Sokol, Serguei; Portais, Jean-Charles
2015-01-01
The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites.
Sokol, Serguei; Portais, Jean-Charles
2015-01-01
The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites. PMID:26641860
NASA Astrophysics Data System (ADS)
Davison, Elizabeth; Dey, Biswadip; Leonard, Naomi
Mathematical studies of synchronization in networks of neuronal oscillators offer insight into neuronal ensemble behavior in the brain. Systematic means to understand how network structure and external input affect synchronization in network models have the potential to improve methods for treating synchronization-related neurological disorders such as epilepsy and Parkinson's disease. To elucidate the complex relationships between network structure, external input, and synchronization, we investigate synchronous firing patterns in arbitrary networks of neuronal oscillators coupled through gap junctions with heterogeneous external inputs. We first apply a passivity-based Lyapunov analysis to undirected networks of homogeneous FitzHugh-Nagumo (FN) oscillators with homogeneous inputs and derive a sufficient condition on coupling strength that guarantees complete synchronization. In biologically relevant regimes, we employ Gronwall's inequality to obtain a bound tighter than those previously reported. We extend both analyses to a homogeneous FN network with heterogeneous inputs and show how cluster synchronization emerges under conditions on the symmetry of the coupling matrix and external inputs. Our results can be generalized to any network of semi-passive oscillators.
NASA Astrophysics Data System (ADS)
Betters, Christopher H.; Leon-Saval, Sergio G.; Bland-Hawthorn, Joss; Richards, Samuel N.; Birks, Tim A.; Gris-Sánchez, Itandehui
2014-07-01
PIMMS échelle is an extension of previous PIMMS (photonic integrated multimode spectrograph) designs, enhanced by using an échelle diffraction grating as the primary dispersing element for increased spectral band- width. The spectrograph operates at visible wavelengths (550 to 780nm), and is capable of capturing ~100 nm of R > 60, 000 (λ/(triangle)λ) spectra in a single exposure. PIMMS échelle uses a photonic lantern to convert an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs (i.e. N single-mode fibres). This allows a truly diffraction limited spectral resolution, while also decoupling the spectrograph design from the input source. Here both the photonic lantern and the spectrograph slit are formed using a single length of multi-core fibre. A 1x19 (1 multi-mode fiber to 19 single-mode fibres) photonic lantern is formed by tapering one end of the multi-core fibre, while the other end is used to form a TIGER mode slit (i.e. for a hexagonal grid with sufficient spacing and the correct orientations, the cores of the multi-core fibre can be dispersed such that they do not overlap without additional reformatting). The result is an exceptionally compact, shoebox sized, spectrograph that is constructed primarily from commercial off the shelf components. Here we present a brief overview of the échelle spectrograph design, followed by results from on-sky testing of the breadboard mounted version of the spectrograph at the `UK Schmidt Telescope'.
Method for guessing the response of a physical system to an arbitrary input
Wolpert, D.H.
1996-07-09
Stacked generalization is used to minimize the generalization errors of one or more generalizers acting on a known set of input values and output values representing a physical manifestation and a transformation of that manifestation, e.g., hand-written characters to ASCII characters, spoken speech to computer command, etc. Stacked generalization acts to deduce the biases of the generalizer(s) with respect to a known learning set and then correct for those biases. This deduction proceeds by generalizing in a second space whose inputs are the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, and whose output is the correct guess. Stacked generalization can be used to combine multiple generalizers or to provide a correction to a guess from a single generalizer. 8 figs.
Method for guessing the response of a physical system to an arbitrary input
Wolpert, David H.
1996-01-01
Stacked generalization is used to minimize the generalization errors of one or more generalizers acting on a known set of input values and output values representing a physical manifestation and a transformation of that manifestation, e.g., hand-written characters to ASCII characters, spoken speech to computer command, etc. Stacked generalization acts to deduce the biases of the generalizer(s) with respect to a known learning set and then correct for those biases. This deduction proceeds by generalizing in a second space whose inputs are the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, and whose output is the correct guess. Stacked generalization can be used to combine multiple generalizers or to provide a correction to a guess from a single generalizer.
Brown, M Christian; Mukerji, Sudeep; Drottar, Marie; Windsor, Alanna M; Lee, Daniel J
2013-10-01
Olivocochlear (OC) neurons respond to sound and provide descending input that controls processing in the cochlea. The identities of neurons in the pathways providing inputs to OC neurons are incompletely understood. To explore these pathways, the retrograde transneuronal tracer pseudorabies virus (Bartha strain, expressing green fluorescent protein) was used to label OC neurons and their inputs in guinea pigs. Labeling of OC neurons began 1 day after injection into the cochlea. On day 2 (and for longer survival times), transneuronal labeling spread to the cochlear nucleus, inferior colliculus, and other brainstem areas. There was a correlation between the numbers of these transneuronally labeled neurons and the number of labeled medial (M) OC neurons, suggesting that the spread of labeling proceeds mainly via synapses on MOC neurons. In the cochlear nucleus, the transneuronally labeled neurons were multipolar cells including the subtype known as planar cells. In the central nucleus of the inferior colliculus, transneuronally labeled neurons were of two principal types: neurons with disc-shaped dendritic fields and neurons with dendrites in a stellate pattern. Transneuronal labeling was also observed in pyramidal cells in the auditory cortex and in centers not typically associated with the auditory pathway such as the pontine reticular formation, subcoerulean nucleus, and the pontine dorsal raphe. These data provide information on the identity of neurons providing input to OC neurons, which are located in auditory as well as non-auditory centers.
Haworth, Kevin J.; Fowlkes, J. Brian; Carson, Paul L.; Kripfgans, Oliver D.
2009-01-01
A theoretical shot noise model to describe the output of a time-reversal experiment in a multiple-scattering medium is developed. This (non-wave equation based) model describes the following process. An arbitrary waveform is transmitted through a high-order multiple-scattering environment and recorded. The recorded signal is arbitrarily windowed and then time-reversed. The processed signal is retransmitted into the environment and the resulting signal recorded. The temporal and spatial signal and noise of this process is predicted statistically. It is found that the time when the noise is largest depends on the arbitrary windowing and this noise peak can occur at times outside the main lobe. To determine further trends, a common set of parameters is applied to the general result. It is seen that as the duration of the input function increases, the signal-to-noise ratio (SNR) decreases (independent of signal bandwidth). It is also seen that longer persisting impulse responses result in increased main lobe amplitudes and SNR. Assumptions underpinning the generalized shot noise model are compared to an experimental realization of a multiple-scattering medium (a time-reversal chaotic cavity). Results from the model are compared to random number numerical simulation. PMID:19425655
Meilinger, Tobias; Schulte-Pelkum, Jörg; Frankenstein, Julia; Hardiess, Gregor; Laharnar, Naima; Mallot, Hanspeter A; Bülthoff, Heinrich H
2016-01-01
Establishing verbal memory traces for non-verbal stimuli was reported to facilitate or inhibit memory for the non-verbal stimuli. We show that these effects are also observed in a domain not indicated before-wayfinding. Fifty-three participants followed a guided route in a virtual environment. They were asked to remember half of the intersections by relying on the visual impression only. At the other 50% of the intersections, participants additionally heard a place name, which they were asked to memorize. For testing, participants were teleported to the intersections and were asked to indicate the subsequent direction of the learned route. In Experiment 1, intersections' names were arbitrary (i.e., not related to the visual impression). Here, participants performed more accurately at unnamed intersections. In Experiment 2, intersections' names were descriptive and participants' route memory was more accurate at named intersections. Results have implications for naming places in a city and for wayfinding aids. PMID:26869975
Meilinger, Tobias; Schulte-Pelkum, Jörg; Frankenstein, Julia; Hardiess, Gregor; Laharnar, Naima; Mallot, Hanspeter A; Bülthoff, Heinrich H
2016-01-01
Establishing verbal memory traces for non-verbal stimuli was reported to facilitate or inhibit memory for the non-verbal stimuli. We show that these effects are also observed in a domain not indicated before-wayfinding. Fifty-three participants followed a guided route in a virtual environment. They were asked to remember half of the intersections by relying on the visual impression only. At the other 50% of the intersections, participants additionally heard a place name, which they were asked to memorize. For testing, participants were teleported to the intersections and were asked to indicate the subsequent direction of the learned route. In Experiment 1, intersections' names were arbitrary (i.e., not related to the visual impression). Here, participants performed more accurately at unnamed intersections. In Experiment 2, intersections' names were descriptive and participants' route memory was more accurate at named intersections. Results have implications for naming places in a city and for wayfinding aids.
Meilinger, Tobias; Schulte-Pelkum, Jörg; Frankenstein, Julia; Hardiess, Gregor; Laharnar, Naima; Mallot, Hanspeter A.; Bülthoff, Heinrich H.
2016-01-01
Establishing verbal memory traces for non-verbal stimuli was reported to facilitate or inhibit memory for the non-verbal stimuli. We show that these effects are also observed in a domain not indicated before—wayfinding. Fifty-three participants followed a guided route in a virtual environment. They were asked to remember half of the intersections by relying on the visual impression only. At the other 50% of the intersections, participants additionally heard a place name, which they were asked to memorize. For testing, participants were teleported to the intersections and were asked to indicate the subsequent direction of the learned route. In Experiment 1, intersections' names were arbitrary (i.e., not related to the visual impression). Here, participants performed more accurately at unnamed intersections. In Experiment 2, intersections' names were descriptive and participants' route memory was more accurate at named intersections. Results have implications for naming places in a city and for wayfinding aids. PMID:26869975
Nie, San-An; Zhou, Ping; Ge, Ti-Da; Tong, Cheng-Li; Xiao, He-Ai; Wu, Jin-Shui; Zhang, Yang-Zhu
2012-04-01
The microcosm experiment was carried out to quantify the input and distribution of photo-assimilated C into soil C pools by using a 14C continuous labeling technique. Destructive samplings of rice (Oryza sativa) were conducted after labeling for 80 days. The allocation of 14C-labeled photosynthates in plants and soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) in rice-planted soil were examined over the 14C labeling span. The amounts of rice shoot and root biomass C was ranged from 1.86 to 5.60 g x pot(-1), 0.46 to 0.78 g x pot(-1) in different tested paddy soils after labeling for 80 days, respectively. The amount of 14C in the soil organic C (14C-SOC) was also dependent on the soils, ranged from 114.3 to 348.2 mg x kg(-1), accounting for 5.09% to 6.62% of the rice biomass 14C, respectively. The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C(14C-MBC), as proportions of 14C-SOC, were 2.21%-3.54% and 9.72% -17.2%, respectively. The 14C-DOC, 14C-MBC, and 14C-SOC as proportions of total DOC, MBC, and SOC, respectively, were 6.72% -14.64%, 1.70% -7.67%, and 0.73% -1.99%, respectively. Moreover, the distribution and transformation of root-derived C had a greater influence on the dynamics of DOC and MBC than on the dynamics of SOC. Further studies are required to ascertain the functional significance of soil microorganisms (such as C-sequestering bacteria and photosynthetic bacteria) in the paddy system. PMID:22720588
Fung, S J; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H
2001-06-01
In trigeminal and hypoglossal motor nuclei of adult cats, hypocretin immunoreactive fiber varicosities were observed in apposition to retrogradely labeled motoneuron somata and dendrites. Among those lateral hypothalamus neurons that project to the hypoglossal nucleus some were determined to be hypocretin immunoreactive and were located amongst the single-labeled hypocretinergic neurons. These data suggest that hypocretin may play a role in the synaptic control of these motoneurons. PMID:11382413
Shi, Ran; Chen, Xiao-Juan; Wu, Xiao-Hong; Jian, Yan; Yuan, Hong-Zhao; Ge, Ti-Da; Sui, Fang-Gong; Tong, Cheng-Li; Wu, Jin-Shui
2013-07-01
Soil autotrophic microbe has been found numerous and widespread. However, roles of microbial autotrophic processes and the mechanisms of that in the soil carbon sequestration remain poorly understood. Here, we used soils incubated for 110 days in a closed, continuously labeled 14C-CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. The allocation of 14C-labeled assimilated carbon in variable soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) were also examined over the 14C labeling span. The results showed that significant amounts of 14C-SOC were measured in paddy soils, which ranged from 69.06-133.81 mg x kg(-1), accounting for 0.58% to 0.92% of the total soil organic carbon (SOC). The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC) were dependent on the soils, ranged from 2.54 to 8.10 mg x kg(-1), 19.50 to 49.16 mg x kg(-1), respectively. There was a significantly positive linear relationship between concentrations of 14C-SOC and 14C-MBC (R2 = 0.957**, P < 0.01). The 14C-DOC and 14C-MBC as proportions of total DOC, MBC, were 5.65%-24.91% and 4.23%-20.02%, respectively. Moreover, the distribution and transformation of microbes-assimilated-derived C had a greater influence on the dynamics of DOC and MBC than that on the dynamics of SOC. These data provide new insights into the importance of microorganisms in the fixation of atmospheric CO2 and of the potentially significant contributions made by microbial autotrophy to terrestrial C cycling.
Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States.
Tamma, Vincenzo; Laibacher, Simon
2015-06-19
We provide a compact full description of multiboson correlation measurements of arbitrary order N in passive linear interferometers with arbitrary input single-photon pure states. This allows us to physically analyze the novel problem of multiboson correlation sampling at the output of random linear interferometers. Our results also describe general multiboson correlation landscapes for an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100% visibility entanglement correlations even for input photons distinguishable in their frequencies. PMID:26196976
Priestley, J V; Cuello, A C
1989-07-22
The synaptology of lamina I thalamic projection neurones in the spinal trigeminal nucleus of the rat was investigated by combining electron microscopic immunocytochemistry with the retrograde transport of horseradish peroxidase. Fifteen retrogradely labelled neurones were serially sectioned and their dendrites were traced for up to 160 microns in order to characterise the synaptic input to their cell bodies and proximal dendrites. Projection neurones receive synapses from dome-shaped substance P and enkephalin immunoreactive terminals, which make simple axosomatic or axodendritic synapses. In addition, the cells receive synapses from numerous nonimmunoreactive terminals including a wide range of different dome-shaped terminals and various scalloped or glomerular terminals. Dome-shaped terminals synapse with small stubby spines in addition to cell bodies or dendritic shafts and they are probably derived from lamina II interneurones and from descending bulbospinal pathways. Glomerular terminals occur in two main classes: small type A terminals with dark axoplasm and larger type B terminals. Type B terminals participate in synaptic triads in which a peripheral terminal synapses both axoaxonically with the glomerular terminal and axodendritically with the projection neurone. Type A and type B terminals closely resemble the central terminals of spinal cord lamina II glomeruli and are probably derived from C and A delta I degrees afferent fibers. The results indicate that lamina I projection neurones are under pre- and postsynaptic control from diverse sources. Their complex synaptic organisation highlights the key role that such cells play in the rostrad transmission of somatosensory information. PMID:2474583
Arbitrary Metrics in Psychology
ERIC Educational Resources Information Center
Blanton, Hart; Jaccard, James
2006-01-01
Many psychological tests have arbitrary metrics but are appropriate for testing psychological theories. Metric arbitrariness is a concern, however, when researchers wish to draw inferences about the true, absolute standing of a group or individual on the latent psychological dimension being measured. The authors illustrate this in the context of 2…
NASA Astrophysics Data System (ADS)
Blackmon, Fletcher A.
1993-11-01
An arbitrary waveform generator is capable of producing pulse or continuous waveform signals. It utilizes an EPROM that sends out selected stored digital signals under control of a microprocessor and auxiliary equipment comprised of a clock and an address sequencer. A digital to analog converter receives the digital signals from the EPROM and converts them to analog signals.
Monaghan, Padraic; Shillcock, Richard C; Christiansen, Morten H; Kirby, Simon
2014-09-19
It is a long established convention that the relationship between sounds and meanings of words is essentially arbitrary--typically the sound of a word gives no hint of its meaning. However, there are numerous reported instances of systematic sound-meaning mappings in language, and this systematicity has been claimed to be important for early language development. In a large-scale corpus analysis of English, we show that sound-meaning mappings are more systematic than would be expected by chance. Furthermore, this systematicity is more pronounced for words involved in the early stages of language acquisition and reduces in later vocabulary development. We propose that the vocabulary is structured to enable systematicity in early language learning to promote language acquisition, while also incorporating arbitrariness for later language in order to facilitate communicative expressivity and efficiency.
Cloning quantum entanglement in arbitrary dimensions
Karpov, E.; Navez, P.; Cerf, N.J.
2005-10-15
We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.
Monaghan, Padraic; Shillcock, Richard C.; Christiansen, Morten H.; Kirby, Simon
2014-01-01
It is a long established convention that the relationship between sounds and meanings of words is essentially arbitrary—typically the sound of a word gives no hint of its meaning. However, there are numerous reported instances of systematic sound–meaning mappings in language, and this systematicity has been claimed to be important for early language development. In a large-scale corpus analysis of English, we show that sound–meaning mappings are more systematic than would be expected by chance. Furthermore, this systematicity is more pronounced for words involved in the early stages of language acquisition and reduces in later vocabulary development. We propose that the vocabulary is structured to enable systematicity in early language learning to promote language acquisition, while also incorporating arbitrariness for later language in order to facilitate communicative expressivity and efficiency. PMID:25092667
Sandia's Arbitrary Waveform MEMO Actuator
2003-08-07
SAMA is a multichannel, arbitrary waveform generator program for driving microelectromechanical systems (MEMS). It allows the user to piece together twelve available wave parts, thereby permitting the user to create practically any waveform, or upload a previously constructed signal. The waveforms (bundled together as a signal) may simultaneously be output through four different channels to actuate MEMS devices, and the number of output channels may be increased depending on the DAQ card or instrument utilized.more » Additionally, real-time changes may be made to the frequency and amplitude. The signal may be paused temporarily. The waveform may be saved to file for future uploading. Recent work for this version has focused on modifications that will allow loading previously generated arbitrary waveforms, independent channel waveform amplification, adding a pause function, separating the "modify waveform: and "end program" functions, and simplifying the user interface by adding test blocks with statements to help the user program and output the desired signals. The program was developed in an effort to alleviate some of the limitations of Micro Driver. For example, Micro Driver will not allow the user to select a segment of a sine wave, but rather the user is limited to choosing either a whole or half sine wave pattern. It therefore becomes quite difficult ot construct partial sine wave patterns out of a "ramp" waveparts for several reasons. First, one must determine on paper how many data points each ramp will cover, and what the slopes of these ramps will be. Second, from what was observed, Micro Driver has difficulty processing more than six distinct waveparts during sequencing. The program will allow the user to input the various waves into the desired sequence; however, it will not allow the user to compile them (by clicking "ok" and returning to the main screen). Third, should the user decide that they want to increase the amplitute of the output signal
Sandia's Arbitrary Waveform MEMO Actuator
Brian Sosnowchik, Mark Jenkins
2003-08-07
SAMA is a multichannel, arbitrary waveform generator program for driving microelectromechanical systems (MEMS). It allows the user to piece together twelve available wave parts, thereby permitting the user to create practically any waveform, or upload a previously constructed signal. The waveforms (bundled together as a signal) may simultaneously be output through four different channels to actuate MEMS devices, and the number of output channels may be increased depending on the DAQ card or instrument utilized. Additionally, real-time changes may be made to the frequency and amplitude. The signal may be paused temporarily. The waveform may be saved to file for future uploading. Recent work for this version has focused on modifications that will allow loading previously generated arbitrary waveforms, independent channel waveform amplification, adding a pause function, separating the "modify waveform: and "end program" functions, and simplifying the user interface by adding test blocks with statements to help the user program and output the desired signals. The program was developed in an effort to alleviate some of the limitations of Micro Driver. For example, Micro Driver will not allow the user to select a segment of a sine wave, but rather the user is limited to choosing either a whole or half sine wave pattern. It therefore becomes quite difficult ot construct partial sine wave patterns out of a "ramp" waveparts for several reasons. First, one must determine on paper how many data points each ramp will cover, and what the slopes of these ramps will be. Second, from what was observed, Micro Driver has difficulty processing more than six distinct waveparts during sequencing. The program will allow the user to input the various waves into the desired sequence; however, it will not allow the user to compile them (by clicking "ok" and returning to the main screen). Third, should the user decide that they want to increase the amplitute of the output signal, they must
NASA Astrophysics Data System (ADS)
Blackmon, Fletcher A.
1992-04-01
It is a general purpose and object of the present invention to provide an arbitrary waveform generator. It is a further object that the generator has the ability to produce both pulse waveforms and continuous waveforms. Other objects are that the generator be compact and only require low power for lending itself to battery powered operation. These objects are accomplished with the present invention by providing a system in which digital waveforms are created using a software package such as DADiSP. The software package forms signals that are then transferred to an EPROM. Each signal type occupies a certain block of address space within the EPROM. A great number of signals may be digitally stored in this way. The operator then constructs simple microprocessor computer codes to access any signal, any combination of signals, or all signals to form a unique waveform generation sequence. Therefore the operator selects arbitrarily which of the previously stored signals to generate. Key features include the EPROM storing a single pulse for pulse waveforms and a single period of waveform for continuous waveforms. Other key features are the ability to control the sequence of generation, the number of times each signal is generated, the time between pulses, and the time between the generation of different signal types. These features are controlled by the microprocessor codes residing in a microprocessor.
Spectral methods on arbitrary grids
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David
1995-01-01
Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.
Arbitrary waveform generator to improve laser diode driver performance
Fulkerson, Jr, Edward Steven
2015-11-03
An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.
A Simple Arbitrary Solid Slicer
Yao, J
2005-06-23
The intersection of a given plane and an arbitrary (possibly non-convex, with multiple connectivities) meshed solid is exactly expressed by a set of planar cross-sections. A rule for marching on the edges of an arbitrary polyhedron is set for obtaining the topology of the cross-section. The method neither seeks triangulation of the surface mesh nor utilizes look-up tables, therefore it has optimal efficiency.
Hypersonic Arbitrary-Body Aerodynamics (HABA) for conceptual design
Salguero, D.E.
1990-03-15
The Hypersonic Arbitrary-Body Aerodynamics (HABA) computer program predicts static and dynamic aerodynamic derivatives at hypersonic speeds for any vehicle geometry. It is intended to be used during conceptual design studies where fast computational speed is required. It uses the same geometry and hypersonic aerodynamic methods as the Mark IV Supersonic/Hypersonic Arbitrary-Body Program (SHABP) developed under sponsorship of the Air Force Flight Dynamics Laboratory; however, the input and output formats have been improved to make it easier to use. This program is available as part of the Department 9140 CAE software.
Label fusion strategy selection.
Robitaille, Nicolas; Duchesne, Simon
2012-01-01
Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113
Scattering theory for arbitrary potentials
Kadyrov, A.S.; Bray, I.; Stelbovics, A.T.; Mukhamedzhanov, A.M.
2005-09-15
The fundamental quantities of potential scattering theory are generalized to accommodate long-range interactions. Definitions for the scattering amplitude and wave operators valid for arbitrary interactions including potentials with a Coulomb tail are presented. It is shown that for the Coulomb potential the generalized amplitude gives the physical on-shell amplitude without recourse to a renormalization procedure.
Representing Arbitrary Boosts for Undergraduates.
ERIC Educational Resources Information Center
Frahm, Charles P.
