio, Emmanuel; Hopfgartner, Gérard

    2017-05-15

    In peptide quantification by liquid chromatography/mass spectrometry (LC/MS), the optimization of multiple reaction monitoring (MRM) parameters is essential for sensitive detection. We have compared different approaches to build MRM assays, based either on flow injection analysis (FIA) of isotopically labelled peptides, or on the knowledge and the prediction of the best settings for MRM transitions and collision energies (CE). In this context, we introduce MRMOptimizer, an open-source software tool that processes spectra and assists the user in selecting transitions in the FIA workflow. MS/MS spectral libraries with CE voltages from 10 to 70 V are automatically acquired in FIA mode for isotopically labelled peptides. Then MRMOptimizer determines the optimal MRM settings for each peptide. To assess the quantitative performance of our approach, 155 peptides, representing 84 proteins, were analysed by LC/MRM-MS and the peak areas were compared between: (A) the MRMOptimizer-based workflow, (B1) the SRMAtlas transitions set used 'as-is'; (B2) the same SRMAtlas set with CE parameters optimized by Skyline. 51% of the three most intense transitions per peptide were shown to be common to both A and B1/B2 methods, and displayed similar sensitivity and peak area distributions. The peak areas obtained with MRMOptimizer for transitions sharing either the precursor ion charge state or the fragment ions with the SRMAtlas set at unique transitions were increased 1.8- to 2.3-fold. The gain in sensitivity using MRMOptimizer for transitions with different precursor ion charge state and fragment ions (8% of the total), reaches a ~ 11-fold increase. Isotopically labelled peptides can be used to optimize MRM transitions more efficiently in FIA than by searching databases. The MRMOptimizer software is MS independent and enables the post-acquisition selection of MRM parameters. Coefficients of variation for optimal CE values are lower than those obtained with the SRMAtlas approach (B2

  20. The Effects of Symptom Recognition and Diagnostic Labels on Public Beliefs, Emotional Reactions, and Stigmas Associated with Intellectual Disability

    ERIC Educational Resources Information Center

    Scior, Katrina; Connolly, Theresa; Williams, Janice

    2013-01-01

    Labels are firmly rejected by the disability rights movement, yet the complex effects of labeling on lay beliefs are poorly understood. This study examined the effects of labeling on the general public's reactions to people with intellectual disabilities. A sample of 1,233 adult members of the UK general population were randomly presented with…

  1. Neuronal Tracing with Magnetic Labels: NMR Imaging Methods, Preliminary Results, and New Optimized Coils.

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratik

    1992-01-01

    The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.

  2. Selective detection of carbon-13, nitrogen-15, and deuterium labeled metabolites by capillary gas chromatography-chemical reaction interface/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chace, D.H.; Abramson, F.P.

    1989-12-15

    We have applied a new chemical reaction interface/mass spectrometer technique (CRIMS) to the selective detection of 13C-, 15N-, and 2H-labeled phenytoin and its metabolites in urine following separation by capillary gas chromatography. The microwave-powered chemical reaction interface converts materials from their original forms into small molecules whose mass spectra serve to identify and quantify the nuclides that make up each analyte. The presence of each element is followed by monitoring the isotopic variants of CO2, NO, or H2 that are produced by the chemical reaction interface. Chromatograms showing only enriched 13C and 15N were produced by subtracting the abundance ofmore » naturally occurring isotopes from the observed M + 1 signal. A selective chromatogram of 2H (D) was obtained by measuring HD at m/z 3.0219 with a resolution of 2000. Metabolites representing less than 1.5% of the total labeled compounds could be identified in the chromatogram. Detection limits from urine of 380 pg/mL of a 15N-labeled metabolite, 7 ng/mL of a 13C-labeled metabolite, and 16 ng/mL of a deuterium labeled metabolite were determined at a signal to noise ratio of 2. Depending on the isotope examined, a linear dynamic range of 250-1000 was observed using CRIMS. To identify many of these labeled peaks (metabolites), the chromatographic analysis was repeated with the chemical reaction interface turned off and mass spectra obtained at the retention times found in the CRIMS experiment. CRIMS is a new analytical method that appears to be particularly useful for metabolism studies.« less

  3. Optimization of Angular-Momentum Biases of Reaction Wheels

    NASA Technical Reports Server (NTRS)

    Lee, Clifford; Lee, Allan

    2008-01-01

    RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.

  4. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.

    PubMed

    Lang, Kathrin; Davis, Lloyd; Wallace, Stephen; Mahesh, Mohan; Cox, Daniel J; Blackman, Melissa L; Fox, Joseph M; Chin, Jason W

    2012-06-27

    Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.

  5. Rapid Grafting of Azido-labeled Oligo(ethylene glycol)s onto an Alkynyl-terminated Monolayer on Non-oxidized Silicon via Microwave-assisted “Click” Reaction

    PubMed Central

    Li, Yan; Wang, Jun; Cai, Chengzhi

    2011-01-01

    Microwave (MW) irradiation was used for the grafting of azido-labeled oligo(ethylene oxide) (OEG) on alkynyl-terminated non-oxidized silicon substrates via copper-catalyzed “click” reaction. The “clickable” monolayers were prepared by photografting of an α,ω-alkynene, where the alkynyl terminus was protected by a trimethylgermanyl (TMG) group, onto hydrogen-terminated Si(111) surfaces. X-ray photoelectron spectroscopy (XPS) was primarily employed to characterize the monolayers, and the data obtained were utilized to calculate the surface density of the TMG-alkynyl-functionalized substrate. MW-assisted one-pot deprotection/click reaction was optimized on the surfaces using azido-tagged OEG derivatives. Using MW instead of conventional heating led to a substantial improvement on the rate of the reaction while suppressing the oxidation of the silicon interface and OEG degradation. The antifouling property of the resulting substrates was evaluated using fibrinogen as a model protein. Results show that the OEG-modification reduced the protein adsorption by >90%. PMID:21306165

  6. Multistructural microiteration technique for geometry optimization and reaction path calculation in large systems.

    PubMed

    Suzuki, Kimichi; Morokuma, Keiji; Maeda, Satoshi

    2017-10-05

    We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non-reaction-center (surrounding) part is optimized by fixing atoms in the reaction-center part before displacements of the reaction-center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction-center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM-ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM-ONIOM-microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling.

    PubMed

    Neville, David C A; Coquard, Virginie; Priestman, David A; te Vruchte, Danielle J M; Sillence, Daniel J; Dwek, Raymond A; Platt, Frances M; Butters, Terry D

    2004-08-15

    Interest in cellular glycosphingolipid (GSL) function has necessitated the development of a rapid and sensitive method to both analyze and characterize the full complement of structures present in various cells and tissues. An optimized method to characterize oligosaccharides released from glycosphingolipids following ceramide glycanase digestion has been developed. The procedure uses the fluorescent compound anthranilic acid (2-aminobenzoic acid; 2-AA) to label oligosaccharides prior to analysis using normal-phase high-performance liquid chromatography. The labeling procedure is rapid, selective, and easy to perform and is based on the published method of Anumula and Dhume [Glycobiology 8 (1998) 685], originally used to analyze N-linked oligosaccharides. It is less time consuming than a previously published 2-aminobenzamide labeling method [Anal. Biochem. 298 (2001) 207] for analyzing GSL-derived oligosaccharides, as the fluorescent labeling is performed on the enzyme reaction mixture. The purification of 2-AA-labeled products has been improved to ensure recovery of oligosaccharides containing one to four monosaccharide units, which was not previously possible using the Anumula and Dhume post-derivatization purification procedure. This new approach may also be used to analyze both N- and O-linked oligosaccharides.

  8. Radioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions

    PubMed Central

    Nierth, Alexander; Jäschke, Andres

    2011-01-01

    Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope 32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme—an RNA sequence that catalyzes the eponymous reaction. We used the 32P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the 32P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups. PMID:21731729

  9. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    NASA Astrophysics Data System (ADS)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  10. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning

    PubMed Central

    Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi

    2017-01-01

    Motivation: Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. Results: We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Availability and Implementation: Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/, R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError Contacts: toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27797775

  11. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.

    PubMed

    Hocking, Toby Dylan; Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi; Bourque, Guillaume

    2017-02-15

    Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ , R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError. toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.

    PubMed

    Cocos, Anne; Fiks, Alexander G; Masino, Aaron J

    2017-07-01

    Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Our best-performing RNN model used pretrained word embeddings created from a large, non-domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates.

    PubMed

    Kukis, D L; DeNardo, S J; DeNardo, G L; O'Donnell, R T; Meares, C F

    1998-12-01

    Radioimmunotherapy (RIT) with 90Y-labeled immunoconjugates has shown promise in clinical trials. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) binds 90Y with extraordinary stability, minimizing the toxicity of 90Y-DOTA immunoconjugates arising from loss of 90Y to bone. However, reported 90Y-DOTA immunoconjugate product yields have been typically only < or =50%. Improved yields are needed for RIT with 90Y-DOTA immunoconjugates to be practical. (S) 2-[p-(bromoacetamido)benzyl]-DOTA (BAD) was conjugated to the monoclonal antibody Lym-1 via 2-iminothiolane (2IT). The immunoconjugate product, 2IT-BAD-Lym-1, was labeled in excess yttrium in various buffers over a range of concentrations and pH. Kinetic studies were performed in selected buffers to estimate radiolabeling reaction times under prospective radiopharmacy labeling conditions. The effect of temperature on reaction kinetics was examined. Optimal radiolabeling conditions were identified and used in eight radiolabeling experiments with 2IT-BAD-Lym-1 and a second immunoconjugate, DOTA-peptide-chimeric L6, with 248-492 MBq (6.7-13.3 mCi) of 90Y. Ammonium acetate buffer (0.5 M) was associated with the highest uptake of yttrium. On the basis of kinetic data, the time required to chelate 94% of 90Y (four half-times) under prospective radiopharmacy labeling conditions in 0.5 M ammonium acetate was 17-148 min at pH 6.5, but it was only 1-10 min at pH 7.5. Raising the reaction temperature from 25 degrees C to 37 degrees C markedly increased the chelation rate. Optimal radiolabeling conditions were identified as: 30-min reaction time, 0.5 M ammonium acetate buffer, pH 7-7.5 and 37 degrees C. In eight labeling experiments under optimal conditions, a mean product yield (+/- s.d.) of 91%+/-8% was achieved, comparable to iodination yields. The specific activity of final products was 74-130 MBq (2.0-3.5 mCi) of 90Y per mg of monoclonal antibody. The immunoreactivity of 90Y-labeled

  14. An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells

    PubMed Central

    Argus, Joseph P.; Yu, Amy K.; Wang, Eric S.; Williams, Kevin J.; Bensinger, Steven J.

    2017-01-01

    Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function. PMID:27974366

  15. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  16. Methylphenidate Transdermal System: A Multisite, Open-Label Study of Dermal Reactions in Pediatric Patients Diagnosed With ADHD

    PubMed Central

    Squires, Liza; Li, Yunfeng; Civil, Richard; Paller, Amy S.

    2010-01-01

    Objective: To characterize dermal reactions and examine methylphenidate (MPH) sensitization in subjects receiving methylphenidate transdermal system (MTS). Method: This multicenter, open-label, dose-optimization study utilized MTS doses of 10, 15, 20, and 30 mg in children aged 6 to 12 years, inclusive (N = 305), with a DSM-IV-TR primary diagnosis of attention-deficit/hyperactivity disorder. The study was conducted between January 8, 2007, and August 23, 2007. Subjects wore MTS on their hips for 9 hours per day, alternating sides daily for a total of 7 weeks. Assessments included the Experience of Discomfort scale, Transdermal System Adherence scale, and Dermal Response Scale (DRS; 0 = no irritation, 7 = strong reaction). On-study reevaluations were conducted to characterize DRS scores ≥ 4. Epicutaneous allergy patch testing was conducted for DRS scores ≥ 6, persistent DRS scores ≥ 4, DRS score increase following an assessment of ≥ 4, or DRS scores of 4 or 5 following elective discontinuation. Results: Approximately half of subjects experienced definite erythema at the patch site that generally dissipated within 24 hours. Four subjects experienced a DRS score of 4 (1%): erythema in 1 subject resolved on study treatment, 2 cases resolved poststudy and subjects tolerated oral MPH, and 1 subject discontinued treatment. The latter subject was referred for patch testing and was diagnosed with allergic contact sensitization to MPH. Conclusions: Few severe dermal effects were seen with MTS treatment. Dermal reactions were characterized as contact dermatitis and dissipated rapidly. On patch testing, 1 subject (0.3%) manifested sensitization to MPH. Trial Registration: clinicaltrials.gov Identifier: NCT00434213 PMID:21494336

  17. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  18. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  19. The Goldilocks Principle in Phase Labeling. Minimalist and Orthogonal Phase Tagging for Chromatography-Free Mitsunobu Reaction.

    PubMed

    Szigeti, Mariann; Dobi, Zoltán; Soós, Tibor

    2018-03-02

    An inexpensive and chromatography-free Mitsunobu methodology has been developed using low molecular weight and orthogonally phase-tagged reagents, a tert-butyl-tagged highly apolar phosphine, and a water-soluble DIAD analogue. The byproduct of the Mitsunobu reactions can be removed by sequential liquid-liquid extractions using traditional solvents such as hexanes, MeOH, water, and EtOAc. Owing to the orthogonal phase labeling, the spent reagents can be regenerated. This new variant of the Mitsunobu reaction promises to provide an alternative and complementary solution for the well-known separation problem of the Mitsunobu reaction without having to resort to expensive, large molecular weight reagents and chromatography.

  20. Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: A new precision and synergy scoring system.

    PubMed

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2016-11-01

    13 C-Metabolic flux analysis ( 13 C-MFA) is a widely used approach in metabolic engineering for quantifying intracellular metabolic fluxes. The precision of fluxes determined by 13 C-MFA depends largely on the choice of isotopic tracers and the specific set of labeling measurements. A recent advance in the field is the use of parallel labeling experiments for improved flux precision and accuracy. However, as of today, no systemic methods exist for identifying optimal tracers for parallel labeling experiments. In this contribution, we have addressed this problem by introducing a new scoring system and evaluating thousands of different isotopic tracer schemes. Based on this extensive analysis we have identified optimal tracers for 13 C-MFA. The best single tracers were doubly 13 C-labeled glucose tracers, including [1,6- 13 C]glucose, [5,6- 13 C]glucose and [1,2- 13 C]glucose, which consistently produced the highest flux precision independent of the metabolic flux map (here, 100 random flux maps were evaluated). Moreover, we demonstrate that pure glucose tracers perform better overall than mixtures of glucose tracers. For parallel labeling experiments the optimal isotopic tracers were [1,6- 13 C]glucose and [1,2- 13 C]glucose. Combined analysis of [1,6- 13 C]glucose and [1,2- 13 C]glucose labeling data improved the flux precision score by nearly 20-fold compared to widely use tracer mixture 80% [1- 13 C]glucose +20% [U- 13 C]glucose. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Off-Label Drug Use

    MedlinePlus

    ... their drugs for off-label uses. Off-label marketing is very different from off-label use. Why ... at a higher risk for medication errors, side effects, and unwanted drug reactions. It’s important that the ...

  2. Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices.

    PubMed

    Credo, Grace M; Su, Xing; Wu, Kai; Elibol, Oguz H; Liu, David J; Reddy, Bobby; Tsai, Ta-Wei; Dorvel, Brian R; Daniels, Jonathan S; Bashir, Rashid; Varma, Madoo

    2012-03-21

    We introduce a label-free approach for sensing polymerase reactions on deoxyribonucleic acid (DNA) using a chelator-modified silicon-on-insulator field-effect transistor (SOI-FET) that exhibits selective and reversible electrical response to pyrophosphate anions. The chemical modification of the sensor surface was designed to include rolling-circle amplification (RCA) DNA colonies for locally enhanced pyrophosphate (PPi) signal generation and sensors with immobilized chelators for capture and surface-sensitive detection of diffusible reaction by-products. While detecting arrays of enzymatic base incorporation reactions is typically accomplished using optical fluorescence or chemiluminescence techniques, our results suggest that it is possible to develop scalable and portable PPi-specific sensors and platforms for broad biomedical applications such as DNA sequencing and microbe detection using surface-sensitive electrical readout techniques.

  3. Synthesis of γ-Phosphate-Labeled and Doubly Labeled Adenosine Triphosphate Analogs.

    PubMed

    Hacker, Stephan M; Welter, Moritz; Marx, Andreas

    2015-03-09

    This unit describes the synthesis of γ-phosphate-labeled and doubly labeled adenosine triphosphate (ATP) analogs and their characterization using the phosphodiesterase I from Crotalus adamanteus (snake venom phosphodiesterase; SVPD). In the key step of the synthesis, ATP or an ATP analog, bearing a linker containing a trifluoroacetamide group attached to the nucleoside, are modified with an azide-containing linker at the terminal phosphate using an alkylation reaction. Subsequently, different labels are introduced to the linkers by transformation of one functional group to an amine and coupling to an N-hydroxysuccinimide ester. Specifically, the Staudinger reaction of the azide is employed as a straightforward means to obtain an amine in the presence of various labels. Furthermore, the fluorescence characteristics of a fluorogenic, doubly labeled ATP analog are investigated following enzymatic cleavage by SVPD. Copyright © 2015 John Wiley & Sons, Inc.

  4. Optimized protocol for quantitative multiple reaction monitoring-based proteomic analysis of formalin-fixed, paraffin embedded tissues

    PubMed Central

    Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.

    2016-01-01

    Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933

  5. A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging

    PubMed Central

    2015-01-01

    A new 18F-labeled tetrazine derivative was developed aiming at optimal radiochemistry, fast reaction kinetics in inverse electron-demand Diels–Alder cycloaddition (IEDDA), and favorable pharmacokinetics for in vivo bioorthogonal chemistry. The radiolabeling of the tetrazine was achieved in high yield, purity, and specific activity under mild reaction conditions via conjugation with 5-[18F]fluoro-5-deoxyribose, providing a glycosylated tetrazine derivative with low lipophilicity. The 18F-tetrazine showed fast reaction kinetics toward the most commonly used dienophiles in IEDDA reactions. It exhibited excellent chemical and enzymatic stability in mouse plasma and in phosphate-buffered saline (pH 7.41). Biodistribution in mice revealed favorable pharmacokinetics with major elimination via urinary excretion. The results indicate that the glycosylated 18F-labeled tetrazine is an excellent candidate for in vivo bioorthogonal chemistry applications in pretargeted PET imaging approaches. PMID:26819667

  6. Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.

    PubMed

    Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P

    2017-05-01

    Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Photoactivatable protein labeling by singlet oxygen mediated reactions.

    PubMed

    To, Tsz-Leung; Medzihradszky, Katalin F; Burlingame, Alma L; DeGrado, William F; Jo, Hyunil; Shu, Xiaokun

    2016-07-15

    Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions.

    PubMed

    Kozma, Eszter; Demeter, Orsolya; Kele, Péter

    2017-03-16

    Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. The efficiency of 18F labelling of a prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity.

    PubMed

    Wang, Mengzhe; McNitt, Christopher D; Wang, Hui; Ma, Xiaofen; Scarry, Sarah M; Wu, Zhanhong; Popik, Vladimir V; Li, Zibo

    2018-06-27

    Here we report the 18F labeling of a prostate specific membrane antigen (PSMA) ligand via a strain promoted oxa-dibenzocyclooctyne (ODIBO)- or bicyclo[6.1.0]nonyne (BCN)-azide reaction. Although ODIBO reacts with azide 20 fold faster than BCN, in vivo PET imaging suggests that 18F-BCN-azide-PSMA demonstrated much higher tumor uptake and a much higher tumor to background contrast.

  10. Pre-labeling of diverse protein samples with a fixed amount of Cy5 for sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.

    PubMed

    Bjerneld, Erik J; Johansson, Johan D; Laurin, Ylva; Hagner-McWhirter, Åsa; Rönn, Ola; Karlsson, Robert

    2015-09-01

    A pre-labeling protocol based on Cy5 N-hydroxysuccinimide (NHS) ester labeling of proteins has been developed for one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. We show that a fixed amount of sulfonated Cy5 can be used in the labeling reaction to label proteins over a broad concentration range-more than three orders of magnitude. The optimal amount of Cy5 was found to be 50 to 250pmol in 20μl using a Tris-HCl labeling buffer at pH 8.7. Labeling protein samples with a fixed amount of dye in this range balances the requirements of sub-nanogram detection sensitivity and low dye-to-protein (D/P) ratios for SDS-PAGE. Simulations of the labeling reaction reproduced experimental observations of both labeling kinetics and D/P ratios. Two-dimensional electrophoresis was used to examine the labeling of proteins in a cell lysate using both sulfonated and non-sulfonated Cy5. For both types of Cy5, we observed efficient labeling across a broad range of molecular weights and isoelectric points. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Quantifying risk: the role of absolute and relative measures in interpreting risk of adverse reactions from product labels of antipsychotic medications.

    PubMed

    Citrome, Leslie

    2009-09-01

    Pharmaceutical product labeling as approved by regulatory agencies include statements of adverse event risk. Product labels include descriptive statements such as whether events are uncommon or rare, as well as percentage occurrence for more common events. In addition tables are provided with the frequencies of the latter events for both product and placebo as observed in clinical trials. Competing products are not mentioned in a specific drug's product labeling but indirect comparisons can be made using the corresponding label information for the alternate product. Two types of tools are easily used for this purpose: absolute measures such as number needed to harm (NNH), and relative measures such as relative risk increase (RRI). The calculations for both of these types of quantitative measures are presented using as examples the oral first-line second-generation antipsychotic medications. Among three sample outcomes selected a priori, akathisia, weight gain, and discontinuation from a clinical trial because of an adverse reaction, there appears to be differences among the different antipsychotics versus placebo. Aripiprazole was associated with the highest risk for akathisia, particularly when used as adjunctive treatment of major depressive disorder (NNH 5, 95% CI 4-7; RRI 525%, 95% CI 267%-964%). Although insufficient information was available in product labeling to calculate the CI, olanzapine was associated with the highest risk for weight gain of at least 7% from baseline (NNH 6, RRI 640% for adults; NNH 4, RRI 314% for adolescents), and quetiapine for the indication of bipolar depression was associated with the highest risk of discontinuation from a clinical trial because of an adverse reaction (NNH 8, RRI 265% for 600 mg/d; NNH 15, RRI 137% for 300 mg/d). In conclusion, with certain limitations, it is possible for the clinician to extract information from medication product labeling regarding the frequency with which certain adverse reactions can be

  12. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Debusschere, Bert J.; Najm, Habib N.; Matta, Alain; Knio, Omar M.; Ghanem, Roger G.; Le Maître, Olivier P.

    2003-08-01

    This paper presents a model for two-dimensional electrochemical microchannel flow including the propagation of uncertainty from model parameters to the simulation results. For a detailed representation of electroosmotic and pressure-driven microchannel flow, the model considers the coupled momentum, species transport, and electrostatic field equations, including variable zeta potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. Uncertainty from the model parameters and boundary conditions is propagated to the model predictions using a pseudo-spectral stochastic formulation with polynomial chaos (PC) representations for parameters and field quantities. Using a Galerkin approach, the governing equations are reformulated into equations for the coefficients in the PC expansion. The implementation of the physical model with the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as well as in two-dimensional electrochemical microchannel flow. The results for the two-dimensional channel show strong distortion of sample profiles due to ion movement and consequent buffer disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage across the channel.

  13. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    PubMed

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  14. Optimization and validation of FePro cell labeling method.

    PubMed

    Janic, Branislava; Rad, Ali M; Jordan, Elaine K; Iskander, A S M; Ali, Md M; Varma, N Ravi S; Frank, Joseph A; Arbab, Ali S

    2009-06-11

    Current method to magnetically label cells using ferumoxides (Fe)-protamine (Pro) sulfate (FePro) is based on generating FePro complexes in a serum free media that are then incubated overnight with cells for the efficient labeling. However, this labeling technique requires long (>12-16 hours) incubation time and uses relatively high dose of Pro (5-6 microg/ml) that makes large extracellular FePro complexes. These complexes can be difficult to clean with simple cell washes and may create low signal intensity on T2* weighted MRI that is not desirable. The purpose of this study was to revise the current labeling method by using low dose of Pro and adding Fe and Pro directly to the cells before generating any FePro complexes. Human tumor glioma (U251) and human monocytic leukemia cell (THP-1) lines were used as model systems for attached and suspension cell types, respectively and dose dependent (Fe 25 to 100 microg/ml and Pro 0.75 to 3 microg/ml) and time dependent (2 to 48 h) labeling experiments were performed. Labeling efficiency and cell viability of these cells were assessed. Prussian blue staining revealed that more than 95% of cells were labeled. Intracellular iron concentration in U251 cells reached approximately 30-35 pg-iron/cell at 24 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. However, comparable labeling was observed after 4 h across the described FePro concentrations. Similarly, THP-1 cells achieved approximately 10 pg-iron/cell at 48 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. Again, comparable labeling was observed after 4 h for the described FePro concentrations. FePro labeling did not significantly affect cell viability. There was almost no extracellular FePro complexes observed after simple cell washes. To validate and to determine the effectiveness of the revised technique, human T-cells, human hematopoietic stem cells (hHSC), human bone marrow stromal cells (hMSC) and mouse neuronal stem cells (mNSC C17

  15. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-12-24

    "Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  17. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  18. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  19. Some approaches to optimal cluster labeling of aerospace imagery

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1980-01-01

    Some approaches are presented to the problem of labeling clusters using information from a given set of labeled and unlabeled aerospace imagery patterns. The assignment of class labels to the clusters is formulated as the determination of the best assignment over all possible ones with respect to some criterion. Cluster labeling is also viewed as the probability of correct labeling with a maximization of likelihood function. Results of the application of these techniques in the processing of remotely sensed multispectral scanner imagery data are presented.

  20. Characterization of labelling and de-labelling reagents for detection and recovery of tyrosine residue in peptide.

    PubMed

    Toyo'oka, Toshimasa; Mantani, Tomomi; Kato, Masaru

    2003-01-01

    This paper characterized the labelling and de-labelling reagents for reversible labelling of tyrosine (Tyr)-containing peptide, which involves detection and recovery. The phenolic hydroxyl group (-OH) in Tyr structure reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F), and 1-fluoro-2,4-dinitrobenzene (DNFB) under mild conditions at room temperature at pH 9.3. The labels in the resulting derivatives were removed with the treatment of nucleophiles, such as thiols (cysteine, N-acetyl-L-cysteine and dithiothreitol) and amines (dimethylamine, methylamine, diethylamine, ethylamine and pyrrolidine). The de-labelling reactions of NBD-labelled N-acetyl-L-tyrosine (N-AcTyr) with the nucleophiles produced N-AcTyr, accompanied by NBD-nucleophile. Although DBD-F and DNFB also successfully labeled the -OH group in N-AcTyr, the efficiency of Cbond;O bond cleavage and recovery of N-AcTyr by the nucleophiles was relatively low compared with NBD-label. Among the de-labelling reagents, N-acetyl-L-cysteine and dimethylamine were recommended for the elimination of NBD moiety, with respect to the reaction rate, the side reaction, and the yield of recovery. The proposed procedure, which includes the labelling with NBD-F and the removal of NBD moiety by the nucleophiles, was successfully applied to the reversible labelling of N-terminal amine-blocked peptides, i.e. N-AcTyr-Val-Gly, Z-Glu-Tyr, Z-Phe-Tyr, N-Formyl-Met-Leu-Tyr, and N-AcArg-Pro-Pro-Gly-Phe-Ser-Pro-Tyr-Arg. Copyright 2003 John Wiley & Sons, Ltd.

  1. Off-label prescribing of medications for pain: maintaining optimal care at an intersection of law, public policy, and ethics.

    PubMed

    Ruble, James

    2012-06-01

    For more than 60 years, regulations limited marketing of medications for off-label uses to very low levels. Some key policy changes in the late 1990s ushered in an era of deregulation of off-label marketing. Policy changes included revised United States federal law as well as modifications of Food and Drug Administration (FDA) regulations. Subsequent investigations documented an explosion in scope off-label prescribing. Attempts to limit off-label advertising by manufacturers were vigorously challenged in the courts. Other modalities are needed to maintain a clinical care environment that places the patients' best interests first. In many circumstances, an off-label medication may be in the patient's best interests; however, where there is a lower level of clinical justification, the informed consent of the patient and shared decision making of the patient is essential to optimize outcome.

  2. End labeling procedures: an overview.

    PubMed

    Hilario, Elena

    2004-09-01

    There are two ways to label a DNA molecular; by the ends or all along the molecule. End labeling can be performed at the 3'- or 5'-end. Labeling at the 3' end is performed by filling 3'-end recessed ends with a mixture or labeled and unlabeled dNTPs using Klenow or T4 DNA polymerases. Both reactions are template dependent. Terminal deoxynucleotide transferase incorporates dNTPs at the 3' end of any kind of DNA molecule or RNA. Labels incorporated at the 3'-end of the DNA molecule prevent any further extension or ligation to any other molecule, but this can be overcome by labeling the 5'-end of the desired DNA molecule. 5'-end labeling is performed by enzymatic methods (T4 polynucleotide kinase exchange and forward reactions), by chemical modification of sensitized oligonucleotides with phosphoroamidite, or by combined methods. Probe cleanup is recommended when high background problems occur, but caution should be taken not to damage the attached probe with harsh chemicals or by light exposure.

  3. A label-free amplified fluorescence DNA detection based on isothermal circular strand-displacement polymerization reaction and graphene oxide.

    PubMed

    Li, Zhen; Zhu, Wenping; Zhang, Jinwen; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2013-07-07

    A label-free fluorescent DNA biosensor has been presented based on isothermal circular strand-displacement polymerization reaction (ICSDPR) combined with graphene oxide (GO) binding. The proposed method is simple and cost-effective with a low detection limit of 4 pM, which compares favorably with other GO-based homogenous DNA detection methods.

  4. Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics.

    PubMed

    Wu, Yiman; Li, Liang

    2012-12-18

    For mass spectrometry (MS)-based metabolomics, it is important to use the same amount of starting materials from each sample to compare the metabolome changes in two or more comparative samples. Unfortunately, for biological samples, the total amount or concentration of metabolites is difficult to determine. In this work, we report a general approach of determining the total concentration of metabolites based on the use of chemical labeling to attach a UV absorbent to the metabolites to be analyzed, followed by rapid step-gradient liquid chromatography (LC) UV detection of the labeled metabolites. It is shown that quantification of the total labeled analytes in a biological sample facilitates the preparation of an appropriate amount of starting materials for MS analysis as well as the optimization of the sample loading amount to a mass spectrometer for achieving optimal detectability. As an example, dansylation chemistry was used to label the amine- and phenol-containing metabolites in human urine samples. LC-UV quantification of the labeled metabolites could be optimally performed at the detection wavelength of 338 nm. A calibration curve established from the analysis of a mixture of 17 labeled amino acid standards was found to have the same slope as that from the analysis of the labeled urinary metabolites, suggesting that the labeled amino acid standard calibration curve could be used to determine the total concentration of the labeled urinary metabolites. A workflow incorporating this LC-UV metabolite quantification strategy was then developed in which all individual urine samples were first labeled with (12)C-dansylation and the concentration of each sample was determined by LC-UV. The volumes of urine samples taken for producing the pooled urine standard were adjusted to ensure an equal amount of labeled urine metabolites from each sample was used for the pooling. The pooled urine standard was then labeled with (13)C-dansylation. Equal amounts of the (12)C-labeled

  5. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    NASA Astrophysics Data System (ADS)

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  6. Documentation of penicillin adverse drug reactions in electronic health records: inconsistent use of allergy and intolerance labels.

    PubMed

    Inglis, Joshua M; Caughey, Gillian E; Smith, William; Shakib, Sepehr

    2017-11-01

    The majority of patients with penicillin allergy labels tolerate penicillins. Inappropriate avoidance of penicillin is associated with increased hospitalisation, infections and healthcare costs. To examine the documentation of penicillin adverse drug reactions (ADR) in a large-scale hospital-based electronic health record. Penicillin ADR were extracted from 96 708 patient records in the Enterprise Patient Administration System in South Australia. Expert criteria were used to determine consistency of ADR entry and suitability for further evaluation. Of 43 011 unique ADR reports, there were 5023 ADR to penicillins with most being entered as allergy (n = 4773, 95.0%) rather than intolerance (n = 250, 5.0%). A significant proportion did not include a reaction description (n = 1052, 20.9%). Using pre-set criteria, 10.1% of reports entered as allergy had a reaction description that was consistent with intolerance and 31.0% of the entered intolerances had descriptions consistent with allergy. Virtually all ADR (n = 4979, 99.1%) were appropriate for further evaluation by history taking or immunological testing and half (50.7%, n = 2549) had documented reactions suggesting low-risk of penicillin allergy. The frequency of penicillin allergy label in this data set is consistent with the known overdiagnosis of penicillin allergy in the hospital population. ADR documentation was poor with incomplete entries and inconsistent categorisation. The concepts of allergy and intolerance for ADR classification, whilst mechanistically valid, may not be useful at the point of ADR entry by generalist clinicians. Systematic evaluation of reported ADR is needed to improve the quality of information for future prescribers. © 2017 Royal Australasian College of Physicians.

  7. On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation.

    PubMed

    Yang, Rui; Pagaduan, Jayson V; Yu, Ming; Woolley, Adam T

    2015-01-01

    Microfluidic systems with monolithic columns have been developed for preconcentration and on-chip labeling of model proteins. Monoliths were prepared in microchannels by photopolymerization, and their properties were optimized by varying the composition and concentration of the monomers to improve flow and extraction. On-chip labeling of proteins was achieved by driving solutions through the monolith by use of voltage then incubating fluorescent dye with protein retained on the monolith. Subsequently, the labeled proteins were eluted, by applying voltages to reservoirs on the microdevice, and then detected, by monitoring laser-induced fluorescence. Monoliths prepared from octyl methacrylate combine the best protein retention with the possibility of separate elution of unattached fluorescent label with 50% acetonitrile. Finally, automated on-chip extraction and fluorescence labeling of a model protein were successfully demonstrated. This method involves facile sample pretreatment, and therefore has potential for production of integrated bioanalysis microchips.

  8. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    PubMed Central

    Scheler, Ott; Glynn, Barry; Parkel, Sven; Palta, Priit; Toome, Kadri; Kaplinski, Lauris; Remm, Maido; Maher, Majella; Kurg, Ants

    2009-01-01

    Background Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA) with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP) molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. Results Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. Conclusion We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology. PMID:19445684

  9. Synthesis of di-functional ligand and fluorescently labeling SiO2 microspheres

    NASA Astrophysics Data System (ADS)

    Chen, Kexu; Kang, Ming; Liu, Min; Shen, Simin; Sun, Rong

    2018-05-01

    In order to complete the fluorescent labeling of SiO2 microspheres, a kind of di-functional ligand was synthesized and purified, which could not only coordinate rare earth ions but also react with the active groups to bond host materials with an alkoxysilane groups. Fourier transform infrared spectroscopy (FT-IR), 1H NMR spectra, MS spectra, field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and luminescence spectrophotometer were used to study the structure of di-functional ligand and properties of fluorescent coupling agent and fluorescent labeled SiO2 microspheres. The optimal experiment conditions were acquired as follows: molar ratio as 1: 4 (MDBM: MICPTES), reaction time at 6 h and reaction temperature as 65 °C (yield up to 40%) through the orthogonal experiment and purification process. The results indicated that fluorescent coupling agent presented red photoluminesence of Eu3+ ions at 610 nm, and the absolute quantum yield was 11%. On the other hand, the hydrolysis of the coupling agent reacted on the surface of SiO2 microspheres and presented fluorescent labeling homogeneously.

  10. Optimization of random PEGylation reactions by means of high throughput screening.

    PubMed

    Maiser, Benjamin; Dismer, Florian; Hubbuch, Jürgen

    2014-01-01

    Since the first FDA approval of a PEGylated product in 1990, so called random PEGylation reactions are still used to increase the efficacy of biopharmaceuticals and represent the major technology of all approved PEG-modified drugs. However, the great influence of process parameters on PEGylation degree and the PEG-binding site results in a lack of reaction specificity which can have severe impact on the product profile. Consequently, reproducible and well characterized processes are essential to meet increasing regulative requirements resulting from the quality-by-design (QbD) initiative, especially for this kind of modification type. In this study we present a general approach which combines the simple chemistry of random PEGylation reactions with high throughput experimentation (HTE) to achieve a well-defined process. Robotic based batch experiments have been established in a 96-well plate format and were analyzed to investigate the influence of different PEGylation conditions for lysozyme as model protein. With common SEC analytics highly reproducible reaction kinetics were measured and a significant influence of PEG-excess, buffer pH, and reaction time could be investigated. Additional mono-PEG-lysozyme analytics showed the impact of varying buffer pH on the isoform distribution, which allowed us to identify optimal process parameters to get a maximum concentration of each isoform. Employing Micrococcus lysodeikticus based activity assays, PEG-lysozyme33 was identified to be the isoform with the highest residual activity, followed by PEG-lysozyme1 . Based on these results, a control space for a PEGylation reaction was defined with respect to an optimal overall volumetric activity of mono-PEG-lysozyme isoform mixtures. © 2013 Wiley Periodicals, Inc.

  11. Label-Free Fluorescent DNA Dendrimers for microRNA Detection Based On Nonlinear Hybridization Chain Reaction-Mediated Multiple G-Quadruplex with Low Background Signal.

    PubMed

    Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng

    2018-04-18

    Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative

  12. Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Lombardo, S.; Mulone, G.; Trovato, M.

    2008-06-01

    We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.

  13. Stable isotope labeling by essential nutrients in cell culture for preparation of labeled coenzyme A and its thioesters.

    PubMed

    Basu, Sankha S; Mesaros, Clementina; Gelhaus, Stacy L; Blair, Ian A

    2011-02-15

    Stable isotope dilution mass spectrometry (MS) represents the gold standard for quantification of endogenously formed cellular metabolites. Although coenzyme A (CoA) and acyl-CoA thioester derivatives are central players in numerous metabolic pathways, the lack of a commercially available isotopically labeled CoA limits the development of rigorous MS-based methods. In this study, we adapted stable isotope labeling by amino acids in cell culture (SILAC) methodology to biosynthetically generate stable isotope labeled CoA and thioester analogues for use as internal standards in liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS) assays. This was accomplished by incubating murine hepatocytes (Hepa 1c1c7) in media in which pantothenate (a precursor of CoA) was replaced with [(13)C(3)(15)N(1)]-pantothenate. Efficient incorporation into various CoA species was optimized to >99% [(13)C(3)(15)N(1)]-pantothenate after three passages of the murine cells in culture. Charcoal-dextran-stripped fetal bovine serum (FBS) was found to be more efficient for serum supplementation than dialyzed or undialyzed FBS, due to lower contaminating unlabeled pantothenate content. Stable isotope labeled CoA species were extracted and utilized as internal standards for CoA thioester analysis in cell culture models. This methodology of stable isotope labeling by essential nutrients in cell culture (SILEC) can serve as a paradigm for using vitamins and other essential nutrients to generate stable isotope standards that cannot be readily synthesized.

