ERIC Educational Resources Information Center
Wilbourn, Makeba Parramore; Sims, Jacqueline Prince
2013-01-01
In the early stages of word learning, children demonstrate considerable flexibility in the type of symbols they will accept as object labels. However, around the 2nd year, as children continue to gain language experience, they become focused on more conventional symbols (e.g., words) as opposed to less conventional symbols (e.g., gestures). During…
Sokol, Serguei; Portais, Jean-Charles
2015-01-01
The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites. PMID:26641860
NASA Astrophysics Data System (ADS)
Davison, Elizabeth; Dey, Biswadip; Leonard, Naomi
Mathematical studies of synchronization in networks of neuronal oscillators offer insight into neuronal ensemble behavior in the brain. Systematic means to understand how network structure and external input affect synchronization in network models have the potential to improve methods for treating synchronization-related neurological disorders such as epilepsy and Parkinson's disease. To elucidate the complex relationships between network structure, external input, and synchronization, we investigate synchronous firing patterns in arbitrary networks of neuronal oscillators coupled through gap junctions with heterogeneous external inputs. We first apply a passivity-based Lyapunov analysis to undirected networks of homogeneous FitzHugh-Nagumo (FN) oscillators with homogeneous inputs and derive a sufficient condition on coupling strength that guarantees complete synchronization. In biologically relevant regimes, we employ Gronwall's inequality to obtain a bound tighter than those previously reported. We extend both analyses to a homogeneous FN network with heterogeneous inputs and show how cluster synchronization emerges under conditions on the symmetry of the coupling matrix and external inputs. Our results can be generalized to any network of semi-passive oscillators.
NASA Astrophysics Data System (ADS)
Betters, Christopher H.; Leon-Saval, Sergio G.; Bland-Hawthorn, Joss; Richards, Samuel N.; Birks, Tim A.; Gris-Sánchez, Itandehui
2014-07-01
PIMMS échelle is an extension of previous PIMMS (photonic integrated multimode spectrograph) designs, enhanced by using an échelle diffraction grating as the primary dispersing element for increased spectral band- width. The spectrograph operates at visible wavelengths (550 to 780nm), and is capable of capturing ~100 nm of R > 60, 000 (λ/(triangle)λ) spectra in a single exposure. PIMMS échelle uses a photonic lantern to convert an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs (i.e. N single-mode fibres). This allows a truly diffraction limited spectral resolution, while also decoupling the spectrograph design from the input source. Here both the photonic lantern and the spectrograph slit are formed using a single length of multi-core fibre. A 1x19 (1 multi-mode fiber to 19 single-mode fibres) photonic lantern is formed by tapering one end of the multi-core fibre, while the other end is used to form a TIGER mode slit (i.e. for a hexagonal grid with sufficient spacing and the correct orientations, the cores of the multi-core fibre can be dispersed such that they do not overlap without additional reformatting). The result is an exceptionally compact, shoebox sized, spectrograph that is constructed primarily from commercial off the shelf components. Here we present a brief overview of the échelle spectrograph design, followed by results from on-sky testing of the breadboard mounted version of the spectrograph at the `UK Schmidt Telescope'.
Self-other bodily merging in the context of synchronous but arbitrary-related multisensory inputs.
Mazzurega, Mara; Pavani, Francesco; Paladino, Maria Paola; Schubert, Thomas W
2011-09-01
A debated issue in the multisensory literature concerns the relative contribution of bottom-up sensory components versus top-down cognitive elaborations in contributing to the rise and persistency of bodily illusion. Previous studies, for instance, have shown that simultaneity of sensory inputs and plausibility of the stimulated object play an important role in the rubber hand phenomenon, whereas violation of tactile expectancy does not disrupt the illusory feeling to own a fake hand. The present research examined this issue in the context of the "enfacement" phenomenon (i.e., self-other face-perception modification), using entirely arbitrary and non-ecological pairs of visual and tactile events. Visual and tactile stimulation was matched in terms of spatial location, but not linked by any previously learned associations, making temporal synchrony a critical binding factor. Participants received electro-tactile stimulations on their cheek, while they watched the face of a stranger illuminated on the cheek with a dot of white light. Synchronous (vs. asynchronous) stimulations yielded the enfacement effect. In addition, the stranger stimulated in synchrony was judged as more similar, physically and in terms of personality, and as closer to the self. These findings suggest that synchronous multisensory stimulation on the face can produce both perceptual and social binding, even in the absence of any previously learned associations between the stimulations. PMID:21656218
Efficient Soft-Input Soft-Output MIMO Chase Detectors for Arbitrary Number of Streams
NASA Astrophysics Data System (ADS)
Gomaa, Ahmad; Jalloul, Louay M.-A.
2015-08-01
We present novel soft-input soft-output (SISO) multiple-input multiple-output (MIMO) detectors based on the Chase detection principle [1] in the context of iterative and decoding (IDD). The proposed detector complexity is linear in the signal modulation constellation size and the number of spatial streams. Two variants of the SISO detector are developed, referred to as SISO B-Chase and SISO L-Chase. An efficient method is presented that uses the decoder output to modulate the signal constellation decision boundaries inside the detector leading to the SISO detector architecture. The performance of these detectors significantly improves with just a few number of IDD iterations. The effect of transmit and receive antenna correlation is simulated. For the high-correlation case, the superiority of SISO B-Chase over the SISO L-Chase is demonstrated.
Method for guessing the response of a physical system to an arbitrary input
Wolpert, David H.
1996-01-01
Stacked generalization is used to minimize the generalization errors of one or more generalizers acting on a known set of input values and output values representing a physical manifestation and a transformation of that manifestation, e.g., hand-written characters to ASCII characters, spoken speech to computer command, etc. Stacked generalization acts to deduce the biases of the generalizer(s) with respect to a known learning set and then correct for those biases. This deduction proceeds by generalizing in a second space whose inputs are the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, and whose output is the correct guess. Stacked generalization can be used to combine multiple generalizers or to provide a correction to a guess from a single generalizer.
Haworth, Kevin J.; Fowlkes, J. Brian; Carson, Paul L.; Kripfgans, Oliver D.
2009-01-01
A theoretical shot noise model to describe the output of a time-reversal experiment in a multiple-scattering medium is developed. This (non-wave equation based) model describes the following process. An arbitrary waveform is transmitted through a high-order multiple-scattering environment and recorded. The recorded signal is arbitrarily windowed and then time-reversed. The processed signal is retransmitted into the environment and the resulting signal recorded. The temporal and spatial signal and noise of this process is predicted statistically. It is found that the time when the noise is largest depends on the arbitrary windowing and this noise peak can occur at times outside the main lobe. To determine further trends, a common set of parameters is applied to the general result. It is seen that as the duration of the input function increases, the signal-to-noise ratio (SNR) decreases (independent of signal bandwidth). It is also seen that longer persisting impulse responses result in increased main lobe amplitudes and SNR. Assumptions underpinning the generalized shot noise model are compared to an experimental realization of a multiple-scattering medium (a time-reversal chaotic cavity). Results from the model are compared to random number numerical simulation. PMID:19425655
NASA Astrophysics Data System (ADS)
Raymer, M. G.; McKinstrie, C. J.
2013-10-01
We develop quantum-optical input-output theory for resonators with arbitrary coupling strength, and for input fields whose spectrum can be wider than the cavity free-spectral range, while ensuring that the field-operator commutator relations in space-time variables are correct. The cavity-field commutator exhibits a series of space-time “echoes,” representing causal connections of certain space-time points by light propagation. We apply the theory to two-photon wave-packet shaping by cavity reflection, which displays a remarkable illustration of dispersion cancellation. We also show that the theory is amenable to inclusion of intracavity absorbing and emitting atoms, allowing, for example, dissipative losses within the cavity to be incorporated in a quantum mechanically correct way.
Meilinger, Tobias; Schulte-Pelkum, Jörg; Frankenstein, Julia; Hardiess, Gregor; Laharnar, Naima; Mallot, Hanspeter A.; Bülthoff, Heinrich H.
2016-01-01
Establishing verbal memory traces for non-verbal stimuli was reported to facilitate or inhibit memory for the non-verbal stimuli. We show that these effects are also observed in a domain not indicated before—wayfinding. Fifty-three participants followed a guided route in a virtual environment. They were asked to remember half of the intersections by relying on the visual impression only. At the other 50% of the intersections, participants additionally heard a place name, which they were asked to memorize. For testing, participants were teleported to the intersections and were asked to indicate the subsequent direction of the learned route. In Experiment 1, intersections' names were arbitrary (i.e., not related to the visual impression). Here, participants performed more accurately at unnamed intersections. In Experiment 2, intersections' names were descriptive and participants' route memory was more accurate at named intersections. Results have implications for naming places in a city and for wayfinding aids. PMID:26869975
Meilinger, Tobias; Schulte-Pelkum, Jörg; Frankenstein, Julia; Hardiess, Gregor; Laharnar, Naima; Mallot, Hanspeter A; Bülthoff, Heinrich H
2016-01-01
Establishing verbal memory traces for non-verbal stimuli was reported to facilitate or inhibit memory for the non-verbal stimuli. We show that these effects are also observed in a domain not indicated before-wayfinding. Fifty-three participants followed a guided route in a virtual environment. They were asked to remember half of the intersections by relying on the visual impression only. At the other 50% of the intersections, participants additionally heard a place name, which they were asked to memorize. For testing, participants were teleported to the intersections and were asked to indicate the subsequent direction of the learned route. In Experiment 1, intersections' names were arbitrary (i.e., not related to the visual impression). Here, participants performed more accurately at unnamed intersections. In Experiment 2, intersections' names were descriptive and participants' route memory was more accurate at named intersections. Results have implications for naming places in a city and for wayfinding aids. PMID:26869975
Nie, San-An; Zhou, Ping; Ge, Ti-Da; Tong, Cheng-Li; Xiao, He-Ai; Wu, Jin-Shui; Zhang, Yang-Zhu
2012-04-01
The microcosm experiment was carried out to quantify the input and distribution of photo-assimilated C into soil C pools by using a 14C continuous labeling technique. Destructive samplings of rice (Oryza sativa) were conducted after labeling for 80 days. The allocation of 14C-labeled photosynthates in plants and soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) in rice-planted soil were examined over the 14C labeling span. The amounts of rice shoot and root biomass C was ranged from 1.86 to 5.60 g x pot(-1), 0.46 to 0.78 g x pot(-1) in different tested paddy soils after labeling for 80 days, respectively. The amount of 14C in the soil organic C (14C-SOC) was also dependent on the soils, ranged from 114.3 to 348.2 mg x kg(-1), accounting for 5.09% to 6.62% of the rice biomass 14C, respectively. The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C(14C-MBC), as proportions of 14C-SOC, were 2.21%-3.54% and 9.72% -17.2%, respectively. The 14C-DOC, 14C-MBC, and 14C-SOC as proportions of total DOC, MBC, and SOC, respectively, were 6.72% -14.64%, 1.70% -7.67%, and 0.73% -1.99%, respectively. Moreover, the distribution and transformation of root-derived C had a greater influence on the dynamics of DOC and MBC than on the dynamics of SOC. Further studies are required to ascertain the functional significance of soil microorganisms (such as C-sequestering bacteria and photosynthetic bacteria) in the paddy system. PMID:22720588
Fung, S J; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H
2001-06-01
In trigeminal and hypoglossal motor nuclei of adult cats, hypocretin immunoreactive fiber varicosities were observed in apposition to retrogradely labeled motoneuron somata and dendrites. Among those lateral hypothalamus neurons that project to the hypoglossal nucleus some were determined to be hypocretin immunoreactive and were located amongst the single-labeled hypocretinergic neurons. These data suggest that hypocretin may play a role in the synaptic control of these motoneurons. PMID:11382413
Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States.
Tamma, Vincenzo; Laibacher, Simon
2015-06-19
We provide a compact full description of multiboson correlation measurements of arbitrary order N in passive linear interferometers with arbitrary input single-photon pure states. This allows us to physically analyze the novel problem of multiboson correlation sampling at the output of random linear interferometers. Our results also describe general multiboson correlation landscapes for an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100% visibility entanglement correlations even for input photons distinguishable in their frequencies. PMID:26196976
Arbitrary Metrics in Psychology
ERIC Educational Resources Information Center
Blanton, Hart; Jaccard, James
2006-01-01
Many psychological tests have arbitrary metrics but are appropriate for testing psychological theories. Metric arbitrariness is a concern, however, when researchers wish to draw inferences about the true, absolute standing of a group or individual on the latent psychological dimension being measured. The authors illustrate this in the context of 2…
Cloning quantum entanglement in arbitrary dimensions
Karpov, E.; Navez, P.; Cerf, N.J.
2005-10-15
We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.
Monaghan, Padraic; Shillcock, Richard C.; Christiansen, Morten H.; Kirby, Simon
2014-01-01
It is a long established convention that the relationship between sounds and meanings of words is essentially arbitrary—typically the sound of a word gives no hint of its meaning. However, there are numerous reported instances of systematic sound–meaning mappings in language, and this systematicity has been claimed to be important for early language development. In a large-scale corpus analysis of English, we show that sound–meaning mappings are more systematic than would be expected by chance. Furthermore, this systematicity is more pronounced for words involved in the early stages of language acquisition and reduces in later vocabulary development. We propose that the vocabulary is structured to enable systematicity in early language learning to promote language acquisition, while also incorporating arbitrariness for later language in order to facilitate communicative expressivity and efficiency. PMID:25092667
NASA Astrophysics Data System (ADS)
Iguchi, Satoshi; Hori, Yuki; Moriguchi, Tetsuaki; Morita, Naomi; Yamamoto, Akihide; Koshino, Kazuhiro; Kawashima, Hidekazu; Zeniya, Tsutomu; Enmi, Jun-ichiro; Iida, Hidehiro
2013-02-01
A semi-automated MR-guided technique has been evaluated for non-invasive estimation of cerebral metabolic rate of oxygen (CMRO2) using the sequential administration of 15O oxygen (O2) and 15O carbon dioxide (CO2) during a single PET scan. Two mathematical models, which assess the arterial input function (AIF) from time-activity curves (TAC) in the internal carotid artery region, were tested, namely one with a simple correction for the recovery coefficient (RC) and another with corrections for RC and spillover from surrounding tissues. RC was determined from MRA and black-blood image. RC was also determined from C15O blood volume images as a reference. RC agreed between MR-based and C15O-PET based methods, suggesting validity of MR-based methods. Area-under-the-curve (AUC) of the early portion of estimated AIF agreed with that of measured AIF in both models. AUC of the delayed phase of estimated AIF was largely overestimated in the first model, but was sufficiently improved by the spillover correction implemented in the second model.
Sandia's Arbitrary Waveform MEMO Actuator
2003-08-07
SAMA is a multichannel, arbitrary waveform generator program for driving microelectromechanical systems (MEMS). It allows the user to piece together twelve available wave parts, thereby permitting the user to create practically any waveform, or upload a previously constructed signal. The waveforms (bundled together as a signal) may simultaneously be output through four different channels to actuate MEMS devices, and the number of output channels may be increased depending on the DAQ card or instrument utilized.more » Additionally, real-time changes may be made to the frequency and amplitude. The signal may be paused temporarily. The waveform may be saved to file for future uploading. Recent work for this version has focused on modifications that will allow loading previously generated arbitrary waveforms, independent channel waveform amplification, adding a pause function, separating the "modify waveform: and "end program" functions, and simplifying the user interface by adding test blocks with statements to help the user program and output the desired signals. The program was developed in an effort to alleviate some of the limitations of Micro Driver. For example, Micro Driver will not allow the user to select a segment of a sine wave, but rather the user is limited to choosing either a whole or half sine wave pattern. It therefore becomes quite difficult ot construct partial sine wave patterns out of a "ramp" waveparts for several reasons. First, one must determine on paper how many data points each ramp will cover, and what the slopes of these ramps will be. Second, from what was observed, Micro Driver has difficulty processing more than six distinct waveparts during sequencing. The program will allow the user to input the various waves into the desired sequence; however, it will not allow the user to compile them (by clicking "ok" and returning to the main screen). Third, should the user decide that they want to increase the amplitute of the output signal
Spectral methods on arbitrary grids
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David
1995-01-01
Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.
Arbitrary waveform generator to improve laser diode driver performance
Fulkerson, Jr, Edward Steven
2015-11-03
An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.
A Simple Arbitrary Solid Slicer
Yao, J
2005-06-23
The intersection of a given plane and an arbitrary (possibly non-convex, with multiple connectivities) meshed solid is exactly expressed by a set of planar cross-sections. A rule for marching on the edges of an arbitrary polyhedron is set for obtaining the topology of the cross-section. The method neither seeks triangulation of the surface mesh nor utilizes look-up tables, therefore it has optimal efficiency.
Hypersonic Arbitrary-Body Aerodynamics (HABA) for conceptual design
Salguero, D.E.
1990-03-15
The Hypersonic Arbitrary-Body Aerodynamics (HABA) computer program predicts static and dynamic aerodynamic derivatives at hypersonic speeds for any vehicle geometry. It is intended to be used during conceptual design studies where fast computational speed is required. It uses the same geometry and hypersonic aerodynamic methods as the Mark IV Supersonic/Hypersonic Arbitrary-Body Program (SHABP) developed under sponsorship of the Air Force Flight Dynamics Laboratory; however, the input and output formats have been improved to make it easier to use. This program is available as part of the Department 9140 CAE software.
Label fusion strategy selection.
Robitaille, Nicolas; Duchesne, Simon
2012-01-01
Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113
Scattering theory for arbitrary potentials
Kadyrov, A.S.; Bray, I.; Stelbovics, A.T.; Mukhamedzhanov, A.M.
2005-09-15
The fundamental quantities of potential scattering theory are generalized to accommodate long-range interactions. Definitions for the scattering amplitude and wave operators valid for arbitrary interactions including potentials with a Coulomb tail are presented. It is shown that for the Coulomb potential the generalized amplitude gives the physical on-shell amplitude without recourse to a renormalization procedure.
Arbitrary and Capricious Nonrenewal Decisions.
ERIC Educational Resources Information Center
Phay, Robert E.
This chapter discusses the question, To what degree is the school board limited by the requirement that it not be arbitrary or capricious in deciding not to renew a probationary teacher? When teachers have been notified that their employment contracts will not be renewed, they are responsible for initiating a review of the decision. If the school…
Style-independent document labeling: design and performance evaluation
NASA Astrophysics Data System (ADS)
Mao, Song; Kim, Jong Woo; Thoma, George R.
2003-12-01
The Medical Article Records System or MARS has been developed at the U.S. National Library of Medicine (NLM) for automated data entry of bibliographical information from medical journals into MEDLINE, the premier bibliographic citation database at NLM. Currently, a rule-based algorithm (called ZoneCzar) is used for labeling important bibliographical fields (title, author, affiliation, and abstract) on medical journal article page images. While rules have been created for medical journals with regular layout types, new rules have to be manually created for any input journals with arbitrary or new layout types. Therefore, it is of interest to label any journal articles independent of their layout styles. In this paper, we first describe a system (called ZoneMatch) for automated generation of crucial geometric and non-geometric features of important bibliographical fields based on string-matching and clustering techniques. The rule based algorithm is then modified to use these features to perform style-independent labeling. We then describe a performance evaluation method for quantitatively evaluating our algorithm and characterizing its error distributions. Experimental results show that the labeling performance of the rule-based algorithm is significantly improved when the generated features are used.
Resampling of data between arbitrary grids using convolution interpolation.
Rasche, V; Proksa, R; Sinkus, R; Börnert, P; Eggers, H
1999-05-01
For certain medical applications resampling of data is required. In magnetic resonance tomography (MRT) or computer tomography (CT), e.g., data may be sampled on nonrectilinear grids in the Fourier domain. For the image reconstruction a convolution-interpolation algorithm, often called gridding, can be applied for resampling of the data onto a rectilinear grid. Resampling of data from a rectilinear onto a nonrectilinear grid are needed, e.g., if projections of a given rectilinear data set are to be obtained. In this paper we introduce the application of the convolution interpolation for resampling of data from one arbitrary grid onto another. The basic algorithm can be split into two steps. First, the data are resampled from the arbitrary input grid onto a rectilinear grid and second, the rectilinear data is resampled onto the arbitrary output grid. Furthermore, we like to introduce a new technique to derive the sampling density function needed for the first step of our algorithm. For fast, sampling-pattern-independent determination of the sampling density function the Voronoi diagram of the sample distribution is calculated. The volume of the Voronoi cell around each sample is used as a measure for the sampling density. It is shown that the introduced resampling technique allows fast resampling of data between arbitrary grids. Furthermore, it is shown that the suggested approach to derive the sampling density function is suitable even for arbitrary sampling patterns. Examples are given in which the proposed technique has been applied for the reconstruction of data acquired along spiral, radial, and arbitrary trajectories and for the fast calculation of projections of a given rectilinearly sampled image. PMID:10416800
Equientangled bases in arbitrary dimensions
Karimipour, V.; Memarzadeh, L.
2006-01-15
For the space of two identical systems of arbitrary dimensions, we introduce a continuous family of bases with the following properties: (i) the bases are orthonormal (ii) in each basis, all the states have the same values of entanglement, and (iii) they continuously interpolate between the product basis and the maximally entangled basis. The states thus constructed may find applications in many areas related to the quantum information science including quantum cryptography, optimal Bell tests, and the investigation of the enhancement of channel capacity due to entanglement.
Waite, Anthony; /SLAC
2011-09-07
Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Deffayet, C.; Deser, S.; Esposito-Farese, G.
2010-09-15
We show that scalar, 0-form, Galileon actions--models whose field equations contain only second derivatives--can be generalized to arbitrary even p-forms. More generally, they need not even depend on a single form, but may involve mixed p combinations, including equal p multiplets, where odd p fields are also permitted: We construct, for given dimension D, general actions depending on scalars, vectors, and higher p-form field strengths, whose field equations are of exactly second derivative order. We also discuss and illustrate their curved-space generalizations, especially the delicate nonminimal couplings required to maintain this order. Concrete examples of pure and mixed actions, field equations, and their curved-space extensions are presented.
Resonance capture at arbitrary inclination
NASA Astrophysics Data System (ADS)
Namouni, F.; Morais, M. H. M.
2015-01-01
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180° with 5° increments totalling nearly 6 × 105 numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10°,110°]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60°,130°]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
Logistic equation of arbitrary order
NASA Astrophysics Data System (ADS)
Grabowski, Franciszek
2010-08-01
The paper is concerned with the new logistic equation of arbitrary order which describes the performance of complex executive systems X vs. number of tasks N, operating at limited resources K, at non-extensive, heterogeneous self-organization processes characterized by parameter f. In contrast to the classical logistic equation which exclusively relates to the special case of sub-extensive homogeneous self-organization processes at f=1, the proposed model concerns both homogeneous and heterogeneous processes in sub-extensive and super-extensive areas. The parameter of arbitrary order f, where -∞
A programmed labeling approach to image interpretation
NASA Technical Reports Server (NTRS)
Pore, M. D.; Abotteen, R. A. (Principal Investigator)
1979-01-01
Manual labeling techniques require the analyst-interpreter to use not only production film converter products but also agricultural and meteorological data and spectral aids in an integrated, judgmental fashion. To control an anticipated high variance in these techniques, a semiautomatic labeling technology was developed. The product of this technology is label identification from statistical tabulation (LIST) which operates from a discriminant basis and has the ability to measure the reliability of the label and to introduce an arbitrary bias. The development of LIST and its properties are described. Numerical results of an application are included and the evaluation of LIST is discussed.
Controlling electromagnetic fields at boundaries of arbitrary geometries
NASA Astrophysics Data System (ADS)
Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice
2016-08-01
Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.
The decomposition of an arbitrary reversible logic circuit
NASA Astrophysics Data System (ADS)
DeVos, Alexis; Van Rentergem, Yvan; DeKeyser, Koen
2006-05-01
The (2w)! reversible logic circuits of width w, i.e. reversible logic circuits with w inputs and w outputs, together with the action of cascading, form a group G, isomorphic to the symmetric group {\\bf S}_{2^w} . We define two conjugate subgroups G1 and G2. Together they partition the group G into 2w-1 + 1 double cosets. These allow us to decompose an arbitrary member of G into a cascade of three simpler members. This decomposition is a far relative of the well-known LU decomposition of a square matrix.
Use of labeled primers for differential display
Paunesku, T.; Woloschak, G.E.
1995-02-01
The differential display of eukaryotic cDNAs using PCR allows for determination of mRNA species differentially expressed when comparing two similar cell populations. This procedure uses a (T){sub 12}XY oligonucleotide as the 3 ft primer and an arbitrary 8-10-mer as the 5 ft primer. Labeling occurs by inclusion of {alpha}[{sup 33}P]-dATP in the PCR reaction. Two artifacts caused by this approach are (1) random printing from dT present from affinity purification of PolyA+RNA and (2) hybridization of the arbitrary primer to template target sequences on both cDNA strands. In this work, we have developed an approach for both eliminating smearing and identifying nonspecific bands on sequencing gels. By separately using 5 ft-end-labeled (T){sub 12}XY and arbitrary primers to label bands and comparing two differential display patterns rather than including labeled nucleotides in the PCR reaction itself, we can detect only those products incorporating the M{sub 12}XY primer on the 3 ft ends and the arbitrary primer on 5 ft ends. Those bands that are generated randomly in the PCR reaction are readily detectable and can be ignored. If on the other hand, one is interested only in a diagnostic banding pattern for differential display, benefit can be derived from the simplicity of the pattern obtained when labeled (T){sub 12}XY is used.
Use of labeled primers for differential display
Paunesku, T.; Woloschak, G.E.
1995-01-01
Two artifacts introduced in using differential display technology are (1) random priming from dT present from affinity purification of PolyA+ RNA and (2) hybridization of the arbitrary primer to template target sequences on both cDNA strands. We have developed a method eliminating both problems. By separately using 5`-end-labeled (T){sub 12}XY and arbitrary primers to label bands and comparing two differential display patterns, we can detect only those products incorporating the (T){sub 12}XY primer on the 3` ends and the arbitrary primer on 5` ends. Those bands that are generated randomly in the PCR are readily detectable and can be ignored.
NASA Astrophysics Data System (ADS)
Metzger, Lloyd E.
Nutrition labeling regulations differ in countries around the world. The focus of this chapter is on nutrition labeling regulations in the USA, as specified by the Food and Drug Administration (FDA) and the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA). A major reason for analyzing the chemical components of foods in the USA is nutrition labeling regulations. Nutrition label information is not only legally required in many countries, but also is of increasing importance to consumers as they focus more on health and wellness.
Detecting Arbitrary DNA Mutations Using Graphene Oxide and Ethidium Bromide.
Huang, Jiahao; Wang, Zhenyu; Kim, Jang-Kyo; Su, Xuefen; Li, Zhigang
2015-12-15
We propose a simple and fast method for detecting arbitrary DNA mutations. Single-stranded DNA probes labeled with fluorescein amidite (FAM-ssDNA), ethidium bromide (EB), and graphene oxide (GO) are employed in the sensing system. The detection is achieved in two steps. In the first step, the sensing system contains FAM-ssDNA probes and EB molecules. It exhibits different fluorescence emissions in the presence of perfectly matched, mismatched, and random DNA sequences. With the addition of GO in the second step, the fluorescence signal for perfectly matched and random DNA does not vary greatly, which, however, experiences a significant change for mismatched DNA targets. The signal ratio before and after the addition of GO can clearly distinguish mutations from normal and random DNA sequences. The detection method works well regardless of the mutation positions and only requires "mix-and-detect" steps, which are completed within 15 min. PMID:26559174
Spin in an arbitrary gravitational field
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2013-10-01
We study the quantum mechanics of a Dirac fermion on a curved spacetime manifold. The metric of the spacetime is completely arbitrary, allowing for the discussion of all possible inertial and gravitational field configurations. In this framework, we find the Hermitian Dirac Hamiltonian for an arbitrary classical external field (including the gravitational and electromagnetic ones). In order to discuss the physical content of the quantum-mechanical model, we further apply the Foldy-Wouthuysen transformation, and derive the quantum equations of motion for the spin and position operators. We analyze the semiclassical limit of these equations and compare the results with the dynamics of a classical particle with spin in the framework of the standard Mathisson-Papapetrou theory and in the classical canonical theory. The comparison of the quantum-mechanical and classical equations of motion of a spinning particle in an arbitrary gravitational field shows their complete agreement.
Engineering arbitrary pure and mixed quantum states
Pechen, Alexander
2011-10-15
Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.
Arbitrariness, Iconicity, and Systematicity in Language.
Dingemanse, Mark; Blasi, Damián E; Lupyan, Gary; Christiansen, Morten H; Monaghan, Padraic
2015-10-01
The notion that the form of a word bears an arbitrary relation to its meaning accounts only partly for the attested relations between form and meaning in the languages of the world. Recent research suggests a more textured view of vocabulary structure, in which arbitrariness is complemented by iconicity (aspects of form resemble aspects of meaning) and systematicity (statistical regularities in forms predict function). Experimental evidence suggests these form-to-meaning correspondences serve different functions in language processing, development, and communication: systematicity facilitates category learning by means of phonological cues, iconicity facilitates word learning and communication by means of perceptuomotor analogies, and arbitrariness facilitates meaning individuation through distinctive forms. Processes of cultural evolution help to explain how these competing motivations shape vocabulary structure. PMID:26412098
Multi-Resolution Dynamic Meshes with Arbitrary Deformations
Shamir, A.; Pascucci, V.; Bajaj, C.
2000-07-10
Multi-resolution techniques and models have been shown to be effective for the display and transmission of large static geometric object. Dynamic environments with internally deforming models and scientific simulations using dynamic meshes pose greater challenges in terms of time and space, and need the development of similar solutions. In this paper we introduce the T-DAG, an adaptive multi-resolution representation for dynamic meshes with arbitrary deformations including attribute, position, connectivity and topology changes. T-DAG stands for Time-dependent Directed Acyclic Graph which defines the structure supporting this representation. We also provide an incremental algorithm (in time) for constructing the T-DAG representation of a given input mesh. This enables the traversal and use of the multi-resolution dynamic model for partial playback while still constructing new time-steps.
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Arbitrary mechanical system description by a symbolic line
NASA Astrophysics Data System (ADS)
Dmitrochenko, O.; Mikkola, A.; Olshevskiy, A.
2016-04-01
A single-line symbolic notation is proposed for description of an arbitrary multibody system. The kinematics is represented by a sequence of elementary transformations, each of those being marked by a reserved alphabetic character. Force and constraint links between the bodies are also defined by reserved characters. The parameters of the system, such as identifiers of degrees of freedom, inertia parameters and others, are assigned default names if not specified. However, user-defined names, parameters and functions can be placed instead if needed. The proposed description in its shortest form is suitable for academic purpose to identify only the essential properties of a multibody system. In an extended form, by explicit mentioning names of variables and parameters and other data like initial conditions, this description can serve as input data for a multibody analysis software. Lots of examples from the academic area and technical applications are given to show the applicability of the description.