1979-01-01
Presented is a derivation for the matrix representation of an arbitrary boost, a Lorentz transformation without rotation, suitable for undergraduate students with modest backgrounds in mathematics and relativity. The derivation uses standard vector and matrix techniques along with the well-known form for a special Lorentz transformation. (BT)
Arbitrary bending plasmonic light waves.
Epstein, Itai; Arie, Ady
2014-01-17
We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.
Axial anomaly at arbitrary virtualities
Veretin, O.L.; Teryaev, O.V.
1995-12-01
The one-loop analytic expression for the axial-vector triangle diagram involving an anomaly is obtained for arbitrary virtualities of external momenta. The `t Hooft consistency principle is applied to the QCD sum rules for the first moment of the photon spin structure function g{sub l}{sup {gamma}}. It is shown that the contribution of the singlet axial current to the sum rules for g{sub l}{sup {gamma}} vanishes. 19 refs., 1 fig.
Style-independent document labeling: design and performance evaluation
NASA Astrophysics Data System (ADS)
Mao, Song; Kim, Jong Woo; Thoma, George R.
2003-12-01
The Medical Article Records System or MARS has been developed at the U.S. National Library of Medicine (NLM) for automated data entry of bibliographical information from medical journals into MEDLINE, the premier bibliographic citation database at NLM. Currently, a rule-based algorithm (called ZoneCzar) is used for labeling important bibliographical fields (title, author, affiliation, and abstract) on medical journal article page images. While rules have been created for medical journals with regular layout types, new rules have to be manually created for any input journals with arbitrary or new layout types. Therefore, it is of interest to label any journal articles independent of their layout styles. In this paper, we first describe a system (called ZoneMatch) for automated generation of crucial geometric and non-geometric features of important bibliographical fields based on string-matching and clustering techniques. The rule based algorithm is then modified to use these features to perform style-independent labeling. We then describe a performance evaluation method for quantitatively evaluating our algorithm and characterizing its error distributions. Experimental results show that the labeling performance of the rule-based algorithm is significantly improved when the generated features are used.
Equientangled bases in arbitrary dimensions
Karimipour, V.; Memarzadeh, L.
2006-01-15
For the space of two identical systems of arbitrary dimensions, we introduce a continuous family of bases with the following properties: (i) the bases are orthonormal (ii) in each basis, all the states have the same values of entanglement, and (iii) they continuously interpolate between the product basis and the maximally entangled basis. The states thus constructed may find applications in many areas related to the quantum information science including quantum cryptography, optimal Bell tests, and the investigation of the enhancement of channel capacity due to entanglement.
Deffayet, C.; Deser, S.; Esposito-Farese, G.
2010-09-15
We show that scalar, 0-form, Galileon actions--models whose field equations contain only second derivatives--can be generalized to arbitrary even p-forms. More generally, they need not even depend on a single form, but may involve mixed p combinations, including equal p multiplets, where odd p fields are also permitted: We construct, for given dimension D, general actions depending on scalars, vectors, and higher p-form field strengths, whose field equations are of exactly second derivative order. We also discuss and illustrate their curved-space generalizations, especially the delicate nonminimal couplings required to maintain this order. Concrete examples of pure and mixed actions, field equations, and their curved-space extensions are presented.
Hyperspherical harmonics with arbitrary arguments
Meremianin, A. V.
2009-01-15
The derivation scheme for hyperspherical harmonics (HSH) with arbitrary arguments is proposed. It is demonstrated that HSH can be presented as the product of HSH corresponding to spaces with lower dimensionality multiplied by the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to quantum few-body problems is discussed. The explicit expressions for orthonormal HSH in spaces with dimensions from two to six are given. The important particular cases of four- and six-dimensional spaces are analyzed in detail and explicit expressions for HSH are given for several choices of hyperangles. In the six-dimensional space, HSH representing the kinetic-energy operator corresponding to (i) the three-body problem in physical space and (ii) four-body planar problem are derived.
Hyperspherical harmonics with arbitrary arguments
NASA Astrophysics Data System (ADS)
Meremianin, A. V.
2009-01-01
The derivation scheme for hyperspherical harmonics (HSH) with arbitrary arguments is proposed. It is demonstrated that HSH can be presented as the product of HSH corresponding to spaces with lower dimensionality multiplied by the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to quantum few-body problems is discussed. The explicit expressions for orthonormal HSH in spaces with dimensions from two to six are given. The important particular cases of four- and six-dimensional spaces are analyzed in detail and explicit expressions for HSH are given for several choices of hyperangles. In the six-dimensional space, HSH representing the kinetic-energy operator corresponding to (i) the three-body problem in physical space and (ii) four-body planar problem are derived.
Resonance capture at arbitrary inclination
NASA Astrophysics Data System (ADS)
Namouni, F.; Morais, M. H. M.
2015-01-01
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180° with 5° increments totalling nearly 6 × 105 numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10°,110°]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60°,130°]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Waite, Anthony; /SLAC
2011-09-07
Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each
Use of labeled primers for differential display
Paunesku, T.; Woloschak, G.E.
1995-02-01
The differential display of eukaryotic cDNAs using PCR allows for determination of mRNA species differentially expressed when comparing two similar cell populations. This procedure uses a (T){sub 12}XY oligonucleotide as the 3 ft primer and an arbitrary 8-10-mer as the 5 ft primer. Labeling occurs by inclusion of {alpha}[{sup 33}P]-dATP in the PCR reaction. Two artifacts caused by this approach are (1) random printing from dT present from affinity purification of PolyA+RNA and (2) hybridization of the arbitrary primer to template target sequences on both cDNA strands. In this work, we have developed an approach for both eliminating smearing and identifying nonspecific bands on sequencing gels. By separately using 5 ft-end-labeled (T){sub 12}XY and arbitrary primers to label bands and comparing two differential display patterns rather than including labeled nucleotides in the PCR reaction itself, we can detect only those products incorporating the M{sub 12}XY primer on the 3 ft ends and the arbitrary primer on 5 ft ends. Those bands that are generated randomly in the PCR reaction are readily detectable and can be ignored. If on the other hand, one is interested only in a diagnostic banding pattern for differential display, benefit can be derived from the simplicity of the pattern obtained when labeled (T){sub 12}XY is used.
Controlling electromagnetic fields at boundaries of arbitrary geometries
NASA Astrophysics Data System (ADS)
Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice
2016-08-01
Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.
Controlling arbitrary humidity without convection.
Wasnik, Priyanka S; N'guessan, Hartmann E; Tadmor, Rafael
2015-10-01
In this paper we show a way that allows for the first time to induce arbitrary humidity of desired value for systems without convective flow. To enable this novelty we utilize a semi-closed environment in which evaporation is not completely suppressed. In this case, the evaporation rate is determined both by the outer (open) humidity and by the inner (semi-closed) geometry including the size/shape of the evaporating medium and the size/shape of the semi-closure. We show how such systems can be used to induce desired humidity conditions. We consider water droplet placed on a solid surface and study its evaporation when it is surrounded by other drops, hereon "satellite" drops and covered by a semi-closed hemisphere. The main drop's evaporation rate is proportional to its height, in agreement with theory. Surprisingly, however, the influence of the satellite drops on the main drop's evaporation suppression is not proportional to the sum of heights of the satellite drops. Instead, it shows proportionality close to the satellite drops' total surface area. The resultant humidity conditions in the semi-closed system can be effectively and accurately induced using different satellite drops combinations. PMID:26072445
Controlling arbitrary humidity without convection.
Wasnik, Priyanka S; N'guessan, Hartmann E; Tadmor, Rafael
2015-10-01
In this paper we show a way that allows for the first time to induce arbitrary humidity of desired value for systems without convective flow. To enable this novelty we utilize a semi-closed environment in which evaporation is not completely suppressed. In this case, the evaporation rate is determined both by the outer (open) humidity and by the inner (semi-closed) geometry including the size/shape of the evaporating medium and the size/shape of the semi-closure. We show how such systems can be used to induce desired humidity conditions. We consider water droplet placed on a solid surface and study its evaporation when it is surrounded by other drops, hereon "satellite" drops and covered by a semi-closed hemisphere. The main drop's evaporation rate is proportional to its height, in agreement with theory. Surprisingly, however, the influence of the satellite drops on the main drop's evaporation suppression is not proportional to the sum of heights of the satellite drops. Instead, it shows proportionality close to the satellite drops' total surface area. The resultant humidity conditions in the semi-closed system can be effectively and accurately induced using different satellite drops combinations.
Optical arbitrary waveform characterization using linear spectrograms.
Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M
2010-08-01
We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.
Optical arbitrary waveform characterization using linear spectrograms
Jiang, Zhi; Leaird, Daniel E.; Long, Christopher M.; Boppart, Stephen A.; Weiner, Andrew M.
2010-01-01
We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms. PMID:21359161
Use of labeled primers for differential display
Paunesku, T.; Woloschak, G.E.
1995-01-01
Two artifacts introduced in using differential display technology are (1) random priming from dT present from affinity purification of PolyA+ RNA and (2) hybridization of the arbitrary primer to template target sequences on both cDNA strands. We have developed a method eliminating both problems. By separately using 5`-end-labeled (T){sub 12}XY and arbitrary primers to label bands and comparing two differential display patterns, we can detect only those products incorporating the (T){sub 12}XY primer on the 3` ends and the arbitrary primer on 5` ends. Those bands that are generated randomly in the PCR are readily detectable and can be ignored.
NASA Astrophysics Data System (ADS)
Metzger, Lloyd E.
Nutrition labeling regulations differ in countries around the world. The focus of this chapter is on nutrition labeling regulations in the USA, as specified by the Food and Drug Administration (FDA) and the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA). A major reason for analyzing the chemical components of foods in the USA is nutrition labeling regulations. Nutrition label information is not only legally required in many countries, but also is of increasing importance to consumers as they focus more on health and wellness.
Rolling bearing stiffness in arbitrary direction
NASA Astrophysics Data System (ADS)
Luo, Zhusan; Sun, Xinde; Wu, Linfeng
1992-06-01
This paper presents a new concept of rolling bearing stiffness in arbitrary direction, which is necessary to the investigation of rotor-bearing dynamics. It includes the axial stiffness and the arbitrary radial stiffness of the rolling bearing. Based on elasticity theory and the geometrical parameters of the bearing, the approximate formulas of the axial stiffness, the arbitrary radial stiffness, and the inner ring displacements are derived. Furthermore, the paper also discusses the effects of the loads, the radial clearance, and the load distribution parameters on the rolling bearing stiffness. In order to verify the model and the computer program, an example of a ball bearing is analyzed in detail. It shows that the model and the program are reliable and the results are consistent with the data supplied by the U.S. Air Force Aeropropulsion Laboratory.
Arbitrariness, Iconicity, and Systematicity in Language.
Dingemanse, Mark; Blasi, Damián E; Lupyan, Gary; Christiansen, Morten H; Monaghan, Padraic
2015-10-01
The notion that the form of a word bears an arbitrary relation to its meaning accounts only partly for the attested relations between form and meaning in the languages of the world. Recent research suggests a more textured view of vocabulary structure, in which arbitrariness is complemented by iconicity (aspects of form resemble aspects of meaning) and systematicity (statistical regularities in forms predict function). Experimental evidence suggests these form-to-meaning correspondences serve different functions in language processing, development, and communication: systematicity facilitates category learning by means of phonological cues, iconicity facilitates word learning and communication by means of perceptuomotor analogies, and arbitrariness facilitates meaning individuation through distinctive forms. Processes of cultural evolution help to explain how these competing motivations shape vocabulary structure.
Engineering arbitrary pure and mixed quantum states
Pechen, Alexander
2011-10-15
Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.
Universal Approach to FRAP Analysis of Arbitrary Bleaching Patterns.
Blumenthal, Daniel; Goldstien, Leo; Edidin, Michael; Gheber, Levi A
2015-01-01
The original approach to calculating diffusion coefficients of a fluorescent probe from Fluorescence Recovery After Photobleaching (FRAP) measurements assumes bleaching with a circular laser beam of a Gaussian intensity profile. This method was used without imaging the bleached cell. An empirical equation for calculating diffusion coefficients from a rectangular bleaching geometry, created in a confocal image, was later published, however a single method allowing the calculation of diffusion coefficients for arbitrary geometry does not exist. Our simulation approach allows computation of diffusion coefficients regardless of bleaching geometry used in the FRAP experiment. It accepts a multiple-frame TIFF file, representing the experiment as input, and simulates the (pure) diffusion of the fluorescent probes (2D random walk) starting with the first post-bleach frame of the actual data. It then fits the simulated data to the real data and extracts the diffusion coefficient. We validate our approach using a well characterized diffusing molecule (DiIC18) against well-established analytical procedures. We show that the algorithm is able to calculate the absolute value of diffusion coefficients for arbitrary bleaching geometries, including exaggeratedly large ones. It is provided freely as an ImageJ plugin, and should facilitate quantitative FRAP measurements for users equipped with standard fluorescence microscopy setups. PMID:26108191
Arbitrary mechanical system description by a symbolic line
NASA Astrophysics Data System (ADS)
Dmitrochenko, O.; Mikkola, A.; Olshevskiy, A.
2016-04-01
A single-line symbolic notation is proposed for description of an arbitrary multibody system. The kinematics is represented by a sequence of elementary transformations, each of those being marked by a reserved alphabetic character. Force and constraint links between the bodies are also defined by reserved characters. The parameters of the system, such as identifiers of degrees of freedom, inertia parameters and others, are assigned default names if not specified. However, user-defined names, parameters and functions can be placed instead if needed. The proposed description in its shortest form is suitable for academic purpose to identify only the essential properties of a multibody system. In an extended form, by explicit mentioning names of variables and parameters and other data like initial conditions, this description can serve as input data for a multibody analysis software. Lots of examples from the academic area and technical applications are given to show the applicability of the description.
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Multi-Resolution Dynamic Meshes with Arbitrary Deformations
Shamir, A.; Pascucci, V.; Bajaj, C.
2000-07-10
Multi-resolution techniques and models have been shown to be effective for the display and transmission of large static geometric object. Dynamic environments with internally deforming models and scientific simulations using dynamic meshes pose greater challenges in terms of time and space, and need the development of similar solutions. In this paper we introduce the T-DAG, an adaptive multi-resolution representation for dynamic meshes with arbitrary deformations including attribute, position, connectivity and topology changes. T-DAG stands for Time-dependent Directed Acyclic Graph which defines the structure supporting this representation. We also provide an incremental algorithm (in time) for constructing the T-DAG representation of a given input mesh. This enables the traversal and use of the multi-resolution dynamic model for partial playback while still constructing new time-steps.
Optimization of payload placement on arbitrary spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J., Jr.; Allen, Cheryl L.
1991-01-01
A systematic method for determining the optical placement of instrumentation on an arbitrary spacecraft is described. The method maximizes the resource utilization by minimizing the spacecraft's need for propulsive attitude control. The mathematical program developed with considerations toward reducing the size of the optimization effort is presented.
Teukolsky-Starobinsky identities for arbitrary spin
NASA Astrophysics Data System (ADS)
Kalnins, E. G.; Miller, W., Jr.; Williams, G. C.
1989-12-01
The Teukolsky-Starobinsky identities are proven for arbitrary spin s. A pair of covariant equations are given that admit solutions in terms of Teukolsky functions for general s. The method of proof is shown to extend to the general class of space-times considered by Torres del Castillo [J. Math. Phys. 29, 2078 (1988)].
Dynamic Input Conductances Shape Neuronal Spiking1,2
Franci, Alessio; Dethier, Julie; Sepulchre, Rodolphe
2015-01-01
Abstract Assessing the role of biophysical parameter variations in neuronal activity is critical to the understanding of modulation, robustness, and homeostasis of neuronal signalling. The paper proposes that this question can be addressed through the analysis of dynamic input conductances. Those voltage-dependent curves aggregate the concomitant activity of all ion channels in distinct timescales. They are shown to shape the current−voltage dynamical relationships that determine neuronal spiking. We propose an experimental protocol to measure dynamic input conductances in neurons. In addition, we provide a computational method to extract dynamic input conductances from arbitrary conductance-based models and to analyze their sensitivity to arbitrary parameters. We illustrate the relevance of the proposed approach for modulation, compensation, and robustness studies in a published neuron model based on data of the stomatogastric ganglion of the crab Cancer borealis. PMID:26464969
Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere
Bartkiewicz, Karol; Miranowicz, Adam
2010-10-15
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.
ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES
Lang, Dustin; Mierle, Keir; Roweis, Sam; Hogg, David W.; Blanton, Michael
2010-05-15
We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the 'lost in space' problem in which nothing-not even the image scale-is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.
Astrometry.net: Blind Astrometric Calibration of Arbitrary Astronomical Images
NASA Astrophysics Data System (ADS)
Lang, Dustin; Hogg, David W.; Mierle, Keir; Blanton, Michael; Roweis, Sam
2010-05-01
We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing—not even the image scale—is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.
Quantum Fidelity for Arbitrary Gaussian States
NASA Astrophysics Data System (ADS)
Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano
2015-12-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Fraunhofer diffraction by arbitrary-shaped obstacles.
Malinka, Aleksey V; Zege, Eleonora P
2009-08-01
We consider Fraunhofer diffraction by an ensemble of large arbitrary-shaped screens that are randomly oriented in the plane of a wavefront and have edges of arbitrary shape. It is shown that far outside the main diffraction peak the differential scattering cross section behaves asymptotically as theta(-3), where theta is the diffraction angle. Moreover, the differential scattering cross section depends only on the length of the contours bordering the screens and does not depend on the shape of the obstacles. As both strictly forward and total diffraction cross sections are specified by obstacle area only, the differential cross section of size-distributed obstacles is expected to be nearly independent of obstacle shape over the entire region of the diffraction angles.
The arbitrariness and normativity of social conventions.
Al-Amoudi, Ismael; Latsis, John
2014-06-01
This paper investigates a puzzling feature of social conventions: the fact that they are both arbitrary and normative. We examine how this tension is addressed in sociological accounts of conventional phenomena. Traditional approaches tend to generate either synchronic accounts that fail to consider the arbitrariness of conventions, or diachronic accounts that miss central aspects of their normativity. As a remedy, we propose a processual conception that considers conventions as both the outcome and material cause of much human activity. This conceptualization, which borrows from the économie des conventions as well as critical realism, provides a novel perspective on how conventions are nested and defined, and on how they are established, maintained and challenged. PMID:24712730
Quantum Fidelity for Arbitrary Gaussian States.
Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano
2015-12-31
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources. PMID:26764978
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement
Koniges, A.; Eder, D.; Masters, N.; Fisher, A.; Anderson, R.; Gunney, B.; Wang, P.; Benson, D.; Dixit, P.
2009-09-29
This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being applied to slurry flow (landslides).
Distinguishing proteins from arbitrary amino acid sequences.
Yau, Stephen S-T; Mao, Wei-Guang; Benson, Max; He, Rong Lucy
2015-01-01
What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314
ERIC Educational Resources Information Center
Berliss-Vincent, Jane; Whitford, Gigi
2002-01-01
This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…
NASA Technical Reports Server (NTRS)
Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette
2006-01-01
This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.
Clausius entropy for arbitrary bifurcate null surfaces
NASA Astrophysics Data System (ADS)
Baccetti, Valentina; Visser, Matt
2014-02-01
Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation {\\rm{d}}S = \\unicode{x111} Q/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations.
Confined systems within arbitrary enclosed surfaces
NASA Astrophysics Data System (ADS)
Burrows, B. L.; Cohen, M.
2016-06-01
A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.
Computing periodic orbits with arbitrary precision.
Abad, Alberto; Barrio, Roberto; Dena, Angeles
2011-07-01
This paper deals with the computation of periodic orbits of dynamical systems up to any arbitrary precision. These very high requirements are useful, for example, in the studies of complex pole location in many physical systems. The algorithm is based on an optimized shooting method combined with a numerical ordinary differential equation (ODE) solver, tides, that uses a Taylor-series method. Nowadays, this methodology is the only one capable of reaching precision up to thousands of digits for ODEs. The method is shown to be quadratically convergent. Some numerical tests for the paradigmatic Lorenz model and the Hénon-Heiles Hamiltonian are presented, giving periodic orbits up to 1000 digits.
Magnetooptic ellipsometry in multilayers at arbitrary magnetization.
Visnovsky, S; Lopusnik, R; Bauer, M; Bok, J; Fassbender, J; Hillebrands, B
2001-07-30
The Yeh's 4 x 4 matrix formalism is applied to determine the electromagnetic wave response in multilayers with arbitrary magnetization. With restriction to magneto-optic (MO) effects linear in the off-diagonal permittivity tensor elements, a simplified characteristic matrix for a magnetic layer is obtained. For a magnetic film-substrate system analytical representations of the MO response expressed in terms of the Jones reflection matrix are provided. These are numerically evaluated for cases when the magnetization develops in three mutually perpendicular planes.
Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement
2009-09-29
This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being appliedmore » to slurry flow (landslides).« less
Electron parallel closures for arbitrary collisionality
Ji, Jeong-Young Held, Eric D.
2014-12-15
Electron parallel closures for heat flow, viscosity, and friction force are expressed as kernel-weighted integrals of thermodynamic drives, the temperature gradient, relative electron-ion flow velocity, and flow-velocity gradient. Simple, fitted kernel functions are obtained for arbitrary collisionality from the 6400 moment solution and the asymptotic behavior in the collisionless limit. The fitted kernels circumvent having to solve higher order moment equations in order to close the electron fluid equations. For this reason, the electron parallel closures provide a useful and general tool for theoretical and computational models of astrophysical and laboratory plasmas.
Adding control to arbitrary unknown quantum operations
Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.
2011-01-01
Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242
Efficient quantum circuits for arbitrary sparse unitaries
Jordan, Stephen P.; Wocjan, Pawel
2009-12-15
Arbitrary exponentially large unitaries cannot be implemented efficiently by quantum circuits. However, we show that quantum circuits can efficiently implement any unitary provided it has at most polynomially many nonzero entries in any row or column, and these entries are efficiently computable. One can formulate a model of computation based on the composition of sparse unitaries which includes the quantum Turing machine model, the quantum circuit model, anyonic models, permutational quantum computation, and discrete time quantum walks as special cases. Thus, we obtain a simple unified proof that these models are all contained in BQP. Furthermore, our general method for implementing sparse unitaries simplifies several existing quantum algorithms.
Search times with arbitrary detection constraints
NASA Astrophysics Data System (ADS)
Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç
2013-08-01
Random encounters in space are central to describing diffusion-limited reactions, animal foraging, search processes, and many other situations in nature. These encounters, however, are often constrained by the capacity of the searcher to detect and/or recognize its target. This can be due to limited binding and perception abilities of the searcher or hiding and avoiding mechanisms used by the target. Hence detection failure upon passage over the target location turns the process into an n-passage problem, with n being random. Here we provide a general description of this detection problem for arbitrary dimensions and arbitrary detection constraints. The mean detection time (MDT) for a random searcher embedded in a sea of homogeneously distributed targets is obtained as a function of the target density ρ, the size domain L, and the effective detection distance a. While the scaling with ρ and L is found to be universal and equivalent to that found for the corresponding first-passage problem, the scaling of the MDT on a depends on the specific detection mechanism considered.