  14. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.

    PubMed

    Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S

    2017-12-01

    Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.

  15. Three-Component Reaction Discovery Enabled by Mass Spectrometry of Self-Assembled Monolayers

    PubMed Central

    Montavon, Timothy J.; Li, Jing; Cabrera-Pardo, Jaime R.; Mrksich, Milan; Kozmin, Sergey A.

    2011-01-01

    Multi-component reactions have been extensively employed in many areas of organic chemistry. Despite significant progress, the discovery of such enabling transformations remains challenging. Here, we present the development of a parallel, label-free reaction-discovery platform, which can be used for identification of new multi-component transformations. Our approach is based on the parallel mass spectrometric screening of interfacial chemical reactions on arrays of self-assembled monolayers. This strategy enabled the identification of a simple organic phosphine that can catalyze a previously unknown condensation of siloxy alkynes, aldehydes and amines to produce 3-hydroxy amides with high efficiency and diastereoselectivity. The reaction was further optimized using solution phase methods. PMID:22169871

  16. Optimization of Time-Resolved Fluorescence Assay for Detection of Eu-DOTA-labeled Ligand-Receptor Interactions

    PubMed Central

    De Silva, Channa R.; Vagner, Josef; Lynch, Ronald; Gillies, Robert J.; Hruby, Victor J.

    2010-01-01

    Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improved sensitivity and affordability in high throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as DTPA derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIA) have not yet been successfully used with more stable chelators, e.g. DOTA derivatives, due to the incomplete release of lanthanide(III) ions from the complex. Here, a modified and an optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA labeled peptides. Complete release of Eu(III) ions from DOTA labeled ligands was observed using hydrochloric acid (2.0 M) prior to the luminescent enhancement step. NDP-α-MSH labeled with Eu(III)-DOTA was synthesized and the binding affinity to cells overexpressing the human melanocortin-4 receptors (hMC4R) was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA labeled heterobivalent peptide to the cells expressing both hMC4R and CCK-2 (Cholecystokinin) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries. PMID:19852924

  17. Responses of young adults to graphic warning labels for cigarette packages

    PubMed Central

    Cameron, Linda D.; Pepper, Jessica K.; Brewer, Noel T.

    2013-01-01

    Background In 2010, the US Food and Drug Administration (FDA) proposed a series of 36 graphic warning labels for cigarette packages. We sought to evaluate the effects of the labels on fear-related emotions about health consequences of smoking and smoking motivations of young adults. Methods We conducted an experimental study in 2010–2011 with 325 smokers and non-smokers ages 18–30 years whom we recruited through community distribution lists in North Carolina and through a national survey company. Each participant viewed 27 labels (18 of the proposed labels with graphic images and text warnings and 9 with text-only warnings) in a random order, evaluating each label on understandability and its effects on fear-related reactions and discouragement from wanting to smoke. Results Respondents found most of the proposed labels easy to understand. Of the 36 labels, 64% induced greater fear-related reactions and 58% discouraged respondents from wanting to smoke more than the corresponding text-only labels did. Labels with the greatest effects had photographs (as compared with drawings or other art graphics) or depicted diseased body parts or suffering or dead people. In almost every comparison, smokers reported lower fear-related reactions and feeling less discouraged from wanting to smoke relative to non-smokers. Conclusions Most of the proposed labels enhanced fear-related reactions about health consequences of smoking and reduced motivations to smoke relative to text-only labels, although some had larger effects than others. All but one of the nine warning labels recently adopted by the FDA enhanced fear-related reactions and reduced smoking motivations. PMID:23624558

  18. 18O-labeled proteome reference as global internal standards for targeted quantification by selected reaction monitoring-mass spectrometry.

    PubMed

    Kim, Jong-Seo; Fillmore, Thomas L; Liu, Tao; Robinson, Errol; Hossain, Mahmud; Champion, Boyd L; Moore, Ronald J; Camp, David G; Smith, Richard D; Qian, Wei-Jun

    2011-12-01

    Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.

  19. Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization.

    PubMed

    Zhang, Qing; Zhu, Liang; Feng, Hanhua; Ang, Simon; Chau, Fook Siong; Liu, Wen-Tso

    2006-01-18

    This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap=1-2 microm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 microL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.

  20. Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye.

    PubMed

    Dietzek, Benjamin; Brüggemann, Ben; Pascher, Torbjörn; Yartsev, Arkady

    2007-10-31

    Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.

  1. Responses of young adults to graphic warning labels for cigarette packages.

    PubMed

    Cameron, Linda D; Pepper, Jessica K; Brewer, Noel T

    2015-03-01

    In 2010, the US Food and Drug Administration (FDA) proposed a series of 36 graphic warning labels for cigarette packages. We sought to evaluate the effects of the labels on fear-related emotions about health consequences of smoking and smoking motivations of young adults. We conducted an experimental study in 2010-2011 with 325 smokers and non-smokers ages 18-30 years whom we recruited through community distribution lists in North Carolina and through a national survey company. Each participant viewed 27 labels (18 of the proposed labels with graphic images and text warnings and 9 with text-only warnings) in a random order, evaluating each label on understandability and its effects on fear-related reactions and discouragement from wanting to smoke. Respondents found most of the proposed labels easy to understand. Of the 36 labels, 64% induced greater fear-related reactions and 58% discouraged respondents from wanting to smoke more than the corresponding text-only labels did. Labels with the greatest effects had photographs (as compared with drawings or other art graphics) or depicted diseased body parts or suffering or dead people. In almost every comparison, smokers reported lower fear-related reactions and feeling less discouraged from wanting to smoke relative to non-smokers. Most of the proposed labels enhanced fear-related reactions about health consequences of smoking and reduced motivations to smoke relative to text-only labels, although some had larger effects than others. All but one of the nine warning labels recently adopted by the FDA enhanced fear-related reactions and reduced smoking motivations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Spectrophotometric determination of triclosan based on diazotization reaction: response surface optimization using Box-Behnken design.

    PubMed

    Kaur, Inderpreet; Gaba, Sonal; Kaur, Sukhraj; Kumar, Rajeev; Chawla, Jyoti

    2018-05-01

    A spectrophotometric method based on diazotization of aniline with triclosan has been developed for the determination of triclosan in water samples. The diazotization process involves two steps: (1) reaction of aniline with sodium nitrite in an acidic medium to form diazonium ion and (2) reaction of diazonium ion with triclosan to form a yellowish-orange azo compound in an alkaline medium. The resulting yellowish-orange product has a maximum absorption at 352 nm which allows the determination of triclosan in aqueous solution in the linear concentration range of 0.1-3.0 μM with R 2 = 0.998. The concentration of hydrochloric acid, sodium nitrite, and aniline was optimized for diazotization reaction to achieve good spectrophotometric determination of triclosan. The optimization of experimental conditions for spectrophotometric determination of triclosan in terms of concentration of sodium nitrite, hydrogen chloride and aniline was also carried out by using Box-Behnken design of response surface methodology and results obtained were in agreement with the experimentally optimized values. The proposed method was then successfully applied for analyses of triclosan content in water samples.

  3. Use of deuterium labeling by high-temperature solid-state hydrogen-exchange reaction for mass spectrometric analysis of bradykinin biotransformation.

    PubMed

    Kopylov, Arthur T; Myasoedov, Nikolay F; Dadayan, Alexander K; Zgoda, Victor G; Medvedev, Alexei E; Zolotarev, Yurii A

    2016-06-15

    Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Labelling of histone H5 and its interaction with DNA. 1. Histone H5 labelling with fluorescein isothiocyanate.

    PubMed

    Favazza, M; Lerho, M; Houssier, C

    1990-06-01

    Histone H5 has been labelled with fluorescein isothiocyanate (FITC) with particular attention to the reaction conditions (pH, reaction time and input FITC/H5 molar ratio) and to the complete elimination of non-covalently bound dye. We preferred to use reaction conditions which yielded non-specific uniform labelling rather than specific alpha-NH2 terminal labelling, in order to obtain higher sensitivity in further studies dealing with the detection of perturbation at the binding sites of H5 on DNA. FITC-labelled H5 was further characterized by absorption and circular dichroism spectroscopy, and the fluorescein probe titrated in the 4-8 pH range. The structural integrity of H5 was found to be preserved after labelling. The positive electrostatic potential of the environment in which the FITC probe is embedded in the arginine/lysine-rich tails of H5 is believed to be responsible for the drop of pK of 1 unit found for H5-FITC as compared to free FITC. For the globular part of H5, the pK of covalently-bound FITC was only slightly lowered; this is a consequence of the much lower content in positively-charged amino-acid side chains in this region.

  5. Penicillin allergy-getting the label right.

    PubMed

    2017-03-01

    Penicillin i allergy is a potentially serious adverse reaction that impacts on antibacterial treatment options. Although it is commonly reported and recorded in medical records, only a minority of patients with a label of penicillin allergy actually have the condition confirmed. The term 'allergy' may be incorrectly applied to adverse reactions that do not have an immunological basis and inappropriate labelling of penicillin allergy can lead to the unnecessary avoidance of penicillins and other beta-lactam antibacterials. Here, we discuss key features that help to distinguish patients at low or high risk of having a true penicillin allergy, summarise what is known about the risk of allergic reactions to other beta-lactam antibacterials in patients with penicillin allergy and discuss the steps to consider when assessing a label of penicillin allergy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Saturation Fluorescence Labeling of Proteins for Proteomic Analyses

    PubMed Central

    Pretzer, Elizabeth; Wiktorowicz, John E.

    2008-01-01

    We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations including a disulfide reducing agent (TCEP), pH, incubation time, linearity of labeling, and saturating dye: protein thiol ratio with protein standards to gauge specific and non-specific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific vs. non-specific labeling in the presence of thiourea are also discussed. We have found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, α-lactalbumin) is achieved at 50-100-fold excess of the uncharged maleimide-functionalized BODIPY™ dyes over Cys. We confirm our previous findings and those of others that the maleimide dyes are not impacted by the presence of 2M thiourea. Moreover, we establish that 2 mM TCEP used as reductant is optimal. We also establish further that labeling is optimal at pH 7.5 and complete after 30 min. Low non-specific labeling was gauged by the inclusion of non-Cys containing proteins (horse myoglobin, bovine carbonic anhydrase) to the labeling mixture. We also show that the dye exhibits little to no effect on the two dimensional mobilities of labeled proteins derived from cells. PMID:18191033

  7. A study of the radiosynthesis of fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ and its application in labeling 1,2,3-triazole analogs obtained by click chemistry.

    PubMed

    Wang, Cheng; Zhou, Wei; Yu, Junfeng; Zhang, Lan; Wang, Ni

    2012-01-01

    To optimize the conditions for the preparation of the organometallic precursor fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ and to synthesize the radiolabeling compounds of tricarbonyl rhenium. 1,2,3-Triazole analogs were synthesized by click chemistry and labeled with fac-[ReCO₃(H₂O)₃]Br and fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺. The aim was to improve the methods for the synthesis of ¹⁸⁸Re-labeled radiopharmaceuticals for therapy. With potassium boranocarbonate as the CO source and ammonia borane as the reducing agent, fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ was synthesized, and the click chemistry method was used to prepare the tricarbonyl rhenium complex. At the optimal reaction condition (the amounts of K₂[H₃BCO₂] and BH₃·NH₃ are 5 and 5 mg, respectively; reaction temperature is 75°C; and reaction time is 15 min), the radiochemical yields were 90%, and the labeling yield of bis(pyridin-2-ylmethyl) amine with fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ was more than 99% in 1 h at 75°C; the conjugation yields of triazole analog obtained by click chemistry with 'cold' and 'radio' tricarbonyl rhenium were more than 80%. The organometallic precursor fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ was prepared under optimal reaction conditions with a yield of 90%, and the triazole analogs synthesized by click chemistry were suitable ligands for tricarbonyl rhenium.

  8. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  9. Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides

    PubMed Central

    Thakur, Chandar S.; Brown, Margaret E.; Sama, Jacob N.; Jackson, Melantha E.

    2010-01-01

    Since RNAs lie at the center of most cellular processes, there is a need for synthesizing large amounts of RNAs made from stable isotope-labeled nucleotides to advance the study of their structure and dynamics by nuclear magnetic resonance (NMR) spectroscopy. A particularly effective means of obtaining labeled nucleotides is to harvest these nucleotides from bacteria grown in defined minimal media supplemented with 15NH4Cl and various carbon sources. Given the high cost of carbon precursors required for labeling nucleic acids for NMR studies, it becomes important to evaluate the optimal growth for commonly used strains under standard minimal media conditions. Such information is lacking. In this study, we characterize the growth for Escherichia coli strains K12, K10zwf, and DL323 in three minimal media with isotopic-labeled carbon sources of acetate, glycerol, and glycerol combined with formate. Of the three media, the LeMaster-Richards and the Studier media outperform the commonly used M9 media and both support optimal growth of E. coli for the production of nucleotides. However, the growth of all three E. coli strains in acetate is reduced almost twofold compared to growth in glycerol. Analysis of the metabolic pathway and previous gene array studies help to explain this differential growth in glycerol and acetate. These studies should benefit efforts to make selective 13C-15N isotopic-labeled nucleotides for synthesizing biologically important RNAs. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2813-y) contains supplementary material, which is available to authorized users. PMID:20730533

  10. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  11. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  12. EFFECT OF RAPID SHALLOW BREATHING ON THE DISTRIBUTION OF 18-O-LABELED OZONE REACTION PRODUCT IN THE RESPIRATORY TRACT OF THE RAT

    EPA Science Inventory

    We examined the effect of breathing pattern on ozone reaction product content within the respiratory tract. Thirty-four anesthetized, maleWistar rats were exposed to oxygen-18 (18O)-labeled ozone at 1.0 ppm for 2 h using a dual-chamber, negative-pressure ventilation system. Fre...

  13. Co-Labeling for Multi-View Weakly Labeled Learning.

    PubMed

    Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W

    2016-06-01

    It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi

  14. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.

    PubMed

    Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2009-01-01

    This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.

  15. An algorithm for optimal fusion of atlases with different labeling protocols

    PubMed Central

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Aganj, Iman; Bhatt, Priyanka; Casillas, Christen; Salat, David; Boxer, Adam; Fischl, Bruce; Van Leemput, Koen

    2014-01-01

    In this paper we present a novel label fusion algorithm suited for scenarios in which different manual delineation protocols with potentially disparate structures have been used to annotate the training scans (hereafter referred to as “atlases”). Such scenarios arise when atlases have missing structures, when they have been labeled with different levels of detail, or when they have been taken from different heterogeneous databases. The proposed algorithm can be used to automatically label a novel scan with any of the protocols from the training data. Further, it enables us to generate new labels that are not present in any delineation protocol by defining intersections on the underling labels. We first use probabilistic models of label fusion to generalize three popular label fusion techniques to the multi-protocol setting: majority voting, semi-locally weighted voting and STAPLE. Then, we identify some shortcomings of the generalized methods, namely the inability to produce meaningful posterior probabilities for the different labels (majority voting, semi-locally weighted voting) and to exploit the similarities between the atlases (all three methods). Finally, we propose a novel generative label fusion model that can overcome these drawbacks. We use the proposed method to combine four brain MRI datasets labeled with different protocols (with a total of 102 unique labeled structures) to produce segmentations of 148 brain regions. Using cross-validation, we show that the proposed algorithm outperforms the generalizations of majority voting, semi-locally weighted voting and STAPLE (mean Dice score 83%, vs. 77%, 80% and 79%, respectively). We also evaluated the proposed algorithm in an aging study, successfully reproducing some well-known results in cortical and subcortical structures. PMID:25463466

  16. An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides.

    PubMed

    Hsieh, Yi-Wen; Alqadah, Amel; Chuang, Chiou-Fen

    2016-11-29

    Electrophoretic Mobility Shift Assays (EMSA) are an instrumental tool to characterize the interactions between proteins and their target DNA sequences. Radioactivity has been the predominant method of DNA labeling in EMSAs. However, recent advances in fluorescent dyes and scanning methods have prompted the use of fluorescent tagging of DNA as an alternative to radioactivity for the advantages of easy handling, saving time, reducing cost, and improving safety. We have recently used fluorescent EMSA (fEMSA) to successfully address an important biological question. Our fEMSA analysis provides mechanistic insight into the effect of a missense mutation, G73E, in the highly conserved HMG transcription factor SOX-2 on olfactory neuron type diversification. We found that mutant SOX-2 G73E protein alters specific DNA binding activity, thereby causing olfactory neuron identity transformation. Here, we present an optimized and cost-effective step-by-step protocol for fEMSA using infrared fluorescent dye-labeled oligonucleotides containing the LIM-4/SOX-2 adjacent target sites and purified SOX-2 proteins (WT and mutant SOX-2 G73E proteins) as a biological example.

  17. Optimized molecular design of ADAPT-based HER2-imaging probes labelled with 111In and 68Ga.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Mitran, Bogdan; Vorobyeva, Anzhelika; Oroujeni, Maryam; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2018-06-04

    Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111 In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE) 3 DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C 59 - DEAVDANS-ADAPT6-GSSC and DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC) were stably labeled with 111 In for SPECT and 68 Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111 In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68 Ga-labeled counterparts. The best performing variant was DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC, providing tumor-to-blood ratios of 208±36 and 109±17 at 3 h for 111 In and 68 Ga labels, respectively.

  18. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  19. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  20. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA

    PubMed Central

    Lukinavičius, Gražvydas; Lapinaitė, Audronė; Urbanavičiūtė, Giedrė; Gerasimaitė, Rūta; Klimašauskas, Saulius

    2012-01-01

    DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA. PMID:23042683

  1. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    PubMed

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Consumer reaction to information on the labels of genetically modified food].

    PubMed

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-02-01

    To analyze consumer opinion on genetically modified foods and the information included on the label. A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline - via PubMed -, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors "organisms, genetically modified" and "food labeling". The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modified products and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies.

  3. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOEpatents

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  4. Optimization of immunolabeling and clearing techniques for indelibly-labeled memory traces.

    PubMed

    Pavlova, Ina P; Shipley, Shannon C; Lanio, Marcos; Hen, René; Denny, Christine A

    2018-04-16

    Recent genetic tools have allowed researchers to visualize and manipulate memory traces (i.e. engrams) in small brain regions. However, the ultimate goal is to visualize memory traces across the entire brain in order to better understand how memories are stored in neural networks and how multiple memories may coexist. Intact tissue clearing and imaging is a new and rapidly growing area of focus that could accomplish this task. Here, we utilized the leading protocols for whole-brain clearing and applied them to the ArcCreER T2 mice, a murine line that allows for the indelible labeling of memory traces. We found that CLARITY and PACT greatly distorted the tissue, and iDISCO quenched enhanced yellow fluorescent protein (EYFP) fluorescence and hindered immunolabeling. Alternative clearing solutions, such as tert-Butanol, circumvented these harmful effects, but still did not permit whole-brain immunolabeling. CUBIC and CUBIC with Reagent 1A produced improved antibody penetration and preserved EYFP fluorescence, but also did not allow for whole-brain memory trace visualization. Modification of CUBIC with Reagent-1A resulted in EYFP fluorescence preservation and immunolabeling of the immediate early gene (IEG) Arc in deep brain areas; however, optimized memory trace labeling still required tissue slicing into mm-thick tissue sections. In summary, our data show that CUBIC with Reagent-1A* is the ideal method for reproducible clearing and immunolabeling for the visualization of memory traces in mm-thick tissue sections from ArcCreER T2 mice. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  5. Optimization of Methylphenidate Extended-Release Chewable Tablet Dose in Children with ADHD: Open-Label Dose Optimization in a Laboratory Classroom Study.

    PubMed

    Wigal, Sharon B; Childress, Ann; Berry, Sally A; Belden, Heidi W; Chappell, Phillip; Wajsbrot, Dalia B; Nagraj, Praneeta; Abbas, Richat; Palumbo, Donna

    2018-06-01

    To examine methylphenidate extended-release chewable tablets (MPH ERCT) dose patterns, attention-deficit/hyperactivity disorder (ADHD) symptom scores, and safety during the 6-week, open-label (OL) dose-optimization period of a phase 3, laboratory classroom study. Boys and girls (6-12 years) diagnosed with ADHD were enrolled. MPH ERCT was initiated at 20 mg/day; participants were titrated in 10-20 mg/day increments weekly based on efficacy and tolerability (maximum dose, 60 mg/day). Dose-optimization period efficacy assessments included the ADHD Rating Scale (ADHD-RS-IV), analyzed by week in a post hoc analysis using a mixed-effects model for repeated measures with final optimized dose (20, 30/40, or 50/60 mg), visit, final optimized dose and visit interaction, and baseline score as terms. Adverse events (AEs) and concomitant medications were collected throughout the study. Mean MPH ERCT daily dose increased weekly from 29.4 mg/day after the first dose adjustment at week 1 (n = 90) to 42.8 mg/day after the final adjustment at week 5 (n = 86). Final optimized MPH ERCT dose ranged from 20 to 60 mg/day. Mean final optimized MPH ERCT dose ranged from 40.0 mg/day in 6-8 year-old participants to 44.8 mg/day for 11-12 year-old participants. There was a progressive decrease in mean (standard deviation) ADHD-RS-IV total score from 40.1 (8.72) at baseline to 12.4 (7.88) at OL week 5, with similar improvement patterns for hyperactivity/impulsivity and inattentiveness subscale scores. Participants optimized to MPH ERCT 50/60 mg/day had a significantly higher mean (standard error) ADHD-RS-IV score at baseline compared with participants optimized to MPH ERCT 20 mg/day (42.4 [1.34] vs. 35.1 [2.55]; p = 0.013). Treatment-emergent AEs were reported by 65/90 (72.2%) participants in the dose-optimization period. Dose-optimization period results describing relationships between change in ADHD symptom scores and final optimized MPH ERCT dose will be

  6. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    PubMed

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution

    PubMed Central

    Song, Yantao; Wu, Guorong; Sun, Quansen; Bahrami, Khosro; Li, Chunming; Shen, Dinggang

    2015-01-01

    Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary. PMID:26942233

  8. Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution.

    PubMed

    Song, Yantao; Wu, Guorong; Sun, Quansen; Bahrami, Khosro; Li, Chunming; Shen, Dinggang

    2015-10-01

    Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary.

  9. Peroxyoxalate chemiluminescence detection for the highly sensitive determination of fluorescence-labeled chlorpheniramine with Suzuki coupling reaction.

    PubMed

    Adutwum, Lawrence Asamoah; Kishikawa, Naoya; Ohyama, Kaname; Harada, Shiro; Nakashima, Kenichiro; Kuroda, Naotaka

    2010-09-01

    A sensitive and selective high performance liquid chromatography-peroxyoxalate chemiluminescence (PO-CL) method has been developed for the simultaneous determination of chlorpheniramine (CPA) and monodesmethyl chlorpheniramine (MDCPA) in human serum. The method combines fluorescent labeling with 4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl boronic acid using Suzuki coupling reaction with PO-CL detection. CPA and MDCPA were extracted from human serum by liquid-liquid extraction with n-hexane. Excess labeling reagent, which interfered with trace level determination of analytes, was removed by solid-phase extraction using a C18 cartridge. Separation of derivatives of both analytes was achieved isocratically on a silica column with a mixture of acetonitrile and 60 mM imidazole-HNO(3) buffer (pH 7.2; 85:15, v/v) containing 0.015% triethylamine. The proposed method exhibited a good linearity with a correlation coefficient of 0.999 for CPA and MDCPA within the concentration range of 0.5-100 ng/mL. The limits of detection (S/N = 3) were 0.14 and 0.16 ng/mL for CPA and MDCPA, respectively. Using the proposed method, CPA could be selectively determined in human serum after oral administration.

  10. A novel high-throughput format assay for HIV-1 integrase strand transfer reaction using magnetic beads.

    PubMed

    He, Hong-qiu; Ma, Xiao-hui; Liu, Bin; Chen, Wei-zu; Wang, Cun-xin; Cheng, Shao-hui

    2008-03-01

    To develop a novel high-throughput format assay to monitor the integrase (IN) strand transfer (ST) reaction in vitro and apply it to a reaction character study and the identification of antiviral drugs. The donor DNA duplex, with a sequence identical to the U5 end of HIV-1 long terminal repeats, is labeled at its 5' end with biotin (BIO). The target DNA duplex is labeled at its 3' end with digoxin (DIG). IN mediates the integration of donor DNA into target DNA and results in a 5' BIO and 3' DIG-labeled duplex DNA product. Streptavidin-coated magnetic beads were used to capture the product, and the amount of DIG was measured as the ST reaction product. The assay was optimized in 96-well microplate format for high-throughput screening purpose. Moreover, the assay was applied in a ST reaction character study, and the efficiency of the assay in the identification of antiviral compounds was tested. The end-point values, measured as absorbance at 405 nm was approximately 1.5 for the IN-mediated ST reaction as compared with no more than 0.05 of background readings. The ST reaction character and the half maximal inhibitory concentration (IC50) values of 2 known IN inhibitors obtained in our assay were similar to previously reported results using other assays. The evaluation parameter Z' factor for this assay ranged from 0.6 to 0.9. The assay presented here has been proven to be rapid, sensitive, and specific for the detection of IN ST activity, the reaction character study, as well as for the identification of antiviral drugs targeting IN.

  11. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  12. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer.

    PubMed

    Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong

    2017-09-01

    The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1.

  13. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  14. Consumer reaction to information on the labels of genetically modified food

    PubMed Central

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-01-01

    OBJECTIVE To analyze consumer opinion on genetically modified foods and the information included on the label. METHODS A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline – via PubMed –, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors “organisms, genetically modified” and “food labeling”. The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. RESULTS Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. CONCLUSIONS Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modifiedproducts and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes

  15. Pharmacogenomic Biomarkers: an FDA Perspective on Utilization in Biological Product Labeling.

    PubMed

    Schuck, Robert N; Grillo, Joseph A

    2016-05-01

    Precision medicine promises to improve both the efficacy and safety of therapeutic products by better informing why some patients respond well to a drug, and some experience adverse reactions, while others do not. Pharmacogenomics is a key component of precision medicine and can be utilized to select optimal doses for patients, more precisely identify individuals who will respond to a treatment and avoid serious drug-related toxicities. Since pharmacogenomic biomarker information can help inform drug dosing, efficacy, and safety, pharmacogenomic data are critically reviewed by FDA staff to ensure effective use of pharmacogenomic strategies in drug development and appropriate incorporation into product labels. Pharmacogenomic information may be provided in drug or biological product labeling to inform health care providers about the impact of genotype on response to a drug through description of relevant genomic markers, functional effects of genomic variants, dosing recommendations based on genotype, and other applicable genomic information. The format and content of labeling for biologic drugs will generally follow that of small molecule drugs; however, there are notable differences in pharmacogenomic information that might be considered useful for biologic drugs in comparison to small molecule drugs. Furthermore, the rapid entry of biologic drugs for treatment of rare genetic diseases and molecularly defined subsets of common diseases will likely lead to increased use of pharmacogenomic information in biologic drug labels in the near future. In this review, we outline the general principles of therapeutic product labeling and discuss the utilization of pharmacogenomic information in biologic drug labels.

  16. Dynamic map labeling.

    PubMed

    Been, Ken; Daiches, Eli; Yap, Chee

    2006-01-01

    We address the problem of filtering, selecting and placing labels on a dynamic map, which is characterized by continuous zooming and panning capabilities. This consists of two interrelated issues. The first is to avoid label popping and other artifacts that cause confusion and interrupt navigation, and the second is to label at interactive speed. In most formulations the static map labeling problem is NP-hard, and a fast approximation might have O(nlogn) complexity. Even this is too slow during interaction, when the number of labels shown can be several orders of magnitude less than the number in the map. In this paper we introduce a set of desiderata for "consistent" dynamic map labeling, which has qualities desirable for navigation. We develop a new framework for dynamic labeling that achieves the desiderata and allows for fast interactive display by moving all of the selection and placement decisions into the preprocessing phase. This framework is general enough to accommodate a variety of selection and placement algorithms. It does not appear possible to achieve our desiderata using previous frameworks. Prior to this paper, there were no formal models of dynamic maps or of dynamic labels; our paper introduces both. We formulate a general optimization problem for dynamic map labeling and give a solution to a simple version of the problem. The simple version is based on label priorities and a versatile and intuitive class of dynamic label placements we call "invariant point placements". Despite these restrictions, our approach gives a useful and practical solution. Our implementation is incorporated into the G-Vis system which is a full-detail dynamic map of the continental USA. This demo is available through any browser.

  17. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    NASA Astrophysics Data System (ADS)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  18. Direct labeling of serum proteins by fluorescent dye for antibody microarray.

    PubMed

    Klimushina, M V; Gumanova, N G; Metelskaya, V A

    2017-05-06

    Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Simplified Synthesis of Isotopically Labeled 5,5-Dimethyl-pyrroline N-Oxide

    PubMed Central

    Leinisch, Fabian; Jiang, JinJie; Deterding, Leesa J.; Mason, Ronald P.

    2011-01-01

    5,5-Dimethylpyrroline N-oxide (15N) and 5,5-di(trideuteromethyl)pyrroline N-oxide were synthesized from the respective isotopically labeled 2-nitropropane analogs obtained from the reaction of sodium nitrate with 2-halopropanes. This facile, straightforward process allows synthesizing isotopically labeled DMPO analogs in a 4-step reaction without special equipment. PMID:21986521

  20. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  1. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer

    PubMed Central

    Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong

    2017-01-01

    The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1. PMID:29043219

  2. Probabilistic cluster labeling of imagery data

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1980-01-01

    The problem of obtaining the probabilities of class labels for the clusters using spectral and spatial information from a given set of labeled patterns and their neighbors is considered. A relationship is developed between class and clusters conditional densities in terms of probabilities of class labels for the clusters. Expressions are presented for updating the a posteriori probabilities of the classes of a pixel using information from its local neighborhood. Fixed-point iteration schemes are developed for obtaining the optimal probabilities of class labels for the clusters. These schemes utilize spatial information and also the probabilities of label imperfections. Experimental results from the processing of remotely sensed multispectral scanner imagery data are presented.

  3. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.

    PubMed

    Zhao, Yu; Ge, Fangfei; Liu, Tianming

    2018-07-01

    fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Simple Label Switching Algorithm for Semisupervised Structural SVMs.

    PubMed

    Balamurugan, P; Shevade, Shirish; Sundararajan, S

    2015-10-01

    In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.

  5. SAIL--stereo-array isotope labeling.

    PubMed

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  6. Adverse drug reactions associated with off-label use of ketorolac, with particular focus on elderly patients. An analysis of the Italian pharmacovigilance database and a population based study.

    PubMed

    Viola, E; Trifirò, G; Ingrasciotta, Y; Sottosanti, L; Tari, M; Giorgianni, F; Moretti, U; Leone, R

    2016-12-01

    This study aims to evaluate the frequency of off-label use of ketorolac in Italy and the related suspected adverse drug reactions (ADRs) reported. All the suspected cases associated with ketorolac recorded in the Italian Pharmacovigilance database were retrieved. Case evaluations were carried out in order to identify the off-label use of ketorolac. Moreover, an analysis of the inappropriate use of ketorolac was conducted using the 'Arianna' database of Caserta local health unit. Up to December 2014, 822 reports of suspected ADRs related to ketorolac were retrieved in the database. The use of ketorolac was classified as off-label for 553 reports and on-label for 269. Among the off-label cases, 58.6% were serious compared to 39.0% of on-label cases. Gastrointestinal events were more frequently reported with off-label use. The analysis of Arianna database showed that 37,729 out of 61,910 patients, were treated off-label. The off-label use of ketorolac is widespread in Italy. This use increases the risk of serious ADR, especially in in case of prolonged duration of treatment and in elderly patients. The Italian Medicine Agency has decided to accurately monitor the appropriate use of the drug in Italy and, if necessary, take measures in order to minimize the risks.

  7. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    PubMed

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial

  8. Improving the Effectiveness of Penicillin Allergy De-labeling.

    PubMed

    Bourke, Jack; Pavlos, Rebecca; James, Ian; Phillips, Elizabeth

    2015-01-01

    Approximately 10-20% of hospitalized patients are labeled as penicillin allergic, and this is associated with significant health and economic costs. We looked at the effectiveness of penicillin allergy de-labeling in clinical practice with the aim of deriving risk stratification models to guide testing strategies. Consecutive patients aged 15 years or more, referred to a Western Australian public hospital drug allergy service between 2008 and 2013 for beta-lactam allergy, were included. Follow-up surveys were conducted. Results of skin prick testing and intradermal testing (SPT/IDT) and oral challenge (OC), and follow-up of post testing antibiotic usage were the main outcomes. SPT/IDT was performed in 401 consecutive patients with immediate (IMM) (≤ 1 hour) (n = 151) and nonimmediate (NIM) (>1 hour) (n = 250) reactions. Of 341 patients, 42 (12.3%) were SPT/IDT+ to ≥ 1 penicillin reagents, including 35/114 (30.4%) in the IMM group and 7/227 (3.1%) in the NIM group (P < .0001). Of 355 SPT/IDT patients, 3 (0.8%), all in the IMM group, had nonserious positive OC reactions to single dose penicillin VK (SPT/IDT negative predictive value [NPV] 99.2%). Selective or unrestricted beta-lactam was recommended in almost 90% overall, including 238/250 (95.2%) in the NIM group and 126/151 (83.4%) in the IMM group (P = .0001). Of 182 patients, 137 (75.3%) were following the allergy label modifications (ALM) at the time of follow-up. Penicillin SPT/IDT/OC safely de-labels penicillin-allergic patients and identifies selective beta-lactam allergies; however, incomplete adherence to ALM recommendations impairs effectiveness. Infrequent SPT/IDT+ and absent OC reactions in patients with NIM reactions suggest OC alone to be a safe and cost-effective de-labeling strategy that could improve the coverage of penicillin allergy de-labeling in lower risk populations. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Highly efficient preparation of selectively isotope cluster-labeled long chain fatty acids via two consecutive C(sp3)-C(sp3) cross-coupling reactions.

    PubMed

    Lethu, Sébastien; Matsuoka, Shigeru; Murata, Michio

    2014-02-07

    An efficient synthesis involving two copper-catalyzed alkyl-alkyl coupling reactions has been designed to easily access doubly isotope-labeled fatty acids. Such NMR- and IR-active compounds were obtained in excellent overall yields and will be further used for determining the conformation of an alkyl chain of lipidic biomolecules upon interaction with proteins.

  10. The impact and acceptability of Canadian-style cigarette warning labels among U.S. smokers and nonsmokers.

    PubMed

    Peters, Ellen; Romer, Daniel; Slovic, Paul; Jamieson, Kathleen Hall; Wharfield, Leisha; Mertz, C K; Carpenter, Stephanie M

    2007-04-01

    Cigarette smoking is a major source of mortality and medical costs in the United States. More graphic and salient warning labels on cigarette packs as used in Canada may help to reduce smoking initiation and increase quit attempts. However, the labels also may lead to defensive reactions among smokers. In an experimental setting, smokers and nonsmokers were exposed to Canadian or U.S. warning labels. Compared with current U.S. labels, Canadian labels produced more negative affective reactions to smoking cues and to the smoker image among both smokers and nonsmokers without signs of defensive reactions from smokers. A majority of both smokers and nonsmokers endorsed the use of Canadian labels in the United States. Canadian-style warnings should be adopted in the United States as part of the country's overall tobacco control strategy.

  11. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy.

    PubMed

    Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M

    2008-12-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.

  12. What is prescription labeling communicating to doctors about hepatotoxic drugs? A study of FDA approved product labeling.

    PubMed

    Willy, Mary E; Li, Zili

    2004-04-01

    The objective of this study was to evaluate the informativeness and consistency of product labeling of hepatotoxic drugs marketed in the United States. We searched the Physicians' Desk Reference-2000 for prescription drugs with hepatic failure and/or hepatic necrosis listed in the labeling. We used a six-item checklist to evaluate the 'informativeness' and consistency of the labeling content. An informativeness score equaled the proportion of checklist items present in each drug's labeling. Ninety-five prescription drugs were included in the study. Eleven (12%) of the drugs had information related to hepatic failure in a Black Boxed Warning, 52 (54%) in the Warnings section and 32 (34%) in the Adverse Reactions section of the label. The mean informativeness score was 35%; the score was significantly higher, 61%, when the risk was perceived to be high. The informativeness of labeling was not affected by the time of the labeling, but differed across the Center for Drug Evaluation and Research (CDER) Review Division responsible for the labeling. The information provided in labeling is variable and affected by many factors, including the perceived level of risk and review division strategy. Product labeling may benefit from current FDA initiatives to improve the consistency of risk-related labeling.

  13. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification

    PubMed Central

    Naeini, Mahdi Pakdaman; Batal, Iyad; Liu, Zitao; Hong, CharmGil; Hauskrecht, Milos

    2015-01-01

    This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods. PMID:25927015

  16. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less

  17. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing.

    PubMed

    Chen, Zhiqiang; Liu, Ying; Xin, Chen; Zhao, Jikuan; Liu, Shufeng

    2018-08-15

    Herein, an autocatalytic strand displacement amplification (ASDA) strategy was proposed for the first time, which was further ingeniously coupled with hybridization chain reaction (HCR) event for the isothermal, label-free and multiple amplification toward nucleic acid detection. During the ASDA module, the target recognition opens the immobilized hairpin probe (IP) and initiates the annealing of the auxiliary DNA strand (AS) with the opened IP for the successive polymerization and nicking reaction in the presence of DNA polymerase and nicking endonuclease. This induces the target recycling and generation of a large amount of intermediate DNA sequences, which can be used as target analogy to execute the autocatalytic strand displacement amplification. Simultaneously, the introduced AS strand can propagate the HCR between two hairpins (H1 and H2) to form a linear DNA concatamer with cytosine (C)-rich loop region, which can facilitate the in-situ synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplification toward target responses. With current cascade ASDA and HCR strategy, the detection of target DNA could be achieved with a low detection limit of about 0.16 fM and a good selectivity. The developed biosensor also exhibits the distinct advantages of flexibility and simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Antibody labeling with Remazol Brilliant Violet 5R, a vinylsulphonic reactive dye.

    PubMed

    Ferrari, Alejandro; Friedrich, Adrián; Weill, Federico; Wolman, Federico; Leoni, Juliana

    2013-01-01

    Colloidal gold is the first choice for labeling antibodies to be used in Point Of Care Testing. However, there are some recent reports on a family of textile dyes-named "reactive dyes"-being suitable for protein labeling. In the present article, protein labeling conditions were optimized for Remazol Brilliant Violet 5R, and the sensitivity of the labeled antibodies was assessed and compared with that of colloidal-gold labeled antibodies. Also, the accelerated stability was explored. Optimal conditions were pH 10.95, dye:Ab molar ratio of 264 and an incubation time of 132 min. Labeled antibodies were stable, and could be successfully used in a slot blot assay, detecting as low as 400 ng/mL. Therefore, the present work demonstrates that vinylsulphonic reactive dyes can be successfully used to label antibodies, and are excellent candidates for the construction of a new generation of Point of Care Testing kits.