Microwave Power Combiners for Signals of Arbitrary Amplitude
NASA Technical Reports Server (NTRS)
Conroy, Bruce; Hoppe, Daniel
2009-01-01
Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.
Dynamic Input Conductances Shape Neuronal Spiking1,2
Franci, Alessio; Dethier, Julie; Sepulchre, Rodolphe
2015-01-01
Abstract Assessing the role of biophysical parameter variations in neuronal activity is critical to the understanding of modulation, robustness, and homeostasis of neuronal signalling. The paper proposes that this question can be addressed through the analysis of dynamic input conductances. Those voltage-dependent curves aggregate the concomitant activity of all ion channels in distinct timescales. They are shown to shape the current−voltage dynamical relationships that determine neuronal spiking. We propose an experimental protocol to measure dynamic input conductances in neurons. In addition, we provide a computational method to extract dynamic input conductances from arbitrary conductance-based models and to analyze their sensitivity to arbitrary parameters. We illustrate the relevance of the proposed approach for modulation, compensation, and robustness studies in a published neuron model based on data of the stomatogastric ganglion of the crab Cancer borealis. PMID:26464969
ERIC Educational Resources Information Center
Berliss-Vincent, Jane; Whitford, Gigi
2002-01-01
This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…
NASA Technical Reports Server (NTRS)
Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette
2006-01-01
This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.
High input impedance amplifier
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L.
1995-01-01
High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.
Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere
Bartkiewicz, Karol; Miranowicz, Adam
2010-10-15
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.
D'Ariano, G M; Lo Presti, P
2001-05-01
Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam. PMID:11328133
ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES
Lang, Dustin; Mierle, Keir; Roweis, Sam; Hogg, David W.; Blanton, Michael
2010-05-15
We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the 'lost in space' problem in which nothing-not even the image scale-is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
Quantum Fidelity for Arbitrary Gaussian States
NASA Astrophysics Data System (ADS)
Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano
2015-12-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Potential flow about arbitrary biplane wing sections
NASA Technical Reports Server (NTRS)
Garrick, I E
1937-01-01
A rigorous treatment is given of the problem of determining the two-dimensional potential flow around arbitrary biplane cellules. The analysis involves the use of elliptic functions and is sufficiently general to include the effects of such elements as the section shapes, the chord ratio, gap, stagger, and decalage, which elements may be specified arbitrarily. The flow problem is resolved by making use of the methods of conformal representation. Thus the solution of the problem of transforming conformally two arbitrary contours into two circles is expressed by a pair of simultaneous integral equations, for which a method of numerical solution is outlined. As an example of the numerical process, the pressure distribution over certain arrangements of the NACA 4412 airfoil in biplane combinations is presented and compared with the monoplane pressure distribution.
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
Fraunhofer diffraction by arbitrary-shaped obstacles.
Malinka, Aleksey V; Zege, Eleonora P
2009-08-01
We consider Fraunhofer diffraction by an ensemble of large arbitrary-shaped screens that are randomly oriented in the plane of a wavefront and have edges of arbitrary shape. It is shown that far outside the main diffraction peak the differential scattering cross section behaves asymptotically as theta(-3), where theta is the diffraction angle. Moreover, the differential scattering cross section depends only on the length of the contours bordering the screens and does not depend on the shape of the obstacles. As both strictly forward and total diffraction cross sections are specified by obstacle area only, the differential cross section of size-distributed obstacles is expected to be nearly independent of obstacle shape over the entire region of the diffraction angles. PMID:19649110
Quantum Fidelity for Arbitrary Gaussian States.
Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano
2015-12-31
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources. PMID:26764978
Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement
Koniges, A.; Eder, D.; Masters, N.; Fisher, A.; Anderson, R.; Gunney, B.; Wang, P.; Benson, D.; Dixit, P.
2009-09-29
This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being applied to slurry flow (landslides).
Distinguishing Proteins From Arbitrary Amino Acid Sequences
Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy
2015-01-01
What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314
NASA Astrophysics Data System (ADS)
Foster, K.
1994-09-01
This document is a description of a computer program called Format( )MEDIC( )Input. The purpose of this program is to allow the user to quickly reformat wind velocity data in the Model Evaluation Database (MEDb) into a reasonable 'first cut' set of MEDIC input files (MEDIC.nml, StnLoc.Met, and Observ.Met). The user is cautioned that these resulting input files must be reviewed for correctness and completeness. This program will not format MEDb data into a Problem Station Library or Problem Metdata File. A description of how the program reformats the data is provided, along with a description of the required and optional user input and a description of the resulting output files. A description of the MEDb is not provided here but can be found in the RAS Division Model Evaluation Database Description document.
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2001-01-01
Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.
Transient scattering from a thin arbitrary wire
NASA Astrophysics Data System (ADS)
Mohan, S. Ananda; Rao, Sadasiva M.
1988-08-01
The conjugate gradient (CG) method is applied to solve the problem of transient scattering from a thin arbitrary wire. The method is simple, efficient, and yields more accurate results than the marching-on-in-time procedure. Numerical examples for the case of a bent wire, a wire with discontinuous radii, and a circular loop are presented to highlight the advantages of this procedure. It is concluded that the occurrence of late-time oscillations may not be due to the accumulation of truncation of roundoff errors. These oscillations may be attributed to the insufficient sampling of the structure.
Gaussian quadrature formulae for arbitrary positive measures.
Fernandes, Andrew D; Atchley, William R
2006-01-01
We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student's t, inverse-gamma, beta, and Fisher's F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218
Fluid distributions in random media - Arbitrary matrices
NASA Astrophysics Data System (ADS)
Madden, William G.
1992-04-01
The graphical theory of Madden and Glandt (1988) for a fluid adsorbed into a quenched medium is extended to situations in which the distribution of the immobile species has an arbitrary form, not necessarily arising from a thermal quench. The working equations of Madden and Glandt are shown to be applicable to this general case, and the approximations common in the theory of equilibrium mixtures are appropriate in this application as well. Extensions to mixtures are considered, and the connection with the graphical theory of small molecules is discussed.
Electron parallel closures for arbitrary collisionality
Ji, Jeong-Young Held, Eric D.
2014-12-15
Electron parallel closures for heat flow, viscosity, and friction force are expressed as kernel-weighted integrals of thermodynamic drives, the temperature gradient, relative electron-ion flow velocity, and flow-velocity gradient. Simple, fitted kernel functions are obtained for arbitrary collisionality from the 6400 moment solution and the asymptotic behavior in the collisionless limit. The fitted kernels circumvent having to solve higher order moment equations in order to close the electron fluid equations. For this reason, the electron parallel closures provide a useful and general tool for theoretical and computational models of astrophysical and laboratory plasmas.
Adding control to arbitrary unknown quantum operations
Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.
2011-01-01
Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242
Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement
2009-09-29
This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being appliedmore » to slurry flow (landslides).« less
Confined systems within arbitrary enclosed surfaces
NASA Astrophysics Data System (ADS)
Burrows, B. L.; Cohen, M.
2016-06-01
A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.
Joint Image Clustering and Labeling by Matrix Factorization.
Hong, Seunghoon; Choi, Jonghyun; Feyereisl, Jan; Han, Bohyung; Davis, Larry S
2016-07-01
We propose a novel algorithm to cluster and annotate a set of input images jointly, where the images are clustered into several discriminative groups and each group is identified with representative labels automatically. For these purposes, each input image is first represented by a distribution of candidate labels based on its similarity to images in a labeled reference image database. A set of these label-based representations are then refined collectively through a non-negative matrix factorization with sparsity and orthogonality constraints; the refined representations are employed to cluster and annotate the input images jointly. The proposed approach demonstrates performance improvements in image clustering over existing techniques, and illustrates competitive image labeling accuracy in both quantitative and qualitative evaluation. In addition, we extend our joint clustering and labeling framework to solving the weakly-supervised image classification problem and obtain promising results. PMID:26452250
Arbitrary integrated multimode interferometers for the elaboration of photonic qubits
NASA Astrophysics Data System (ADS)
Crespi, Andrea; Ramponi, Roberta; Brod, Daniel J.; Galvao, Ernesto F.; Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Osellame, Roberto
2014-03-01
Integrated photonic circuits with many input and output modes are essential in applications ranging from conventional optical telecommunication networks, to the elaboration of photonic qubits in the integrated quantum information framework. In particular, the latter field has been object in the recent years of an increasing interest: the compactness and phase stability of integrated waveguide circuits are enabling experiments unconceivable with bulk-optics set-ups. Linear photonic devices for quantum information are based on quantum and classical interference effects: the desired circuit operation can be achieved only with tight fabrication control on both power repartition in splitting elements and phase retardance in the various paths. Here we report on a novel three-dimensional circuit architecture, made possible by the unique capabilities of femtosecond laser waveguide writing, which enables us to realize integrated multimode devices implementing arbitrary linear transformations. Networks of cascaded directional couplers can be built with independent control on the splitting ratios and the phase shifts in each branch. In detail, we show an arbitrarily designed 5×5 integrated interferometer: characterization with one- and two-photon experiments confirms the accuracy of our fabrication technique. We exploit the fabricated circuit to implement a small instance of the boson-sampling experiments with up to three photons, which is one of the most promising approaches to realize phenomena hard to simulate with classical computers. We will further show how, by studying classical and quantum interference in many random multimode circuits, we may gain deeper insight into the bosonic coalescence phenomenon.
Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers
Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.
2016-01-01
The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676
Displaying CFD Solution Parameters on Arbitrary Cut Planes
NASA Technical Reports Server (NTRS)
Pao, S. Paul
2008-01-01
USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.
GEMPAK: An arbitrary aircraft geometry generator
NASA Technical Reports Server (NTRS)
Stack, S. H.; Edwards, C. L. W.; Small, W. J.
1977-01-01
A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.
Computing periodic orbits with arbitrary precision.
Abad, Alberto; Barrio, Roberto; Dena, Angeles
2011-07-01
This paper deals with the computation of periodic orbits of dynamical systems up to any arbitrary precision. These very high requirements are useful, for example, in the studies of complex pole location in many physical systems. The algorithm is based on an optimized shooting method combined with a numerical ordinary differential equation (ODE) solver, tides, that uses a Taylor-series method. Nowadays, this methodology is the only one capable of reaching precision up to thousands of digits for ODEs. The method is shown to be quadratically convergent. Some numerical tests for the paradigmatic Lorenz model and the Hénon-Heiles Hamiltonian are presented, giving periodic orbits up to 1000 digits. PMID:21867337
Two-Bounce Optical Arbitrary Permutation Network
NASA Astrophysics Data System (ADS)
Christensen, Marc P.; Haney, Michael W.
1998-05-01
The two-bounce free-space arbitrary interconnection architecture is presented. It results from a series of three-dimensional topological transformations to the Benes network, the minimum rearrangeable nonblocking network. Although functionally equivalent to the Benes network, it requires only two stages of global (spanning multiple chips) optical interconnections. The remaining stages of the modified Benes interconnection network are local and are implemented electronically (on individual chips). The two-bounce network is optimal in the sense that it retains the Benes minimum number of electronic switching resources yet also minimizes the number of optical links needed for global interconnection. Despite the use of higher-order k -shuffle ( k 2 ) global optical interconnects, the number of 2 2 switching elements is identical to the two-shuffle Benes network: there is no need for k k crossbar switches for local interconnection at each stage. An experimental validation of the two-bounce architecture is presented.
Electronic structure calculations in arbitrary electrostatic environments
NASA Astrophysics Data System (ADS)
Watson, Mark A.; Rappoport, Dmitrij; Lee, Elizabeth M. Y.; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán
2012-01-01
Modeling of electronic structure of molecules in electrostatic environments is of considerable relevance for surface-enhanced spectroscopy and molecular electronics. We have developed and implemented a novel approach to the molecular electronic structure in arbitrary electrostatic environments that is compatible with standard quantum chemical methods and can be applied to medium-sized and large molecules. The scheme denoted CheESE (chemistry in electrostatic environments) is based on the description of molecular electronic structure subject to a boundary condition on the system/environment interface. Thus, it is particularly suited to study molecules on metallic surfaces. The proposed model is capable of describing both electrostatic effects near nanostructured metallic surfaces and image-charge effects. We present an implementation of the CheESE model as a library module and show example applications to neutral and negatively charged molecules.
Scattering of Massless Particles in Arbitrary Dimensions
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; He, Song; Yuan, Ellis Ye
2014-10-01
We present a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimensions. The new formula for the scattering of n particles is given by an integral over the positions of n points on a sphere restricted to satisfy a dimension-independent set of equations. The integrand is constructed using the reduced Pfaffian of a 2n ×2n matrix, Ψ, that depends on momenta and polarization vectors. In its simplest form, the gravity integrand is a reduced determinant which is the square of the Pfaffian in the Yang-Mills integrand. Gauge invariance is completely manifest as it follows from a simple property of the Pfaffian.
Hypermnesia using auditory input.
Allen, J
1992-07-01
The author investigated whether hypermnesia would occur with auditory input. In addition, the author examined the effects of subjects' knowledge that they would later be asked to recall the stimuli. Two groups of 26 subjects each were given three successive recall trials after they listened to an audiotape of 59 high-imagery nouns. The subjects in the uninformed group were not told that they would later be asked to remember the words; those in the informed group were. Hypermnesia was evident, but only in the uninformed group. PMID:1447564
Liebetrau, A.M.
1983-10-01
Work is underway at Pacific Northwest Laboratory (PNL) to improve the probabilistic analysis used to model pressurized thermal shock (PTS) incidents in reactor pressure vessels, and, further, to incorporate these improvements into the existing Vessel Integrity Simulation Analysis (VISA) code. Two topics related to work on input distributions in VISA are discussed in this paper. The first involves the treatment of flaw size distributions and the second concerns errors in the parameters in the (Guthrie) equation which is used to compute ..delta..RT/sub NDT/, the shift in reference temperature for nil ductility transition.
Laplace—Runge—Lentz vectors for arbitrary spin and arbitrary dimension
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.
2015-06-01
Laplace-Runge-Lentz (LRL) vector is a cornerstone of celestial mechanics. It also plays an important role in quantum mechanics, being an integral of motion for the Hydrogen atom and some other systems. However, the majority of models of non-relativistic systems admitting LRL vector ignore the spin of orbital particles. In this survey a new collection of QM systems admitting LRL vector with spin is presented. It includes 2d and 3d systems with arbitrary spin, as well as systems of arbitrary dimension with spins 0, 1/2, and 1. All these systems are superintegrable and can be solved exactly. They emulate neutral particles with non-trivial multipole momenta (in particular, the neutron) interacting with a central external field.
An Innovative Class Registration Method Based on Bar Code Input.
ERIC Educational Resources Information Center
Freeman, Raoul J.
1983-01-01
Describes system of computerized class registration utilizing bar code input which is part of the Student Data System, developed by Management Information Division of the Los Angeles Unified School District. An explanation of the system notes the hardware used, printing of bar code labels, registration procedures, and operational aspects. (EJS)
NASA Astrophysics Data System (ADS)
Cota, Steve A.; Kalman, Linda S.
2010-08-01
In an earlier paper [Cota et al., Proc. SPIE 7087, 1-31 (2008)] we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) may be used with a reflectance calibrated input scene, in conjunction with a limited number of runs of AFRL's MODTRAN4 radiative transfer code, to quickly predict the top-of-atmosphere (TOA) radiance received by an earth viewing sensor, for any arbitrary combination of solar and sensor elevation angles. In the present paper, we extend the method to the short and midwave IR, where reflected solar and emitted thermal radiation both contribute to the TOA radiance received by a downlooking sensor.
Analytical surrogate model for the aberrations of an arbitrary GRIN lens.
Easum, John A; Campbell, Sawyer D; Nagar, Jogender; Werner, Douglas H
2016-08-01
Current analytical expressions between Gradient-Index (GRIN) lens parameters and optical aberrations are limited to paraxial approximations, which are not suitable for realizing GRIN lenses with wide fields of view or small f-numbers. Here, an analytical surrogate model of an arbitrary GRIN lens ray-trace evaluation is formulated using multivariate polynomial regressions to correlate input GRIN lens parameters with output Zernike coefficients, without the need for approximations. The time needed to compute the resulting surrogate model is over one order-of-magnitude faster than traditional ray trace simulations with very little losses in accuracy, which can enable previously infeasible design studies to be completed. PMID:27505748
Arbitrary polarized beams generated and detected by one phase-only LC-SLM
NASA Astrophysics Data System (ADS)
Chen, Dong; Qi, Junli; Wang, Weihua; Chen, Yu; Gu, Guohua; Chu, Delin; Zhang, Qianghua; Deng, Haifei; Zhao, Sugui; Han, Jiajia; Wang, Rongfei
2014-09-01
Arbitrary polarized beams, including homogeneously polarized beams and cylindrical vector beams, have been generated by an experimental setup with one phase-only liquid crystal spatial light modulator, and a four-path method was demonstrated to measure the polarization degree of detected beams. Besides, another method was proposed to measure the polarization directions of cylindrical vector beams. The polarized states can be calculated by controlling the spatial light modulator and optical intensity obtained from a CCD. The generation setup and detection methods have simple structure and low cost, and they are available for multi wavelength input beams, and the detection methods can realize real-time and on-line measurement.
NASA Astrophysics Data System (ADS)
The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.
Competitive epidemic spreading over arbitrary multilayer networks
NASA Astrophysics Data System (ADS)
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI1SI2S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
Electron plasma oscillations at arbitrary Debye lengths
NASA Astrophysics Data System (ADS)
Lehnert, B.
1991-06-01
A solution is presented for electron plasma oscillations in a thermalized plasma, at arbitrary ratios of the Debye length AλD and the perturbation wavelength λ. The limit λDλ corresponds to the conventional fluid-like theory of small particle excursions, whereas λDλ corresponds to the free-streaming limit of strong kinetic phase mixing due to large particle excursions. A strong large-Debye-distance (LDD) effect already appears when λD λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small compared with the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The present analysis can be considered as a first exercise in an attempt to tackle the far more difficult problem of large-Larmor-radius (LLR) effects in a magnetized plasma. The analysis further shows that a representation in terms of normal modes of the form exp (— iωt) leads to amplitude factors of these modes that are related to each other and that depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as independent of each other.
Arbitrary-resolution global sensitivity kernels
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Fournier, A.; Dahlen, F.
2007-12-01
Extracting observables out of any part of a seismogram (e.g. including diffracted phases such as Pdiff) necessitates the knowledge of 3-D time-space wavefields for the Green functions that form the backbone of Fréchet sensitivity kernels. While known for a while, this idea is still computationally intractable in 3-D, facing major simulation and storage issues when high-frequency wavefields are considered at the global scale. We recently developed a new "collapsed-dimension" spectral-element method that solves the 3-D system of elastodynamic equations in a 2-D space, based on exploring symmetry considerations of the seismic-wave radiation patterns. We will present the technical background on the computation of waveform kernels, various examples of time- and frequency-dependent sensitivity kernels and subsequently extracted time-window kernels (e.g. banana- doughnuts). Given the computationally light-weighted 2-D nature, we will explore some crucial parameters such as excitation type, source time functions, frequency, azimuth, discontinuity locations, and phase type, i.e. an a priori view into how, when, and where seismograms carry 3-D Earth signature. A once-and-for-all database of 2-D waveforms for various source depths shall then serve as a complete set of global time-space sensitivity for a given spherically symmetric background model, thereby allowing for tomographic inversions with arbitrary frequencies, observables, and phases.
Solving Nonlinear Euler Equations with Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
Damage from pulses with arbitrary temporal shapes
Trenholme, J.B.
1994-06-06
In fusion laser designs, the laser pulse has a complicated temporal shape which undergoes significant change as it passes through the laser. Our damage data, however, was taken with pulses whose temporal shapes were (more or less) Gaussian. We want to determine the damage propensity of a material exposed to a pulse of arbitrary temporal shape , given data taken with Gaussian pulses of different pulse widths. To do so, we must adopt a physical model of damage. This model will contain some number of parameters that depend on material properties, geometry, and so forth. We determine the parameters of the model appropriate to each material by fitting the model to the Gaussian data for that material. The resulting normalized model is then applied, using the appropriate pulse shape, to find the damage level for a specific material subjected to a specific pulse. The model we shall assume is related to diffusion, although (as we shall see) the experimental results do not fit any simple diffusion model. Initially, we will discuss simple diffusion models. We then examine some experimental data, and then develop a modified diffusive model from that data. That modified model is then used to predict damage levels in various portions of the NIF laser design.
Input Multiplicities in Process Control.
ERIC Educational Resources Information Center
Koppel, Lowell B.
1983-01-01
Describes research investigating potential effect of input multiplicity on multivariable chemical process control systems. Several simple processes are shown to exhibit the possibility of theoretical developments on input multiplicity and closely related phenomena are discussed. (JN)
Modeling and generating input processes
Johnson, M.E.
1987-01-01
This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.
Arbitrary Shape Deformation in CFD Design
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
Simulating system dynamics with arbitrary time step
NASA Astrophysics Data System (ADS)
Kantorovich, L.
2007-02-01
We suggest a dynamic simulation method that allows efficient and realistic modeling of kinetic processes, such as atomic diffusion, in which time has its actual meaning. Our method is similar in spirit to widely used kinetic Monte Carlo (KMC) techniques; however, in our approach, the time step can be chosen arbitrarily. This has an advantage in some cases, e.g., when the transition rates change with time sufficiently fast over the period of the KMC time step (e.g., due to time dependence of some external factors influencing kinetics such as moving scanning probe microscopy tip or external time-dependent field) or when the clock time is set by some external conditions, and it is convenient to use equal time steps instead of the random choice of the KMC algorithm in order to build up probability distribution functions. We show that an arbitrary choice of the time step can be afforded by building up the complete list of events including the “residence site” and multihop transitions. The idea of the method is illustrated in a simple “toy” model of a finite one-dimensional lattice of potential wells with unequal jump rates to either side, which can be studied analytically. We show that for any choice of the time step, our general kinetics method reproduces exactly the solution of the corresponding master equations for any choice of the time steps. The final kinetics also matches the standard KMC, and this allows better understanding of this algorithm, in which the time step is chosen in a certain way and the system always advances by a single hop.
Universal filters of arbitrary order and type employing square-root-domain technique
NASA Astrophysics Data System (ADS)
Khanday, F. A.; Psychalinos, C.; Shah, N. A.
2014-07-01
Novel Single Input Multiple Output (SIMO) and Multiple Input Single Output (MISO) universal filter topologies of arbitrary order and type are introduced in this paper. The proposed topologies have been realised by employing Square-Root Domain (SRD) technique. An offered benefit of the universal filter topologies is that only grounded capacitors are required for their implementations and the resonant frequency of the filters can be electronically controlled by an appropriate dc current. The proposed universal filters simultaneously offer all the five standard filtering functions i.e. Lowpass (LP), Highpass (HP) and Bandpass (BP), Bandstop (BS) and Allpass (AP) frequency responses. In addition, the SIMO topology is generic in the sense that it can yield four different stable filter configurations. Two design examples are provided in each configuration and the correct operation of the corresponding topologies has been evaluated through the PSPICE software with BSIM 0.35-µm CMOS process model parameters.
Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms.
Ben-Amram, A; Stern, Y; London, Y; Antman, Y; Zadok, A
2015-11-01
Thermal drifts in long fiber-optic delay lines are compensated based on chromatic dispersion. An arbitrary input radio-frequency (RF) waveform and a control RF sine wave modulate two different tunable laser sources and are coupled into the fiber delay line. The RF phase of the control tone at the output of the delay line is monitored and used to adjust the wavelengths of both sources, so that the effects of thermal drifts and dispersion cancel out. The input and control waveforms are separated in the optical domain, and no restrictions are imposed on their RF spectra. A figure of merit is proposed, in terms of the fiber delay, range of temperature changes that may be compensated for, and residual delay variations. An upper bound on performance is established in terms of the specifications of the tunable lasers. The principle is used in the stable distribution of sine waves and of broadband linear frequency-modulated (LFM) waveforms, which are commonly employed in radar systems. Lastly, the method is incorporated in stable interrogation of a localized hot-spot within a high-resolution, distributed Brillouin fiber sensing setup. The results demonstrate the applicability of the proposed protocol in the processing of arbitrary waveforms, as part of larger, more complex systems. PMID:26561095
Direct space-to-time pulse shaping and applications in arbitrary electromagnetic waveform generation
NASA Astrophysics Data System (ADS)
McKinney, Jason Dwight
2003-10-01
Direct space-to-time (DST) pulse shaping, with its straightforward mapping of an input spatial pattern to an output temporal pattern, has been shown to be an effective method to create ultrafast optical data packets. To our knowledge, we introduce the first DST pulse shaper operating in the 1.5 mum lightwave communications band, which is compatible with high-speed (≥100 Gb/s) optical communication systems. Novel features of our pulse shaper include polarization-independent operation, utilization of diffractive optical elements for spatial pattern generation, and a telescopic, fiber-coupled configuration. These features collectively enable the creation of equal intensity optical pulse sequences over a time aperture in excess of 100 ps and at rates of ˜100 GHz. These pulse sequences enable us to overcome electrical limitations and generate arbitrary electromagnetic waveforms in the GHz to multiple tens of GHz range through a novel optical technique. Although creation of arbitrary optical waveforms is achievable through established methods---such as Fourier transform pulse shaping---arbitrary waveform generation capabilities in the microwave and millimeter-wave range are quite limited. We demonstrate, for the first time to our knowledge, cycle-by-cycle generation of broadband burst and continuous electromagnetic waveforms at center frequencies from ˜2--50 GHz. Our simple, reconfigurable method uses tailored optical pulse sequences from our 1.5 mum DST pulse shaper to drive a high-speed optical-to-electrical converter. By appropriately tailoring the input optical spatial pattern of the pulse shaper, arbitrarily phase- and frequency-modulated electromagnetic waveforms are achieved.
Microwave beam power transmission at an arbitrary range
NASA Technical Reports Server (NTRS)
Pinero, L. R.; Christian, J. L., Jr.; Acosta, R. J.
1992-01-01
The power transfer efficiency between two circular apertures at an arbitrary range is obtained numerically. The apertures can have generally different sizes and arbitrary taper illuminations. The effects of distance and taper illumination on the transmission efficiency are investigated for equal size apertures. The result shows that microwave beam power is more effective at close ranges, namely distances less than 2D(exp 2)/lambda. Also shown was the power transfer efficiency increase with taper illumination for close range distances. A computer program was developed for calculating the power transfer efficiency at an arbitrary range.
Teleportation of an arbitrary mixture of diagonal states of multiqudit
NASA Astrophysics Data System (ADS)
Du, Qian-Hua; Lin, Xiu-Min; Chen, Zhi-Hua; Lin, Gong-Wei; Chen, Li-Bo; Gu, Yong-Jian
2008-03-01
This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed.
Quantum Trajectories for Squeezed Input Processes: Explicit Solutions
NASA Astrophysics Data System (ADS)
Dabrowska, Anita; Gough, John
2016-03-01
We consider the quantum (trajectories) filtering equation for the case when the system is driven by Bose field inputs prepared in an arbitrary non-zero mean Gaussian state. The a posteriori evolution of the system is conditioned by the results of a single or double homodyne measurements. The system interacting with the Bose field is a single cavity mode taken initially in a Gaussian state. We show explicit solutions using the method of characteristic functions to the filtering equations exploiting the linear Gaussian nature of the problem.
SDR input power estimation algorithms
NASA Astrophysics Data System (ADS)
Briones, J. C.; Nappier, J. M.
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.
SDR Input Power Estimation Algorithms
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Briones, Janette C.
2013-01-01
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.
Light Front Wave Function for Hadrons with Arbitrary Twist
NASA Astrophysics Data System (ADS)
Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.
2016-07-01
We present a phenomenological light-front wave function for hadrons with arbitrary twist dimension (mesons, baryons and multiquark states), which gives the correct scaling behavior of structure functions and form factors. Some examples of his uses are presented.
Light Front Wave Function for Hadrons with Arbitrary Twist
NASA Astrophysics Data System (ADS)
Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.
2016-05-01
We present a phenomenological light-front wave function for hadrons with arbitrary twist dimension (mesons, baryons and multiquark states), which gives the correct scaling behavior of structure functions and form factors. Some examples of his uses are presented.
Closed description of arbitrariness in resolving quantum master equation
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Balanced input-output assignment
NASA Technical Reports Server (NTRS)
Gawronski, W.; Hadaegh, F. Y.
1989-01-01
Actuator/sensor locations and balanced representations of linear systems are considered for a given set of controllability and observability grammians. The case of equally controlled and observed states is given special attention. The assignability of grammians is examined, and the conditions for their existence are presented, along with several algorithms for their determination. Although an arbitrary positive semidefinite matrix is not always assignable, the identity grammian is shown to be always assignable. The results are extended to the case of flexible structures.
Semiotic labelled deductive systems
Nossum, R.T.
1996-12-31
We review the class of Semiotic Models put forward by Pospelov, as well as the Labelled Deductive Systems developed by Gabbay, and construct an embedding of Semiotic Models into Labelled Deductive Systems.
ERIC Educational Resources Information Center
Hyatt, I. Ralph
1977-01-01
Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)
Craig, A D ' Bud '
2006-12-20
The distribution of retrogradely labeled spinothalamic tract (STT) neurons was analyzed in monkeys following variously sized injections of cholera toxin subunit B (CTb) in order to determine whether different STT termination sites receive input from different sets of STT cells. This report focuses on STT input to the ventral posterior lateral nucleus (VPL) and the subjacent ventral posterior inferior nucleus (VPI), where prior anterograde tracing studies identified scattered STT terminal bursts and a dense terminal field, respectively. In cases with small or medium-sized injections in VPL, labeled STT cells were located almost entirely in lamina V (in spinal segments consistent with the mediolateral VPL topography); few cells were labeled in lamina I (<8%) and essentially none in lamina VII. Large and very large injections in VPL produced marked increases in labeling in lamina I, associated first with spread into VPI and next into the posterior part of the ventral medial nucleus (VMpo), and abundant labeling in lamina VII, associated with spread into the ventral lateral (VL) nucleus. Small injections restricted to VPI labeled many STT cells in laminae I and V with an anteroposterior topography. These observations indicate that VPL receives STT input almost entirely from lamina V neurons, whereas VPI receives STT input from both laminae I and V cells, with two different topographic organizations. Together with the preceding observation that STT input to VMpo originates almost entirely from lamina I, these findings provide strong evidence that the primate STT consists of anatomically and functionally differentiable components. PMID:17072832
NASA Astrophysics Data System (ADS)
Cherry, M. R.; Knopp, J. S.; Blodgett, M. P.