Arbitrary Order Hierarchical Bases for Computational Electromagnetics
Rieben, R N; White, D; Rodrigue, G
2002-12-20
We present a clear and general method for constructing hierarchical vector bases of arbitrary polynomial degree for use in the finite element solution of Maxwell's equations. Hierarchical bases enable p-refinement methods, where elements in a mesh can have different degrees of approximation, to be easily implemented. This can prove to be quite useful as sections of a computational domain can be selectively refined in order to achieve a greater error tolerance without the cost of refining the entire domain. While there are hierarchical formulations of vector finite elements in publication (e.g. [1]), they are defined for tetrahedral elements only, and are not generalized for arbitrary polynomial degree. Recently, Hiptmair, motivated by the theory of exterior algebra and differential forms presented a unified mathematical framework for the construction of conforming finite element spaces [2]. In [2], both 1-form (also called H(curl)) and 2-form (also called H(div)) conforming finite element spaces and the definition of their degrees of freedom are presented. These degrees of freedom are weighted integrals where the weighting function determines the character of the bases, i.e. interpolatory, hierarchical, etc.
Inputs to combination-sensitive neurons of the inferior colliculus.
Wenstrup, J J; Mittmann, D H; Grose, C D
1999-07-12
In the mustached bat, combination-sensitive neurons display integrative responses to combinations of acoustic elements in biosonar or social vocalizations. One type of combination-sensitive neuron responds to multiple harmonics of the frequency-modulated (FM) components in the sonar pulse and echo of the bat. These neurons, termed FM-FM neurons, are sensitive to the pulse-echo delay and may encode the distance of sonar targets. FM-FM neurons are common in high-frequency regions of the central nucleus of the inferior colliculus (ICC) and may be created there. If so, they must receive low-frequency inputs in addition to the expected high-frequency inputs. We placed single deposits of a tracer at FM-FM recording sites in the ICC and then analyzed retrograde labeling in the brainstem and midbrain. We were particularly interested in labeling patterns suggestive of low-frequency input to these FM-FM neurons. In most nuclei containing labeled cells, there was a single focus of labeling in regions thought to be responsive to high-frequency sounds. More complex labeling patterns were observed in three nuclei. In the anteroventral cochlear nucleus, labeling in the anterior and marginal cell divisions occurred in regions thought to respond to low-frequency sounds. This labeling comprised 6% of total brainstem labeled cells. Labeling in the intermediate nucleus of the lateral lemniscus and the magnocellular part of the ventral nucleus of the lateral lemniscus together comprised nearly 40% of all labeled cells. In both nuclei, multiple foci of labeling occurred. These different foci may represent groups of cells tuned to different frequency bands. Thus, one or more of these three nuclei may provide low-frequency input to high-frequency-sensitive cells in the ICC, creating FM-FM responses. We also examined whether ICC neurons responsive to lower frequencies project to high-frequency-sensitive ICC regions; only 0.15% of labeling originated from these lower frequency
Displaying CFD Solution Parameters on Arbitrary Cut Planes
NASA Technical Reports Server (NTRS)
Pao, S. Paul
2008-01-01
USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.
Arbitrary integrated multimode interferometers for the elaboration of photonic qubits
NASA Astrophysics Data System (ADS)
Crespi, Andrea; Ramponi, Roberta; Brod, Daniel J.; Galvao, Ernesto F.; Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Osellame, Roberto
2014-03-01
Integrated photonic circuits with many input and output modes are essential in applications ranging from conventional optical telecommunication networks, to the elaboration of photonic qubits in the integrated quantum information framework. In particular, the latter field has been object in the recent years of an increasing interest: the compactness and phase stability of integrated waveguide circuits are enabling experiments unconceivable with bulk-optics set-ups. Linear photonic devices for quantum information are based on quantum and classical interference effects: the desired circuit operation can be achieved only with tight fabrication control on both power repartition in splitting elements and phase retardance in the various paths. Here we report on a novel three-dimensional circuit architecture, made possible by the unique capabilities of femtosecond laser waveguide writing, which enables us to realize integrated multimode devices implementing arbitrary linear transformations. Networks of cascaded directional couplers can be built with independent control on the splitting ratios and the phase shifts in each branch. In detail, we show an arbitrarily designed 5×5 integrated interferometer: characterization with one- and two-photon experiments confirms the accuracy of our fabrication technique. We exploit the fabricated circuit to implement a small instance of the boson-sampling experiments with up to three photons, which is one of the most promising approaches to realize phenomena hard to simulate with classical computers. We will further show how, by studying classical and quantum interference in many random multimode circuits, we may gain deeper insight into the bosonic coalescence phenomenon.
Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers
Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.
2016-01-01
The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2001-01-01
Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.
Electronic structure calculations in arbitrary electrostatic environments
NASA Astrophysics Data System (ADS)
Watson, Mark A.; Rappoport, Dmitrij; Lee, Elizabeth M. Y.; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán
2012-01-01
Modeling of electronic structure of molecules in electrostatic environments is of considerable relevance for surface-enhanced spectroscopy and molecular electronics. We have developed and implemented a novel approach to the molecular electronic structure in arbitrary electrostatic environments that is compatible with standard quantum chemical methods and can be applied to medium-sized and large molecules. The scheme denoted CheESE (chemistry in electrostatic environments) is based on the description of molecular electronic structure subject to a boundary condition on the system/environment interface. Thus, it is particularly suited to study molecules on metallic surfaces. The proposed model is capable of describing both electrostatic effects near nanostructured metallic surfaces and image-charge effects. We present an implementation of the CheESE model as a library module and show example applications to neutral and negatively charged molecules.
Fast polar decomposition of an arbitrary matrix
NASA Technical Reports Server (NTRS)
Higham, Nicholas J.; Schreiber, Robert S.
1988-01-01
The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.
GEMPAK: An arbitrary aircraft geometry generator
NASA Technical Reports Server (NTRS)
Stack, S. H.; Edwards, C. L. W.; Small, W. J.
1977-01-01
A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.
GEMPAK- AN ARBITRARY AIRCRAFT GEOMETRY GENERATOR
NASA Technical Reports Server (NTRS)
Stack, S. H.
1994-01-01
GEMPAK was developed to aid designers in the generation of detailed configuration geometry. This program was written to allow the user as much flexibility as possible in his choice of configurations and detail of description desired while at the same time, keeping input requirements, program turnaround time, and cost to a minimum. The program consists of routines that generate fuselage and planar surface (wing-like) geometry and a routine that determines the true intersection of all components with the fuselage. GEMPAK consists of three major parts: the fuselage generator, the generator for planar surfaces, and the module for integrating the configuration components with the fuselage. Each component is input and generated independently. The program then scales the resulting individual geometries for compatibility and merges the components into an integrated configuration. This technique permits the user to easily make isolated changes to the configuration. There are three modes of modeling the fuselage. The first is complete lofting where the fuselage is defined analytically by three to eleven lofting curves that may be continuous or discontinuous. The user needs to input only the minimum number of points that can be fitted with conic sections for a good reproduction of his configuration. The second mode of fuselage modeling is cross-section lofting. This mode is structured around lofting data input for discrete prescribed cross-section locations. The model is not analytic in the longitudinal direction in mode two. The third mode is a point by point mode and requires that all surface points be input at discrete longitudinal locations. The model resulting from this mode is completely nonanalytic. No interpolation routines are provided in either longitudinal or cross-sectional directions. The amount of required input is least for mode one and greatest for mode three. The wing, canard, horizontal tail, fin, and elevon are all generated with a single type of
Angular and energy distributions of electrons produced in arbitrary biomaterials by proton impact.
de Vera, Pablo; Garcia-Molina, Rafael; Abril, Isabel
2015-01-01
We present a simple method for obtaining reliable angular and energy distributions of electrons ejected from arbitrary condensed biomaterials by proton impact. Relying on a suitable description of the electronic excitation spectrum and a physically motivated relation between the ion and electron scattering angles, it yields cross sections in rather good agreement with experimental data in a broad range of ejection angles and energies, by only using as input the target composition and density. The versatility and simplicity of the method, which can be also extended to other charged particles, make it especially suited for obtaining ionization data for any complex biomaterial present in realistic cellular environments.
Angular and Energy Distributions of Electrons Produced in Arbitrary Biomaterials by Proton Impact
NASA Astrophysics Data System (ADS)
de Vera, Pablo; Garcia-Molina, Rafael; Abril, Isabel
2015-01-01
We present a simple method for obtaining reliable angular and energy distributions of electrons ejected from arbitrary condensed biomaterials by proton impact. Relying on a suitable description of the electronic excitation spectrum and a physically motivated relation between the ion and electron scattering angles, it yields cross sections in rather good agreement with experimental data in a broad range of ejection angles and energies, by only using as input the target composition and density. The versatility and simplicity of the method, which can be also extended to other charged particles, make it especially suited for obtaining ionization data for any complex biomaterial present in realistic cellular environments.
Arbitrary polarized beams generated and detected by one phase-only LC-SLM
NASA Astrophysics Data System (ADS)
Chen, Dong; Qi, Junli; Wang, Weihua; Chen, Yu; Gu, Guohua; Chu, Delin; Zhang, Qianghua; Deng, Haifei; Zhao, Sugui; Han, Jiajia; Wang, Rongfei
2014-09-01
Arbitrary polarized beams, including homogeneously polarized beams and cylindrical vector beams, have been generated by an experimental setup with one phase-only liquid crystal spatial light modulator, and a four-path method was demonstrated to measure the polarization degree of detected beams. Besides, another method was proposed to measure the polarization directions of cylindrical vector beams. The polarized states can be calculated by controlling the spatial light modulator and optical intensity obtained from a CCD. The generation setup and detection methods have simple structure and low cost, and they are available for multi wavelength input beams, and the detection methods can realize real-time and on-line measurement.
Bell's theorem on arbitrary causal structures
NASA Astrophysics Data System (ADS)
Fritz, Tobias
2014-03-01
Bell's theorem is a gedankenexperiment with an underlying causal structure in the form of the letter ``M.'' I will describe how such a Bell scenario is a special case of a vastly larger class of scenarios, in which the causal structure of the ``M'' is replaced by an arbitrary directed acyclic graph (or, equivalently, by a causal set). In this formalism, the apparent difference between the notions of ``choice of setting,'' ``source,'' and ``measurement'' disappears completely and all of these become special cases of the general notion of ``event.'' I will explain how this relieves Bell's theorem of the philosophical baggage associated with free will and also present several mathematical results about these more general scenarios obtained by various people. This formalism is expected to have applications in many other areas of science: it is relevant whenever a system is probed at certain points in space and time, and at each of these points there may be hidden information not observed by the probes.
Solving Nonlinear Euler Equations with Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
Competitive epidemic spreading over arbitrary multilayer networks
NASA Astrophysics Data System (ADS)
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI1SI2S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
Competitive epidemic spreading over arbitrary multilayer networks.
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI_{1}SI_{2}S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
Mode coupling evolution in arbitrary inflationary backgrounds
Bernardeau, Francis
2011-02-01
The evolution of high order correlation functions of a test scalar field in arbitrary inflationary backgrounds is computed. Whenever possible, exact results are derived from quantum field theory calculations. Taking advantage of the fact that such calculations can be mapped, for super-horizon scales, into those of a classical system, we express the expected correlation functions in terms of classical quantities, power spectra, Green functions, that can be easily computed in the long-wavelength limit. Explicit results are presented that extend those already known for a de Sitter background. In particular the expressions of the late time amplitude of bispectrum and trispectrum, as well as the whole high-order correlation structure, are given in terms of the expansion factor behavior. When compared to the case of a de Sitter background, power law inflation and chaotic inflation induced by a massive field are found to induce high order correlation functions the amplitudes of which are amplified by almost one order of magnitude. These results indicate that the dependence of the related non-Gaussian parameters — such as f{sub NL} — on the wave-modes is at percent level.
Hu, Kan-Nian; Qiang, Wei; Tycko, Robert
2011-01-01
We describe a general computational approach to site-specific resonance assignments in multidimensional NMR studies of uniformly 15N,13C-labeled biopolymers, based on a simple Monte Carlo/simulated annealing (MCSA) algorithm contained in the program MCASSIGN2. Input to MCASSIGN2 includes lists of multidimensional signals in the NMR spectra with their possible residue-type assignments (which need not be unique), the biopolymer sequence, and a table that describes the connections that relate one signal list to another. As output, MCASSIGN2 produces a high-scoring sequential assignment of the multidimensional signals, using a score function that rewards good connections (i.e., agreement between relevant sets of chemical shifts in different signal lists) and penalizes bad connections, unassigned signals, and assignment gaps. Examination of a set of high-scoring assignments from a large number of independent runs allows one to determine whether a unique assignment exists for the entire sequence or parts thereof. We demonstrate the MCSA algorithm using two-dimensional (2D) and three-dimensional (3D) solid state NMR spectra of several model protein samples (α-spectrin SH3 domain and protein G/B1 microcrystals, HET-s218–289 fibrils), obtained with magic-angle spinning and standard polarization transfer techniques. The MCSA algorithm and MCASSIGN2 program can accommodate arbitrary combinations of NMR spectra with arbitrary dimensionality, and can therefore be applied in many areas of solid state and solution NMR. PMID:21710190
Acquisition of the Cardinal Word Principle: The Role of Input
ERIC Educational Resources Information Center
Mix, Kelly S.; Sandhofer, Catherine M.; Moore, Julie Anne; Russell, Christina
2012-01-01
We investigated whether specific input helps 3-1/2-year-olds discover that the last word in a count represents its cardinal value (i.e., the cardinal word principle). In Study 1, we contrasted four training approaches. The only approach to yield significant improvement was to label a set's cardinality and then immediately count it. This training…
Tennis: A standard for data formatting, input, and output
NASA Astrophysics Data System (ADS)
Garrad, Thomas L.
1993-08-01
A technique for documenting, formatting, and storing data is introduced and briefly described. The documentation standard, now labeled the tennis standard, allows creation of function libraries and utilities to gain access to the data, greatly facilitating input and output; these functions and utilities are described. A comparison of this standard with the better known HDF and CDF standards is made.
Quantum Szilard engines with arbitrary spin.
Zhuang, Zekun; Liang, Shi-Dong
2014-11-01
The quantum Szilard engine (QSZE) is a conceptual quantum engine for understanding the fundamental physics of quantum thermodynamics and information physics. We generalize the QSZE to an arbitrary spin case, i.e., a spin QSZE (SQSZE), and we systematically study the basic physical properties of both fermion and boson SQSZEs in a low-temperature approximation. We give the analytic formulation of the total work. For the fermion SQSZE, the work might be absorbed from the environment, and the change rate of the work with temperature exhibits periodicity and even-odd oscillation, which is a generalization of a spinless QSZE. It is interesting that the average absorbed work oscillates regularly and periodically in a large-number limit, which implies that the average absorbed work in a fermion SQSZE is neither an intensive quantity nor an extensive quantity. The phase diagrams of both fermion and boson SQSZEs give the SQSZE doing positive or negative work in the parameter space of the temperature and the particle number of the system, but they have different behaviors because the spin degrees of the fermion and the boson play different roles in their configuration states and corresponding statistical properties. The critical temperature of phase transition depends sensitively on the particle number. By using Landauer's erasure principle, we give the erasure work in a thermodynamic cycle, and we define an efficiency (we refer to it as information-work efficiency) to measure the engine's ability of utilizing information to extract work. We also give the conditions under which the maximum extracted work and highest information-work efficiencies for fermion and boson SQSZEs can be achieved.
Arbitrary Shape Deformation in CFD Design
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Honda, Masazumi; Honma, Yoshinori; Nishimura, Jun; Shiba, Shotaro; Yoshida, Yutaka
2012-05-01
We show that the ABJM theory, which is an {N} = {6} superconformal U( N) × U( N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS4/CFT3 duality at the quantum level. Here we calculate the free energy, and confirm the N 3/2 scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some results obtained by the Fermi gas approach can be clearly understood from the constant map contribution obtained by the genus expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.
Samani, Mohsen Mosayebi; Mahnam, Amin; Hosseini, Nasrin
2014-04-01
Portable wireless neuro-stimulators have been developed to facilitate long-term cognitive and behavioral studies on the central nervous system in freely moving animals. These stimulators can provide precisely controllable input(s) to the nervous system, without distracting the animal attention with cables connected to its body. In this study, a low power backpack neuro-stimulator was developed for animal brain researches that can provides arbitrary stimulus waveforms for the stimulation, while it is small and light weight to be used for small animals including rats. The system consists of a controller that uses an RF link to program and activate a small and light microprocessor-based stimulator. A Howland current source was implemented to produce precise current controlled arbitrary waveform stimulations. The system was optimized for ultra-low power consumption and small size. The stimulator was first tested for its electrical specifications. Then its performance was evaluated in a rat experiment when electrical stimulation of medial longitudinal fasciculus induced circling behavior. The stimulator is capable of delivering programmed stimulations up to ± 2 mA with adjusting steps of 1 μA, accuracy of 0.7% and compliance of 6 V. The stimulator is 15 mm × 20 mm × 40 mm in size, weights 13.5 g without battery and consumes a total power of only 5.l mW. In the experiment, the rat could easily carry the stimulator and demonstrated the circling behavior for 0.1 ms current pulses of above 400 μA. The developed system has a competitive size and weight, whereas providing a wide range of operation and the flexibility of generating arbitrary stimulation patterns ideal for long-term experiments in the field of cognitive and neuroscience research.
Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms.
Ben-Amram, A; Stern, Y; London, Y; Antman, Y; Zadok, A
2015-11-01
Thermal drifts in long fiber-optic delay lines are compensated based on chromatic dispersion. An arbitrary input radio-frequency (RF) waveform and a control RF sine wave modulate two different tunable laser sources and are coupled into the fiber delay line. The RF phase of the control tone at the output of the delay line is monitored and used to adjust the wavelengths of both sources, so that the effects of thermal drifts and dispersion cancel out. The input and control waveforms are separated in the optical domain, and no restrictions are imposed on their RF spectra. A figure of merit is proposed, in terms of the fiber delay, range of temperature changes that may be compensated for, and residual delay variations. An upper bound on performance is established in terms of the specifications of the tunable lasers. The principle is used in the stable distribution of sine waves and of broadband linear frequency-modulated (LFM) waveforms, which are commonly employed in radar systems. Lastly, the method is incorporated in stable interrogation of a localized hot-spot within a high-resolution, distributed Brillouin fiber sensing setup. The results demonstrate the applicability of the proposed protocol in the processing of arbitrary waveforms, as part of larger, more complex systems. PMID:26561095
Microwave beam power transmission at an arbitrary range
NASA Technical Reports Server (NTRS)
Pinero, L. R.; Christian, J. L., Jr.; Acosta, R. J.
1992-01-01
The power transfer efficiency between two circular apertures at an arbitrary range is obtained numerically. The apertures can have generally different sizes and arbitrary taper illuminations. The effects of distance and taper illumination on the transmission efficiency are investigated for equal size apertures. The result shows that microwave beam power is more effective at close ranges, namely distances less than 2D(exp 2)/lambda. Also shown was the power transfer efficiency increase with taper illumination for close range distances. A computer program was developed for calculating the power transfer efficiency at an arbitrary range.
Conformal array design on arbitrary polygon surface with transformation optics
NASA Astrophysics Data System (ADS)
Deng, Li; Wu, Yongle; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang
2016-06-01
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
NASA Astrophysics Data System (ADS)
The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.
Modeling and generating input processes
Johnson, M.E.
1987-01-01
This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.
Closed description of arbitrariness in resolving quantum master equation
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Input in Second Language Acquisition.
ERIC Educational Resources Information Center
Gass, Susan M., Ed.; Madden, Carolyn G., Ed.
This collection of conference papers includes: "When Does Teacher Talk Work as Input?"; "Cultural Input in Second Language Learning"; "Skilled Variation in a Kindergarten Teacher's Use of Foreigner Talk"; "Teacher-Pupil Interaction in Second Language Development"; "Foreigner Talk in the University Classroom"; "Input and Interaction in the…
Intensive Input in Language Acquisition.
ERIC Educational Resources Information Center
Trimino, Andy; Ferguson, Nancy
This paper discusses the role of input as one of the universals in second language acquisition theory. Considerations include how language instructors can best organize and present input and when certain kinds of input are more important. A self-administered program evaluation exercise using relevant theoretical and methodological contributions…
ERIC Educational Resources Information Center
Hyatt, I. Ralph
1977-01-01
Discusses the ease with which mental labels become imprinted in our system, six basic axioms for maintaining negative mental tattoos, and psychological processes for eliminating mental tattoos and labels. (RK)
WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows
Tsoutsanis, Panagiotis Antoniadis, Antonios Foivos Drikakis, Dimitris
2014-01-01
This paper presents the development and implementation of weighted-essentially-non-oscillatory (WENO) schemes for viscous flows on arbitrary unstructured grids. WENO schemes up to fifth-order accurate have been implemented in conjunction with hybrid and non-hybrid unstructured grids. The schemes are investigated with reference to numerical and experimental results for the Taylor–Green vortex, as well as for laminar and turbulent flows around a sphere, and the turbulent shock-wave boundary layer interaction flow problem. The results show that the accuracy of the schemes depends on the arbitrariness of shape and orientation of the unstructured mesh elements, as well as the compactness of directional stencils. The WENO schemes provide a more accurate numerical framework compared to second-order and third-order total variation diminishing (TVD) methods, however, the fifth-order version of the schemes is computationally too expensive to make the schemes practically usable. On the other hand, the third-order variant offers an excellent numerical framework in terms of accuracy and computational cost compared to the fifth-order WENO and second-order TVD schemes. Parallelisation of the CFD code (henceforth labelled as UCNS3D), where the schemes have been implemented, shows that the present methods offer very good scalable performance.
An arbitrary boundary triangle mesh generation method for multi-modality imaging
NASA Astrophysics Data System (ADS)
Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming
2011-11-01
Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.
An arbitrary boundary triangle mesh generation method for multi-modality imaging
NASA Astrophysics Data System (ADS)
Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming
2012-03-01
Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.
A dog at the keyboard: using arbitrary signs to communicate requests.
Rossi, Alexandre Pongrácz; Ades, César
2008-04-01
As a consequence of domestication, dogs have a special readiness for communication with humans. We here investigate whether a dog might be able to acquire and consistently produce a set of arbitrary signs in her communication with humans, as was demonstrated in "linguistic" individuals of several species. A female mongrel dog was submitted to a training schedule in which, after basic command training and after acquiring the verbal labels of rewarding objects or activities, she learned to ask for such objects or activities by selecting lexigrams and pressing keys on a keyboard. Systematic records taken during spontaneous interaction with one of the experimenters showed that lexigrams were used in an appropriate, intentional way, in accordance with the immediate motivational context. The dog only utilized the keyboard in the experimenter's presence and gazed to him more frequently after key pressing than before, an indication that lexigram use did have communicative content. Results suggest that dogs may be able to learn a conventional system of signs associated to specific objects and activities, functionally analogous to spontaneous soliciting behaviors and point to the potential fruitfulness of the keyboard/lexigram procedure for studying dog communication and cognition. This is the first report to systematically analyze the learning of arbitrary sign production in dogs.
SDR Input Power Estimation Algorithms
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Briones, Janette C.
2013-01-01
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.
SDR input power estimation algorithms
NASA Astrophysics Data System (ADS)
Briones, J. C.; Nappier, J. M.