  19. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods.

    PubMed

    Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R

    2017-08-30

    Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.

  20. Adult Smokers’ Reactions to Pictorial Health Warning Labels on Cigarette Packs in Thailand and Moderating Effects of Type of Cigarette Smoked: Findings From the International Tobacco Control Southeast Asia Survey

    PubMed Central

    2013-01-01

    Introduction: In this study, we aimed to examine, in Thailand, the impact on smokers’ reported awareness of and their cognitive and behavioral reactions following the change from text-only to pictorial warnings printed on cigarette packs. We also sought to explore differences by type of cigarette smoked (roll-your-own [RYO] vs. factory-made [FM] cigarettes). Methods: Data came from the International Tobacco Control Southeast Asia Survey, conducted in Thailand and Malaysia, where a representative sample of 2,000 adult smokers from each country were recruited and followed up. We analyzed data from one wave before (Wave 1) and two waves after the implementation of the new pictorial warnings (two sets introduced at Waves 2 and 3, respectively) in Thailand, with Malaysia, having text-only warnings, serving as a control. Results: Following the warning label change in Thailand, smokers’ reported awareness and their cognitive and behavioral reactions increased markedly, with the cognitive and behavioral effects sustained at the next follow-up. By contrast, no significant change was observed in Malaysia over the same period. Compared to smokers who smoke any FM cigarettes, smokers of only RYO cigarettes reported a lower salience but greater cognitive reactions to the new pictorial warnings. Conclusions: The new Thai pictorial health warning labels have led to a greater impact than the text-only warning labels, and refreshing the pictorial images may have helped sustain effects. This finding provides strong support for introducing pictorial warning labels in low- and middle-income countries, where the benefits may be even greater, given the lower literacy rates and generally lower levels of readily available health information on the risks of smoking. PMID:23291637

  1. Adult smokers' reactions to pictorial health warning labels on cigarette packs in Thailand and moderating effects of type of cigarette smoked: findings from the international tobacco control southeast Asia survey.

    PubMed

    Yong, Hua-Hie; Fong, Geoffrey T; Driezen, Pete; Borland, Ron; Quah, Anne C K; Sirirassamee, Buppha; Hamann, Stephen; Omar, Maizurah

    2013-08-01

    In this study, we aimed to examine, in Thailand, the impact on smokers' reported awareness of and their cognitive and behavioral reactions following the change from text-only to pictorial warnings printed on cigarette packs. We also sought to explore differences by type of cigarette smoked (roll-your-own [RYO] vs. factory-made [FM] cigarettes). Data came from the International Tobacco Control Southeast Asia Survey, conducted in Thailand and Malaysia, where a representative sample of 2,000 adult smokers from each country were recruited and followed up. We analyzed data from one wave before (Wave 1) and two waves after the implementation of the new pictorial warnings (two sets introduced at Waves 2 and 3, respectively) in Thailand, with Malaysia, having text-only warnings, serving as a control. Following the warning label change in Thailand, smokers' reported awareness and their cognitive and behavioral reactions increased markedly, with the cognitive and behavioral effects sustained at the next follow-up. By contrast, no significant change was observed in Malaysia over the same period. Compared to smokers who smoke any FM cigarettes, smokers of only RYO cigarettes reported a lower salience but greater cognitive reactions to the new pictorial warnings. The new Thai pictorial health warning labels have led to a greater impact than the text-only warning labels, and refreshing the pictorial images may have helped sustain effects. This finding provides strong support for introducing pictorial warning labels in low- and middle-income countries, where the benefits may be even greater, given the lower literacy rates and generally lower levels of readily available health information on the risks of smoking.

  2. Partially supervised P300 speller adaptation for eventual stimulus timing optimization: target confidence is superior to error-related potential score as an uncertain label

    NASA Astrophysics Data System (ADS)

    Zeyl, Timothy; Yin, Erwei; Keightley, Michelle; Chau, Tom

    2016-04-01

    Objective. Error-related potentials (ErrPs) have the potential to guide classifier adaptation in BCI spellers, for addressing non-stationary performance as well as for online optimization of system parameters, by providing imperfect or partial labels. However, the usefulness of ErrP-based labels for BCI adaptation has not been established in comparison to other partially supervised methods. Our objective is to make this comparison by retraining a two-step P300 speller on a subset of confident online trials using naïve labels taken from speller output, where confidence is determined either by (i) ErrP scores, (ii) posterior target scores derived from the P300 potential, or (iii) a hybrid of these scores. We further wish to evaluate the ability of partially supervised adaptation and retraining methods to adjust to a new stimulus-onset asynchrony (SOA), a necessary step towards online SOA optimization. Approach. Eleven consenting able-bodied adults attended three online spelling sessions on separate days with feedback in which SOAs were set at 160 ms (sessions 1 and 2) and 80 ms (session 3). A post hoc offline analysis and a simulated online analysis were performed on sessions two and three to compare multiple adaptation methods. Area under the curve (AUC) and symbols spelled per minute (SPM) were the primary outcome measures. Main results. Retraining using supervised labels confirmed improvements of 0.9 percentage points (session 2, p < 0.01) and 1.9 percentage points (session 3, p < 0.05) in AUC using same-day training data over using data from a previous day, which supports classifier adaptation in general. Significance. Using posterior target score alone as a confidence measure resulted in the highest SPM of the partially supervised methods, indicating that ErrPs are not necessary to boost the performance of partially supervised adaptive classification. Partial supervision significantly improved SPM at a novel SOA, showing promise for eventual online SOA

  3. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorur, A.; Leung, C. M.; Jorgens, D.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches,more » but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell

  4. Label consistent K-SVD: learning a discriminative dictionary for recognition.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2013-11-01

    A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.

  5. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.

    PubMed

    Maduko, C O; Akoh, C C; Park, Y W

    2007-05-01

    Infant milk fat analogs resembling human milk fat were synthesized by an enzymatic interesterification between tripalmitin, coconut oil, safflower oil, and soybean oil in hexane. A commercially immobilized 1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as a biocatalyst. The effects of substrate molar ratio, reaction time, and incubation temperature on the incorporation of palmitic acid at the sn-2 position of the triacylglycerols were investigated. A central composite design with 5 levels and 3 factors consisting of substrate ratio, reaction temperature, and incubation time was used to model and optimize the reaction conditions using response surface methodology. A quadratic model using multiple regressions was then obtained for the incorporation of palmitic acid at the sn-2 positions of glycerols as the response. The coefficient of determination (R2) value for the model was 0.845. The incorporation of palmitic acid appeared to increase with the decrease in substrate molar ratio and increase in reaction temperature, and optimum incubation time occurred at 18 h. The optimal conditions generated from the model for the targeted 40% palmitic acid incorporation at the sn-2 position were 3 mol/mol, 14.4 h, and 55 degrees C; and 2.8 mol/mol, 19.6 h, and 55 degrees C for substrate ratio (moles of total fatty acid/moles of tripalmitin), time, and temperature, respectively. Infant milk fat containing fatty acid composition and sn-2 fatty acid profile similar to human milk fat was successfully produced. The fat analogs produced under optimal conditions had total and sn-2 positional palmitic acid levels comparable to that of human milk fat.

  6. Radiolabeling optimization and characterization of (68)Ga labeled DOTA-polyamido-amine dendrimer conjugate - Animal biodistribution and PET imaging results.

    PubMed

    Ghai, Aanchal; Singh, Baljinder; Panwar Hazari, Puja; Schultz, Michael K; Parmar, Ambika; Kumar, Pardeep; Sharma, Sarika; Dhawan, Devinder; Kumar Mishra, Anil

    2015-11-01

    The present study describes the optimization of (68)Ga radiolabeling with PAMAM dendrimer-DOTA conjugate. A conjugate (PAMAM-DOTA) concentration of 11.69µM, provided best radiolabeling efficiency of more than 93.0% at pH 4.0, incubation time of 30.0min and reaction temperature ranging between 90 and 100°C. The decay corrected radiochemical yield was found to be 79.4±0.01%. The radiolabeled preparation ([(68)Ga]-DOTA-PAMAM-D) remained stable (radiolabeling efficiency of 96.0%) at room temperature and in serum for up to 4-h. The plasma protein binding was observed to be 21.0%. After intravenous administration, 50.0% of the tracer cleared from the blood circulation by 30-min and less than 1.0% of the injected activity remained in blood by 1.0h. The animal biodistribution studies demonstrated that the tracer excretes through the kidneys and about 0.33% of the %ID/g accumulated in the tumor at 1h post injection. The animal organ's biodistribution data was supported by animal PET imaging showing good 'non-specific' tracer uptake in tumor and excretion is primarily through kidneys. Additionally, DOTA-PAMAM-D conjugation with αVβ3 receptors targeting peptides and drug loading on the dendrimers may improve the specificity of the (68)Ga labeled product for imaging and treating angiogenesis respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Selected reaction monitoring (SRM) mass spectrometry without isotope labeling can be used for rapid protein quantification

    PubMed Central

    Zhi, Wenbo; Wang, Meiyao

    2014-01-01

    The validation of putative biomarker candidates has become the major bottle-neck in protein biomarker development. Conventional immunoaffinity methods are limited by the availability of antibodies and kits. Here we demonstrated the feasibility of using the selected reaction monitoring (SRM) without isotope labeling to achieve fast and reproducible quantification of serum proteins. The SRM/MRM assays for three standard serum proteins, including ceruloplasmin (CP), serum aymloid A (SAA) and sex hormone binding globulin (SHBG) have good linear ranges, generally 103 – 104. There are almost perfect correlations between SRM intensities and the loaded peptide amounts (R2 is usually ~0.99). Our data suggest that SRM/MRM is able to quantify proteins at 0.2 – 2 fmol level, which are comparable to the commercial ELISA/LUMINEX kits for these proteins. Excellent correlations between SRM/MRM and ELISA/LUMINEX assays were observed for SAA and SHBG (R2 = 0.928 and 0.851 respectively). The correlation between SRM/MRM and ELISA for CP is less desirable (R2 = 0.565). The reproducibility for SRM/MRM assays is generally very good but may depend on the proteins/peptides (R2 = 0.931 and 0.882 for SAA and SHBG, and 0.723 for CP). SRM/MRM assay without isotope labeling is a rapid and useful method for protein biomarker validation in a modest number of samples and is especially useful when other assays such as ELISA or Luminex beads are not available. PMID:21594933

  8. [Optimization and assessment of a reverse hybridization system for the detection of HBV drug-resistant mutations].

    PubMed

    Liu, Yan-chen; Huang, Ai-long; Hu, Yuan; Hu, Jie-li; Lai, Guo-qi; Zhang, Wen-lu

    2011-12-01

    To establish a detection method for HBV drug-resistant mutations related to lamivudine, adefovir and entecavir by optimization and assessment of reverse hybridization system. 26 degenerated probes covering 10 drug-resistant hotspots of 3 drugs were synthesized and immobilized on the same positively charged nylon membrane. PCR products labeled with digoxigenin were hybridized with corresponding probes. To improve the sensitivity and specificity, 4 reaction steps of reverse hybridization were optimized including the number of labeled digoxigenin, the energy intensity of UV cross-linking, hybridization and stringency wash conditions. To prove the feasibility, the specificity, sensitivity and accuracy of this system were assessed respectively. Sensitive and specific results are obtained by the optimization of the following 4 reaction steps: the primers labeled with 3 digoxigenin, energy intensity of UV cross-linking for 1500 x 0.1 mJ/cm², hybridization at 42 degrees C and stringency wash with 0.5 x SSC and 0.1% SDS solution at 44 degrees C for 30 min. In the assessment of system, the majority of probes have high specificity. The quantity of PCR product with a concentration of 10 ng/μl or above can be detected by this method. The concordant rate between reverse hybridization and direct sequencing is 93.9% in the clinical sample test. Though the specificity of several probes needs to be improved further, it is a simple, rapid and sensitive method which can detect HBV resistant mutations related to lamivudine, adefovir and entecavir simultaneously. Due to the short distance between 180 and 181, likewise 202 and 204, the sequence of the same probe covers two codon positions, and hybridization will be interfered by each other. To avoid such interference, the possible solution is that probes are designed by arranging and combining various forms of two near codons.

  9. The importance of monitoring adverse drug reactions in pediatric patients: the results of a national surveillance program in Italy.

    PubMed

    Carnovale, Carla; Brusadelli, Tatiana; Zuccotti, GianVincenzo; Beretta, Silvia; Sullo, Maria Giuseppa; Capuano, Annalisa; Rossi, Francesco; Moschini, Martina; Mugelli, Alessandro; Vannacci, Alfredo; Laterza, Marcella; Clementi, Emilio; Radice, Sonia

    2014-09-01

    To gain information on safety of drugs used in pediatrics through a 4-year post-marketing active pharmacovigilance program. The program sampled the Italian population and was termed 'Monitoring of the Adverse Effects in Pediatric population' (MEAP). Adverse drug reactions (ADRs) were collected for individuals aged 0 - 17 years treated in hospitals and territorial health services in Lombardy, Tuscany, Apulia and Campania; located to gain an appropriate sampling of the population. ADRs were evaluated using the Adverse Drug Reaction Probability Scale (Naranjo) and analyzed with respect to time, age, sex, category of ADR, seriousness, suspected medicines, type of reporter and off-label use. We collected and analyzed reports from 3539 ADRs. Vaccines, antineoplastic and psychotropic drugs were the most frequently pharmacotherapeutic subgroups involved. Seventeen percent of reported ADRs were serious; of them fever, vomiting and angioedema were the most frequently reported. Eight percent of ADRs were associated with off-label use, and 10% were unknown ADRs. Analysis of these revealed possible strategies of therapy optimization. The MEAP project demonstrated that active post-marketing pharmacovigilance programs are a valid strategy to increase awareness on pediatric pharmacology, reduce underreporting and provide information on drug actions in pediatrics. This information enhances drug therapy optimization in the pediatric patients.

  10. Recognition-driven chemical labeling of endogenous proteins in multi-molecular crowding in live cells.

    PubMed

    Amaike, Kazuma; Tamura, Tomonori; Hamachi, Itaru

    2017-11-14

    Endogenous protein labeling is one of the most invaluable methods for studying the bona fide functions of proteins in live cells. However, multi-molecular crowding conditions, such as those that occur in live cells, hamper the highly selective chemical labeling of a protein of interest (POI). We herein describe how the efficient coupling of molecular recognition with a chemical reaction is crucial for selective protein labeling. Recognition-driven protein labeling is carried out by a synthetic labeling reagent containing a protein (recognition) ligand, a reporter tag, and a reactive moiety. The molecular recognition of a POI can be used to greatly enhance the reaction kinetics and protein selectivity, even under live cell conditions. In this review, we also briefly discuss how such selective chemical labeling of an endogenous protein can have a variety of applications at the interface of chemistry and biology.

  11. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry.

    PubMed

    Maclean, Brendan; Tomazela, Daniela M; Abbatiello, Susan E; Zhang, Shucha; Whiteaker, Jeffrey R; Paulovich, Amanda G; Carr, Steven A; Maccoss, Michael J

    2010-12-15

    Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict MS instrument parameters that work well with the broad diversity of peptides they target. For this reason, we investigated the impact of using simple linear equations to predict the collision energy (CE) on peptide signal intensity and compared it with the empirical optimization of the CE for each peptide and transition individually. Using optimized linear equations, the difference between predicted and empirically derived CE values was found to be an average gain of only 7.8% of total peak area. We also found that existing commonly used linear equations fall short of their potential, and should be recalculated for each charge state and when introducing new instrument platforms. We provide a fully automated pipeline for calculating these equations and individually optimizing CE of each transition on SRM instruments from Agilent, Applied Biosystems, Thermo-Scientific and Waters in the open source Skyline software tool ( http://proteome.gs.washington.edu/software/skyline ).

  12. A universal procedure for primer labelling of amplicons.

    PubMed Central

    Neilan, B A; Wilton, A N; Jacobs, D

    1997-01-01

    Detection and visualisation of nucleic acids is integral to genome analyses. Exponential amplification procedures have provided the means for the manipulation of nucleic acid sequences, which were otherwise inaccessible. We describe the development and application of a universal method for the labelling of any PCR product using a single end-labelled primer. Amplification was performed in a single reaction with the resulting amplicon labelled to a high specific activity. The method was adapted to a wide range of PCRs and significantly reduced the expense of such analyses. PMID:9207046

  13. Chemical biology-based approaches on fluorescent labeling of proteins in live cells.

    PubMed

    Jung, Deokho; Min, Kyoungmi; Jung, Juyeon; Jang, Wonhee; Kwon, Youngeun

    2013-05-01

    Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive

  14. Adapter reagents for protein site specific dye labeling.

    PubMed

    Thompson, Darren A; Evans, Eric G B; Kasza, Tomas; Millhauser, Glenn L; Dawson, Philip E

    2014-05-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this acetophenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. © 2014 Wiley Periodicals, Inc.

  15. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  16. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  17. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  18. Reactions to the Labels "Institutionalized" and "Mentally Retarded" by Retarded and Nonretarded Persons.

    ERIC Educational Resources Information Center

    Gibbons, Frederick X.; Gibbons, Barbara N.

    The effects of labels, "mentally retarded" and "institutionalized" on the evaluations and causal attributions of nonretarded persons, and on the social distance preferences of EMR persons, were assessed. In addition, each group was asked to predict the likelihood of a labeled (mentally retarded) or a nonlabeled target person achieving success at a…

  19. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging.

    PubMed

    Wang, Yuqi; An, Ruibing; Luo, Zhiliang; Ye, Deju

    2018-04-17

    Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimization of the performance of the polymerase chain reaction in silicon-based microstructures.

    PubMed Central

    Taylor, T B; Winn-Deen, E S; Picozza, E; Woudenberg, T M; Albin, M

    1997-01-01

    We have demonstrated the ability to perform real-time homogeneous, sequence specific detection of PCR products in silicon microstructures. Optimal design/ processing result in equivalent performance (yield and specificity) for high surface-to-volume silicon structures as compared to larger volume reactions in polypropylene tubes. Amplifications in volumes as small as 0.5 microl and thermal cycling times reduced as much as 5-fold from that of conventional systems have been demonstrated for the microstructures. PMID:9224619

  1. Noncovalent labeling of biomolecules with red and near- infrared dyes.

    PubMed

    Patonay, Gabor; Salon, Jozef; Sowell, John; Strekowski, Lucjan

    2004-02-28

    Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  2. Using price-volume agreements to manage pharmaceutical leakage and off-label promotion.

    PubMed

    Zhang, Hui; Zaric, Gregory S

    2015-09-01

    Unapproved or "off-label" uses of prescription drugs are quite common. The extent of this use may be influenced by the promotional efforts of manufacturers. This paper investigates how a manufacturer makes promotional decisions in the presence of a price-volume agreement. We developed an optimization model in which the manufacturer maximizes its expected profit by choosing the level of marketing effort to promote uses for different indications. We considered several ways a volume threshold is determined. We also compared models in which off-label uses are reimbursed and those in which they are forbidden to illustrate the impact of off-label promotion on the optimal decisions and on the decision maker's performance. We found that the payer chooses a threshold which may be the same as the manufacturer's optimal decision. We also found that the manufacturer not only considers the promotional cost in promoting off-label uses but also considers the health benefit of off-label uses. In some situations, using a price-volume agreement to control leakage may be a better idea than simply preventing leakage without using the agreement, from a social welfare perspective.

  3. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    ERIC Educational Resources Information Center

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  4. Preparation and reactions of an iodinated imidoester reagent with actin and alpha-actinin.

    PubMed

    Bright, G R; Spooner, B S

    1983-06-01

    The chemical iodination of an imidoester (methyl-p-hydroxybenzimidate, Wood et al. (1975) Anal. Biochem. 68, 339) and subsequent coupling of iodinated imidoester (IIE) to protein is an indirect method of iodinating proteins that is specific for the epsilon amino group of lysine residues and maintains the positive charge on the amino group at physiological pH. Purification of the IIE from chloramine-T and free iodine by benzene extraction eliminates the need for isoelectric precipitation and produces a more time- and cost-efficient IIE preparation and purification protocol. The separation of free from protein-bound label by chromatography, using centrifugal elution, provides a separation method that is rapid and efficient, without the generation of large volumes of radioactive wastes characteristic of conventional chromatographic and dialysis methods. To optimize the parameters of labeling protein with IIE, a systematic assessment of the effects of pH, reactant concentrations, and reaction time was made using purified cardiac actin and gizzard alpha-actinin. The parameters were defined to achieve an average labeling ratio of one IIE per protein polypeptide. The data demonstrate that both proteins appear to be labeled at the same rate and define several determining factors that limit the rate and extent of IIE incorporation into protein.

  5. Formulation and characterization of lutetium-177-labeled stannous (tin) colloid for radiosynovectomy.

    PubMed

    Arora, Geetanjali; Singh, Manoranjan; Jha, Pragati; Tripathy, Sarthak; Bal, Chandrasekhar; Mukherjee, Anirban; Shamim, Shamim A

    2017-07-01

    Easy large-scale production, easy availability, cost-effectiveness, long half-life, and favorable radiation characteristics have made lutetium-177 (Lu) a preferred radionuclide for use in therapy. Lutetium-177-labeled stannous (Lu-Sn) colloid particles were formulated for application in radiosynovectomy, followed by in-vitro and in-vivo characterization. Stannous chloride (SnCl2) solution and Lu were heated together, the pH was adjusted, and the particles were recovered by centrifugation. The heating time and amount of SnCl2 were varied to optimize the labeling protocol. The labeling efficiency (LE) and radiochemical purity (RCP) of the product were determined. The size and shape of the particles were determined by means of electron microscopy. In-vitro stability was tested in PBS and synovial fluid, and in-vivo stability was tested in humans. LE and RCP were greater than 95% and ∼99% (Rf=0-0.1), respectively. Aggregated colloidal particles were spherical (mean size: 241±47 nm). The product was stable in vitro for up to 7 days in PBS as well as in synovial fluid. Injection of the product into the infected knee joint of a patient resulted in its homogenous distribution in the intra-articular space, as seen on the scan. No leakage of activity was seen outside the knee joint even 7 days after injection, indicating good tracer binding and in-vivo stability. Lu-Sn colloid was successfully prepared with a high LE (>95%) and high RCP (99%) under optimized reaction conditions. Because of the numerous benefits of Lu and the ease of preparation of tin colloid particles, Lu-Sn colloid particles are significantly superior to its currently available counterparts for use in radiosynovectomy.

  6. Label-free sensing of the binding state of MUC1 peptide and anti-MUC1 aptamer solution in fluidic chip by terahertz spectroscopy.

    PubMed

    Zhao, Xiang; Zhang, Mingkun; Wei, Dongshan; Wang, Yunxia; Yan, Shihan; Liu, Mengwan; Yang, Xiang; Yang, Ke; Cui, Hong-Liang; Fu, Weiling

    2017-10-01

    The aptamer and target molecule binding reaction has been widely applied for construction of aptasensors, most of which are labeled methods. In contrast, terahertz technology proves to be a label-free sensing tool for biomedical applications. We utilize terahertz absorption spectroscopy and molecular dynamics simulation to investigate the variation of binding-induced collective vibration of hydrogen bond network in a mixed solution of MUC1 peptide and anti-MUC1 aptamer. The results show that binding-induced alterations of hydrogen bond numbers could be sensitively reflected by the variation of terahertz absorption coefficients of the mixed solution in a customized fluidic chip. The minimal detectable concentration is determined as 1 pmol/μL, which is approximately equal to the optimal immobilized concentration of aptasensors.

  7. Alcohol Warning Label Awareness and Attention: A Multi-method Study.

    PubMed

    Pham, Cuong; Rundle-Thiele, Sharyn; Parkinson, Joy; Li, Shanshi

    2018-01-01

    Evaluation of alcohol warning labels requires careful consideration ensuring that research captures more than awareness given that labels may not be prominent enough to attract attention. This study investigates attention of current in market alcohol warning labels and examines whether attention can be enhanced through theoretically informed design. Attention scores obtained through self-report methods are compared to objective measures (eye-tracking). A multi-method experimental design was used delivering four conditions, namely control, colour, size and colour and size. The first study (n = 559) involved a self-report survey to measure attention. The second study (n = 87) utilized eye-tracking to measure fixation count and duration and time to first fixation. Analysis of Variance (ANOVA) was utilized. Eye-tracking identified that 60% of participants looked at the current in market alcohol warning label while 81% looked at the optimized design (larger and red). In line with observed attention self-reported attention increased for the optimized design. The current study casts doubt on dominant practices (largely self-report), which have been used to evaluate alcohol warning labels. Awareness cannot be used to assess warning label effectiveness in isolation in cases where attention does not occur 100% of the time. Mixed methods permit objective data collection methodologies to be triangulated with surveys to assess warning label effectiveness. Attention should be incorporated as a measure in warning label effectiveness evaluations. Colour and size changes to the existing Australian warning labels aided by theoretically informed design increased attention. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  8. Open-label dose optimization of methylphenidate modified release long acting (MPH-LA): a post hoc analysis of real-life titration from a 40-week randomized trial.

    PubMed

    Huss, Michael; Ginsberg, Ylva; Arngrim, Torben; Philipsen, Alexandra; Carter, Katherine; Chen, Chien-Wei; Gandhi, Preetam; Kumar, Vinod

    2014-09-01

    In the management of attention-deficit hyperactivity disorder (ADHD) in adults it is important to recognize that individual patients respond to a wide range of methylphenidate doses. Studies with methylphenidate modified release long acting (MPH-LA) in children have reported the need for treatment optimization for improved outcomes. We report the results from a post hoc analysis of a 5-week dose optimization phase from a large randomized, placebo-controlled, multicenter 40-week study (9-week double-blind dose confirmation phase, 5-week open-label dose optimization phase, and 26-week double-blind maintenance of effect phase). Patients entering the open-label dose optimization phase initiated treatment with MPH-LA 20 mg/day; up/down titrated to their optimal dose (at which there was balance between control of symptoms and side effects) of 40, 60, or 80 mg/day in increments of 20 mg/week by week 12 or 13. Safety was assessed by monitoring the adverse events (AEs) and serious AEs. Efficacy was assessed by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, Attention-Deficit Hyperactivity Disorder Rating Scale (DSM-IV ADHD RS) and Sheehan Disability Scale (SDS) total scores. At the end of the dose confirmation phase, similar numbers of patients were treated optimally with each of the 40, 60, and 80 mg/day doses (152, 177, and 160, respectively) for MPH-LA. Mean improvement from baseline in the dose confirmation phase in total scores of DSM-IV ADHD RS and SDS were 23.5 ± 9.90 and 9.7 ± 7.36, respectively. Dose optimization with MPH-LA (40, 60, or 80 mg/day) improved treatment outcomes and was well-tolerated in adult ADHD patients.

  9. Production of isotopically labeled standards from a uniformly labeled precursor for quantitative volatile metabolomic studies.

    PubMed

    Gómez-Cortés, Pilar; Brenna, J Thomas; Sacks, Gavin L

    2012-06-19

    Optimal accuracy and precision in small-molecule profiling by mass spectrometry generally requires isotopically labeled standards chemically representative of all compounds of interest. However, preparation of mixed standards from commercially available pure compounds is often prohibitively expensive and time-consuming, and many labeled compounds are not available in pure form. We used a single-prototype uniformly labeled [U-(13)C]compound to generate [U-(13)C]-labeled volatile standards for use in subsequent experimental profiling studies. [U-(13)C]-α-Linolenic acid (18:3n-3, ALA) was thermally oxidized to produce labeled lipid degradation volatiles which were subsequently characterized qualitatively and quantitatively. Twenty-five [U-(13)C]-labeled volatiles were identified by headspace solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry (HS-SPME-GC/TOF-MS) by comparison of spectra with unlabeled volatiles. Labeled volatiles were quantified by a reverse isotope dilution procedure. Using the [U-(13)C]-labeled standards, limits of detection comparable to or better than those of previous HS-SPME reports were achieved, 0.010-1.04 ng/g. The performance of the [U-(13)C]-labeled volatile standards was evaluated using a commodity soybean oil (CSO) oxidized at 60 °C from 0 to 15 d. Relative responses of n-decane, an unlabeled internal standard otherwise absent from the mixture, and [U-(13)C]-labeled oxidation products changed by up to 8-fold as the CSO matrix was oxidized, demonstrating that reliance on a single standard in volatile profiling studies yields inaccurate results due to changing matrix effects. The [U-(13)C]-labeled standard mixture was used to quantify 25 volatiles in oxidized CSO and low-ALA soybean oil with an average relative standard deviation of 8.5%. Extension of this approach to other labeled substrates, e.g., [U-(13)C]-labeled sugars and amino acids, for profiling studies should be feasible and can dramatically improve

  10. Evaluation of three methods of platelet labelling.

    PubMed

    Mortelmans, L; Verbruggen, A; De Roo, M; Vermylen, J

    1986-07-01

    The study of the kinetics of labelled platelets makes sense only when the platelets preserve their viability after separation and labelling. The separation and labelling procedures described in the manual of two producers of 111In-oxinate (Amersham, Mallinckrodt) have been evaluated by in vitro aggregation tests. The method of Mallinckrodt diminished the aggregation capacities of the thrombocytes. The labelled platelets with normal in vitro aggregation response (Amersham) were tested in vivo in 11 patients who underwent peripheral bypass surgery. The platelet half-life and the platelet accumulation on bypass grafts were checked one week post-operatively. Because of the poor in vivo response of both methods (exponential half-life curve and bad graft visualization), a third method was optimized in our laboratory with good in vitro and in vivo results in 12 patients.

  11. Capillary electrophoretic separation-based approach to determine the labeling kinetics of oligodeoxynucleotides

    PubMed Central

    Kanavarioti, Anastassia; Greenman, Kevin L.; Hamalainen, Mark; Jain, Aakriti; Johns, Adam M.; Melville, Chris R.; Kemmish, Kent; Andregg, William

    2014-01-01

    With the recent advances in electron microscopy (EM), computation, and nanofabrication, the original idea of reading DNA sequence directly from an image can now be tested. One approach is to develop heavy atom labels that can provide the contrast required for EM imaging. While evaluating tentative labels for the respective nucleobases in synthetic oligodeoxynucleotides (oligos), we developed a streamlined capillary electrophoresis (CE) protocol to assess the label stability, reactivity, and selectivity. We report our protocol using osmium tetroxide 2,2′-bipyridine (Osbipy) as a thymidine (T) specific label. The observed rates show that the labeling process is kinetically independent of both the oligo length, and the base composition. The conditions, i.e. temperature, optimal Osbipy concentration, and molar ratio of reagents, to promote 100% conversion of the starting oligo to labeled product were established. Hence the optimized conditions developed with the oligos could be leveraged to allow osmylation of effectively all Ts in single-stranded (ss) DNA, while achieving minimal mislabeling. In addition, the approach and methods employed here may be adapted to the evaluation of other prospective contrasting agents/labels to facilitate next-generation DNA sequencing by EM. PMID:23147698

  12. Determination of dye/protein ratios in a labeling reaction between a cyanine dye and bovine serum albumin by micellar electrokinetic chromatography using a diode laser-induced fluorescence detection.

    PubMed

    Jing, Peng; Kaneta, Takashi; Imasaka, Totaro

    2002-08-01

    The degree of labeling, i.e., dye/protein ratio (D/P) is important for characterizing properties of dye labeling with proteins. A method for the determination of this ratio between a fluorescent cyanine dye and bovine serum albumin (BSA), based on the separation of the labeling mixture using micellar electrokinetic chromatography with diode laser-induced fluorescence detection, is described. Two methods for the determination of D/P were examined in this study. In these methods, a hydrolysis product and impurities, which are usually unfavorable compounds that are best excluded for protein analysis, were utilized to determine the amounts of dye bound to BSA. One is a direct method in which a ratio of the peak area of BSA to the total peak area of all the products produced in the labeling reaction was used for determining the average number of dye molecules bound to a single BSA molecule. The other is an indirect determination, which is based on diminution of all peak areas related to the products except for the labeled BSA. These methods were directly compared by means of a spectrophotometric method. The experimental results show that the indirect method is both reliable and sensitive. Therefore, D/P values can be determined at trace levels using the indirect method.

  13. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    PubMed

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, Bernard F.; Chen, Bi-Xing

    1997-01-01

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest.

  15. Bio-nanogate controlled enzymatic reaction for virus sensing.

    PubMed

    Wang, Ronghui; Xu, Lizhou; Li, Yanbin

    2015-05-15

    The objective of this study was to develop an aptamer-based bifunctional bio-nanogate, which could selectively respond to target molecules, and control enzymatic reaction for electrochemical measurements. It was successfully applied for sensitive, selective, rapid, quantitative, and label-free detection of avian influenza viruses (AIV) H5N1. A nanoporous gold film with pore size of ~20 nm was prepared by a metallic corrosion method, and the purity was checked by energy-dispersive X-ray spectroscopy (EDS) study. To improve the performance of the bio-nanogate biosensor, its main analytical parameters were studied and optimized. We demonstrated that the developed bio-nanogate was capable of controlling enzymatic reaction for AIV H5N1 sensing within 1h with a detection limit of 2(-9)HAU (hemagglutination units). The enzymatic reaction was able to cause significant current change due to the presence of target AIV. A linear relationship was found in the virus titer range of 2(-10)-2(2)HAU. No interference was observed from non-target AIV subtypes such as H1N1, H2N2, H4N8 and H7N2. The developed approach could be adopted for sensing of other viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    NASA Astrophysics Data System (ADS)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  17. Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular interpretation

    NASA Astrophysics Data System (ADS)

    Nath, Sunil

    2018-05-01

    Metabolic energy obtained from the coupled chemical reactions of oxidative phosphorylation (OX PHOS) is harnessed in the form of ATP by cells. We experimentally measured thermodynamic forces and fluxes during ATP synthesis, and calculated the thermodynamic efficiency, η and the rate of free energy dissipation, Φ. We show that the OX PHOS system is tuned such that the coupled nonequilibrium processes operate at optimal η. This state does not coincide with the state of minimum Φ but is compatible with maximum Φ under the imposed constraints. Conditions that must hold for species concentration in order to satisfy the principle of optimal efficiency are derived analytically and a molecular explanation based on Nath's torsional mechanism of energy transduction and ATP synthesis is suggested. Differences of the proposed principle with Prigogine's principle are discussed.

  18. pH responsive label-assisted click chemistry triggered sensitivity amplification for ultrasensitive electrochemical detection of carbohydrate antigen 24-2.

    PubMed

    Zheng, Yun; Zhao, Lihua; Ma, Zhanfang

    2018-05-15

    Sensitivity amplification strategy by implementing click chemistry in the construction of biosensing interface can efficiently improve the performance of immunosensor. Herein, we developed a sandwich-type amperometric immunosensor for ultrasensitive detection of carbohydrate antigen 24-2 (CA 242) based on pH responsive label-assisted click chemistry triggered sensitivity amplification strategy. The sensitivity of amperometric immunosensor relies on the current response differences (ΔI) caused by per unit concentration target analyte. The pH responsive Cu 2+ -loaded polydopamine (CuPDA) particles conjugated with detection antibodies were employed as labels, which can release Cu(II) ions by regulating pH. In the presence of ascorbic acid (reductant), Cu(II) ions were reduced to Cu(I) ions. Azide-functionalized double-stranded DNA (dsDNA) as signal enhancer was immobilized on the substrate through Cu + -catalyzed azide/alkyne cycloaddition reaction. With the help of the click reaction, the ΔI caused by target was elevated prominently, resulting in sensitivity amplification of the immunosensor. Under optimal condition, the proposed immunosensor exhibited excellent performance with linear range from 0.0001 to 100 U mL -1 and ultralow detection limit of 20.74 μU mL -1 . This work successfully combines click chemistry with pH-responsive labels in sandwich-type amperometric immunosensor, providing a promising sensitivity amplification strategy to construct immunosensing platform for analysis of other tumor marker. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. No-carrier-added labeling of the neuroprotective Ebselen with selenium-73 and selenium-75.

    PubMed

    Helfer, Andreas; Ermert, Johannes; Humpert, Sven; Coenen, Heinz H

    2015-03-01

    Selenium-73 is a positron emitting non-standard radionuclide, which is suitable for positron emission tomography. A copper-catalyzed reaction allowed no-carrier-added labeling of the anti-inflammatory seleno-organic compound Ebselen with (73) Se and (75) Se under addition of sulfur carrier in a one-step reaction. The new authentically labeled radioselenium molecule is thus available for preclinical evaluation and positron emission tomography studies. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  1. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, B.F.; Chen, B.X.

    1997-07-22

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest. 8 figs.

  2. Structure-reactivity modeling using mixture-based representation of chemical reactions.

    PubMed

    Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre

    2017-09-01

    We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.

  3. Application of capillary gas chromatography-reaction interface/mass spectrometry to the selective detection of sup 13 C-, sup 15 N-, sup 2 H-, and sup 14 C-labeled drugs and their metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chace, D.H.

    1989-01-01

    A novel reaction interface/mass spectrometer (RIMS) technique has been applied to the selective detection of {sup 13}C-, {sup 15}N-, {sup 2}H-, and {sup 14}C-labeled phenytoin and its metabolites in urine following separation by capillary gas chromatography. The microwave-powered reaction interface converts materials from their original forms into small molecules whose mass spectra serve to identify and quantify the nuclides. The presence of each element is followed by monitoring the isotopic variants of CO{sub 2}, NO, H{sub 2}, or CH{sub 4} that are produced by the reaction interface. Chromatograms showing only enriched {sup 13}C and {sup 15}N were produced using themore » net {sup 13}CO{sub 2} or {sup 15}NO signal derived by subtracting the abundance of naturally occurring isotopes from the observed M + 1 signal. When hydrogen was used as a reactant gas, a selective chromatogram of {sup 2}H (D) was obtained by measuring HD at m/Z 3.0219, and a chromatogram showing {sup 14}C was obtained by measuring {sup 14}CH{sub 4} at m/Z 18.034 with a high resolution. For a stable isotope detection, metabolites representing less than 1.5% of the total labeled compounds could be detected in the chromatogram. Detection limits of 170 pCi/mL (34 pCi on column that is equivalent to 187 pg) of a {sup 14}C- labeled metabolite was detected. To identify many of these labeled peaks (metabolites), the chromatographic analysis was repeated with the reaction interface turned off and mass spectra obtained at the retention times found in the RIMS experiment. In addition to the ability of GC-RIMS to detect the presence of {sup 13}C-, {sup 15}N-, and {sup 2}H- (D), it can also quantify the level of enrichment. Enrichment of {sup 13}C and {sup 15}N is quantified by measuring the ratio of excess {sup 13}CO{sub 2} to total {sup 12}CO{sub 2} or excess {sup 15}NO to total {sup 14}NO.« less

  4. Synthesis of deuterium labeled ketamine metabolite dehydronorketamine-d₄.

    PubMed

    Sulake, Rohidas S; Chen, Chinpiao; Lin, Huei-Ru; Lua, Ahai-Chang

    2011-10-01

    A convenient synthesis of ketamine metabolite dehydronorketamine-d(4), starting from commercially available deuterium labeled bromochlorobenzene, was achieved. Key steps include Grignard reaction, regioselective hydroxybromination, Staudinger reduction, and dehydrohalogenation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Aminoquinolines as fluorescent labels for hydrophilic interaction liquid chromatography of oligosaccharides.