2012-05-01
In order to quantify the reliability of NDE systems, large numbers of experiments are performed to develop a probability of detection (POD) curve for the system. These POD studies require a substantial amount of experimentation which can sometimes be cost prohibitive. To expedite the process of developing these curves, highly precise numerical models are used in conjunction with NDE sensors to understand the uncertainties associated with the inspections. Numerical models are also used in stochastic inversion methods such as Bayesian inversion, which provide a means of characterizing system properties with uncertainties. A strong basis has been developed in the modeling and simulation community for deterministic forward models in NDE, but to fully incorporate these models in model-assisted probability of detection (MAPOD) studies or stochastic inversion schemes, the models must be treated in a stochastic sense. A method of taking random inputs to a "black box" forward model and developing the full probability distribution function (PDF) of the response has been proposed. This method, called the probabilistic collocation method (PCM), takes random inputs to a forward model and uses orthogonal polynomials to construct a surrogate model in the area of the expected values of the inputs which is solved much quicker than the original forward model. In the NDE community, this method has only been used with inputs of known, named distributions. In this work, inputs of arbitrary distribution were used and the orthogonal polynomials for these inputs were developed with a recursion relationship that has been shown to produce orthogonal polynomials with respect to a given, continuous function. A concise code was written to make testing the method and incorporating it into MAPOD studies and inversion schemes relatively easy. The routine was tested with academic problems as well as eddy current problems.
REL - English Bulk Data Input.
ERIC Educational Resources Information Center
Bigelow, Richard Henry
A bulk data input processor which is available for the Rapidly Extensible Language (REL) English versions is described. In REL English versions, statements that declare names of data items and their interrelationships normally are lines from a terminal or cards in a batch input stream. These statements provide a convenient means of declaring some…
Hagen, Guy M.; Caarls, Wouter; Lidke, Keith A.; de Vries, Anthony H. B.; Fritsch, Cornelia; Barisas, B. George; Arndt-Jovin, Donna J.; Jovin, Thomas M.
2011-01-01
Photomanipulation (photobleaching, photoactivation, or photoconversion) is an essential tool in fluorescence microscopy. Fluorescence recovery after photobleaching (FRAP) is commonly used for the determination of lateral diffusion constants of membrane proteins, and can be conveniently implemented in confocal laser scanning microscopy (CLSM). Such determinations provide important information on molecular dynamics in live cells. However, the CLSM platform is inherently limited for FRAP because of its inflexible raster (spot) scanning format. We have implemented FRAP and photoactivation protocols using structured illumination and detection in a programmable array microscope (PAM). The patterns are arbitrary in number and shape, dynamic and adjustable to and by the sample characteristics. We have used multi-spot PAM-FRAP to measure the lateral diffusion of the erbB3 (HER3) receptor tyrosine kinase labeled by fusion with mCitrine on untreated cells and after treatment with reagents that perturb the cytoskeleton or plasma membrane or activate co-expressed erbB1 (HER1, the EGF receptor EGFR). We also show the versatility of the PAM for photoactivation in arbitrary regions of interest, in cells expressing erbB3 fused with the photoconvertible fluorescent protein dronpa. PMID:19208387
Dopaminergic Input to the Inferior Colliculus in Mice.
Nevue, Alexander A; Elde, Cameron J; Perkel, David J; Portfors, Christine V
2015-01-01
The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson's disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578
Dopaminergic Input to the Inferior Colliculus in Mice
Nevue, Alexander A.; Elde, Cameron J.; Perkel, David J.; Portfors, Christine V.
2016-01-01
The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson’s disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578
Emami, F.; Hatami, M.; Keshavarz, A. R.; Jafari, A. H.
2009-08-13
Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.
Nonlinear input-output systems
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Luksic, Mladen; Su, Renjeng
1987-01-01
Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.
Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating
Kane, D.J. ); Trebino, R. )
1993-02-01
The authors introduce a new technique, which they call frequency-resolved optical gating (FROG), for characterizing and displaying arbitrary femtosecond pulses. The method is simple, general, broad-band, and does not require a reference pulse. Using virtually any instantaneous nonlinear-optical effect, FROG involves measuring the spectrum of the signal pulse as a function of the delay between two input pulses. The resulting trace of intensity versus frequency and delay is related to the pulse's spectrogram, a visually intuitive transform containing both time and frequency information. They prove, using phase retrieval concepts, that the FROG trace yields the full intensity l(t) and phase [var phi](t) of an arbitrary ultrashort pulse with no physically significant ambiguities. They argue, in analogy with acoustics problems, that the FROG trace is in many ways as useful a representation of the pulse as the field itself. FROG appears to have temporal resolution limited only by the response of the nonlinear medium. They demonstrate the method using self-diffraction via the electronic Kerr effect in BK-7 glass and few [mu]J, 620 nm, linearly chirped, [approximately]200 fs pulses.
Linear streamflow and subsurface runoff in arbitrary basins under Poisson point rainfall.
NASA Astrophysics Data System (ADS)
Ramirez, J. M.
2015-12-01
A novel stochastic model for the streamflow and subsurface runoff within a watershed is formulated and explicitly solved. The model is based on the linearized momentum/mass balance equations, and explicitly relates the transport of water between links of the river network and their surrounding hillslopes at the event time scale. The precipitation input, specified at the hillslope scale, is a steady marked Poisson point process with storm intensities of arbitrary distribution. A stochastic differential equation for the joint evolution of streamflow and runoff at every link of the river network is explicitly solved, and the associated invariant distribution characterized. The results explicitly show how the geometry of the river network, the storage dynamics of rivers and hillslopes, and the probabilistic properties of the rainfall field, conspire to shape the steady hydrological response of the watershed, along with its associated uncertainty. As an application, new formulas for the n-th moment of the streamflow are derived, as well as exact asymptotics of extreme discharge events. Consequently, the model offers insights about the long-term effects of a changing precipitation regime, over the streamflow distribution on an arbitrary watershed.
Nonrelativistic equations of motion for particles with arbitrary spin
Fushchich, V.I.; Nikitin, A.G.
1981-09-01
First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found.
Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes
NASA Astrophysics Data System (ADS)
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-04-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works.
Arbitrary-ratio power splitter based on nonlinear multimode interference coupler
Tajaldini, Mehdi; Jafri, Mohd Zubir Mat
2015-04-24
We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.
NASA Technical Reports Server (NTRS)
1988-01-01
American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.
Algebraic decoding of block codes over a q-ary input, Q-ary output channel, Q greater than q.
NASA Technical Reports Server (NTRS)
Wainberg, S.; Wolf, J. K.
1973-01-01
Decoding algorithms designed for one output alphabet are shown to be effectively usable for channels with a different output alphabet. The described technique that makes this possible can be used in conjunction with an arbitrary distance measure between input and output vectors. Thus, Hamming distance, Lee distance, or a burst distance can be assumed. Examples are presented for each of these distances.
Mathematical model of bisubject qualimetric arbitrary objects evaluation
NASA Astrophysics Data System (ADS)
Morozova, A.
2016-04-01
An analytical basis and the process of formalization of arbitrary objects bisubject qualimetric evaluation mathematical model information spaces are developed. The model is applicable in solving problems of control over both technical and socio-economic systems for objects evaluation using systems of parameters generated by different subjects taking into account their performance and priorities of decision-making.
Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1999-01-01
Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.
Information balance in quantum teleportation with an arbitrary pure state
Li Li; Chen Zengbing
2005-07-15
We study a general teleportation scheme with an arbitrary two-party pure state and derive a tight bound of the teleportation fidelity with a predesigned estimation of the unknown state to be teleported. This bound shows a piecewise balance between information gain and state disturbance. We also explain possible physical significance of the balance.
Chaotic correlations in barrier billiards with arbitrary barriers
NASA Astrophysics Data System (ADS)
Osbaldestin, A. H.; Adamson, L. N. C.
2013-06-01
We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation.
Kull ALE: II. Grid Motion on Unstructured Arbitrary Polyhedral Meshes
Anninos, P
2002-02-11
Several classes of mesh motion algorithms are presented for the remap phase of unstructured mesh ALE codes. The methods range from local shape optimization procedures to more complex variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary for the Kull code.
Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism
ERIC Educational Resources Information Center
Choi, Su-Jin
2012-01-01
This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…
Analytical solutions of the Rayleigh equation for arbitrary polytropic exponent
NASA Astrophysics Data System (ADS)
Kudryashov, Nikolay A.; Sinelshchikov, Dmitry I.
2016-06-01
The Rayleigh equation for the description of spherical gas-filled bubbles dynamics is considered. It is shown that this equation can be transformed into an equation for the elliptic function for arbitrary values of the polytropic exponent. General analytical solutions of the Rayleigh equation are studied for some particular cases, such as the isothermal case.
Arbitrary unitary transformations on optical states using a quantum memory
Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy
2014-12-04
We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.
Criterion for faithful teleportation with an arbitrary multiparticle channel
NASA Astrophysics Data System (ADS)
Cheung, Chi-Yee; Zhang, Zhan-Jun
2009-08-01
We present a general criterion which allows one to judge if an arbitrary multiparticle entanglement channel can be used to teleport faithfully an unknown quantum state of a given dimension. We also present a general multiparticle teleportation protocol which is applicable for all channel states satisfying this criterion.
Acquisition of arbitrary conditional discriminations by young normally developing children.
Pilgrim, C; Jackson, J; Galizio, M
2000-01-01
Three experiments investigated conditions designed to facilitate acquisition of arbitrary conditional discriminations in 3- to 6-year-old normally developing children. In Experiment 1, 6 subjects failed to master the arbitrary match-to-sample task under conditions of differential reinforcement alone, but 7 subjects did so when instructions or instructions and sample naming were added. In Experiment 2, sample naming introduced in a blocked-trial arrangement resulted in acquisition, but only when the sample name was a nonsense syllable provided by the experimenter (5 of 7 subjects) and not when the sample name was generated by the subject (0 of 5 subjects). Experiment 3 demonstrated the effectiveness of a training sequence involving thematically related stimuli as an intermediate step facilitating the transition from identity to novel arbitrary relations. The difficulties in mastering arbitrary conditional discriminations shown here imply that further analyses with young children will be particularly important in efforts to investigate the development of theoretically important stimulus relations. PMID:10784008
A scalable, fast, and multichannel arbitrary waveform generator
NASA Astrophysics Data System (ADS)
Baig, M. T.; Johanning, M.; Wiese, A.; Heidbrink, S.; Ziolkowski, M.; Wunderlich, C.
2013-12-01
This article reports on the development of a multichannel arbitrary waveform generator that simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using a field programmable gate array. The device is operated using an internal clock and can be synced to other devices by means of transistor-transistor logic (TTL) pulses. The device can provide up to 24 independent voltages in the range of up to ± 9 V with a dynamic update-rate of up to 25 Msps and a power consumption of less than 35 W. Every channel can be programmed for 16 independent arbitrary waveforms that can be accessed during run time with a minimum switching delay of 160 ns. The device has a low-noise of 250 μVrms and provides a stable long-term operation with a drift rate below 10 μV/min and a maximum deviation less than ± 300 μVpp over a period of 2 h.
Rainbows in the grass. II. Arbitrary diagonal incidence.
Adler, Charles L; Lock, James A; Fleet, Richard W
2008-12-01
We consider external reflection rainbow caustics due to the reflection of light from a pendant droplet where the light rays are at an arbitrary angle with respect to the horizontal. We compare this theory to observation of glare spots from pendant drops on grass; we also consider the potential application of this theory to the determination of liquid surface tension. PMID:19037345
Input Type and Parameter Resetting: Is Naturalistic Input Necessary?
ERIC Educational Resources Information Center
Rothman, Jason; Iverson, Michael
2007-01-01
It has been argued that extended exposure to naturalistic input provides L2 learners with more of an opportunity to converge of target morphosyntactic competence as compared to classroom-only environments, given that the former provide more positive evidence of less salient linguistic properties than the latter (e.g., Isabelli 2004). Implicitly,…
Ouadghiri-Idrissi, Ismail; Giust, Remo; Froehly, Luc; Jacquot, Maxime; Furfaro, Luca; Dudley, John M; Courvoisier, Francois
2016-05-30
Arbitrary shaping of the on-axis intensity of Bessel beams requires spatial modulation of both amplitude and phase. We develop a non-iterative direct space beam shaping method to generate Bessel beams with high energy throughput from direct space with a single phase-only spatial light modulator. For this purpose, we generalize the approach of Bolduc et al. to non-uniform input beams. We point out the physical limitations imposed on the on-axis intensity profile for unidirectional beams. Analytical, numerical and experimental results are provided. PMID:27410077
ART 2: self-organization of stable category recognition codes for analog input patterns.
Carpenter, G A; Grossberg, S
1987-12-01
Adaptive resonance architectures are neural networks that self-organize stable pattern recognition codes in real-time in response to arbitrary sequences of input patterns. This article introduces ART 2, a class of adaptive resonance architectures which rapidly self-organize pattern recognition categories in response to arbitrary sequences of either analog or binary input patterns. In order to cope with arbitrary sequences of analog input patterns-ART 2 architectures embody solutions to a number of design principles, such as the stability-plasticity tradeoff, the search-direct access tradeoff, and the match-reset tradeoff. In these architectures, top-down learned expectation and matching mechanisms are critical in self-stabilizing the code learning process. A parallel search scheme updates itself adaptively as the learning process unfolds, and realizes a form of real-time hypothesis discovery, testing, learning, and recognition. After learning selfstabilizes, the search process is automatically disengaged. Thereafter input patterns directly access their recognition codes without any search. Thus recognition time for familiar inputs does not increase with the complexity of the learned code. A novel input pattern can directly access a category if it shares invariant properties with the set of familiar exemplars of that category. A parameter called the attentional vigilance parameter determines how fine the categories will be. If vigilance increases (decreases) due to environmental feedback, then the system automatically searches for and learns finer (coarser) recognition categories. Gain control parameters enable the architecture to suppress noise up to a prescribed level. The architecture's global design enables it to learn effectively despite the high degree of nonlinearity of such mechanisms. PMID:20523470
ERIC Educational Resources Information Center
Adams, Mike S.; Robertson, Craig T.; Gray-Ray, Phyllis; Ray, Melvin C.
2003-01-01
Index comprised of six contrasting descriptive adjectives was used to measure incarcerated youths' perceived negative labeling from the perspective of parents, teachers, and peers. Results provided partial support for hypothesis that juveniles who choose a greater number of negative labels will report more frequent delinquent involvement. Labeling…
Zervakis Brent, Mary Ann
2016-02-01
Mislabeled surgical specimens jeopardize patient safety and quality care. The purpose of this project was to determine whether labeling surgical specimens with two patient identifiers would result in an 80% reduction in specimen labeling errors within six months and a 100% reduction in errors within 12 months. Our failure mode effects analysis found that the lack of two patient identifiers per label was the most unsafe step in our specimen handling process. We piloted and implemented a new process in the OR using the Plan-Do-Check-Act conceptual framework. The audit process included collecting data and making direct observations to determine the sustainability of the process change; however, the leadership team halted the direct observation audit after four months. The total number of surgical specimen labeling errors was reduced by only 60% within six months and 62% within 12 months; therefore, the goal of the project was not met. However, OR specimen labeling errors were reduced. PMID:26849982
Efficient classical simulation of matchgate circuits with generalized inputs and measurements
NASA Astrophysics Data System (ADS)
Brod, Daniel J.
2016-06-01
Matchgates are a restricted set of two-qubit gates known to be classically simulable under particular conditions. Specifically, if a circuit consists only of nearest-neighbor matchgates, an efficient classical simulation is possible if either (i) the input is a computational-basis state and the simulation requires computing probabilities of multiqubit outcomes (including also adaptive measurements) or (ii) if the input is an arbitrary product state, but the output of the circuit consists of a single qubit. In this paper we extend these results to show that matchgates are classically simulable even in the most general combination of these settings, namely, if the inputs are arbitrary product states, if the measurements are over arbitrarily many output qubits, and if adaptive measurements are allowed. This remains true even for arbitrary single-qubit measurements, albeit only in a weaker notion of classical simulation. These results make for an interesting contrast with other restricted models of computation, such as Clifford circuits or (bosonic) linear optics, where the complexity of simulation varies greatly under similar modifications.
Nanovehicles based Bioassay Labels
Liu, Guodong; Wang, Jun; Wu, Hong; Lin, Ying-Ying; Lin, Yuehe
2007-04-01
In this article, we review recent advances of our group in nanoparticle labels based bioassay. Apoferritin and silica nanoparticles have been used as nanovehicles to load large amount of markers for highly sensitive bioassay. Markers loaded apoferritin, apoferritin-templated metallic phosphate nanoparticles, and poly [guanine] coated silica nanoparticles have been prepared, characterized and used as labels for highly sensitive bioassay of protein and DNA. Dissociation and reconstitution characteristics at different pH as well as the special cavity structure of apoferritin nanovehicle provides a simple and convenient route to prepare versatile nanoparticle labels and avoid the complicated and tedious synthesis process of conventional nanoparticle labels. The optical and electrochemical characteristics of the prepared nanoparticle labels are easily controlled by loading different optical or electrochemical markers. Additionally, the use of apoferritin nanovehicle as template for synthesis of metallic phosphate nanoparticle labels offers fast route to prepare uniform-size metallic nanoparticle labels for electrochemical bioassay and avoids the traditional harsh dissolution conditions to dissolve metallic nanoparticle tags (that is, the strong-acid dissolution of quantum dots and gold nanoparticles) during the stripping analysis step. Silica nanoparticle has also been used as nanovehicle to carry thousands of poly [guanine] tracers, which was used to enhance the oxidation current of Ru(bpy)32+, resulting in enhanced sensitivity of electrochemical immunoassay. The new nanovehicle-based labels have been used for highly sensitive electrochemical detection of DNA and protein biomarkers, such as tumor necrosis factor-alpha (TNF-a). The high sensitivity and selectivity make these labels a useful addition to the armory of nanoparticle-based bioassay. The new nanovehicles based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity
Multi-input distributed classifiers for synthetic genetic circuits.
Kanakov, Oleg; Kotelnikov, Roman; Alsaedi, Ahmed; Tsimring, Lev; Huerta, Ramón; Zaikin, Alexey; Ivanchenko, Mikhail
2015-01-01
For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multi-input classifier based on a recently introduced distributed classifier concept. A heterogeneous population of cells acts as a single classifier, whose output is obtained by summarizing the outputs of individual cells. The learning ability is achieved by pruning the population, instead of tuning parameters of an individual cell. The present paper is focused on evaluating two possible schemes of multi-input gene classifier circuits. We demonstrate their suitability for implementing a multi-input distributed classifier capable of separating data which are inseparable for single-input classifiers, and characterize performance of the classifiers by analytical and numerical results. The simpler scheme implements a linear classifier in a single cell and is targeted at separable classification problems with simple class borders. A hard learning strategy is used to train a distributed classifier by removing from the population any cell answering incorrectly to at least one training example. The other scheme implements a circuit with a bell-shaped response in a single cell to allow potentially arbitrary shape of the classification border in the input space of a distributed classifier. Inseparable classification problems are addressed using soft learning strategy, characterized by probabilistic decision to keep or discard a cell at each training iteration. We expect that our classifier design contributes to the development of robust and predictable synthetic biosensors, which have the potential to affect applications in a lot of fields, including that of medicine and industry
Multi-Input Distributed Classifiers for Synthetic Genetic Circuits
Kanakov, Oleg; Kotelnikov, Roman; Alsaedi, Ahmed; Tsimring, Lev; Huerta, Ramón; Zaikin, Alexey; Ivanchenko, Mikhail
2015-01-01
For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multi-input classifier based on a recently introduced distributed classifier concept. A heterogeneous population of cells acts as a single classifier, whose output is obtained by summarizing the outputs of individual cells. The learning ability is achieved by pruning the population, instead of tuning parameters of an individual cell. The present paper is focused on evaluating two possible schemes of multi-input gene classifier circuits. We demonstrate their suitability for implementing a multi-input distributed classifier capable of separating data which are inseparable for single-input classifiers, and characterize performance of the classifiers by analytical and numerical results. The simpler scheme implements a linear classifier in a single cell and is targeted at separable classification problems with simple class borders. A hard learning strategy is used to train a distributed classifier by removing from the population any cell answering incorrectly to at least one training example. The other scheme implements a circuit with a bell-shaped response in a single cell to allow potentially arbitrary shape of the classification border in the input space of a distributed classifier. Inseparable classification problems are addressed using soft learning strategy, characterized by probabilistic decision to keep or discard a cell at each training iteration. We expect that our classifier design contributes to the development of robust and predictable synthetic biosensors, which have the potential to affect applications in a lot of fields, including that of medicine and industry
The advanced LIGO input optics.
Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido
2016-01-01
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design. PMID:26827334
The advanced LIGO input optics
NASA Astrophysics Data System (ADS)
Mueller, Chris L.; Arain, Muzammil A.; Ciani, Giacomo; DeRosa, Ryan. T.; Effler, Anamaria; Feldbaum, David; Frolov, Valery V.; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J.; Kokeyama, Keiko; Korth, William Z.; Martin, Rodica M.; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H.; Tanner, David B.; Vorvick, Cheryl; Williams, Luke F.; Mueller, Guido
2016-01-01
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
Regional Hospital Input Price Indexes
Freeland, Mark S.; Schendler, Carol Ellen; Anderson, Gerard
1981-01-01
This paper describes the development of regional hospital input price indexes that is consistent with the general methodology used for the National Hospital Input Price Index. The feasibility of developing regional indexes was investigated because individuals inquired whether different regions experienced different rates of increase in hospital input prices. The regional indexes incorporate variations in cost-share weights (the amount an expense category contributes to total spending) associated with hospital type and location, and variations in the rate of input price increases for various regions. We found that between 1972 and 1979 none of the regional price indexes increased at average annual rates significantly different from the national rate. For the more recent period 1977 through 1979, the increase in one Census Region was significantly below the national rate. Further analyses indicated that variations in cost-share weights for various types of hospitals produced no substantial variations in the regional price indexes relative to the national index. We consider these findings preliminary because of limitations in the availability of current, relevant, and reliable data, especially for local area wage rate increases. PMID:10309557
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
Analog Input Data Acquisition Software
NASA Technical Reports Server (NTRS)
Arens, Ellen
2009-01-01
DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.
NASA Technical Reports Server (NTRS)
Ozyazici, E. M.
1980-01-01
Module detects level changes in any of its 16 inputs, transfers changes to its outputs, and generates interrupts when changes are detected. Up to four changes-in-state per line are stored for later retrieval by controlling computer. Using standard TTL logic, module fits 19-inch rack-mounted console.
A supervised patch-based approach for human brain labeling
Rousseau, François; Habas, Piotr A.; Studholme, Colin
2012-01-01
We propose in this work a patch-based image labeling method relying on a label propagation framework. Based on image intensity similarities between the input image and an anatomy textbook, an original strategy which does not require any non-rigid registration is presented. Following recent developments in non-local image denoising, the similarity between images is represented by a weighted graph computed from an intensity-based distance between patches. Experiments on simulated and in-vivo MR images show that the proposed method is very successful in providing automated human brain labeling. PMID:21606021
Signal delay and input synchronization in passive dendritic structures.
Agmon-Snir, H; Segev, I
1993-11-01
1. A novel approach for analyzing transients in passive structures called "the method of moments" is introduced. It provides, as a special case, an analytic method for calculating the time delay and speed of propagation of electrical signals in any passive dendritic tree without the need for numerical simulations. 2. Total dendritic delay (TD) between two points (y, x) is defined as the difference between the centroid (the center of gravity) of the transient current input, I, at point y[tI(y)] and the centroid of the transient voltage response, V, at point x [tV(x)]. The TD measured at the input points is nonzero and is called the local delay (LD). Propagation delay, PD(y, x), is then defined as TD(y, x)--LD(y) whereas the net dendritic delay, NDD(y, 0), of an input point, y, is defined as TD(y, 0) - LD(0), where 0 is the target point, typically the soma. The signal velocity at a point x0 in the tree, theta(x0), is defined as [1/(dtv(x)/dx)[x = x0. 3. With the use of these definitions, several properties of dendritic delay exist. First, the delay between any two points in a given tree is independent of the properties (shape and duration) of the transient current input. Second, the velocity of the signal at any given point (y) in a given direction from (y) does not depend on the morphology of the tree "behind" the signal, and of the input location. Third, TD(y, x) = TD(x, y), for any two points, x, y. 4. Two additional properties are useful for efficiently calculating delays in arbitrary passive trees. 1) The subtrees connected at the ends of any dendritic segment can each be functionally lumped into an equivalent isopotential R-C compartment. 2) The local delay at any given point (y) in a tree is the mean of the local delays of the separate structures (subtrees) connected at y, weighted by the relative input conductance of the corresponding subtrees. 5. Because the definitions for delays utilize difference between centroids, the local delay and the total delay can
... and alternative medicine Healthy Aging How to read drug labels Printer-friendly version How to Read Drug ... read drug labels How to read a prescription drug label View a text version of this picture. ...
Nutrition Facts: Reading the Label
... My Go4Life Get Free Stuff Be a Partner Nutrition Facts: Reading the Label Reading labels can help ... of information on their labels or packaging about nutrition and food safety. Product dates . You might see ...
NASA Astrophysics Data System (ADS)
de Araujo, Marco A. N.; Massarani, Paulo M.; de Azevedo, Jose A. J.; Gerges, Samir N. Y.
2002-11-01
The Brazilian Silence Program, created in 1990 by the Brazilian Ministry of Environment, advocates the production and use of equipment with lower noise level. The subcommittee of Noise Labeling of the Brazilian Committee of Certification is composed of INMETRO acoustic specialists to organize and implement the Brazilian Labeling Program. This subcommittee elaborated the label form and test procedure. The noise-labeling program will first concentrate on the following household devices, both manufactured in Brazil or imported from abroad; mixers, blenders, hairdryers, refrigerators, and vacuum cleaners. The label should contain the sound-power level in dBA. INMETRO or other credited laboratories are responsible for the measurements. The ISO 4871, 3740 (1 to 5), ISO 8960, and IEC 704 (1 to 4) and also the equivalent Brazilian standards are used for the measurements, such as ABNT NBR 13910-1. The main objective of the label is to inform the consumer about the emitted noise level. The label offers the noise parameter to be used by the consumer when comparing devices, considering price, performance, and now also noise. No restriction for noise level was established.
Systems and methods for reconfiguring input devices
NASA Technical Reports Server (NTRS)
Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)
2012-01-01
A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.
NASA Astrophysics Data System (ADS)
Cobo, P.
1995-11-01
Conventionally, a transducer driven with an electrical tone burst responds with a pressure wave whose exact waveform is determined by the impulse response of the transducer and the physical properties of the medium to which it is coupled. However, for some active sonar applications it is often desirable to have very specific transmitted acoustic signals rather than simply gated or swept sinusoids. By modelling the underwater transducer as a linear filter and estimating its transfer function it is possible to derive the required time history of the input voltage for a given output spectrum. There is the complication that because the transducer is inevitably band-limited in its frequency reponse, a regularization parameter has to be introduced to avoid division by zero. The feasibility of the method is demonstrated by generating, with the same underwater transducer, zero-phase cosine-magnitude, bionic, Guassian and low transient pulses. The input voltage necessary to generate each pulse is synthesized with a programmable arbitrary waveform generator. The main worth of this method is the versatility it affords in the use of conventional transducers.
Gaze-contingent real-time simulation of arbitrary visual fields
NASA Astrophysics Data System (ADS)
Perry, Jeffrey S.; Geisler, Wilson S.
2002-06-01
We describe an algorithm and software for creating variable resolution displays in real time, contingent upon the direction of gaze. The algorithm takes as input a video sequence and an arbitrary, real-valued, two-dimensional map that specifies a desired amount of filtering (blur) at each pixel location relative to direction of gaze. For each input video image the follow operations are performed: (1) the image is coded as a multi-resolution pyramid, (2) the gaze direction is measured, (3) the resolution map is shifted to the gaze direction, (4) the desired filtering at each pixel location is achieved by interpolating between levels of the pyramid using the resolution map, and (5) the interpolated image is displayed. The transfer function associated with each level of the pyramid is calibrated beforehand so that the interpolation produces exactly the desired amount of filtering at each pixel. This algorithm produces precision, artifact-free displays in 8-bit grayscale or 24-bit color. The software can process live or prerecorded video at over 60 frames per second on ordinary personal computers without special hardware. Direction of gaze for each processed video frame may be taken from an eye-tracker, from a sequence of directions saved on disk, or from another pointing device (such as a mouse). The software is demonstrated by simulating the visual fields of normals and of patients with low vision. We are currently using the software to precisely control retinal stimulation during complex tasks such as extended visual search.
Multi-muscle FES force control of the human arm for arbitrary goals.
Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M
2014-05-01
We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals. PMID:24122573
Arlowe, H.D.
1983-07-15
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.
Arlowe, H. Duane
1985-01-01
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.
Arlowe, H.D.
1985-11-12
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
NASA Astrophysics Data System (ADS)
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-08-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system.
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-01-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634
Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures
Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong
2013-01-01
The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors. PMID:23917790
Topological flat band models with arbitrary Chern numbers
NASA Astrophysics Data System (ADS)
Yang, Shuo; Gu, Zheng-Cheng; Sun, Kai; Das Sarma, S.
2012-12-01
We report the theoretical discovery of a systematic scheme to produce topological flat bands (TFBs) with arbitrary Chern numbers. We find that generically a multiorbital high Chern number TFB model can be constructed by considering multilayer Chern number C=1 TFB models with enhanced translational symmetry. A series of models are presented as examples, including a two-band model on a triangular lattice with a Chern number C=3 and an N-band square lattice model with C=N for an arbitrary integer N. In all these models, the flatness ratio for the TFBs is larger than 30 and increases with increasing Chern number. In the presence of appropriate interparticle interactions, these models are likely to lead to the formation of Abelian and non-Abelian fractional Chern insulators. As a simple example, we test the C=2 model with hardcore bosons at 1/3 filling, and an intriguing fractional quantum Hall state is observed.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Generalization of the electronic susceptibility for arbitrary molecular geometries
NASA Astrophysics Data System (ADS)
Scherrer, Arne; Dreßler, Christian; Ahlert, Paul; Sebastiani, Daniel
2016-04-01
We generalize the explicit representation of the electronic susceptibility χ[R](r, r') for arbitrary molecular geometries R. The electronic susceptibility is a response function that yields the response of the molecular electronic charge density at linear order to an arbitrary external perturbation. We address the dependence of this response function on the molecular geometry. The explicit representation of the molecular geometry dependence is achieved by means of a Taylor expansion in the nuclear coordinates. Our approach relies on a recently developed low-rank representation of the response function χ[R](r, r') which allows a highly condensed storage of the expansion and an efficient application within dynamical chemical environments. We illustrate the performance and accuracy of our scheme by computing the vibrationally induced variations of the response function of a water molecule and its resulting Raman spectrum.
Generation of electromagnetic waves with arbitrary orbital angular momentum modes.