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.
Balanced input-output assignment
NASA Technical Reports Server (NTRS)
Gawronski, W.; Hadaegh, F. Y.
1989-01-01
Actuator/sensor locations and balanced representations of linear systems are considered for a given set of controllability and observability grammians. The case of equally controlled and observed states is given special attention. The assignability of grammians is examined, and the conditions for their existence are presented, along with several algorithms for their determination. Although an arbitrary positive semidefinite matrix is not always assignable, the identity grammian is shown to be always assignable. The results are extended to the case of flexible structures.
Vomeronasal inputs to the rodent ventral striatum.
Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A
2008-03-18
Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.
Retrograde labelling of serotonergic projections onto the neuroendocrine bag cells of Aplysia.
McPherson, D R; Blankenship, J E
1991-02-25
Injection of rhodamine-conjugated latex microspheres into the right bag cell cluster of Aplysia brasiliana yielded retrograde labelling of a small number of cells in the cerebral and abdominal ganglia. Subsequent staining for serotonin immunoreactivity demonstrated consistent double-labelling in specific cerebral and abdominal ganglion serotonergic cells. The double-labelled populations were also stained in vivo by prior treatment with 5,7-dihydroxytryptamine. These retrogradely labelled serotonergic neurons may represent sources of inhibitory input to the neuroendocrine bag cells.
NASA Technical Reports Server (NTRS)
Curfman, Howard J; Gardiner, Robert A
1950-01-01
A method is presented for the determination of the frequency-response characteristics of an element or system by utilizing the transient output response to a known but arbitrary input to the system. Since the application of special inputs, such as step functions or sinusoids, is often imperfect or impractical, a method for utilizing arbitrary inputs is desirable. Simple flight-test data may be reduced by this method to give the frequency response of an aircraft. Examples are given as determinations of aircraft frequency responses; however, the method can be applied to any type of dynamic system, such as automatic-control components, vibration-absorption equipment, and many types of instruments. The method requires that the arbitrary input function tend to a finite value after a finite time and that the system or element output be measured as a representative quantity having a static sensitivity. (author)
Linear streamflow and subsurface runoff in arbitrary basins under Poisson point rainfall.
NASA Astrophysics Data System (ADS)
Ramirez, J. M.
2015-12-01
A novel stochastic model for the streamflow and subsurface runoff within a watershed is formulated and explicitly solved. The model is based on the linearized momentum/mass balance equations, and explicitly relates the transport of water between links of the river network and their surrounding hillslopes at the event time scale. The precipitation input, specified at the hillslope scale, is a steady marked Poisson point process with storm intensities of arbitrary distribution. A stochastic differential equation for the joint evolution of streamflow and runoff at every link of the river network is explicitly solved, and the associated invariant distribution characterized. The results explicitly show how the geometry of the river network, the storage dynamics of rivers and hillslopes, and the probabilistic properties of the rainfall field, conspire to shape the steady hydrological response of the watershed, along with its associated uncertainty. As an application, new formulas for the n-th moment of the streamflow are derived, as well as exact asymptotics of extreme discharge events. Consequently, the model offers insights about the long-term effects of a changing precipitation regime, over the streamflow distribution on an arbitrary watershed.
Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating
Kane, D.J. ); Trebino, R. )
1993-02-01
The authors introduce a new technique, which they call frequency-resolved optical gating (FROG), for characterizing and displaying arbitrary femtosecond pulses. The method is simple, general, broad-band, and does not require a reference pulse. Using virtually any instantaneous nonlinear-optical effect, FROG involves measuring the spectrum of the signal pulse as a function of the delay between two input pulses. The resulting trace of intensity versus frequency and delay is related to the pulse's spectrogram, a visually intuitive transform containing both time and frequency information. They prove, using phase retrieval concepts, that the FROG trace yields the full intensity l(t) and phase [var phi](t) of an arbitrary ultrashort pulse with no physically significant ambiguities. They argue, in analogy with acoustics problems, that the FROG trace is in many ways as useful a representation of the pulse as the field itself. FROG appears to have temporal resolution limited only by the response of the nonlinear medium. They demonstrate the method using self-diffraction via the electronic Kerr effect in BK-7 glass and few [mu]J, 620 nm, linearly chirped, [approximately]200 fs pulses.
Nonrelativistic equations of motion for particles with arbitrary spin
Fushchich, V.I.; Nikitin, A.G.
1981-09-01
First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found.
Arbitrary powers of D'Alembertians and the Huygens' principle
NASA Astrophysics Data System (ADS)
Bollini, C. G.; Giambiagi, J. J.
1993-02-01
By means of some reasonable rules the operators that can represent arbitrary powers of the D'Alembertian and their corresponding Green's functions are defined. It is found which powers lead to the validity of Huygens' principle. The specially interesting case of powers that are half an odd integer in spaces of odd dimensionality, obey Huygens' principle, and can be expressed as iterated D'Alembertians of the retarded potential are discussed. Arbitrary powers of the Laplacian operator as well as their corresponding Green's functions are also discussed.
Emami, F.; Hatami, M.; Keshavarz, A. R.; Jafari, A. H.
2009-08-13
Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.
Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.
Chen, Jingyuan; Li, Peili
2015-08-10
A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD. PMID:26367920
NASA Technical Reports Server (NTRS)
1988-01-01
American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.
Dopaminergic Input to the Inferior Colliculus in Mice.
Nevue, Alexander A; Elde, Cameron J; Perkel, David J; Portfors, Christine V
2015-01-01
The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson's disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578
Dopaminergic Input to the Inferior Colliculus in Mice
Nevue, Alexander A.; Elde, Cameron J.; Perkel, David J.; Portfors, Christine V.
2016-01-01
The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson’s disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578
Arbitrary-ratio power splitter based on nonlinear multimode interference coupler
Tajaldini, Mehdi; Jafri, Mohd Zubir Mat
2015-04-24
We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.
Kull ALE: II. Grid Motion on Unstructured Arbitrary Polyhedral Meshes
Anninos, P
2002-02-11
Several classes of mesh motion algorithms are presented for the remap phase of unstructured mesh ALE codes. The methods range from local shape optimization procedures to more complex variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary for the Kull code.
Arbitrary unitary transformations on optical states using a quantum memory
Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy
2014-12-04
We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.
Criterion for faithful teleportation with an arbitrary multiparticle channel
NASA Astrophysics Data System (ADS)
Cheung, Chi-Yee; Zhang, Zhan-Jun
2009-08-01
We present a general criterion which allows one to judge if an arbitrary multiparticle entanglement channel can be used to teleport faithfully an unknown quantum state of a given dimension. We also present a general multiparticle teleportation protocol which is applicable for all channel states satisfying this criterion.
A scalable, fast, and multichannel arbitrary waveform generator
NASA Astrophysics Data System (ADS)
Baig, M. T.; Johanning, M.; Wiese, A.; Heidbrink, S.; Ziolkowski, M.; Wunderlich, C.
2013-12-01
This article reports on the development of a multichannel arbitrary waveform generator that simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using a field programmable gate array. The device is operated using an internal clock and can be synced to other devices by means of transistor-transistor logic (TTL) pulses. The device can provide up to 24 independent voltages in the range of up to ± 9 V with a dynamic update-rate of up to 25 Msps and a power consumption of less than 35 W. Every channel can be programmed for 16 independent arbitrary waveforms that can be accessed during run time with a minimum switching delay of 160 ns. The device has a low-noise of 250 μVrms and provides a stable long-term operation with a drift rate below 10 μV/min and a maximum deviation less than ± 300 μVpp over a period of 2 h.
A scalable, fast, and multichannel arbitrary waveform generator.
Baig, M T; Johanning, M; Wiese, A; Heidbrink, S; Ziolkowski, M; Wunderlich, C
2013-12-01
This article reports on the development of a multichannel arbitrary waveform generator that simultaneously generates arbitrary voltage waveforms on 24 independent channels with a dynamic update rate of up to 25 Msps. A real-time execution of a single waveform and/or sequence of multiple waveforms in succession, with a user programmable arbitrary sequence order is provided under the control of a stand-alone sequencer circuit implemented using a field programmable gate array. The device is operated using an internal clock and can be synced to other devices by means of transistor-transistor logic (TTL) pulses. The device can provide up to 24 independent voltages in the range of up to ± 9 V with a dynamic update-rate of up to 25 Msps and a power consumption of less than 35 W. Every channel can be programmed for 16 independent arbitrary waveforms that can be accessed during run time with a minimum switching delay of 160 ns. The device has a low-noise of 250 μV(rms) and provides a stable long-term operation with a drift rate below 10 μV/min and a maximum deviation less than ± 300 μV(pp) over a period of 2 h.
Chaotic correlations in barrier billiards with arbitrary barriers
NASA Astrophysics Data System (ADS)
Osbaldestin, A. H.; Adamson, L. N. C.
2013-06-01
We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation.
Information balance in quantum teleportation with an arbitrary pure state
Li Li; Chen Zengbing
2005-07-15
We study a general teleportation scheme with an arbitrary two-party pure state and derive a tight bound of the teleportation fidelity with a predesigned estimation of the unknown state to be teleported. This bound shows a piecewise balance between information gain and state disturbance. We also explain possible physical significance of the balance.
Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1999-01-01
Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.
Rainbows in the grass. II. Arbitrary diagonal incidence.
Adler, Charles L; Lock, James A; Fleet, Richard W
2008-12-01
We consider external reflection rainbow caustics due to the reflection of light from a pendant droplet where the light rays are at an arbitrary angle with respect to the horizontal. We compare this theory to observation of glare spots from pendant drops on grass; we also consider the potential application of this theory to the determination of liquid surface tension. PMID:19037345
Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism
ERIC Educational Resources Information Center
Choi, Su-Jin
2012-01-01
This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…
Juliá, A M; García, S V; Breckinridge, M F
1983-01-01
A systematic reference of English-Spanish prescription label translations is presented. The purpose of the reference list (which is the most comprehensive published to date) is to enable a pharmacist to write precise, accurate label directions in Spanish for any patient who cannot read English.
Spin-labeled polyribonucleotides.
Petrov, A I; Sukhorukov, B I
1980-01-01
Poly (U), poly (C) and poly (A) were spin labeled with N-(2,2,5,5-tetramethyl-3-carbonylpyrroline-1-oxyl)-imidazole. This spin label interacts selectively with 2' OH ribose groups of polynucleotides and does not modify the nucleic acid bases. The extent of spin labeling is not dependent upon the nature of the base and is entirely determined by rigidity of the secondary structure of the polynucleotide. The extent of modification for poly (U), poly (C) and poly (A) was 4.2, 1.7 and 1.5 per cent, respectively, the secondary structure of the polynucleotides being practically unchanged. Some physico-chemical properties of the spin-labeled polynucleotides were investigated by ESR spectroscopy. Rotational correlation times of the spin label and activation energy of its motion were calculated. PMID:6253911
Algebraic decoding of block codes over a q-ary input, Q-ary output channel, Q greater than q.
NASA Technical Reports Server (NTRS)
Wainberg, S.; Wolf, J. K.
1973-01-01
Decoding algorithms designed for one output alphabet are shown to be effectively usable for channels with a different output alphabet. The described technique that makes this possible can be used in conjunction with an arbitrary distance measure between input and output vectors. Thus, Hamming distance, Lee distance, or a burst distance can be assumed. Examples are presented for each of these distances.
Input impedance of microstrip antennas
NASA Technical Reports Server (NTRS)
Deshpande, M. D.; Bailey, M. C.
1982-01-01
Using Richmond's reaction integral equation, an expression is derived for the input impedance of microstrip patch antennas excited by either a microstrip line or a coaxial probe. The effects of the finite substrate thickness, a dielectric protective cover, and associated surface waves are properly included by the use of the exact dyadic Green's function. Using the present formulation the input impedance of a rectangular microstrip antenna is determined and compared with experimental and earlier calculated results.
Nonlinear input-output systems
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Luksic, Mladen; Su, Renjeng
1987-01-01
Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.
Convergence of multisensory inputs in the Xenopus tadpole tectum
Hiramoto, Masateru; Cline, Hollis
2010-01-01
The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits which integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye-labelling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively. PMID:19813244
... and alternative medicine Healthy Aging How to read drug labels Printer-friendly version How to Read Drug ... read drug labels How to read a prescription drug label View a text version of this picture. ...
Arlowe, H.D.
1983-07-15
A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
NASA Astrophysics Data System (ADS)
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-08-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-01-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634
Optimizing the controllability of arbitrary networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Li, Xin-Feng; Lu, Zhe-Ming
2016-04-01
Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.
Resist reflow process for arbitrary 32 nm node pattern
NASA Astrophysics Data System (ADS)
Park, Joon-Min; An, Ilsin; Oh, Hye-Keun
2008-03-01
In order to shrink down the contact hole which is usually much larger than other patterns, the resist reflow process (RRP) has been widely used. Various types, shapes, and pitches of contact hole arrays are made by RRP, but RRP was limited to be used only for contact hole patterns. The same RRP method is expanded to 32 nm node arbitrary and complex patterns including dense line and space patterns. There might be simple 1-dimensional patterns, but 2-dimensional proximity conflict patterns are difficult to make in general. Specially, the data split with proximity correction needs a lot of attention for double patterning. 32 nm node arbitrary patterns can be easily made by using RRP without complex data split.
Resist Reflow Process for 32 nm Node Arbitrary Pattern
NASA Astrophysics Data System (ADS)
Park, Joon-Min; An, Ilsin; Oh, Hye-Keun
2009-04-01
In order to decrease the size of contact holes, which is usually much larger than other patterns, the resist reflow process (RRP) has been widely used. Various types, shapes, and pitches of contact hole arrays are generated by RRP, but the use of RRP was limited to only contact hole patterns. The use of the same RRP method is expanded to 32 nm node arbitrary and complex patterns including dense line and space patterns. There might be simple one-dimensional patterns, but two-dimensional proximity conflict patterns are difficult to generate in general. In particular, the data split with proximity correction requires much attention for double patterning. 32 nm node arbitrary patterns could be generated using RRP without complex data splits when high-index fluid immersion lithography [numerical aperture (NA) 1.55] is used.
Vector plane wave spectrum of an arbitrary polarized electromagnetic wave.
Guo, Hanming; Chen, Jiabi; Zhuang, Songlin
2006-03-20
By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.
Delivering Sound Energy along an Arbitrary Convex Trajectory
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-01-01
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory. PMID:25316353
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Fluid flow over arbitrary bottom topography in a channel
NASA Astrophysics Data System (ADS)
Panda, Srikumar
2016-05-01
In this paper, two-dimensional free surface potential flow over an arbitrary bottom in a channel is considered to analyze the behavior of the free surface profile using linear theory. It is assumed that the fluid is inviscid, incompressible and flow is irrotational. Perturbation analysis in conjunction with Fourier transform technique is employed to determine the first order corrections of some important physical quantities such as free surface profile, velocity potential, etc. From the practical point of view, one arbitrary bottom topography is considered to determine the free surface profile since the free surface profile depends on the bottom topography. It is found that the free surface profile is oscillatory in nature, representing a wave propagating downstream and no wave upstream.
Quantum optical arbitrary waveform manipulation and measurement in real time.
Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping
2014-11-17
We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing. PMID:25402035
Quantum optical arbitrary waveform manipulation and measurement in real time.
Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping
2014-11-17
We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.
Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system.
Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei
2016-01-01
As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634
Quantum teleportation of an arbitrary superposition of atomic states
NASA Astrophysics Data System (ADS)
Chen, Qiong; Fang, Xi-Ming
2008-05-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED. This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement. It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation. Considering the practical case of the cavity decay, this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.
1997-01-01
A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.
Vector plane wave spectrum of an arbitrary polarized electromagnetic wave
NASA Astrophysics Data System (ADS)
Guo, Hanming; Chen, Jiabi; Zhuang, Songlin
2006-03-01
By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.
Effective generation of unidirectional SPP beam with arbitrary profile
NASA Astrophysics Data System (ADS)
You, Oubo; Bai, Benfeng; Wu, Xiaoyu; Zhu, Zhendong; Wang, Qixia
2016-04-01
The beam formation of SPPs is very important in plasmonics. Different SPP beams could be used for different purposes, such as SPP focusing, non-diffractive SPP wave propagation, efficient SPP coupling, and manipulating particles. Here, we present a straightforward and effective method for generating unidirectionally propagating SPP beams with arbitrary profile in both amplitude and phase by locating the Δ-shaped nanoantennas. The Δ-shape of the nanoantennas is used to achieve unidirectionality of SPPs and the locations of the nanoantennas are controlled to realize arbitrary profile of the excited SPP wave. As examples, several SPP launchers generating different SPP beams are designed with this method. The near-field distribution of the generated SPP beams are also experimentally characterized to validate the effectiveness of this method.
An Exact Quantum Search Algorithm with Arbitrary Database
NASA Astrophysics Data System (ADS)
Liu, Yang
2014-08-01
In standard Grover's algorithm for quantum searching, the probability of finding a marked state is not exactly 1, and some modified versions of Grover's algorithm that search a marked state from an evenly distributed database with full successful rate have been presented. In this article, we present a generalized quantum search algorithm that searches M marked states from an arbitrary distributed N-item quantum database with a zero theoretical failure rate, where N is not necessary to be the power of 2. We analyze the general properties of our search algorithm, we find that our algorithm has periodicity with a period of 2 J + 1, and it is effective with certainty for J + (2 J + 1) m times of iteration, where m is an arbitrary nonnegative number.
Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials
NASA Astrophysics Data System (ADS)
Shalin, Alexander S.; Ginzburg, Pavel; Orlov, Alexey A.; Iorsh, Ivan; Belov, Pavel A.; Kivshar, Yuri S.; Zayats, Anatoly V.
2015-03-01
Concealing objects by making them invisible to an external electromagnetic probe is coined by the term "cloaking." Cloaking devices, having numerous potential applications, are still facing challenges in realization, especially in the visible spectral range. In particular, inherent losses and extreme parameters of metamaterials required for the cloak implementation are the limiting factors. Here, we numerically demonstrate nearly perfect suppression of scattering from arbitrary-shaped objects in spatially dispersive metamaterial acting as an alignment-free concealing cover. We consider a realization of a metamaterial as a metal-dielectric multilayer and demonstrate suppression of scattering from an arbitrary object in forward and backward directions with perfectly preserved wave fronts and less than 10% absolute intensity change, despite spatial dispersion effects present in the composite metamaterial. Beyond the usual scattering suppression applications, the proposed configuration may be used for a simple realization of scattering-free detectors and sensors.
Acoustic invisibility cloaks of arbitrary shapes for complex background media
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping
2016-04-01
We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.
Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.
Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret
2008-01-01
In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.
Propagators of random walks on comb lattices of arbitrary dimension
NASA Astrophysics Data System (ADS)
Illien, Pierre; Bénichou, Olivier
2016-07-01
We study diffusion on comb lattices of arbitrary dimension. Relying on the loopless structure of these lattices and using first-passage properties, we obtain exact and explicit formulae for the Laplace transforms of the propagators associated to nearest-neighbour random walks in both cases where either the first or the last point of the random walk is on the backbone of the lattice, and where the two extremities are arbitrarily chosen. As an application, we compute the mean-square displacement of a random walker on a comb of arbitrary dimension. We also propose an alternative and consistent approach of the problem using a master equation description, and obtain simple and generic expressions of the propagators. This method is more general and is extended to study the propagators of random walks on more complex comb-like structures. In particular, we study the case of a two-dimensional comb lattice with teeth of finite length.
Representing Functions in n Dimensions to Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
2007-01-01
A method of approximating a scalar function of n independent variables (where n is a positive integer) to arbitrary accuracy has been developed. This method is expected to be attractive for use in engineering computations in which it is necessary to link global models with local ones or in which it is necessary to interpolate noiseless tabular data that have been computed from analytic functions or numerical models in n-dimensional spaces of design parameters.
Three dimensional mesh generation by triangulation of arbitrary point sets
NASA Technical Reports Server (NTRS)
Baker, Timothy J.
1987-01-01
A method for generating an unstructured mesh is described. The approach is quite general and joins an arbitrary set of points to produce a covering of three dimensional space by tetrahedra. After removing the tetrahedra that connect surface points, a mesh suitable for a finite element based flow solver is obtained. Details of the triangulation algorithm are provided together with an analysis of the algorithm efficiency and validity.
Exact equation for curved stationary flames with arbitrary gas expansion.
Kazakov, Kirill A
2005-03-11
An exact equation describing freely propagating stationary flames with arbitrary values of the gas expansion coefficient is obtained. This equation respects all conservation laws at the flame front, and provides a consistent nonperturbative account of the effect of vorticity produced by the curved flame on the front structure. It is verified that the new equation is in agreement with the approximate equations derived previously in the case of weak gas expansion.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Criterion to identify Hopf bifurcations in maps of arbitrary dimension.
Wen, Guilin
2005-08-01
The classical Hopf bifurcation criterion is stated in terms of the properties of eigenvalues. In this paper, a criterion without using eigenvalues is proposed for maps of arbitrary dimension. The parameter mechanism of Hopf bifurcation may be explicitly formulated on the basis of the criterion. A numerical example demonstrates that the proposed criterion is preferable to the classical Hopf bifurcation criterion in theoretical analysis and practical applications.
Irreducible Cartesian tensors of highest weight, for arbitrary order
NASA Astrophysics Data System (ADS)
Mane, S. R.
2016-03-01
A closed form expression is presented for the irreducible Cartesian tensor of highest weight, for arbitrary order. Two proofs are offered, one employing bookkeeping of indices and, after establishing the connection with the so-called natural tensors and their projection operators, the other one employing purely coordinate-free tensor manipulations. Some theorems and formulas in the published literature are generalized from SO(3) to SO(n), for dimensions n ≥ 3.
Self-forces on static bodies in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter
2016-06-01
We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.
Warm wavebreaking of nonlinear plasma waves with arbitrary phasevelocities
Schroeder, C.B.; Esarey, E.; Shadwick, B.A.
2004-11-12
A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators.
Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.
Progress towards ultracold gases in arbitrary 2D potentials
NASA Astrophysics Data System (ADS)
Corcovilos, Theodore
2016-05-01
We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Light evolution in arbitrary two-dimensional waveguide arrays
Szameit, Alexander; Pertsch, Thomas; Dreisow, Felix; Nolte, Stefan; Tuennermann, Andreas; Peschel, Ulf; Lederer, Falk
2007-05-15
We introduce an analytical formula for the dynamics of light propagation in a two-dimensional waveguide lattice including diagonal coupling. A superposition of infinite arrays created by imaginary sources is used to derive an expression for boundary reflections. It is shown analytically that for large propagation distances the propagating field reaches uniformity. Furthermore, periodic field recovery is studied and discrete anomalous refraction and diffraction are investigated in arbitrary two-dimensional lattices.
ERIC Educational Resources Information Center
Wright, Deborah M.