    PubMed

    Struwe, Weston B; Rudd, Pauline M

    2012-08-01

    In this study, we investigated the potential of four different aminoquinoline (AQ) compounds as fluorescent labels for glycan analysis using hydrophilic interaction liquid chromatography (HILIC) and fluorescence detection (FLD). We confirmed the optimal excitation and emission wavelengths of 3-AQ and 6-AQ conjugated to glycan standards using three-dimensional fluorescent spectral scanning. The optimal excitation and emission wavelengths for 6-AQ were confirmed at λ(ex)=355 nm and λ(em)=440 nm. We concluded that the optimal wavelengths for 3-AQ were λ(ex)=355 nm and λ(em)=420 nm, which differed considerably from the wavelengths applied in previous reports. HILIC-FLD chromatograms using experimentally determined wavelengths were similar to 2-aminobenzamide controls, but the peak capacity and resolution differed significantly when published 3-AQ λ(ex/em) values were applied. Furthermore, we found that 5-AQ and 8-AQ labeled maltohexaose did not display any fluorescent properties when used as a carbohydrate tag for HPLC analysis. Finally, we applied experimentally determined wavelengths to 3-AQ labeled N-glycans released from human IgG to illustrate changes in retention time as well as to demonstrate that AQ labeling is applicable to complex sample analysis via exoglycosidase sequencing.

  6. In silico strain optimization by adding reactions to metabolic models.

    PubMed

    Correia, Sara; Rocha, Miguel

    2012-07-24

    Nowadays, the concerns about the environment and the needs to increase the productivity at low costs, demand for the search of new ways to produce compounds with industrial interest. Based on the increasing knowledge of biological processes, through genome sequencing projects, and high-throughput experimental techniques as well as the available computational tools, the use of microorganisms has been considered as an approach to produce desirable compounds. However, this usually requires to manipulate these organisms by genetic engineering and/ or changing the enviromental conditions to make the production of these compounds possible. In many cases, it is necessary to enrich the genetic material of those microbes with hereologous pathways from other species and consequently adding the potential to produce novel compounds. This paper introduces a new plug-in for the OptFlux Metabolic Engineering platform, aimed at finding suitable sets of reactions to add to the genomes of selected microbes (wild type strain), as well as finding complementary sets of deletions, so that the mutant becomes able to overproduce compounds with industrial interest, while preserving their viability. The necessity of adding reactions to the metabolic model arises from existing gaps in the original model or motivated by the productions of new compounds by the organism. The optimization methods used are metaheuristics such as Evolutionary Algorithms and Simulated Annealing. The usefulness of this plug-in is demonstrated by a case study, regarding the production of vanillin by the bacterium E. coli.

  7. In silico strain optimization by adding reactions to metabolic models.

    PubMed

    Correia, Sara; Rocha, Miguel

    2012-12-01

    Nowadays, the concerns about the environment and the needs to increase the productivity at low costs, demand for the search of new ways to produce compounds with industrial interest. Based on the increasing knowledge of biological processes, through genome sequencing projects, and high-throughput experimental techniques as well as the available computational tools, the use of microorganisms has been considered as an approach to produce desirable compounds. However, this usually requires to manipulate these organisms by genetic engineering and/ or changing the enviromental conditions to make the production of these compounds possible. In many cases, it is necessary to enrich the genetic material of those microbes with hereologous pathways from other species and consequently adding the potential to produce novel compounds. This paper introduces a new plug-in for the OptFlux Metabolic Engineering platform, aimed at finding suitable sets of reactions to add to the genomes of selected microbes (wild type strain), as well as finding complementary sets of deletions, so that the mutant becomes able to overproduce compounds with industrial interest, while preserving their viability. The necessity of adding reactions to the metabolic model arises from existing gaps in the original model or motivated by the productions of new compounds by the organism. The optimization methods used are metaheuristics such as Evolutionary Algorithms and Simulated Annealing. The usefulness of this plug-in is demonstrated by a case study, regarding the production of vanillin by the bacterium E. coli.

  8. Trace fluorescent labeling for protein crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusey, Marc, E-mail: marc.pusey@ixpressgenes.com; Barcena, Jorge; Morris, Michelle

    2015-06-27

    The presence of a covalently bound fluorescent probe at a concentration of <0.5% does not affect the outcome of macromolecule crystallization screening experiments. Additionally, the fluorescence can be used to determine new, not immediately apparent, lead crystallization conditions. Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experimentmore » in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent.« less

  9. Non-radioactive labeling of RNA transcripts in vitro with the hapten digoxigenin (DIG); hybridization and ELISA-based detection.

    PubMed Central

    Höltke, H J; Kessler, C

    1990-01-01

    We have developed a system for the enzymatic in vitro synthesis of non-radioactively labeled RNA which is derivatized with the hapten digoxigenin (DIG). The labeling reaction as well as the conditions for hybridization and detection of hybrids by an antibody-conjugate and a coupled colour reaction were analyzed and adapted for high sensitivity and low background. In addition, data on the performance and sensitivity of digoxigenin-labeled RNA probes in Southern and Northern blots are presented. Images PMID:2216776

  10. Enzymatic synthesis of long double-stranded DNA labeled with haloderivatives of nucleobases in a precisely pre-determined sequence

    PubMed Central

    2011-01-01

    Background Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. Results An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). Conclusions The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at

  11. Enzymatic synthesis of long double-stranded DNA labeled with haloderivatives of nucleobases in a precisely pre-determined sequence.

    PubMed

    Sobolewski, Ireneusz; Polska, Katarzyna; Zylicz-Stachula, Agnieszka; Jeżewska-Frąckowiak, Joanna; Rak, Janusz; Skowron, Piotr

    2011-08-24

    Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an

  12. Category labels versus feature labels: category labels polarize inferential predictions.

    PubMed

    Yamauchi, Takashi; Yu, Na-Yung

    2008-04-01

    What makes category labels different from feature labels in predictive inference? This study suggests that category labels tend to make inductive reasoning polarized and homogeneous. In two experiments, participants were shown two schematic pictures of insects side by side and predicted the value of a hidden feature of one insect on the basis of the other insect. Arbitrary verbal labels were shown above the two pictures, and the meanings of the labels were manipulated in the instructions. In one condition, the labels represented the category membership of the insects, and in the other conditions, the same labels represented attributes of the insects. When the labels represented category membership, participants' responses became substantially polarized and homogeneous, indicating that the mere reference to category membership can modify reasoning processes.

  13. Progressive multi-atlas label fusion by dictionary evolution.

    PubMed

    Song, Yantao; Wu, Guorong; Bahrami, Khosro; Sun, Quansen; Shen, Dinggang

    2017-02-01

    Accurate segmentation of anatomical structures in medical images is important in recent imaging based studies. In the past years, multi-atlas patch-based label fusion methods have achieved a great success in medical image segmentation. In these methods, the appearance of each input image patch is first represented by an atlas patch dictionary (in the image domain), and then the latent label of the input image patch is predicted by applying the estimated representation coefficients to the corresponding anatomical labels of the atlas patches in the atlas label dictionary (in the label domain). However, due to the generally large gap between the patch appearance in the image domain and the patch structure in the label domain, the estimated (patch) representation coefficients from the image domain may not be optimal for the final label fusion, thus reducing the labeling accuracy. To address this issue, we propose a novel label fusion framework to seek for the suitable label fusion weights by progressively constructing a dynamic dictionary in a layer-by-layer manner, where the intermediate dictionaries act as a sequence of guidance to steer the transition of (patch) representation coefficients from the image domain to the label domain. Our proposed multi-layer label fusion framework is flexible enough to be applied to the existing labeling methods for improving their label fusion performance, i.e., by extending their single-layer static dictionary to the multi-layer dynamic dictionary. The experimental results show that our proposed progressive label fusion method achieves more accurate hippocampal segmentation results for the ADNI dataset, compared to the counterpart methods using only the single-layer static dictionary. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    PubMed

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nicotinic acetylcholine receptor probed with a photoactivatable agonist: improved labeling specificity by addition of CeIV/glutathione. Extension to laser flash photolabeling.

    PubMed

    Grutter, T; Goeldner, M; Kotzyba-Hibert, F

    1999-06-08

    The molecular structure of Torpedo marmorata acetylcholine binding sites has been investigated previously by photoaffinity labeling. However, besides the nicotine molecule [Middleton et al. (1991) Biochemistry 30, 6987-6997], all other photosensitive probes used for this purpose interacted only with closed receptor states. In the perspective of mapping the functional activated state, we synthesized and developed a new photoactivatable agonist of nAChR capable of alkylation of the acetylcholine (ACh) binding sites, as reported previously [Kotzyba-Hibert et al. (1997) Bioconjugate Chem. 8, 472-480]. Here, we describe the setup of experimental conditions that were made in order to optimize the photolabeling reaction and in particular its specificity. We found that subsequent addition of the oxidant ceric ion (CeIV) and reduced glutathione before the photolabeling step lowered considerably nonspecific labeling (over 90% protection with d-tubocurarine) without affecting the binding properties of the ACh binding sites. As a consequence, irradiation at 360 nm for 20 min in these new conditions gave satisfactory coupling yields (7.5%). A general mechanism was proposed to explain the successive reactions occurring and their drastic effect on the specificity of the labeling reaction. Last, these incubation conditions can be extended to nanosecond pulsed laser photolysis leading to the same specific photoincorporation as for usual irradiations (8.5% coupling yield of ACh binding sites, 77% protection with carbamylcholine). Laser flash photocoupling of a diazocyclohexadienoyl probe on nAChR was achieved for the first time. Taken together, these data indicate that future investigation of the molecular dynamics of allosteric transitions occurring at the activated ACh binding sites should be possible.

  16. Transition-state optimization by the free energy gradient method: Application to aqueous-phase Menshutkin reaction between ammonia and methyl chloride

    NASA Astrophysics Data System (ADS)

    Hirao, Hajime; Nagae, Yukihiko; Nagaoka, Masataka

    2001-11-01

    The transition state (TS) for the Menshutkin reaction H 3N+CH 3Cl→H 3NCH 3++Cl - in aqueous solution was located on the free energy surface (FES) by the free energy gradient (FEG) method. The solute-solvent system was described by a hybrid quantum mechanical and molecular mechanical (QM/MM) method. The reaction path in water was found to deviate largely from that in the gas phase. It was concluded that, in such a reaction including charge separation, TS structure optimization on an FES is inevitable for obtaining valid information about a TS in solution.

  17. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  18. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, Bernard F.; Chen, Bi-Xing

    1999-01-01

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example, detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest, detecting a polypeptide such as those expressed by infectious agents, fungi or parasites.

  19. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, B.F.; Chen, B.

    1999-07-20

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example, detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest, detecting a polypeptide such as those expressed by infectious agents, fungi or parasites. 25 figs.

  20. Isotope-Labeled Composition B for Tracing Detonation Signatures

    NASA Astrophysics Data System (ADS)

    Manner, Virginia; Podlesak, David; Huber, Rachel; Amato, Ronald; Giambra, Anna; Bowden, Patrick; Hartline, Ernest; Dattelbaum, Dana

    2017-06-01

    To better understand how solid carbon forms and evolves during detonation, we have prepared Composition B with 13 C and 15 N-labeled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 2,4,6-trinitrotoluene (TNT) in order to trace the formation of soot from the carbon and nitrogen atoms in these explosives. Isotope-labeling of explosives has been performed in the recent past for a variety of reasons, including environmental remediation and reaction mechanism studies. Because it is expensive and time consuming to prepare these materials, and our detection equipment only requires trace amounts of isotopes, we have prepared fully-labeled materials and substituted them into unlabeled RDX and TNT at less than the 1% level. We will discuss the preparation and full characterization of this labeled Composition B, the detonation tests performed, along with the results of the post-detonation soot analysis. Various detonation models predict differing amounts and forms of carbon and nitrogen; these isotopically-labeled precursors have allowed these models to be tested.

  1. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.

    PubMed

    Kim, Wansun; Lee, Jae-Chul; Lee, Gi-Ja; Park, Hun-Kuk; Lee, Anbok; Choi, Samjin

    2017-06-20

    We introduce a label-free biosensing cellulose strip sensor with surface-enhanced Raman spectroscopy (SERS)-encoded bimetallic core@shell nanoparticles. Bimetallic nanoparticles consisting of a synthesis of core Ag nanoparticles (AgNP) and a synthesis of shell gold nanoparticles (AuNPs) were fabricated on a cellulose substrate by two-stage successive ionic layer absorption and reaction (SILAR) techniques. The bimetallic nanoparticle-enhanced localized surface plasmon resonance (LSPR) effects were theoretically verified by computational calculations with finite element models of optimized bimetallic nanoparticles interacting with an incident laser source. Well-dispersed raspberry-like bimetallic nanoparticles with highly polycrystalline structure were confirmed through X-ray and electron analyses despite ionic reaction synthesis. The stability against silver oxidation and high sensitivity with superior SERS enhancement factor (EF) of the low-cost SERS-encoded cellulose strip, which achieved 3.98 × 10 8 SERS-EF, 6.1%-RSD reproducibility, and <10%-degraded sustainability, implicated the possibility of practical applications in high analytical screening methods, such as single-molecule detection. The remarkable sensitivity and selectivity of this bimetallic biosensing strip in determining aquatic toxicities for prohibited drugs, such as aniline, sodium azide, and malachite green, as well as monitoring the breast cancer progression for urine, confirmed its potential as a low-cost label-free point-of-care test chip for the early diagnosis of human diseases.

  2. Classification without labels: learning from mixed samples in high energy physics

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-01

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.

  3. Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex

    PubMed Central

    McBride, William J.; D’Souza, Christopher A.; Sharkey, Robert M.; Karacay, Habibe; Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M.

    2010-01-01

    We reported previously the feasibility to radiolabel peptides with fluorine-18 (18F) using a rapid, one-pot, method that first mixes 18F− with Al3+, and then binds the (Al18F)2+ complex to a NOTA ligand on the peptide. In this report, we examined several new NOTA ligands and determined how temperature, reaction time, and reagent concentration affected the radiolabeling yield. Four structural variations of the NOTA ligand had isolated radiolabeling yields ranging from 5.8% to 87% under similar reaction conditions. All of the Al18F NOTA complexes were stable in vitro in human serum and those that were tested in vivo also were stable. The radiolabeling reactions were performed at 100°C and the peptides could be labeled in as little as five minutes. The IMP467 peptide could be labeled up to 115 GBq/μmol (3100 Ci/mmol), with a total reaction and purification time of 30 min without chromatographic purification. PMID:20540570

  4. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  5. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  6. Fluorescein-labeled β-Glucosidase as a Bacterial Stain

    PubMed Central

    Pital, Abe; Janowitz, Sheldon L.; Hudak, Charles E.; Lewis, Evelyn E.

    1967-01-01

    Fluorescein isothiocyanate-labeled β-glucosidase was used as a simple staining reagent with selected gram-positive and gram-negative organisms. Staining in situ appeared to be dependent on the presence of accessible glycosidic-type linkages in the bacterial cell wall. Extensive wall damage or lysis did not occur when stained cells were suspended in washing and mounting solutions. The apparent specificity of labeled enzyme for wall substance was tested by blocking reactions, staining of isolated cell walls, and failure to stain substances lacking appropriate glycosidic linkages. Severe cell wall lesions were produced after prolonged contact with labeled enzyme, and this phenomenon may also be related to staining specificity. Gram-negative organisms and spores were poorly stained unless protected glycopeptide substrate was previously exposed by treatment of cells with thioglycolic acid or dilute alkaline sodium hypochlorite solution. A potential for staining tissues and cell lines may also exist. Some possible applications of labeled enzymes are briefly discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4169543

  7. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    PubMed Central

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  8. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    NASA Astrophysics Data System (ADS)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  9. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  10. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin.

    PubMed

    Hicks, G R; Rayle, D L; Jones, A M; Lomax, T L

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  11. Food labeling issues in patients with severe food allergies: solving a hamlet-like doubt.

    PubMed

    Fierro, Vincenzo; Di Girolamo, Francesco; Marzano, Valeria; Dahdah, Lamia; Mennini, Maurizio

    2017-06-01

    We review the laws on labeling in the international community, the difficulties they pose to the food manufacturers to prepare the food labels and the methodologies to determine the concentration of potential allergens in foods. European Food Safety Authority and International Life Sciences Institute Europe are evaluating strategies to identify the threshold level of allergen that can trigger a reaction in individuals. The most used techniques to detect the presence of protein in food are Enzyme-linked immunosorbent assay, polymerase chain reaction and real time polymerase chain reaction. Researchers are now trying to apply proteomics to estimate the amount of protein within the food.In order to protect the health of consumers, the Codex Alimentarius Commission updates constantly the list of allergens. In response to these regulations, some industries have also added some precautionary allergen labeling (PAL). It was generally agreed that PAL statements needed to be visible, simple, and safe. It was suggested that PAL be standardized, an action that would occur if the 'Voluntary Incidental Trace Allergen Labelling' process was made mandatory. So far, no laboratory technique is able to reassure the consumers about the composition of foods found on the packaging. International authorities produced increasingly stringent laws, but more is still to do.

  12. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction

    PubMed Central

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.

    2013-01-01

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies

  13. The use of locally optimal trajectory management for base reaction control of robots in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, N. J.; Quinn, R. D.

    1991-01-01

    A locally-optimal trajectory management (LOTM) approach is analyzed, and it is found that care should be taken in choosing the Ritz expansion and cost function. A modified cost function for the LOTM approach is proposed which includes the kinetic energy along with the base reactions in a weighted and scale sum. The effects of the modified functions are demonstrated with numerical examples for robots operating in two- and three-dimensional space. It is pointed out that this modified LOTM approach shows good performance, the reactions do not fluctuate greatly, joint velocities reach their objectives at the end of the manifestation, and the CPU time is slightly more than twice the manipulation time.

  14. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2009-07-01

    Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.

  15. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  16. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  17. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  18. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  19. N-iodoacetyltyramine: Preparation and use in sup 125 I labeling by alkylation of sulfhydryl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.M.; Mihal, K.A.; Krueger, R.J.

    1989-06-01

    Preparation and use of N-iodoacetyltyramine in generation of {sup 125}I-labeled compounds is described. The kinetics of alkylation of N-acetylcysteine by N-iodoacetyltyramine (k2 = 3.0 M-1 s-1) and N-chloroacetyltyramine (k2 = 0.12 M-1 s-1) indicate that N-iodoacetyltyramine is more useful for labeling sulfhydryl-containing compounds to high specific activity with {sup 125}I. Conditions for preparation of carrier-free {sup 125}I-labeled N-iodoacetyl-3-monoiodotyramine in 50% yield based on starting iodide are described. The high degree of group specificity of N-iodoacetyl-3-monoiodotyramine reaction with sulfhydryl groups is demonstrated by the high reactivity toward sulfhydryl-containing bovine serum albumin and low reactivity toward N-ethylmaleimide-blocked bovine serum albumin and IgG.more » {sup 125}I-labeled N-iodoacetyl-3-monoiodotyramine was also used to prepare an {sup 125}I-labeled ACTH derivative that retains full biological activity, further demonstrating the selectivity toward reactions with sulfhydryl groups.« less

  20. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications. Nuclear Science Series: Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; Wolf, A.P.

    1982-09-01

    Carbon 11, Fluorine 18, and Nitrogen 13-labeled radiotracers are reviewed from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. The reactions used, the principles used to adapt these reactions to labeling with short-lived radionuclides, and the concepts of chemical reactivity form the framework upon which synthetic strategies for short-lived radiotracers are developed. Potentially new routes are suggested which may be applied to problems in labeling organic molecules. (ACR)

  1. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes.

    PubMed

    Walunj, Manisha B; Tanpure, Arun A; Srivatsan, Seergazhi G

    2018-06-20

    Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.

  2. Efficient Site-Specific Labeling of Proteins via Cysteines

    PubMed Central

    Kim, Younggyu; Ho, Sam O.; Gassman, Natalie R.; Korlann, You; Landorf, Elizabeth V.; Collart, Frank R.; Weiss, Shimon

    2011-01-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70–90%, and specificities are better than ~95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis. PMID:18275130

  3. Efficient site-specific labeling of proteins via cysteines.

    PubMed

    Kim, Younggyu; Ho, Sam O; Gassman, Natalie R; Korlann, You; Landorf, Elizabeth V; Collart, Frank R; Weiss, Shimon

    2008-03-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.

  4. Appalachian residents' perspectives on new U.S. cigarette warning labels.

    PubMed

    Reiter, Paul L; Broder-Oldach, Benjamin; Wewers, Mary Ellen; Klein, Elizabeth G; Paskett, Electra D; Katz, Mira L

    2012-12-01

    The U.S. Food and Drug Administration revealed new pictorial warning labels in June 2011 for cigarette packages, yet little is known about how these labels are perceived by U.S. residents. We examined the reactions to and attitudes about the new labels among residents of Appalachian Ohio, a region with a high smoking prevalence. We conducted focus groups with Appalachian Ohio residents between July and October 2011. Participants included healthcare providers (n = 30), community leaders (n = 26), parents (n = 28), and young adult men ages 18-26 (n = 18). Most participants supported the addition of the new labels to U.S. cigarette packages, though many were unaware of the labels prior to the focus groups. Participants did not think the labels would be effective in promoting smoking cessation among smokers in their communities, but they were more positive about the potential of the labels to reduce smoking initiation. Participants reported positive feedback about the more graphic labels, particularly those showing a man with a tracheal stoma or a person with severe oral disease. The labels that include a cartoon image of an ill infant and a man who quit smoking received the most negative feedback. Participants generally supported adding pictorial warning labels to U.S. cigarette packages, but only a few of labels received mostly positive feedback. Results offer early insight into how the new labels may be received if they are put into practice.

  5. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J.; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13C peaks, on the chemical shift offset of coupled nuclei, such as 1H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [13C, 1H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02 ppm when measured on a 400 MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance.

  6. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking.

    PubMed

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13 C peaks, on the chemical shift offset of coupled nuclei, such as 1 H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [ 13 C, 1 H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02ppm when measured on a 400MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  8. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  9. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are manymore » unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new

  10. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development.

    PubMed

    Krauser, Joel A

    2013-01-01

    Tritium ((3) H) and carbon-14 ((14) C) labels applied in pharmaceutical research and development each offer their own distinctive advantages and disadvantages coupled with benefits and risks. The advantages of (3) H have a higher specific activity, shorter half-life that allows more manageable waste remediation, lower material costs, and often more direct synthetic routes. The advantages of (14) C offer certain analytical benefits and less potential for label loss. Although (3) H labels offer several advantages, they might be overlooked as a viable option because of the concerns about its drawbacks. A main drawback often challenged is metabolic liability. These drawbacks, in some cases, might be overstated leading to underutilization of a perfectly viable option. As a consequence, label selection may automatically default to (14) C, which is a more conservative approach. To challenge this '(14) C-by-default' approach, pharmaceutical agents with strategically selected (3) H-labeling positions based on non-labeled metabolism data have been successfully implemented and evaluated for (3) H loss. From in-house results, the long term success of projects clearly would benefit from a thorough, objective, and balanced assessment regarding label selection ((3) H or (14) C). This assessment should be based on available project information and scientific knowledge. Important considerations are project applicability (preclinical and clinical phases), synthetic feasibility, costs, and timelines. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA.

    PubMed

    Liu, Yu; Holmstrom, Erik; Yu, Ping; Tan, Kemin; Zuo, Xiaobing; Nesbitt, David J; Sousa, Rui; Stagno, Jason R; Wang, Yun-Xing

    2018-05-01

    Site-specific incorporation of labeled nucleotides is an extremely useful synthetic tool for many structural studies (e.g., NMR, electron paramagnetic resonance (EPR), fluorescence resonance energy transfer (FRET), and X-ray crystallography) of RNA. However, specific-position-labeled RNAs >60 nt are not commercially available on a milligram scale. Position-selective labeling of RNA (PLOR) has been applied to prepare large RNAs labeled at desired positions, and all the required reagents are commercially available. Here, we present a step-by-step protocol for the solid-liquid hybrid phase method PLOR to synthesize 71-nt RNA samples with three different modification applications, containing (i) a 13 C 15 N-labeled segment; (ii) discrete residues modified with Cy3, Cy5, or biotin; or (iii) two iodo-U residues. The flexible procedure enables a wide range of downstream biophysical analyses using precisely localized functionalized nucleotides. All three RNAs were obtained in <2 d, excluding time for preparing reagents and optimizing experimental conditions. With optimization, the protocol can be applied to other RNAs with various labeling schemes, such as ligation of segmentally labeled fragments.

  12. Crossed beam studies of ion-molecule reactions in methane and ammonia

    NASA Technical Reports Server (NTRS)

    Smith, G. P. K.; Saunders, M.; Cross, R. J., Jr.

    1976-01-01

    A crossed-beam apparatus is used to measure the product ion velocity and angular distributions for the following ion-molecule reactions in the relative energy range from 2 to 9 eV: CH4(+) + NH3 yields NH4(+) + CH3; CH4(+) + NH3 yields CNH5(+) + H2; NH2(+) + CH4 yields CNH4(+) + H2 (or 2H); and CH3(+) + NH3 yields CNH4(+) + H2 (or 2H). These reactions are also studied by means of deuterium labeling as a further probe of the detailed reaction dynamics. Probability contour plots for the four reactions are constructed in Cartesian velocity space, and product peaks in the plots are discussed. Relative cross sections and Q values are computed for two of the reactions as well as for the corresponding deuterium-labelled reactions. The results show that the present ion-neutral condensation reactions are highly exothermic with a deep well for the internal complex, that little hydrogen scrambling occurs, and that the energy of the reactions is released mainly as internal energy, even to the extent of producing two hydrogen atoms in some cases rather than one hydrogen atom or molecule.

  13. The relative contributions of disease label and disease prognosis to Alzheimer's stigma: A vignette-based experiment.

    PubMed

    Johnson, Rebecca; Harkins, Kristin; Cary, Mark; Sankar, Pamela; Karlawish, Jason

    2015-10-01

    The classification of Alzheimer's disease is undergoing a significant transformation. Researchers have created the category of "preclinical Alzheimer's," characterized by biomarker pathology rather than observable symptoms. Diagnosis and treatment at this stage could allow preventing Alzheimer's cognitive decline. While many commentators have worried that persons given a preclinical Alzheimer's label will be subject to stigma, little research exists to inform whether the stigma attached to the label of clinical Alzheimer's will extend to a preclinical disorder that has the label of "Alzheimer's" but lacks the symptoms or expected prognosis of the clinical form. The present study sought to correct this gap by examining the foundations of stigma directed at Alzheimer's. It asked: do people form stigmatizing reactions to the label "Alzheimer's disease" itself or to the condition's observable impairments? How does the condition's prognosis modify these reactions? Data were collected through a web-based experiment with N = 789 adult members of the U.S. general population (median age = 49, interquartile range, 32-60, range = 18-90). Participants were randomized through a 3 × 3 design to read one of 9 vignettes depicting signs and symptoms of mild stage dementia that varied the disease label ("Alzheimer's" vs. "traumatic brain injury" vs. no label) and prognosis (improve vs. static vs. worsen symptoms). Four stigma outcomes were assessed: discrimination, negative cognitive attributions, negative emotions, and social distance. The study found that the Alzheimer's disease label was generally not associated with more stigmatizing reactions. In contrast, expecting the symptoms to get worse, regardless of which disease label those symptoms received, resulted in higher levels of perceived structural discrimination, higher pity, and greater social distance. These findings suggest that stigma surrounding pre-clinical Alzheimer's categories will depend highly on the expected

  14. Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*

    PubMed Central

    Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus

    2014-01-01

    We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872

  15. [(64) Cu]-labelled trastuzumab: optimisation of labelling by DOTA and NODAGA conjugation and initial evaluation in mice.

    PubMed

    Schjoeth-Eskesen, Christina; Nielsen, Carsten Haagen; Heissel, Søren; Højrup, Peter; Hansen, Paul Robert; Gillings, Nic; Kjaer, Andreas

    2015-05-30

    The human epidermal growth factor receptor-2 (HER2) is overexpressed in 20-30% of all breast cancer cases, leading to increased cell proliferation, growth and migration. The monoclonal antibody, trastuzumab, binds to HER2 and is used for treatment of HER2-positive breast cancer. Trastuzumab has previously been labelled with copper-64 by conjugation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. The aim of this study was to optimise the (64) Cu-labelling of DOTA-trastuzumab and as the first to produce and compare with its 1,4,7-triazacyclononane, 1-glutaric acid-5,7 acetic acid (NODAGA) analogue in a preliminary HER2 tumour mouse model. The chelators were conjugated to trastuzumab using the activated esters DOTA mono-N-hydroxysuccinimide (NHS) and NODAGA-NHS. (64) Cu-labelling of DOTA-trastuzumab was studied by varying the amount of DOTA-trastuzumab used, reaction temperature and time. Full (64) Cu incorporation could be achieved using a minimum of 10-µg DOTA-trastuzumab, but the fastest labelling was obtained after 15 min at room temperature using 25 µg of DOTA-trastuzumab. In comparison, 80% incorporation was achieved for (64) Cu-labelling of NODAGA-trastuzumab. Both [(64) Cu]DOTA-trastuzumab and [(64) Cu]NODAGA-trastuzumab were produced after purification with radiochemical purities of >97%. The tracers were injected into mice with HER2 expressing tumours. The mice were imaged by positron emission tomography and showed high tumour uptake of 3-9% ID/g for both tracers. © 2015 The Authors Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons Ltd.

  16. High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Kerzhner, Mark; Matsuoka, Hideto; Wuebben, Christine; Famulok, Michael; Schiemann, Olav

    2018-05-10

    Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg 2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.

  17. Ovalbumin labeling with p-hydroxymercurybenzoate: The effect of different denaturing agents and the kinetics of reaction.

    PubMed

    Campanella, Beatrice; Onor, Massimo; Biancalana, Lorenzo; D'Ulivo, Alessandro; Bramanti, Emilia

    2015-08-15

    The aim of our study was to investigate how denaturing agents commonly used in protein analysis influence the labeling between a reactive molecule and proteins. For this reason, we investigated the labeling of ovalbumin (OVA) as a globular model protein with p-hydroxymercurybenzoate (pHMB) in its native state (phosphate buffer solution) and in different denaturing conditions (8 molL(-1) urea, 3 molL(-1) guanidinium thiocyanate, 6 molL(-1) guanidinium chloride, 0.2% sodium dodecyl sulfate, and 20% methanol). In addition to chemical denaturation, thermal denaturation was also tested. The protein was pre-column simultaneously denatured and derivatized, and the pHMB-labeled denatured OVA complexes were analyzed by size exclusion chromatography (SEC) coupled online with chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS). The number of -SH groups titrated greatly depends on the protein structure in solution. Indeed, we found that, depending on the adopted denaturing conditions, OVA gave different aggregate species that influence the complexation process. The results were compared with those obtained by a common alternative procedure for the titration of -SH groups that employs monobromobimane (mBBr) as tagging molecule and molecular fluorescence spectroscopy as detection technique. We also investigated the labeling kinetics for denatured OVA and pHMB, finding that the 4 thiolic groups of OVA have a very different reactivity toward mercury labeling, in agreement with previous studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Penicillin allergy: optimizing diagnostic protocols, public health implications, and future research needs.

    PubMed

    Macy, Eric

    2015-08-01

    Unverified penicillin allergy is being increasingly recognized as a public health concern. The ideal protocol for verifying true clinically significant IgE-mediated penicillin allergy needs to use only commercially available materials, be well tolerated and easy to perform in both the inpatient and outpatient settings, and minimize false-positive determinations. This review concentrates on articles published in 2013 and 2014 that present new data relating to the diagnosis and management of penicillin allergy. Penicillin allergy can be safely evaluated at this time, in patients with an appropriate clinical history of penicillin allergy, using only penicilloyl-poly-lysine and native penicillin G as skin test reagents, if an oral challenge with amoxicillin 250 mg, followed by 1 h of observation, is given to all skin test negative individuals. Millions of individuals falsely labeled with penicillin allergy need to be evaluated to safely allow them to use penicillin-class antibiotics and avoid morbidity associated with penicillin avoidance. Further research is needed to determine optimal protocol(s). There will still be a 1-2% rate of adverse reactions reported with all future therapeutic penicillin-class antibiotic use, even with optimal methods used to determine acute penicillin tolerance. Only a small minority of these new reactions will be IgE-mediated.

  19. Quantitative risk assessment of foods containing peanut advisory labeling.

    PubMed

    Remington, Benjamin C; Baumert, Joseph L; Marx, David B; Taylor, Steve L

    2013-12-01

    Foods with advisory labeling (i.e. "may contain") continue to be prevalent and the warning may be increasingly ignored by allergic consumers. We sought to determine the residual levels of peanut in various packaged foods bearing advisory labeling, compare similar data from 2005 and 2009, and determine any potential risk for peanut-allergic consumers. Of food products bearing advisory statements regarding peanut or products that had peanut listed as a minor ingredient, 8.6% and 37.5% contained detectable levels of peanut (>2.5 ppm whole peanut), respectively. Peanut-allergic individuals should be advised to avoid such products regardless of the wording of the advisory statement. Peanut was detected at similar rates and levels in products tested in both 2005 and 2009. Advisory labeled nutrition bars contained the highest levels of peanut and an additional market survey of 399 products was conducted. Probabilistic risk assessment showed the risk of a reaction to peanut-allergic consumers from advisory labeled nutrition bars was significant but brand-dependent. Peanut advisory labeling may be overused on some nutrition bars but prudently used on others. The probabilistic approach could provide the food industry with a quantitative method to assist with determining when advisory labeling is most appropriate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Expedited Synthesis of Fluorine-18 Labeled Phenols. A Missing Link in PET Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzenellenbogen, John A.; Zhou, Dong

    Fluorine-18 (F-18) is arguably the most valuable radionuclide for positron emission tomographic (PET) imaging. However, while there are many methods for labeling small molecules with F-18 at aliphatic positions and on electron-deficient aromatic rings, there are essentially no reliable and practical methods to label electron-rich aromatic rings such as phenols, with F-18 at high specific activity. This is disappointing because fluorine-labeled phenols are found in many drugs; there are also many interesting plant metabolites and hormones that contain either phenols or other electron-rich aromatic systems such as indoles whose metabolism, transport, and distribution would be interesting to study if theymore » could readily be labeled with F-18. Most approaches to label phenols with F-18 involve the labeling of electron-poor precursor arenes by nucleophilic aromatic substitution, followed by subsequent conversion to phenols by oxidation or other multi-step sequences that are often inefficient and time consuming. Thus, the lack of good methods for labeling phenols and other electron-rich aromatics with F-18 at high specific activity represents a significant methodological gap in F-18 radiochemistry that can be considered a “Missing Link in PET Radiochemistry”. The objective of this research project was to develop and optimize a series of unusual synthetic transformations that will enable phenols (and other electron-rich aromatic systems) to be labeled with F-18 at high specific activity, rapidly, reliably, and conveniently, thereby bridging this gap. Through the studies conducted with support of this project, we have substantially advanced synthetic methodology for the preparation of fluorophenols. Our progress is presented in detail in the sections below, and much has been published or presented publication; other components are being prepared for publication. In essence, we have developed a completely new method to prepare o-fluorophenols from non

  1. Robust multi-atlas label propagation by deep sparse representation

    PubMed Central

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2016-01-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared

  2. Robust multi-atlas label propagation by deep sparse representation.

    PubMed

    Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong

    2017-03-01

    Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures

  3. Mining FDA drug labels using an unsupervised learning technique--topic modeling.

    PubMed

    Bisgin, Halil; Liu, Zhichao; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2011-10-18

    The Food and Drug Administration (FDA) approved drug labels contain a broad array of information, ranging from adverse drug reactions (ADRs) to drug efficacy, risk-benefit consideration, and more. However, the labeling language used to describe these information is free text often containing ambiguous semantic descriptions, which poses a great challenge in retrieving useful information from the labeling text in a consistent and accurate fashion for comparative analysis across drugs. Consequently, this task has largely relied on the manual reading of the full text by experts, which is time consuming and labor intensive. In this study, a novel text mining method with unsupervised learning in nature, called topic modeling, was applied to the drug labeling with a goal of discovering "topics" that group drugs with similar safety concerns and/or therapeutic uses together. A total of 794 FDA-approved drug labels were used in this study. First, the three labeling sections (i.e., Boxed Warning, Warnings and Precautions, Adverse Reactions) of each drug label were processed by the Medical Dictionary for Regulatory Activities (MedDRA) to convert the free text of each label to the standard ADR terms. Next, the topic modeling approach with latent Dirichlet allocation (LDA) was applied to generate 100 topics, each associated with a set of drugs grouped together based on the probability analysis. Lastly, the efficacy of the topic modeling was evaluated based on known information about the therapeutic uses and safety data of drugs. The results demonstrate that drugs grouped by topics are associated with the same safety concerns and/or therapeutic uses with statistical significance (P<0.05). The identified topics have distinct context that can be directly linked to specific adverse events (e.g., liver injury or kidney injury) or therapeutic application (e.g., antiinfectives for systemic use). We were also able to identify potential adverse events that might arise from specific

  4. Synthesis of labeled meropenem for the analysis of M. tuberculosis transpeptidases.

    PubMed

    Kastrinsky, David B; Barry, Clifton E

    2010-01-01

    A concise synthesis of (14)C labeled meropenem prepared from (14)C dimethylamine hydrochloride is described. Using a similar reaction sequence, the meropenem nucleus was also attached to biotin providing a probe for protein interaction studies.

  5. Rapid Covalent Fluorescence Labeling of Membrane Proteins on Live Cells via Coiled-Coil Templated Acyl Transfer.

    PubMed

    Reinhardt, Ulrike; Lotze, Jonathan; Mörl, Karin; Beck-Sickinger, Annette G; Seitz, Oliver

    2015-10-21

    Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments.

  6. [Optimization of labeling and localizing bacterial membrane and nucleus with FM4-64 and Hoechst dyes].