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-01-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works. PMID:24770669
Topological chaos in flows on surfaces of arbitrary genus
NASA Astrophysics Data System (ADS)
Finn, Matthew; Thiffeault, Jean-Luc
2008-11-01
The emerging field of topological fluid kinematics is concerned with design and analysis of effective fluid mixers based on the topology of the motion of stirring apparatus and other periodic flow structures. Knowing even a small amount of flow topology often permits very powerful diagnoses, such as proving existence of chaotic dynamics and a lower bound on mixing measures based on material stretching. In this paper we present a canonical method for examining flows on surfaces of arbitrary genus given the flow topology encoded as a braid. The method may be used to study fluid mixing driven by an arbitrary number of stirrers in either bounded or spatially periodic fluid domains. Additionally, and unlike previous techniques, the current work may also be applied to flows on manifolds of higher genus.
Acoustic invisibility cloaks of arbitrary shapes for complex background media
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping
2016-04-01
We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.
Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials
NASA Astrophysics Data System (ADS)
Shalin, Alexander S.; Ginzburg, Pavel; Orlov, Alexey A.; Iorsh, Ivan; Belov, Pavel A.; Kivshar, Yuri S.; Zayats, Anatoly V.
2015-03-01
Concealing objects by making them invisible to an external electromagnetic probe is coined by the term "cloaking." Cloaking devices, having numerous potential applications, are still facing challenges in realization, especially in the visible spectral range. In particular, inherent losses and extreme parameters of metamaterials required for the cloak implementation are the limiting factors. Here, we numerically demonstrate nearly perfect suppression of scattering from arbitrary-shaped objects in spatially dispersive metamaterial acting as an alignment-free concealing cover. We consider a realization of a metamaterial as a metal-dielectric multilayer and demonstrate suppression of scattering from an arbitrary object in forward and backward directions with perfectly preserved wave fronts and less than 10% absolute intensity change, despite spatial dispersion effects present in the composite metamaterial. Beyond the usual scattering suppression applications, the proposed configuration may be used for a simple realization of scattering-free detectors and sensors.
Quantum optical arbitrary waveform manipulation and measurement in real time.
Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping
2014-11-17
We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing. PMID:25402035
Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-01-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works. PMID:24770669
Quantum teleportation of an arbitrary superposition of atomic states
NASA Astrophysics Data System (ADS)
Chen, Qiong; Fang, Xi-Ming
2008-05-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED. This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement. It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation. Considering the practical case of the cavity decay, this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
Fluid flow over arbitrary bottom topography in a channel
NASA Astrophysics Data System (ADS)
Panda, Srikumar
2016-05-01
In this paper, two-dimensional free surface potential flow over an arbitrary bottom in a channel is considered to analyze the behavior of the free surface profile using linear theory. It is assumed that the fluid is inviscid, incompressible and flow is irrotational. Perturbation analysis in conjunction with Fourier transform technique is employed to determine the first order corrections of some important physical quantities such as free surface profile, velocity potential, etc. From the practical point of view, one arbitrary bottom topography is considered to determine the free surface profile since the free surface profile depends on the bottom topography. It is found that the free surface profile is oscillatory in nature, representing a wave propagating downstream and no wave upstream.
Rapid Teaching of Arbitrary Matching in Individuals with Intellectual Disabilities
Morro, Greg; Mackay, Harry A.; Carlin, Michael T.
2014-01-01
This research extended to arbitrary matching-to-sample procedures a method that was successful in rapidly establishing identity matching in children with and without intellectual disabilities (Mackay et al., 2002). The method involves increasing the number of identical comparison stimuli in a choice array in order to create a homogenous background that makes the target more salient, thus likely to prompt selection. The number of comparison stimuli then is faded systematically contingent on accurate responding. This method unites cognitive research on visual search and behavior analytic research on conditional stimulus control. Two experiments examined use of the method to teach arbitrary relations between visual stimuli (numerals and colors and their printed names) and between visual and auditory stimuli (e.g., numerals and colors and their dictated names). Results demonstrated the generality of the method to symbolic matching. This finding is important for conceptual reasons and for its relevance to special education. PMID:25408559
Propagators of random walks on comb lattices of arbitrary dimension
NASA Astrophysics Data System (ADS)
Illien, Pierre; Bénichou, Olivier
2016-07-01
We study diffusion on comb lattices of arbitrary dimension. Relying on the loopless structure of these lattices and using first-passage properties, we obtain exact and explicit formulae for the Laplace transforms of the propagators associated to nearest-neighbour random walks in both cases where either the first or the last point of the random walk is on the backbone of the lattice, and where the two extremities are arbitrarily chosen. As an application, we compute the mean-square displacement of a random walker on a comb of arbitrary dimension. We also propose an alternative and consistent approach of the problem using a master equation description, and obtain simple and generic expressions of the propagators. This method is more general and is extended to study the propagators of random walks on more complex comb-like structures. In particular, we study the case of a two-dimensional comb lattice with teeth of finite length.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-01-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634
Optimizing the controllability of arbitrary networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Li, Xin-Feng; Lu, Zhe-Ming
2016-04-01
Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.
Delivering Sound Energy along an Arbitrary Convex Trajectory
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-01-01
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory. PMID:25316353
Self-forces on static bodies in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter
2016-06-01
We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.
Irreducible Cartesian tensors of highest weight, for arbitrary order
NASA Astrophysics Data System (ADS)
Mane, S. R.
2016-03-01
A closed form expression is presented for the irreducible Cartesian tensor of highest weight, for arbitrary order. Two proofs are offered, one employing bookkeeping of indices and, after establishing the connection with the so-called natural tensors and their projection operators, the other one employing purely coordinate-free tensor manipulations. Some theorems and formulas in the published literature are generalized from SO(3) to SO(n), for dimensions n ≥ 3.
Scattering of point source illumination by an arbitrary configuration
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard
1994-01-01
The problem of electromagnetic scattering of an incident plane wave by an arbitrary configuration of obstacles was solved by Twersky. In this report, the results are extended to point source incidence corresponding to a Hertz dipole. Knowledge of the response of a fixed configuration of scatterers excited by a point source may provide insight to improve the accuracy of the values of bulk parameters for clouds which have been found using plane wave excitation.
Representing Functions in n Dimensions to Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
2007-01-01
A method of approximating a scalar function of n independent variables (where n is a positive integer) to arbitrary accuracy has been developed. This method is expected to be attractive for use in engineering computations in which it is necessary to link global models with local ones or in which it is necessary to interpolate noiseless tabular data that have been computed from analytic functions or numerical models in n-dimensional spaces of design parameters.
Progress towards ultracold gases in arbitrary 2D potentials
NASA Astrophysics Data System (ADS)
Corcovilos, Theodore
2016-05-01
We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.
Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Synthesis of an arbitrary ABCD system with fixed lens positions.
Bastiaans, Martin J; Alieva, Tatiana
2006-08-15
On the basis of the modified Iwasawa decomposition of a lossless first-order optical system as a cascade of a lens, a magnifier, and a so-called orthosymplectic system, we show how to synthesize an arbitrary ABCD system (with two transverse coordinates) by means of lenses and predetermined sections of free space such that the lenses are located at fixed positions. PMID:16880840
Adaptive Haar transforms with arbitrary time and scale splitting
NASA Astrophysics Data System (ADS)
Egiazarian, Karen O.; Astola, Jaakko T.
2001-05-01
The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm for computation of the introduced tree-structured Haar transforms is presented. It requires 2(N - 1) additions and 3N - 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.
Warm wavebreaking of nonlinear plasma waves with arbitrary phasevelocities
Schroeder, C.B.; Esarey, E.; Shadwick, B.A.
2004-11-12
A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators.
How gesture input provides a helping hand to language development.
Özçalışkan, Şeyda; Dimitrova, Nevena
2013-11-01
Children use gesture to refer to objects before they produce labels for these objects and gesture-speech combinations to convey semantic relations between objects before conveying sentences in speech--a trajectory that remains largely intact across children with different developmental profiles. Can the developmental changes that we observe in children be traced back to the gestural input that children receive from their parents? A review of previous work shows that parents provide models for their children for the types of gestures and gesture-speech combinations to produce, and do so by modifying their gestures to meet the communicative needs of their children. More importantly, the gestures that parents produce, in addition to providing models, help children learn labels for referents and semantic relations between these referents and even predict the extent of children's vocabularies several years later. The existing research thus highlights the important role parental gestures play in shaping children's language learning trajectory. PMID:24297615
A compact, multichannel, and low noise arbitrary waveform generator.
Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G
2014-05-01
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation. PMID:24880390
A compact, multichannel, and low noise arbitrary waveform generator
Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.
2014-05-15
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.
A compact, multichannel, and low noise arbitrary waveform generator
NASA Astrophysics Data System (ADS)
Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.
2014-05-01
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.
Growing multiplex networks with arbitrary number of layers
NASA Astrophysics Data System (ADS)
Momeni, Naghmeh; Fotouhi, Babak
2015-12-01
This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.
National Hospital Input Price Index
Freeland, Mark S.; Anderson, Gerard; Schendler, Carol Ellen
1979-01-01
The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 percent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies. PMID:10309052
Multisynaptic Inputs from the Medial Temporal Lobe to V4 in Macaques
Ninomiya, Taihei; Sawamura, Hiromasa; Inoue, Ken-ichi; Takada, Masahiko
2012-01-01
Retrograde transsynaptic transport of rabies virus was employed to undertake the top-down projections from the medial temporal lobe (MTL) to visual area V4 of the occipitotemporal visual pathway in Japanese monkeys (Macaca fuscata). On day 3 after rabies injections into V4, neuronal labeling was observed prominently in the temporal lobe areas that have direct connections with V4, including area TF of the parahippocampal cortex. Furthermore, conspicuous neuron labeling appeared disynaptically in area TH of the parahippocampal cortex, and areas 35 and 36 of the perirhinal cortex. The labeled neurons were located predominantly in deep layers. On day 4 after the rabies injections, labeled neurons were found in the hippocampal formation, along with massive labeling in the parahippocampal and perirhinal cortices. In the hippocampal formation, the densest neuron labeling was seen in layer 5 of the entorhinal cortex, and a small but certain number of neurons were labeled in other regions, such as the subicular complex and CA1 and CA3 of the hippocampus proper. The present results indicate that V4 receives major input from the hippocampus proper via the entorhinal cortex, as well as “short-cut” pathways that bypass the entorhinal cortex. These multisynaptic pathways may define an anatomical basis for hippocampal-cortical interactions involving lower visual areas. The multisynaptic input from the MTL to V4 is likely to provide mnemonic information about object recognition that is accomplished through the occipitotemporal pathway. PMID:23272220
Field, Michele
2010-01-01
The descriptive “conventions” used on food labels are always evolving. Today, however, the changes are so complicated (partly driven by legislation requiring disclosures about environmental impacts, health issues, and geographical provenance) that these labels more often baffle buyers than enlighten them. In a light-handed manner, the article points to how sometimes reading label language can be like deciphering runes—and how if we are familiar with the technical terms, we can find a literal meaning, but still not see the implications. The article could be ten times longer because food labels vary according to cultures—but all food-exporting cultures now take advantage of our short attention-span when faced with these texts. The question is whether less is more—and if so, in this contest for our attention, what “contestant” is voted off. PMID:21539053
DAC-board based X-band EPR spectrometer with arbitrary waveform control.
Kaufmann, Thomas; Keller, Timothy J; Franck, John M; Barnes, Ryan P; Glaser, Steffen J; Martinis, John M; Han, Songi
2013-10-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed. PMID:23999530
DAC-board based X-band EPR spectrometer with arbitrary waveform control
Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi
2013-01-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8–10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles “seen” by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤250 ps resolution. The implications and potential applications of these capabilities will be discussed. PMID:23999530
What Learning to See Arbitrary Motion Tells Us about Biological Motion Perception
ERIC Educational Resources Information Center
Hiris, Eric; Krebeck, Aurore; Edmonds, Jennifer; Stout, Alexandra
2005-01-01
In separate studies, observers viewed upright biological motion, inverted biological motion, or arbitrary motion created from systematically randomizing the positions of point-light dots. Results showed that observers (a) could learn to detect the presence of arbitrary motion, (b) could not learn to discriminate the coherence of arbitrary motion,…
... Your Local Offices Close + - Text Size Off-label Drug Use What is off-label drug use? In the United States new drugs are ... unapproved use of a drug. Is off-label drug use legal? The off-label use of FDA- ...
Gait-based person recognition using arbitrary view transformation model.
Muramatsu, Daigo; Shiraishi, Akira; Makihara, Yasushi; Uddin, Md Zasim; Yagi, Yasushi
2015-01-01
Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views are the same as their discrete training views. However, the gait traits are observed from an arbitrary view in a real situation. Thus, the target views may not coincide with discrete training views, resulting in recognition accuracy degradation. We propose an arbitrary VTM (AVTM) that accurately matches a pair of gait traits from an arbitrary view. To realize an AVTM, we first construct 3D gait volume sequences of training subjects, disjoint from the test subjects in the target scene. We then generate 2D gait silhouette sequences of the training subjects by projecting the 3D gait volume sequences onto the same views as the target views, and train the AVTM with gait features extracted from the 2D sequences. In addition, we extend our AVTM by incorporating a part-dependent view selection scheme (AVTM_PdVS), which divides the gait feature into several parts, and sets part-dependent destination views for transformation. Because appropriate destination views may differ for different body parts, the part-dependent destination view selection can suppress transformation errors, leading to increased recognition accuracy. Experiments using data sets collected in different settings show that the AVTM improves the accuracy of cross-view matching and that the AVTM_PdVS further improves the accuracy in many cases, in particular, verification scenarios. PMID:25423652
Ising-like models on arbitrary graphs: The Hadamard way
NASA Astrophysics Data System (ADS)
Mosseri, Rémy
2015-01-01
We propose a generic framework to describe classical Ising-like models defined on arbitrary graphs. The energy spectrum is shown to be the Hadamard transform of a suitably defined sparse "coding" vector associated with the graph. We expect that the existence of a fast Hadamard transform algorithm (used, for instance, in image compression processes), together with the sparseness of the coding vector, may provide ways to fasten the spectrum computation. Applying this formalism to regular graphs, such as hypercubic graphs, we obtain a simple recurrence relation for the spectrum, which significantly speeds up its determination. First attempts to analyze partition functions and transfer matrices are also presented.
Creating arbitrary arrays of two-dimensional topological defects
NASA Astrophysics Data System (ADS)
Murray, Bryce S.; Pelcovits, Robert A.; Rosenblatt, Charles
2014-11-01
An atomic force microscope was used to scribe a polyimide-coated substrate with complex patterns that serve as an alignment template for a nematic liquid crystal. By employing a sufficiently large density of scribe lines, two-dimensional topological defect arrays of arbitrary defect strength were patterned on the substrate. When used as the master surface of a liquid crystal cell, in which the opposing slave surface is treated for planar degenerate alignment, the liquid crystal adopts the pattern's alignment with a disclination line emanating at the defect core on one surface and terminating at the other surface.
Creating arbitrary arrays of two-dimensional topological defects.
Murray, Bryce S; Pelcovits, Robert A; Rosenblatt, Charles
2014-11-01
An atomic force microscope was used to scribe a polyimide-coated substrate with complex patterns that serve as an alignment template for a nematic liquid crystal. By employing a sufficiently large density of scribe lines, two-dimensional topological defect arrays of arbitrary defect strength were patterned on the substrate. When used as the master surface of a liquid crystal cell, in which the opposing slave surface is treated for planar degenerate alignment, the liquid crystal adopts the pattern's alignment with a disclination line emanating at the defect core on one surface and terminating at the other surface. PMID:25493804
Time-synchronized visualization of arbitrary data streams
NASA Astrophysics Data System (ADS)
Kolano, Paul Z.
2015-01-01
Savors is a visualization framework that supports the ingestion of data streams created by arbitrary command pipelines. Multiple data streams can be shown synchronized by time in the same or different views, which can be arranged in any layout. These capabilities combined with a powerful parallelization mechanism and interaction models already familiar to administrators allows Savors to display complex visualizations of data streamed from many different systems with minimal effort. This paper presents the design and implementation of Savors and provides example use cases that illustrate many of the supported visualization types.
Thomson scattering in a magnetic field. II - Arbitrary field orientation
NASA Technical Reports Server (NTRS)
Whitney, Barbara A.
1991-01-01
This paper presents solutions to the equation of transfer for Thomson scattering in a constant magnetic field of arbitrary orientation. Results from several atmospheres are combined to give the flux from a dipole star. The results are compared to the polarization data of the magnetic white dwarf Grw + 70 deg 8247. The fit is good, though it implies a very large polarization in the ultraviolet. Thomson scattering is not thought to be an important opacity source in white dwarfs, so the good fit is either fortuitous or is perhaps explained by assuming the magnetic field affects the polarization processes in all opacities similarly.
Consistent interaction vertices in arbitrary topological BF theories
Bizdadea, C.; Cioroianu, E. M.; Saliu, S. O.; Sararu, S. C.; Stanciu-Oprean, L.
2013-11-13
Here we extend the previous results from [12] to the computation of all consistent self-interactions for topological BF theories with maximal field spectra in D =5,6,7,8 and present some partial results on possible generalizations on a space-time of arbitrary dimension D. For convenience, the deformation of the solution to the master equation in the context of the BRST-antifield formalism is used as a general method of constructing consistent interacting gauge field theories together with most of the standard hypotheses on quantum field theories on Minkowski space-times.
Grover's quantum search algorithm for an arbitrary initial mixed state
Biham, Eli; Kenigsberg, Dan
2002-12-01
The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states (carrying high entropy), the generalized Grover algorithm is considerably faster than any classical algorithm.
Gauss-Green cubature and moment computation over arbitrary geometries
NASA Astrophysics Data System (ADS)
Sommariva, Alvise; Vianello, Marco
2009-09-01
We have implemented in Matlab a Gauss-like cubature formula over arbitrary bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n-1 using N~cmn2 nodes, 1<=c<=p, m being the total number of points given on the boundary. It does not need any decomposition of the domain, but relies directly on univariate Gauss-Legendre quadrature via Green's integral formula. Several numerical tests are presented, including computation of standard as well as orthogonal moments over a nonstandard planar region.
Lifshitz Interaction between Dielectric Bodies of Arbitrary Geometry
Golestanian, Ramin
2005-12-02
A formulation is developed for the calculation of the electromagnetic-fluctuation forces for dielectric objects of arbitrary geometry at small separations, as a perturbative expansion in the dielectric contrast. The resulting Lifshitz energy automatically takes on the form of a series expansion of the different many-body contributions. The formulation has the advantage that the divergent contributions can be readily determined and subtracted off, and thus makes a convenient scheme for realistic numerical calculations, which could be useful in designing nanoscale mechanical devices.
Source parameter estimation in inhomogeneous volume conductors of arbitrary shape.
Oostendorp, T F; van Oosterom, A
1989-03-01
In this paper it is demonstrated that the use of a direct matrix inverse in the solution of the forward problem in volume conduction problems greatly facilitates the application of standard, nonlinear parameter estimation procedures for finding the strength as well as the location of current sources inside an inhomogeneous volume conductor of arbitrary shape from potential measurements at the outer surface (inverse procedure). This, in turn, facilitates the inclusion of a priori constraints. Where possible, the performance of the method is compared to that of the Gabor-Nelson method. Applications are in the fields of bioelectricity (e.g., electrocardiography and electroencephalography). PMID:2921073
Discussion on massive gravitons and propagating torsion in arbitrary dimensions
Hernaski, C. A.; Vargas-Paredes, A. A.; Helayeel-Neto, J. A.
2009-12-15
In this paper, we reassess a particular R{sup 2}-type gravity action in D dimensions, recently studied by Nakasone and Oda, now taking torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is nonpropagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions.
Image processing technique for arbitrary image positioning in holographic stereogram
NASA Astrophysics Data System (ADS)
Kang, Der-Kuan; Yamaguchi, Masahiro; Honda, Toshio; Ohyama, Nagaaki
1990-12-01
In a one-step holographic stereogram, if the series of original images are used just as they are taken from perspective views, three-dimensional images are usually reconstructed in back of the hologram plane. In order to enhance the sense of perspective of the reconstructed images and minimize blur of the interesting portions, we introduce an image processing technique for making a one-step flat format holographic stereogram in which three-dimensional images can be observed at an arbitrary specified position. Experimental results show the effect of the image processing. Further, we show results of a medical application using this image processing.
Transport of energy by disturbances in arbitrary steady flows
NASA Technical Reports Server (NTRS)
Myers, M. K.
1991-01-01
An exact equation governing the transport of energy associated with disturbances in an arbitrary steady flow is derived. The result is a generalization of the familiar concept of acoustic energy and is suggested by a perturbation expansion of the general energy equation of fluid mechanics. A disturbance energy density and flux are defined and identified as exact fluid dynamic quantities whose leading-order regular perturbation representations reduce in various special cases to previously known results. The exact equation on disturbance energy is applied to a simple example of nonlinear wave propagation as an illustration of its general utility in situations where a linear description of the disturbance is inadequate.
Quantitative phase retrieval with arbitrary pupil and illumination
Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; Waller, Laura
2015-10-02
We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.
Microbial classification of seawaters. The case against arbitrary health standards.
Mackenzie, C R; Livingstone, D J
1983-09-10
Various microbial health standards for recreational bathing waters obtain in many parts of the world, including Europe and America. These criteria appear to be a product of water laboratory scientists and legislators, bypassing the person most concerned--the local medical officer with his experience and knowledge of parochial epidemiology. In Natal we have a sophisticated and stringent system of grading bathing beaches which includes pathogenic microorganisms. The system functions as a measuring device for assessing changes in water quality, not as an arbitrary health standard. It is hoped that the practice of setting capricious so-called health standards for marine recreational waters does not spread to this country. PMID:6351288
Delivering labeled teaching images over the Web.
Lehmann, H. P.; Nguyen, B.; Freedman, J.
1998-01-01
The Web provides educators with the best opportunity to date for distributing teaching images across the educational enterprise and within the clinical environment. Experience in the pre-Web era showed that labels and information linked to parts of the image are crucial to student learning. Standard Web technology does not enable the delivery of labeled images. We have developed an environment called OverLayer that succeeds in the authoring and delivering of such images in a variety of formats. OverLayer has a number of functional specifications, based on the literature and on our experience, among them, the following: Users should be able to find components by name or by image; to receive feedback about their choice to test themselves. The image should be of arbitrary size; should be reusable; should be linked to further information; should be stand-alone files. The labels should not obscure the image; should be linked to further information. Images should be stand-alone files that can be transferred among faculty members. Implemented in Java, OverLayer (http:/(/)omie.med.jhmi.edu/overlayer) has at its heart a set of object classes that have been reused in a number of applets for different teaching purposes and a file format for creating OverLayer images. We have created a 350-image histology library and a 500-image pathology library, and are working on a 400-image GI endoscopy library. We hope that the OverLayer suite of classes and implementations will help to further the gains made by previous image-based hyperlinked technologies. Images Figure 3 PMID:9929253
Wachinger, Christian; Golland, Polina
2012-01-01
We present a new segmentation approach that combines the strengths of label fusion and spectral clustering. The result is an atlas-based segmentation method guided by contour and texture cues in the test image. This offers advantages for datasets with high variability, making the segmentation less prone to registration errors. We achieve the integration by letting the weights of the graph Laplacian depend on image data, as well as atlas-based label priors. The extracted contours are converted to regions, arranged in a hierarchy depending on the strength of the separating boundary. Finally, we construct the segmentation by a region-wise, instead of voxel-wise, voting, increasing the robustness. Our experiments on cardiac MRI show a clear improvement over majority voting and intensity-weighted label fusion. PMID:23286157
Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN)
Silverman, A.J.; Oldfield, B.J.
1984-01-01
Following injections of horseradish peroxidase into the PVN, retrogradely filled cells were found in regions of the limbic system known to contain glucocorticoid concentrating neurons. To determine if these regions which include the lateral septum, medial amygdala and ventral subiculum have a monosynaptic input to vasopressin neurons the authors developed a double label ultrastructural technique to simultaneously visualize immunoreactive neuropeptide and anterogradely transported HRP. Following injections of tracer into all three of these regions, HRP labeled fibers were seen at the light microscopic level to form a halo in the perinuclear, cell poor zone around the PVN. Ultrastructural examination of this area resulted in the discovery of a small number of limbic system synapses on vasopressin dendrites. In a similar fashion they were interested in determining the distribution of noradrenergic terminals on vasopressin neurons in the various subnuclei of the PVN. The authors have combined immunocytochemistry for vasopressin with radioautography for /sup 3/H-norepinephrine (NE) at the ultrastructural level. NE terminals were numerous in the periventricular zone, innervating both vasopressin containing dendrites and non-immunoreactive dendrites and cell bodies. These studies demonstrate the need for ultrastructural analysis of synaptic input to neurosecretory cells.
Klare, Johann P; Steinhoff, Heinz-Jürgen
2009-01-01
Site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy has emerged as an efficient tool to elucidate the structure and conformational dynamics of biomolecules under native-like conditions. This article summarizes the basics as well as recent progress of site-directed spin labeling. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the sensory rhodopsin-transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis and the photosynthetic reaction center from Rhodobacter sphaeroides R26. PMID:19728138
Synthesis of arbitrary SU(3) transformations of atomic qutrits
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.
2012-03-01
Several scenarios are proposed and analyzed for engineering of arbitrary preselected SU(3) transformations of laser-driven atomic qutrits. Two of the most natural implementations of qutrits are considered, in which the three qutrit states are coupled to each other via two-photon transitions through either (i) a common state in a tripod linkage pattern or (ii) two upper states in an M-shaped linkage chain. The SU(3) transformation for the tripod qutrit can be realized by 3 Givens SU(2) rotations, which require 9 consecutive interaction steps. Alternatively, because under certain conditions the propagator of the tripod system reduces to the Householder reflection operator, any SU(3) transformation can be constructed physically by 3 Householder reflections, each of which is implemented in a single interaction step. As an example, the discrete Fourier transform can be synthesized by 7 consecutive interaction steps with Givens rotations or, alternatively, by only a single Householder reflection and a phase gate. For the M-qutrit, the propagator is given by coupled Householder reflections and it cannot be reduced to Givens rotations or independent Householder reflections. By using these coupled Householder reflections it is shown that an arbitrary SU(3) transformation of the M qutrit can be realized with just two fields in at most 3 interaction steps; the discrete Fourier transform, in particular, requires only 2 interaction steps.
Spin susceptibility of Anderson impurities in arbitrary conduction bands
NASA Astrophysics Data System (ADS)
Fang, Tie-Feng; Tong, Ning-Hua; Cao, Zhan; Sun, Qing-Feng; Luo, Hong-Gang
2015-10-01
Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening. Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp to susceptibility, defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands. The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp, even when the bands are not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data for the local susceptibility χloc and to compare them with χimp obtained by the traditional NRG. Our results indicate that those exotic behaviors observed in χimp are unphysical. Instead, the low-energy excitations of the impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We also demonstrate that unlike the traditional NRG yielding χloc less accurate than χimp, the FDM method allows a high-precision dynamical calculation of χloc at much reduced computational cost, with an accuracy at least one order higher than χimp. Moreover, artifacts in the FDM algorithm to χimp and origins of the spurious non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of Wilson's definition to such cases.
Note on linearized ``new massive gravity'' in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Dalmazi, D.; Santos, R. C.
2013-04-01
By means of a triple master action we deduce here a linearized version of the “new massive gravity” (NMG) in arbitrary dimensions. The theory contains a 4th-order and a 2nd-order term in derivatives. The 4th-order term is invariant under a generalized Weyl symmetry. The action is formulated in terms of a traceless ημνΩμνρ=0 mixed symmetry tensor Ωμνρ=-Ωμρν and corresponds to the massive Fierz-Pauli action with the replacement eμν=∂ρΩμνρ. The linearized 3D and 4D NMG theories are recovered via the invertible maps Ωμνρ=ɛνρβhβμ and Ωμνρ=ɛνργδT[γδ]μ respectively. The properties hμν=hνμ and T[[γδ]μ]=0 follow from the traceless restriction. The equations of motion of the linearized NMG theory can be written as zero “curvature” conditions ∂νTρμ-∂ρTνμ=0 in arbitrary dimensions.
Arbitrary function generator for APS injector synchrotron correction magnets
Despe, O.D.
1990-11-07
The APS injector synchrotron ring measures about 368 m in circumference. In order to obtain the precision of the magnetic field required for the positron acceleration from 450 Mev to 7.7 Gev with low beam loss, eighty correction magnets are distributed around its circumference. These magnets provide the vernier field changes required for beam orbit correction during the acceleration phase of the injector synchrotron cycle. Because of mechanical imperfections in the construction, as well as installation of real dipole and multi-pole magnets, the exact field correction required at each correction magnet location is not known until a beam is actually accelerated. It is therefore essential that a means is provided to generate a correction field that is a function of the beam energy from injection until extraction for each correction magnet. The fairly large number of correction magnets in the system requires that the arbitrary function generator design be as simple as possible yet provide the required performance. An important, required performance feature is that the function can be changed or modified ``on the fly``, to provide the operator with a real-time feel during the tune up process. The arbitrary function generator described in this report satisfies these requirements.
Double layers and double wells in arbitrary degenerate plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2016-06-01
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.
Spread of arbitrary conventions among chimpanzees: a controlled experiment.
Bonnie, Kristin E; Horner, Victoria; Whiten, Andrew; de Waal, Frans B M
2007-02-01
Wild chimpanzees (Pan troglodytes) have a rich cultural repertoire--traditions common in some communities are not present in others. The majority of reports describe functional, material traditions, such as tool use. Arbitrary conventions have received far less attention. In the same way that observations of material culture in wild apes led to experiments to confirm social transmission and identify underlying learning mechanisms, experiments investigating how arbitrary habits or conventions arise and spread within a group are also required. The few relevant experimental studies reported thus far have relied on cross-species (i.e. human-ape) interaction offering limited ecological validity, and no study has successfully generated a tradition not involving tool use in an established group. We seeded one of two rewarded alternative endpoints to a complex sequence of behaviour in each of two chimpanzee groups. Each sequence spread in the group in which it was seeded, with many individuals unambiguously adopting the sequence demonstrated by a group member. In one group, the alternative sequence was discovered by a low ranking female, but was not learned by others. Since the action-sequences lacked meaning before the experiment and had no logical connection with reward, chimpanzees must have extracted both the form and benefits of these sequences through observation of others. PMID:17164200
Generating arbitrary one-dimensional dose profiles using rotational therapy
NASA Astrophysics Data System (ADS)
Zhuang, Tingliang; Wu, Qiuwen
2010-10-01
Conformal radiation therapy can be delivered using several methods: intensity-modulated radiotherapy (IMRT) at fixed gantry angles, through the continuous gantry rotation of linac (rotational arc therapy), or by a dedicated treatment unit such as tomotherapy. The recently developed volumetric modulated arc therapy (VMAT), a form of rotational arc therapy, has attracted lots of attention from investigators to explore its capability of generating highly conformal dose to the target. The main advanced features of VMAT are the variable dose rate and gantry rotation speed. In this paper, we present a theoretical framework of generating arbitrary one-dimensional dose profiles using rotational arc therapy to further explore the new degree of freedom of the VMAT technique. This framework was applied to design a novel technique for total body irradiation (TBI) treatment, where the desired dose distribution can be simplified by a one-dimensional profile. The technique was validated using simulations and experimental measurements. The preliminary results demonstrated that the new TBI technique using either dynamic MLC only, variable dose rate only, or a combination of dynamic MLC and variable dose rate can achieve arbitrary dose distribution in one dimension, such as uniform dose to target and lower dose to critical organ. This technique does not require the use of customized compensators, nor large treatment rooms as in the conventional extended SSD technique.