1989-01-01
Relates individual's personal story of her childhood influenced by her parent's alcoholism, her own alcoholism as a young adult, and her experiences with counseling. Asks others not to reject her because of the label "alcoholic." (ABL)
Field, Michele
2010-01-01
The descriptive “conventions” used on food labels are always evolving. Today, however, the changes are so complicated (partly driven by legislation requiring disclosures about environmental impacts, health issues, and geographical provenance) that these labels more often baffle buyers than enlighten them. In a light-handed manner, the article points to how sometimes reading label language can be like deciphering runes—and how if we are familiar with the technical terms, we can find a literal meaning, but still not see the implications. The article could be ten times longer because food labels vary according to cultures—but all food-exporting cultures now take advantage of our short attention-span when faced with these texts. The question is whether less is more—and if so, in this contest for our attention, what “contestant” is voted off. PMID:21539053
Network Models in Class C on Arbitrary Graphs
NASA Astrophysics Data System (ADS)
Cardy, John
2005-08-01
We consider network models of quantum localisation in which a particle with a two-component wave function propagates through the nodes and along the edges of an arbitrary directed graph, subject to a random SU(2) rotation on each edge it traverses. The propagation through each node is specified by an arbitrary but fixed S-matrix. Such networks model localisation problems in class C of the classification of Altland and Zirnbauer [1], and, on suitable graphs, they model the spin quantum Hall transition. We extend the analyses of Gruzberg, Ludwig and Read [5] and of Beamond, Cardy and Chalker [2] to show that, on an arbitrary graph, the mean density of states and the mean conductance may be calculated in terms of observables of a classical history-dependent random walk on the same graph. The transition weights for this process are explicitly related to the elements of the S-matrices. They are correctly normalised but, on graphs with nodes of degree greater than 4, not necessarily non-negative (and therefore interpretable as probabilities) unless a sufficient number of them happen to vanish. Our methods use a supersymmetric path integral formulation of the problem which is completely finite and rigorous.
A compact, multichannel, and low noise arbitrary waveform generator.
Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G
2014-05-01
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.
A compact, multichannel, and low noise arbitrary waveform generator
Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.
2014-05-15
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.
Growing multiplex networks with arbitrary number of layers
NASA Astrophysics Data System (ADS)
Momeni, Naghmeh; Fotouhi, Babak
2015-12-01
This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.
Multi-input distributed classifiers for synthetic genetic circuits.
Kanakov, Oleg; Kotelnikov, Roman; Alsaedi, Ahmed; Tsimring, Lev; Huerta, Ramón; Zaikin, Alexey; Ivanchenko, Mikhail
2015-01-01
For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multi-input classifier based on a recently introduced distributed classifier concept. A heterogeneous population of cells acts as a single classifier, whose output is obtained by summarizing the outputs of individual cells. The learning ability is achieved by pruning the population, instead of tuning parameters of an individual cell. The present paper is focused on evaluating two possible schemes of multi-input gene classifier circuits. We demonstrate their suitability for implementing a multi-input distributed classifier capable of separating data which are inseparable for single-input classifiers, and characterize performance of the classifiers by analytical and numerical results. The simpler scheme implements a linear classifier in a single cell and is targeted at separable classification problems with simple class borders. A hard learning strategy is used to train a distributed classifier by removing from the population any cell answering incorrectly to at least one training example. The other scheme implements a circuit with a bell-shaped response in a single cell to allow potentially arbitrary shape of the classification border in the input space of a distributed classifier. Inseparable classification problems are addressed using soft learning strategy, characterized by probabilistic decision to keep or discard a cell at each training iteration. We expect that our classifier design contributes to the development of robust and predictable synthetic biosensors, which have the potential to affect applications in a lot of fields, including that of medicine and industry.
Keyframe labeling technique for surveillance event classification
NASA Astrophysics Data System (ADS)
Şaykol, Ediz; Baştan, Muhammet; Güdükbay, Uğur; Ulusoy, Özgür
2010-11-01
The huge amount of video data generated by surveillance systems necessitates the use of automatic tools for their efficient analysis, indexing, and retrieval. Automated access to the semantic content of surveillance videos to detect anomalous events is among the basic tasks; however, due to the high variability of the audio-visual features and large size of the video input, it still remains a challenging task, though a considerable amount of research dealing with automated access to video surveillance has appeared in the literature. We propose a keyframe labeling technique, especially for indoor environments, which assigns labels to keyframes extracted by a keyframe detection algorithm, and hence transforms the input video to an event-sequence representation. This representation is used to detect unusual behaviors, such as crossover, deposit, and pickup, with the help of three separate mechanisms based on finite state automata. The keyframes are detected based on a grid-based motion representation of the moving regions, called the motion appearance mask. It has been shown through performance experiments that the keyframe labeling algorithm significantly reduces the storage requirements and yields reasonable event detection and classification performance.
The topographic order of inputs to nucleus accumbens in the rat.
Phillipson, O T; Griffiths, A C
1985-10-01
Afferents to the nucleus accumbens have been studied with the retrograde transport of unconjugated wheatgerm agglutinin as detected by immunohistochemistry using the peroxidase-antiperoxidase method, in order to define precisely afferent topography from the cortex, thalamus, midbrain and amygdala. Cortical afferent topography was extremely precise. The largest number of cells was found following injections to the anterior accumbens. Anteromedial injections labelled a very large extent of the subiculum and part of the entorhinal cortex. Anterolateral injections produced less subicular and entorhinal label but also labelled the posterior perirhinal cortex. Posteromedial injections labelled only the ventral subiculum and a few cells in the adjacent medial entorhinal cortex. Posterolateral injections labelled few lateral entorhinal neurones but did label a long anteroposterior strip of perirhinal cortex. Prefrontal cortex label was found only after anterior accumbens injections. In the amygdala labelled neurones were found in cortical, central, lateral posterior, anteromedial and basolateral nuclei. Basolateral amygdala projected chiefly to the anteromedial accumbens and central nucleus to anterolateral accumbens. Only a weak amygdala label was found after posterior accumbens injections. In the ventral tegmental area, the midline interfascicular nucleus projected only to medial accumbens. The paranigral ventral tegmentum projected chiefly to the medial accumbens and the parabrachial area chiefly to the lateral accumbens. In the thalamus, heaviest label was found after anterior accumbens injections. Most cells were found in the paraventricular, reuniens and rhomboid nuclei and at posterior thalamic levels lying medial to the fasciculus retroflexus. There was only restricted topography found from thalamic sites. Retrograde label was also found in the ventral pallidum and lateral hypothalamus. Single small injection sites within accumbens received input from the whole
Routing and Label Space Reduction in Label Switching Networks
NASA Astrophysics Data System (ADS)
Solano, Fernando; Caro, Luis Fernando; Stidsen, Thomas; Papadimitriou, Dimitri
This chapter is devoted to the analysis and modeling of some problems related to the optimal usage of the label space in label switching networks. Label space problems concerning three different technologies and architectures - namely Multi-protocol Label Switching (MPLS), Ethernet VLAN-Label Switching (ELS) and All-Optical Label Switching (AOLS) - are discussed in this chapter. Each of these cases yields to different constraints of the general label space reduction problem. We propose a generic optimization model and, then, we describe some adaptations aiming at modeling each particular case. Simulation results are briefly discussed at the end of this chapter.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
Analog Input Data Acquisition Software
NASA Technical Reports Server (NTRS)
Arens, Ellen
2009-01-01
DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.
The advanced LIGO input optics.
Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido
2016-01-01
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design. PMID:26827334
Input in an Institutional Setting.
ERIC Educational Resources Information Center
Bardovi-Harlig, Kathleen; Hartford, Beverly S.
1996-01-01
Investigates the nature of input available to learners in the institutional setting of the academic advising session. Results indicate that evidence for the realization of speech acts, positive evidence from peers and status unequals, the effect of stereotypes, and limitations of a learner's pragmatic and grammatical competence are influential…
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
The advanced LIGO input optics.
Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido
2016-01-01
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.
NASA Technical Reports Server (NTRS)
Ozyazici, E. M.
1980-01-01
Module detects level changes in any of its 16 inputs, transfers changes to its outputs, and generates interrupts when changes are detected. Up to four changes-in-state per line are stored for later retrieval by controlling computer. Using standard TTL logic, module fits 19-inch rack-mounted console.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.
DAC-board based X-band EPR spectrometer with arbitrary waveform control
NASA Astrophysics Data System (ADS)
Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi
2013-10-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.
DAC-board based X-band EPR spectrometer with arbitrary waveform control.
Kaufmann, Thomas; Keller, Timothy J; Franck, John M; Barnes, Ryan P; Glaser, Steffen J; Martinis, John M; Han, Songi
2013-10-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed.
DAC-board based X-band EPR spectrometer with arbitrary waveform control
Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi
2013-01-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8–10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles “seen” by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤250 ps resolution. The implications and potential applications of these capabilities will be discussed. PMID:23999530
What Learning to See Arbitrary Motion Tells Us about Biological Motion Perception
ERIC Educational Resources Information Center
Hiris, Eric; Krebeck, Aurore; Edmonds, Jennifer; Stout, Alexandra
2005-01-01
In separate studies, observers viewed upright biological motion, inverted biological motion, or arbitrary motion created from systematically randomizing the positions of point-light dots. Results showed that observers (a) could learn to detect the presence of arbitrary motion, (b) could not learn to discriminate the coherence of arbitrary motion,…
... Your Local Offices Close + - Text Size Off-label Drug Use What is off-label drug use? In the United States new drugs are ... unapproved use of a drug. Is off-label drug use legal? The off-label use of FDA- ...
Systems and methods for reconfiguring input devices
NASA Technical Reports Server (NTRS)
Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)
2012-01-01
A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.
Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area.
Faget, Lauren; Osakada, Fumitaka; Duan, Jinyi; Ressler, Reed; Johnson, Alexander B; Proudfoot, James A; Yoo, Ji Hoon; Callaway, Edward M; Hnasko, Thomas S
2016-06-21
The ventral tegmental area (VTA) plays a central role in the neural circuit control of behavioral reinforcement. Though considered a dopaminergic nucleus, the VTA contains substantial heterogeneity in neurotransmitter type, containing also GABA and glutamate neurons. Here, we used a combinatorial viral approach to transsynaptically label afferents to defined VTA dopamine, GABA, or glutamate neurons. Surprisingly, we find that these populations received qualitatively similar inputs, with dominant and comparable projections from the lateral hypothalamus, raphe, and ventral pallidum. However, notable differences were observed, with striatal regions and globus pallidus providing a greater share of input to VTA dopamine neurons, cortical input preferentially on to glutamate neurons, and GABA neurons receiving proportionally more input from the lateral habenula and laterodorsal tegmental nucleus. By comparing inputs to each of the transmitter-defined VTA cell types, this study sheds important light on the systems-level organization of diverse inputs to VTA.
Gait-based person recognition using arbitrary view transformation model.
Muramatsu, Daigo; Shiraishi, Akira; Makihara, Yasushi; Uddin, Md Zasim; Yagi, Yasushi
2015-01-01
Gait recognition is a useful biometric trait for person authentication because it is usable even with low image resolution. One challenge is robustness to a view change (cross-view matching); view transformation models (VTMs) have been proposed to solve this. The VTMs work well if the target views are the same as their discrete training views. However, the gait traits are observed from an arbitrary view in a real situation. Thus, the target views may not coincide with discrete training views, resulting in recognition accuracy degradation. We propose an arbitrary VTM (AVTM) that accurately matches a pair of gait traits from an arbitrary view. To realize an AVTM, we first construct 3D gait volume sequences of training subjects, disjoint from the test subjects in the target scene. We then generate 2D gait silhouette sequences of the training subjects by projecting the 3D gait volume sequences onto the same views as the target views, and train the AVTM with gait features extracted from the 2D sequences. In addition, we extend our AVTM by incorporating a part-dependent view selection scheme (AVTM_PdVS), which divides the gait feature into several parts, and sets part-dependent destination views for transformation. Because appropriate destination views may differ for different body parts, the part-dependent destination view selection can suppress transformation errors, leading to increased recognition accuracy. Experiments using data sets collected in different settings show that the AVTM improves the accuracy of cross-view matching and that the AVTM_PdVS further improves the accuracy in many cases, in particular, verification scenarios. PMID:25423652
Cerebral changes during performance of overlearned arbitrary visuomotor associations.
Grol, Meike J; de Lange, Floris P; Verstraten, Frans A J; Passingham, Richard E; Toni, Ivan
2006-01-01
The posterior parietal cortex (PPC) is known to be involved in the control of automatic movements that are spatially guided, such as grasping an apple. We considered whether the PPC might also contribute to the performance of visuomotor associations in which stimuli and responses are linked arbitrarily, such as producing a certain sound for a typographical character when reading aloud or pressing pedals according to the color of a traffic light when driving a motor vehicle. The PPC does not appear to be necessary for learning new arbitrary visuomotor associations, but with extensive training, the PPC can encode nonspatial sensory features of task-relevant cues. Accordingly, we have tested whether the contributions of the PPC might become apparent once arbitrary sensorimotor mappings are overlearned. We have used functional magnetic resonance imaging to measure cerebral activity while subjects were learning novel arbitrary visuomotor associations, overlearning known mappings, or attempting to learn frequently changing novel mappings. To capture the dynamic features of cerebral activity related to the learning process, we have compared time-varying modulations of activity between conditions rather than average (steady-state) responses. Frontal, striatal, and intraparietal regions showed decreasing or stable activity when subjects learned or attempted to learn novel associations, respectively. Importantly, the same frontal, striatal, and intraparietal regions showed time-dependent increases in activity over time as the mappings become overlearned, i.e., despite time-invariant behavioral responses. The automaticity of these mappings predicted the degree of intraparietal changes, indicating that the contribution of the PPC might be related to a particular stage of the overlearning process. We suggest that, as the visuomotor mappings become robust to interference, the PPC may convey relevant sensory information toward the motor cortex. More generally, our findings
Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations
NASA Astrophysics Data System (ADS)
Koskinen, Pekka
2016-09-01
A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.
Quantum tomography of arbitrary spin states of particles: root approach
NASA Astrophysics Data System (ADS)
Bogdanov, Yu. I.
2006-05-01
A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.
Quantitative phase retrieval with arbitrary pupil and illumination
Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; Waller, Laura
2015-10-02
We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.
Time-synchronized visualization of arbitrary data streams
NASA Astrophysics Data System (ADS)
Kolano, Paul Z.
2015-01-01
Savors is a visualization framework that supports the ingestion of data streams created by arbitrary command pipelines. Multiple data streams can be shown synchronized by time in the same or different views, which can be arranged in any layout. These capabilities combined with a powerful parallelization mechanism and interaction models already familiar to administrators allows Savors to display complex visualizations of data streamed from many different systems with minimal effort. This paper presents the design and implementation of Savors and provides example use cases that illustrate many of the supported visualization types.
Quantitative phase retrieval with arbitrary pupil and illumination.
Claus, Rene A; Naulleau, Patrick P; Neureuther, Andrew R; Waller, Laura
2015-10-01
We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. We demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast. PMID:26480180
Acoustic Illusion near Boundaries of Arbitrary Curved Geometry
Kan, Weiwei; Liang, Bin; Zhu, Xuefeng; Li, Ruiqi; Zou, Xinye; Wu, Haodong; Yang, Jun; Cheng, Jianchun
2013-01-01
We have proposed a scheme and presented the first experimental demonstration of acoustic illusion, by using anisotropic metamaterials to manipulate the acoustic field near boundaries of arbitrary curved geometry. Numerical simulations and experimental results show that in the presence of an illusion cloak, any object can be acoustically transformed into another object. The designed illusion cloak simply comprises positive-index anisotropic materials whose material parameters are non-singular, homogeneous and, moreover, independent of the properties of either the original object or the boundary. PMID:23478430
Two-body quantum propagation in arbitrary potentials
NASA Astrophysics Data System (ADS)
Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido
2016-08-01
We have implemented a unitary, numerically exact, Fourier split step method, based on a proper Suzuki-Trotter factorization of the quantum evolution operator, to propagate a two-body complex in arbitrary external potential landscapes taking into account exactly the internal structure. We have simulated spatially indirect Wannier-Mott excitons - optically excited electron-hole pairs with the two charges confined to different layers of a semiconductor heterostructure with prototypical 1D and 2D potentials emphasizing the effects of the internal dynamics and the insufficiency of mean-field methods in this context.
Isotropy theorem for arbitrary-spin cosmological fields
Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez E-mail: maroto@ucm.es
2014-03-01
We show that the energy-momentum tensor of homogeneous fields of arbitrary spin in an expanding universe is always isotropic in average provided the fields remain bounded and evolve rapidly compared to the rate of expansion. An analytic expression for the average equation of state is obtained for Lagrangians with generic power-law kinetic and potential terms. As an example we consider the behavior of a spin-two field in the standard Fierz-Pauli theory of massive gravity. The results can be extended to general space-time geometries for locally inertial observers.
Discussion on massive gravitons and propagating torsion in arbitrary dimensions
Hernaski, C. A.; Vargas-Paredes, A. A.; Helayeel-Neto, J. A.
2009-12-15
In this paper, we reassess a particular R{sup 2}-type gravity action in D dimensions, recently studied by Nakasone and Oda, now taking torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is nonpropagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions.
Arbitrary precision composite pulses for NMR quantum computing.
Alway, William G; Jones, Jonathan A
2007-11-01
We discuss the implementation of arbitrary precision composite pulses developed using the methods of Brown et al. [K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70 (2004) 052318]. We give explicit results for pulse sequences designed to tackle both the simple case of pulse length errors and the more complex case of off-resonance errors. The results are developed in the context of NMR quantum computation, but could be applied more widely.
Transport of energy by disturbances in arbitrary steady flows
NASA Technical Reports Server (NTRS)
Myers, M. K.
1991-01-01
An exact equation governing the transport of energy associated with disturbances in an arbitrary steady flow is derived. The result is a generalization of the familiar concept of acoustic energy and is suggested by a perturbation expansion of the general energy equation of fluid mechanics. A disturbance energy density and flux are defined and identified as exact fluid dynamic quantities whose leading-order regular perturbation representations reduce in various special cases to previously known results. The exact equation on disturbance energy is applied to a simple example of nonlinear wave propagation as an illustration of its general utility in situations where a linear description of the disturbance is inadequate.
Koizumi, Hideya; Jatko, William Bruce; Andrews Jr, William H; Whitten, William B; Reilly, Pete
2010-01-01
Digital ion trap (DIT) mass spectrometry requires the ability to precisely and accurately produce waveforms. The quality of the mass spectra produced in terms of resolution and mass accuracy depend on the resolution and precision of the applied waveforms. This publication reveals a novel method for the production of arbitrary waveforms in general and then applies the method to the production of DIT waveforms. Arbitrary waveforms can be created by varying the clock frequency input to a programmable read only memory that is then input to a digital-to-analog converter (DAC). The arbitrary waveform is composed of a defined number of points that are triggered to be written after programmed numbers of clock cycles to define the arbitrary waveform. The novelty introduced here is that the direct digital synthesis (DDS) generated clock frequency can be precisely changed as the arbitrary waveform is written because we have developed a method to rapidly switch the DDS frequency exactly at the end of the output clock cycle allowing exact timing of multiple transitions to produce precise and temporally complex waveforms. Changing the frequency only at the end of the output clock cycle is a phase coherent process that permits precise timing between each point in the arbitrary waveform. The waveform generation technique was demonstrated by creating a prototype that was used to operate a digital ion trap mass spectrometer. The jitter in the phase-coherent DDS TTL output that was used as the frequency variable clock was 20 ps. This jitter represents the realizable limit of precision for waveform generation. The rectangular waveforms used to operate the mass spectrometer were created with counters that increased the jitter to 100 ps. The mass resolution achieved was 5000 at m/z = 414. This resolution corresponds to a jitter of 275 ps assuming DC fluctuations and overshoots in the waveform are insignificant. Resolution should improve with increasing mass because the waveforms have
Input states for quantum gates
Gilchrist, A.; White, A.G.; Munro, W.J.
2003-04-01
We examine three possible implementations of nondeterministic linear optical controlled NOT gates with a view to an in-principle demonstration in the near future. To this end we consider demonstrating the gates using currently available sources, such as spontaneous parametric down conversion and coherent states, and current detectors only able to distinguish between zero and many photons. The demonstration is possible in the coincidence basis and the errors introduced by the nonoptimal input states and detectors are analyzed.
Structural response and input identification
NASA Technical Reports Server (NTRS)
Shepard, G. D.; Callahan, J. C.; Mcelman, J. A.
1981-01-01
Three major goals were delineated: (1) to develop a general method for determining the response of a structure to combined base and acoustic random excitation: (2) to develop parametric relationships to aid in the design of plates which are subjected to random force or random base excitation: (3) to develop a method to identify the individual acoustic and base input to a structure with only a limited number of measurement channels, when both types of excitation act simultaneously.
National hospital input price index.
Freeland, M S; Anderson, G; Schendler, C E
1979-01-01
The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies. PMID:10309052
National hospital input price index.
Freeland, M S; Anderson, G; Schendler, C E
1979-01-01
The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies.
Arbitrary shape region-of-interest fluoroscopy system
NASA Astrophysics Data System (ADS)
Xu, Tong; Le, Huy; Molloi, Sabee Y.
2002-05-01
Region-of-interest (ROI) fluoroscopy has previously been investigated as a method to reduce x-ray exposure to the patient and the operator. This ROI fluoroscopy technique allows the operator to arbitrarily determine the shape, size, and location of the ROI. A device was used to generate patient specific x-ray beam filters. The device is comprised of 18 step-motors that control a 16 X 16 matrix of pistons to form the filter from a deformable attenuating material. Patient exposure reductions were measured to be 84 percent for a 65 kVp beam. Operator exposure reduction was measured to be 69 percent. Due to the reduced x-ray scatter, image contrast was improved by 23 percent inside the ROI. The reduced gray level in the periphery was corrected using an experimentally determined compensation ratio. A running average interpolation technique was used to eliminate the artifacts from the ROI edge. As expected, the final corrected images show increased noise in the periphery. However, the anatomical structures in the periphery could still be visualized. This arbitrary shaped region of interest fluoroscopic technique was shown to be effective in terms of its ability to reduce patient and operator exposure without significant reduction in image quality. The ability to define an arbitrary shaped ROI should make the technique more clinically feasible.
Arbitrary function generator for APS injector synchrotron correction magnets
Despe, O.D.
1990-11-07
The APS injector synchrotron ring measures about 368 m in circumference. In order to obtain the precision of the magnetic field required for the positron acceleration from 450 Mev to 7.7 Gev with low beam loss, eighty correction magnets are distributed around its circumference. These magnets provide the vernier field changes required for beam orbit correction during the acceleration phase of the injector synchrotron cycle. Because of mechanical imperfections in the construction, as well as installation of real dipole and multi-pole magnets, the exact field correction required at each correction magnet location is not known until a beam is actually accelerated. It is therefore essential that a means is provided to generate a correction field that is a function of the beam energy from injection until extraction for each correction magnet. The fairly large number of correction magnets in the system requires that the arbitrary function generator design be as simple as possible yet provide the required performance. An important, required performance feature is that the function can be changed or modified ``on the fly``, to provide the operator with a real-time feel during the tune up process. The arbitrary function generator described in this report satisfies these requirements.