    PubMed

    Wang, Jing; Han, Yanping; Yang, Ruifu; Zhao, Xingxu

    2015-08-04

    To observe cell membrane and nucleus in bacteria for subcellular localization. FM4-64 and Hoechst were dyed that can label cell membrane and nucleus, respectively. Both dyes were used to co-stain the membranes and nucleus of eight bacterial strains ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Yersinia pestis, Legionella pneumonia, Vibrio cholerae and Bacillus anthracis). E. coli was dyed with different dye concentrations and times and then observed by confocal fluorescence microscopic imaging. Fluorescence intensity of cell membrane and nucleus is affected by dye concentrations and times. The optimal conditions were determined as follows: staining cell membrane with 20 μg/mL FM4-64 for 1 min and cell nucleus with 20 μg/mL Hoechst for 20 min. Gram-negative bacteria were dyed better than gram-positive bacteria with FM4-64dye. FM4-64 and Hoechst can be used to stain membrane and nucleus in different types of bacteria. Co-staining bacterial membrane and nucleus provides the reference to observe cell structure in prokaryotes for studying subcellular localization.

  7. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    PubMed

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  8. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  9. Joint learning of labels and distance metric.

    PubMed

    Liu, Bo; Wang, Meng; Hong, Richang; Zha, Zhengjun; Hua, Xian-Sheng

    2010-06-01

    Machine learning algorithms frequently suffer from the insufficiency of training data and the usage of inappropriate distance metric. In this paper, we propose a joint learning of labels and distance metric (JLLDM) approach, which is able to simultaneously address the two difficulties. In comparison with the existing semi-supervised learning and distance metric learning methods that focus only on label prediction or distance metric construction, the JLLDM algorithm optimizes the labels of unlabeled samples and a Mahalanobis distance metric in a unified scheme. The advantage of JLLDM is multifold: 1) the problem of training data insufficiency can be tackled; 2) a good distance metric can be constructed with only very few training samples; and 3) no radius parameter is needed since the algorithm automatically determines the scale of the metric. Extensive experiments are conducted to compare the JLLDM approach with different semi-supervised learning and distance metric learning methods, and empirical results demonstrate its effectiveness.

  10. Fluorescently labeled bevacizumab in human breast cancer: defining the classification threshold

    NASA Astrophysics Data System (ADS)

    Koch, Maximilian; de Jong, Johannes S.; Glatz, Jürgen; Symvoulidis, Panagiotis; Lamberts, Laetitia E.; Adams, Arthur L. L.; Kranendonk, Mariëtte E. G.; Terwisscha van Scheltinga, Anton G. T.; Aichler, Michaela; Jansen, Liesbeth; de Vries, Jakob; Lub-de Hooge, Marjolijn N.; Schröder, Carolien P.; Jorritsma-Smit, Annelies; Linssen, Matthijs D.; de Boer, Esther; van der Vegt, Bert; Nagengast, Wouter B.; Elias, Sjoerd G.; Oliveira, Sabrina; Witkamp, Arjen J.; Mali, Willem P. Th. M.; Van der Wall, Elsken; Garcia-Allende, P. Beatriz; van Diest, Paul J.; de Vries, Elisabeth G. E.; Walch, Axel; van Dam, Gooitzen M.; Ntziachristos, Vasilis

    2017-07-01

    In-vivo fluorescently labelled drug (bevacizumab) breast cancer specimen where obtained from patients. We propose a new structured method to determine the optimal classification threshold in targeted fluorescence intra-operative imaging.

  11. Practical cell labeling with magnetite cationic liposomes for cell manipulation.

    PubMed

    Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki

    2010-07-01

    Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.

  12. 15N-labeled glycine synthesis.

    PubMed

    Tavares, Claudinéia R O; Bendassolli, José A; Coelho, Fernando; Sant'ana Filho, Carlos R; Prestes, Clelber V

    2006-09-01

    This work describes a method for 15N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of alpha-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia (15NH3). Special care was taken to avoid possible 15NH3 losses, since its production cost is high. In that respect, although the purchase cost of the 13N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15NH3aq volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15NH3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered.

  13. Convergent synthesis of 13N-labelled Peptidic structures using aqueous [13N]NH3.

    PubMed

    Blower, Julia E; Cousin, Samuel F; Gee, Antony D

    2017-01-01

    Nitrogen-13 has a 10-min half-life which places time constraints on the complexity of viable synthetic methods for its incorporation into PET imaging agents. In exploring ways to overcome this limitation, we have used the Ugi reaction to develop a rapid one-pot method for radiolabelling peptidic molecules using [ 13 N]NH 3 as a synthetic precursor. Carrier-added [ 13 N]NH 3 (50 μL) was added to a solution of carboxylic acid, aldehyde, and isocyanide in 2,2,2-TFE (200 μL). The mixture was heated in a microwave synthesiser at 120 °C for 10 min. Reactions were analysed by radio-HPLC and radio-LCMS. Isolation of the target 13 N-labelled peptidic Ugi compound was achieved via semi-preparative radio-HPLC as demonstrated for Ugi 1. Radio-HPLC analysis of each reaction confirmed the formation of radioactive products co-eluting with their respective reference standards with radiochemical yields of the crude products ranging from 11% to 23%. Two cyclic γ-lactam structures were also achieved via intra-molecular reactions. Additional radioactive by-products observed in the radio-chromatogram were identified as 13 N-labelled di-imines formed from the reaction of [ 13 N]NH 3 with two isocyanide molecules. The desired 13 N-labelled Ugi product was isolated using semi-preparative HPLC. We have developed a one-pot method that opens up new routes to radiolabel complex, peptidic molecules with 13 N using aqueous [ 13 N]NH 3 as a synthetic precursor.

  14. Synthesis of labeled meropenem for the analysis of M. tuberculosis transpeptidases

    PubMed Central

    Kastrinsky, David B.; Barry, Clifton E.

    2009-01-01

    A concise synthesis of 14C labeled meropenem prepared from 14C dimethylamine hydrochloride is described. Using a similar reaction sequence, the meropenem nucleus was also attached to biotin providing a probe for protein interaction studies. PMID:20161438

  15. Gallium-68-labelled NOTA-oligonucleotides: an optimized method for their preparation.

    PubMed

    Gijs, Marlies; Dammicco, Sylvestre; Warnier, Corentin; Aerts, An; Impens, Nathalie R E N; D'Huyvetter, Matthias; Léonard, Marc; Baatout, Sarah; Luxen, André

    2016-02-01

    One of the most essential aspects to the success of radiopharmaceuticals is an easy and reliable radiolabelling protocol to obtain pure and stable products. In this study, we optimized the bioconjugation and gallium-68 ((68) Ga) radiolabelling conditions for a single-stranded 40-mer DNA oligonucleotide, in order to obtain highly pure and stable radiolabelled oligonucleotides. Quantitative bioconjugation was obtained for a disulfide-functionalized oligonucleotide conjugated to the macrocylic bifunctional chelator MMA-NOTA (maleimido-mono-amide (1,4,7-triazanonane-1,4,7-triyl)triacetic acid). Next, this NOTA-oligonucleotide bioconjugate was radiolabelled at room temperature with purified and pre-concentrated (68) Ga with quantitative levels of radioactive incorporation and high radiochemical and chemical purity. In addition, high chelate stability was observed in physiological-like conditions (37 °C, PBS and serum), in the presence of a transchelator (EDTA) and transferrin. A specific activity of 51.1 MBq/nmol was reached using a 1470-fold molar excess bioconjugate over (68) Ga. This study presents a fast, straightforward and reliable protocol for the preparation of (68) Ga-radiolabelled DNA oligonucleotides under mild reaction conditions and without the use of organic solvents. The methodology herein developed will be applied to the preparation of oligonucleotidic sequences (aptamers) targeting the human epidermal growth factor receptor 2 (HER2) for cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Optimal control of an invasive species using a reaction-diffusion model and linear programming

    USGS Publications Warehouse

    Bonneau, Mathieu; Johnson, Fred A.; Smith, Brian J.; Romagosa, Christina M.; Martin, Julien; Mazzotti, Frank J.

    2017-01-01

    Managing an invasive species is particularly challenging as little is generally known about the species’ biological characteristics in its new habitat. In practice, removal of individuals often starts before the species is studied to provide the information that will later improve control. Therefore, the locations and the amount of control have to be determined in the face of great uncertainty about the species characteristics and with a limited amount of resources. We propose framing spatial control as a linear programming optimization problem. This formulation, paired with a discrete reaction-diffusion model, permits calculation of an optimal control strategy that minimizes the remaining number of invaders for a fixed cost or that minimizes the control cost for containment or protecting specific areas from invasion. We propose computing the optimal strategy for a range of possible model parameters, representing current uncertainty on the possible invasion scenarios. Then, a best strategy can be identified depending on the risk attitude of the decision-maker. We use this framework to study the spatial control of the Argentine black and white tegus (Salvator merianae) in South Florida. There is uncertainty about tegu demography and we considered several combinations of model parameters, exhibiting various dynamics of invasion. For a fixed one-year budget, we show that the risk-averse strategy, which optimizes the worst-case scenario of tegus’ dynamics, and the risk-neutral strategy, which optimizes the expected scenario, both concentrated control close to the point of introduction. A risk-seeking strategy, which optimizes the best-case scenario, focuses more on models where eradication of the species in a cell is possible and consists of spreading control as much as possible. For the establishment of a containment area, assuming an exponential growth we show that with current control methods it might not be possible to implement such a strategy for some of the

  17. A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification.

    PubMed

    Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; Zhang, David

    2017-02-01

    Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.

  18. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms

    PubMed Central

    Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven

    2016-01-01

    Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations

  19. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms.

    PubMed

    Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven

    2016-03-01

    Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called 'rain'. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based 'experience matrix' that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The

  20. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands

  1. Flow-aggregated traffic-driven label mapping in label-switching networks

    NASA Astrophysics Data System (ADS)

    Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu

    1998-12-01

    Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.

  2. Nutrition Label Viewing during a Food-Selection Task: Front-of-Package Labels vs Nutrition Facts Labels.

    PubMed

    Graham, Dan J; Heidrick, Charles; Hodgin, Katie

    2015-10-01

    Earlier research has identified consumer characteristics associated with viewing Nutrition Facts labels; however, little is known about those who view front-of-package nutrition labels. Front-of-package nutrition labels might appeal to more consumers than do Nutrition Facts labels, but it might be necessary to provide consumers with information about how to locate and use these labels. This study quantifies Nutrition Facts and front-of-package nutrition label viewing among American adult consumers. Attention to nutrition information was measured during a food-selection task. One hundred and twenty-three parents (mean age=38 years, mean body mass index [calculated as kg/m(2)]=28) and one of their children (aged 6 to 9 years) selected six foods from a university laboratory-turned-grocery aisle. Participants were randomized to conditions in which front-of-package nutrition labels were present or absent, and signage explaining front-of-package nutrition labels was present or absent. Adults' visual attention to Nutrition Facts labels and front-of-package nutrition labels was objectively measured via eye-tracking glasses. To examine whether there were significant differences in the percentages of participants who viewed Nutrition Facts labels vs front-of-package nutrition labels, McNemar's tests were conducted across all participants, as well as within various sociodemographic categories. To determine whether hypothesized factors, such as health literacy and education, had stronger relationships with front-of-package nutrition label vs Nutrition Facts label viewing, linear regression assessed the magnitude of relationships between theoretically and empirically derived factors and each type of label viewing. Overall, front-of-package nutrition labels were more likely to be viewed than Nutrition Facts labels; however, for all subgroups, higher rates of front-of-package nutrition label viewership occurred only when signage was present drawing attention to the presence and

  3. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  4. Label Information Guided Graph Construction for Semi-Supervised Learning.

    PubMed

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  5. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  6. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    NASA Astrophysics Data System (ADS)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  7. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  8. Label-free detection of biomolecules with Ta2O5-based field effect devices

    NASA Astrophysics Data System (ADS)

    Branquinho, Rita Maria Mourao Salazar

    Field-effect-based devices (FEDs) are becoming a basic structural element in a new generation of micro biosensors. Their numerous advantages such as small size, labelfree response and versatility, together with the possibility of on-chip integration of biosensor arrays with a future prospect of low-cost mass production, make their development highly desirable. The present thesis focuses on the study and optimization of tantalum pentoxide (Ta2O5) deposited by rf magnetron sputtering at room temperature, and their application as sensitive layer in biosensors based on field effect devices (BioFEDs). As such, the influence of several deposition parameters and post-processing annealing temperature and surface plasma treatment on the film¡¦s properties was investigated. Electrolyte-insulator-semiconductor (EIS) field-effect-based sensors comprising the optimized Ta2O5 sensitive layer were applied to the development of BioFEDs. Enzyme functionalized sensors (EnFEDs) were produced for penicillin detection. These sensors were also applied to the label free detection of DNA and the monitoring of its amplification via polymerase chain reaction (PCR), real time PCR (RT-PCR) and loop mediated isothermal amplification (LAMP). Ion sensitive field effect transistors (ISFETs) based on semiconductor oxides comprising the optimized Ta2O5 sensitive layer were also fabricated. EIS sensors comprising Ta2O5 films produced with optimized conditions demonstrated near Nernstian pH sensitivity, 58+/-0.3 mV/pH. These sensors were successfully applied to the label-free detection of penicillin and DNA. Penicillinase functionalized sensors showed a 29+/-7 mV/mM sensitivity towards penicillin detection up to 4 mM penicillin concentration. DNA detection was achieved with 30 mV/mugM sensitivity and DNA amplification monitoring with these sensors showed comparable results to those obtained with standard fluorescence based methods. Semiconductor oxides-based ISFETs with Ta2O5 sensitive layer were

  9. Optimization of immunosuppressive therapy based on a multiparametric mixed lymphocyte reaction assay reduces infectious complications and mortality in living donor liver transplant recipients.

    PubMed

    Tanaka, Y; Tashiro, H; Onoe, T; Ide, K; Ishiyama, K; Ohdan, H

    2012-03-01

    We investigated the clinical relevance of immune monitoring by a multiparametric mixed lymphocyte reaction (MLR) assay, wherein the number and phenotype of alloreactive precursors can be quantified by combining the results of carboxyfluorescein diacetate succinimidyl ester labeling and flow cytometry analysis. In 51 adult patients undergoing living donor liver transplantation (OLT), immunosuppressive drugs were dosed on the basis of immune monitoring by the MLR assay (optimized protocol: group O). In 64 other patients, the agents were prescribed according to empirical regimens (empirical protocol: group E). In group O, MLR assays were performed at 2- to 4-week intervals until 3 months after OLT and thereafter at 3- to 6-month intervals. Therapeutic adjustments for immunosuppressants were determined by tapering the doses in cases of anti-donor hyporesponsiveness for both CD4+ and CD8+ T-cell subsets. The 1-year patient and graft survivals in groups O versus E were 90.2% versus 76.6%, respectively. The incidence of acute rejection episodes (ARE) among group O (13.7%) were lower than in cohort E (28.1%). None of the patients in group O while four patients (3%) in group E already have shown chronic rejection to date. The incidences of bacteremia and fungal infections in group O (9.8% and 7.5%, respectively) were lower than in cohort E (18.8% and 12.6%, respectively). A multiparametric MLR assay may facilitate the development of adequate immunosuppressive regimens. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Optimized Time-Gated Fluorescence Spectroscopy for the Classification and Recycling of Fluorescently Labeled Plastics.

    PubMed

    Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian

    2017-05-01

    For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.

  11. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting.

    PubMed

    Sun, Wenjing; Chu, Taiwei

    2015-10-15

    The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Can front-of-pack labelling schemes guide healthier food choices? Australian shoppers' responses to seven labelling formats.

    PubMed

    Watson, Wendy L; Kelly, Bridget; Hector, Debra; Hughes, Clare; King, Lesley; Crawford, Jennifer; Sergeant, John; Chapman, Kathy

    2014-01-01

    There is evidence that easily accessible, comprehensible and consistent nutrient information on the front of packaged foods could assist shoppers to make healthier food choices. This study used an online questionnaire of 4357 grocery shoppers to examine Australian shoppers' ability to use a range of front-of-pack labels to identify healthier food products. Seven different front-of-pack labelling schemes comprising variants of the Traffic Light labelling scheme and the Percentage Daily Intake scheme, and a star rating scheme, were applied to nine pairs of commonly purchased food products. Participants could also access a nutrition information panel for each product. Participants were able to identify the healthier product in each comparison over 80% of the time using any of the five schemes that provided information on multiple nutrients. No individual scheme performed significantly better in terms of shoppers' ability to determine the healthier product, shopper reliance on the 'back-of-pack' nutrition information panel, and speed of use. The scheme that provided information about energy only and a scheme with limited numerical information of nutrient type or content performed poorly, as did the nutrition information panel alone (control). Further consumer testing is necessary to determine the optimal format and content of an interpretive front-of-pack nutrition labelling scheme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Parallel consistent labeling algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, A.; Henderson, T.

    Mackworth and Freuder have analyzed the time complexity of several constraint satisfaction algorithms. Mohr and Henderson have given new algorithms, AC-4 and PC-3, for arc and path consistency, respectively, and have shown that the arc consistency algorithm is optimal in time complexity and of the same order space complexity as the earlier algorithms. In this paper, they give parallel algorithms for solving node and arc consistency. They show that any parallel algorithm for enforcing arc consistency in the worst case must have O(na) sequential steps, where n is number of nodes, and a is the number of labels per node.more » They give several parallel algorithms to do arc consistency. It is also shown that they all have optimal time complexity. The results of running the parallel algorithms on a BBN Butterfly multiprocessor are also presented.« less

  14. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    PubMed

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  15. Application of meta- and para- phenylenediamine as enhanced oxime ligation catalysts for protein labeling, PEGylation, immobilization and release

    PubMed Central

    Mahmoodi, Mohammad M.; Rashidian, Mohammad; Zhang, Yi; Distefano, Mark D.

    2015-01-01

    Meta- and para- phenylenediamines have recently been shown to catalyze oxime and hydrazone ligation reactions at rates much faster than aniline, a commonly used catalyst. Here, it is demonstrated how these new catalysts can be used in a generally applicable procedure for fluorescent labeling, PEGylation, immobilization and release of aldehyde and ketone functionalized proteins. The chemical orthogonality of phenylenediamine-catalyzed oxime ligation versus copper catalyzed click reaction has also been harnessed for simultaneous dual labeling of bifunctional proteins containing both aldehyde and alkyne groups in high yield. PMID:25640893

  16. Novel image processing method study for a label-free optical biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  17. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  18. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    PubMed

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cigarette graphic warning labels increase both risk perceptions and smoking myth endorsement.

    PubMed

    Evans, Abigail T; Peters, Ellen; Shoben, Abigail B; Meilleur, Louise R; Klein, Elizabeth G; Tompkins, Mary Kate; Tusler, Martin

    2018-02-01

    Cigarette graphic warning labels elicit negative emotion, which increases risk perceptions through multiple processes. We examined whether this emotion simultaneously affects motivated cognitions like smoking myth endorsement (e.g. 'exercise can undo the negative effects of smoking') and perceptions of cigarette danger versus other products. 736 adult and 469 teen smokers/vulnerable smokers viewed one of three warning label types (text-only, low emotion graphic or high emotion graphic) four times over two weeks. Emotional reactions to the warnings were reported during the first and fourth exposures. Participants reported how often they considered the warnings, smoking myth endorsement, risk perceptions and perceptions of cigarette danger relative to smokeless tobacco and electronic cigarettes. In structural equation models, emotional reactions influenced risk perceptions and smoking myth endorsement through two processes. Emotion acted as information about risk, directly increasing smoking risk perceptions and decreasing smoking myth endorsement. Emotion also acted as a spotlight, motivating consideration of the warning information. Warning consideration increased risk perceptions, but also increased smoking myth endorsement. Emotional reactions to warnings decreased perceptions of cigarette danger relative to other products. Emotional reactions to cigarette warnings increase smoking risk perceptions, but also smoking myth endorsement and misperceptions that cigarettes are less dangerous than potentially harm-reducing tobacco products.

  20. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    NASA Astrophysics Data System (ADS)

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  1. Label-free biosensing of Salmonella enterica serovars at single-cell level

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology has greatly facilitated the development of label-free biosensors. The atomic force microscopy (AFM) has been used to study the molecular mechanism of the reactions for protein and aptamers. The surface plasmon resonance (SPR) have been used in fast detection of various pathogenic bact...

  2. Label Review Training: Module 1: Label Basics, Page 21

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about types of labels.

  3. Hyperplex-MRM: a hybrid multiple reaction monitoring method using mTRAQ/iTRAQ labeling for multiplex absolute quantification of human colorectal cancer biomarker.

    PubMed

    Yin, Hong-Rui; Zhang, Lei; Xie, Li-Qi; Huang, Li-Yong; Xu, Ye; Cai, San-Jun; Yang, Peng-Yuan; Lu, Hao-Jie

    2013-09-06

    Novel biomarker verification assays are urgently required to improve the efficiency of biomarker development. Benefitting from lower development costs, multiple reaction monitoring (MRM) has been used for biomarker verification as an alternative to immunoassay. However, in general MRM analysis, only one sample can be quantified in a single experiment, which restricts its application. Here, a Hyperplex-MRM quantification approach, which combined mTRAQ for absolute quantification and iTRAQ for relative quantification, was developed to increase the throughput of biomarker verification. In this strategy, equal amounts of internal standard peptides were labeled with mTRAQ reagents Δ0 and Δ8, respectively, as double references, while 4-plex iTRAQ reagents were used to label four different samples as an alternative to mTRAQ Δ4. From the MRM trace and MS/MS spectrum, total amounts and relative ratios of target proteins/peptides of four samples could be acquired simultaneously. Accordingly, absolute amounts of target proteins/peptides in four different samples could be achieved in a single run. In addition, double references were used to increase the reliability of the quantification results. Using this approach, three biomarker candidates, ademosylhomocysteinase (AHCY), cathepsin D (CTSD), and lysozyme C (LYZ), were successfully quantified in colorectal cancer (CRC) tissue specimens of different stages with high accuracy, sensitivity, and reproducibility. To summarize, we demonstrated a promising quantification method for high-throughput verification of biomarker candidates.

  4. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    PubMed

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  5. Label Review Training: Module 1: Label Basics, Page 20

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section focuses on supplemental labeling.

  6. Label Review Training: Module 1: Label Basics, Page 22

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about what labels require review.

  7. Label Review Training: Module 1: Label Basics, Page 19

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section covers supplemental distributor labeling.

  8. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    PubMed

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  9. Superposition and alignment of labeled point clouds.

    PubMed

    Fober, Thomas; Glinca, Serghei; Klebe, Gerhard; Hüllermeier, Eyke

    2011-01-01

    Geometric objects are often represented approximately in terms of a finite set of points in three-dimensional euclidean space. In this paper, we extend this representation to what we call labeled point clouds. A labeled point cloud is a finite set of points, where each point is not only associated with a position in three-dimensional space, but also with a discrete class label that represents a specific property. This type of model is especially suitable for modeling biomolecules such as proteins and protein binding sites, where a label may represent an atom type or a physico-chemical property. Proceeding from this representation, we address the question of how to compare two labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover, we consider the problem of establishing an alignment of the structures in the sense of a one-to-one correspondence between their basic constituents. From a biological point of view, alignments of this kind are of great interest, since mutually corresponding molecular constituents offer important information about evolution and heredity, and can also serve as a means to explain a degree of similarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments of labeled point clouds. To this end, we proceed from an optimal superposition of the corresponding point clouds and construct an alignment which is as much as possible in agreement with the neighborhood structure established by this superposition. We apply our methods to the structural analysis of protein binding sites.

  10. Label Review Training: Module 1: Label Basics, Page 18

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This section discusses the types of labels.

  11. Label Review Training: Module 1: Label Basics, Page 26

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about mandatory and advisory label statements.

  12. Label Review Training: Module 1: Label Basics, Page 15

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the consequences of improper labeling.

  13. Label Review Training: Module 1: Label Basics, Page 14

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about positive effects from proper labeling.

  14. Using Central Composite Experimental Design to Optimize the Degradation of Tylosin from Aqueous Solution by Photo-Fenton Reaction

    PubMed Central

    Sarrai, Abd Elaziz; Hanini, Salah; Merzouk, Nachida Kasbadji; Tassalit, Djilali; Szabó, Tibor; Hernádi, Klára; Nagy, László

    2016-01-01

    The feasibility of the application of the Photo-Fenton process in the treatment of aqueous solution contaminated by Tylosin antibiotic was evaluated. The Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimize the effect of hydrogen peroxide, ferrous ion concentration and initial pH as independent variables on the total organic carbon (TOC) removal as the response function. The interaction effects and optimal parameters were obtained by using MODDE software. The significance of the independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results show that the concentration of the ferrous ion and pH were the main parameters affecting TOC removal, while peroxide concentration had a slight effect on the reaction. The optimum operating conditions to achieve maximum TOC removal were determined. The model prediction for maximum TOC removal was compared to the experimental result at optimal operating conditions. A good agreement between the model prediction and experimental results confirms the soundness of the developed model. PMID:28773551

  15. Label Review Training: Module 1: Label Basics, Page 24

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is about which labels require review.

  16. Label Review Training: Module 1: Label Basics, Page 17

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See an overview of the importance of labels.

  17. Label Review Training: Module 1: Label Basics, Page 27

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. See examples of mandatory and advisory label statements.

  18. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin.

    PubMed

    Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu

    2017-04-01

    Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.

  19. Label Review Training: Module 1: Label Basics, Page 23

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Lists types of labels that do not require review.

  20. Labeling and tracking exosomes within the brain using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Betzer, Oshra; Perets, Nisim; Barnoy, Eran; Offen, Daniel; Popovtzer, Rachela

    2018-02-01

    Cell-to-cell communication system involves Exosomes, small, membrane-enveloped nanovesicles. Exosomes are evolving as effective therapeutic tools for different pathologies. These extracellular vesicles can bypass biological barriers such as the blood-brain barrier, and can function as powerful nanocarriers for drugs, proteins and gene therapeutics. However, to promote exosomes' therapy development, especially for brain pathologies, a better understanding of their mechanism of action, trafficking, pharmacokinetics and bio-distribution is needed. In this research, we established a new method for non-invasive in-vivo neuroimaging of mesenchymal stem cell (MSC)-derived exosomes, based on computed tomography (CT) imaging with glucose-coated gold nanoparticle (GNP) labeling. We demonstrated that the exosomes were efficiently and directly labeled with GNPs, via an energy-dependent mechanism. Additionally, we found the optimal parameters for exosome labeling and neuroimaging, wherein 5 nm GNPs enhanced labeling, and intranasal administration produced superior brain accumulation. We applied our technique in a mouse model of focal ischemia. Imaging and tracking of intranasally-administered GNP-labeled exosomes revealed specific accumulation and prolonged presence at the lesion area, up to 24 hrs. We propose that this novel exosome labeling and in-vivo neuroimaging technique can serve as a general platform for brain theranostics.

  1. Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15N-labelled arginine

    PubMed Central

    2005-01-01

    An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system was used to examine a possible action of insulin, glucagon or cAMP on a flux through the ADC reaction. In mitochondria and liver perfusion, 15N-labelled agmatine was generated from external 15N-labelled arginine. The production of 15N-labelled agmatine was time- and dose-dependent. The time-course of [U-15N4]agmatine formation from 2 mM [U-15N4]arginine was best fitted to a one-phase exponential curve with a production rate of approx. 29 pmol·min−1·(mg of protein)−1. Experiments with an increasing concentration (0– 40 mM) of [guanidino-15N2]arginine showed a Michaelis constant Km for arginine of 46 mM and a Vmax of 3.7 nmol·min−1·(mg of protein)−1 for flux through the ADC reaction. Experiments with broken mitochondria showed little changes in Vmax or Km values, suggesting that mitochondrial arginine uptake had little effect on the observed Vmax or Km values. Experiments with liver perfusion demonstrated that over 95% of the effluent agmatine was derived from perfusate [guanidino-15N2]arginine regardless of the experimental condition. However, the output of 15N-labelled agmatine (nmol·min−1·g−1) increased by approx. 2-fold (P<0.05) in perfusions with cAMP. The findings of the present study provide compelling evidence that mitochondrial ADC is present in the rat liver, and suggest that cAMP may stimulate flux through this pathway. PMID:15656789

  2. Label Review Training: Module 1: Label Basics, Page 16

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the importance of labels and the role in enforcement.

  3. Investigation of RNA Synthesis Using 5-Bromouridine Labelling and Immunoprecipitation.

    PubMed

    Kofoed, Rikke H; Betzer, Cristine; Lykke-Andersen, Søren; Molska, Ewa; Jensen, Poul H

    2018-05-03

    When steady state RNA levels are compared between two conditions, it is not possible to distinguish whether changes are caused by alterations in production or degradation of RNA. This protocol describes a method for measurement of RNA production, using 5-Bromouridine labelling of RNA followed by immunoprecipitation, which enables investigation of RNA synthesized within a short timeframe (e.g., 1 h). The advantage of 5-Bromouridine-labelling and immunoprecipitation over the use of toxic transcriptional inhibitors, such as α-amanitin and actinomycin D, is that there are no or very low effects on cell viability during short-term use. However, because 5-Bromouridine-immunoprecipitation only captures RNA produced within the short labelling time, slowly produced as well as rapidly degraded RNA can be difficult to measure by this method. The 5-Bromouridine-labelled RNA captured by 5-Bromouridine-immunoprecipitation can be analyzed by reverse transcription, quantitative polymerase chain reaction, and next generation sequencing. All types of RNA can be investigated, and the method is not limited to measuring mRNA as is presented in this example.

  4. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work.

    PubMed

    Büttner, Lea; Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2014-06-04

    A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.

  5. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  6. PCR synthesis of double stranded DNA labeled with 5-bromouridine. A step towards finding a bromonucleoside for clinical trials.

    PubMed

    Michalska, Barbara; Sobolewski, Ireneusz; Polska, Katarzyna; Zielonka, Justyna; Zylicz-Stachula, Agnieszka; Skowron, Piotr; Rak, Janusz

    2011-12-05

    Incorporation of 5-bromouridine (5BrdU) into DNA makes it sensitive to UV and ionizing radiation, which opens up a prospective route for the clinical usage of 5-bromouridine and other halonucleosides. In the present work the polymerase chain reaction (PCR) protocol, which enables a long DNA fragment (resembling DNA synthesized in the cell in the presence of halonucleosides) to be completely substituted with 5BrdU, was optimized. Using HPLC coupled to enzymatic digestion, it was demonstrated that the actual amounts of native nucleosides and 5BrdU correspond very well to those calculated from the sequence of PCR products. The synthesized DNA is photosensitive to photons of 300nm. HPLC analysis demonstrated that the photolysis of labeled PCR products leads to a significant decrease in the 5BrdU signal and the simultaneous occurrence of a uridine peak. Agarose and polyacrylamide gel electrophoresis suggest that single strand breaks and cross-links are formed as a result of UV irradiation. The PCR protocol described in the current paper may be employed for labeling DNA not only with BrdU but also with other halonucleosides. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Challenges and Path Forward on Mandatory Allergen Labeling and Voluntary Precautionary Allergen Labeling for a Global Company.

    PubMed

    Yeung, Jupiter; Robert, Marie-Claude

    2018-01-01

    For food manufacturers, the label on a food package is a tool meant to alert consumers to the presence of specific allergens, allowing consumers to make informed decisions and not unnecessarily limit their food choices. Mandatory allergen labeling is used when the allergen is an intentionally added ingredient, whereas voluntary allergen labeling is used when the presence of the allergen is unintentional and may be in the finished product as a result of cross-contact. In a globalized economy, ensuring food safety is a growing challenge for manufacturers. When ingredients and technologies are sourced worldwide from multiple business partners, complexity rises, which can increase the chance for errors, leading to potential harm. Threshold science, Voluntary Incidental Trace Allergen Labelling (VITAL) reference doses, fit-for-purpose analytical technology, and common sense enable us to optimize allergen management for the benefit of allergic consumers. This is a good strategy because all stakeholders share the common goal of making foods safe and wholesome for all. Herein, we recommend that (1) senior management make science-based thresholds a priority for both regulatory authorities and the food industry; (2) VITAL 2.0 be adopted as a risk assessment and risk management tool for precautionary allergen labeling (PAL); (3) a standardized message for PAL, i.e., "may contain x," be used to make it easily understandable to allergic consumers so they can make informed food choices; and (4) validated fit-for-purpose allergen methods be used to meet analytical needs. This is an opportunity for us to speak with one voice and demonstrate that food safety is not a competitive issue, but a shared responsibility. This approach could significantly improve allergic consumers' lives.

  8. Magnetic field design for selecting and aligning immunomagnetic labeled cells.

    PubMed

    Tibbe, Arjan G J; de Grooth, Bart G; Greve, Jan; Dolan, Gerald J; Rao, Chandra; Terstappen, Leon W M M

    2002-03-01

    Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the magnetic field design to achieve the best possible cell selection and alignment of magnetically labeled cells. Materials and Methods Computer simulations, in combination with experimental data, were used to optimize the design of the magnets and Ni lines to obtain the optimal magnetic configuration. A homogeneous cell distribution on the upper surface of the sample chamber was obtained with a magnet where the pole faces were tilted towards each other. The spatial distribution of magnetically aligned objects in between the Ni lines was dependent on the ratio of the diameter of the aligned object and the line spacing, which was tested with magnetically and fluorescently labeled 6 microm polystyrene beads. The best result was obtained when the line spacing was equal to or smaller than the diameter of the aligned object. The magnetic gradient of the designed permanent magnet extracts magnetically labeled cells from any cell suspension to a desired plane, providing a homogeneous cell distribution. In addition, it magnetizes ferro-magnetic Ni lines in this plane whose additional local gradient adds to the gradient of the permanent magnet. The resultant gradient aligns the magnetically labeled cells first brought to this plane. This combination makes it possible, in a single step, to extract and align cells on a surface from any cell suspension. Copyright 2002 Wiley-Liss, Inc.

  9. Optimized nested polymerase chain reaction for antemortem detection of Mycobacteria in Amazon parrots (Amazona aestiva) and orange-winged Amazons (Amazona amazonica).

    PubMed

    Baquião, Arianne Costa; Luna, Janaina Oliveira; Medina, Aziz Orro; Sanfilippo, Luiz Francisco; de Faria, Maria Jacinta; dos Santos, Manuel Armando Azevedo

    2014-03-01

    The objectives of this study were to optimize nested polymerase chain reaction (PCR) for Mycobacterium avium complex and Mycobacterium tuberculosis complex and apply them on samples from parrots. Results were negative for the presence of these Mycobacterium in the samples, and nested PCR was specific, faster, and more sensitive than other tests, thereby justifying its use in antemortem diagnosis.

  10. Reducing Labeling Effort for Structured Prediction Tasks

    DTIC Science & Technology

    2005-01-01

    correctly annotated for the instance to be of use to the learner. Traditional active learning addresses this problem by optimizing the order in which the...than for others. We propose a new active learning paradigm which reduces not only how many instances the annotator must label, but also how difficult...We validate this active learning framework in an interactive information extraction system, reducing the total number of annotation actions by 22%.

  11. Study of the temperature dependent immuno-reaction kinetics for the bio-functionalized magnetic nanoparticle assay of bio-markers of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Chang, J. F.; Chen, T. C.; Yang, C. C.; Ho, C. S.

    2014-01-01

    By conjugating antibodies on magnetic nanoparticles, target antigens can be quantitatively detected by measuring the magnetic signals of the magnetic nanoparticles due to their association with target antigens. This method of detection is called magnetically labeled immunoassay. The assay characteristics of magnetically labeled immunoassay have been reported widely. However, the immuno-reaction kinetics of magnetically labeled immunoassay has not been studied. In this work, the reaction rates between magnetic nanoparticles and target antigens are measured at various temperatures. It is found that the temperature dependent reaction rate obeys Arrhenius's equation, which shows the collision frequency and activation energy for the immuno-reaction between antibody-functionalized magnetic nanoparticles and target antigens. The carcinoembryonic antigen, which is a regular blood bio-marker for in-vitro diagnosis of colorectal cancer, is used as a target antigen for the example.

  12. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    PubMed

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  13. The Catalytic Asymmetric Intramolecular Stetter Reaction

    PubMed Central

    de Alaniz, Javier Read; Rovis, Tomislav

    2010-01-01

    This account chronicles our efforts at the development of a catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows. PMID:20585467

  14. Blood specimen labelling errors: Implications for nephrology nursing practice.

    PubMed

    Duteau, Jennifer

    2014-01-01

    Patient safety is the foundation of high-quality health care, as recognized both nationally and worldwide. Patient blood specimen identification is critical in ensuring the delivery of safe and appropriate care. The practice of nephrology nursing involves frequent patient blood specimen withdrawals to treat and monitor kidney disease. A critical review of the literature reveals that incorrect patient identification is one of the major causes of blood specimen labelling errors. Misidentified samples create a serious risk to patient safety leading to multiple specimen withdrawals, delay in diagnosis, misdiagnosis, incorrect treatment, transfusion reactions, increased length of stay and other negative patient outcomes. Barcode technology has been identified as a preferred method for positive patient identification leading to a definitive decrease in blood specimen labelling errors by as much as 83% (Askeland, et al., 2008). The use of a root cause analysis followed by an action plan is one approach to decreasing the occurrence of blood specimen labelling errors. This article will present a review of the evidence-based literature surrounding blood specimen labelling errors, followed by author recommendations for completing a root cause analysis and action plan. A failure modes and effects analysis (FMEA) will be presented as one method to determine root cause, followed by the Ottawa Model of Research Use (OMRU) as a framework for implementation of strategies to reduce blood specimen labelling errors.

  15. A novel facile method of labeling octreotide with (18)F-fluorine.

    PubMed

    Laverman, Peter; McBride, William J; Sharkey, Robert M; Eek, Annemarie; Joosten, Lieke; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C

    2010-03-01

    Several methods have been developed to label peptides with (18)F. However, in general these are laborious and require a multistep synthesis. We present a facile method based on the chelation of (18)F-aluminum fluoride (Al(18)F) by 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The method is characterized by the labeling of NOTA-octreotide (NOTA-d-Phe-cyclo[Cys-Phe-d-Trp-Lys-Thr-Cys]-Throl (MH(+) 1305) [IMP466]) with (18)F. Octreotide was conjugated with the NOTA chelate and labeled with (18)F in a 2-step, 1-pot method. The labeling procedure was optimized with regard to the labeling buffer, peptide, and aluminum concentration. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice and compared with that of (68)Ga-labeled IMP466. In addition, small-animal PET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 50% yield. The labeled product was purified by high-performance liquid chromatography to remove unbound Al(18)F and unlabeled peptide. The radiolabeling, including purification, was performed in 45 min. The specific activity was 45,000 GBq/mmol, and the peptide was stable in serum for 4 h at 37 degrees C. Labeling was performed at pH 4.1 in sodium citrate, sodium acetate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 2-(N-morpholino)ethanesulfonic acid buffer and was optimal in sodium acetate buffer. The apparent 50% inhibitory concentration of the (19)F-labeled IMP466 determined on AR42J cells was 3.6 nM. Biodistribution studies at 2 h after injection showed a high tumor uptake of (18)F-IMP466 (28.3 +/- 5.2 percentage injected dose per gram [%ID/g]; tumor-to-blood ratio, 300 +/- 90), which could be blocked by an excess of unlabeled peptide (8.6 +/- 0.7 %ID/g), indicating that the accumulation in the tumor was receptor-mediated. Biodistribution of (68)Ga-IMP466 was similar to that of (18)F-IMP466. (18)F

  16. Fluorine-18 labeling of an anti-HER2 VHH using a residualizing prosthetic group via a strain-promoted click reaction: Chemistry and preliminary evaluation.