Arbitrary shape region-of-interest fluoroscopy system
NASA Astrophysics Data System (ADS)
Xu, Tong; Le, Huy; Molloi, Sabee Y.
2002-05-01
Region-of-interest (ROI) fluoroscopy has previously been investigated as a method to reduce x-ray exposure to the patient and the operator. This ROI fluoroscopy technique allows the operator to arbitrarily determine the shape, size, and location of the ROI. A device was used to generate patient specific x-ray beam filters. The device is comprised of 18 step-motors that control a 16 X 16 matrix of pistons to form the filter from a deformable attenuating material. Patient exposure reductions were measured to be 84 percent for a 65 kVp beam. Operator exposure reduction was measured to be 69 percent. Due to the reduced x-ray scatter, image contrast was improved by 23 percent inside the ROI. The reduced gray level in the periphery was corrected using an experimentally determined compensation ratio. A running average interpolation technique was used to eliminate the artifacts from the ROI edge. As expected, the final corrected images show increased noise in the periphery. However, the anatomical structures in the periphery could still be visualized. This arbitrary shaped region of interest fluoroscopic technique was shown to be effective in terms of its ability to reduce patient and operator exposure without significant reduction in image quality. The ability to define an arbitrary shaped ROI should make the technique more clinically feasible.
Self-forces on static bodies in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Taylor, Peter
2016-03-01
I will present exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, these results are identical in all dimensions. Meaningful point particle limits are quite different, however. I will discuss how such limits are defined and evaluated, resulting in simple ``regularization algorithms'' which can be used in concrete calculations. In them, self-interaction is shown to be progressively less important in higher numbers of dimensions, generically competing in magnitude with increasingly high-order extended-body effects. Conversely, self-interaction effects can be relatively large in 1 + 1 and 2 + 1 dimensions. It will further be shown that there is considerable freedom to use different ``effective fields'' in the laws of motion. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces. However, the particular combinations of these quantities which are observable remain invariant under all possible field redefinitions.
The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex
Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J
2014-01-01
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075
The topology of metabolic isotope labeling networks
Weitzel, Michael; Wiechert, Wolfgang; Nöh, Katharina
2007-01-01
Background Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. Results With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Conclusion Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs
ERIC Educational Resources Information Center
Krasner, William
The report describes research on the effects of labeling children from minority groups as retarded and includes a review of a system of multiculturalistic pluralistic assessment (SOMPA), an instrument for evaluating the abilities and potentialities of children based on different aspects of performance. Listed among findings of the Riverside study,…
ERIC Educational Resources Information Center
Lum, Lydia
2009-01-01
The author reports on the growing debate among educators on whether the umbrella Asian Pacific Islander label conceals disparities among Asian American students or provides political power in numbers. Nationally, experts say that support services aimed at not only Southeast Asians, but all Asian Pacific Islander students, remain scarce in higher…
Repositioning Recitation Input in College English Teaching
ERIC Educational Resources Information Center
Xu, Qing
2009-01-01
This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.
Code System to Perform Monte Carlo Simulation of Electron Gamma-Ray Showers in Arbitrary Marerials.
2002-10-15
Version 00 PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary materials. Initially, it was devised to simulate the PENetration and Energy LOss of Positrons and Electrons in matter; photons were introduced later. The adopted scattering model gives a reliable description of radiation transport in the energy range from a few hundred eV to about 1GeV. PENELOPE generates random electron-photon showers in complex material structures consisting of any number of distinct homogeneous regions (bodies)more » with different compositions. The Penelope Forum list archives and other information can be accessed at http://www.nea.fr/lists/penelope.html. PENELOPE-MPI extends capabilities of PENELOPE-2001 (RSICC C00682MNYCP02; NEA-1525/05) by providing for usage of MPI type parallel drivers and extends the original version's ability to read different types of input data sets such as voxel. The motivation is to increase efficiency of Monte Carlo simulations for medical applications. The physics of the calculations have not been changed, and the original description of PENELOPE-2001 (which follows) is still valid. PENELOPE-2001 contains substantial changes and improvements to the previous versions 1996 and 2000. As for the physics, the model for electron/positron elastic scattering has been revised. Bremsstrahlung emission is now simulated using partial-wave data instead of analytical approximate formulae. Photoelectric absorption in K and L-shells is described from the corresponding partial cross sections. Fluorescence radiation from vacancies in K and L-shells is followed. Refinements were also introduced in electron/positron transport mechanics, mostly to account for energy dependence of the mean free paths for hard events. Simulation routines were re-programmed in a more structured way, and new example MAIN programs were written with a more flexible input and expanded output.« less
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss. PMID:22622990
Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
NASA Technical Reports Server (NTRS)
Norment, H. G.
1980-01-01
Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.
HiggsBounds: Confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron
NASA Astrophysics Data System (ADS)
Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E.
2010-01-01
HiggsBounds is a computer code that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. The included experimental information comprises exclusion bounds at 95% C.L. on topological cross sections. In order to determine which search topology has the highest exclusion power, the program also includes, for each topology, information from the experiments on the expected exclusion bound, which would have been observed in case of a pure background distribution. Using the predictions of the desired model provided by the user as input, HiggsBounds determines the most sensitive channel and tests whether the considered parameter point is excluded at the 95% C.L. HiggsBounds is available as a Fortran 77 and Fortran 90 code. The code can be invoked as a command line version, a subroutine version and an online version. Examples of exclusion bounds obtained with HiggsBounds are discussed for the Standard Model, for a model with a fourth generation of quarks and leptons and for the Minimal Supersymmetric Standard Model with and without CP-violation. The experimental information on the exclusion bounds currently implemented in HiggsBounds will be updated as new results from the Higgs searches become available.
Modelling Elastic Media With Arbitrary Shapes Using the Wavelet Transform
NASA Astrophysics Data System (ADS)
Rosa, J. W.; Cardoso, F. A.; Rosa, J. W.; Aki, K.
2004-12-01
We extend the new method proposed by Rosa et al. (2001) for the study of elastic bodies with complete arbitrary shapes. The method was originally developed for modelling 2-D elastic media with the application of the wavelet transform, and was extended to cases where discontinuities simulated geologic faults between two different elastic media. In addition to extending the method for the study of bodies with complete arbitrary shapes, we also test new transforms with the objective of making the related matrices more compact, which are also applied to the most general case of the method. The basic method consists of the discretization of the polynomial expansion for the boundary conditions of the 2-D problem involving the stress and strain relations for the media. This parameterization leads to a system of linear equations that should be solved for the determination of the expansion coefficients, which are the model parameters, and their determination leads to the solution of the problem. Despite the fact that the media we studied originally were 2-D bodies, the result of the application of this new method can be viewed as an approximate solution to some specific 3-D problems. Among the motivations for developing this method are possible geological applications (that is, the study of tectonic plates and geologic faults) and simulations of the elastic behaviour of materials in several other fields of science. The wavelet transform is applied with two main objectives, namely to decrease the error related to the truncation of the polynomial expansion and to make the system of linear equations more compact for computation. Having validated this method for the original 2-D elastic media, we plan that this extension to elastic bodies with complete arbitrary shapes will enable it to be even more attractive for modelling real media. Reference Rosa, J. W. C., F. A. C. M. Cardoso, K. Aki, H. S. Malvar, F. A. V. Artola, and J. W. C. Rosa, Modelling elastic media with the
NASA Technical Reports Server (NTRS)
Wang, T. N. C.; Bell, T. F.
1972-01-01
A study is made of the input impedance Z of a small strip-loop antenna with arbitrary orientation in a cold collisionless uniform multicomponent magnetoplasma. Assuming a uniform current distribution, an integral expression for Z is derived which is valid for arbitrary values of driving frequency, plasma composition and density, loop orientation angle, and static magnetic field strength. The integral expression is evaluated numerically for the VLF/ELF range in a plasma modeled upon the inner magnetosphere. Approximate closed-form expressions for Z are also developed. It is found that the loop VLF/ELF input reactance is essentially identical to its free space self inductance. Also the loop radiation resistance is found to be a strong function of the loop orientation angle for frequencies near the lower-hybrid-resonance frequency or below the proton gyrofrequency.
Effects of Auditory Input in Individuation Tasks
ERIC Educational Resources Information Center
Robinson, Christopher W.; Sloutsky, Vladimir M.
2008-01-01
Under many conditions auditory input interferes with visual processing, especially early in development. These interference effects are often more pronounced when the auditory input is unfamiliar than when the auditory input is familiar (e.g. human speech, pre-familiarized sounds, etc.). The current study extends this research by examining how…
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Lee, F. C.
1984-01-01
Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.
Textual Enhancement of Input: Issues and Possibilities
ERIC Educational Resources Information Center
Han, ZhaoHong; Park, Eun Sung; Combs, Charles
2008-01-01
The input enhancement hypothesis proposed by Sharwood Smith (1991, 1993) has stimulated considerable research over the last 15 years. This article reviews the research on textual enhancement of input (TE), an area where the majority of input enhancement studies have aggregated. Methodological idiosyncrasies are the norm of this body of research.…
Input Devices for Young Handicapped Children.
ERIC Educational Resources Information Center
Morris, Karen
The versatility of the computer can be expanded considerably for young handicapped children by using input devices other than the typewriter-style keyboard. Input devices appropriate for young children can be classified into four categories: alternative keyboards, contact switches, speech input devices, and cursor control devices. Described are…
Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils
NASA Astrophysics Data System (ADS)
Thorp, N. R.; Wieder, R. K.; Vile, M. A.
2015-12-01
Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that
Labeling lake water with tritium
Frederick, B.J.
1963-01-01
A method of packaging tritiated water in a manner that facilitates safe handling in environmental labeling operations, and procedures followed in labeling a large body of water with a small volume of tritiated water are described. ?? 1963.
Phillips, W.T.; Klipper, R.W.; Timmons, J.H.; Rudolph, A.S.
1992-10-27
This patent describes a method of preparing stable gamma-emitting radionuclide-labeled alkyleneamine oxime, the incubating being for a period of time sufficient to form labeled liposome-encapsulated protein.
... For Preschooler For Gradeschooler For Teen Decode the Sodium Label Lingo Published January 24, 2013 Print Email Reading food labels can help you slash sodium. Here's how to decipher them. "Sodium free" or " ...
Calculating fusion neutron energy spectra from arbitrary reactant distributions
NASA Astrophysics Data System (ADS)
Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.
2016-02-01
The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.
Classical resolution of black hole singularities in arbitrary dimension
NASA Astrophysics Data System (ADS)
Bazeia, D.; Losano, L.; Olmo, Gonzalo J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
2015-08-01
A metric-affine approach is employed to study higher-dimensional modified gravity theories involving different powers and contractions of the Ricci tensor. It is shown that the field equations are always second-order, as opposed to the standard metric approach, where this is only achieved for Lagrangians of the Lovelock type. We point out that this property might have relevant implications for the AdS/CFT correspondence in black hole scenarios. We illustrate these aspects by considering the case of Born-Infeld gravity in d dimensions, where we work out exact solutions for electrovacuum configurations. Our results put forward that black hole singularities in arbitrary dimensions can be cured in a purely classical geometric scenario governed by second-order field equations.
Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation
Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong E-mail: zkc@itp.ac.cn
2013-08-01
We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''.
Effective medium approximations for anisotropic composites with arbitrary component orientation
NASA Astrophysics Data System (ADS)
Levy, Ohad; Cherkaev, Elena
2013-10-01
A Maxwell Garnett approximation (MGA) and a symmetric effective medium approximation (SEMA) are derived for anisotropic composites of host-inclusion and symmetric-grains morphologies, respectively, with ellipsoidal grains of arbitrary intrinsic, shape and orientation anisotropies. The effect of anisotropy on the effective dielectric tensor is illustrated in both cases. The MGA shows negative and non-monotonic off-diagonal elements for geometries where the host and inclusions are not mutually aligned. The SEMA leads to an anisotropy-dependent nonlinear behaviour of the conductivity as a function of volume fraction above a percolation threshold of conductor-insulator composites, in contrast to the well-known linear behaviour of the isotropic effective medium model. The percolation threshold obtained for composites of aligned ellipsoids is isotropic and independent of the ellipsoids aspect ratio. Thus, the common identification of the percolation threshold with the depolarization factors of the grains is unjustified and a description of anisotropic percolation requires explicit anisotropic geometric characteristics.
Magnetic and electric black holes in arbitrary dimensions
Belhaj, Adil; Diaz, Pablo; Segui, Antonio
2009-08-15
In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.
Program manual for ASTOP, an Arbitrary space trajectory optimization program
NASA Technical Reports Server (NTRS)
Horsewood, J. L.
1974-01-01
The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions.
Perfect transfer of arbitrary states in quantum spin networks
Christandl, Matthias; Kay, Alastair; Datta, Nilanjana; Dorlas, Tony C.; Ekert, Artur; Landahl, Andrew J.
2005-03-01
We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log{sub 3}N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)
Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths
NASA Astrophysics Data System (ADS)
Monreal, Pedro; Calvo, Iván; Sánchez, Edilberto; Parra, Félix I.; Bustos, Andrés; Könies, Axel; Kleiber, Ralf; Görler, Tobias
2016-04-01
In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the Gene and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.
Vlasov treatment of coherent synchrotron radiation from arbitrary planar orbits
NASA Astrophysics Data System (ADS)
Warnock, R.; Bassi, G.; Ellison, J. A.
2006-03-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp.
Method of preparing mercury with an arbitrary isotopic distribution
Grossman, M.W.; George, W.A.
1986-12-16
This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.
Method of preparing mercury with an arbitrary isotopic distribution
Grossman, Mark W.; George, William A.
1986-01-01
This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.
Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh
2010-09-01
We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200
Simultaneity in Minkowski Spacetime: From Uniqueness to Arbitrariness
NASA Astrophysics Data System (ADS)
Besnard, Fabien
2012-09-01
Malament (Noûs 11:293-300, 1977) proved a certain uniqueness theorem about standard synchrony, also known as Poincaré-Einstein simultaneity, which has generated many commentaries over the years, some of them contradictory. We think that the situation called for some clarification. After reviewing and discussing some of the literature involved, we prove two results which, hopefully, will help clarifying this debate by filling the gap between the uniquess of Malament's theorem, which allows the observer to use very few tools, and the complete arbitrariness of a time coordinate in full-fledged Relativity theory. In the spirit of Malament's theorem, and in opposition to most of its commentators, we emphasize explicit definability of simultaneity relations, and give only constructive proofs. We also explore what happens when we reduce to "purely local" data with respect to an observer.
Arbitrary GRIN component fabrication in optically driven diffusive photopolymers.
Urness, Adam C; Anderson, Ken; Ye, Chungfang; Wilson, William L; McLeod, Robert R
2015-01-12
We introduce a maskless lithography tool and optically-initiated diffusive photopolymer that enable arbitrary two-dimensional gradient index (GRIN) polymer lens profiles. The lithography tool uses a pulse-width modulated deformable mirror device (DMD) to control the 8-bit gray-scale intensity pattern on the material. The custom polymer responds with a self-developing refractive index profile that is non-linear with optical dose. We show that this nonlinear material response can be corrected with pre-compensation of the intensity pattern to yield high fidelity, optically induced index profiles. The process is demonstrated with quadratic, millimeter aperture GRIN lenses, Zernike polynomials and GRIN Fresnel lenses. PMID:25835673
General analytic solutions of scalar field cosmology with arbitrary potential
NASA Astrophysics Data System (ADS)
Dimakis, N.; Karagiorgos, A.; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T.; Terzis, Petros A.
2016-06-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a Friedmann-Lemaître-Robertson-Walker metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. Both the spatially flat and nonflat cases are studied first in the presence of only the scalar field and subsequently with the addition of noninteracting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Multitarget sensor resolution model for arbitrary target numbers
NASA Astrophysics Data System (ADS)
Svensson, Daniel; Ulmke, Martin; Danielsson, Lars
2010-04-01
In many surveillance problems the observed objects are so closely spaced that they cannot always be resolved by the sensor(s). Typical examples for partially unresolved measurements are the surveillance of aircraft in formation, and convoy tracking for ground surveillance. Ignoring the limited sensor resolution in a tracking system may lead to degraded tracking performance, in particular unwanted track-losses. In this paper we extend the resolution model by Koch and van Keuk, given for two partially unresolved objects, to the case of arbitrary object numbers. We also derive the effects of the resolution model to the multi-target likelihood function and the possible data associations. Further, it is shown how the model can be integrated into the Joint Probabilistic Data Association Filter (JPDAF).
Stimulator with arbitrary waveform for auditory evoked potentials
NASA Astrophysics Data System (ADS)
Martins, H. R.; Romão, M.; Plácido, D.; Provenzano, F.; Tierra-Criollo, C. J.
2007-11-01
The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions.
Alase, Abhijeet; Cobanera, Emilio; Ortiz, Gerardo; Viola, Lorenza
2016-08-12
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D-1. The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s-wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4π-periodic Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary. PMID:27563986
Time reversed photonic beamforming of arbitrary waveform ladar arrays
NASA Astrophysics Data System (ADS)
Cox, Joseph L.; Zmuda, Henry; Bussjaeger, Rebecca J.; Erdmann, Reinhard K.; Fanto, Michael L.; Hayduk, Michael J.; Malowicki, John E.
2007-04-01
Herein is described a novel approach of performing adaptive photonic beam forming of an array of optical fibers with the expressed purpose of performing laser ranging. The beam forming technique leverages the concepts of time reversal, previously implemented in the sonar community, and wherein photonic implementation has recently been described for use by beamforming of ultra-wideband radar arrays. Photonic beam forming is also capable of combining the optical output of several fiber lasers into a coherent source, exactly phase matched on a pre-determined target. By implementing electro-optically modulated pulses from frequency chirped femtosecond-scale laser pulses, ladar waveforms can be generated with arbitrary spectral and temporal characteristics within the limitations of the wide-band system. Also described is a means of generating angle/angle/range measurements of illuminated targets.
Compound words prompt arbitrary semantic associations in conceptual memory.
Boutonnet, Bastien; McClain, Rhonda; Thierry, Guillaume
2014-01-01
Linguistic relativity theory has received empirical support in domains such as color perception and object categorization. It is unknown, however, whether relations between words idiosyncratic to language impact non-verbal representations and conceptualizations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness task in participants undergoing event-related brain potential recordings. Picture pairs arbitrarily related because of a compound and presented in the compound order elicited N400 amplitudes similar to unrelated pairs. Surprisingly, however, pictures presented in the reverse order (as in the sequence horse-sea) reduced N400 amplitudes significantly, demonstrating the existence of a link in memory between these two concepts otherwise unrelated. These results break new ground in the domain of linguistic relativity by revealing predicted semantic associations driven by lexical relations intrinsic to language. PMID:24672505
Exact transient photon correlation with arbitrary laser pulses
Ooi, C. H. Raymond
2011-11-15
We present a full quantum theory to study the transient evolution of photon pairs. We introduce a method which gives exact time-dependent solutions of the coupled quantum Langevin equations for a multilevel quantum particle driven by arbitrary time-dependent laser fields. The analytical solutions are used to develop a numerical code for computing exact time evolution of the two-photon correlation function. We analyze the effects of laser pulses sequence, pulse duration, chirping, and initial internal quantum states on the nonclassicality of the photon correlation through the violation of the Cauchy-Schwarz inequality. The results provide a promising possibility of controlling the generation of highly correlated photon pairs using tailored short laser pulses.
Faithful Transfer Arbitrary Pure States with Mixed Resources
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Li, Lin; Ma, Song-Ya; Chen, Xiu-Bo; Yang, Yi-Xian
2013-09-01
In this paper, we show that some special mixed quantum resource experience the same property of pure entanglement such as Bell state for quantum teleportation. It is shown that one mixed state and three bits of classical communication cost can be used to teleport one unknown qubit compared with two bits via pure resources. The schemes are easily implement with model physical techniques. Moreover, these resources are also optimal and typical for faithfully remotely prepare an arbitrary qubit, two-qubit and three-qubit states with mixed quantum resources. Our schemes are completed as same as those with pure quantum entanglement resources except only 1 bit additional classical communication cost required. The success probability is independent of the form of the mixed resources.
Falcon: automated optimization method for arbitrary assessment criteria
Yang, Tser-Yuan; Moses, Edward I.; Hartmann-Siantar, Christine
2001-01-01
FALCON is a method for automatic multivariable optimization for arbitrary assessment criteria that can be applied to numerous fields where outcome simulation is combined with optimization and assessment criteria. A specific implementation of FALCON is for automatic radiation therapy treatment planning. In this application, FALCON implements dose calculations into the planning process and optimizes available beam delivery modifier parameters to determine the treatment plan that best meets clinical decision-making criteria. FALCON is described in the context of the optimization of external-beam radiation therapy and intensity modulated radiation therapy (IMRT), but the concepts could also be applied to internal (brachytherapy) radiotherapy. The radiation beams could consist of photons or any charged or uncharged particles. The concept of optimizing source distributions can be applied to complex radiography (e.g. flash x-ray or proton) to improve the imaging capabilities of facilities proposed for science-based stockpile stewardship.
Binary neutron stars with arbitrary spins in numerical relativity
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2015-12-01
We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions
NASA Astrophysics Data System (ADS)
Alase, Abhijeet; Cobanera, Emilio; Ortiz, Gerardo; Viola, Lorenza
2016-08-01
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D -1 . The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s -wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4 π -periodic Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary.
Laplace-Runge-Lenz vector for arbitrary spin
Nikitin, A. G.
2013-12-15
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published as an e-print arXiv:1308.4279.
Evaluation of overlaps between arbitrary fermionic quasiparticle vacua
NASA Astrophysics Data System (ADS)
Avez, B.; Bender, M.
2012-03-01
We derive an expression that allows for the unambiguous evaluation of the overlap between two arbitrary quasiparticle vacua, including its sign. Our expression is based on the Pfaffian of a skew-symmetric matrix, extending the overlap formula recently proposed by Robledo [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.79.021302 79, 021302(R) (2009)] to the most general case of quasiparticle vacua, including the one of the overlap between two different blocked n-quasiparticle states for either even or odd systems. The powerfulness of the method is illustrated for a few typical matrix elements that appear in realistic angular-momentum-restored generator coordinate method calculations when breaking time-reversal invariance and using the full model space of occupied single-particle states.
Forced fluid dynamics from gravity in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Ashok, T.
2014-03-01
We consider long wavelength solutions to the Einstein-dilaton system with negative cosmological constant which are dual, under the AdS/CFT correspondence, to solutions of the conformal relativistic Navier-Stokes equations with a dilaton-dependent forcing term. Certain forced fluid flows are known to exhibit turbulence; holographic duals of forced fluid dynamics are therefore of particular interest as they may aid efforts towards an explicit model of holographic steady state turbulence. In recent work, Bhattacharyya et al. have constructed long wavelength asymptotically locally AdS5 bulk space-times with a slowly varying boundary dilaton field which are dual to forced fluid flows on the 4-dimensional boundary. In this paper, we generalise their work to arbitrary space-time dimensions; we explicitly compute the dual bulk metric, the fluid dynamical stress tensor and Lagrangian to second order in a boundary derivative expansion.
Ab initio multimode linewidth theory for arbitrary inhomogeneous laser cavities
NASA Astrophysics Data System (ADS)
Pick, A.; Cerjan, A.; Liu, D.; Rodriguez, A. W.; Stone, A. D.; Chong, Y. D.; Johnson, S. G.
2015-06-01
We present a multimode laser-linewidth theory for arbitrary cavity structures and geometries that contains nearly all previously known effects and also finds new nonlinear and multimode corrections, e.g., a correction to the α factor due to openness of the cavity and a multimode Schawlow-Townes relation (each linewidth is proportional to a sum of inverse powers of all lasing modes). Our theory produces a quantitatively accurate formula for the linewidth, with no free parameters, including the full spatial degrees of freedom of the system. Starting with the Maxwell-Bloch equations, we handle quantum and thermal noise by introducing random currents whose correlations are given by the fluctuation-dissipation theorem. We derive coupled-mode equations for the lasing-mode amplitudes and obtain a formula for the linewidths in terms of simple integrals over the steady-state lasing modes.
Simulation study with arbitrary profile liquid annular seals
Padavala, S.; Palazzolo, A.B.
1994-10-01
This paper presents an improved dynamic analysis for liquid annular seals with arbitrary profile based on a method first proposed by Nelson and Nguyen. An improved first-order solution that incorporates a continuous interpolation of perturbed quantities in the circumferential direction is presented. The original method uses an approximation scheme for circumferential gradients of zeroth order solution based on Fast Fourier Transforms (FFT). A simpler scheme based on cubic splines is found to be computationally more efficient, with better convergence at higher eccentricities. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. A procedure for computing dynamic coefficients based on external specific load is discussed. An example case of an elliptical seal with varying degrees of axial curvature is analyzed. A case study based on actual operating clearances (6 axial planes with 68 clearances/plane) of an interstage seal of the Space Shuttle Main Engine High Pressure Oxygen Turbopump (SSME-ATD-HPOTP) is presented.
Contour-Driven Regression for Label Inference in Atlas-Based Segmentation
Wachinger, Christian; Sharp, Gregory C.; Golland, Polina
2014-01-01
We present a novel method for inferring tissue labels in atlas-based image segmentation using Gaussian process regression. Atlas-based segmentation results in probabilistic label maps that serve as input to our method. We introduce a contour-driven prior distribution over label maps to incorporate image features of the input scan into the label inference problem. The mean function of the Gaussian process posterior distribution yields the MAP estimate of the label map and is used in the subsequent voting. We demonstrate improved segmentation accuracy when our approach is combined with two different patch-based segmentation techniques. We focus on the segmentation of parotid glands in CT scans of patients with head and neck cancer, which is important for radiation therapy planning. PMID:24505763
Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities.
Barbu, Adrian; Zhu, Song-Chun
2005-08-01
Many vision tasks can be formulated as graph partition problems that minimize energy functions. For such problems, the Gibbs sampler provides a general solution but is very slow, while other methods, such as Ncut and graph cuts are computationally effective but only work for specific energy forms and are not generally applicable. In this paper, we present a new inference algorithm that generalizes the Swendsen-Wang method to arbitrary probabilities defined on graph partitions. We begin by computing graph edge weights, based on local image features. Then, the algorithm iterates two steps. 1) Graph clustering: It forms connected components by cutting the edges probabilistically based on their weights. 2) Graph relabeling: It selects one connected component and flips probabilistically, the coloring of all vertices in the component simultaneously. Thus, it realizes the split, merge, and regrouping of a "chunk" of the graph, in contrast to Gibbs sampler that flips a single vertex. We prove that this algorithm simulates ergodic and reversible Markov chain jumps in the space of graph partitions and is applicable to arbitrary posterior probabilities or energy functions defined on graphs. We demonstrate the algorithm on two typical problems in computer vision--image segmentation and stereo vision. Experimentally, we show that it is 100-400 times faster in CPU time than the classical Gibbs sampler and 20-40 times faster then the DDMCMC segmentation algorithm. For stereo, we compare performance with graph cuts and belief propagation. We also show that our algorithm can automatically infer generative models and obtain satisfactory results (better than the graphic cuts or belief propagation) in the same amount of time. PMID:16119263
COSMIC/NASTRAN Free-field Input
NASA Technical Reports Server (NTRS)
Chan, G. C.
1984-01-01
A user's guide to the COSMIC/NASTRAN free field input for the Bulk Data section of the NASTRAN program is proposed. The free field input is designed to be user friendly and the user is not forced out of the computer system due to input errors. It is easy to use, with only a few simple rules to follow. A stand alone version of the COSMIC/NASTRAN free field input is also available. The use of free field input is illustrated by a number of examples.
PREVIMER : Meteorological inputs and outputs
NASA Astrophysics Data System (ADS)
Ravenel, H.; Lecornu, F.; Kerléguer, L.
2009-09-01
PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during
Turn customer input into innovation.
Ulwick, Anthony W
2002-01-01
It's difficult to find a company these days that doesn't strive to be customer-driven. Too bad, then, that most companies go about the process of listening to customers all wrong--so wrong, in fact, that they undermine innovation and, ultimately, the bottom line. What usually happens is this: Companies ask their customers what they want. Customers offer solutions in the form of products or services. Companies then deliver these tangibles, and customers just don't buy. The reason is simple--customers aren't expert or informed enough to come up with solutions. That's what your R&D team is for. Rather, customers should be asked only for outcomes--what they want a new product or service to do for them. The form the solutions take should be up to you, and you alone. Using Cordis Corporation as an example, this article describes, in fine detail, a series of effective steps for capturing, analyzing, and utilizing customer input. First come indepth interviews, in which a moderator works with customers to deconstruct a process or activity in order to unearth "desired outcomes." Addressing participants' comments one at a time, the moderator rephrases them to be both unambiguous and measurable. Once the interviews are complete, researchers then compile a comprehensive list of outcomes that participants rank in order of importance and degree to which they are satisfied by existing products. Finally, using a simple mathematical formula called the "opportunity calculation," researchers can learn the relative attractiveness of key opportunity areas. These data can be used to uncover opportunities for product development, to properly segment markets, and to conduct competitive analysis. PMID:12964470
NASA Astrophysics Data System (ADS)
Slatyer, Tracy R.
2016-01-01
Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.
Visual search for arbitrary objects in real scenes
Alvarez, George A.; Rosenholtz, Ruth; Kuzmova, Yoana I.; Sherman, Ashley M.
2011-01-01
How efficient is visual search in real scenes? In searches for targets among arrays of randomly placed distractors, efficiency is often indexed by the slope of the reaction time (RT) × Set Size function. However, it may be impossible to define set size for real scenes. As an approximation, we hand-labeled 100 indoor scenes and used the number of labeled regions as a surrogate for set size. In Experiment 1, observers searched for named objects (a chair, bowl, etc.). With set size defined as the number of labeled regions, search was very efficient (~5 ms/item). When we controlled for a possible guessing strategy in Experiment 2, slopes increased somewhat (~15 ms/item), but they were much shallower than search for a random object among other distinctive objects outside of a scene setting (Exp. 3: ~40 ms/item). In Experiments 4–6, observers searched repeatedly through the same scene for different objects. Increased familiarity with scenes had modest effects on RTs, while repetition of target items had large effects (>500 ms). We propose that visual search in scenes is efficient because scene-specific forms of attentional guidance can eliminate most regions from the “functional set size” of items that could possibly be the target. PMID:21671156
NASA Astrophysics Data System (ADS)
Auckland, D. T.; Harrington, R. F.