Generating arbitrary one-dimensional dose profiles using rotational therapy
NASA Astrophysics Data System (ADS)
Zhuang, Tingliang; Wu, Qiuwen
2010-10-01
Conformal radiation therapy can be delivered using several methods: intensity-modulated radiotherapy (IMRT) at fixed gantry angles, through the continuous gantry rotation of linac (rotational arc therapy), or by a dedicated treatment unit such as tomotherapy. The recently developed volumetric modulated arc therapy (VMAT), a form of rotational arc therapy, has attracted lots of attention from investigators to explore its capability of generating highly conformal dose to the target. The main advanced features of VMAT are the variable dose rate and gantry rotation speed. In this paper, we present a theoretical framework of generating arbitrary one-dimensional dose profiles using rotational arc therapy to further explore the new degree of freedom of the VMAT technique. This framework was applied to design a novel technique for total body irradiation (TBI) treatment, where the desired dose distribution can be simplified by a one-dimensional profile. The technique was validated using simulations and experimental measurements. The preliminary results demonstrated that the new TBI technique using either dynamic MLC only, variable dose rate only, or a combination of dynamic MLC and variable dose rate can achieve arbitrary dose distribution in one dimension, such as uniform dose to target and lower dose to critical organ. This technique does not require the use of customized compensators, nor large treatment rooms as in the conventional extended SSD technique.
Spin susceptibility of Anderson impurities in arbitrary conduction bands
NASA Astrophysics Data System (ADS)
Fang, Tie-Feng; Tong, Ning-Hua; Cao, Zhan; Sun, Qing-Feng; Luo, Hong-Gang
2015-10-01
Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening. Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp to susceptibility, defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands. The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp, even when the bands are not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data for the local susceptibility χloc and to compare them with χimp obtained by the traditional NRG. Our results indicate that those exotic behaviors observed in χimp are unphysical. Instead, the low-energy excitations of the impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We also demonstrate that unlike the traditional NRG yielding χloc less accurate than χimp, the FDM method allows a high-precision dynamical calculation of χloc at much reduced computational cost, with an accuracy at least one order higher than χimp. Moreover, artifacts in the FDM algorithm to χimp and origins of the spurious non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of Wilson's definition to such cases.
Spread of arbitrary conventions among chimpanzees: a controlled experiment
Bonnie, Kristin E; Horner, Victoria; Whiten, Andrew; de Waal, Frans B.M
2006-01-01
Wild chimpanzees (Pan troglodytes) have a rich cultural repertoire—traditions common in some communities are not present in others. The majority of reports describe functional, material traditions, such as tool use. Arbitrary conventions have received far less attention. In the same way that observations of material culture in wild apes led to experiments to confirm social transmission and identify underlying learning mechanisms, experiments investigating how arbitrary habits or conventions arise and spread within a group are also required. The few relevant experimental studies reported thus far have relied on cross-species (i.e. human–ape) interaction offering limited ecological validity, and no study has successfully generated a tradition not involving tool use in an established group. We seeded one of two rewarded alternative endpoints to a complex sequence of behaviour in each of two chimpanzee groups. Each sequence spread in the group in which it was seeded, with many individuals unambiguously adopting the sequence demonstrated by a group member. In one group, the alternative sequence was discovered by a low ranking female, but was not learned by others. Since the action-sequences lacked meaning before the experiment and had no logical connection with reward, chimpanzees must have extracted both the form and benefits of these sequences through observation of others. PMID:17164200
Spatial light modulators with arbitrary quantum well profiles
NASA Astrophysics Data System (ADS)
Marcas, George N.; Bajaj, Krishan K.
1992-02-01
This is the 2nd year technical report for the University Research Initiative (URI) Program, Spatial Light Modulators with Arbitrary Quantum Well Profiles. During the second year of the program, we have continued to optimize optical modulator design, growth, and fabrication. A new method for self-consistent solution of Schroedinger and Poisson equations was developed and used to predict modulator active region performance and vertical cavity surface emitting laser device performance. A comprehensive comparison of asymmetric triangular quantum wells (ATQW) using GaAs/AlGaAs, InGaAs/GaAs, and InGaAs/AlGaAs showed InGaAs/AlGaAs quantum wells to have the highest optical efficiency. A MBE compositional grading technique was used to achieve record narrow photoluminescence linewidths for nonrectangular quantum wells. Bragg reflectors for use in Fabry Perot modulators were measured in-situ by spectroscopic ellipsometry (SE). Advances were made in the growth and fabrication of p-i-n optical modulators, including the development of via hole etching through the substrate for transmission mode modulators. A simple variational method for calculating excitonic properties in quantum confined structures with arbitrary potential profiles in the presence of applied electric and magnetic fields were developed and applied to the study of energy levels of hydrogenic impurities. Also, a theory of radiative transition linewidths due to alloy disordering in semiconductor alloys has been presented and applied to AlGaAs and InGaP bulk alloys.
Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.
Casals, Marc; Ottewill, Adrian
2012-09-14
Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.
From arbitrariness to anomalies in two-dimensional perturbative calculations
NASA Astrophysics Data System (ADS)
Battistel, O. A.
2004-05-01
A very general calculational strategy is applied to the evaluation of divergent physical amplitudes which are typical of 2D perturbative calculations. With this approach, in the final results all the arbitrariness intrinsic to the calculations, due to the divergent character, is still present. We show that, concerning the arbitrariness, the regularizations can be classified into two basic classes. The consequences on adopting each such class for the symmetry relations are investigated. It is noted that if very general symmetry requirements, such as Furry's theorem or gauge invariance, are used to select a consistent regularization procedure, the possible sources of ambiguities related to the choices for the internal line momenta of loops are completely eliminated. A very transparent description of the two-dimensional anomalies emerges, allowing a clear understanding of the results obtained within the context of traditional methods. The comparison with 4D triangle anomalies reveals a completely similar situation for both cases. The very interesting phenomenon of mass generation for the gauge boson in the massless fermion theory is also obtained in agreement with the expected results.
Double layers and double wells in arbitrary degenerate plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2016-06-01
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.
Code System to Perform Monte Carlo Simulation of Electron Gamma-Ray Showers in Arbitrary Marerials.
2002-10-15
Version 00 PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary materials. Initially, it was devised to simulate the PENetration and Energy LOss of Positrons and Electrons in matter; photons were introduced later. The adopted scattering model gives a reliable description of radiation transport in the energy range from a few hundred eV to about 1GeV. PENELOPE generates random electron-photon showers in complex material structures consisting of any number of distinct homogeneous regions (bodies)more » with different compositions. The Penelope Forum list archives and other information can be accessed at http://www.nea.fr/lists/penelope.html. PENELOPE-MPI extends capabilities of PENELOPE-2001 (RSICC C00682MNYCP02; NEA-1525/05) by providing for usage of MPI type parallel drivers and extends the original version's ability to read different types of input data sets such as voxel. The motivation is to increase efficiency of Monte Carlo simulations for medical applications. The physics of the calculations have not been changed, and the original description of PENELOPE-2001 (which follows) is still valid. PENELOPE-2001 contains substantial changes and improvements to the previous versions 1996 and 2000. As for the physics, the model for electron/positron elastic scattering has been revised. Bremsstrahlung emission is now simulated using partial-wave data instead of analytical approximate formulae. Photoelectric absorption in K and L-shells is described from the corresponding partial cross sections. Fluorescence radiation from vacancies in K and L-shells is followed. Refinements were also introduced in electron/positron transport mechanics, mostly to account for energy dependence of the mean free paths for hard events. Simulation routines were re-programmed in a more structured way, and new example MAIN programs were written with a more flexible input and expanded output.« less
NASA Technical Reports Server (NTRS)
Norment, H. G.
1980-01-01
Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.
A Methodology to Validate 3-D Arbitrary Lagrangian Eulerian Codes with Applications to Alegra
Chhabildas, L.C.; Duggins, B.D.; Konrad, C.H.; Mosher, D.A.; Perry, J.S.; Reinhart, W.D.; Summers, R.M.; Trucano, T.G.
1998-11-04
In this study we provided an experimental test bed for validating features of the Arbitrary Lagrangian Eulerian Grid for Research Applications (ALEGRA) code over a broad range of strain rates with overlapping diagnostics that encompass the multiple responses. A unique feature of the ALEGRA code is that it allows simultaneous computational treatment, within one code, of a wide range of strain-rates varying from hydrodynamic to structural conditions. This range encompasses strain rates characteristic of shock-wave propagation (107/s) and those characteristics of structural response (102/s). Most previous code validation experimental &udies, however, have been restricted to simulating or investigating a single strain-rate regime. What is new and different in this investigation is that we have performed well-controlled and well-instrumented experiments, which capture features relevant to both hydrodynamic and structural response in a single experiment. Aluminum was chosen for use in this study because it is a well-characterized material. The current experiments span strain rate regimes of over 107/s to less than 102/s in a single experiment. The input conditions were extremely well defined. Velocity interferometers were used to record the high' strain-rate response, while low strain rate data were collected using strain gauges. Although the current tests were conducted at a nominal velocity of - 1.5 km/s, it is the test methodology that is being emphasized herein. Results of a three-dimensional experiment are also presented.
Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means
NASA Astrophysics Data System (ADS)
Zhang, Qi; Jin, Shi; Wong, Kai-Kit; Zhu, Hongbo; Matthaiou, Michail
2014-10-01
This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean $K$-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, $M$, grows large, while the transmit power of each user can be scaled down proportionally to $1/M$. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean $K$-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to $1/\\sqrt M$. In addition, we show that with an increasing Ricean $K$-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.
Modelling Elastic Media With Arbitrary Shapes Using the Wavelet Transform
NASA Astrophysics Data System (ADS)
Rosa, J. W.; Cardoso, F. A.; Rosa, J. W.; Aki, K.
2004-12-01
We extend the new method proposed by Rosa et al. (2001) for the study of elastic bodies with complete arbitrary shapes. The method was originally developed for modelling 2-D elastic media with the application of the wavelet transform, and was extended to cases where discontinuities simulated geologic faults between two different elastic media. In addition to extending the method for the study of bodies with complete arbitrary shapes, we also test new transforms with the objective of making the related matrices more compact, which are also applied to the most general case of the method. The basic method consists of the discretization of the polynomial expansion for the boundary conditions of the 2-D problem involving the stress and strain relations for the media. This parameterization leads to a system of linear equations that should be solved for the determination of the expansion coefficients, which are the model parameters, and their determination leads to the solution of the problem. Despite the fact that the media we studied originally were 2-D bodies, the result of the application of this new method can be viewed as an approximate solution to some specific 3-D problems. Among the motivations for developing this method are possible geological applications (that is, the study of tectonic plates and geologic faults) and simulations of the elastic behaviour of materials in several other fields of science. The wavelet transform is applied with two main objectives, namely to decrease the error related to the truncation of the polynomial expansion and to make the system of linear equations more compact for computation. Having validated this method for the original 2-D elastic media, we plan that this extension to elastic bodies with complete arbitrary shapes will enable it to be even more attractive for modelling real media. Reference Rosa, J. W. C., F. A. C. M. Cardoso, K. Aki, H. S. Malvar, F. A. V. Artola, and J. W. C. Rosa, Modelling elastic media with the
Labeling lake water with tritium
Frederick, B.J.
1963-01-01
A method of packaging tritiated water in a manner that facilitates safe handling in environmental labeling operations, and procedures followed in labeling a large body of water with a small volume of tritiated water are described. ?? 1963.
Phillips, W.T.; Klipper, R.W.; Timmons, J.H.; Rudolph, A.S.
1992-10-27
This patent describes a method of preparing stable gamma-emitting radionuclide-labeled alkyleneamine oxime, the incubating being for a period of time sufficient to form labeled liposome-encapsulated protein.
... For Preschooler For Gradeschooler For Teen Decode the Sodium Label Lingo Published January 24, 2013 Print Email Reading food labels can help you slash sodium. Here's how to decipher them. "Sodium free" or " ...
Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN)
Silverman, A.J.; Oldfield, B.J.
1984-01-01
Following injections of horseradish peroxidase into the PVN, retrogradely filled cells were found in regions of the limbic system known to contain glucocorticoid concentrating neurons. To determine if these regions which include the lateral septum, medial amygdala and ventral subiculum have a monosynaptic input to vasopressin neurons the authors developed a double label ultrastructural technique to simultaneously visualize immunoreactive neuropeptide and anterogradely transported HRP. Following injections of tracer into all three of these regions, HRP labeled fibers were seen at the light microscopic level to form a halo in the perinuclear, cell poor zone around the PVN. Ultrastructural examination of this area resulted in the discovery of a small number of limbic system synapses on vasopressin dendrites. In a similar fashion they were interested in determining the distribution of noradrenergic terminals on vasopressin neurons in the various subnuclei of the PVN. The authors have combined immunocytochemistry for vasopressin with radioautography for /sup 3/H-norepinephrine (NE) at the ultrastructural level. NE terminals were numerous in the periventricular zone, innervating both vasopressin containing dendrites and non-immunoreactive dendrites and cell bodies. These studies demonstrate the need for ultrastructural analysis of synaptic input to neurosecretory cells.
Program manual for ASTOP, an Arbitrary space trajectory optimization program
NASA Technical Reports Server (NTRS)
Horsewood, J. L.
1974-01-01
The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions.
Falcon: automated optimization method for arbitrary assessment criteria
Yang, Tser-Yuan; Moses, Edward I.; Hartmann-Siantar, Christine
2001-01-01
FALCON is a method for automatic multivariable optimization for arbitrary assessment criteria that can be applied to numerous fields where outcome simulation is combined with optimization and assessment criteria. A specific implementation of FALCON is for automatic radiation therapy treatment planning. In this application, FALCON implements dose calculations into the planning process and optimizes available beam delivery modifier parameters to determine the treatment plan that best meets clinical decision-making criteria. FALCON is described in the context of the optimization of external-beam radiation therapy and intensity modulated radiation therapy (IMRT), but the concepts could also be applied to internal (brachytherapy) radiotherapy. The radiation beams could consist of photons or any charged or uncharged particles. The concept of optimizing source distributions can be applied to complex radiography (e.g. flash x-ray or proton) to improve the imaging capabilities of facilities proposed for science-based stockpile stewardship.
Broadband Acoustic Cloaking within an Arbitrary Hard Cavity
NASA Astrophysics Data System (ADS)
Kan, Weiwei; García-Chocano, Victor M.; Cervera, F.; Liang, Bin; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jianchun; Sánchez-Dehesa, José
2015-06-01
This paper reports the design, fabrication, and experimental validation of a broadband acoustic cloak for the concealing of three-dimensional (3D) objects placed inside an open cavity with arbitrary surfaces. This 3D cavity cloak represents the acoustic analogue of a magician hat, giving the illusion that a cavity with an object is empty. Transformation acoustics is employed to design this cavity cloak, whose parameters represent an anisotropic acoustic metamaterial. A practical realization is made of 14 perforated layers fabricated by drilling subwavelength holes on 1-mm-thick Plexiglas plates. In both simulation and experimental results, concealing of the reference object by the device is shown for airborne sound with wavelengths between 10 cm and 17 cm.
Arbitrary waveguide connector based on embedded optical transformation.
Zhang, Kuang; Wu, Qun; Meng, Fan-Yi; Li, Le-Wei
2010-08-01
Arbitrary connector for waveguides of different cross sections is proposed and designed theoretically based on the embedded optical transformation theory. First, the general expressions of constitutive tensors of the metamaterials filled in the connector are derived. Second, there are some full-wave simulations that validate the constitutive tensors derived. The results show that the connector with metamaterials inclusions with designed constitutive parameters can fulfill the reflectionless transmission of electromagnetic waves between waveguides of different cross sections. Finally, connectors of several forms are investigated parametrically, and two sets of constitutive tensors that can be physically achieved by existing metamaterials are gotten. It is believed that this study provides a feasible way to fulfill the efficient transmission of electromagnetic waves between waveguides of different cross sections.
Classically exact surface diffusion constants at arbitrary temperature
Voter, A.F.; Cohen, J.M.
1989-05-01
An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces.
Classically exact surface diffusion constants at arbitrary temperature
Voter, A.F.; Cohen, J.M.
1988-01-01
An expression is presented for computing the classical diffusion constant of a point defect (e.g., adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low and middle temperature regimes. The expression resulted from taking the time derivative of the particle mean square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces. 14 refs., 3 figs.
Calculating fusion neutron energy spectra from arbitrary reactant distributions
NASA Astrophysics Data System (ADS)
Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.
2016-02-01
The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.
Growth and stability of interacting surface flaws of arbitrary shape
NASA Technical Reports Server (NTRS)
Murakami, Y.; Nemat-Nasser, S.
1983-01-01
Growth regimes of interacting surface flaws of arbitrary shape are analyzed with the aid of the body force method, and the stability of the process is assessed on the basis of the variation of the load during the growth. It is shown that irregularly shaped flaws are often associated with very high stress intensity factors locally, which tend to change as the flaws grow into more regular shapes. Several examples of various flaw shapes are worked out for illustration, and it is shown that a simple formula seems to provide an accurate estimate of the maximum stress intensity factor for surface flaws of various shapes, which are not very slender. The formula involves the overall maximum tension, as well as the area of the projection of the flaw on the plane normal to the maximum tension.
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions.
Alase, Abhijeet; Cobanera, Emilio; Ortiz, Gerardo; Viola, Lorenza
2016-08-12
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D-1. The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s-wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4π-periodic Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary. PMID:27563986
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions
NASA Astrophysics Data System (ADS)
Alase, Abhijeet; Cobanera, Emilio; Ortiz, Gerardo; Viola, Lorenza
2016-08-01
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D -1 . The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s -wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4 π -periodic Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary.
Equiangular-spiral bent lightpipes with arbitrary bent angle
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun; Cheng, Yi-Kai; Chern, Jyh-Long
2009-05-01
A recent study proposed the concept of a leakage-free bent lightpipe with an equiangular-spiral shape [S.-C. Chu, J.-L. Chern, Opt. Lett. 30 (2005) 3006]. This paper extends the design of a leakage-free equiangular-spiral bent lightpipe with arbitrary-bend-angle and addresses in detail the mathematical formalism required to build such an equiangular-spiral bent lightpipe. Furthermore, a comparison of the proposed equiangular-spiral bent lightpipe and a conventional circular bent lightpipe is provided. Numerical verifications are discussed, and experimental explorations with different bent shapes and angles are carried out for comparison. Results show that equiangular-spiral bent lightpipes with different bent angles exhibit a theoretical 100% transmission with more than 76% efficiency when practically propagating, which is much better than conventional circular bent lightpipes. The output irradiance distributions of bent lightpipes with different bent shapes are also investigated.
Compound words prompt arbitrary semantic associations in conceptual memory
Boutonnet, Bastien; McClain, Rhonda; Thierry, Guillaume
2014-01-01
Linguistic relativity theory has received empirical support in domains such as color perception and object categorization. It is unknown, however, whether relations between words idiosyncratic to language impact non-verbal representations and conceptualizations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness task in participants undergoing event-related brain potential recordings. Picture pairs arbitrarily related because of a compound and presented in the compound order elicited N400 amplitudes similar to unrelated pairs. Surprisingly, however, pictures presented in the reverse order (as in the sequence horse–sea) reduced N400 amplitudes significantly, demonstrating the existence of a link in memory between these two concepts otherwise unrelated. These results break new ground in the domain of linguistic relativity by revealing predicted semantic associations driven by lexical relations intrinsic to language. PMID:24672505
Simulation study with arbitrary profile liquid annular seals
Padavala, S.; Palazzolo, A.B.
1994-10-01
This paper presents an improved dynamic analysis for liquid annular seals with arbitrary profile based on a method first proposed by Nelson and Nguyen. An improved first-order solution that incorporates a continuous interpolation of perturbed quantities in the circumferential direction is presented. The original method uses an approximation scheme for circumferential gradients of zeroth order solution based on Fast Fourier Transforms (FFT). A simpler scheme based on cubic splines is found to be computationally more efficient, with better convergence at higher eccentricities. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. A procedure for computing dynamic coefficients based on external specific load is discussed. An example case of an elliptical seal with varying degrees of axial curvature is analyzed. A case study based on actual operating clearances (6 axial planes with 68 clearances/plane) of an interstage seal of the Space Shuttle Main Engine High Pressure Oxygen Turbopump (SSME-ATD-HPOTP) is presented.
Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation
Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong E-mail: zkc@itp.ac.cn
2013-08-01
We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''.
Laplace-Runge-Lenz vector for arbitrary spin
NASA Astrophysics Data System (ADS)
Nikitin, A. G.
2013-12-01
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published as an e-print arXiv:1308.4279.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh
2010-09-01
We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200
Broadband computation of the scattering coefficients of infinite arbitrary cylinders.
Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier
2012-07-01
We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding
NASA Astrophysics Data System (ADS)
Lau, Hoi-Kwan; Plenio, Martin B.
2016-09-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Arbitrary cylinder color model for the codebook based background subtraction.
Zeng, Zhi; Jia, Jianyuan
2014-09-01
The codebook background subtraction approach is widely used in computer vision applications. One of its distinguished features is the cylinder color model used to cope with illumination changes. The performances of this approach depends strongly on the color model. However, we have found this color model is valid only if the spectrum components of the light source change in the same proportion. In fact, this is not true in many practical cases. In these cases, the performances of the approach would be degraded significantly. To tackle this problem, we propose an arbitrary cylinder color model with a highly efficient updating strategy. This model uses cylinders whose axes need not going through the origin, so that the cylinder color model is extended to much more general cases. Experimental results show that, with no loss of real-time performance, the proposed model reduces the wrong classification rate of the cylinder color model by more than fifty percent.
Faithful Transfer Arbitrary Pure States with Mixed Resources
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Li, Lin; Ma, Song-Ya; Chen, Xiu-Bo; Yang, Yi-Xian
2013-09-01
In this paper, we show that some special mixed quantum resource experience the same property of pure entanglement such as Bell state for quantum teleportation. It is shown that one mixed state and three bits of classical communication cost can be used to teleport one unknown qubit compared with two bits via pure resources. The schemes are easily implement with model physical techniques. Moreover, these resources are also optimal and typical for faithfully remotely prepare an arbitrary qubit, two-qubit and three-qubit states with mixed quantum resources. Our schemes are completed as same as those with pure quantum entanglement resources except only 1 bit additional classical communication cost required. The success probability is independent of the form of the mixed resources.
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
Method of preparing mercury with an arbitrary isotopic distribution
Grossman, M.W.; George, W.A.
1986-12-16
This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.
Method of preparing mercury with an arbitrary isotopic distribution
Grossman, Mark W.; George, William A.
1986-01-01
This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.
Exact transient photon correlation with arbitrary laser pulses
Ooi, C. H. Raymond
2011-11-15
We present a full quantum theory to study the transient evolution of photon pairs. We introduce a method which gives exact time-dependent solutions of the coupled quantum Langevin equations for a multilevel quantum particle driven by arbitrary time-dependent laser fields. The analytical solutions are used to develop a numerical code for computing exact time evolution of the two-photon correlation function. We analyze the effects of laser pulses sequence, pulse duration, chirping, and initial internal quantum states on the nonclassicality of the photon correlation through the violation of the Cauchy-Schwarz inequality. The results provide a promising possibility of controlling the generation of highly correlated photon pairs using tailored short laser pulses.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified. PMID:27636459
Magnetic and electric black holes in arbitrary dimensions
Belhaj, Adil; Diaz, Pablo; Segui, Antonio
2009-08-15
In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.
Simulation of sound propagation over porous barriers of arbitrary shapes.