    PubMed

    Zhou, Zhengyuan; Chitneni, Satish K; Devoogdt, Nick; Zalutsky, Michael R; Vaidyanathan, Ganesan

    2018-05-01

    In a previous study, we evaluated a HER2-specific single domain antibody fragment (sdAb) 2Rs15d labeled with 18 F via conjugation of a residualizing prosthetic agent that was synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC). In order to potentially increase overall efficiency and decrease the time required for labeling, we now investigate the use of a strain-promoted azide-alkyne cycloaddition (SPAAC) between the 2Rs15d sdAb, which had been pre-derivatized with an azide-containing residualizing moiety, and an 18 F-labeled aza-dibenzocyclooctyne derivative. The HER2-targeted sdAb 2Rs15d and a nonspecific sdAb R3B23 were pre-conjugated with a moiety containing both azide- and guanidine functionalities. The thus derivatized sdAbs were radiolabeled with 18 F using an 18 F-labeled aza-dibenzocyclooctyne derivative ([ 18 F]F-ADIBO) via SPAAC, generating the desired conjugate ([ 18 F]RL-II-sdAb). For comparison, unmodified 2Rs15d was labeled with N-succinimidyl 4-guanidinomethyl-3-[ 125 I]iodobenzoate ([ 125 I]SGMIB), the prototypical residualizing agent for radioiodination. Radiochemical purity (RCP), immunoreactive fraction (IRF), HER2-binding affinity and cellular uptake of [ 18 F]RL-II-2Rs15d were assessed in vitro. Paired label biodistribution of [ 18 F]RL-II-2Rs15d and [ 125 I]SGMIB-2Rs15d, and microPET/CT imaging of [ 18 F]RL-II-2Rs15d and the [ 18 F]RL-II-R3B23 control sdAb were performed in nude mice bearing HER2-expressing SKOV-3 xenografts. A radiochemical yield of 23.9 ± 6.9% (n = 8) was achieved for the SPAAC reaction between [ 18 F]F-ADIBO and azide-modified 2Rs15d and the RCP of the labeled sdAb was >95%. The affinity (K d ) and IRF for the binding of [ 18 F]RL-II-2Rs15d to HER2 were 5.6 ± 1.3 nM and 73.1 ± 22.5% (n = 3), respectively. The specific uptake of [ 18 F]RL-II-2Rs15d by HER2-expressing BT474M1 breast carcinoma cells in vitro was 14-17% of the input dose at 1, 2, and 4 h, slightly higher than seen for

  17. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging

    PubMed Central

    Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.

    2013-01-01

    Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699

  18. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space.

    PubMed

    Chan, Emory M; Xu, Chenxu; Mao, Alvin W; Han, Gang; Owen, Jonathan S; Cohen, Bruce E; Milliron, Delia J

    2010-05-12

    While colloidal nanocrystals hold tremendous potential for both enhancing fundamental understanding of materials scaling and enabling advanced technologies, progress in both realms can be inhibited by the limited reproducibility of traditional synthetic methods and by the difficulty of optimizing syntheses over a large number of synthetic parameters. Here, we describe an automated platform for the reproducible synthesis of colloidal nanocrystals and for the high-throughput optimization of physical properties relevant to emerging applications of nanomaterials. This robotic platform enables precise control over reaction conditions while performing workflows analogous to those of traditional flask syntheses. We demonstrate control over the size, size distribution, kinetics, and concentration of reactions by synthesizing CdSe nanocrystals with 0.2% coefficient of variation in the mean diameters across an array of batch reactors and over multiple runs. Leveraging this precise control along with high-throughput optical and diffraction characterization, we effectively map multidimensional parameter space to tune the size and polydispersity of CdSe nanocrystals, to maximize the photoluminescence efficiency of CdTe nanocrystals, and to control the crystal phase and maximize the upconverted luminescence of lanthanide-doped NaYF(4) nanocrystals. On the basis of these demonstrative examples, we conclude that this automated synthesis approach will be of great utility for the development of diverse colloidal nanomaterials for electronic assemblies, luminescent biological labels, electroluminescent devices, and other emerging applications.

  19. NMR reaction monitoring in flow synthesis.

    PubMed

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  20. Protein organic chemistry and applications for labeling and engineering in live-cell systems.

    PubMed

    Takaoka, Yousuke; Ojida, Akio; Hamachi, Itaru

    2013-04-08

    The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry-based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test-tube settings; 2) the bioorthogonal reactions of proteins with non-natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag-probe pair for labeling natural amino acids; and 4) ligand-directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2-4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. FDA drug labeling: rich resources to facilitate precision medicine, drug safety, and regulatory science.

    PubMed

    Fang, Hong; Harris, Stephen C; Liu, Zhichao; Zhou, Guangxu; Zhang, Guoping; Xu, Joshua; Rosario, Lilliam; Howard, Paul C; Tong, Weida

    2016-10-01

    Here, we provide a concise overview of US Food and Drug Administration (FDA) drug labeling, which details drug products, drug-drug interactions, adverse drug reactions (ADRs), and more. Labeling data have been collected over several decades by the FDA and are an important resource for regulatory research and decision making. However, navigating through this data is challenging. To aid such navigation, the FDALabel database was developed, which contains a set of approximately 80000 labeling data. The full-text searching capability of FDALabel and querying based on any combination of specific sections, document types, market categories, market date, and other labeling information makes it a powerful and attractive tool for a variety of applications. Here, we illustrate the utility of FDALabel using case scenarios in pharmacogenomics biomarkers and ADR studies. Published by Elsevier Ltd.

  2. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.

    PubMed

    Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank

    2018-02-27

    In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

  3. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    NASA Technical Reports Server (NTRS)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  4. Estimation of free energy barriers in the cytoplasmic and mitochondrial aspartate aminotransferase reactions probed by hydrogen-exchange kinetics of C alpha-labeled amino acids with solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julin, D.A.; Wiesinger, H.; Toney, M.D.

    1989-05-02

    The existence of the postulated quinonoid intermediate in the cytoplasmic aspartate amino-transferase catalyzed transamination of aspartate to oxaloacetate was probed by determining the extent of transfer of tritium from the C alpha position of tritiated L-aspartate to pyridoxamine 5'-phosphate in single turnover experiments in which washout from the back-reaction was obviated by product trapping. The maximum amount of transferred tritium observed was 0.7%, consistent either with a mechanism in which a fraction of the net transamination reaction proceeds through a quinonoid intermediate or with a mechanism in which this intermediate is formed off the main reaction pathway. It is shownmore » that transfer of labeled hydrogen from the amino acid to cofactor cannot be used to differentiate a stepwise from a concerted transamination mechanism. The amount of tritium transferred is a function of the rate constant for torsional equilibration about the epsilon-amino group of Lys-258, the presumptive abstractor of the C alpha proton; the relative rate constants for hydrogen exchange with solvent versus cofactor protonation; and the tritium isotope effect on this ratio. The free energy barriers facing the covalent intermediate between aldimine and keto acid product (i.e., ketimine and possibly quinonoid) were evaluated relatively by comparing the rates of C alpha-hydrogen exchange in starting amino acid with the rates of keto acid formation. The value of theta (= kexge/kprod) was found to be 2.6 for the reaction of cytoplasmic isozyme with aspartate and ca. 0.5 for that of the mitochondrial form with glutamate.« less

  5. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  6. Fully convolutional networks with double-label for esophageal cancer image segmentation by self-transfer learning

    NASA Astrophysics Data System (ADS)

    Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei

    2017-07-01

    Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.

  7. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.

    PubMed

    Liu, Jiaquan; Hanne, Jeungphill; Britton, Brooke M; Shoffner, Matthew; Albers, Aaron E; Bennett, Jared; Zatezalo, Rachel; Barfield, Robyn; Rabuka, David; Lee, Jong-Bong; Fishel, Richard

    2015-11-19

    Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.

  8. Study and development of label-free optical biosensors for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.

    For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of

  9. Emotional and deliberative reactions to a public crisis: Mad Cow disease in France.

    PubMed

    Sinaceur, Marwan; Heath, Chip; Cole, Steve

    2005-03-01

    Although most theories of choice are cognitive, recent research has emphasized the role of emotions. We used a novel context--the Mad Cow crisis in France--to investigate how emotions alter choice even when consequences are held constant. A field study showed that individuals reduced beef consumption in months after many newspaper articles featured the emotional label "Mad Cow," but beef consumption was unaffected after articles featured scientific labels for the same disease. The reverse pattern held for the disease-related actions of a government bureaucracy. A lab study showed that the Mad Cow label induces people to make choices based solely on emotional reactions, whereas scientific labels induce people to consider their own probability judgments. Although the Mad Cow label produces less rational behavior than scientific labels, it is two to four times more common in the environment.

  10. Experimental design for the optimization of the derivatization reaction in determining chlorophenols and chloroanisoles by headspace-solid-phase microextraction-gas chromatography/mass spectrometry.

    PubMed

    Morales, Rocío; Sarabia, Luis A; Sánchez, M Sagrario; Ortiz, M Cruz

    2013-06-28

    The paper shows some tools (its interpretation and usefulness) to optimize a derivatization reaction and to more easily interpret and visualize the effect that some experimental factors exert on several analytical responses of interest when these responses are in conflict. The entire proposed procedure has been applied in the optimization of equilibrium/extraction temperature and extraction time in the acetylation reaction of 2,4,6-trichlorophenol; 2,3,4,6-tetrachlorophenol, pentachlorophenol and 2,4,6-tribromophenol as internal standard (IS) in presence of 2,4,6-trichloroanisole, 2,3,5,6-tetrachloroanisole, pentachloroanisole and 2,4,6-trichloroanisole-d5 as IS. The procedure relies on the second order advantage of PARAFAC (parallel factor analysis) that allows the unequivocal identification and quantification, mandatory according international regulations (in this paper the EU document SANCO/12495/2011), of the acetyl-chlorophenols and chloroanisoles that are determined by means of a HS-SPME-GC/MS automated device. The joint use of a PARAFAC decomposition and a Doehlert design provides the data to fit a response surface for each analyte. With the fitted surfaces, the overall desirability function and the Pareto-optimal front are used to describe the relation between the conditions of the derivatization reaction and the quantity extracted of each analyte. The visualization by using a parallel coordinates plot allows a deeper knowledge about the problem at hand as well as the wise selection of the conditions of the experimental factors for achieving specific goals about the responses. In the optimal experimental conditions (45°C and 25min) the determination by means of an automated HS-SPME-GC/MS system is carried out. By using the regression line fitted between calculated and true concentrations, it has been checked that the procedure has neither proportional nor constant bias. The decision limits, CCa, for probability a of false positive set to 0.05, vary between

  11. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology

    PubMed Central

    Körbahti, Bahadır K.; Demirbüken, Pelin

    2017-01-01

    Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225

  12. Optimization of the synthesis process of an iron oxide nanocatalyst supported on activated carbon for the inactivation of Ascaris eggs in water using the heterogeneous Fenton-like reaction.

    PubMed

    Morales-Pérez, Ariadna A; Maravilla, Pablo; Solís-López, Myriam; Schouwenaars, Rafael; Durán-Moreno, Alfonso; Ramírez-Zamora, Rosa-María

    2016-01-01

    An experimental design methodology was used to optimize the synthesis of an iron-supported nanocatalyst as well as the inactivation process of Ascaris eggs (Ae) using this material. A factor screening design was used for identifying the significant experimental factors for nanocatalyst support (supported %Fe, (w/w), temperature and time of calcination) and for the inactivation process called the heterogeneous Fenton-like reaction (H2O2 dose, mass ratio Fe/H2O2, pH and reaction time). The optimization of the significant factors was carried out using a face-centered central composite design. The optimal operating conditions for both processes were estimated with a statistical model and implemented experimentally with five replicates. The predicted value of the Ae inactivation rate was close to the laboratory results. At the optimal operating conditions of the nanocatalyst production and Ae inactivation process, the Ascaris ova showed genomic damage to the point that no cell reparation was possible showing that this advanced oxidation process was highly efficient for inactivating this pathogen.

  13. An optimized velocity selective arterial spin labeling module with reduced eddy current sensitivity for improved perfusion quantification.

    PubMed

    Meakin, James A; Jezzard, Peter

    2013-03-01

    Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.

  14. A new and efficient synthetic method for 15N3-labeled cytosine nucleosides: Dimroth rearrangement of cytidine N3-oxides.

    PubMed

    Sako, Magoichi; Kawada, Hiroyoshi

    2004-11-12

    The treatment of (15)N(4)-labeled cytidine N(3)-oxide and (15)N(4)-labeled 2'-deoxycytidine N(3)-oxide, prepared from the appropriate unprotected uridines in three reaction steps, with benzyl bromide in the presence of excess lithium methoxide allowed the smooth occurrence of their Dimroth rearrangement even under mild conditions leading to the corresponding (15)N(3)-labeled uridine 4-O-benzyloximes which can easily undergo the reductive N-O bond cleavage to give the desirable (15)N(3)-labeled cytosine nucleosides in high total yields.

  15. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics.

    PubMed

    Rudik, Anastasia V; Dmitriev, Alexander V; Lagunin, Alexey A; Filimonov, Dmitry A; Poroikov, Vladimir V

    2016-01-01

    The knowledge of drug metabolite structures is essential at the early stage of drug discovery to understand the potential liabilities and risks connected with biotransformation. The determination of the site of a molecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the enzyme but rather is often associated with a group of atoms. To overcome this problem, we propose to operate with the term "reacting atom", corresponding to a single atom in the substrate that is modified during the biotransformation reaction. The prediction of the reacting atom(s) in a molecule for the major classes of biotransformation reactions is necessary to generate drug metabolites. Substrates of the major human cytochromes P450 and UDP-glucuronosyltransferases from the Biovia Metabolite database were divided into nine groups according to their reaction classes, which are aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. Each training set consists of positive and negative examples of structures with one labelled atom. In the positive examples, the labelled atom is the reacting atom of a particular reaction that changed adjacency. Negative examples represent non-reacting atoms of a particular reaction. We used Labelled Multilevel Neighbourhoods of Atoms descriptors for the designation of reacting atoms. A Bayesian-like algorithm was applied to estimate the structure-activity relationships. The average invariant accuracy of prediction obtained in leave-one-out and 20-fold cross-validation procedures for five human isoforms of cytochrome P450 and all isoforms of UDP-glucuronosyltransferase varies from 0.86 to 0.99 (0.96 on average). We report that reacting atoms may be predicted with reasonable accuracy for the major classes of metabolic reactions

  16. Food Labels

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Food Labels KidsHealth / For Teens / Food Labels What's in ... to have at least 95% organic ingredients. Making Food Labels Work for You The first step in ...

  17. Label Review Training: Module 1: Label Basics, Page 25

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review: clarity, accuracy, consistency with EPA policy, and enforceability.

  18. Label Review Training: Module 1: Label Basics, Page 29

    EPA Pesticide Factsheets

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is a quiz on Module 1.

  19. Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection.

    PubMed

    Espina, Juan Gómez; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2015-10-01

    Analytical methods allowing sensitive determination of reduced homocysteine (rHcy), one of the so-called biothiols, in human serum is a topic of growing interest due to its close relation to several human disorders, mainly cardiovascular diseases. Although most widely used analytical strategies to determine total Hcy involve derivatization by means of fluorescent labels, this work proposes the use of ebselen, a Se-containing labelling agent to derivatize the reactive sulfhydryl group of the Hcy molecule in its "free" reduced form, which is more likely to play different roles in disease pathogenesis. Optimization of the derivatization and separation conditions by high-performance liquid chromatography (HPLC) to isolate the excess of derivatizing reagent is carried out here using UV/VIS detection. Further, the study of the Se labelling reaction by electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides a stoichiometry of the derivative of 1:1. The main advantage of using ebselen as a labelling agent is the presence of the Se atom in the molecule that allows the use of inductively coupled plasma mass spectrometry (ICP-MS) as a sensitive and selective Se detector. The coupling of HPLC with ICP-MS provided excellent features for the determination of Se-derivatized rHcy (detection limit of 9.6 nM) in real samples. Quantification was accomplished by using post-column isotope dilution (ID) of Se in serum samples, after precipitation of the main serum proteins. Quantitative results for "free" rHcy turned out to be around 0.18-0.22 μM in serum samples from healthy individuals that could be directly analyzed without sample preconcentration.

  20. Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojun; E, Yiwen; Xu, Xinlong; Wang, Li

    2012-07-01

    We demonstrated the feasibility of applying terahertz time-domain spectroscopy (THz-TDS) to monitor the molecular reactions in aqueous solutions of anticancer drug oxaliplatin with λ-DNA and macrophages DNA. The reaction time dependent refractive index and absorption coefficient were extracted and analyzed. The reaction half-decaying time of about 4.0 h for λ-DNA and 12.9 h for M-DNA was established. The results suggest that the THz-TDS detection could be an effective label-free technique to sense the molecular reaction in aqueous solutions and could be very useful in biology, medicine, and pharmacy industry.

  1. Chemo-enzymatic synthesis of isotopically labeled nicotinamide riboside.

    PubMed

    Tran, Ai; Yokose, Ryota; Cen, Yana

    2018-05-15

    As a cofactor for numerous reactions, NAD+ is found widely dispersed across many maps of cellular metabolism. This core redox role alone makes the biosynthesis of NAD+ of great interest. Recent studies have revealed new biological roles for NAD+ as a substrate for diverse enzymes that regulate a broad spectrum of key cellular tasks. These NAD+-consuming enzymes further highlight the importance of understanding NAD+ biosynthetic pathways. In this study, we developed a chemo-enzymatic synthesis of isotopically labeled NAD+ precursor, nicotinamide riboside (NR). The synthesis of NR isotopomers allowed us to unambiguously determine that NR is efficiently converted to NAD+ in the cellular environment independent of degradation to nicotinamide, and it is incorporated into NAD+ in its intact form. The versatile synthetic method along with the isotopically labeled NRs will provide powerful tools to further decipher the important yet complicated NAD+ metabolism.

  2. A study of various synthetic routes to produce a halogen-labeled traction fluid

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Zimmer, H.

    1978-01-01

    Several synthetic routes were studied for the synthesis of the compound 1, 1, 3-trimethyl-1, 3-dicyclohexyl-2 chloropropane. This halogen-labeled fluid would be of use in the study of high traction lubricants under elastohydrodynamic lubrication conditions using infrared emission spectroscopy. The synthetic routes included: dimerization of alpha-methylstyrene, methanol addition to alpha-methylstyrene, a Wittig reaction, and an organometallic approach. Because of steric hindrance and competing reactions, none of these routes were successful.

  3. An ATMND/SGI based label-free and fluorescence ratiometric aptasensor for rapid and highly sensitive detection of cocaine in biofluids.

    PubMed

    Wang, Jiamian; Song, Jie; Wang, Xiuyun; Wu, Shuo; Zhao, Yanqiu; Luo, Pinchen; Meng, Changgong

    2016-12-01

    A label-free ratiometric fluorescence aptasensor has been developed for the rapid and sensitive detection of cocaine in complex biofluids. The fluorescent aptasensor is composed of a non-labeled GC-38 cocaine aptamer which serves as a basic sensing unit and two fluorophores, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and SYBR Green I (SGI) which serves as a signal reporter and a build-in reference, respectively. The detection principle is based on a specific cocaine mediated ATMND displacement reaction and the corresponding change in the fluorescence ratio of ATMND to SGI. Due to the high affinity of the non-labeled aptamer, the good precision originated from the ratiometric method, and the good fluorescence quantum yield of the fluorophore, the aptasensor shows good analytical performance with respect to cocaine detection. Under optimal conditions, the aptasensor shows a linear range of 0.10-10μM and a low limit of detection of 56nM, with a fast response of 20s. The low limit of detection is comparable to most of the fluorescent aptasensors with signal amplification strategies and much lower than all of the unamplified cocaine aptasensors. Practical sample analysis in a series of complex biofluids, including urine, saliva and serum, also indicates the good precision, stability, and high sensitivity of the aptasensor, which may have great potential for the point-of-care screening of cocaine in complex biofluids. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. LPA-CBD an improved label propagation algorithm based on community belonging degree for community detection

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing

    In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.

  5. A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.

    PubMed

    Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen

    2014-03-26

    Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.

  6. ReacKnock: Identifying Reaction Deletion Strategies for Microbial Strain Optimization Based on Genome-Scale Metabolic Network

    PubMed Central

    Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2013-01-01

    Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984

  7. A label distance maximum-based classifier for multi-label learning.

    PubMed

    Liu, Xiaoli; Bao, Hang; Zhao, Dazhe; Cao, Peng

    2015-01-01

    Multi-label classification is useful in many bioinformatics tasks such as gene function prediction and protein site localization. This paper presents an improved neural network algorithm, Max Label Distance Back Propagation Algorithm for Multi-Label Classification. The method was formulated by modifying the total error function of the standard BP by adding a penalty term, which was realized by maximizing the distance between the positive and negative labels. Extensive experiments were conducted to compare this method against state-of-the-art multi-label methods on three popular bioinformatic benchmark datasets. The results illustrated that this proposed method is more effective for bioinformatic multi-label classification compared to commonly used techniques.

  8. Collaborative labeling of malignant glioma with WebMILL: a first look

    NASA Astrophysics Data System (ADS)

    Singh, Eesha; Asman, Andrew J.; Xu, Zhoubing; Chambless, Lola; Thompson, Reid; Landman, Bennett A.

    2012-02-01

    Malignant gliomas are the most common form of primary neoplasm in the central nervous system, and one of the most rapidly fatal of all human malignancies. They are treated by maximal surgical resection followed by radiation and chemotherapy. Herein, we seek to improve the methods available to quantify the extent of tumors using newly presented, collaborative labeling techniques on magnetic resonance imaging. Traditionally, labeling medical images has entailed that expert raters operate on one image at a time, which is resource intensive and not practical for very large datasets. Using many, minimally trained raters to label images has the possibility of minimizing laboratory requirements and allowing high degrees of parallelism. A successful effort also has the possibility of reducing overall cost. This potentially transformative technology presents a new set of problems, because one must pose the labeling challenge in a manner accessible to people with little or no background in labeling medical images and raters cannot be expected to read detailed instructions. Hence, a different training method has to be employed. The training must appeal to all types of learners and have the same concepts presented in multiple ways to ensure that all the subjects understand the basics of labeling. Our overall objective is to demonstrate the feasibility of studying malignant glioma morphometry through statistical analysis of the collaborative efforts of many, minimally-trained raters. This study presents preliminary results on optimization of the WebMILL framework for neoplasm labeling and investigates the initial contributions of 78 raters labeling 98 whole-brain datasets.

  9. Impact of Tobacco-Related Health Warning Labels across Socioeconomic, Race and Ethnic Groups: Results from a Randomized Web-Based Experiment

    PubMed Central

    Cantrell, Jennifer; Vallone, Donna M.; Thrasher, James F.; Nagler, Rebekah H.; Feirman, Shari P.; Muenz, Larry R.; He, David Y.; Viswanath, Kasisomayajula

    2013-01-01

    Background The U.S. Family Smoking Prevention and Tobacco Control Act of 2009 requires updating of the existing text-only health warning labels on tobacco packaging with nine new warning statements accompanied by pictorial images. Survey and experimental research in the U.S. and other countries supports the effectiveness of pictorial health warning labels compared with text-only warnings for informing smokers about the risks of smoking and encouraging cessation. Yet very little research has examined differences in reactions to warning labels by race/ethnicity, education or income despite evidence that population subgroups may differ in their ability to process health information. The purpose of the present study was to evaluate the potential impact of pictorial warning labels compared with text-only labels among U.S. adult smokers from diverse racial/ethnic and socioeconomic subgroups. Methods/Findings Participants were adult smokers recruited from two online research panels (n = 3,371) into a web-based experimental study to view either the new pictorial warnings or text-only warnings. Participants viewed the labels and reported their reactions. Adjusted regression models demonstrated significantly stronger reactions for the pictorial condition for each outcome salience (b = 0.62, p<.001); perceived impact (b = 0.44, p<.001); credibility (OR = 1.41, 95% CI = 1.22−1.62), and intention to quit (OR = 1.30, 95% CI = 1.10−1.53). No significant results were found for interactions between condition and race/ethnicity, education, or income. The only exception concerned the intention to quit outcome, where the condition-by-education interaction was nearly significant (p = 0.057). Conclusions Findings suggest that the greater impact of the pictorial warning label compared to the text-only warning is consistent across diverse racial/ethnic and socioeconomic populations. Given their great reach, pictorial health warning labels may be one of

  10. Less label, more free: approaches in label-free quantitative mass spectrometry.

    PubMed

    Neilson, Karlie A; Ali, Naveid A; Muralidharan, Sridevi; Mirzaei, Mehdi; Mariani, Michael; Assadourian, Gariné; Lee, Albert; van Sluyter, Steven C; Haynes, Paul A

    2011-02-01

    In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Borchers, Christoph H

    2016-01-01

    Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels.

  12. Unintended allergens in precautionary labelled and unlabelled products pose significant risks to UK allergic consumers.

    PubMed

    Remington, B C; Baumert, J L; Blom, W M; Houben, G F; Taylor, S L; Kruizinga, A G

    2015-07-01

    Allergens in food may pose a risk to allergic consumers. While there is EU regulation for allergens present as an ingredient, this is not the case for unintended allergen presence (UAP). Food companies use precautionary allergen labels to inform allergic individuals of a potential risk from UAPs. This study investigates the risk of an allergic reaction within the milk-, wheat-, hazelnut- and peanut-allergic populations when ingesting UK foods across multiple product categories with and without precautionary allergen labelling. Allergen risk assessment using probabilistic techniques enables the estimation of the residual risk after the consumption of a product that unintentionally contains an allergen. Within this selection of UK products, the majority that tested positive for an allergen contained a concentration of allergen predicted to cause a reaction in >1% of the allergic population. The concentrations of allergens measured were greater than the VITAL(®) 2.0 action levels and would trigger precautionary allergen labelling. This was found for products both with and without precautionary allergen labelling. The results highlight the need for the food industry and regulators to adopt a transparent, risk-based approach for the communication of the risk associated with potential cross-contact that could occur in the processing facility or production chain. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. VERSATILE, HIGH-RESOLUTION ANTEROGRADE LABELING OF VAGAL EFFERENT PROJECTIONS WITH DEXTRAN AMINES

    PubMed Central

    Walter, Gary C.; Phillips, Robert J.; Baronowsky, Elizabeth A.; Powley, Terry L.

    2009-01-01

    None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut. PMID:19056424

  14. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  15. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  17. Tracer level radiochemistry to clinical dose preparation of (177)Lu-labeled cyclic RGD peptide dimer.

    PubMed

    Chakraborty, Sudipta; Sarma, H D; Vimalnath, K V; Pillai, M R A

    2013-10-01

    Integrin αvβ3 plays a significant role in angiogenesis during tumor growth and metastasis, and is a receptor for the extracellular matrix proteins with the exposed arginine(R)-glycine(G)-aspartic acid(D) tripeptide sequence. The over-expression of integrin αvβ3 during tumor growth and metastasis presents an interesting molecular target for both early detection and treatment of rapidly growing solid tumors. Considering the advantages of (177)Lu for targeted radiotherapy and enhanced tumor targeting capability of cyclic RGD peptide dimer, an attempt has been made to optimize the protocol for the preparation of clinical dose of (177)Lu labeled DOTA-E[c(RGDfK)]2 (E=Glutamic acid, f=phenyl alanine, K=lysine) as a potential agent for targeted tumor therapy. (177)Lu was produced by thermal neutron bombardment on enriched Lu2O3 (82% in (176)Lu) target at a flux of 1 × 10(14) n/cm(2).s for 21 d. Therapeutic dose of (177)Lu-DOTA-E[c(RGDfK)]2 (7.4GBq) was prepared by adding the aqueous solution of the ligand and (177)LuCl3 to 0.1M NH4OAC buffer containing gentisic acid and incubating the reaction mixture at 90°C for 30 min. The yield and radiochemical purity of the complex was determined by HPLC technique. Parameters, such as, ligand-to-metal ratio, pH of the reaction mixture, incubation time and temperature were varied using tracer quantity of (177)Lu (37 MBq) in order to arrive at the optimized protocol for the preparation of clinical dose. Biological behavior of the radiotracer prepared was studied in C57/BL6 mice bearing melanoma tumors. (177)Lu was produced with a specific activity of 950 ± 50 GBq/mg (25.7 ± 1.4 Ci/mg) and radionuclidic purity of 99.98%. A careful optimization of several parameters showed that (177)Lu-DOTA-E[c(RGDfK)]2 could be prepared with adequately high radiochemical purity using a ligand-to-metal ratio ~2. Based on these studies therapeutic dose of the agent with 7.4 GBq of (177)Lu was formulated in ~63 GBq/μM specific activity with high

  18. Ultrasensitive electrochemical DNA detection based on dual amplification of circular strand-displacement polymerase reaction and hybridization chain reaction.

    PubMed

    Wang, Cui; Zhou, Hui; Zhu, Wenping; Li, Hongbo; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2013-09-15

    We developed a novel electrochemical strategy for ultrasensitive DNA detection using a dual amplification strategy based on the circular strand-displacement polymerase reaction (CSDPR) and the hybridization chain reaction (HCR). In this assay, hybridization of hairpin-shaped capture DNA to target DNA resulted in a conformational change of the capture DNA with a concomitant exposure of its stem. The primer was then hybridized with the exposed stem and triggered a polymerization reaction, allowing a cyclic reaction comprising release of target DNA, hybridization of target with remaining capture DNA, polymerization initiated by the primer. Furthermore, the free part of the primer propagated a chain reaction of hybridization events between two DNA hairpin probes with biotin labels, enabling an electrochemical reading using the streptavidin-alkaline phosphatase. The proposed biosensor showed to have very high sensitivity and selectivity with a dynamic response range through 10fM to 1nM, and the detect limit was as low as 8fM. The proposed strategy could have the potential for molecular diagnostics in complex biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Classification without labels: learning from mixed samples in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimalmore » classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.« less

  20. Classification without labels: learning from mixed samples in high energy physics

    DOE PAGES

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-25

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimalmore » classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.« less

  1. Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.

    PubMed

    de Luca, Aurélie; Horvath, Dragos; Marcou, Gilles; Solov'ev, Vitaly; Varnek, Alexandre

    2012-09-24

    This work addresses the problem of similarity search and classification of chemical reactions using Neighborhood Behavior (NB) and Condensed Graphs of Reaction (CGR) approaches. The CGR formalism represents chemical reactions as a classical molecular graph with dynamic bonds, enabling descriptor calculations on this graph. Different types of the ISIDA fragment descriptors generated for CGRs in combination with two metrics--Tanimoto and Euclidean--were considered as chemical spaces, to serve for reaction dissimilarity scoring. The NB method has been used to select an optimal combination of descriptors which distinguish different types of chemical reactions in a database containing 8544 reactions of 9 classes. Relevance of NB analysis has been validated in generic (multiclass) similarity search and in clustering with Self-Organizing Maps (SOM). NB-compliant sets of descriptors were shown to display enhanced mapping propensities, allowing the construction of better Self-Organizing Maps and similarity searches (NB and classical similarity search criteria--AUC ROC--correlate at a level of 0.7). The analysis of the SOM clusters proved chemically meaningful CGR substructures representing specific reaction signatures.

  2. Anger and health in dementia caregivers: exploring the mediation effect of optimism.

    PubMed

    López, J; Romero-Moreno, R; Márquez-González, M; Losada, A

    2015-04-01

    Although previous studies indicate a negative association between caregivers' anger and health, the potential mechanisms linking this relationship are not yet fully understood. The aim of this study was to explore the potential mediating role of optimism in the relationship between anger and caregivers' physical health. Dementia caregivers (n = 108) were interviewed and filled out instruments assessing their anger (reaction), optimism and health (vitality). A mediational model was tested to determine whether optimism partially mediated the relationship between anger and vitality. Angry reaction was negatively associated with optimism and vitality; optimism was positively associated with vitality. Finally, the relationship between angry reaction and vitality decreased when optimism was entered simultaneously. A non-parametric bootstrap approach confirmed that optimism significantly mediated some of the relationship between angry reaction and vitality. These findings suggest that low optimism may help explain the association between caregivers' anger and reduced sense of vitality. The results provide a specific target for intervention with caregivers. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    PubMed Central

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  5. Updating the procedure for metaiodobenzylguanidine labelling with iodine radioisotopes employed in industrial production.

    PubMed

    Franceschini, R; Mosca, R; Bonino, C

    1991-01-01

    The classical procedure used for the preparation of [125I]- and [131I]metaiodobenzylguanidine (MIBG) is the solid-phase isotopic exchange between MIBG and radioiodide. This reaction requires 1.5 hours at 160 degrees C to obtain maximum total labelling yields of 75-80%. Recently, the importance of rapid procedures for the preparation of 123I-MIBG has been highlighted. A highly efficient procedure for the industrial production of 123I-MIBG using ascorbic acid, tin sulfate and copper sulfate pentahydrate in 0.01 M sulfuric acid is reported. Sequential radio-TLC analysis of the labelling mixture shows that the labelling yield reaches 98% within 45 min at 100 degrees C. The specific activity of the 123I-MIBG produced in this manner is on the order of 100 Ci/mmol.

  6. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues

    PubMed Central

    Boassa, Daniela; Hu, Junru; Romoli, Benedetto; Phan, Sebastien; Dulcis, Davide

    2018-01-01

    Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications. PMID:29749931

  7. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.

    PubMed

    Christiansen, Eric M; Yang, Samuel J; Ando, D Michael; Javaherian, Ashkan; Skibinski, Gaia; Lipnick, Scott; Mount, Elliot; O'Neil, Alison; Shah, Kevan; Lee, Alicia K; Goyal, Piyush; Fedus, William; Poplin, Ryan; Esteva, Andre; Berndl, Marc; Rubin, Lee L; Nelson, Philip; Finkbeiner, Steven

    2018-04-19

    Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. An unusual reaction of α-alkoxyphosphonium salts with Grignard reagents under an O2 atmosphere.

    PubMed

    Fujioka, Hiromichi; Goto, Akihiro; Otake, Kazuki; Kubo, Ozora; Sawama, Yoshinari; Maegawa, Tomohiro

    2011-09-21

    An unusual and novel reaction of α-alkoxyphosphonium salts, generated from O,O-acetals and Ph(3)P, with Grignard reagents under an O(2) atmosphere afforded alcohols in moderate to high yields. It was clarified by isotopic labelling experiments that the reaction proceeded via a novel radical pathway.

  9. I can see what you are saying: Auditory labels reduce visual search times.

    PubMed

    Cho, Kit W

    2016-10-01

    The present study explored the self-directed-speech effect, the finding that relative to silent reading of a label (e.g., DOG), saying it aloud reduces visual search reaction times (RTs) for locating a target picture among distractors. Experiment 1 examined whether this effect is due to a confound in the differences in the number of cues in self-directed speech (two) vs. silent reading (one) and tested whether self-articulation is required for the effect. The results showed that self-articulation is not required and that merely hearing the auditory label reduces visual search RTs relative to silent reading. This finding also rules out the number of cues confound. Experiment 2 examined whether hearing an auditory label activates more prototypical features of the label's referent and whether the auditory-label benefit is moderated by the target's imagery concordance (the degree to which the target picture matches the mental picture that is activated by a written label for the target). When the target imagery concordance was high, RTs following the presentation of a high prototypicality picture or auditory cue were comparable and shorter than RTs following a visual label or low prototypicality picture cue. However, when the target imagery concordance was low, RTs following an auditory cue were shorter than the comparable RTs following the picture cues and visual-label cue. The results suggest that an auditory label activates both prototypical and atypical features of a concept and can facilitate visual search RTs even when compared to picture primes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Food Allergen Labeling and Purchasing Habits in the United States and Canada.

    PubMed

    Marchisotto, Mary Jane; Harada, Laurie; Kamdar, Opal; Smith, Bridget M; Waserman, Susan; Sicherer, Scott; Allen, Katie; Muraro, Antonella; Taylor, Steve; Gupta, Ruchi S

    Mandatory labeling of products with top allergens has improved food safety for consumers. Precautionary allergen labeling (PAL), such as "may contain" or "manufactured on shared equipment," are voluntarily placed by the food industry. To establish knowledge of PAL and its impact on purchasing habits by food-allergic consumers in North America. Food Allergy Research & Education and Food Allergy Canada surveyed consumers in the United States and Canada on purchasing habits of food products featuring different types of PAL. Associations between respondents' purchasing behaviors and individual characteristics were estimated using multiple logistic regression. Of 6684 participants, 84.3% (n = 5634) were caregivers of a food-allergic child and 22.4% had food allergy themselves. Seventy-one percent reported a history of experiencing a severe allergic reaction. Buying practices varied on the basis of PAL wording; 11% of respondents purchased food with "may contain" labeling, whereas 40% purchased food that used "manufactured in a facility that also processes." Twenty-nine percent of respondents were unaware that the law requires labeling of priority food allergens. Forty-six percent were either unsure or incorrectly believed that PAL is required by law. Thirty-seven percent of respondents thought PAL was based on the amount of allergen present. History of a severe allergic reaction decreased the odds of purchasing foods with PAL. Almost half of consumers falsely believed that PAL was required by law. Up to 40% surveyed consumers purchased products with PAL. Understanding of PAL is poor, and improved awareness and guidelines are needed to help food-allergic consumers purchase food safely. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  12. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  13. [Simplicity or complexity of the radiopharmaceutical production process in the light of optimization of radiation protection of staff - 99mTc vs. 18F].

    PubMed

    Wrzesień, Małgorzata

    2018-05-22

    A radiopharmaceutical is a combination of a non-radioactive compound with a radioactive isotope. Two isotopes: technetium-99m (99mTc) and fluorine-18 (18F) are worth mentioning on the rich list of isotopes which have found numerous medical applications. Their similarity is limited only to the diagnostic area of applicability. The type and the energy of emitted radiation, the half-life and, in particular, the production method demonstrate their diversity. The 99mTc isotope is produced by a short-lived nuclide generator - molybdenum-99 (99Mo)/99mTc, while 18F is resulting from nuclear reaction occurring in a cyclotron. A relatively simple and easy handling of the 99Mo/99mTc generator, compared to the necessary use a cyclotron, seems to favor the principle of optimizing the radiological protection of personnel. The thesis on the effect of automation of both the 18F isotope production and the deoxyglucose labelling process on the optimization of radiological protection of workers compared to manual procedures during handling of radiopharmaceuticals labelled with 99Tc need to be verified. Measurements of personal dose equivalent Hp(0.07) were made in 5 nuclear medicine departments and 2 radiopharmaceuticals production centers. High-sensitivity thermoluminescent detectors (LiF: Mg, Cu, P - MCP-N) were used to determine the doses. Among the activities performed by employees of both 18F-fluorodeoxyglucose (18F-FDG) production centers and nuclear medicine departments, the manual quality control procedures and labelling of radiopharmaceuticals with 99mTc isotope manifest the greatest contribution to the recorded Hp(0.07). The simplicity of obtaining the 99mTc isotope as well as the complex, but fully automated production process of the 18F-FDG radiopharmaceutical optimize the radiation protection of workers, excluding manual procedures labelling with 99mTc or quality control of 18F-FDG. Med Pr 2018;69(3):317–327. This work is available in Open Access model and licensed

  14. Optimal tree-stem bucking of northeastern species of China

    Treesearch

    Jingxin Wang; Chris B. LeDoux; Joseph McNeel

    2004-01-01

    An application of optimal tree-stem bucking to the northeastern tree species of China is reported. The bucking procedures used in this region are summarized, which are the basic guidelines for the optimal bucking design. The directed graph approach was adopted to generate the bucking patterns by using the network analysis labeling algorithm. A computer-based bucking...