1980-03-01
Three computer programs are presented for the analysis of electromagnetic transmission through a filled slit of arbitrary cross section in a conducting plane of finite thickness. The first and second programs utilize a non-modal and model formulation, respectively, which are derived in detail in an earlier report. Some approximate solutions are available when the slit cross section is a rectangular shape and these are investigated in the third program. The programs are all written in FORTRAN IV language. Quantities computed are equivalent electric and magnetic currents on the contour defining the slit cross section, transmission coefficients, gain patterns, and normalized field patterns. Sample input and output data are presented for each program. Detailed instructions concerning the use of each program and its capabilities are given.
NASA Technical Reports Server (NTRS)
Maskew, B.
1982-01-01
VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.
Learning with imperfectly labeled patterns
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.
The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications
Spence, Peter J.
2015-09-01
A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent
Code of Federal Regulations, 2014 CFR
2014-01-01
....12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels must...) If installation instructions are included on the label or with the package, add this statement:...
Code of Federal Regulations, 2011 CFR
2011-01-01
....12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels must...) If installation instructions are included on the label or with the package, add this statement:...
Code of Federal Regulations, 2010 CFR
2010-01-01
....12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels must...) If installation instructions are included on the label or with the package, add this statement:...
Code of Federal Regulations, 2012 CFR
2012-01-01
....12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels must...) If installation instructions are included on the label or with the package, add this statement:...
Code of Federal Regulations, 2013 CFR
2013-01-01
....12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels must...) If installation instructions are included on the label or with the package, add this statement:...
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Lee, F. C.; Kelkar, S. S.
1982-01-01
The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.
Input estimation from measured structural response
Harvey, Dustin; Cross, Elizabeth; Silva, Ramon A; Farrar, Charles R; Bement, Matt
2009-01-01
This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.
A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina.
Vlasits, Anna L; Morrie, Ryan D; Tran-Van-Minh, Alexandra; Bleckert, Adam; Gainer, Christian F; DiGregorio, David A; Feller, Marla B
2016-03-16
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell. PMID:26985724
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Jan. 6, 2014) § 412.1 Label approval. (a) No final label may be used on any product unless the label... for a corporation may submit only one label application for a product produced in other establishments...) The proposed label would not misrepresent the product; (ii) The use of the label would not present...
Input apparatus for dynamic signature verification systems
EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.
1978-01-01
The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.
Supplementing National Menu Labeling
White, Lexi C.
2012-01-01
The US Food and Drug Administration’s forthcoming national menu labeling regulations are designed to help curb the national obesity epidemic by requiring calorie counts on restaurants’ menus. However, posted calories can be easily ignored or misunderstood by consumers and fail to accurately describe the healthiness of foods. We propose supplemental models that include nutritional information (e.g., fat, salt, sugar) or specific guidance (e.g., “heart-healthy” graphics). The goal is to empower restaurant patrons with better data to make healthier choices, and ultimately to reduce obesity prevalence. PMID:23078494
Supplementing national menu labeling.
Hodge, James G; White, Lexi C
2012-12-01
The US Food and Drug Administration's forthcoming national menu labeling regulations are designed to help curb the national obesity epidemic by requiring calorie counts on restaurants' menus. However, posted calories can be easily ignored or misunderstood by consumers and fail to accurately describe the healthiness of foods. We propose supplemental models that include nutritional information (e.g., fat, salt, sugar) or specific guidance (e.g., "heart-healthy" graphics). The goal is to empower restaurant patrons with better data to make healthier choices, and ultimately to reduce obesity prevalence. PMID:23078494
Extending Landauer's Bound from Bit Erasure to Arbitrary Computation
NASA Astrophysics Data System (ADS)
Wolpert, David
Recent analyses have calculated the minimal thermodynamic work required to perform any computation π whose output is independent of its input, e.g., bit erasure. First I extend these analyses to calculate the work required even if the output of π depends on its input. Next I show that if a physical computer C implementing a computation π will be re-used, then the work required depends only on the dynamics of the logical variables under π, independent of the physical details of C. This establishes a formal identity between the thermodynamics of (re-usable) computers and theoretical computer science. To illustrate this identity, I prove that the minimal work required to compute a bit string σ on a (physical) Turing machine M is kB Tln (2) [ Kolmogorov complexity(σ) + log (Bernoulli measure of the set of strings that compute σ) + log(halting probability of M) ] . I also prove that uncertainty about the distribution over inputs to the computer increases the minimal work required to run the computer. I end by using these results to relate the free energy flux incident on an organism / robot / biosphere to the maximal amount of computation that the organism / robot / biosphere can do per unit time.
Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin
2015-01-01
The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919
Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin
2015-01-01
The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919
Single-mode squeezing in arbitrary spatial modes.
Semmler, Marion; Berg-Johansen, Stefan; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd
2016-04-01
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light. PMID:27137050
Globally optimal surface mapping for surfaces with arbitrary topology.
Li, Xin; Bao, Yunfan; Guo, Xiaohu; Jin, Miao; Gu, Xianfeng; Qin, Hong
2008-01-01
Computing smooth and optimal one-to-one maps between surfaces of same topology is a fundamental problem in computer graphics and such a method provides us a ubiquitous tool for geometric modeling and data visualization. Its vast variety of applications includes shape registration/matching, shape blending, material/data transfer, data fusion, information reuse, etc. The mapping quality is typically measured in terms of angular distortions among different shapes. This paper proposes and develops a novel quasi-conformal surface mapping framework to globally minimize the stretching energy inevitably introduced between two different shapes. The existing state-of-the-art inter-surface mapping techniques only afford local optimization either on surface patches via boundary cutting or on the simplified base domain, lacking rigorous mathematical foundation and analysis. We design and articulate an automatic variational algorithm that can reach the global distortion minimum for surface mapping between shapes of arbitrary topology, and our algorithm is sorely founded upon the intrinsic geometry structure of surfaces. To our best knowledge, this is the first attempt towards numerically computing globally optimal maps. Consequently, our mapping framework offers a powerful computational tool for graphics and visualization tasks such as data and texture transfer, shape morphing, and shape matching. PMID:18467756
Approaches to modeling of plasmas containing impurity at arbitrary concentration
NASA Astrophysics Data System (ADS)
Tokar, Mikhail Z.
2016-02-01
A new approximate method to modeling of two-ion-species plasmas with arbitrary concentration of impurity is developed. It based on the usage of equations for the electron density and the ratio of the ion species densities as new dependent variables. In contrast to motion equations for the ion mass velocities used normally, those for the new variables have a singularity at the Debye sheath only, as in the case of a one species plasma. Computations for the most critical situations of weak and intermediate friction between species due to Coulomb collisions reproduce nearly perfectly the results got by solving the original equations, however within a calculation time reduced by a factor of 102-103. In the case of strong friction, where ions’ velocities are very close each other, the normal procedure does not converge at all, but the new one, being precise in this limit, operates very reliably. Calculations are done for conditions typical in the linear device PSI-2, with deuterium plasmas seeded by neon impurity. For fixed electron and ion temperatures a critical density of impurity atoms is found, at which the electron density grows without limits. Such a catastrophic behavior does not occur if the electron and ion heat balances are taken into account to calculate the temperature profiles self-consistently.
Dirac equation for particles with arbitrary half-integral spin
NASA Astrophysics Data System (ADS)
Guseinov, I. I.
2011-11-01
The sets of ? -component irreducible and Clifford algebraic Hermitian and unitary matrices through the two-component Pauli matrices are suggested, where s = 1/2, 3/2, 5/2, … . Using these matrix sets, the eigenvalues of which are ? , the ? -component generalized Dirac equation for a description of arbitrary half-integral spin particles is constructed. In accordance with the correspondence principle, the generalized Dirac equation suggested arises from the condition of relativistic invariance. This equation is reduced to the sets of two-component matrix equations the number of which is equal to ? . The new relativistic invariant equation of motion leads to an equation of continuity with a positive-definite probability density and also to the Klein-Gordon equation. This relativistic equation is causal in the presence of an external electromagnetic field interaction. It is shown that, in the case of nonrelativistic limit, the relativistic equation presented is reduced to the Pauli equation describing the motion of half-integral spin particle in the electromagnetic field.
A general superdirectivity model for arbitrary sensor arrays
NASA Astrophysics Data System (ADS)
Wang, Yong; Yang, Yixin; He, Zhengyao; Han, Yina; Ma, Yuanliang
2015-12-01
This paper proposes a general model of superdirectivity to provide analytical and closed-form solutions for arbitrary sensor arrays. Based on the equivalence between the maximum directivity factor and the maximum array gain in the isotropic noise field, Gram-Schmidt orthogonalization is introduced and recursively transformed into a matrix form to conduct pre-whitening and matching operations that result in superdirectivity solutions. A Gram-Schmidt mode-beam decomposition and synthesis method is then presented to formally implement these solutions. Illustrative examples for different arrays are provided to demonstrate the feasibility of this method, and a reduced rank technique is used to deal with the practical array design for robust beamforming and acceptable high-order superdirectivity. Experimental results that are provided for a linear array consisting of nine hydrophones show the good performance of the technique. A superdirective beampattern with a beamwidth of 48.05° in the endfire direction is typically achieved when the inter-sensor spacing is only 0.09 λ ( λ is the wavelength), and the directivity index is up to 12 dB, which outperforms that of the conventional delay-and-sum counterpart by 6 dB.
The Casimir effect for fields with arbitrary spin
Stokes, Adam; Bennett, Robert
2015-09-15
The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.
Arbitrary waveform generator for quantum information processing with trapped ions
NASA Astrophysics Data System (ADS)
Bowler, R.; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.
2013-03-01
Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of ±10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and demonstrate some of its uses in ion-based quantum information experiments, including speed-up of ion transport and the shaping of laser and microwave pulses.
Efficient computation of spontaneous emission dynamics in arbitrary photonic structures
NASA Astrophysics Data System (ADS)
Teimourpour, M. H.; El-Ganainy, R.
2015-12-01
Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second quantization. Consequently, spontaneous emission (SE) in arbitrary photonic media is often described by Fock space Hamiltonians. Here, we present a real space formulation of the SE process that can capture the physics of the problem accurately under different coupling conditions. Starting from first principles, we map the unitary evolution of a dressed two-level quantum emitter onto the problem of electromagnetic radiation from a self-interacting complex harmonic oscillator. Our formalism naturally leads to an efficient computational scheme of SE dynamics using finite difference time domain method without the need for calculating the photonic eigenmodes of the surrounding environment. In contrast to earlier investigations, our computational framework provides a unified numerical treatment for both weak and strong coupling regimes alike. We illustrate the versatility of our scheme by considering several different examples.
Nonlocal electron transport in magnetized plasmas with arbitrary atomic number
Bennaceur-Doumaz, D.; Bendib, A.
2006-09-15
The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.
Constructing reference metrics on multicube representations of arbitrary manifolds
NASA Astrophysics Data System (ADS)
Lindblom, Lee; Taylor, Nicholas W.; Rinne, Oliver
2016-05-01
Reference metrics are used to define the differential structure on multicube representations of manifolds, i.e., they provide a simple and practical way to define what it means globally for tensor fields and their derivatives to be continuous. This paper introduces a general procedure for constructing reference metrics automatically on multicube representations of manifolds with arbitrary topologies. The method is tested here by constructing reference metrics for compact, orientable two-dimensional manifolds with genera between zero and five. These metrics are shown to satisfy the Gauss-Bonnet identity numerically to the level of truncation error (which converges toward zero as the numerical resolution is increased). These reference metrics can be made smoother and more uniform by evolving them with Ricci flow. This smoothing procedure is tested on the two-dimensional reference metrics constructed here. These smoothing evolutions (using volume-normalized Ricci flow with DeTurck gauge fixing) are all shown to produce reference metrics with constant scalar curvatures (at the level of numerical truncation error).
Dynamical deformed Airy beams with arbitrary angles between two wings.
Liang, Yi; Hu, Yi; Ye, Zhuoyi; Song, Daohong; Lou, Cibo; Zhang, Xinzheng; Xu, Jingjun; Morandotti, Roberto; Chen, Zhigang
2014-07-01
We study both numerically and experimentally the acceleration and propagation dynamics of 2D Airy beams with arbitrary initial angles between their "two wings." Our results show that the acceleration of these generalized 2D Airy beams strongly depends on the initial angles and cannot be simply described by the vector superposition principle (except for the normal case of a 90° angle). However, as a result of the "Hyperbolic umbilic" catastrophe (a two-layer caustic), the main lobes of these 2D Airy beams still propagate along parabolic trajectories even though they become highly deformed. Under such conditions, the peak intensity (leading energy flow) of the 2D Airy beams cannot be confined along the main lobe, in contrast to the normal 90° case. Instead, it is found that there are two parabolic trajectories describing the beam propagation: one for the main lobe, and the other for the peak intensity. Both trajectories can be readily controlled by varying the initial wing angle. Due to their self-healing property, these beams tend to evolve into the well-known 1D or 2D Airy patterns after a certain propagation distance. The theoretical analysis corroborates our experimental observations, and explains clearly why the acceleration of deformed Airy beams increases with the opening of the initial wing angle. PMID:25121433
Bottlenose dolphins can use learned vocal labels to address each other
King, Stephanie L.; Janik, Vincent M.
2013-01-01
In animal communication research, vocal labeling refers to incidents in which an animal consistently uses a specific acoustic signal when presented with a specific object or class of objects. Labeling with learned signals is a foundation of human language but is notably rare in nonhuman communication systems. In natural animal systems, labeling often occurs with signals that are not influenced by learning, such as in alarm and food calling. There is a suggestion, however, that some species use learned signals to label conspecific individuals in their own communication system when mimicking individually distinctive calls. Bottlenose dolphins (Tursiops truncatus) are a promising animal for exploration in this area because they are capable of vocal production learning and can learn to use arbitrary signals to report the presence or absence of objects. Bottlenose dolphins develop their own unique identity signal, the signature whistle. This whistle encodes individual identity independently of voice features. The copying of signature whistles may therefore allow animals to label or address one another. Here, we show that wild bottlenose dolphins respond to hearing a copy of their own signature whistle by calling back. Animals did not respond to whistles that were not their own signature. This study provides compelling evidence that a dolphin’s learned identity signal is used as a label when addressing conspecifics. Bottlenose dolphins therefore appear to be unique as nonhuman mammals to use learned signals as individually specific labels for different social companions in their own natural communication system. PMID:23878217
A three-dimensional potential-flow program with a geometry package for input data generation
NASA Technical Reports Server (NTRS)
Halsey, N. D.
1978-01-01
Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases.
EPICS Input/Output Controller (IOC) application developer`s guide. APS Release 3.12
Kraimer, M.R.
1994-11-01
This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components of EPICS. The basic components are: (OPI) Operator Interface; this is a UNIX based workstation which can run various EPICS tools; (IOC) Input/Output Controller; this is a VME/VXI based chassis containing a Motorola 68xxx processor, various I/O modules, and VME modules that provide access to other I/O buses such as GPIB, (LAN), Local Area Network; and this is the communication network which allows the IOCs and OPIs to communicate. Epics provides a software component, Channel Access, which provides network transparent communication between a Channel Access client and an arbitrary number of Channel Access servers.
Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov
2016-08-30
One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. PMID:27545896
Parabolic Presentations of the Super Yangian {Y({gl}_{M|N})} Associated with Arbitrary 01-Sequences
NASA Astrophysics Data System (ADS)
Peng, Yung-Ning
2016-08-01
Let μ be an arbitrary composition of M + N and let {{s}} be an arbitrary {0M1N}- sequence. A new presentation, depending on {μ and {s}}, of the super Yangian Y M| N associated to the general linear Lie superalgebra {{gl}_{M|N}} is obtained.
Parabolic Presentations of the Super Yangian {Y(gl_{M|N})} Associated with Arbitrary 01-Sequences
NASA Astrophysics Data System (ADS)
Peng, Yung-Ning
2016-01-01
Let μ be an arbitrary composition of M + N and let s be an arbitrary {0M1N} - sequence. A new presentation, depending on μ and s , of the super Yangian Y M|N associated to the general linear Lie superalgebra gl_{M|N} is obtained.
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
Label and Label-Free Detection Techniques for Protein Microarrays
Syahir, Amir; Usui, Kenji; Tomizaki, Kin-ya; Kajikawa, Kotaro; Mihara, Hisakazu
2015-01-01
Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano-biological events.
Label scrambling during CID of covalently labeled peptide ions.
Borotto, Nicholas B; Degraan-Weber, Nicholas; Zhou, Yuping; Vachet, Richard W
2014-10-01
Covalent labeling along with mass spectrometry is finding more use as a means of studying the higher order structure of proteins and protein complexes. Diethylpyrocarbonate (DEPC) is an increasingly used reagent for these labeling experiments because it is capable of modifying multiple residues at the same time. Pinpointing DEPC-labeled sites on proteins is typically needed to obtain more resolved structural information, and tandem mass spectrometry after protein proteolysis is often used for this purpose. In this work, we demonstrate that in certain instances, scrambling of the DEPC label from one residue to another can occur during collision-induced dissociation (CID) of labeled peptide ions, resulting in ambiguity in label site identity. From a preliminary study of over 30 labeled peptides, we find that scrambling occurs in about 25% of the peptides and most commonly occurs when histidine residues are labeled. Moreover, this scrambling appears to occur more readily under non-mobile proton conditions, meaning that low charge-state peptide ions are more prone to this reaction. For all peptides, we find that scrambling does not occur during electron transfer dissociation, which suggests that this dissociation technique is a safe alternative to CID for correct label site identification. PMID:25056863
NASA Astrophysics Data System (ADS)
Yilmaz, Tolga
There are several applications of low-noise, coherent optical frequency combs generated by modelocked lasers. One application is to use the optical comb source in a photonic arbitrary waveform generator. Performance of electronic arbitrary waveform generators is hindered by the speed and linearity limitations of digital-to-analog converters. These limitations may be overcome by the use of high-bandwidth optical techniques. This thesis investigates the possibility of using actively and hybridly modelocked external-cavity semiconductor lasers to improve upon the speed limitations of electronic arbitrary waveform generators. Pulsetrain noise properties have been studied for different cavity geometries and semiconductor gain medium types. Modelocked laser optical frequency comb stabilization has been achieved and it has made it possible to use the laser in a photonic arbitrary waveform generator architecture. The potential for arbitrary waveform generation and photonic synthesis has been demonstrated by the generated waveforms at microwave frequencies.
EDP Applications to Musical Bibliography: Input Considerations
ERIC Educational Resources Information Center
Robbins, Donald C.
1972-01-01
The application of Electronic Data Processing (EDP) has been a boon in the analysis and bibliographic control of music. However, an extra step of encoding must be undertaken for input of music. The best hope to facilitate musical input is the development of an Optical Character Recognition (OCR) music-reading machine. (29 references) (Author/NH)
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND..., requests for input and/or Web site), as well as through a notice in the Federal Register, from...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
Computing Functions by Approximating the Input
ERIC Educational Resources Information Center
Goldberg, Mayer
2012-01-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
Managing Input during Assistive Technology Product Design
ERIC Educational Resources Information Center
Choi, Young Mi
2011-01-01
Many different sources of input are available to assistive technology innovators during the course of designing products. However, there is little information on which ones may be most effective or how they may be efficiently utilized within the design process. The aim of this project was to compare how three types of input--from simulation tools,…
39 CFR 3020.92 - Public input.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Public input. 3020.92 Section 3020.92 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL PRODUCT LISTS Requests Initiated by the Postal Service to Change the Mail Classification Schedule § 3020.92 Public input. The Commission shall publish...
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
NASA Astrophysics Data System (ADS)
Shi, Qiang; Geva, Eitan
2004-06-01
The Nakajima-Zwanzig generalized quantum master equation (GQME) provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a, possibly anharmonic, quantum bath. In this equation, a memory kernel superoperator accounts for the influence of the bath on the dynamics of the system. In a previous paper [Q. Shi and E. Geva, J. Chem. Phys. 119, 12045 (2003)] we proposed a new approach to calculating the memory kernel, in the case of arbitrary system-bath coupling. Within this approach, the memory kernel is obtained by solving a set of two integral equations, which requires a new type of two-time system-dependent bath correlation functions as input. In the present paper, we consider the application of the linearized semiclassical (LSC) approximation for calculating those correlation functions, and subsequently the memory kernel. The new approach is tested on a benchmark spin-boson model. Application of the LSC approximation for calculating the relatively short-lived memory kernel, followed by a numerically exact solution of the GQME, is found to provide an accurate description of the relaxation dynamics. The success of the proposed LSC-GQME methodology is contrasted with the failure of both the direct application of the LSC approximation and the weak coupling treatment to provide an accurate description of the dynamics, for the same model, except at very short times. The feasibility of the new methodology to anharmonic systems is also demonstrated in the case of a two level system coupled to a chain of Lennard-Jones atoms.
Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Davis, Darren Robert
This thesis describes a system that, given approximately-centered images of spiral galaxies, produces quantitative descriptions of spiral galaxy structure without the need for per-image human input. This structure information consists of a list of spiral arm segments, each associated with a fitted logarithmic spiral arc and a pixel region. This list-of-arcs representation allows description of arbitrary spiral galaxy structure: the arms do not need to be symmetric, may have forks or bends, and, more generally, may be arranged in any manner with a consistent spiral-pattern center (non-merging galaxies have a sufficiently well-defined center). Such flexibility is important in order to accommodate the myriad structure variations observed in spiral galaxies. From the arcs produced from our method it is possible to calculate measures of spiral galaxy structure such as winding direction, winding tightness, arm counts, asymmetry, or other values of interest (including user-defined measures). In addition to providing information about the spiral arm "skeleton" of each galaxy, our method can enable analyses of brightness within individual spiral arms, since we provide the pixel regions associated with each spiral arm segment. For winding direction, arm tightness, and arm count, comparable information is available (to various extents) from previous efforts; to the extent that such information is available, we find strong correspondence with our output. We also characterize the changes to (and invariances in) our output as a function of modifications to important algorithm parameters. By enabling generation of extensive data about spiral galaxy structure from large-scale sky surveys, our method will enable new discoveries and tests regarding the nature of galaxies and the universe, and will facilitate subsequent work to automatically fit detailed brightness models of spiral galaxies.
NASA Technical Reports Server (NTRS)
Chamberlain, D. M.; Elliot, J. L.
1997-01-01
We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.
HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC
NASA Astrophysics Data System (ADS)
Bechtle, Philip; Heinemeyer, Sven; Stål, Oscar; Stefaniak, Tim; Weiglein, Georg
2014-02-01
HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at GeV.
Co-Labeling for Multi-View Weakly Labeled Learning.
Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W
2016-06-01
It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi
Statistical identification of effective input variables. [SCREEN
Vaurio, J.K.
1982-09-01
A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications.
The impact of approximations and arbitrary choices on geophysical images
NASA Astrophysics Data System (ADS)
Valentine, Andrew P.; Trampert, Jeannot
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the
Estimating mean glomerular volume using two arbitrary parallel sections.
Najafian, Behzad; Basgen, John M; Mauer, Michael
2002-11-01
The most reliable method for estimation of mean glomerular volume (MGV), the disector/Cavalieri method, is technically demanding and time consuming. Other methods suffer either from a lack of precise correlation with the gold standard or from the need for a large number of glomeruli in the sample. Here, a new method (the 2-profile method) is described; it provides a reliable estimate of MGV by measuring the profile area of glomeruli in two arbitrary parallel sections. MGV was estimated in renal biopsies from 16 diabetic patients and 13 normal subjects using both the Cavalieri and the 2-profile methods. The range of individual glomerular volumes based on the Cavalieri measurements was 0.31 to 4.02 x10(6) micro m(3). There was a high correlation between the two methods for MGV (r = 0.97; P < 0.0001). However, the 2-profile method systematically overestimated MGV (P = 0.0005, paired t test). This overestimation was corrected by introducing a multiplication factor of 0.91, after which statistical criteria of interchangeability with the Cavalieri method were met. The optimal distance between two sections was determined as 20 micro m with a coefficient of variation of 7.4% in repeated measurements of MGV. On the basis of findings that values for MGV stabilize after ten glomeruli are measured by the disector/Cavalieri method, it was determined that the accuracy of MGV by the 2-profile method obtained by eight glomeruli was less than 7% different from ten in all cases. Thus, the 2-profile method is a practical alternative to the disector/Cavalieri method for estimating MGV, especially in small samples and blocks with limited residual tissue. PMID:12397039
A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2011-01-01
This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.
Spin filter for arbitrary spins by substrate engineering
NASA Astrophysics Data System (ADS)
Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava
2016-08-01
We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.
Spin filter for arbitrary spins by substrate engineering.
Pal, Biplab; Römer, Rudolf A; Chakrabarti, Arunava
2016-08-24
We design spin filters for particles with potentially arbitrary spin [Formula: see text] using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a 'spin spiral'. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins-an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction. PMID:27352129
Arbitrary dimensional Majorana dualities and architectures for topological matter
NASA Astrophysics Data System (ADS)
Nussinov, Zohar; Ortiz, Gerardo; Cobanera, Emilio
2012-08-01
Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive universal spin duals. We prove that these interacting Majorana systems, quantum Ising gauge theories, and transverse-field Ising models with annealed bimodal disorder are all dual to one another on general planar graphs. This leads to an interesting connection between heavily disordered annealed Ising systems and uniform Ising theories with nearest-neighbor interactions. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems on rather general lattices and graphs and corresponding spin systems. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass-type behavior in interacting Majorana fermion or electronic systems. Several systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the XXZ honeycomb compass model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip) arrays, and a (3) compass-type two-flavor Hubbard model with both pairing and hopping terms. By the use of our dualities (tantamount to high-dimensional fermionization), we show that all of these systems lie in the three-dimensional Ising universality class. We further discuss how the existence of topological orders and bounds on autocorrelation times can be
Automatic calibration of laser range cameras using arbitrary planar surfaces
Baker, J.E.
1994-06-01
Laser Range Cameras (LRCs) are powerful tools for many robotic/computer perception activities. They can provide accurate range images and perfectly registered reflectance images of the target scene, useful for constructing reliably detailed 3-D world maps and target characterizations. An LRC`s output is an array of distances obtained by scanning a laser over the scene. To accurately interpret this data, the angular definition of each pixel, i.e., the 3-D direction corresponding to each distance measurement, must be known. This angular definition is a function of the camera`s intrinsic design and unique implementation characteristics, e.g., actual mirror positions, axes of rotation, angular velocities, etc. Typically, the range data is converted to Cartesian coordinates by calibration-parameterized, non-linear transformation equations. Unfortunately, typical LRC calibration techniques are manual, intensive, and inaccurate. Common techniques involve imaging carefully orchestrated artificial targets and manually measuring actual distances and relative angles to infer the correct calibration parameter values. This paper presents an automated method which uses Genetic Algorithms to search for calibration parameter values and possible transformation equations which combine to maximize the planarity of user-specified sub-regions of the image(s). This method permits calibration to be based on an arbitrary plane, without precise knowledge of the LRC`s mechanical precision, intrinsic design, or its relative positioning to the target. Furthermore, this method permits rapid, remote, and on-line recalibration - important capabilities for many robotic systems. Empirical validation of this system has been performed using two different LRC systems and has led to significant improvement in image accuracy while reducing the calibration time by orders of magnitude.
Massive graviton on arbitrary background: derivation, syzygies, applications
Bernard, Laura; Deffayet, Cédric; Strauss, Mikael von
2015-06-23
We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a “reference metric' which is present in the non perturbative formulation. We show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.
Randomness and arbitrary coordination in the reactive ultimatum game
NASA Astrophysics Data System (ADS)
da Silva, Roberto; Valverde, Pablo; Lamb, Luis C.
2016-07-01
Darwin's theory of evolution - as introduced in game theory by Maynard Smith - is not the only important evolutionary aspect in an evolutionary dynamics, since complex interdependencies, competition, and growth should be modeled by, for example, reactive aspects. In the ultimatum game, the reciprocity and the fifty-fifty partition seems to be a deviation from rational behavior of the players under the light of Nash equilibrium. Such equilibrium emerges, for example, from the punishment of the responder who generally tends to refuse unfair proposals. In the iterated version of the game, the proposers are able to improve their proposals by adding a value thus making fairer proposals. Such evolutionary aspects are not properly Darwinian-motivated, but they are endowed with a fundamental aspect: they reflect their actions according to value of the offers. Recently, a reactive version of the ultimatum game where acceptance occurs with fixed probability was proposed. In this paper, we aim at exploring this reactive version of the ultimatum game where the acceptance by players depends on the offer. In order to do so, we analyze two situations: (i) mean field and (ii) we consider players inserted within the networks with arbitrary coordination. We then show that the reactive aspect, here studied, thus far not analyzed in the evolutionary game theory literature can unveil an essential feature for the convergence to fifty-fifty split. Moreover we also analyze populations under four different polices ranging from a highly conservative to a moderate one, with respect to the decision in changing the proposal based on acceptances. We show that the idea of gaining less more times added to the reciprocity of the players is highly relevant to the concept of "healthy" societies population bargaining.
76 FR 75809 - Prior Label Approval System: Generic Label Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... limited types of labels (e.g., labels for raw, single ingredient meat and poultry products) (48 FR 11410... poultry products will take effect January 1, 2012 (75 FR 82148, Dec. 29, 2010). These mandatory features... Agency. On March 25, 1992, FSIS published an Advance Notice of Proposed Rulemaking (ANPRM) (57 FR...
Laser labeling, a safe technology to label produce
Technology Transfer Automated Retrieval System (TEKTRAN)
Laser labeling of fruits and vegetables is an alternative means to label produce. Low energy CO2 laser beams etch the surface showing the contrasting underlying layer. These etched surfaces can promote water loss and potentially allow for entry of decay organisms. The long-term effects of laser labe...
Laser labeling, a safe technology to label produce
Technology Transfer Automated Retrieval System (TEKTRAN)
Labeling of the produce has gained marked attention in recent years. Laser labeling technology involves the etching of required information on the surface using a low energy CO2 laser beam. The etching forms alphanumerical characters by pinhole dot matrix depressions. These openings can lead to wat...
78 FR 66826 - Prior Label Approval System: Generic Label Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... the Agency (76 FR 75809). FSIS also proposed to combine the regulations that provide for the approval... preamble (76 FR 75814), FSIS wrote: . . . statements on labels that are defined in FSIS's regulations or... ``Product Labeling: Definition of the Term ``Natural'' and related materials (71 FR 70503, Dec. 5, 2006)...
Measuring Input Thresholds on an Existing Board
NASA Technical Reports Server (NTRS)
Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.
2011-01-01
A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and
Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.
Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun
2015-08-01
Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern. PMID
Goodman, Mark M.; Shi, Bing Zhi; Keil, Robert N.
1999-03-30
Novel methods for positron emission tomography or single photon emission spectroscopy using tracer compounds having the structure: ##STR1## where X in .beta. configuration is phenyl, naphthyl; 2,3 or 4-iodophenyl; 2,3 or 4-(trimethylsilyl)phenyl; 3,4,5 or 6-iodonaphthyl; 3,4,5 or 6-(trimethylsilyl)naphthyl; 2,3 or 4-(trialkylstannyl)phenyl; or 3,4,5 or 6-(trialkylstannyl)napthyl Y in .beta. configuration is 2-fluoroethoxy, 3-fluoropropoxy, 4-fluorobutoxy, 2-fluorocyclopropoxy, 2 or 3-fluorocyclobutoxy, R,S 1'-fluoroisopropoxy, R 1'-fluoroisopropoxy, S 1'-fluoroisopropoxy, 1',3'-difluoroisopropoxy, R,S 1'-fluoroisobutoxy, R 1'-fluoroisobutoxy, S 1'-fluoroisobutoxy, R,S 4'-fluoroisobutoxy, R 4'-fluoroisobutoxy, S 4'-fluoroisobutoxy, or 1',1'-di(fluoromethyl)isobutoxy, The compounds bind dopamine transporter protein and can be labeled with .sup.18 F or .sup.123 I for imaging.
How to trace organic matter input by living plants into and within the soil?
NASA Astrophysics Data System (ADS)
Studer, M. S.; Abiven, S.; Schmidt, M. W. I.; Siegwolf, R. T. W.
2012-04-01
Terrestrial ecosystems are the third largest carbon storage depot. Recent research has shown that roots and root-derived compounds may play an important role in the long-term stabilization of carbon within the soil. The study of the influence of plants on soil OM stabilization processes asks for advanced methods, which can be used to differentiate various pools and fluxes without disturbing the plant-soil system. One powerful tool matching these demands is stable isotope analysis. A common method is the artificial labelling of new plant assimilates by exposing the plants in a pulse (short time period) or continuously to CO2 strongly enriched with the heavy carbon isotope (13C). In addition the use of multiple isotopes has proven to lead to further insights in plant physiological processes and on OM cycling. In this study we tested the potential of pulse versus continuous multi-isotope labelling technique for studying OM input and stabilization within the soil. We developed a facility (MICE - Multi Isotope labelling in a Controlled Environment) to label plants in the lab under controlled conditions with 13C, 18O and 2H isotopes. The aboveground parts (shoot) of the plant-soil system are hermetically separated from the lower parts (roots, soil) to prevent the diffusion of the labelled gas into the soil. CO2 enriched in 13C (99atom% and 10atom% for the pulse and continuous labelling, respectively) and depleted water vapour (δ18O = -320-370‰ and δ2H=-750-810‰) were added to the aboveground system. Each labelling experiment was conducted with 15 plants (Populus deltoides x nigra) for 8 and 14 days, respectively. At five sampling dates the leaf, stem, root and soil bulk material was analysed for δ13C and δ 18O. In addition the δ13C of the microbial biomass (chloroform fumigation extraction) and the soil respiration (Keeling plot approach) was measured. In both experiments the plant biomass and the soil respiration has been significantly labelled with 13C (up to
Optical input impedance of nanostrip antennas
NASA Astrophysics Data System (ADS)
Wang, Ivan; Du, Ya-ping
2012-05-01
We conduct an investigation into optical nanoantennas in the form of a strip dipole made from aluminum. With the finite-difference time domain simulation both optical input impedance and radiation efficiency of nanostrip antennas are addressed. An equivalent circuit is presented as well for the nanostrip antennas at optical resonances. The optical input resistance can be adjusted by varying the geometric parameters of antenna strips. By changing both strip area and strip length simultaneously, optical input resistance can be adjusted for matching impedance with an external feeding or loading circuit. It is found that the optical radiation efficiency does not change significantly when the size of a nanostrip antenna varies moderately.
Wireless, relative-motion computer input device
Holzrichter, John F.; Rosenbury, Erwin T.
2004-05-18
The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.
Technology Transfer Automated Retrieval System (TEKTRAN)
Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...
Nutrition Marketing on Food Labels
ERIC Educational Resources Information Center
Colby, Sarah E.; Johnson, LuAnn; Scheett, Angela; Hoverson, Bonita
2010-01-01
Objective: This research sought to determine how often nutrition marketing is used on labels of foods that are high in saturated fat, sodium, and/or sugar. Design and Setting: All items packaged with food labels (N = 56,900) in all 6 grocery stores in Grand Forks, ND were surveyed. Main Outcome Measure(s): Marketing strategy, nutrient label…
Meat and Poultry Labeling Terms
... Food Standards and Labels: The Facts Labeling and Marketing Information [ Top of Page ] OVEN PREPARED: Product is fully cooked and ready to eat. [ Top of Page ] YOUNG TURKEY: Turkeys of either sex that are less than 8 months of age according to present regulations. [ Top of Page ] Last ...
Constrained Task Assignment and Scheduling On Networks of Arbitrary Topology
NASA Astrophysics Data System (ADS)
Jackson, Justin Patrick
This dissertation develops a framework to address centralized and distributed constrained task assignment and task scheduling problems. This framework is used to prove properties of these problems that can be exploited, develop effective solution algorithms, and to prove important properties such as correctness, completeness and optimality. The centralized task assignment and task scheduling problem treated here is expressed as a vehicle routing problem with the goal of optimizing mission time subject to mission constraints on task precedence and agent capability. The algorithm developed to solve this problem is able to coordinate vehicle (agent) timing for task completion. This class of problems is NP-hard and analytical guarantees on solution quality are often unavailable. This dissertation develops a technique for determining solution quality that can be used on a large class of problems and does not rely on traditional analytical guarantees. For distributed problems several agents must communicate to collectively solve a distributed task assignment and task scheduling problem. The distributed task assignment and task scheduling algorithms developed here allow for the optimization of constrained military missions in situations where the communication network may be incomplete and only locally known. Two problems are developed. The distributed task assignment problem incorporates communication constraints that must be satisfied; this is the Communication-Constrained Distributed Assignment Problem. A novel distributed assignment algorithm, the Stochastic Bidding Algorithm, solves this problem. The algorithm is correct, probabilistically complete, and has linear average-case time complexity. The distributed task scheduling problem addressed here is to minimize mission time subject to arbitrary predicate mission constraints; this is the Minimum-time Arbitrarily-constrained Distributed Scheduling Problem. The Optimal Distributed Non-sequential Backtracking Algorithm
Characteristic operator functions for quantum input-plant-output models and coherent control
NASA Astrophysics Data System (ADS)
Gough, John E.
2015-01-01
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.
Characteristic operator functions for quantum input-plant-output models and coherent control
Gough, John E.
2015-01-15
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.
A Generalized Mixture Framework for Multi-label Classification
Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos
2015-01-01
We develop a novel probabilistic ensemble framework for multi-label classification that is based on the mixtures-of-experts architecture. In this framework, we combine multi-label classification models in the classifier chains family that decompose the class posterior distribution P(Y1, …, Yd|X) using a product of posterior distributions over components of the output space. Our approach captures different input–output and output–output relations that tend to change across data. As a result, we can recover a rich set of dependency relations among inputs and outputs that a single multi-label classification model cannot capture due to its modeling simplifications. We develop and present algorithms for learning the mixtures-of-experts models from data and for performing multi-label predictions on unseen data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods. PMID:26613069
21 CFR 201.71 - Magnesium labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Magnesium labeling. 201.71 Section 201.71 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.71 Magnesium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...
21 CFR 201.70 - Calcium labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Calcium labeling. 201.70 Section 201.70 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.70 Calcium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the calcium content...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
Displacements and rotations of a body moving about an arbitrary axis in a global reference frame
Hollerbach, K.; Hollister, A.
1995-11-01
Measurement of human joint motion frequently involves the use of markers to describe joint motion in a global reference frame. Results may be quite arbitrary if the reference frame is not properly chosen with respect to the joint`s rotational axis(es). In nature joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. Calculations are made of the errors that result when joint motion occurs about an arbitrary axis in a global reference frame.
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Senovilla, José M. M.
2010-08-01
Standard singularity theorems are proven in Lorentzian manifolds of arbitrary dimension n if they contain closed trapped submanifolds of arbitrary co-dimension. By using the mean curvature vector to characterize trapped submanifolds, a unification of the several possibilities for the boundary conditions in the traditional theorems and their generalization to an arbitrary co-dimension is achieved. The classical convergence conditions must be replaced by a condition on sectional curvatures, or tidal forces, which reduces to the former in the cases of the co-dimension 1, 2 or n.
On the plane potential flow past a lattice of arbitrary airfoils
NASA Technical Reports Server (NTRS)
Garrick, I E
1944-01-01
The two-dimensional, incompressible potential flow past a lattice of airfoils of arbitrary shape is investigated theoretically. The problem is treated by usual methods of conformal mapping in several stages, one stage corresponding to the mapping of the framework of the arbitrary line lattice and another significant stage corresponding to the Theodorsen method for the mapping of the arbitrary single wing profile into a circle. A particular feature in the theoretical treatment is the special handling of the regions at an infinite distance in front of and behind the lattice. Expressions are given for evaluation of the velocity and pressure distribution at the airfoil boundary. An illustrative numerical example is included.
Scaling of global input-output networks
NASA Astrophysics Data System (ADS)
Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming
2016-06-01
Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.
NASA Astrophysics Data System (ADS)
Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars
2015-01-01
This study presents an analytical approach to simulate nuclide migration through a channel in a fracture accounting for an arbitrary-length decay chain. The nuclides are retarded as they diffuse in the porous rock matrix and stagnant zones in the fracture. The Laplace transform and similarity transform techniques are applied to solve the model. The analytical solution to the nuclide concentrations at the fracture outlet is governed by nine parameters representing different mechanisms acting on nuclide transport through a fracture, including diffusion into the rock matrices, diffusion into the stagnant water zone, chain decay and hydrodynamic dispersion. Furthermore, to assess how sensitive the results are to parameter uncertainties, the Sobol method is applied in variance-based global sensitivity analyses of the model output. The Sobol indices show how uncertainty in the model output is apportioned to the uncertainty in the model input. This method takes into account both direct effects and interaction effects between input parameters. The simulation results suggest that in the case of pulse injections, ignoring the effect of a stagnant water zone can lead to significant errors in the time of first arrival and the peak value of the nuclides. Likewise, neglecting the parent and modeling its daughter as a single stable species can result in a significant overestimation of the peak value of the daughter nuclide. It is also found that as the dispersion increases, the early arrival time and the peak time of the daughter decrease while the peak value increases. More importantly, the global sensitivity analysis reveals that for time periods greater than a few thousand years, the uncertainty of the model output is more sensitive to the values of the individual parameters than to the interaction between them. Moreover, if one tries to evaluate the true values of the input parameters at the same cost and effort, the determination of priorities should follow a certain
Multiple-input experimental modal analysis
NASA Technical Reports Server (NTRS)
Allemang, R. J.; Brown, D. L.
1985-01-01
The development of experimental modal analysis techniques is reviewed. System and excitation assumptions are discussed. The methods examined include the forced normal mode excitation method, the frequency response function method, the damped complex exponential response method, the Ibrahim time domain approach, the polyreference approach, and mathematical input-output model methods. The current trend toward multiple input utilization in the estimation of system parameters is noted.
Input/output system for multiprocessors
Bernick, D.L.; Chan, K.K.; Chan, W.M.; Dan, Y.F.; Hoang, D.M.; Hussain, Z.; Iswandhi, G.I.; Korpi, J.E.; Sanner, M.W.; Zwangerman, J.A.
1989-04-11
A device controller is described, comprising: a first port-input/output controller coupled to a first input/output channel bus; and a second port-input/output controlled coupled to a second input/output channel bus; each of the first and second port-input/output controllers having: a first ownership latch means for granting shared ownership of the device controller to a first host processor to provide a first data path on a first I/O channel through the first port I/O controller between the first host processor and any peripheral, and at least a second ownership latch means operative independently of the first ownership latch means for granting shared ownership of the device controller to a second host processor independently of the first port input/output controller to provide a second data path on a second I/O channel through the second port I/O controller between the second host processor and any peripheral devices coupled to the device controller.
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Kelkar, S. S.; Lee, F. C.
1983-01-01
A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.
Significance of Input Correlations in Striatal Function
Yim, Man Yi; Aertsen, Ad; Kumar, Arvind
2011-01-01
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia. PMID:22125480
Influential input classification in probabilistic multimedia models
Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.; Geng, Shu
1999-05-01
Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions one should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.
Synthesis Of Labeled Metabolites
Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert
2004-03-23
The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.
Goodman, Mark M.; Shi, Bing Zhi; Keil, Robert N.
1999-01-26
Novel compounds having the structure: ##STR1## where X in .beta. configuration is phenyl, naphthyl; 2,3 or 4-iodophenyl; 2,3 or 4-(trimethylsilyl)phenyl; 3,4,5 or 6-iodonaphthyl; 3,4,5 or 6-(trimethylsilyl)naphthyl; 2,3 or 4-(trialkylstannyl)phenyl; or 3,4,5 or 6-(trialkylstannyl)naphthyl Y in .beta. configuration is Y.sub.1 or Y.sub.2, where Y.sub.1 is 2-fluoroethoxy, 3-fluoropropoxy, 4-fluorobutoxy, 2-fluorocyclopropoxy, 2 or 3-fluorocyclobutoxy, R,S 1'-fluoroisopropoxy, R 1'-fluoroisopropoxy, S 1'-fluoroisopropoxy, 1',3'-difluoroisopropoxy, R,S 1'-fluoroisobutoxy, R 1'-fluoroisobutoxy, S 1'-fluoroisobutoxy, R,S 4'-fluoroisobutoxy, R 4'-fluoroisobutoxy, S 4'-fluoroisobutoxy, or 1',1'-di(fluoromethyl)isobutoxy, and Y.sub.2 is 2-methanesulfonyloxy ethoxy, 3-methanesulfonyloxy propoxy, 4-methanesulfonyloxy butoxy, 2-methanesulfonyloxy cyclopropoxy, 2 or 3-methanesulfonyloxy cyclobutoxy, 1'methanesulfonyloxy isopropoxy, 1'-fluoro, 3'-methanesulfonyloxy isopropoxy, 1'-methanesulfonyloxy, 3'-fluoro isopropoxy, 1'-methanesulfonyloxy isobutoxy, or 4'-methanesulfonyloxy isobutoxy bind dopamine transporter protein and can be labeled with .sup.18 F or .sup.123 I for imaging.
Muller, J.F.
1987-01-01
An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.
A new synthesis for terrestrial nitrogen inputs
NASA Astrophysics Data System (ADS)
Houlton, B. Z.; Morford, S. L.
2015-04-01
Nitrogen (N) inputs sustain many different aspects of local soil processes, their services, and their interactions with the broader Earth system. We present a new synthesis for terrestrial N inputs that explicitly considers both rock and atmospheric sources of N. We review evidence for state-factor regulation over biological fixation, deposition, and rock-weathering inputs from local to global scales and in transient vs. steady-state landscapes. Our investigation highlights strong organism and topographic (relief) controls over all three N input pathways, with the anthropogenic factor clearly important in rising N deposition rates. In addition, the climate, parent material, and time factors are shown to influence patterns of fixation and rock-weathering inputs of N in diverse soil systems. Data reanalysis suggests that weathering of N-rich parent material could resolve several known cases of "missing N inputs" in ecosystems, and demonstrates how the inclusion of rock N sources into modern concepts can lead to a richer understanding of spatial and temporal patterns of ecosystem N availability. For example, explicit consideration of rock N inputs into classic pedogenic models (e.g., the Walker and Syers model) yields a fundamentally different expectation from the standard case: weathering of N-rich parent material could enhance N availability and facilitate terrestrial succession in developmentally young sites even in the absence of N-fixing organisms. We conclude that a state-factor framework for N complements our growing understanding multiple-source controls on phosphorus and cation availability in Earth's soil, but with significant exceptions given the lack of an N fixation analogue in all other biogeochemical cycles. Rather, non-symmetrical feedbacks among input pathways in which high N inputs via deposition or rock-weathering sources have the potential to reduce biological fixation rates mark N as fundamentally different from other nutrients. The new synthesis
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys.
Gharbawie, Omar A; Stepniewska, Iwona; Kaas, Jon H
2016-07-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity. PMID:26254903
Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement
Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong
2005-08-15
We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value.
Diffusion equations over arbitrary triangulated surfaces for filtering and texture applications.
Wu, Chunlin; Deng, Jiansong; Chen, Falai
2008-01-01
In computer graphics, triangular mesh representations of surfaces have become very popular. Compared with parametric and implicit forms of surfaces, triangular mesh surfaces have many advantages, such as easy to render, convenient to store and the ability to model geometric objects with arbitrary topology. In this paper, we are interested in data processing over triangular mesh surfaces through PDEs (partial differential equations). We study several diffusion equations over triangular mesh surfaces, and present corresponding numerical schemes to solve them. Our methods work for triangular mesh surfaces with arbitrary geometry (the angles of each triangle are arbitrary) and topology (open meshes or closed meshes of arbitrary genus). Besides the flexibility, our methods are efficient due to the implicit/semi-implicit time discretization. We finally apply our methods to several filtering and texture applications such as image processing, texture generating and regularization of harmonic maps over triangular mesh surfaces. The results demonstrate the flexibility and effectiveness of our methods. PMID:18369272
Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitrary Polyhedral Mesh
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2012-01-01
This paper summarizes procedures of generating the arbitrary polyhedral mesh as well as presents sample results from its application to the numerical solution of a single-element LDI combustor using a preliminary version of the new OpenNCC.
27 CFR 19.517 - Statements required on labels under an exemption from label approval.
Code of Federal Regulations, 2011 CFR
2011-04-01
... labels under an exemption from label approval. 19.517 Section 19.517 Alcohol, Tobacco Products and... PLANTS Liquor Bottle, Label, and Closure Requirements Labeling Requirements § 19.517 Statements required on labels under an exemption from label approval. If a proprietor bottles spirits for domestic...
27 CFR 19.517 - Statements required on labels under an exemption from label approval.
Code of Federal Regulations, 2014 CFR
2014-04-01
... labels under an exemption from label approval. 19.517 Section 19.517 Alcohol, Tobacco Products and... PLANTS Liquor Bottle, Label, and Closure Requirements Labeling Requirements § 19.517 Statements required on labels under an exemption from label approval. If a proprietor bottles spirits for domestic...
27 CFR 19.517 - Statements required on labels under an exemption from label approval.
Code of Federal Regulations, 2013 CFR
2013-04-01
... labels under an exemption from label approval. 19.517 Section 19.517 Alcohol, Tobacco Products and... PLANTS Liquor Bottle, Label, and Closure Requirements Labeling Requirements § 19.517 Statements required on labels under an exemption from label approval. If a proprietor bottles spirits for domestic...
27 CFR 19.517 - Statements required on labels under an exemption from label approval.
Code of Federal Regulations, 2012 CFR
2012-04-01
... labels under an exemption from label approval. 19.517 Section 19.517 Alcohol, Tobacco Products and... PLANTS Liquor Bottle, Label, and Closure Requirements Labeling Requirements § 19.517 Statements required on labels under an exemption from label approval. If a proprietor bottles spirits for domestic...
Regridding Scientific Mesh Data Using Arbitrary Cell Neighborhood Information
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter
2015-04-01
A spacial case of the regrid operator uses information of neighboring cells of a cell of interest to perform interpolation on scientific meshes. Example use-cases are smoothing skewed data fields, computing value of the first derivative in oceanographic applications, etc. Using neighbors' information is proved to improve the accuracy of the computations for a cell of interest. The regrid works in two steps: mapping step which assigns to each cell of a mesh a set of its neighboring cells and interpolation step which estimates the data on each cell by combining the data from its neighbors. The common method to specify a cell neighborhood is the stencil string which is originally defined only for structured meshes, e.g., five-point stencil. The stencil was later generalized to express neighborhood on unstructured meshes. A stencil w.r.t. an unstructured mesh consists of a sequence of digits representing the dimensions of neighboring cells of a cell. For instance, the stencil 010 w.r.t. a mesh means any calculation for a vertex needs to have access to all the adjacent vertices (i.e., vertices sharing an edge with the vertex of interest). The stencil uses hard coded dimensions and thus contains no topological abstraction. Moreover, it is not obvious whether the result is the union of elements visited in each intermediate layer (hull) or the elements only in the last layer (halo). In addition, it is not possible to filter intermediate cells using predicates. Finally, existing mesh libraries (e.g., GrAL and GridFields) which accommodate the stencil concept do not provide a generic implementation, i.e., a specific Python or C++ APIs needs to be implemented for each stencil. We propose a neighborhood expression which uses the topological relationships (i.e., boundary, co-boundary, and adjacencies) to express arbitrary cell neighborhood. The expression contains any number of the topological relationships w.r.t. to a mesh and a cell as initial context of the neighborhood
Synthesis of Arbitrary Unitary Transformations in Quantum Systems by Householder Reflections
Ivanov, P. A.; Vitanov, N. V.
2007-12-26
We demonstrate that Householder reflections emerge naturally in the propagator of a coherently driven degenerate two-level system. Such reflections are a very powerful tool for constructing arbitrary unitary transformations of an N-state quantum system. We present examples for construction of discrete Fourier transforms, superposition-to-superposition navigation between pure states, engineering of arbitrary mixed states, and entanglement of trapped ions.
Synthesis Of Arbitrary X-Ray Projections From A Finite Number Of Existing Projections
NASA Astrophysics Data System (ADS)
Webber, R. L.; Ruttimann, U. E.; Groenhuis, R. A.; Edholm, P.
1985-06-01
By relating an arbitrary x-ray projection to several projections of the same object produced from a small array of source positions bearing a known circular geometric relationship to each other, it is possible to synthesize approximately an arbitrary projection not contained in the known data set. This investigation explores the underlying theory and applies it to radiographic images of diagnostic interest in dentistry.
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
NASA Astrophysics Data System (ADS)
Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2014-02-01
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
Lower bound on concurrence for arbitrary-dimensional tripartite quantum states
NASA Astrophysics Data System (ADS)
Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun
2016-06-01
In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l -dimensional tripartite quantum states.
Remote Preparation of an Arbitrary Two-atom State in the Cavity QED
NASA Astrophysics Data System (ADS)
Li, Jianping
2016-06-01
A simple scheme for remote preparation of an arbitrary two-atom state in the cavity QED. An arbitrary two-atom entangled state can be prepared perfectly. Our protocol only need single qubit measurement instead of the conventional Bell-state measurement, then it is quite simple but also very robust to the cavity decay and the influence of the thermal field. The probability of the success in our scheme is 1.0.
Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu Wen, Shuangchun
2015-07-27
We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.
Selective chemical labeling of proteins.
Chen, Xi; Wu, Yao-Wen
2016-06-28
Over the years, there have been remarkable efforts in the development of selective protein labeling strategies. In this review, we deliver a comprehensive overview of the currently available bioorthogonal and chemoselective reactions. The ability to introduce bioorthogonal handles to proteins is essential to carry out bioorthogonal reactions for protein labeling in living systems. We therefore summarize the techniques that allow for site-specific "installation" of bioorthogonal handles into proteins. We also highlight the biological applications that have been achieved by selective chemical labeling of proteins. PMID:26940577
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.
Noise facilitates transcriptional control under dynamic inputs.
Kellogg, Ryan A; Tay, Savaş
2015-01-29
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments. PMID:25635454
Six axis force feedback input device
NASA Technical Reports Server (NTRS)
Ohm, Timothy (Inventor)
1998-01-01
The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.
NASA Astrophysics Data System (ADS)
Katahira, Kentaro; Kawamura, Masaki; Okanoya, Kazuo; Okada, Masato
2007-04-01
We investigate a recurrent neural network model with common external and bias inputs that can retrieve branching sequences. Retrieval of memory sequences is one of the most important functions of the brain. A lot of research has been done on neural networks that process memory sequences. Most of it has focused on fixed memory sequences. However, many animals can remember and recall branching sequences. Therefore, we propose an associative memory model that can retrieve branching sequences. Our model has bias input and common external input. Kawamura and Okada reported that common external input enables sequential memory retrieval in an associative memory model with auto- and weak cross-correlation connections. We show that retrieval processes along branching sequences are controllable with both the bias input and the common external input. To analyze the behaviors of our model, we derived the macroscopic dynamical description as a probability density function. The results obtained by our theory agree with those obtained by computer simulations.
Local and Commissural IC Neurons Make Axosomatic Inputs on Large GABAergic Tectothalamic Neurons
Ito, Tetsufumi; Oliver, Douglas L.
2014-01-01
Large GABAergic (LG) neurons are a distinct type of neuron in the inferior colliculus (IC) identified by their dense VGLUT2-containing axosomatic synaptic terminals. Yet, the sources of these terminals are unknown. Since IC glutamatergic neurons express VGLUT2, and IC neurons are known to have local collaterals, we tested the hypothesis that these excitatory, glutamatergic axosomatic inputs on LG neurons come from local axonal collaterals and commissural IC neurons. We injected a recombinant viral tracer into the IC which enabled Golgi-like GFP labeling in both dendrites and axons. In all cases, we found terminals positive for both GFP and VGLUT2 (GFP+/VGLUT2+) that made axosomatic contacts on LG neurons. One to six axosomatic contacts were made on a single LG cell body by a single axonal branch. The GFP-labeled neurons giving rise to the VGLUT2+ terminals on LG neurons were close by. The density of GFP+/VGLUT2+ terminals on the LG neurons was related to the number of nearby GFP-labeled cells. On the contralateral side, a smaller number of LG neurons received axosomatic contacts from GFP+/VGLUT2+ terminals. In cases with a single GFP-labeled glutamatergic neuron, the labeled axonal plexus was flat, oriented in parallel to the fibrodendritic laminae, and contacted 9–30 LG cell bodies within the plexus. Our data demonstrated that within the IC microcircuitry, there is a convergence of inputs from local IC excitatory neurons on LG cell bodies. This suggests that LG neurons are heavily influenced by the activity of the nearby laminar glutamatergic neurons in the IC. PMID:24796971
... 1 serving. You should also pay attention to trans fats on any food label. These fats raise "bad" ... foods and desserts. Many fast food restaurants use trans fats for frying. If a food has these fats, ...
Dietary Supplement Label Database (DSLD)
... Print Report Error T he Dietary Supplement Label Database (DSLD) is a joint project of the National ... participants in the latest survey in the DSLD database (NHANES): The search options: Quick Search, Browse Dietary ...
... Environment Kids Health Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The ... Pay close attention to serving sizes. Products labeled "light" or "lite" must have 1/3 fewer calories ...
The input optics of Advanced LIGO
NASA Astrophysics Data System (ADS)
Tanner, D. B.; Arain, M. A.; Ciani, G.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Heintze, M.; Martin, R. M.; Mueller, C. L.; Williams, L. F.; Mueller, G.; Quetschke, V.; Korth, W. Z.; Reitze, D. H.; Derosa, R. T.; Effler, A.; Kokeyama, K.; Frolov, V. V.; Mullavey, A.; Poeld, J.
2016-03-01
The Input Optics (IO) of advanced LIGO will be described. The IO consists of all the optics between the laser and the power recycling mirror. The scope of the IO includes the following hardware: phase modulators, power control, input mode cleaner, an in-vacuum Faraday isolator, and mode matching telescopes. The IO group has developed and characterized RTP-based phase modulators capable of operation at 180 W cw input power. In addition, the Faraday isolator is compensated for depolarization and thermal lensing effects up to the same power and is capable of achieving greater than 40 dB isolation. This research has been supported by the NSF through Grants PHY-1205512 and PHY-1505598. LIGO-G1600067.
Computer Generated Inputs for NMIS Processor Verification
J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly
2001-06-29
Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999.
LabeledIn: cataloging labeled indications for human drugs.
Khare, Ritu; Li, Jiao; Lu, Zhiyong
2014-12-01
Drug-disease treatment relationships, i.e., which drug(s) are indicated to treat which disease(s), are among the most frequently sought information in PubMed®. Such information is useful for feeding the Google Knowledge Graph, designing computational methods to predict novel drug indications, and validating clinical information in EMRs. Given the importance and utility of this information, there have been several efforts to create repositories of drugs and their indications. However, existing resources are incomplete. Furthermore, they neither label indications in a structured way nor differentiate them by drug-specific properties such as dosage form, and thus do not support computer processing or semantic interoperability. More recently, several studies have proposed automatic methods to extract structured indications from drug descriptions; however, their performance is limited by natural language challenges in disease named entity recognition and indication selection. In response, we report LabeledIn: a human-reviewed, machine-readable and source-linked catalog of labeled indications for human drugs. More specifically, we describe our semi-automatic approach to derive LabeledIn from drug descriptions through human annotations with aids from automatic methods. As the data source, we use the drug labels (or package inserts) submitted to the FDA by drug manufacturers and made available in DailyMed. Our machine-assisted human annotation workflow comprises: (i) a grouping method to remove redundancy and identify representative drug labels to be used for human annotation, (ii) an automatic method to recognize and normalize mentions of diseases in drug labels as candidate indications, and (iii) a two-round annotation workflow for human experts to judge the pre-computed candidates and deliver the final gold standard. In this study, we focused on 250 highly accessed drugs in PubMed Health, a newly developed public web resource for consumers and clinicians on prevention
Replenishment of magma chambers by light inputs
NASA Astrophysics Data System (ADS)
Huppert, Herbert E.; Sparks, R. Stephen J.; Whitehead, John A.; Hallworth, Mark A.
1986-05-01
Magma chambers, particularly those of basaltic composition, are often replenished by an influx of magma whose density is less than that of the resident magma. This paper describes the fundamental fluid mechanics involved in the replenishment by light inputs. If ρ denotes the uniform density of the resident magma and ρ — Δρ that of the input, the situation is described by the reduced gravity g' = gΔρ/ρ, the volume flux Q, and the viscosities of the resident and input magmas νe and νi, respectively. The (nondimensional) Reynolds numbers, Ree = (g'Q3)1/5/νe and Rei = (g'Q3)1/5/νi and chamber geometry then completely specify the system. For sufficiently low values of the two Reynolds numbers (each less than approximately 10), the input rises as a laminar conduit. For larger values of the Reynolds numbers, the conduit may break down and exhibit either a varicose or a meander instability and entrain some resident magma. At still larger Reynolds numbers, the flow will become quite unsteady and finally turbulent. The values of the Reynolds numbers at which these transitions occur have been documented by a series of experiments with water, glycerine, and corn syrup. If the input rises as a turbulent plume, significant entrainment of the resident magma can take place. The final spatial distribution of the mixed magma depends on the geometry of the chamber. If the chamber is much wider than it is high, the mixed magma forms a compositionally stratified region between the roof and a sharp front above uncontaminated magma. In the other geometrical extreme, the input magma is mixed with almost all of the resident magma. If the density of the resident magma is already stratified, the input plume may penetrate only part way into the chamber, even though its initial density is less than that of the lowest density resident magma. The plume will then intrude horizontally and form a hybrid layer at an intermediate depth. This provides a mechanism for preventing even
An update of input instructions to TEMOD
NASA Technical Reports Server (NTRS)
1973-01-01
The theory and operation of a FORTRAN 4 computer code, designated as TEMOD, used to calcuate tubular thermoelectric generator performance is described in WANL-TME-1906. The original version of TEMOD was developed in 1969. A description is given of additions to the mathematical model and an update of the input instructions to the code. Although the basic mathematical model described in WANL-TME-1906 has remained unchanged, a substantial number of input/output options were added to allow completion of module performance parametrics as required in support of the compact thermoelectric converter system technology program.