Ke, Guoyi; Zheng, Z C
2015-01-01
A time-domain solver using an immersed boundary method is investigated for simulating sound propagation over porous and rigid barriers of arbitrary shapes. In this study, acoustic propagation in the air from an impulse source over the ground is considered as a model problem. The linearized Euler equations are solved for sound propagation in the air and the Zwikker-Kosten equations for propagation in barriers as well as in the ground. In comparison to the analytical solutions, the numerical scheme is validated for the cases of a single rigid barrier with different shapes and for two rigid triangular barriers. Sound propagations around barriers with different porous materials are then simulated and discussed. The results show that the simulation is able to capture the sound propagation behaviors accurately around both rigid and porous barriers. PMID:25618061
General analytic solutions of scalar field cosmology with arbitrary potential
NASA Astrophysics Data System (ADS)
Dimakis, N.; Karagiorgos, A.; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T.; Terzis, Petros A.
2016-06-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a Friedmann-Lemaître-Robertson-Walker metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. Both the spatially flat and nonflat cases are studied first in the presence of only the scalar field and subsequently with the addition of noninteracting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Compound words prompt arbitrary semantic associations in conceptual memory.
Boutonnet, Bastien; McClain, Rhonda; Thierry, Guillaume
2014-01-01
Linguistic relativity theory has received empirical support in domains such as color perception and object categorization. It is unknown, however, whether relations between words idiosyncratic to language impact non-verbal representations and conceptualizations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness task in participants undergoing event-related brain potential recordings. Picture pairs arbitrarily related because of a compound and presented in the compound order elicited N400 amplitudes similar to unrelated pairs. Surprisingly, however, pictures presented in the reverse order (as in the sequence horse-sea) reduced N400 amplitudes significantly, demonstrating the existence of a link in memory between these two concepts otherwise unrelated. These results break new ground in the domain of linguistic relativity by revealing predicted semantic associations driven by lexical relations intrinsic to language. PMID:24672505
Dielectric function of a collisional plasma for arbitrary ionic charge.
Nersisyan, H B; Veysman, M E; Andreev, N E; Matevosyan, H H
2014-03-01
A simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge that is valid for long-wavelength high-frequency perturbations is derived using an approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions to the dielectric function is treated phenomenologically, introducing some parameter ϰ that is chosen in such a way as to get a well-known expression for stationary electric conductivity in the low-frequency region and fulfill the requirement of a vanishing contribution of electron-electron collisions in the high-frequency region. This procedure ensures the applicability of our model in a wide range of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike the interpolation formula proposed earlier by Brantov et al. [Brantov et al., JETP 106, 983 (2008)], our model fulfills the Kramers-Kronig relations and permits a generalization for the cases of degenerate and strongly coupled plasmas. With this in mind, a generalization of the well-known Lee-More model [Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984)] for stationary conductivity and its extension to dynamical conductivity [O. F. Kostenko and N. E. Andreev, GSI Annual Report No. GSI-2008-2, 2008 (unpublished), p. 44] is proposed for the case of plasmas with arbitrary ionic charge.
Dielectric function of a collisional plasma for arbitrary ionic charge.
Nersisyan, H B; Veysman, M E; Andreev, N E; Matevosyan, H H
2014-03-01
A simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge that is valid for long-wavelength high-frequency perturbations is derived using an approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions to the dielectric function is treated phenomenologically, introducing some parameter ϰ that is chosen in such a way as to get a well-known expression for stationary electric conductivity in the low-frequency region and fulfill the requirement of a vanishing contribution of electron-electron collisions in the high-frequency region. This procedure ensures the applicability of our model in a wide range of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike the interpolation formula proposed earlier by Brantov et al. [Brantov et al., JETP 106, 983 (2008)], our model fulfills the Kramers-Kronig relations and permits a generalization for the cases of degenerate and strongly coupled plasmas. With this in mind, a generalization of the well-known Lee-More model [Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984)] for stationary conductivity and its extension to dynamical conductivity [O. F. Kostenko and N. E. Andreev, GSI Annual Report No. GSI-2008-2, 2008 (unpublished), p. 44] is proposed for the case of plasmas with arbitrary ionic charge. PMID:24730951
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
NASA Astrophysics Data System (ADS)
Bo, Wurigen; Shashkov, Mikhail
2015-10-01
eW present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35,34,6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. In the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way. In the current paper we present a new adaptive ReALE method, A-ReALE, that is based on the following design principles. First, a monitor function (or error indicator) based on the Hessian of some flow parameter(s) is utilized. Second, an equi-distribution principle for the monitor function is used as a criterion for adapting the mesh. Third, a centroidal Voronoi tessellation is used to adapt the mesh. Fourth, we scale the monitor function to avoid very small and large cells and then smooth it to permit the use of theoretical results related to weighted centroidal Voronoi tessellation. In the A-ReALE method, both number of cells and their locations are allowed to change at the rezone stage on each time step. The number of generators at each time step is chosen to guarantee the required spatial resolution in regions where monitor function reaches its maximum value. We present all details required for implementation of new adaptive A-ReALE method and demonstrate its performance in comparison with standard ReALE method on series of numerical examples.
NASA Astrophysics Data System (ADS)
Slatyer, Tracy R.
2016-01-01
Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.
Spuler, Martin
2015-08-01
A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.
Learning to represent visual input
Hinton, Geoffrey E.
2010-01-01
One of the central problems in computational neuroscience is to understand how the object-recognition pathway of the cortex learns a deep hierarchy of nonlinear feature detectors. Recent progress in machine learning shows that it is possible to learn deep hierarchies without requiring any labelled data. The feature detectors are learned one layer at a time and the goal of the learning procedure is to form a good generative model of images, not to predict the class of each image. The learning procedure only requires the pairwise correlations between the activations of neuron-like processing units in adjacent layers. The original version of the learning procedure is derived from a quadratic ‘energy’ function but it can be extended to allow third-order, multiplicative interactions in which neurons gate the pairwise interactions between other neurons. A technique for factoring the third-order interactions leads to a learning module that again has a simple learning rule based on pairwise correlations. This module looks remarkably like modules that have been proposed by both biologists trying to explain the responses of neurons and engineers trying to create systems that can recognize objects. PMID:20008395
Soukhomlinov, Vladimir; Gerasimov, Nikolay; Sheverev, Valery A.
2008-08-15
This paper extends the recently reported one-dimensional model for sound propagation in glow discharge plasma to arbitrary mutual orientation of the plasma electric field and acoustic wave vectors. The results demonstrate that an acoustic wave in plasma may amplify, attenuate, or remain unchanged depending on the angle between these vectors and on the power input into the discharge. Quantitative evaluations indicate that for glow discharge plasma of a self-sustained discharge in air at the electric current densities of the order of 100 mA cm{sup -2}, a gain of as much as 1 m{sup -1} at 0 deg. angle between the vectors changes to similar strength attenuation for the 90 deg. angle.
NASA Technical Reports Server (NTRS)
Maskew, B.
1982-01-01
VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.
Estes, G.P.; Schrandt, R.G.; Kriese, J.T.
1988-03-01
A patch to the Los Alamos Monte Carlo code MCNP has been developed that automates the generation of source descriptions for photons from arbitrary mixtures and configurations of radioactive isotopes. Photon branching ratios for decay processes are obtained from national and international data bases and accesed directly from computer files. Code user input is generally confined to readily available information such as density, isotopic weight fractions, atomic numbers, etc. of isotopes and material compositions. The availbility of this capability in conjunction with the ''generalized source'' capability of MCNP Version 3A makes possible the rapid and accurate description of photon sources from complex mixtures and configurations of radioactive materials, resulting in imporved radiation transport predictive capabilities. This capability is combined with a first - principles calculation of photon spectrometer response - functions for NaI, BGO, and HPGe for E..gamma.. )approxreverse arrowlt) 1 MeV. 25 refs., 1 fig., 4 tabs.
Learning with imperfectly labeled patterns
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.
The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications
Spence, Peter J.
2015-09-01
A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent
Repositioning Recitation Input in College English Teaching
ERIC Educational Resources Information Center
Xu, Qing
2009-01-01
This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.
Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils
NASA Astrophysics Data System (ADS)
Thorp, N. R.; Wieder, R. K.; Vile, M. A.
2015-12-01
Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that
Input Devices for Young Handicapped Children.
ERIC Educational Resources Information Center
Morris, Karen
The versatility of the computer can be expanded considerably for young handicapped children by using input devices other than the typewriter-style keyboard. Input devices appropriate for young children can be classified into four categories: alternative keyboards, contact switches, speech input devices, and cursor control devices. Described are…
Effects of Auditory Input in Individuation Tasks
ERIC Educational Resources Information Center
Robinson, Christopher W.; Sloutsky, Vladimir M.
2008-01-01
Under many conditions auditory input interferes with visual processing, especially early in development. These interference effects are often more pronounced when the auditory input is unfamiliar than when the auditory input is familiar (e.g. human speech, pre-familiarized sounds, etc.). The current study extends this research by examining how…
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Lee, F. C.
1984-01-01
Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.
Textual Enhancement of Input: Issues and Possibilities
ERIC Educational Resources Information Center
Han, ZhaoHong; Park, Eun Sung; Combs, Charles
2008-01-01
The input enhancement hypothesis proposed by Sharwood Smith (1991, 1993) has stimulated considerable research over the last 15 years. This article reviews the research on textual enhancement of input (TE), an area where the majority of input enhancement studies have aggregated. Methodological idiosyncrasies are the norm of this body of research.…
7 CFR 3430.15 - Stakeholder input.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.15 Section 3430.15... ADMINISTRATIVE PROVISIONS Pre-award: Solicitation and Application § 3430.15 Stakeholder input. Section 103(c)(2... programs. NIFA will provide instructions for submission of stakeholder input in the RFA. NIFA will...
7 CFR 3430.15 - Stakeholder input.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.15 Section 3430.15... ADMINISTRATIVE PROVISIONS Pre-award: Solicitation and Application § 3430.15 Stakeholder input. Section 103(c)(2... programs. NIFA will provide instructions for submission of stakeholder input in the RFA. NIFA will...
7 CFR 3430.15 - Stakeholder input.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.15 Section 3430.15... Stakeholder input. Section 103(c)(2) of the Agricultural Research, Extension, and Education Reform Act of 1998... RFAs for competitive programs. CSREES will provide instructions for submission of stakeholder input...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... § 3430.607 Stakeholder input. CSREES shall seek and obtain stakeholder input through a variety of...
Biogenic inputs to ocean mixing.
Katija, Kakani
2012-03-15
Recent studies have evoked heated debate about whether biologically generated (or biogenic) fluid disturbances affect mixing in the ocean. Estimates of biogenic inputs have shown that their contribution to ocean mixing is of the same order as winds and tides. Although these estimates are intriguing, further study using theoretical, numerical and experimental techniques is required to obtain conclusive evidence of biogenic mixing in the ocean. Biogenic ocean mixing is a complex problem that requires detailed understanding of: (1) marine organism behavior and characteristics (i.e. swimming dynamics, abundance and migratory behavior), (2) mechanisms utilized by swimming animals that have the ability to mix stratified fluids (i.e. turbulence and fluid drift) and (3) knowledge of the physical environment to isolate contributions of marine organisms from other sources of mixing. In addition to summarizing prior work addressing the points above, observations on the effect of animal swimming mode and body morphology on biogenic fluid transport will also be presented. It is argued that to inform the debate on whether biogenic mixing can contribute to ocean mixing, our studies should focus on diel vertical migrators that traverse stratified waters of the upper pycnocline. Based on our understanding of mixing mechanisms, body morphologies, swimming modes and body orientation, combined with our knowledge of vertically migrating populations of animals, it is likely that copepods, krill and some species of gelatinous zooplankton and fish have the potential to be strong sources of biogenic mixing. PMID:22357597
Input calibration for negative originals
NASA Astrophysics Data System (ADS)
Tuijn, Chris
1995-04-01
One of the major challenges in the prepress environment consists of controlling the electronic color reproduction process such that a perfect match of any original can be realized. Whether this goal can be reached depends on many factors such as the dynamic range of the input device (scanner, camera), the color gamut of the output device (dye sublimation printer, ink-jet printer, offset), the color management software etc. The characterization of the color behavior of the peripheral devices is therefore very important. Photographs and positive transparents reflect the original scene pretty well; for negative originals, however, there is no obvious link to either the original scene or a particular print of the negative under consideration. In this paper, we establish a method to scan negatives and to convert the scanned data to a calibrated RGB space, which is known colorimetrically. This method is based on the reconstruction of the original exposure conditions (i.e., original scene) which generated the negative. Since the characteristics of negative film are quite diverse, a special calibration is required for each combination of scanner and film type.
Lin, Li Hsien; Agassandian, Khristofor; Fujiyama, Fumino; Kaneko, Taneshi; Talman, William T
2003-07-01
Parasympathetic preganglionic neurons of the superior salivatory nucleus (SSN), which projects to the pterygopalatine ganglion (PPG), modulate salivation, lacrimation, and cerebrovascular tone. Our previous studies suggest that excitatory projections from the nucleus tractus solitarii modulate cerebrovascular tone by actions on SSN neurons. In this study we sought to test the hypothesis that N-methyl-D-aspartate (NMDA) type glutamate receptors and vesicular glutamate transporters (VGLUT) are present in the SSN and that SSN neurons receive glutamatergic input. In six rats we injected tetramethylrhodamine dextran (TRD), a fluorescent tracer, unilaterally into the PPG to label SSN neurons. Four days later, rats were perfused and brain stem sections containing the SSN were processed for fluorescent immunohistochemistry for N-methyl-D-aspartate receptor subunit 1 (NMDAR1) and vesicular glutamate transporters (VGLUT1 and VGLUT2). Confocal laser scanning microscopy showed that 88+/-3% of TRD-labeled SSN neurons contained NMDAR1-immunoreactivity (IR). The surrounding neuropil contained numerous fibers labeled for VGLUT2-IR, but not VGLUT1-IR. Double fluorescent immunohistochemistry for NMDAR1 and VGLUT2 revealed that fibers containing VGLUT2-IR were often in close proximity to cell bodies or proximal dendrites of TRD-labeled SSN neurons that were positive for NMDAR1-IR. These studies support our hypothesis that NMDA receptors and VGLUT are present in the SSN. They further provide support for the suggestion that there are glutamatergic inputs to SSN neurons and would be consistent with an excitatory input that could regulate cerebrovascular tone.
COSMIC/NASTRAN Free-field Input
NASA Technical Reports Server (NTRS)
Chan, G. C.
1984-01-01
A user's guide to the COSMIC/NASTRAN free field input for the Bulk Data section of the NASTRAN program is proposed. The free field input is designed to be user friendly and the user is not forced out of the computer system due to input errors. It is easy to use, with only a few simple rules to follow. A stand alone version of the COSMIC/NASTRAN free field input is also available. The use of free field input is illustrated by a number of examples.
Bottlenose dolphins can use learned vocal labels to address each other.
King, Stephanie L; Janik, Vincent M
2013-08-01
In animal communication research, vocal labeling refers to incidents in which an animal consistently uses a specific acoustic signal when presented with a specific object or class of objects. Labeling with learned signals is a foundation of human language but is notably rare in nonhuman communication systems. In natural animal systems, labeling often occurs with signals that are not influenced by learning, such as in alarm and food calling. There is a suggestion, however, that some species use learned signals to label conspecific individuals in their own communication system when mimicking individually distinctive calls. Bottlenose dolphins (Tursiops truncatus) are a promising animal for exploration in this area because they are capable of vocal production learning and can learn to use arbitrary signals to report the presence or absence of objects. Bottlenose dolphins develop their own unique identity signal, the signature whistle. This whistle encodes individual identity independently of voice features. The copying of signature whistles may therefore allow animals to label or address one another. Here, we show that wild bottlenose dolphins respond to hearing a copy of their own signature whistle by calling back. Animals did not respond to whistles that were not their own signature. This study provides compelling evidence that a dolphin's learned identity signal is used as a label when addressing conspecifics. Bottlenose dolphins therefore appear to be unique as nonhuman mammals to use learned signals as individually specific labels for different social companions in their own natural communication system.
Label and Label-Free Detection Techniques for Protein Microarrays
Syahir, Amir; Usui, Kenji; Tomizaki, Kin-ya; Kajikawa, Kotaro; Mihara, Hisakazu
2015-01-01
Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano-biological events.
Kinetic model of the inner magnetosphere with arbitrary magnetic field
NASA Astrophysics Data System (ADS)
Ilie, Raluca; Liemohn, Michael W.; Toth, Gabor; Skoug, Ruth M.
2012-04-01
Theoretical and numerical modifications to an inner magnetosphere model—Hot Electron Ion Drift Integrator (HEIDI)—were implemented, in order to accommodate for a nondipolar arbitrary magnetic field. While the dipolar solution for the geomagnetic field during quiet times represents a reasonable assumption in the near-Earth closed field region, during storm activity this assumption becomes invalid. HEIDI solves the time-dependent, gyration- and bounce-averaged kinetic equation for the phase space density of one or more ring current species. New equations are derived for the bounce-averaged coefficients for the distribution function, and their numerical implementation is discussed. Also, numerically solving all the bounce-averaged coefficients for the dipole case does not change the results significantly from the analytical approximation of Ejiri (1978). However, distorting the magnetic field changes all bounce-averaged coefficients that make up the kinetic equation. Initial simulations show that changing the magnetic field changes the whole topology of the ring current. This is because the drifts are altered due to dayside compression and nightside stretching of the field. Therefore, at certain locations, the nondipolar magnetic drifts can dominate the convective drifts, considerably altering the pressure distribution in the equatorial plane.
Modeling of amorphous carbon structures with arbitrary structural constraints.
Jornada, F H; Gava, V; Martinotto, A L; Cassol, L A; Perottoni, C A
2010-10-01
In this paper we describe a method to generate amorphous structures with arbitrary structural constraints. This method employs the simulated annealing algorithm to minimize a simple yet carefully tailored cost function (CF). The cost function is composed of two parts: a simple harmonic approximation for the energy-related terms and a cost that penalizes configurations that do not have atoms in the desired coordinations. Using this approach, we generated a set of amorphous carbon structures spawning nearly all the possible combinations of sp, sp(2) and sp(3) hybridizations. The bulk moduli of this set of amorphous carbons structures was calculated using Brenner's potential. The bulk modulus strongly depends on the mean coordination, following a power-law behavior with an exponent ν = 1.51 ± 0.17. A modified cost function that segregates carbon with different hybridizations is also presented, and another set of structures was generated. With this new set of amorphous materials, the correlation between the bulk modulus and the mean coordination weakens. The method proposed can be easily modified to explore the effects on the physical properties of the presence of hydrogen, dangling bonds, and structural features such as carbon rings.
Random graphs with arbitrary degree distributions and their applications
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Strogatz, S. H.; Watts, D. J.
2001-08-01
Recent work on the structure of social networks and the internet has focused attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition at which a giant component first forms, the mean component size, the size of the giant component if there is one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the behavior of the real world, while in others there is a measurable discrepancy between theory and reality, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
Supersymmetric N=2 gauge theory with arbitrary gauge group
NASA Astrophysics Data System (ADS)
Kuchiev, Michael Yu.
2010-10-01
A new universal model to implement the Seiberg-Witten approach to low-energy properties of the supersymmetric N=2 gauge theory with an arbitrary compact simple gauge group, classical or exceptional, is suggested. It is based on the hyperelliptic curve, whose genus equals the rank of the gauge group. The weak and strong coupling limits are reproduced. The magnetic and electric charges of light dyons, which are present in the proposed model comply with recent predictions derived from the general properties of the theory. The discrete chiral symmetry is implemented, the duality condition is reproduced, and connections between monodromies at weak and strong coupling are established. It is found that the spectra of monopoles and dyons are greatly simplified when vectors representing the scalar and dual fields in the Cartan algebra are aligned along the Weyl vector. This general feature of the theory is used for an additional verification of the model. The model predicts the identical analytic structures of the coupling constants for the theories based on the SU(r+1) and Sp(2r) gauge groups.
Direct freeform fabrication of seeded hydrogels in arbitrary geometries.
Cohen, Daniel L; Malone, Evan; Lipson, Hod; Bonassar, Lawrence J
2006-05-01
A major challenge in tissue engineering is the generation of cell-seeded implants with structures that mimic native tissue, both in anatomic geometries and intratissue cell distributions. By combining the strengths of injection molding tissue engineering with those of solid freeform fabrication (SFF), three-dimensional (3-D) pre-seeded implants were fabricated without custom-tooling, enabling efficient production of patient-specific implants. The incorporation of SFF technology also enabled the fabrication of geometrically complex, multiple-material implants with spatially heterogeneous properties that would otherwise be challenging to produce. Utilizing a custom-built robotic SFF platform and gel deposition tools, alginate hydrogel was used with calcium sulfate as a crosslinking agent to produce pre-seeded living implants of arbitrary geometries. The process was determined to be sterile and viable at 94 +/- 5%. The GAG and hydroxyproline production was found to be similar to that of other implants fabricated using the same materials with different shaping methods. The geometric fidelity of the process was quantified by using the printing platform as a computerized measurement machine (CMM); the RMS surface roughness of printed samples in the z-dimension was found to be 0.16 +/- 0.02 mm.
General description of circularly symmetric Bessel beams of arbitrary order
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz
2016-11-01
A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.
Analytical solutions for elastic binary nanotubes of arbitrary chirality
NASA Astrophysics Data System (ADS)
Jiang, Lai; Guo, Wanlin
2016-09-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
The Casimir effect for fields with arbitrary spin
Stokes, Adam; Bennett, Robert
2015-09-15
The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.
Quantum entanglement swapping of two arbitrary biqubit pure states
NASA Astrophysics Data System (ADS)
Xie, ChuanMei; Liu, YiMin; Chen, JianLan; Yin, XiaoFeng; Zhang, ZhanJun
2016-10-01
In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation (EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established. Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability; however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.
ELECTRON COOLING SIMULATION FOR ARBITRARY DISTRIBUTION OF ELECTRONS
SIDORIN,A.; SMIRNOV, A.; FEDOTOV, A.; BEN-ZVI, I.; KAYRAN, D.
2007-09-10
Typically, several approximations are being used in simulation of electron cooling process, for example, density distribution of electrons is calculated using an analytical expression and distribution in the velocity space is assumed to be Maxwellian in all degrees of freedom. However, in many applications, accurate description of the cooling process based on realistic distribution of electrons is very useful. This is especially true for a high-energy electron cooling system which requires bunched electron beam produced by an Energy Recovery Linac (Em). Such systems are proposed, for instance, for RHIC and electron - ion collider. To address unique features of the RHIC-I1 cooler, new algorithms were introduced in BETACOOL code which allow us to take into account local properties of electron distribution as well as calculate friction force for an arbitrary velocity distribution. Here, we describe these new numerical models. Results based on these numerical models are compared with typical approximations using electron distribution produced by simulations of electron bunch through ERL of RHIC-II cooler.