  15. Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples

    NASA Astrophysics Data System (ADS)

    Walker, Karolina A.; Unbehauen, Michael L.; Lohan, Silke B.; Saeidpour, Siavash; Meinke, Martina C.; Zimmer, Reinhold; Haag, Rainer

    2018-05-01

    Spin-labeling active compounds is a convenient way to prepare them for EPR spectroscopy with minimal alteration of the target molecule. In this study we present the labeling reaction of dexamethasone (Dx) with either TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or PCA (3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) with high yields. According to NMR data, both labels are attached at the primary hydroxy group of the steroid. In subsequent spin-stability measurements both compounds were applied onto HaCaT cells. When the signal of Dx-TEMPO decreased below the detection limit within 3 h, the signal of Dx-PCA remained stable for the same period of time.

  16. Do nutrition labels influence healthier food choices? Analysis of label viewing behaviour and subsequent food purchases in a labelling intervention trial.

    PubMed

    Ni Mhurchu, Cliona; Eyles, Helen; Jiang, Yannan; Blakely, Tony

    2018-02-01

    There are few objective data on how nutrition labels are used in real-world shopping situations, or how they affect dietary choices and patterns. The Starlight study was a four-week randomised, controlled trial of the effects of three different types of nutrition labels on consumer food purchases: Traffic Light Labels, Health Star Rating labels, or Nutrition Information Panels (control). Smartphone technology allowed participants to scan barcodes of packaged foods and receive randomly allocated labels on their phone screen, and to record their food purchases. The study app therefore provided objectively recorded data on label viewing behaviour and food purchases over a four-week period. A post-hoc analysis of trial data was undertaken to assess frequency of label use, label use by food group, and association between label use and the healthiness of packaged food products purchased. Over the four-week intervention, study participants (n = 1255) viewed nutrition labels for and/or purchased 66,915 barcoded packaged products. Labels were viewed for 23% of all purchased products, with decreasing frequency over time. Shoppers were most likely to view labels for convenience foods, cereals, snack foods, bread and bakery products, and oils. They were least likely to view labels for sugar and honey products, eggs, fish, fruit and vegetables, and meat. Products for which participants viewed the label and subsequently purchased the product during the same shopping episode were significantly healthier than products where labels were viewed but the product was not subsequently purchased: mean difference in nutrient profile score -0.90 (95% CI -1.54 to -0.26). In a secondary analysis of a nutrition labelling intervention trial, there was a significant association between label use and the healthiness of products purchased. Nutrition label use may therefore lead to healthier food purchases. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Optimizing area under the ROC curve using semi-supervised learning

    PubMed Central

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M.

    2014-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.1 PMID:25395692

  18. Optimizing area under the ROC curve using semi-supervised learning.

    PubMed

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M

    2015-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.

  19. Optimization of nested polymerase chain reaction assays for identification of Aeromonas salmonicida, Yersinia ruckeri and Flavobacterium psychrophilum

    USGS Publications Warehouse

    Taylor, P.W.; Winton, J.R.

    2002-01-01

    Nested polymerase chain reaction (PCR) assays were developed using first-round primers complementary to highly conserved regions within the bacterial 16S ribosomal RNA (rRNA) gene (universal eubacterial primers) and second-round primers specific for sequences within the 16S rRNA genes of Aeromonas salmonicida, Yersinia ruckeri, andFlavobacterium psychrophilum. Following optimization of the MgCl2 concentration and primer annealing temperature, PCR employing the universal eubacterial primers was used to amplify a 1,500-base-pair (bp) product visible in agarose gels stained with ethidium bromide. The calculated detection limit of this single-round assay was less than 1.4 × 104 colony-forming units (CFU) per reaction for all bacterial species tested. Single-round PCR using primer sets specific for A. salmonicida, Y. ruckeri, and F. psychrophilumamplified bands of 271, 575, and 1,100 bp, respectively, with detection limits of less than 1.4 × 104, 1.4 × 105, and 1.4 × 105 CFU per reaction. Using the universal eubacterial primers in the first round and the species-specific primer sets in the second round of nested PCR assays improved the detection ability by approximately four orders of magnitude to fewer than 14 CFU per sample for each of the three bacterial species. Such nested assays could be adapted to a wide variety of bacterial fish pathogens for which 16S sequences are available.

  20. Ene reaction of singlet oxygen, triazolinedione, and nitrosoarene with chiral deuterium-labeled allylic alcohols: the interdependence of diastereoselectivity and regioselectivity discloses mechanistic insights into the hydroxy-group directivity.

    PubMed

    Adam, Waldemar; Bottke, Nils; Krebs, Oliver; Lykakis, Ioannis; Orfanopoulos, Michael; Stratakis, Manolis

    2002-12-04

    The ene reaction of singlet oxygen ((1)O(2)), triazolinedione (TAD), and nitrosoarene, specifically 4-nitronitrosobenzene (ArNO), with the tetrasubstituted 1,3-allylically strained, chiral allylic alcohol 3,4-dimethylpent-3-en-2-ol (2) leads to the threo-configured ene products in high diastereoselectivity, a consequence of the hydroxy-group directivity. Hydrogen bonding favors formation of the threo-configured encounter complex threo-EC in the early stage of ene reaction. For the analogous twix deuterium-labeled allylic alcohol Z-2-d(3), a hitherto unrecognized dichotomy between (1)O(2) and the ArNO and TAD enophiles is disclosed in the regioselectivity of the tetrasubstituted alcohol: Whereas for ArNO and TAD, hydrogen bonding with the allylic hydroxy group dictates the regioselectivity (twix selectivity), for (1)O(2), the cis effect dominates (twin/trix selectivity). From the interdependence between the twix/twin regioselectivity and the threo/erythro diastereoselectivity, it has been recognized that the enophile also attacks the allylic alcohol from the erythro pi face without assistance by hydrogen bonding with the allylic hydroxy functionality.

  1. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  2. Deep Learning in Label-free Cell Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  3. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  4. Deep Learning in Label-free Cell Classification

    DOE PAGES

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  5. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  6. Extending the scope of eco-labelling in the food industry to drive change beyond sustainable agriculture practices.

    PubMed

    Miranda-Ackerman, Marco A; Azzaro-Pantel, Catherine

    2017-12-15

    New consumer awareness is shifting industry towards more sustainable practices, creating a virtuous cycle between producers and consumers enabled by eco-labelling. Eco-labelling informs consumers of specific characteristics of products and has been used to market greener products. Eco-labelling in the food industry has yet been mostly focused on promoting organic farming, limiting the scope to the agricultural stage of the supply chain, while carbon labelling informs on the carbon footprint throughout the life cycle of the product. These labelling strategies help value products in the eyes of the consumer. Because of this, decision makers are motivated to adopt more sustainable models. In the food industry, this has led to important environmental impact improvements at the agricultural stage, while most other stages in the Food Supply Chain (FSC) have continued to be designed inefficiently. The objective of this work is to define a framework showing how carbon labelling can be integrated into the design process of the FSC. For this purpose, the concept of Green Supply Chain Network Design (GSCND) focusing on the strategic decision making for location and allocation of resources and production capacity is developed considering operational, financial and environmental (CO 2 emissions) issues along key stages in the product life cycle. A multi-objective optimization strategy implemented by use of a genetic algorithm is applied to a case study on orange juice production. The results show that the consideration of CO 2 emission minimization as an objective function during the GSCND process together with techno-economic criteria produces improved FSC environmental performance compared to both organic and conventional orange juice production. Typical results thus highlight the importance that carbon emissions optimization and labelling may have to improve FSC beyond organic labelling. Finally, CO 2 emission-oriented labelling could be an important tool to improve the

  7. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.

  8. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  9. Effects of an icon-based menu labelling initiative on consumer food choice.

    PubMed

    Kerins, Claire; Cunningham, Katie; Finucane, Francis M; Gibson, Irene; Jones, Jenni; Kelly, Colette

    2017-01-01

    The purpose of this study was to examine the impact of an icon-based menu labelling initiative on consumer buying behaviour. This quasi-experimental study recruited a convenience sample of eight food service establishments, all with at least one menu item meeting the heart healthy criteria. Data from sales of all menu items sold over an 8-week period were collated 4 weeks prior to and 4 weeks during the display of information icons related to healthy food choices on menus. The absolute change in menu item sales showed a non-significant trend towards an increase in healthier menu item selections. Furthermore, there was no association between the type of food service establishment and the percentage change in labelled menu item sales. The study did not find a statistically significant influence of the icon-based menu labels on consumer food choice. Given the limited amount of research that examines alternative menu labelling formats in real-world settings, more studies are necessary to confirm these results. Further research is needed to identify the optimal format, content and impact of menu labels on consumer behaviour.

  10. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polymer microchip CE of proteins either off- or on-chip labeled with chameleon dye for simplified analysis.

    PubMed

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam T

    2009-12-01

    Microchip CE of proteins labeled either off- or on-chip with the "chameleon" CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant CTAB prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for BSA, corresponding to a approximately 7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 microg/mL concentration detection limit for BSA, corresponding to a approximately 700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices.

  12. Base reaction optimization of redundant manipulators for space applications

    NASA Technical Reports Server (NTRS)

    Chung, C. L.; Desa, S.; Desilva, C. W.

    1988-01-01

    One of the problems associated with redundant manipulators which were proposed for space applications is that the reactions transmitted to the base of the manipulator as a result of the motion of the manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is therefore necessary to minimize the magnitudes of the forces and moments transmitted to the base. It is shown that kinematic redundancy can be used to solve the dynamic problem of minimizing the magnitude of the base reactions. The methodology described is applied to a four degree-of-freedom spatial manipulator with one redundant degree-of-freedom.

  13. Hybrid switched time-optimal control of underactuated spacecraft

    NASA Astrophysics Data System (ADS)

    Olivares, Alberto; Staffetti, Ernesto

    2018-04-01

    This paper studies the time-optimal control problem for an underactuated rigid spacecraft equipped with both reaction wheels and gas jet thrusters that generate control torques about two of the principal axes of the spacecraft. Since a spacecraft equipped with two reaction wheels is not controllable, whereas a spacecraft equipped with two gas jet thrusters is controllable, this mixed actuation ensures controllability in the case in which one of the control axes is unactuated. A novel control logic is proposed for this hybrid actuation in which the reaction wheels are the main actuators and the gas jet thrusters act only after saturation or anticipating future saturation of the reaction wheels. The presence of both reaction wheels and gas jet thrusters gives rise to two operating modes for each actuated axis and therefore the spacecraft can be regarded as a switched dynamical system. The time-optimal control problem for this system is reformulated using the so-called embedding technique and the resulting problem is a classical optimal control problem. The main advantages of this technique are that integer or binary variables do not have to be introduced to model switching decisions between modes and that assumptions about the number of switches are not necessary. It is shown in this paper that this general method for the solution of optimal control problems for switched dynamical systems can efficiently deal with time-optimal control of an underactuated rigid spacecraft in which bound constraints on the torque of the actuators and on the angular momentum of the reaction wheels are taken into account.

  14. 2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification

    PubMed Central

    2016-01-01

    Photoaffinity labels are powerful tools for dissecting ligand–protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C–H/X–H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery. PMID:27740749

  15. 2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification.

    PubMed

    Herner, András; Marjanovic, Jasmina; Lewandowski, Tracey M; Marin, Violeta; Patterson, Melanie; Miesbauer, Laura; Ready, Damien; Williams, Jon; Vasudevan, Anil; Lin, Qing

    2016-11-09

    Photoaffinity labels are powerful tools for dissecting ligand-protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C-H/X-H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery.

  16. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging

    PubMed Central

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-01-01

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375

  17. Examination of the evidence for off-label use of gabapentin.

    PubMed

    Mack, Alicia

    2003-01-01

    (1) Describe the relevance of off-label use of gabapentin to managed care pharmacy; (2) summarize recent FDA warnings and media reports related to off-label gabapentin use; (3) review medical information pertaining to the off-label use of gabapentin; (4) outline alternatives to off-label use of gabapentin in an evidence-based fashion, where literature exists to support such alternatives; and (5) encourage key clinicians and decision makers in managed care pharmacy to develop and support programs that restrict the use of gabapentin to specific evidence-based situations. Gabapentin is approved by the U.S. Food and Drug Administration (FDA) for adjunctive therapy in treatment of partial seizures and postherpetic neuralgia. Various off-label (unapproved) uses have been reported, and the use of gabapentin for off-label purposes has reportedly exceeded use for FDAapproved indications. Pharmaceutical marketing practices and physician dissatisfaction with currently available pharmacological treatment options may be key factors that contribute to this prescribing trend. Recently, the media has focused on these issues, noting that many cases of reported safety and effectiveness of gabapentin for off-label use may have been fabricated. A thorough review of the medical and pharmacy literature related to off-label use of gabapentin was performed, and a summary of the literature for the following conditions is presented: bipolar disorder, peripheral neuropathy, diabetic neuropathy, complex regional pain syndrome, attention deficit disorder, restless legs syndrome, trigeminal neuralgia, periodic limb movement disorder of sleep, migraine headaches, and alcohol withdrawal syndrome. A common theme in the medical literature for gabapentin is the prevalence of open-label studies and a lack of randomized controlled clinical trials for all but a small number of indications. In the majority of circumstances where it has reported potential for.off-label. use, gabapentin is not the optimal

  18. In vivo stationary flux analysis by 13C labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1996-01-01

    Stationary flux analysis is an invaluable tool for metabolic engineering. In the last years the metabolite balancing technique has become well established in the bioengineering community. On the other hand metabolic tracer experiments using 13C isotopes have long been used for intracellular flux determination. Only recently have both techniques been fully combined to form a considerably more powerful flux analysis method. This paper concentrates on modeling and data analysis for the evaluation of such stationary 13C labeling experiments. After reviewing recent experimental developments, the basic equations for modeling carbon labeling in metabolic systems, i.e. metabolite, carbon label and isotopomer balances, are introduced and discussed in some detail. Then the basics of flux estimation from measured extracellular fluxes combined with carbon labeling data are presented and, finally, this method is illustrated by using an example from C. glutamicum. The main emphasis is on the investigation of the extra information that can be obtained with tracer experiments compared with the metabolite balancing technique alone. As a principal result it is shown that the combined flux analysis method can dispense with some rather doubtful assumptions on energy balancing and that the forward and backward flux rates of bidirectional reaction steps can be simultaneously determined in certain situations. Finally, it is demonstrated that the variant of fractional isotopomer measurement is even more powerful than fractional labeling measurement but requires much higher numerical effort to solve the balance equations.

  19. Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor.

    PubMed

    Singh, Amardeep; Park, Seonhwa; Yang, Haesik

    2013-05-21

    Catalytic reactions of enzyme labels in enzyme-linked immunosorbent assays require a long incubation period to obtain high signal amplification. We present herein a simple immunosensing scheme in which the incubation period is minimized without a large increase in the detection limit. This scheme is based on electrochemical-enzymatic (EN) redox cycling using glucose oxidase (GOx) as an enzyme label, Ru(NH3)6(3+) as a redox mediator, and glucose as an enzyme substrate. Fast electron mediation of Ru(NH3)6(3+) between the electrode and the GOx label attached to the electrode allows high signal amplification. The acquisition of chronocoulometric charges at a potential in the mass transfer-controlled region excludes the influence of the kinetics of Ru(NH3)6(2+) electrooxidation and also facilitates high signal-to-background ratios. The reaction between reduced GOx and Ru(NH3)6(3+) is rapid even in air-saturated Tris buffer, where the faster competitive reaction between reduced GOx and dissolved oxygen also occurs. The direct electrooxidation of glucose at the electrode and the direct electron transfer between glucose and Ru(NH3)6(3+) that undesirably increase background levels occur relatively slowly. The detection limit for the EN redox cycling-based detection of cancer antigen 125 (CA-125) in human serum is slightly higher than 0.1 U/mL for the incubation period of 0 min, and the detection limits for the incubation periods of 5 and 10 min are slightly lower than 0.1 U/mL, indicating that the detection limits are almost similar irrespective of the incubation period and that the immunosensor is highly sensitive.

  20. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  1. Searching for flavor labels in food products: the influence of color-flavor congruence and association strength.

    PubMed

    Velasco, Carlos; Wan, Xiaoang; Knoeferle, Klemens; Zhou, Xi; Salgado-Montejo, Alejandro; Spence, Charles

    2015-01-01

    Prior research provides robust support for the existence of a number of associations between colors and flavors. In the present study, we examined whether congruent (vs. incongruent) combinations of product packaging colors and flavor labels would facilitate visual search for products labeled with specific flavors. The two experiments reported here document a Stroop-like effect between flavor words and packaging colors. The participants were able to search for packaging flavor labels more rapidly when the color of the packaging was congruent with the flavor label (e.g., red/tomato) than when it was incongruent (e.g., yellow/tomato). In addition, when the packaging color was incongruent, those flavor labels that were more strongly associated with a specific color yielded slower reaction times and more errors (Stroop interference) than those that were less strongly tied to a specific color. Importantly, search efficiency was affected both by color/flavor congruence and association strength. Taken together, these results therefore highlight the role of color congruence and color-word association strength when it comes to searching for specific flavor labels.

  2. Development of Fluorophore-Labeled Thailanstatin Antibody-Drug Conjugates for Cellular Trafficking Studies.

    PubMed

    Kulkarni, Chethana; Finley, James E; Bessire, Andrew J; Zhong, Xiaotian; Musto, Sylvia; Graziani, Edmund I

    2017-04-19

    As the antibody-drug conjugate (ADC) field grows increasingly important for cancer treatment, it is vital for researchers to establish a firm understanding of how ADCs function at the molecular level. To gain insight into ADC uptake, trafficking, and catabolism-processes that are critical to ADC efficacy and toxicity-imaging studies have been performed with fluorophore-labeled conjugates. However, such labels may alter the properties and behavior of the ADC under investigation. As an alternative approach, we present here the development of a "clickable" ADC bearing an azide-functionalized linker-payload (LP) poised for "click" reaction with alkyne fluorophores; the azide group represents a significantly smaller structural perturbation to the LP than most fluorophores. Notably, the clickable ADC shows excellent potency in target-expressing cells, whereas the fluorophore-labeled product ADC suffers from a significant loss of activity, underscoring the impact of the label itself on the payload. Live-cell confocal microscopy reveals robust uptake of the clickable ADC, which reacts selectively in situ with a derivatized fluorescent label. Time-course trafficking studies show greater and more rapid net internalization of the ADCs than the parent antibody. More generally, the application of chemical biology tools to the study of ADCs should improve our understanding of how ADCs are processed in biological systems.

  3. One-to-one quantum dot-labeled single long DNA probes.

    PubMed

    He, Shibin; Huang, Bi-Hai; Tan, Junjun; Luo, Qing-Ying; Lin, Yi; Li, Jun; Hu, Yong; Zhang, Lu; Yan, Shihan; Zhang, Qi; Pang, Dai-Wen; Li, Lijia

    2011-08-01

    Quantum dots (QDs) have been received most attention due to their unique properties. Constructing QDs conjugated with certain number of biomolecules is considered as one of the most important research goals in nanobiotechnology. In this study, we report polymerase chain reaction (PCR) amplification of primer oligonucleotides bound to QDs, termed as QD-based PCR. Characterization of QD-based PCR products by gel electrophoresis and atomic force microscopy showed that QD-labeled long DNA strands were synthesized and only a single long DNA strand was conjugated with a QD. The QD-based PCR products still kept fluorescence properties. Moreover, the one-to-one QD-labeled long DNA conjugates as probes could detect a single-copy gene on maize chromosomes by fluorescence in situ hybridization. Labeling a single QD to a single long DNA will make detection of small single-copy DNA fragments, quantitative detection and single molecule imaging come true by nanotechnology, and it will promote medical diagnosis and basic biological research as well as nano-material fabrication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Desired and Undesired Effects of Energy Labels--An Eye-Tracking Study.

    PubMed

    Waechter, Signe; Sütterlin, Bernadette; Siegrist, Michael

    2015-01-01

    Saving energy is an important pillar for the mitigation of climate change. Electric devices (e.g., freezer and television) are an important player in the residential sector in the final demand for energy. Consumers' purchase decisions are therefore crucial to successfully reach the energy-efficiency goals. Putting energy labels on products is often considered an adequate way of empowering consumers to make informed purchase decisions. Consequently, this approach should contribute to reducing overall energy consumption. The effectiveness of its measurement depends on consumers' use and interpretation of the information provided. Despite advances in energy efficiency and a mandatory labeling policy, final energy consumption per capita is in many countries still increasing. This paper provides a systematic analysis of consumers' reactions to one of the most widely used eco-labels, the European Union (EU) energy label, by using eye-tracking methodology as an objective measurement. The study's results partially support the EU's mandatory policy, showing that the energy label triggers attention toward energy information in general. However, the energy label's effect on consumers' actual product choices seems to be rather low. The study's results show that the currently used presentation format on the label is insufficient. The findings suggest that it does not facilitate the integration of energy-related information. Furthermore, the current format can attract consumers to focus more on energy-efficiency information, leading them to disregard information about actual energy consumption. As a result, the final energy consumption may increase because excellent ratings on energy efficiency (e.g., A++) do not automatically imply little consumption. Finally, implications for policymakers and suggestions for further research are discussed.

  5. Rh(II)-catalyzed Reactions of Diazoesters with Organozinc Reagents

    PubMed Central

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M.

    2015-01-01

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethylacetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed. PMID:26241081

  6. Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents.

    PubMed

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M

    2015-08-21

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethyl acetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed.

  7. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy.

    PubMed

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    2017-07-01

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.

  8. GEO Label: User and Producer Perspectives on a Label for Geospatial Data

    NASA Astrophysics Data System (ADS)

    Lush, V.; Lumsden, J.; Masó, J.; Díaz, P.; McCallum, I.

    2012-04-01

    One of the aims of the Science and Technology Committee (STC) of the Group on Earth Observations (GEO) was to establish a GEO Label- a label to certify geospatial datasets and their quality. As proposed, the GEO Label will be used as a value indicator for geospatial data and datasets accessible through the Global Earth Observation System of Systems (GEOSS). It is suggested that the development of such a label will significantly improve user recognition of the quality of geospatial datasets and that its use will help promote trust in datasets that carry the established GEO Label. Furthermore, the GEO Label is seen as an incentive to data providers. At the moment GEOSS contains a large amount of data and is constantly growing. Taking this into account, a GEO Label could assist in searching by providing users with visual cues of dataset quality and possibly relevance; a GEO Label could effectively stand as a decision support mechanism for dataset selection. Currently our project - GeoViQua, - together with EGIDA and ID-03 is undertaking research to define and evaluate the concept of a GEO Label. The development and evaluation process will be carried out in three phases. In phase I we have conducted an online survey (GEO Label Questionnaire) to identify the initial user and producer views on a GEO Label or its potential role. In phase II we will conduct a further study presenting some GEO Label examples that will be based on Phase I. We will elicit feedback on these examples under controlled conditions. In phase III we will create physical prototypes which will be used in a human subject study. The most successful prototypes will then be put forward as potential GEO Label options. At the moment we are in phase I, where we developed an online questionnaire to collect the initial GEO Label requirements and to identify the role that a GEO Label should serve from the user and producer standpoint. The GEO Label Questionnaire consists of generic questions to identify whether

  9. Pd-mediated rapid cross-couplings using [(11) C]methyl iodide: groundbreaking labeling methods in (11) C radiochemistry.

    PubMed

    Doi, Hisashi

    2015-03-01

    Prof. Bengt Långström is a pioneer in the field of chemistry-driven positron emission tomography (PET) imaging. He has developed a variety of excellent radiolabeling methodologies using the methods of organic chemistry, with the aim of widening the potential of PET in the study of life. Among his groundbreaking achievements in (11) C radiochemistry, there is the discovery of the Pd-mediated rapid cross-coupling reaction using [(11) C]methyl iodide. It was first reported by his Uppsala group in 1994-1995 and was further investigated by his and other groups with a view of enhancing its generality and practicability. This reaction is currently considered one of the basic methods for (11) C-labeling of low-weight organic compounds. This paper presents a short summary of the background and the development of Pd-mediated rapid cross-couplings of [(11) C]methyl iodide, with a focus not only on organostannanes, but also on organoboranes, organozincs, and terminal acetylene compounds. All these reactions have proven to be dependable (11) C-labeling methodologies that use chemically reliable carbon-carbon bond formation reactions. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Peptide and protein quantitation by acid-catalyzed 18O-labeling of carboxyl groups.

    PubMed

    Haaf, Erik; Schlosser, Andreas

    2012-01-03

    We have developed a new method that applies acidic catalysis with hydrochloric acid for (18)O-labeling of peptides at their carboxyl groups. With this method, peptides get labeled at their C-terminus, at Asp and Glu residues, and at carboxymethylated cysteine residues. Oxygen atoms at phosphate groups of phosphopeptide are not exchanged. Our elaborated labeling protocol is easy to perform, fast (5 h and 30 min), and results in 95-97 atom % incorporation of (18)O at carboxyl groups. Undesired side reactions, such as deamidation or peptide hydrolysis, occur only at a very low level under the conditions applied. In addition, data analysis can be performed automatically using common software tools, such as Mascot Distiller. We have demonstrated the capability of this method for the quantitation of peptides as well as for phosphopeptides. © 2011 American Chemical Society

  11. Synthesis and characterization of the fluorescent probes for the labeling of Microthrix parvicella.

    PubMed

    Li, Songya; Fei, Xuening; Jiao, Xiumei; Lin, Dayong; Zhang, Baolian; Cao, Lingyun

    2016-03-01

    Although the fluorescent in situ hybridization (FISH) has been widely used to identify the Microthrix parvicella (M. parvicella), there are a few disadvantages and difficulties, such as complicated process, time consuming, etc. In this work, a series of fluorescent probes, which were modified by long-chain alkane with hydrophobic property and based on the property of M. parvicella utilizing long-chain fatty acids (LCFA), for the labeling of M. parvicella in bulking sludge were designed, synthesized, and characterized. The probes were characterized by ultraviolet-visible (UV-Vis) absorption spectra, fluorescence spectra, (1)H NMR spectra, and mass spectra, and the photostability and hydrophobic property of probes were investigated. All the results showed that the probes were quite stable and suitable for the fluorescent labeling. The probes had a large stoke shift of 98-137 nm, which was benefit for the fluorescent labeling. In the fluorescent labeling of M. parvicella by the synthesized probes, the probes had excellent labeling effects. By comparison of the images and the Image Pro Plus 6.0 analysis, the optimal concentration of the probes in the activated sludge sample for labeling was 0.010 mmol/L and the probe 3d had the best labeling. In addition, the effect of the duration time of probes was also investigated, and the results showed that the fluorescent intensity of probes hardly changed in a long period of time and it was suitable for labeling.

  12. Spin-labelling study of interactions of ovalbumin with multilamellar liposomes and specific anti-ovalbumin antibodies.

    PubMed

    Brgles, Marija; Mirosavljević, Krunoslav; Noethig-Laslo, Vesna; Frkanec, Ruza; Tomasić, Jelka

    2007-03-10

    Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.

  13. Oxidative Degradation of Nadic-End-Capped Polyimides. 2; Evidence for Reactions Occurring at High Temperatures

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.; Frimer, Aryeh A.

    1997-01-01

    The oxidative degradation of PMR (for polymerization of monomeric reactants) polyimides at elevated temperatures was followed by cross-polarized magic angle spinning (Cp-MAS) NMR. C-13 labeling of selected sites in the polymers allowed for direct observation of the transformations arising from oxidation processes. As opposed to model compound studies, the reactions were followed directly in the polymer. The labeling experiments confirm the previously reported oxidation of the methylene carbon to ketone in the methylenedianiline portion of the polymer chain. They also show the formation of two other oxidized species, acid and ester, from this same carbon. In addition, the technique provides the first evidence of the kind of degradation reactions that are occurring in the nadic end caps. Several PMR formulations containing moieties determined to be present after oxidation, as suggested by the labeling study, were synthesized. Weight loss, FTIR, and natural abundance NMR of these derivatives were followed during aging. In this way, weight loss could be related to the observed transformations.

  14. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-10-01

    Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.

  15. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without

  16. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye.

    PubMed

    Gerasov, Andriy; Shandura, Mykola; Kovtun, Yuriy; Losytskyy, Mykhaylo; Negrutska, Valentyna; Dubey, Igor

    2012-01-15

    A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Clinically relevant safety issues associated with St. John's wort product labels.

    PubMed

    Clauson, Kevin A; Santamarina, Marile L; Rutledge, Jennifer C

    2008-07-17

    St. John's wort (SJW), used to treat depression, is popular in the USA, Canada, and parts of Europe. However, there are documented interactions between SJW and prescription medications including warfarin, cyclosporine, indinavir, and oral contraceptives. One source of information about these safety considerations is the product label. The aim of this study was to evaluate the clinically relevant safety information included on labeling in a nationally representative sample of SJW products from the USA. Eight clinically relevant safety issues were identified: drug interactions (SJW-HIV medications, SJW-immunosupressants, SJW-oral contraceptives, and SJW-warfarin), contraindications (bipolar disorder), therapeutic duplication (antidepressants), and general considerations (phototoxicity and advice to consult a healthcare professional (HCP)). A list of SJW products was identified to assess their labels. Percentages and totals were used to present findings. Of the seventy-four products evaluated, no product label provided information for all 8 evaluation criteria. Three products (4.1%) provided information on 7 of the 8 criteria. Four products provided no safety information whatsoever. Percentage of products with label information was: SJW-HIV (8.1%), SJW-immunosupressants (5.4%), SJW-OCPs (8.1%), SJW-warfarin (5.4%), bipolar (1.4%), antidepressants (23.0%), phototoxicity (51.4%), and consult HCP (87.8%). Other safety-related information on labels included warnings about pregnancy (74.3%), lactation (64.9%), discontinue if adverse reaction (23.0%), and not for use in patients under 18 years old (13.5%). The average number of a priori safety issues included on a product label was 1.91 (range 0-8) for 23.9% completeness. The vast majority of SJW products fail to adequately address clinically relevant safety issues on their labeling. A few products do provide an acceptable amount of information on clinically relevant safety issues which could enhance the quality of

  18. Clinically relevant safety issues associated with St. John's wort product labels

    PubMed Central

    Clauson, Kevin A; Santamarina, Marile L; Rutledge, Jennifer C

    2008-01-01

    Background St. John's wort (SJW), used to treat depression, is popular in the USA, Canada, and parts of Europe. However, there are documented interactions between SJW and prescription medications including warfarin, cyclosporine, indinavir, and oral contraceptives. One source of information about these safety considerations is the product label. The aim of this study was to evaluate the clinically relevant safety information included on labeling in a nationally representative sample of SJW products from the USA. Methods Eight clinically relevant safety issues were identified: drug interactions (SJW-HIV medications, SJW-immunosupressants, SJW-oral contraceptives, and SJW-warfarin), contraindications (bipolar disorder), therapeutic duplication (antidepressants), and general considerations (phototoxicity and advice to consult a healthcare professional (HCP)). A list of SJW products was identified to assess their labels. Percentages and totals were used to present findings. Results Of the seventy-four products evaluated, no product label provided information for all 8 evaluation criteria. Three products (4.1%) provided information on 7 of the 8 criteria. Four products provided no safety information whatsoever. Percentage of products with label information was: SJW-HIV (8.1%), SJW-immunosupressants (5.4%), SJW-OCPs (8.1%), SJW-warfarin (5.4%), bipolar (1.4%), antidepressants (23.0%), phototoxicity (51.4%), and consult HCP (87.8%). Other safety-related information on labels included warnings about pregnancy (74.3%), lactation (64.9%), discontinue if adverse reaction (23.0%), and not for use in patients under 18 years old (13.5%). The average number of a priori safety issues included on a product label was 1.91 (range 0–8) for 23.9% completeness. Conclusion The vast majority of SJW products fail to adequately address clinically relevant safety issues on their labeling. A few products do provide an acceptable amount of information on clinically relevant safety issues

  19. Understanding Food Labels

    MedlinePlus

    ... Healthy eating for girls Understanding food labels Understanding food labels There is lots of info on food ... need to avoid because of food allergies. Other food label terms top In addition to the Nutrition ...

  20. A continuous GRASP to determine the relationship between drugs and adverse reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Michael J.; Meneses, Claudio N.; Pardalos, Panos M.

    2007-11-05

    Adverse drag reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and utilize C-GRASP, a new continuous global optimization heuristic, to approximately determine the relationship between drugs and adverse reactions. Our approach is compared against others in the literature and is shown to find better solutions.

  1. Polymer microchip capillary electrophoresis of proteins either off- or on-chip labeled with chameleon dye for simplified analysis

    PubMed Central

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam

    2009-01-01

    Microchip capillary electrophoresis of proteins labeled either off- or on-chip with the “chameleon” CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant cetyltrimethyl ammonium bromide prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for bovine serum albumin (BSA), corresponding to a ~7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 μg/mL concentration detection limit for BSA, corresponding to a ~700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices. PMID:19924700

  2. 78 FR 66826 - Prior Label Approval System: Generic Label Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... container of a misleading form or size.\\1\\ FSIS has interpreted these provisions as requiring that the...-evaluating-labeling . Labels submitted as an extraordinary circumstance are given the highest priority for... submissions to FSIS headquarters, thus increasing the availability of FSIS labeling staff. Upon publication of...

  3. Bone marrow cells stained by azide-conjugated Alexa fluors in the absence of an alkyne label.

    PubMed

    Lin, Guiting; Ning, Hongxiu; Banie, Lia; Qiu, Xuefeng; Zhang, Haiyang; Lue, Tom F; Lin, Ching-Shwun

    2012-09-01

    Thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) has recently been introduced as an alternative to 5-bromo-2-deoxyuridine (BrdU) for cell labeling and tracking. Incorporation of EdU into replicating DNA can be detected by azide-conjugated fluors (eg, Alexa-azide) through a Cu(i)-catalyzed click reaction between EdU's alkyne moiety and azide. While this cell labeling method has proven to be valuable for tracking transplanted stem cells in various tissues, we have found that some bone marrow cells could be stained by Alexa-azide in the absence of EdU label. In intact rat femoral bone marrow, ~3% of nucleated cells were false-positively stained, and in isolated bone marrow cells, ~13%. In contrast to true-positive stains, which localize in the nucleus, the false-positive stains were cytoplasmic. Furthermore, while true-positive staining requires Cu(i), false-positive staining does not. Reducing the click reaction time or reducing the Alexa-azide concentration failed to improve the distinction between true- and false-positive staining. Hematopoietic and mesenchymal stem cell markers CD34 and Stro-1 did not co-localize with the false-positively stained cells, and these cells' identity remains unknown.

  4. Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.

    PubMed

    Sunbul, Murat; Nacheva, Lora; Jäschke, Andres

    2015-08-19

    Labeling of proteins with fluorescent dyes in live cells enables the investigation of their roles in biological systems by fluorescence microscopy. Because the labeling procedure should not disturb the native function of the protein of interest, it is of high importance to find the optimum labeling method for the problem to be studied. Here, we developed a rapid one-step method to covalently and site-specifically label proteins with a TexasRed fluorophore in vitro and in live bacteria. To this end, a genetically encodable TexasRed fluorophore-binding peptide (TR512) was converted into a reactive tag (ReacTR) by adjoining a cysteine residue which rapidly reacts with N-α-chloroacetamide-conjugated TexasRed fluorophore owing to the proximity effect; ReacTR tag first binds to the TexasRed fluorophore and this interaction brings the nucleophilic cysteine and the electrophilic N-α-chloroacetamide groups in close proximity. Our method has several advantages over existing methods: (i) it utilizes a peptide tag much smaller than fluorescent proteins, the SNAP, CLIP, or HaLo tags; (ii) it allows for labeling of proteins with a small, photostable, red-emitting TexasRed fluorophore; (iii) the probe used is very easy to synthesize; (iv) no enzyme is required to transfer the fluorophore to the peptide tag; and (v) labeling yields a stable covalent product in a very fast reaction.

  5. Comparison of /sup 125/I-labeled and /sup 14/C-Labeled peptides of the major outer membrane protein of Chlamydia Trachomatis Strain L2/434 separated by high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, R.C.; Caldwell, H.D.

    1985-01-01

    The objective of this study was to determine if in-gel chloramine-T radioiodination adequately labels OM proteins to allow for accurate and precise structural comparison of these molecules. Therefore, intrinsically /sup 14/C-amino acid labeled proteins and /sup 125/I-labeled proteins were cleaved with two endopeptidic reagents and the peptide fragments separated by HPLC. A comparison of retention times of the fragments, as determined by differential radiation counting, thus indicated whether /sup 125/Ilabeling identified of all the peptide peaks seen in the /sup 14/Clabeled proteins. Results demonstrated that radioiodination yields complete and accurate information about the primary structure of outer membrane proteins. Inmore » addition, it permits the use of extremely small amounts of protein allowing for method optimization and multiple separations to insure reproducibility.« less

  6. Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates

    PubMed Central

    2013-01-01

    Background For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature. Nevertheless, the understanding on the formation chemistry of CuS is still limited. The ultimate approach undertaking in this article is to investigate the formation of CuS hexagonal plates via the optimization of reaction parameters in hydrothermal reaction between copper (II) nitrate and sodium thiosulphate without appending any assistant agent. Results Covellite (CuS) hexagonal plates were formed at copper ion: thiosulphate ion (Cu2+:S2O32−) mole ratio of 1:2 under hydrothermal treatment of 155°C for 12 hours. For synthesis conducted at reaction temperature lower than 155°C, copper sulphate (CuSO4), krohnite (NaCu2(SO4)(H2O)2] and cyclooctasulphur (S8) were present as main impurities with covellite (CuS). When Cu2+:S2O32− mole ratio was varied to 1: 1 and 1: 1.5, phase pure plate-like natrochalcite [NaCu2(SO4)(H2O)] and digenite (Cu9S5) were produced respectively. Meanwhile, mixed phases of covellite (CuS) and cyclooctasulphur (S8) were both identified when Cu2+:S2O32− mole ratio was varied to 1: 2.5, 1: 3 and 1: 5 as well as when reaction time was shortened to 1 hour. Conclusions CuS hexagonal plates with a mean edge length of 1 μm, thickness of 100 nm and average crystallite size of approximately (45 ± 2) nm (Scherrer estimation) were successfully synthesized via assisting agent- free hydrothermal method. Under a suitable Cu2+:S2O32− mole ratio, we evidenced that the formation of covellite (CuS) is feasible regardless of the reaction temperature applied. However, a series of impurities were attested with CuS if reaction temperature was not elevated high enough for the additional crystallite

  7. Abandoning a label doesn’t make it disappear: The perseverance of labeling effects

    PubMed Central

    Foroni, Francesco; Rothbart, Myron

    2012-01-01

    Labels exert strong influence on perception and judgment. The present experiment examines the possibility that such effects may persist even when labels are abandoned. Participants judged the similarity of pairs of silhouette drawings of female body types, ordered on a continuum from very thin to very heavy, under conditions where category labels were, and were not, superimposed on the ordered stimuli. Consistent with earlier research, labels had strong effects on perceived similarity, with silhouettes sharing the same label judged as more similar than those having different labels. Moreover, when the labels were removed and no longer present, the effect of the labels, although diminished, persisted. It did not make any difference whether the labels were simply abandoned or, in addition, had their validity challenged. The results are important for our understanding of categorization and labeling processes. The potential theoretical and practical implications of these results for social processes are discussed. PMID:23105148

  8. A multicenter study benchmarks software tools for label-free proteome quantification.

    PubMed

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  9. Fluorescent probes for tracking the transfer of iron–sulfur cluster and other metal cofactors in biosynthetic reaction pathways

    DOE PAGES

    Vranish, James N.; Russell, William K.; Yu, Lusa E.; ...