Input/Output Subroutine Library Program
NASA Technical Reports Server (NTRS)
Collier, James B.
1988-01-01
Efficient, easy-to-use program moved easily to different computers. Purpose of NAVIO, Input/Output Subroutine Library, provides input/output package of software for FORTRAN programs that is portable, efficient, and easy to use. Implemented as hierarchy of libraries. At bottom is very small library containing only non-portable routines called "I/O Kernel." Design makes NAVIO easy to move from one computer to another, by simply changing kernel. NAVIO appropriate for software system of almost any size wherein different programs communicate through files.
Eikvil, Line; Jenssen, Tor-Kristian; Holden, Marit
2015-06-01
Document collections resulting from searches in the biomedical literature, for instance, in PubMed, are often so large that some organization of the returned information is necessary. Clustering is an efficient tool for organizing search results. To help the user to decide how to continue the search for relevant documents, the content of each cluster can be characterized by a set of representative keywords or cluster labels. As different users may have different interests, it can be desirable with solutions that make it possible to produce labels from a selection of different topical categories. We therefore introduce the concept of multi-focus cluster labeling to give users the possibility to get an overview of the contents through labels from multiple viewpoints. The concept for multi-focus cluster labeling has been established and has been demonstrated on three different document collections. We illustrate that multi-focus visualizations can give an overview of clusters along axes that general labels are not able to convey. The approach is generic and should be applicable to any biomedical (or other) domain with any selection of foci where appropriate focus vocabularies can be established. A user evaluation also indicates that such a multi-focus concept is useful. PMID:25869415
Deng, Yunping; Lanciego, Jose; Goff, Lydia Kerkerian-Le; Coulon, Patrice; Salin, Pascal; Kachidian, Philippe; Lei, Wanlong; Del Mar, Nobel; Reiner, Anton
2015-01-01
In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs. Of note, we found that individual dSPNs receive about twice as many axospinous synaptic terminals from IT-type (intratelencephalically projecting) cortical neurons as they do from PT-type (pyramidal tract projecting) cortical neurons. We also found that PT-type axospinous synaptic terminals were about 1.5 times as common on individual iSPNs as IT-type axospinous synaptic terminals. Overall, a higher percentage of IT-type terminals contacted dSPN than iSPN spines, while a higher percentage of PT-type terminals contacted iSPN than dSPN spines. Notably, IT-type axospinous synaptic terminals were significantly larger on iSPN spines than on dSPN spines. By contrast to axospinous input, the axodendritic PT-type input to dSPNs was more substantial than that to iSPNs, and the axodendritic IT-type input appeared to be meager and comparable for both SPN types. The prominent axodendritic PT-type input to dSPNs may accentuate their PT-type responsiveness, and the large size of axospinous IT-type terminals on iSPNs may accentuate their IT-type responsiveness. Using transneuronal labeling with rabies virus to selectively label the cortical neurons with direct input to the dSPNs projecting to the substantia nigra pars reticulata, we found that the input predominantly arose from neurons in the upper layers of motor cortices, in which IT-type perikarya predominate. The differential cortical input to SPNs is likely to play key roles in motor control and motor learning. PMID:25926776
Projection-Specific Characteristics of Retinal Input to the Brain
Gauvain, Gregory
2015-01-01
The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences. PMID:25904807
OpenCL based machine learning labeling of biomedical datasets
NASA Astrophysics Data System (ADS)
Amoros, Oscar; Escalera, Sergio; Puig, Anna
2011-03-01
In this paper, we propose a two-stage labeling method of large biomedical datasets through a parallel approach in a single GPU. Diagnostic methods, structures volume measurements, and visualization systems are of major importance for surgery planning, intra-operative imaging and image-guided surgery. In all cases, to provide an automatic and interactive method to label or to tag different structures contained into input data becomes imperative. Several approaches to label or segment biomedical datasets has been proposed to discriminate different anatomical structures in an output tagged dataset. Among existing methods, supervised learning methods for segmentation have been devised to easily analyze biomedical datasets by a non-expert user. However, they still have some problems concerning practical application, such as slow learning and testing speeds. In addition, recent technological developments have led to widespread availability of multi-core CPUs and GPUs, as well as new software languages, such as NVIDIA's CUDA and OpenCL, allowing to apply parallel programming paradigms in conventional personal computers. Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community. In a first stage, Adaboost trains a binary classifier from a set of pre-labeled samples described by a set of features. This binary classifier is defined as a weighted combination of weak classifiers. Each weak classifier is a simple decision function estimated on a single feature value. Then, at the testing stage, each weak classifier is independently applied on the features of a set of unlabeled samples. In this work, we propose an alternative representation of the Adaboost binary classifier. We use this proposed representation to define a new GPU-based parallelized Adaboost testing stage using OpenCL. We provide numerical experiments based on large available data sets and we compare our results to CPU-based strategies in terms of time and
NASA Astrophysics Data System (ADS)
Filioglou, M.; Balis, D.; Siomos, N.; Poupkou, A.; Dimopoulos, S.; Chaikovsky, A.
2016-06-01
A targeted sensitivity study of the LIRIC algorithm was considered necessary to estimate the uncertainty introduced to the volume concentration profiles, due to the arbitrary selection of user-defined input parameters. For this purpose three different tests were performed using Thessaloniki's Lidar data. Overall, tests in the selection of the regularization parameters, an upper and a lower limit test were performed. The different sensitivity tests were applied on two cases with different predominant aerosol types, a dust episode and a typical urban case.
Sun, Wensi; May, Paul J
2014-12-15
Preganglionic motoneurons supplying the ciliary ganglion control lens accommodation and pupil diameter. In cats, these motoneurons make up the preganglionic Edinger-Westphal population, which lies rostral, dorsal, and ventral to the oculomotor nucleus. A recent cat study suggested that caudal motoneurons control the lens and rostral motoneurons control the pupil. This led us to examine the morphology, ultrastructure, and pretectal inputs of these populations. Preganglionic motoneurons retrogradely labeled by introducing tracer into the cat ciliary ganglion generally fell into two morphologic categories. Fusiform neurons were located rostrally, in the anteromedian nucleus and between the oculomotor nuclei. Multipolar neurons were found caudally, dorsal and ventral to the oculomotor nucleus. The dendrites of preganglionic motoneurons within the anteromedian nucleus crossed the midline, providing a possible basis for consensual responses. Ultrastructurally, several different classes of synaptic profiles contact preganglionic motoneurons, suggesting that their activity may be modified by a variety of inputs. Furthermore, there were differences in the synaptic populations contacting the rostral vs. caudal populations, supporting the contention that these populations display functional differences. Anterogradely labeled pretectal terminals were observed in close association with labeled preganglionic motoneurons, particularly in the rostral population. Ultrastructural analysis revealed that these terminals, packed with clear, spherical vesicles, made asymmetric synaptic contacts onto motoneurons in the rostral population, indicating that these cells serve the pupillary light reflex. Thus, the preganglionic motoneurons found in the cat display morphologic, ultrastructural, and connectional differences suggesting that this rostral preganglionic population is specialized for pupil control, whereas more caudal elements control the lens. PMID:24706263
Sun, Wensi; May, Paul J.
2014-01-01
Preganglionic motoneurons supplying the ciliary ganglion control lens accommodation and pupil diameter. In cats, these motoneurons make up the preganglionic Edinger-Westphal population, which lies rostral, dorsal and ventral to the oculomotor nucleus. A recent cat study suggested that caudal motoneurons control the lens and rostral motoneurons control the pupil. This led us to examine the morphology, ultrastructure and pretectal inputs of these populations. Preganglionic motoneurons retrogradely labeled by introducing tracer into the cat ciliary ganglion generally fell into two morphologic categories. Fusiform neurons were located rostrally, in the anteromedian nucleus and between the oculomotor nuclei. Multipolar neurons were found caudally, dorsal and ventral to the oculomotor nucleus. The dendrites of preganglionic motoneurons within the anteromedian nucleus crossed the midline, providing a possible basis for consensual responses. Ultrastructurally, several different classes of synaptic profiles contact preganglionic motoneurons, suggesting their activity may be modified by a variety of inputs. Furthermore, there were differences between the synaptic populations contacting the rostral and caudal populations, supporting the contention that these populations display functional differences. Anterogradely labeled pretectal terminals were observed in close association with labeled preganglionic motoneurons, particularly in the rostral population. Ultrastructural analysis revealed that these terminals, packed with clear, spherical vesicles, made asymmetric synaptic contacts onto motoneurons in the rostral population indicating these cells serve the pupillary light reflex. Thus, the preganglionic motoneurons found in the cat display morphologic, ultrastructural and connectional differences suggesting that this rostral preganglionic population is specialized for pupil control, while more caudal elements control the lens. PMID:24706263
Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins
López, Carlos J; Fleissner, Mark R; Guo, Zhefeng; Kusnetzow, Ana K; Hubbell, Wayne L
2009-01-01
Recent evidence suggests that proteins at equilibrium can exist in a manifold of conformational substates, and that these substates play important roles in protein function. Therefore, there is great interest in identifying regions in proteins that are in conformational exchange. Electron paramagnetic resonance spectra of spin-labeled proteins containing the nitroxide side chain (R1) often consist of two (or more) components that may arise from slow exchange between conformational substates (lifetimes > 100 ns). However, crystal structures of proteins containing R1 have shown that multicomponent spectra can also arise from equilibria between rotamers of the side chain itself. In this report, it is shown that these scenarios can be distinguished by the response of the system to solvent perturbation with stabilizing osmolytes such as sucrose. Thus, site-directed spin labeling (SDSL) emerges as a new tool to explore slow conformational exchange in proteins of arbitrary size, including membrane proteins in a native-like environment. Moreover, equilibrium between substates with even modest differences in conformation is revealed, and the simplicity of the method makes it suitable for facile screening of multiple proteins. Together with previously developed strategies for monitoring picosecond to millisecond backbone dynamics, the results presented here expand the timescale over which SDSL can be used to explore protein flexibility. PMID:19585559
Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins.
López, Carlos J; Fleissner, Mark R; Guo, Zhefeng; Kusnetzow, Ana K; Hubbell, Wayne L
2009-08-01
Recent evidence suggests that proteins at equilibrium can exist in a manifold of conformational substates, and that these substates play important roles in protein function. Therefore, there is great interest in identifying regions in proteins that are in conformational exchange. Electron paramagnetic resonance spectra of spin-labeled proteins containing the nitroxide side chain (R1) often consist of two (or more) components that may arise from slow exchange between conformational substates (lifetimes > 100 ns). However, crystal structures of proteins containing R1 have shown that multicomponent spectra can also arise from equilibria between rotamers of the side chain itself. In this report, it is shown that these scenarios can be distinguished by the response of the system to solvent perturbation with stabilizing osmolytes such as sucrose. Thus, site-directed spin labeling (SDSL) emerges as a new tool to explore slow conformational exchange in proteins of arbitrary size, including membrane proteins in a native-like environment. Moreover, equilibrium between substates with even modest differences in conformation is revealed, and the simplicity of the method makes it suitable for facile screening of multiple proteins. Together with previously developed strategies for monitoring picosecond to millisecond backbone dynamics, the results presented here expand the timescale over which SDSL can be used to explore protein flexibility. PMID:19585559
Pump combiner loss as a function of input numerical aperture power distribution
NASA Astrophysics Data System (ADS)
Sévigny, Benoit; Poirier, Pierre; Faucher, Mathieu
2009-02-01
High-power combiner designs (such as kilowatt-class combiners and beyond) are increasingly aggressive on brightness conservation in order to reduce the brightness loss of the pumps as much as possible in both direct diode combining and pump and signal coupling, especially with the advent of next-generation high-power pumps. Since most of the pump loss is due to brightness loss across the combiner, tighter designs (close to the brightness limit) are considerably more sensitive to variations in the input power distribution as a function of numerical aperture; for instance, next-generation, high-power multi-emitter pumps are likely to have larger numerical apertures than conventional single-emitter diodes. As a consequence, pump insertion loss for a given combiner design sitting close to the brightness limit should be dependant on the input power distribution. Aside from presenting a manufacturing challenge, high brightness combiners also imply more sophisticated testing to allow a deeper understanding of the loss with respect to the far-field distribution of the pump inputs and thus enable the extrapolation of loss for an arbitrary, cylindrically symmetric radiant intensity distribution. In this paper, we present a novel test method to measure loss as a function of numerical aperture (NA) fill factor using a variable NA source with square-shaped far field distributions. Results are presented for a range of combiners, such as 7x1 and 19x1 pump combiners, with different brightness ratio and fiber inputs. Combiners violating the brightness conservation equation are also characterized in order to estimate the loss as a function of input power vs. NA distribution and fill factor.
Instrumentation for measuring energy inputs to implements
Tompkins, F.D.; Wilhelm, L.R.
1981-01-01
A microcomputer-based instrumentation system for monitoring tractor operating parameters and energy inputs to implements was developed and mounted on a 75-power-takeoff-KW tractor. The instrumentation system, including sensors and data handling equipment, is discussed. 10 refs.
Selecting training inputs via greedy rank covering
Buchsbaum, A.L.; Santen, J.P.H. van
1996-12-31
We present a general method for selecting a small set of training inputs, the observations of which will suffice to estimate the parameters of a given linear model. We exemplify the algorithm in terms of predicting segmental duration of phonetic-segment feature vectors in a text-to-speech synthesizer, but the algorithm will work for any linear model and its associated domain.
Multichannel analyzers at high rates of input
NASA Technical Reports Server (NTRS)
Rudnick, S. J.; Strauss, M. G.
1969-01-01
Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.
Adaptive Random Testing with Combinatorial Input Domain
Lu, Yansheng
2014-01-01
Random testing (RT) is a fundamental testing technique to assess software reliability, by simply selecting test cases in a random manner from the whole input domain. As an enhancement of RT, adaptive random testing (ART) has better failure-detection capability and has been widely applied in different scenarios, such as numerical programs, some object-oriented programs, and mobile applications. However, not much work has been done on the effectiveness of ART for the programs with combinatorial input domain (i.e., the set of categorical data). To extend the ideas to the testing for combinatorial input domain, we have adopted different similarity measures that are widely used for categorical data in data mining and have proposed two similarity measures based on interaction coverage. Then, we propose a new version named ART-CID as an extension of ART in combinatorial input domain, which selects an element from categorical data as the next test case such that it has the lowest similarity against already generated test cases. Experimental results show that ART-CID generally performs better than RT, with respect to different evaluation metrics. PMID:24772036
Soil Organic Carbon Input from Urban Turfgrasses
Technology Transfer Automated Retrieval System (TEKTRAN)
Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...
Multiple Input Microcantilever Sensor with Capacitive Readout
Britton, C.L., Jr.; Brown, G.M.; Bryan, W.L.; Clonts, L.G.; DePriest, J.C.; Emergy, M.S.; Ericson, M.N.; Hu, Z.; Jones, R.L.; Moore, M.R.; Oden, P.I.; Rochelle, J.M.; Smith, S.F.; Threatt, T.D.; Thundat, T.; Turner, G.W.; Warmack, R.J.; Wintenberg, A.L.
1999-03-11
A surface-micromachined MEMS process has been used to demonstrate multiple-input chemical sensing using selectively coated cantilever arrays. Combined hydrogen and mercury-vapor detection was achieved with a palm-sized, self-powered module with spread-spectrum telemetry reporting.
Input-Based Incremental Vocabulary Instruction
ERIC Educational Resources Information Center
Barcroft, Joe
2012-01-01
This fascinating presentation of current research undoes numerous myths about how we most effectively learn new words in a second language. In clear, reader-friendly text, the author details the successful approach of IBI vocabulary instruction, which emphasizes the presentation of target vocabulary as input early on and the incremental (gradual)…
Soil Organic Carbon Input from Urban Turfgrasses
Technology Transfer Automated Retrieval System (TEKTRAN)
Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...
Anomalous neuronal responses to fluctuated inputs
NASA Astrophysics Data System (ADS)
Hosaka, Ryosuke; Sakai, Yutaka
2015-10-01
The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.
DO MODEL UNCERTAINTY WITH CORRELATED INPUTS
The effect of correlation among the input parameters and variables on the output uncertainty of the Streeter-Phelps water quality model is examined. hree uncertainty analysis techniques are used: sensitivity analysis, first-order error analysis, and Monte Carlo simulation. odifie...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA...
7 CFR 3430.15 - Stakeholder input.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.15 Section 3430.15 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA...
7 CFR 3430.15 - Stakeholder input.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.15 Section 3430.15 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE COMPETITIVE AND NONCOMPETITIVE NON-FORMULA FEDERAL ASSISTANCE PROGRAMS-GENERAL...
Anomalous neuronal responses to fluctuated inputs.
Hosaka, Ryosuke; Sakai, Yutaka
2015-10-01
The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain. PMID:26565270
Numerical simulation of LIGO input optics
NASA Astrophysics Data System (ADS)
None, Shivanand; Jamal, Nafis; Yoshida, Sanichiro
2005-11-01
Numerical analysis has been carried out to understand the performance of the Input Optics used in the first generation of LIGO (Laser Interferometer Gravitational-wave Observatory) detector. The input optics is a subsystem consisting of a mode cleaner and mode-matching telescope, where all the optics are suspended and installed in vacuum. Using the end-to-end package (LIGO programming language), computer codes have been made to simulate the input optics. Giving realistic seismic noise to the suspension point of the optics and using the length sensing/alignment sensing control for the mode cleaner, the performance of the input optics has been simulated under various scenarios such as with an order of magnitude higher seismic noise than the normal level, and with/without the alignment sensing control feedback from the arm cavity to the mode-matching telescope. The results are assessed in terms of the beam pointing fluctuation of the laser beam going into the arm cavities, and its influence on the optical coupling to the arm cavities and the noise level at the gravitational wave port signal.
Treatments of Precipitation Inputs to Hydrologic Models
Technology Transfer Automated Retrieval System (TEKTRAN)
Hydrological models are used to assess many water resources problems from agricultural use and water quality to engineering issues. The success of these models are dependent on correct parameterization; the most sensitive being the rainfall input time series. These records can come from land-based ...
Input, Interaction and Output: An Overview
ERIC Educational Resources Information Center
Gass, Susan; Mackey, Alison
2006-01-01
This paper presents an overview of what has come to be known as the "Interaction Hypothesis," the basic tenet of which is that through input and interaction with interlocutors, language learners have opportunities to notice differences between their own formulations of the target language and the language of their conversational…
ERIC Educational Resources Information Center
Kabadayi, Abdulkadir
2006-01-01
Language, as is known, is acquired under certain conditions: rapid and sequential brain maturation and cognitive development, the need to exchange information and to control others' actions, and an exposure to appropriate speech input. This research aims at analyzing preschoolers' overgeneralizations of the object labeling process in different…
Andi's Story: An Oral History of a Woman Labeled Learning Disabled
ERIC Educational Resources Information Center
Polo, Maude Ann
2010-01-01
Traditional special education research has excluded personal stories told by those most affected by the special education system. Specialists continue to diagnose, label, and provide assistance to persons with learning disabilities with little input from the persons most affected. The field continues to rely on the medical model, placing the locus…
49 CFR 172.426 - OXIDIZER label.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....
49 CFR 172.426 - OXIDIZER label.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....
49 CFR 172.426 - OXIDIZER label.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....
49 CFR 172.426 - OXIDIZER label.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY PLANS Labeling § 172.426 OXIDIZER label. (a) Except for size and color, the OXIDIZER label must be as follows: EC02MR91.027 (b) In addition to complying with § 172.407, the background color on the OXIDIZER label must be yellow....
21 CFR 610.61 - Package label.
Code of Federal Regulations, 2010 CFR
2010-04-01
... GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.61 Package label. The following items shall appear on the label affixed to each package containing a product: (a) The proper name of the product; (b... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Package label. 610.61 Section 610.61 Food...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
21 CFR 610.61 - Package label.
Code of Federal Regulations, 2013 CFR
2013-04-01
... GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.61 Package label. The following items shall appear on the label affixed to each package containing a product: (a) The proper name of the product; (b... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Package label. 610.61 Section 610.61 Food...
21 CFR 610.61 - Package label.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.61 Package label. The following items shall appear on the label affixed to each package containing a product: (a) The proper name of the product; (b) The... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Package label. 610.61 Section 610.61 Food and...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
21 CFR 610.61 - Package label.
Code of Federal Regulations, 2012 CFR
2012-04-01
... GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.61 Package label. The following items shall appear on the label affixed to each package containing a product: (a) The proper name of the product; (b... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Package label. 610.61 Section 610.61 Food...
21 CFR 610.61 - Package label.
Code of Federal Regulations, 2014 CFR
2014-04-01
... GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.61 Package label. The following items shall appear on the label affixed to each package containing a product: (a) The proper name of the product; (b... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Package label. 610.61 Section 610.61 Food...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
Code of Federal Regulations, 2011 CFR
2011-07-01
... THAT IT IS REMANUFACTURED, EXCEPT AS ALLOWED BY 40 CFR 1033.750.” (3) Label diesel-fueled locomotives... that contrasts with the background of the label. (iii) The label must include all the following... same engine part. (ii) The label must be lettered in the English language using a color that...
40 CFR 156.10 - Labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Labeling requirements. 156.10 Section 156.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES General Provisions § 156.10 Labeling requirements. (a) General—(1) Contents of the label. Every...
30 CFR 74.15 - Approval labels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approval labels. 74.15 Section 74.15 Mineral... DUST SAMPLING DEVICES General Requirements for All Devices § 74.15 Approval labels. (a) Certificate of... reproductions of approval labels and a sketch or description of the position of the labels on each...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Labels. 306.12 Section 306.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS AUTOMOTIVE FUEL RATINGS, CERTIFICATION AND POSTING Label Specifications § 306.12 Labels. All labels must meet the following specifications: (a) Layout—(1) For gasoline...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Labels. 306.12 Section 306.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS AUTOMOTIVE FUEL RATINGS, CERTIFICATION AND POSTING Label Specifications § 306.12 Labels. All labels must meet the following specifications: (a) Layout—(1) For gasoline...
Incorporation of probabilistic seismic phase labels into a Bayesian multiple-event seismic locator
Myers, S; Johannesson, G; Hanley, W
2008-01-17
We add probabilistic phase labels to the multiple-event joint probability function of Myers et al., 2007 that formerly included event locations, travel-time corrections, and arrival-time measurement precision. Prior information on any of the multiple-event parameters may be used. The phase-label model includes a null label that captures phases not belonging to the collection of phases under consideration. Using the Markov-Chain Monte Carlo method, samples are drawn from the multiple-event joint probability function to infer the posteriori distribution that is consistent with priors and the arrival-time data set. Using this approach phase-label error can be accessed and phase-label error is propagated to all other multiple-event parameters. We test the method using a ground-truth data set of nuclear explosions at the Nevada Test Site. We find that posteriori phase labels agree with the meticulously analyzed data set in more than 97% of instances and the results are robust even when the input phase-label information is discarded. Only when a large percentage of the arrival-time data are corrupted does prior phase label information improve resolution of multiple-event parameters. Simultaneous modeling of the entire multiple-event system results in accurate posteriori probability regions for each multiple-event parameter.
Characterization of auditory synaptic inputs to gerbil perirhinal cortex.
Kotak, Vibhakar C; Mowery, Todd M; Sanes, Dan H
2015-01-01
The representation of acoustic cues involves regions downstream from the auditory cortex (ACx). One such area, the perirhinal cortex (PRh), processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG) and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of type A gamma-aminobutyric acid (GABA-A) receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the ACx. PMID:26321918
Ohara, Shinya; Sato, Sho; Tsutsui, Ken-Ichiro; Witter, Menno P.; Iijima, Toshio
2013-01-01
Behavioral, anatomical, and gene expression studies have shown functional dissociations between the dorsal and ventral hippocampus with regard to their involvement in spatial cognition, emotion, and stress. In this study we examined the difference of the multisynaptic inputs to the dorsal and ventral dentate gyrus (DG) in the rat by using retrograde trans-synaptic tracing of recombinant rabies virus vectors. Three days after the vectors were injected into the dorsal or ventral DG, monosynaptic neuronal labeling was present in the entorhinal cortex, medial septum, diagonal band, and supramammillary nucleus, each of which is known to project to the DG directly. As in previous tracing studies, topographical patterns related to the dorsal and ventral DG were seen in these regions. Five days after infection, more of the neurons in these regions were labeled and labeled neurons were also seen in cortical and subcortical regions, including the piriform and medial prefrontal cortices, the endopiriform nucleus, the claustrum, the cortical amygdala, the medial raphe nucleus, the medial habenular nucleus, the interpeduncular nucleus, and the lateral septum. As in the monosynaptically labeled regions, a topographical distribution of labeled neurons was evident in most of these disynaptically labeled regions. These data indicate that the cortical and subcortical inputs to the dorsal and ventral DG are conveyed through parallel disynaptic pathways. This second-order input difference in the dorsal and ventral DG is likely to contribute to the functional differentiation of the hippocampus along the dorsoventral axis. PMID:24223172
Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend G. M.
2014-12-01
The accurate and efficient modelling of two-phase flows is at present mostly limited to structured, unskewed meshes, due to the additional topological and numerical complexity of arbitrary, unstructured meshes. Compressive VOF methods which discretize the interface advection with algebraic differencing schemes are computationally efficient and inherently applicable to arbitrary meshes. However, compressive VOF methods evidently suffer severely from numerical diffusion on meshes with topological skewness. In this paper we present a compressive VOF method using a state-of-the-art donor-acceptor advection scheme which includes novel modifications to substantially reduce numerical diffusion on arbitrary meshes without adding computational complexity. The new methodology accurately captures evolving interfaces on any arbitrary, non-overlapping mesh and conserves mass within the limits of the applied solver tolerance. A thorough validation of the presented methods is conducted, examining the pure advection of the interface indicator function as well as the application to evolving interfaces with surface tension. Crucially, the results on equidistant Cartesian and arbitrary tetrahedral meshes are shown to be comparable and accurate.
NASA Astrophysics Data System (ADS)
Schultz, K.; Sachs, M. K.; Heien, E. M.; Rundle, J. B.; Fernandez, J.; Turcotte, D.; Donnellan, A.
2014-12-01
With the ever increasing number of geodetic monitoring satellites, it is vital to have a variety of geophysical numerical simulators to produce sample/model datasets. Just as hurricane forecasts are derived from the consensus among multiple atmospheric models, earthquake forecasts cannot be derived from a single comprehensive model. Here we present the functionality of Virtual California, a numerical simulator that can generate sample surface deformations, surface gravity changes, and InSAR interferograms in addition to producing earthquake statistics and forecasts.Virtual California is a boundary element code designed to explore the seismicity of today's fault systems. For arbitrary input fault geometry, Virtual California can output simulated seismic histories of 50,000 years or more. Using co-seismic slips from the output data, we generate surface deformation maps, surface gravity change maps, and InSAR interferograms as viewed by an orbiting satellite. Furthermore, using the times between successive earthquakes we generate probability distributions and earthquake forecasts.Virtual California is now supported by the Computational Infrastructure for Geodynamics. The source code is available for download and it comes with a users' manual. The manual includes instructions on how to generate fault models from scratch, how to deploy the simulator across a parallel computing environment, etc.http://geodynamics.org/cig/software/vc/
Schroth, Martin H.; Oostrom, Mart; Dobson, Richard; Zeyer, Josef
2008-08-01
Fluid/fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to predict fluid/fluid interfacial areas in porous media for arbitrary drainage/imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs, (2) the wetting fluid completely wets the porous medium’s solid surfaces, and (3) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage/imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBM’s predictions for interfacial area associated with free nonwetting-fluid are identical to those of a previously published geometry-based model (GBM). However, predictions for interfacial area associated with entrapped nonwetting-fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multifluid-flow simulations, the modified TBM may be easily incorporated in numerical codes.
A generalized multiple-input, multiple-output modal parameter estimation algorithm
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Blair, M. A.
1984-01-01
A new method for experimental determination of the modal parameters of a structure is presented. The method allows for multiple input forces to be applied simultaneously, and for an arbitrary number of acceleration response measurements to be employed. These data are used to form the equations of motion for a damped linear elastic structure. The modal parameters are then obtained through an eigenvalue technique. In conjunction with the development of the equations, an extensive computer simulation study was performed. The results of the study show a marked improvement in the mode shape identification for closely-spaced modes as the number of applied forces is increased. Also demonstrated is the influence of noise on the method's ability to identify accurate modal parameters. Here again, an increase in the number of exciters leads to a significant improvement in the identified parameters.
Nutrition Labeling Using a Computer Program
NASA Astrophysics Data System (ADS)
Metzger, Lloyd E.
The 1990 Nutrition Labeling and Education Act mandated nutritional labeling of most foods. As a result, a large portion of food analysis is performed for nutritional labeling purposes. A food labeling guide and links to the complete nutritional labeling regulations are available online at http://vm.cfsan.fda.gov/˜dms/flg-toc.html. However, interpretation of these regulations and the appropriate usage of rounding rules, available nutrient content claims, reference amounts, and serving size can be difficult.
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
Specifying the relation between novel and known: input affects the acquisition of novel color terms.
Gottfried, G M; Tonks, S J
1996-06-01
4 studies investigate how differential input affects preschoolers' abilities to learn novel color words. 3-, 4-, and 5-year-old children saw objects in novel shapes and colors and heard a novel color label for the object. Labels were presented through ostensive definition (e.g., "See, it's mauve"), corrective linguistic contrast (e.g., "See, it's not purple; it's mauve"), or an inclusion statement (e.g., "See, it's mauve; it's a kind of purple"). 4- and 5-year-old children interpreted the novel word as a shape term when ostensive information was provided but as a color term when additional information, either contrastive or inclusive, specified a relation between the novel term and a known label for that color. Furthermore, children who consistently interpreted the novel word as a color word tended to treat the novel and known labels as mutually exclusive color terms if they heard contrastive information, whereas they tended to treat the words as hierarchically related if they heard inclusion information. 3-year-olds generally did not make use of either type of information in determining the semantic domain of the novel word or the relation between terms. PMID:8706530