    2014-12-05

    Iron–sulfur (Fe–S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe–S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe–S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe–2S] and [4Fe–4S] clusters), ligand environments ([2Fe–2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe–S clustermore » transfer reactions are monitored between two Fdx molecules that have identical Fe–S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe–2S]–DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe–S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe–S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. Lastly, we anticipate that this cluster detection methodology will transform the study of Fe–S cluster pathways and potentially other metal cofactor biosynthetic pathways.« less

  10. Work in progress: radionuclide imaging of indium-111-labeled eosinophils in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runge, V.M.; Rand, T.H.; Clanton, J.A.

    1983-05-01

    Eosinophils isolated from peritoneal exudates were labeled with indium-111-oxine and injected intravenously into sensitized mice. They became localized at sites of inflammation produced by intradermal injections of schistosomal antigen or Toxocara canis larvae, whereas labeled neutrophils did not. Intense uptake of eosinophils by normal spleen, liver, and bone marrow was noted, with tracer distribution effectively complete by 5 hours after injection. Indium-111-eosinophil studies appear to be quite sensitive to parasitic inflammatory reactions; in contrast, nonspecific inflammation such as that induced by turpentine causes localization of eosinophils, but to a lesser extent. This technique may be useful in the study ofmore » parasitic and allergic disease.« less

  11. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  12. HaloTag technology for specific and covalent labeling of fusion proteins.

    PubMed

    Benink, Hélène A; Urh, Marjeta

    2015-01-01

    Appending proteins of interest to fluorescent protein tags such as GFP has revolutionized how proteins are studied in the cellular environment. Over the last few decades many varieties of fluorescent proteins have been generated, each bringing new capability to research. However, taking full advantage of standard fluorescent proteins with advanced and differential features requires significant effort on the part of the researcher. This approach necessitates that many genetic fusions be generated and confirmed to function properly in cells with the same protein of interest. To lessen this burden, a newer category of protein fusion tags termed "self-labeling protein tags" has been developed. This approach utilizes a single protein tag, the function of which can be altered by attaching various chemical moieties (fluorescent labels, affinity handles, etc.). In this way a single genetically encoded protein fusion can easily be given functional diversity and adaptability as supplied by synthetic chemistry. Here we present protein labeling methods using HaloTag technology; comprised of HaloTag protein and the collection of small molecules designed to bind it specifically and provide it with varied functionalities. For imaging purposes these small molecules, termed HaloTag ligands, contain distinct fluorophores. Due to covalent and rapid binding between HaloTag protein and its ligands, labeling is permanent and efficient. Many of these ligands have been optimized for permeability across cellular membranes allowing for live cell labeling and imaging analysis. Nonpermeable ligands have also been developed for specific labeling of surface proteins. Overall, HaloTag is a versatile technology that empowers the end user to label a protein of interest with the choice of different fluorophores while alleviating the need for generation of multiple genetic fusions.

  13. Introduction to Pesticide Labels

    EPA Pesticide Factsheets

    Pesticide product labels provide critical information about how to safely and legally handle and use pesticide products. Unlike most other types of product labels, pesticide labels are legally enforceable. Learn about pesticide product labels.

  14. Storable Arylpalladium(II) Reagents for Alkene Labeling in Aqueous Media

    PubMed Central

    Simmons, Rebecca L.; Yu, Robert T.; Myers, Andrew G.

    2011-01-01

    We show that arylpalladium(II) reagents linked to biotin and indocyanine dye residues can be prepared by decarboxylative palladation of appropriately substituted electron-rich benzoic acid derivatives. When prepared under the conditions described, these organometallic intermediates are tolerant of air and water, can be stored for several months in solution in dimethylsulfoxide, and permit biotin- and indocyanine dye-labeling of functionally complex olefinic substrates in water by Heck-type coupling reactions. PMID:21888420

  15. Development of a facile and sensitive HPLC-FLD method via fluorescence labeling for triterpenic acid bioavailability investigation.

    PubMed

    You, Jinmao; Wu, Di; Zhao, Mei; Li, Guoliang; Gong, Peiwei; Wu, Yueyue; Guo, Yu; Chen, Guang; Zhao, Xianen; Sun, Zhiwei; Xia, Lian; Wu, Yongning

    2017-06-01

    Triterpenic acids are widely distributed in many fruits and are known for their medicinal benefits. The study of bioavailability has been an important task for a better understanding of the triterpenic acids. Although many methods based on fluorescence labeling for triterpenic acid determination have been established, these reported methods needed anhydrous conditions, which are not suitable for the convenient study of triterpenic acid bioavailability. Inspired by that, a versatile method, which overcomes the difficulty of the reported methods, has been first developed in this study. The novel method using 2-[12-benzo[b]acridin-5- (12H)-yl]-acetohydrazide (BAAH) as the fluorescence labeling reagent coupled with high-performance liquid chromatography with fluorescence detection was first developed for the study of triterpenic acid bioavailability. Furthermore, the labeling conditions have been optimized in order to achieve the best fluorescence labeling yield. Under the optimal conditions, the quantitative linear range of analytes was 2-1000 ng mL -1 , and the correlation coefficients were >0.9998. The detection limits for all triterpenic acid derivatives were achieved within the range of 0.28-0.29 ng mL -1 . The proposed method was successfully applied to the study of triterpenic acid bioavailability with excellent applicability and good reproducibility. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Perception and practice regarding allergen labeling: focus on food-related employees.

    PubMed

    Park, Si-Eun; Kwon, Yong-Seok; Paik, Jin-Kyoung; Kwak, Tong-Kyung; Hong, Wan-Soo

    2016-08-01

    Most consumers are able to recognize allergenic foods. However, the frequency of checking such foods is reportedly low, resulting in higher prevalence of food-related allergic reactions in Korea compared to other countries. Thus, this study was performed to investigate the overall perception of allergenic food labeling and its practice level in food manufacturing company employees. The survey was administered to food safety employees and food development teams at food companies located in metropolitan areas. A total of 399 (93.8%) valid samples were used in the final analysis. Statistical analyses, including Frequency Analysis, t-test, Anova, PCA (Principal Component Analysis), and Pearson Correlation Analysis using SPSS ver. 21.0, were performed. The correct answer rate in the analysis of allergy-related knowledge level ranged from 15.0% to 89.7%. Analysis of differences in allergy-related perception by knowledge level showed significant differences in introduction of a food recall system, strengthening of relevant laws and regulations, content labeling, description of substitutional food, and differentiated package by age. It can be concluded that labeling of allergenic foods should be made easier and more convenient for checking by employees, developers, and consumers, and it is necessary to provide contents through the development of publicity, guidelines, or APP along with labeling.

  17. Elucidation of the Cross-Link Structure of Nadic-End-Capped Polyimides Using NMR of C-13-Labeled Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.

    1997-01-01

    Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.

  18. Geometrical Optimization Approach to Isomerization: Models and Limitations.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Engel, Volker; Sola, Ignacio R

    2017-11-02

    We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.

  19. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A U.S. perspective on the adverse reactions from traditional Chinese medicines.

    PubMed

    Ko, Richard J

    2004-03-01

    Traditional Chinese medicines (TCM) are popular in the United States and Asian and non-Asian consumers are using the product for disease treatment and health prevention. As more people are using TCM products, there are increased reports on adverse reactions. This review will focus on adverse reactions due to TCM as reported in the literature. The review is based on MedLine search of literatures using keywords including: herbs, herbal, traditional Chinese medicines with toxicity, adverse effects, death, drug interaction and pharmacokinetic. In addition, specific searches were performed using the above keywords with the common name and the scientific name of the plant product. The causes of adverse reactions associated with TCM are diverse. They include variability in active/toxic ingredients due to growing conditions, use of inherent toxic herbs causing toxicity, overdose of herbs, drug-herb interactions especially with pharmaceuticals that have narrow therapeutic index, coexisting diseases, and idiosyncratic reactions like allergy, hepatitis and anaphylaxis. Other adverse reactions can be due to manufacturing and quality problems causing adulteration, misidentification, substitution of one herb with another, variability in the amount of active ingredients, use of pharmaceuticals without identifying on the labels, improper processing and preparation, and contamination. To minimize the adverse reactions from TCM and protect the public, there must be adequate laws and regulations to ensure that products are manufactured with the highest standards. Manufacturers should be licensed by regulatory agency and manufactured under good manufacturing practice. TCM products must be evaluated for their safety before marketing. Proper labeling and good surveillance systems shall ensure the protection of the consumers.

  1. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    PubMed Central

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and

  2. Microfluidic study of fast gas-liquid reactions.

    PubMed

    Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia

    2012-02-15

    We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.

  3. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    PubMed

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  4. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    PubMed

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  5. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    PubMed Central

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  6. Person Perception and Verbal Labeling: The Development of Social Labels.

    ERIC Educational Resources Information Center

    Brooks-Gunn, Jeanne; Lewis, Michael

    This study examined the social labels which are first used by infants, social differentiation on the basis of labeling behavior, and overgeneralization of social labels. Subjects were 81 infants from 9 to 36 months of age. The 9- to 24-month-olds were shown slides of themselves, their mothers, their fathers, and unfamiliar children, babies, and…

  7. Finding the optimal dose of vitamin K1 to treat vitamin K deficiency and to avoid anaphylactoid reactions.

    PubMed

    Mi, Yan-Ni; Ping, Na-Na; Li, Bo; Xiao, Xue; Zhu, Yan-Bing; Cao, Lei; Ren, Jian-Kang; Cao, Yong-Xiao

    2017-10-01

    Vitamin K1 injection induces severe dose-related anaphylactoid reactions and overdose for the treatment of vitamin K deficiency. We aimed to find an optimal and small dose of vitamin K1 injection to treat vitamin K deficiency and avoid anaphylactoid reactions in animal. Rats were administered a vitamin K-deficient diet and gentamicin to establish vitamin K deficiency model. Behaviour tests were performed in beagle dogs to observe anaphylactoid reactions. The results showed an increased protein induced by vitamin K absence or antagonist II (PIVKA-II) levels, a prolonging of prothrombin time (PT) and activated partial thromboplastin time (APTT) and a decrease in vitamin K-dependent coagulation factor (F) II, VII, IX and X activities in the model group. In vitamin K1 0.01 mg/kg group, the liver vitamin K1 levels increased fivefold and the liver vitamin K2 levels increased to the normal amount. Coagulation markers PT, APTT, FVII and FIX activities returned to normal. Both in the 0.1 and 1.0 mg/kg vitamin K1 groups, coagulation functions completely returned to normal. Moreover, the amount of liver vitamin K1 was 40 (0.1 mg/kg) or 100 (1.0 mg/kg) times as in normal. Vitamin K2 was about 4 (0.1 mg/kg) or 5 (1.0 mg/kg) times as the normal amount. There was no obvious anaphylactoid symptom in dogs with the dose of 0.03 mg/kg, which is equivalent to the dose of 0.01 mg/kg in rats. These results demonstrated that a small dose of vitamin K1 is effective to improve vitamin K deficiency and to prevent anaphylactoid reactions, simultaneously. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  8. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  9. Labeling milk along its production chain with DNA encapsulated in silica.

    PubMed

    Bloch, Madeleine S; Paunescu, Daniela; Stoessel, Philipp R; Mora, Carlos A; Stark, Wendelin J; Grass, Robert N

    2014-10-29

    The capability of tracing a food product along its production chain is important to ensure food safety and product authenticity. For this purpose and as an application example, recently developed Silica Particles with Encapsulated DNA (SPED) were added to milk at concentrations ranging from 0.1 to 100 ppb (μg per kg milk). Thereby the milk, as well as the milk-derived products yoghurt and cheese, could be uniquely labeled with a DNA tag. Procedures for the extraction of the DNA tags from the food matrixes were elaborated and allowed identification and quantification of previously marked products by quantitative polymerase chain reaction (qPCR) with detection limits below 1 ppb of added particles. The applicability of synthetic as well as naturally occurring DNA sequences was shown. The usage of approved food additives as DNA carrier (silica = E551) and the low cost of the technology (<0.1 USD per ton of milk labeled with 10 ppb of SPED) display the technical applicability of this food labeling technology.

  10. Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space

    PubMed Central

    Lai, Rongjie; Wang, Danny J.J.; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W.

    2014-01-01

    In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a cross-validation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects. PMID:24686245

  11. Flow and evaporation cells for the detection of proteins on membranes with the peroxyoxalate chemiluminescent reaction in organic media.

    PubMed

    Castro-Hartmann, Pablo; Daban, Joan-Ramon

    2004-08-01

    The high-energy intermediates generated in the reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO) with H2O2 can excite electronically different fluorophores with a high quantum yield in organic solvents. We have previously applied this peroxyoxalate chemiluminescent reaction to the detection of proteins labeled with the fluorescent dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) on polyvinylidene difluoride (PVDF) membranes. In this work, we have investigated the possibility to enhance the sensitivity of this detection method using specially designed cells in which the reagents TCPO and H2O2 in acetone are continuously renewed. In the flow cell, two syringes are used to renew the reagents in the reaction chamber containing the PVDF membrane with blotted proteins labeled with MDPF. In the evaporation cell, a fresh solution of reagents continuously replaces the volume of acetone evaporated in the reaction chamber. Both cells show a low emission background but the observed elution of proteins from the membrane produced by the flow of reagents in acetone limits the maximum sensitivity attainable with these cells. The best result (detection of 1 ng of MDPF-labeled protein) has been obtained with the evaporation cell. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  12. Open-label extension studies: do they provide meaningful information on the safety of new drugs?

    PubMed

    Day, Richard O; Williams, Kenneth M

    2007-01-01

    The number of open-label extension studies being performed has increased enormously in recent years. Often it is difficult to differentiate between these extension studies and the double-blind, controlled studies that preceded them. If undertaken primarily to gather more patient-years of exposure to the new drug in order to understand and gain confidence in its safety profile, open-label extension studies can play a useful and legitimate role in drug development and therapeutics. However, this can only occur if the open-label extension study is designed, executed, analysed and reported competently. Most of the value accrued in open-label extension studies is gained from a refinement in the perception of the expected incidence of adverse effects that have most likely already been identified as part of the preclinical and clinical trial programme. We still have to rely heavily on post-marketing safety surveillance systems to alert us to type B (unpredictable) adverse reactions because open-label extension studies are unlikely to provide useful information about these types of often serious and relatively rare adverse reactions. Random allocation into test and control groups is needed to produce precise incidence data on pharmacologically expected, or type A, adverse effects. Some increased confidence about incidence rates might result from the open-label extension study; however, as these studies are essentially uncontrolled and biased, the data are not of great value. Other benefits have been proposed to be gained from open-label extension studies. These include ongoing access to an effective but otherwise unobtainable medicine by the volunteers who participated in the phase III pivotal trials. However, there are unappreciated ethical issues about the appropriateness of enrolling patients whose response to previous treatment is uncertain, largely because treatment allocation in the preceding randomised, double-blind, controlled trial has not been revealed at the

  13. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples

    NASA Astrophysics Data System (ADS)

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-04-01

    A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.

  14. Does Verbal Labeling Influence Age Differences in Proactive and Reactive Cognitive Control?

    ERIC Educational Resources Information Center

    Kray, Jutta; Schmitt, Hannah; Heintz, Sonja; Blaye, Agnès

    2015-01-01

    The main goal of this study was to examine whether different types of verbal labeling can influence age-related changes in the dynamic control of behavior by inducing either a proactive or reactive mode of control. Proactive control is characterized by a strong engagement in maintaining task-relevant information to be optimally prepared while…

  15. Constructing New Bioorthogonal Reagents and Reactions.

    PubMed

    Row, R David; Prescher, Jennifer A

    2018-05-15

    reactivities and stabilities remains an important goal. We have used both computational analyses and mechanistic studies to guide the optimization of various cyclopropene and triazine probes. Along the way, we identified reagents that are chemoselective but best suited for in vitro work. Others are selective and robust enough for use in living organisms. The last section of this Account highlights the need for the continued pursuit of new reagents and reactions. Challenges exist when bioorthogonal chemistries must be used in concert, given that many exploit similar mechanisms and cannot be used simultaneously. Such limitations have precluded certain multicomponent labeling studies and other biological applications. We have relied on mechanistic and computational insights to identify mutually orthogonal sets of reactions, in addition to exploring unique genres of reactivity. The continued development of mechanistically distinct, biocompatible reactions will further diversify the bioorthogonal reaction portfolio for examining biomolecules.

  16. Chromophoric spin-labeled β-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C β-lactamases

    NASA Astrophysics Data System (ADS)

    Mustafi, Devkumar; Hofer, Jennifer E.; Huang, Wanzhi; Palzkill, Timothy; Makinen, Marvin W.

    2004-05-01

    The chromophoric spin-label substrate 6- N-[3-(2,2,5,5-tetramethyl-1-oxypyrrolin-3-yl)-propen-2-oyl]penicillanic acid (SLPPEN) was synthesized by acylation of 6-aminopenicillanic acid with the acid chloride of 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)-2-propenoic acid and characterized by physical methods. By application of angle-selected electron nuclear double resonance (ENDOR), we have determined the molecular structure of SLPPEN in solution. SLPPEN exhibited UV absorption properties that allowed accurate monitoring of the kinetics of its enzyme-catalyzed hydrolysis. The maximum value of the (substrate-product) difference extinction coefficient was 2824 M -1 cm -1 at 275 nm compared to 670 M -1 cm -1 at 232 nm for SLPEN [J. Am. Chem. Soc. 117 (1995) 6739]. For SLPPEN, the steady-state kinetic parameters kcat and kcat/ KM, determined under initial velocity conditions, were 637±36 s -1 and 13.8±1.4×10 6 M -1 s -1, respectively, for hydrolysis catalyzed by TEM-1 β-lactamase of E. coli, and 0.5±0.04 s -1 and 3.9±0.4×10 4 M -1 s -1 for hydrolysis catalyzed by the β-lactamase of Enterobacter cloacae P99. We have also observed "burst kinetics" for the hydrolysis of SLPPEN with P99 β-lactamase, indicative of formation of an acylenzyme reaction intermediate. In DMSO:H 2O (30:70, v:v) cryosolvent mixtures buffered to pH ∗ 7.0, the half-life of the acylenzyme intermediate formed with the P99 enzyme at -5 °C was ≥3 min, suitable for optical characterization. The observation of burst kinetics in the hydrolysis of SLPPEN catalyzed by P99 β-lactamase suggests that this chromophoric spin-labeled substrate is differentially sensitive to active site interactions underlying the cephalosporinase and penicillinase reactivity of this class C enzyme.

  17. Facile purification and click labeling with 2-[ 18F]fluoroethyl azide using solid phase extraction cartridges

    DOE PAGES

    Zhou, Dong; Chu, Wenhua; Peng, Xin; ...

    2014-11-04

    In this paper, a facile method was developed to purify 2-[ 18F]fluoroethyl azide ([ 18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [ 18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [ 18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield,more » and compatible with automated synthesis of 18F-labeled PET tracers.« less

  18. Potential Negative Effects of Antimicrobial Allergy Labelling on Patient Care: A Systematic Review.

    PubMed

    Wu, Julie Hui-Chih; Langford, Bradley J; Schwartz, Kevin L; Zvonar, Rosemary; Raybardhan, Sumit; Leung, Valerie; Garber, Gary

    2018-01-01

    Antimicrobial allergy labels, either self-reported or placed in a patient's medical record, are common, but in many cases they are not associated with a true immunoglobulin E-mediated allergic response. To assess the impact of antimicrobial allergy labels on antimicrobial prescribing, resource utilization, and clinical outcomes. The MEDLINE, Embase, CINAHL, and Scopus electronic databases were searched for the period 1990 to January 2016. Controlled studies with the objective of assessing antimicrobial prescribing, resource utilization, and/or clinical outcomes associated with antimicrobial allergy labels were included. The search identified 560 unique citations, of which 7 articles met the inclusion criteria. One additional article identified by an expert in the field was also included. Four of the identified papers were limited to penicillin or other β-lactam allergies. Six studies noted differences in antibiotic selection between patients with allergy labels and those without such labels. Broader-spectrum or second-line agents (e.g., vancomycin, clindamycin, and fluoroquinolones) were more commonly prescribed for patients with penicillin allergy labels. Antibiotic therapy costs were significantly higher for patients with allergy labels than for those without. The impact of allergy labels on clinical outcomes was mixed. One study indicated a longer length of hospital stay, 2 studies reported higher readmission rates, and 1 study reported a higher rate of antibiotic-resistant organisms for patients with allergy labels. Most of the available literature is limited to penicillin or β-lactam allergy. The growing body of knowledge supports the concept that β-lactam allergy labels are not benign and that labelling in the absence of a true allergy has a negative effect on patient care. Allergy labelling appears to be associated with suboptimal antibiotic selection, greater treatment costs, prolonged length of stay, greater readmission rates, and higher prevalence of

  19. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faries, Kaitlyn M.; Kressel, Lucas L.; Dylla, Nicholas P.

    Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P+ QB- yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants exploresmore » all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P+ QB- are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 μs. The resulting ranking of mutants for their yield of P+ QB- from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P+ HB- → P+ QB- electron transfer or initial P* → P+ HB- conversion highlight unmet challenges of optimizing both processes simultaneously.« less

  20. Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re.

    PubMed

    Altai, Mohamed; Honarvar, Hadis; Wållberg, Helena; Strand, Joanna; Varasteh, Zohreh; Rosestedt, Maria; Orlova, Anna; Dunås, Finn; Sandström, Mattias; Löfblom, John; Tolmachev, Vladimir; Ståhl, Stefan

    2014-11-24

    Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs. Copyright © 2014 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  1. Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly.

    PubMed

    Parfenov, Vladislav A; Koudan, Elizaveta V; Bulanova, Elena A; Karalkin, Pavel A; Pereira, Frederico DAS; Norkin, Nikita E; Knyazeva, Alisa D; Gryadunova, Anna A; Petrov, Oleg F; Vasiliev, M M; Myasnikov, Maxim; Chernikov, Valery P; Kasyanov, Vladimir A; Marchenkov, Artem Yu; Brakke, Kenneth A; Khesuani, Yusef D; Demirci, Utkan; Mironov, Vladimir A

    2018-05-31

    Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first-time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering. . © 2018 IOP Publishing Ltd.

  2. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions

    PubMed Central

    2011-01-01

    advantage of the electrophilicity of the azide; however, the azide can also participate in cycloaddition reactions. In 1961, Wittig and Krebs noted that the strained, cyclic alkyne cyclooctyne reacts violently when combined neat with phenyl azide, forming a triazole product by 1,3-dipolar cycloaddition. This observation stood in stark contrast to the slow kinetics associated with 1,3-dipolar cycloaddition of azides with unstrained, linear alkynes, the conventional Huisgen process. Notably, the reaction of azides with terminal alkynes can be accelerated dramatically by copper catalysis (this highly popular Cu-catalyzed azide–alkyne cycloaddition (CuAAC) is a quintessential “click” reaction). However, the copper catalysts are too cytotoxic for long-term exposure with live cells or organisms. Thus, for applications of bioorthogonal chemistry in living systems, we built upon Wittig and Krebs’ observation with the design of cyclooctyne reagents that react rapidly and selectively with biomolecule-associated azides. This strain-promoted azide–alkyne cycloaddition is often referred to as “Cu-free click chemistry”. Mechanistic and theoretical studies inspired the design of a series of cyclooctyne compounds bearing fluorine substituents, fused rings, and judiciously situated heteroatoms, with the goals of optimizing azide cycloaddition kinetics, stability, solubility, and pharmacokinetic properties. Cyclooctyne reagents have now been used for labeling azide-modified biomolecules on cultured cells and in live Caenorhabditis elegans, zebrafish, and mice. As this special issue testifies, the field of bioorthogonal chemistry is firmly established as a challenging frontier of reaction methodology and an important new instrument for biological discovery. The above reactions, as well as several newcomers with bioorthogonal attributes, have enabled the high-precision chemical modification of biomolecules in vitro, as well as real-time visualization of molecules and processes in

  3. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    PubMed Central

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.

    2009-01-01

    There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150

  4. Biconically tapered fiber optic probes for rapid label-free immunoassays.

    PubMed

    Miller, John; Castaneda, Angelica; Lee, Kun Ho; Sanchez, Martin; Ortiz, Adrian; Almaz, Ekrem; Almaz, Zuleyha Turkoglu; Murinda, Shelton; Lin, Wei-Jen; Salik, Ertan

    2015-04-01

    We report use of U-shaped biconically tapered optical fibers (BTOF) as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G) and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G)-antigen (rabbit anti-mouse IgG) reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.

  5. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    PubMed

    Moeller, Kevin D

    2018-05-09

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  6. Flow cytometric detection of human immunodeficiency virus type 1 proviral DNA by the polymerase chain reaction incorporating digoxigenin- or fluorescein-labeled dUTP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Gang; Olson, J.C.; Pu, R.

    1995-10-01

    Serological assays are routinely used in the laboratory diagnosis of human immunodeficiency virus type-1 (HrV-1) infection, but the polymerase chain reaction (PCR) is ultimately the most sensitive and direct method for establishing definitive diagnosis. As an alternative to the conventional radioactive PCR procedure we have developed and evaluated a pair of rapid nonradioisotopic flow cytometric detection methods. Using heminested PCR we directly incorporated fluorescein-12-dUTP (fluo-dUTP) or digoxigenin-11-dUTP (dig-dUTP) into the PCR-amplicons. The labeled amplicons were hybridized with biotinylated antisense and sense probes, followed by capture of the hybrid DNA using streptavidin-coated beads which were finally analyzed in a flow cytometermore » by (1) direct detection of the fluorescence intensity of the amplicons incorporating fluo-dUTP and (2) immunodetection of the amplicons incorporating dig-dUTP by anti-digoxigenin IgG labeled with fluorescein isothiocyanate (FITC). Although both assays were functionally comparable with radiolabeled probe in reliably detecting as low as five copies of HIV-1 proviral DNA sequences, the immunodetection of dig-dUTP consistently yielded higher mean channel fluorescence and gave a stable signal over an extended period of 12-14 weeks. In testing a panel of 20 pedigreed PBMC specimens from blood donors with or without HIV-1 infection, the results of both flow cytometric assays were identical with those of the conventional radioactive procedure. Therefore, we conclude that the dig-dUTP incorporation in amplicons, hybridization with a pair of sense-antisense biotinylated probes and immunodetection of hybrids by flow cytometric analyses is the nonisotopic method of choice for PCR-diagnosis of HIV-1 infection. 21 refs., 2 figs., 4 tabs.« less

  7. Detection of Listeria monocytogenes by using the polymerase chain reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessesen, M.T.; Luo, Q.; Blaser, M.J.

    1990-09-01

    A method was developed for detection of Listeria monocytogens by polymerase chain reaction amplification followed by agarose gel electrophoresis or dot blot analysis with {sup 32}P-labeled internal probe. The technique identified 95 of 95 L. monocytogenes strains, 0 of 12 Listeria strains of other species, and 0 of 12 non-Listeria strains.

  8. Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP.

    PubMed

    Khorosheva, Eugenia M; Karymov, Mikhail A; Selck, David A; Ismagilov, Rustem F

    2016-01-29

    In this paper, we asked if it is possible to identify the best primers and reaction conditions based on improvements in reaction speed when optimizing isothermal reactions. We used digital single-molecule, real-time analyses of both speed and efficiency of isothermal amplification reactions, which revealed that improvements in the speed of isothermal amplification reactions did not always correlate with improvements in digital efficiency (the fraction of molecules that amplify) or with analytical sensitivity. However, we observed that the speeds of amplification for single-molecule (in a digital device) and multi-molecule (e.g. in a PCR well plate) formats always correlated for the same conditions. Also, digital efficiency correlated with the analytical sensitivity of the same reaction performed in a multi-molecule format. Our finding was supported experimentally with examples of primer design, the use or exclusion of loop primers in different combinations, and the use of different enzyme mixtures in one-step reverse-transcription loop-mediated amplification (RT-LAMP). Our results show that measuring the digital efficiency of amplification of single-template molecules allows quick, reliable comparisons of the analytical sensitivity of reactions under any two tested conditions, independent of the speeds of the isothermal amplification reactions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP

    PubMed Central

    Khorosheva, Eugenia M.; Karymov, Mikhail A.; Selck, David A.; Ismagilov, Rustem F.

    2016-01-01

    In this paper, we asked if it is possible to identify the best primers and reaction conditions based on improvements in reaction speed when optimizing isothermal reactions. We used digital single-molecule, real-time analyses of both speed and efficiency of isothermal amplification reactions, which revealed that improvements in the speed of isothermal amplification reactions did not always correlate with improvements in digital efficiency (the fraction of molecules that amplify) or with analytical sensitivity. However, we observed that the speeds of amplification for single-molecule (in a digital device) and multi-molecule (e.g. in a PCR well plate) formats always correlated for the same conditions. Also, digital efficiency correlated with the analytical sensitivity of the same reaction performed in a multi-molecule format. Our finding was supported experimentally with examples of primer design, the use or exclusion of loop primers in different combinations, and the use of different enzyme mixtures in one-step reverse-transcription loop-mediated amplification (RT-LAMP). Our results show that measuring the digital efficiency of amplification of single-template molecules allows quick, reliable comparisons of the analytical sensitivity of reactions under any two tested conditions, independent of the speeds of the isothermal amplification reactions. PMID:26358811

  10. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution. 2: Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1995-01-01

    We have prepared a (P-32)-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  11. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution: II. Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.

    1995-01-01

    We have prepared a [32P]-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  12. Cigarette graphic health warning labels and information avoidance among individuals from low socioeconomic position in the U.S.

    PubMed

    McCloud, Rachel Faulkenberry; Okechukwu, Cassandra; Sorensen, Glorian; Viswanath, K

    2017-04-01

    Although graphic health warning labels (GHWs) on cigarette packs have influenced cessation behaviors in other countries, no U.S. studies have explored the impact of avoidance of GHW content among individuals from low socioeconomic position (SEP). The purpose of this study was to determine the predictors of intention to avoid GHWs, and how avoidance impacts cessation intention, in a low SEP sample in the U.S. Data come from low SEP smokers (n = 541) involved in a field experiment. The participants responded to questions pre- and post viewing of GHWs assessing SEP, intention to avoid them, emotional reactions, and intention to seek health information or quit smoking. Backwards stepwise logistic regression determined the predictors for intention to avoid GHWs. Simple and adjusted logistic regression analyzed the association between avoidance and its main predictors and outcomes of intentions to seek information or quit smoking. Predictors for avoidance included being somewhat addicted to cigarettes (OR 2.3, p = 0.002), younger than 25 (OR 2.6, p = 0.008), and having medium (OR 3.4, p < 0.001) or high (OR 4.7, p < 0.001) levels of negative emotional reaction to the labels. Intention to avoid GHWs was positively associated with the intent to look for health information about smoking (OR 2.2, p = 0.002). Higher levels of negative emotional reaction were positively associated with cessation behaviors, with high negative emotional reaction associated with nine times the odds of quitting (p < 0.001). Results indicate avoidance of GHWs does not detract from the labels' benefit and that GHWs are an effective means of communicating smoking risk information among low SEP groups.

  13. Inter and intra-modal deformable registration: continuous deformations meet efficient optimal linear programming.

    PubMed

    Glocker, Ben; Paragios, Nikos; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir

    2007-01-01

    In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements. The graph topology corresponds to a superimposed regular grid onto the volume. Links between neighborhood control points introduce smoothness, while links between the graph nodes and the labels (end-nodes) measure the cost induced to the objective function through the selection of a particular deformation for a given control point once projected to the entire volume domain, Higher order polynomials are used to express the volume deformation from the ones of the control points. Efficient linear programming that can guarantee the optimal solution up to (a user-defined) bound is considered to recover the optimal registration parameters. Therefore, the method is gradient free, can encode various similarity metrics (simple changes on the graph construction), can guarantee a globally sub-optimal solution and is computational tractable. Experimental validation using simulated data with known deformation, as well as manually segmented data demonstrate the extreme potentials of our approach.

  14. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.

    PubMed

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2016-09-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.

  15. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling

    PubMed Central

    Wang, Sheng; Sun, Siqi

    2017-01-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC. PMID:28884168

  16. Label Review Training: Module 1: Label Basics, Page 7

    EPA Pesticide Factsheets

    Page 7, Label Training, Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human he

  17. Novel Fitc-Labeled Igy Antibody: Fluorescence Imaging Toxoplasma Gondii In Vitro.

    PubMed

    Sert, Mehtap; Cakir Koc, Rabia; Budama Kilinc, Yasemin

    2017-04-12

    Toxoplasmosis is caused by T. gondii and can create serious health problems in humans and also worldwide economic harm. Because of the clinical and veterinary importance of toxoplasmosis, its timely and accurate diagnosis has a major impact on disease-fighting strategies. T. gondii surface antigen 1 (SAG1), an immunodominant-specific antigen, is often used as a diagnostic tool. Therefore, the aim of this study was the optimization of novel fluorescein isothiocyanate (FITC) labeling of the SAG1-specific IgY antibody to show the potential for immunofluorescence imaging of T. gondii in vitro. The specificity of IgY antibodies was controlled by an enzyme-linked immunosorbent assay (ELISA), and the concentration of the IgY antibody was detected using a spectrophotometer. The optimum incubation time and FITC concentration were determined with a fluorescence spectrometer. The obtained FITC-labeled IgY was used for marking T. gondii tachyzoites, which were cultured in vitro and viewed using light microscopy. The interaction of the fluorescence-labeled antibody and the T. gondii tachyzoites was examined with a fluorescence microscope. In this study, for the first time, a FITC-labeled anti-SAG1 IgY antibody was developed according to ELISA, fluorescence spectrometer, and fluorescence imaging of cell culture. In the future, the obtained FITC-labeled T. gondii tachyzoites' specific IgY antibodies may be used as diagnostic tools for the detection of T. gondii infections in different samples.

  18. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    PubMed

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  19. Efficacy of intravenous hydrocortisone administered 2-4 h prior to antivenom as prophylaxis against adverse drug reactions to snake antivenom in Sri Lanka: An open labelled randomized controlled trial.

    PubMed

    Kularatne, Senanayake A M; Weerakoon, Kosala; Silva, Anjana; Maduwage, Kalana; Walathara, Chamara; Rathnayake, Ishani; Medagedara, Senal; Paranagama, Ranjith; Mendis, Suresh; Kumarasiri, P V R

    2016-09-15

    The prevention of adverse drug reactions to antivenom serum poses a formidable challenge in the management of snakebite. Hydrocortisone is being used concurrently with antivenom in order to prevent these adverse drug reactions without a proven benefit. However, all previous studies seemed to ignore the testing of effectiveness of hydrocortisone therapy during its pharmacological effects, which come hours later. On this principle, we aimed to test the effectiveness of intravenous hydrocortisone given 2 h or more prior to the commencement of antivenom therapy to reduce adverse drug reactions to antivenom. In an open-labelled randomized controlled trial, patients with a history of snakebite were randomly assigned to receive either 500 mg intravenous hydrocortisone bolus given 2 h or more prior to antivenom therapy (Group A) or at the time of antivenom therapy (Group B). The primary endpoint was the reduction of adverse drug reactions to antivenom of any grade of severity within the first 48 h. This trial has been registered with the "Sri Lanka Clinical Trials Registry", number SLCTR/2010/005. A total of 236 patients were randomized to group A or Group B. In the group A, 38 participants received hydrocortisone 2 h before administration of antivenom whilst 33 received hydrocortisone less than 2 h before administration of antivenom. In the Group B, 84 participants received hydrocortisone at the time of antivenom therapy. In Group A (n, 38), and Group B (n, 84), 15 patients (39%) and 29 patients (35%) developed reactions respectively and the difference is not significant (p = 0.598). Moreover, hydrocortisone therapy did not significantly reduce the occurrence of antievnom reactions of any grade of severity. Further, it didn't delay the occurrence of antivenom reactions in patients who received hydrocortisone either more than 2 h or less than 2 h before the antivenom as opposed to the control group (group B). Intravenous hydrocortisone shows no difference in the

  20. Development of Semiautomated Module for Preparation of 131I Labeled Lipiodol for Liver Cancer Therapy.

    PubMed

    Mukherjee, Archana; Subramanian, Suresh; Ambade, Rajwardhan; Avhad, Bhaurao; Dash, Ashutosh; Korde, Aruna

    2017-02-01

    Intra-arterial injection of 131 I Lipiodol is an effective treatment option for primary hepatocellular carcinoma as it delivers high radiation dose to liver tumor tissue with minimal accumulation in adjacent normal tissue. The present article demonstrates design, fabrication, and utilization of a semiautomated radiosynthesis module for preparation of 131 I labeled Lipiodol. The radiolabeling method was standardized for preparation of patient dose of 131 I labeled Lipiodol radiochemical yield (RCY); radiochemical purity (RCP) and pharmaceutical purity of the product were determined using optimized procedures. Sterile and apyrogenic 131 I labeled Lipiodol in >60% RCY could be prepared with >95% RCP. Preclinical evaluation in animals indicated retention of more than 90% of activity at 24 hours postportal vein injection. This is the first report demonstrating potential application of simple user friendly and safe semiautomated system for routine production of 131 I labeled Lipiodol, which is adaptable at centralized hospital radiopharmacies. The described prototype module can be modified as per demand for preparation of other therapeutic radiopharmaceuticals.