Constructing reference metrics on multicube representations of arbitrary manifolds
NASA Astrophysics Data System (ADS)
Lindblom, Lee; Taylor, Nicholas W.; Rinne, Oliver
2016-05-01
Reference metrics are used to define the differential structure on multicube representations of manifolds, i.e., they provide a simple and practical way to define what it means globally for tensor fields and their derivatives to be continuous. This paper introduces a general procedure for constructing reference metrics automatically on multicube representations of manifolds with arbitrary topologies. The method is tested here by constructing reference metrics for compact, orientable two-dimensional manifolds with genera between zero and five. These metrics are shown to satisfy the Gauss-Bonnet identity numerically to the level of truncation error (which converges toward zero as the numerical resolution is increased). These reference metrics can be made smoother and more uniform by evolving them with Ricci flow. This smoothing procedure is tested on the two-dimensional reference metrics constructed here. These smoothing evolutions (using volume-normalized Ricci flow with DeTurck gauge fixing) are all shown to produce reference metrics with constant scalar curvatures (at the level of numerical truncation error).
Spin squeezing and entanglement for an arbitrary spin
NASA Astrophysics Data System (ADS)
Vitagliano, Giuseppe; Apellaniz, Iagoba; Egusquiza, Iñigo L.; Tóth, Géza
2014-03-01
A complete set of generalized spin-squeezing inequalities is derived for an ensemble of particles with an arbitrary spin. Our conditions are formulated with the first and second moments of the collective angular momentum coordinates. A method for mapping the spin-squeezing inequalities for spin-1/2 particles to entanglement conditions for spin-j particles is also presented. We apply our mapping to obtain a generalization of the original spin-squeezing inequality to higher spins. We show that, for large particle numbers, a spin-squeezing parameter for entanglement detection based on one of our inequalities is strictly stronger than the original spin-squeezing parameter defined in Sørensen et al. [Nature (London) 409, 63 (2001), 10.1038/35051038]. We present a coordinate system independent form of our inequalities that contains, besides the correlation and covariance tensors of the collective angular momentum operators, the nematic tensor appearing in the theory of spin nematics. Finally, we discuss how to measure the quantities appearing in our inequalities in experiments.
Nonlocal electron transport in magnetized plasmas with arbitrary atomic number
Bennaceur-Doumaz, D.; Bendib, A.
2006-09-15
The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.
Single-mode squeezing in arbitrary spatial modes.
Semmler, Marion; Berg-Johansen, Stefan; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd
2016-04-01
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light. PMID:27137050
An Efficient Grid Generation Method for Arbitrary Domains
NASA Astrophysics Data System (ADS)
Orme, Melissa; Huang, Changzheng
1997-11-01
This paper describes an efficient grid generation method for arbitrary or multiply connected domains. Our method, essentially based on the edge swapping techniques, combines the advantages of the Delaunay triangulation method and the advancing front method. The latter two methods are in popular use nowadays. But both suffer some limitations. Delaunay method generates high quality grid but grid may cut across the boundary in concave regions. Advancing front method works for general domain but may encounter difficulties where fronts have to be merged. The current method garantees the boundary integrity and attains the nice Delaunay features into the domain. This is achieved by carefully documenting the grid information so that each edge is readily identified to be inside or outside the domain; and (2) continuously swapping out those bad edges that destroy the Delaunay properties. The computer program built on this method allows users to control the grid density distribution by specifying typical grid sizes on a few chosen points. Interesting examples are demonstrated here. One of them is a circular domain with three letters APS inside. (see figure 1 and figure 2 ). Given a grid size for APS and another size for the circle, the program automatically generates a smooth triangular grid regardless of the complex multiply connected geometry.
Neutrinos with Lorentz-violating operators of arbitrary dimension
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2012-05-01
The behavior of fermions in the presence of Lorentz and CPT violation is studied. Allowing for operators of any mass dimension, we classify all Lorentz-violating terms in the quadratic Lagrange density for free fermions. The result is adapted to obtain the effective Hamiltonian describing the propagation and mixing of three flavors of left-handed neutrinos in the presence of Lorentz violation involving operators of arbitrary mass dimension. A characterization of the neutrino coefficients for Lorentz violation is provided via a decomposition using spin-weighted spherical harmonics. The restriction of the general theory to various special cases is discussed, including among others the renormalizable limit, the massless scenario, flavor-blind and oscillation-free models, the diagonalizable case, and several isotropic limits. The formalism is combined with existing data on neutrino oscillations and kinematics to extract a variety of measures of coefficients for Lorentz and CPT violation. For oscillations, we use results from the short-baseline experiments LSND and MiniBooNE to obtain explicit sensitivities to effects from flavor-mixing Lorentz-violating operators up to mass dimension 10, and we present methods to analyze data from long-baseline experiments. For propagation, we use time-of-flight measurements from the supernova SN1987A and from a variety of experiments including MINOS and OPERA to constrain oscillation-free Lorentz-violating operators up to mass dimension 10, and we discuss constraints from threshold effects in meson decays and Čerenkov emission.
PREVIMER : Meteorological inputs and outputs
NASA Astrophysics Data System (ADS)
Ravenel, H.; Lecornu, F.; Kerléguer, L.
2009-09-01
PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during
Turn customer input into innovation.
Ulwick, Anthony W
2002-01-01
It's difficult to find a company these days that doesn't strive to be customer-driven. Too bad, then, that most companies go about the process of listening to customers all wrong--so wrong, in fact, that they undermine innovation and, ultimately, the bottom line. What usually happens is this: Companies ask their customers what they want. Customers offer solutions in the form of products or services. Companies then deliver these tangibles, and customers just don't buy. The reason is simple--customers aren't expert or informed enough to come up with solutions. That's what your R&D team is for. Rather, customers should be asked only for outcomes--what they want a new product or service to do for them. The form the solutions take should be up to you, and you alone. Using Cordis Corporation as an example, this article describes, in fine detail, a series of effective steps for capturing, analyzing, and utilizing customer input. First come indepth interviews, in which a moderator works with customers to deconstruct a process or activity in order to unearth "desired outcomes." Addressing participants' comments one at a time, the moderator rephrases them to be both unambiguous and measurable. Once the interviews are complete, researchers then compile a comprehensive list of outcomes that participants rank in order of importance and degree to which they are satisfied by existing products. Finally, using a simple mathematical formula called the "opportunity calculation," researchers can learn the relative attractiveness of key opportunity areas. These data can be used to uncover opportunities for product development, to properly segment markets, and to conduct competitive analysis.
Extending Landauer's Bound from Bit Erasure to Arbitrary Computation
NASA Astrophysics Data System (ADS)
Wolpert, David
Recent analyses have calculated the minimal thermodynamic work required to perform any computation π whose output is independent of its input, e.g., bit erasure. First I extend these analyses to calculate the work required even if the output of π depends on its input. Next I show that if a physical computer C implementing a computation π will be re-used, then the work required depends only on the dynamics of the logical variables under π, independent of the physical details of C. This establishes a formal identity between the thermodynamics of (re-usable) computers and theoretical computer science. To illustrate this identity, I prove that the minimal work required to compute a bit string σ on a (physical) Turing machine M is kB Tln (2) [ Kolmogorov complexity(σ) + log (Bernoulli measure of the set of strings that compute σ) + log(halting probability of M) ] . I also prove that uncertainty about the distribution over inputs to the computer increases the minimal work required to run the computer. I end by using these results to relate the free energy flux incident on an organism / robot / biosphere to the maximal amount of computation that the organism / robot / biosphere can do per unit time.
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
Parabolic Presentations of the Super Yangian {Y({gl}_{M|N})} Associated with Arbitrary 01-Sequences
NASA Astrophysics Data System (ADS)
Peng, Yung-Ning
2016-08-01
Let μ be an arbitrary composition of M + N and let {{s}} be an arbitrary {0M1N}- sequence. A new presentation, depending on {μ and {s}}, of the super Yangian Y M| N associated to the general linear Lie superalgebra {{gl}_{M|N}} is obtained.
Principles of protein labeling techniques.
Obermaier, Christian; Griebel, Anja; Westermeier, Reiner
2015-01-01
Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.
Appliance energy labeling takes effect
Not Available
1980-06-01
Consumers buying household appliances will be helped by energy-efficiency labels and minimum efficiency standards required for refrigerators and refrigerator/freezers, freezers, dishwashers, water heaters, clothes washers, room air conditioners, and furnaces. The ENERGYGUIDE labels must be displayed in the store and in catalogs. Two voluntary efficiency programs were combined in the Energy Policy and Conservation Act (EPCA) requiring labels by 1980. Shoppers may compare the efficiencies of appliances and compute the actual cost differential over the lifetime of the equipment. Manufacturers have responded with more-efficient models, but the impact of efficient appliances on energy consumption will be small. A sample label with the required information is illustrated. (DCK)
Keh, Huan J; Hsieh, Tzu H
2008-01-15
The electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity with an arbitrary thickness of the electric double layers adjacent to the particle and cavity surfaces is analyzed at the quasisteady state when the zeta potentials associated with the solid surfaces are arbitrarily nonuniform. Through the use of the multipole expansions of the zeta potentials and the linearized Poisson-Boltzmann equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately solved. The modified Stokes equations governing the fluid velocity field are dealt with using a generalized reciprocal theorem, and explicit formulas for the electrophoretic and angular velocities of the particle valid for all values of the particle-to-cavity size ratio are obtained. To apply these formulas, one only has to calculate the monopole, dipole, and quadrupole moments of the zeta potential distributions at the particle and cavity surfaces. In some limiting cases, our result reduces to the analytical solutions available in the literature. In general, the boundary effect on the electrophoretic motion of the particle is a qualitatively and quantitatively sensible function of the thickness of the electric double layers relative to the radius of the cavity. PMID:18085803
HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC
NASA Astrophysics Data System (ADS)
Bechtle, Philip; Heinemeyer, Sven; Stål, Oscar; Stefaniak, Tim; Weiglein, Georg
2014-02-01
HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at GeV.
NASA Technical Reports Server (NTRS)
Chamberlain, D. M.; Elliot, J. L.
1997-01-01
We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.
Organization of spinal inputs to the perihypoglossal complex in the cat.
Stechison, M T; Saint-Cyr, J A
1986-04-22
First- and second-order spinal afferents to the perihypoglossal complex were sought by using axonal transport of WGA-HRP. Injections in C1, 2, and 3 dorsal root ganglia resulted in axonal labeling in the nucleus intercalatus and the external cuneate nucleus, with a number of retrogradely labeled cells seen as well in the latter. A similar pattern of axonal labeling in the nucleus intercalatus as well as several retrogradely labeled cells were found after spinal cord injections at levels C1, 2, and 3. A prominent field of labeled axons was also present in the rostral main cuneate nucleus. No labeling was seen in the perihypoglossal nuclei after injections in the spinal cord or dorsal root ganglia at levels caudal to C3. After injections of HRP into the perihypoglossal nucleus we were able to identify labeled neurons within Rexed's laminae V-VIII and the central cervical nucleus. Anterograde labeling in the main cuneate nucleus was observed after C1 to C5 ganglion and C1 to C6 cord injections. The pattern and extent of labeling in the perihypoglossal nuclei and adjacent structures seen after cerebellar injections into lobules V and VI were comparable to those previously reported and permitted evaluation of the relay from dorsal root ganglia through the intercalatus to the vermis. Topography of the cervical projections to the nucleus intercalatus is considered with respect to that of the perihypoglossal-collicular projection. A discussion is offered of the apparent importance of nucleus intercalatus as a relay of cervical and vestibular afferent information to premotor structures involved in neck motor control. The perihypoglossal complex is viewed as being organized in such a fashion as to allow the nuclei intercalatus and prepositus hypoglossi to function as key structures in the integration of inputs related to neck and ocular motor control, respectively.
Goodman, Mark M.; Shi, Bing Zhi; Keil, Robert N.
1999-03-30
Novel methods for positron emission tomography or single photon emission spectroscopy using tracer compounds having the structure: ##STR1## where X in .beta. configuration is phenyl, naphthyl; 2,3 or 4-iodophenyl; 2,3 or 4-(trimethylsilyl)phenyl; 3,4,5 or 6-iodonaphthyl; 3,4,5 or 6-(trimethylsilyl)naphthyl; 2,3 or 4-(trialkylstannyl)phenyl; or 3,4,5 or 6-(trialkylstannyl)napthyl Y in .beta. configuration is 2-fluoroethoxy, 3-fluoropropoxy, 4-fluorobutoxy, 2-fluorocyclopropoxy, 2 or 3-fluorocyclobutoxy, R,S 1'-fluoroisopropoxy, R 1'-fluoroisopropoxy, S 1'-fluoroisopropoxy, 1',3'-difluoroisopropoxy, R,S 1'-fluoroisobutoxy, R 1'-fluoroisobutoxy, S 1'-fluoroisobutoxy, R,S 4'-fluoroisobutoxy, R 4'-fluoroisobutoxy, S 4'-fluoroisobutoxy, or 1',1'-di(fluoromethyl)isobutoxy, The compounds bind dopamine transporter protein and can be labeled with .sup.18 F or .sup.123 I for imaging.
A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina.
Vlasits, Anna L; Morrie, Ryan D; Tran-Van-Minh, Alexandra; Bleckert, Adam; Gainer, Christian F; DiGregorio, David A; Feller, Marla B
2016-03-16
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell. PMID:26985724
A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina.
Vlasits, Anna L; Morrie, Ryan D; Tran-Van-Minh, Alexandra; Bleckert, Adam; Gainer, Christian F; DiGregorio, David A; Feller, Marla B
2016-03-16
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.
78 FR 66826 - Prior Label Approval System: Generic Label Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... the Agency (76 FR 75809). FSIS also proposed to combine the regulations that provide for the approval... preamble (76 FR 75814), FSIS wrote: . . . statements on labels that are defined in FSIS's regulations or... ``Product Labeling: Definition of the Term ``Natural'' and related materials (71 FR 70503, Dec. 5, 2006)...
Laser labeling, a safe technology to label produce
Technology Transfer Automated Retrieval System (TEKTRAN)
Labeling of the produce has gained marked attention in recent years. Laser labeling technology involves the etching of required information on the surface using a low energy CO2 laser beam. The etching forms alphanumerical characters by pinhole dot matrix depressions. These openings can lead to wat...
Laser labeling, a safe technology to label produce
Technology Transfer Automated Retrieval System (TEKTRAN)
Laser labeling of fruits and vegetables is an alternative means to label produce. Low energy CO2 laser beams etch the surface showing the contrasting underlying layer. These etched surfaces can promote water loss and potentially allow for entry of decay organisms. The long-term effects of laser labe...
76 FR 75809 - Prior Label Approval System: Generic Label Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... poultry products will take effect January 1, 2012 (75 FR 82148, Dec. 29, 2010). These mandatory features... limited types of labels (e.g., labels for raw, single ingredient meat and poultry products) (48 FR 11410... Agency. On March 25, 1992, FSIS published an Advance Notice of Proposed Rulemaking (ANPRM) (57 FR...
Arbitrary dimensional Majorana dualities and architectures for topological matter
NASA Astrophysics Data System (ADS)
Nussinov, Zohar; Ortiz, Gerardo; Cobanera, Emilio
2012-08-01
Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive universal spin duals. We prove that these interacting Majorana systems, quantum Ising gauge theories, and transverse-field Ising models with annealed bimodal disorder are all dual to one another on general planar graphs. This leads to an interesting connection between heavily disordered annealed Ising systems and uniform Ising theories with nearest-neighbor interactions. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems on rather general lattices and graphs and corresponding spin systems. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass-type behavior in interacting Majorana fermion or electronic systems. Several systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the XXZ honeycomb compass model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip) arrays, and a (3) compass-type two-flavor Hubbard model with both pairing and hopping terms. By the use of our dualities (tantamount to high-dimensional fermionization), we show that all of these systems lie in the three-dimensional Ising universality class. We further discuss how the existence of topological orders and bounds on autocorrelation times can be
Massive graviton on arbitrary background: derivation, syzygies, applications
Bernard, Laura; Deffayet, Cédric; Strauss, Mikael von
2015-06-23
We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a “reference metric' which is present in the non perturbative formulation. We show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.
A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2011-01-01
This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.
The impact of approximations and arbitrary choices on geophysical images
NASA Astrophysics Data System (ADS)
Valentine, Andrew P.; Trampert, Jeannot
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the
Randomness and arbitrary coordination in the reactive ultimatum game
NASA Astrophysics Data System (ADS)
da Silva, Roberto; Valverde, Pablo; Lamb, Luis C.
2016-07-01
Darwin's theory of evolution - as introduced in game theory by Maynard Smith - is not the only important evolutionary aspect in an evolutionary dynamics, since complex interdependencies, competition, and growth should be modeled by, for example, reactive aspects. In the ultimatum game, the reciprocity and the fifty-fifty partition seems to be a deviation from rational behavior of the players under the light of Nash equilibrium. Such equilibrium emerges, for example, from the punishment of the responder who generally tends to refuse unfair proposals. In the iterated version of the game, the proposers are able to improve their proposals by adding a value thus making fairer proposals. Such evolutionary aspects are not properly Darwinian-motivated, but they are endowed with a fundamental aspect: they reflect their actions according to value of the offers. Recently, a reactive version of the ultimatum game where acceptance occurs with fixed probability was proposed. In this paper, we aim at exploring this reactive version of the ultimatum game where the acceptance by players depends on the offer. In order to do so, we analyze two situations: (i) mean field and (ii) we consider players inserted within the networks with arbitrary coordination. We then show that the reactive aspect, here studied, thus far not analyzed in the evolutionary game theory literature can unveil an essential feature for the convergence to fifty-fifty split. Moreover we also analyze populations under four different polices ranging from a highly conservative to a moderate one, with respect to the decision in changing the proposal based on acceptances. We show that the idea of gaining less more times added to the reciprocity of the players is highly relevant to the concept of "healthy" societies population bargaining.
Automatic calibration of laser range cameras using arbitrary planar surfaces
Baker, J.E.
1994-06-01
Laser Range Cameras (LRCs) are powerful tools for many robotic/computer perception activities. They can provide accurate range images and perfectly registered reflectance images of the target scene, useful for constructing reliably detailed 3-D world maps and target characterizations. An LRC`s output is an array of distances obtained by scanning a laser over the scene. To accurately interpret this data, the angular definition of each pixel, i.e., the 3-D direction corresponding to each distance measurement, must be known. This angular definition is a function of the camera`s intrinsic design and unique implementation characteristics, e.g., actual mirror positions, axes of rotation, angular velocities, etc. Typically, the range data is converted to Cartesian coordinates by calibration-parameterized, non-linear transformation equations. Unfortunately, typical LRC calibration techniques are manual, intensive, and inaccurate. Common techniques involve imaging carefully orchestrated artificial targets and manually measuring actual distances and relative angles to infer the correct calibration parameter values. This paper presents an automated method which uses Genetic Algorithms to search for calibration parameter values and possible transformation equations which combine to maximize the planarity of user-specified sub-regions of the image(s). This method permits calibration to be based on an arbitrary plane, without precise knowledge of the LRC`s mechanical precision, intrinsic design, or its relative positioning to the target. Furthermore, this method permits rapid, remote, and on-line recalibration - important capabilities for many robotic systems. Empirical validation of this system has been performed using two different LRC systems and has led to significant improvement in image accuracy while reducing the calibration time by orders of magnitude.
Spin filter for arbitrary spins by substrate engineering
NASA Astrophysics Data System (ADS)
Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava
2016-08-01
We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.
Beyond rational imitation: learning arbitrary means actions from communicative demonstrations.
Király, Ildikó; Csibra, Gergely; Gergely, György
2013-10-01
The principle of rationality has been invoked to explain that infants expect agents to perform the most efficient means action to attain a goal. It has also been demonstrated that infants take into account the efficiency of observed actions to achieve a goal outcome when deciding whether to reenact a specific behavior or not. It is puzzling, however, that they also tend to imitate an apparently suboptimal unfamiliar action even when they can bring about the same outcome more efficiently by applying a more rational action alternative available to them. We propose that this apparently paradoxical behavior is explained by infants' interpretation of action demonstrations as communicative manifestations of novel and culturally relevant means actions to be acquired, and we present empirical evidence supporting this proposal. In Experiment 1, we found that 14-month-olds reenacted novel arbitrary means actions only following a communicative demonstration. Experiment 2 showed that infants' inclination to reproduce communicatively manifested novel actions is restricted to behaviors they can construe as goal-directed instrumental acts. The study also provides evidence that infants' reenactment of the demonstrated novel actions reflects epistemic motives rather than purely social motives. We argue that ostensive communication enables infants to represent the teleological structure of novel actions even when the causal relations between means and end are cognitively opaque and apparently violate the efficiency expectation derived from the principle of rationality. This new account of imitative learning of novel means shows how the teleological stance and natural pedagogy--two separate cognitive adaptations to interpret instrumental versus communicative actions--are integrated as a system for learning socially constituted instrumental knowledge in humans.
An arbitrary order diffusion algorithm for solving Schrödinger equations
NASA Astrophysics Data System (ADS)
Chin, S. A.; Janecek, S.; Krotscheck, E.
2009-09-01
lowest few hundred states of 1D, 2D, and 3D local Schrödinger equations in configuration space. Solution method: Arbitrary even-order multi-product operator splitting, as well as a single product fourth-order factorization, of the imaginary time evolution operator. Additional comments: Sample input files for the 1D, 2D, and the 3D version as well as a gnuplot script for assessing convergence are included in the distribution file. Running time: Seconds to hours, depending on system size.
Input estimation from measured structural response
Harvey, Dustin; Cross, Elizabeth; Silva, Ramon A; Farrar, Charles R; Bement, Matt
2009-01-01
This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.
A three-dimensional potential-flow program with a geometry package for input data generation
NASA Technical Reports Server (NTRS)
Halsey, N. D.
1978-01-01
Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases.
Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov
2016-08-30
One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. PMID:27545896
Input apparatus for dynamic signature verification systems
EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.
1978-01-01
The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.
Input characterization of a shock test strructure.
Hylok, J. E.; Groethe, M. A.; Maupin, R. D.
2004-01-01
Often in experimental work, measuring input forces and pressures is a difficult and sometimes impossible task. For one particular shock test article, its input sensitivity required a detailed measurement of the pressure input. This paper discusses the use of a surrogate mass mock test article to measure spatial and temporal variations of the shock input within and between experiments. Also discussed will be the challenges and solutions in making some of the high speed transient measurements. The current input characterization work appears as part of the second phase in an extensive model validation project. During the first phase, the system under analysis displayed sensitivities to the shock input's qualitative and quantitative (magnitude) characteristics. However, multiple shortcomings existed in the characterization of the input. First, the experimental measurements of the input were made on a significantly simplified structure only, and the spatial fidelity of the measurements was minimal. Second, the sensors used for the pressure measurement contained known errors that could not be fully quantified. Finally, the measurements examined only one input pressure path (from contact with the energetic material). Airblast levels from the energetic materials were unknown. The result was a large discrepancy between the energy content in the analysis and experiments.
Nutrition Marketing on Food Labels
ERIC Educational Resources Information Center
Colby, Sarah E.; Johnson, LuAnn; Scheett, Angela; Hoverson, Bonita
2010-01-01
Objective: This research sought to determine how often nutrition marketing is used on labels of foods that are high in saturated fat, sodium, and/or sugar. Design and Setting: All items packaged with food labels (N = 56,900) in all 6 grocery stores in Grand Forks, ND were surveyed. Main Outcome Measure(s): Marketing strategy, nutrient label…
Meat and Poultry Labeling Terms
... Food Standards and Labels: The Facts Labeling and Marketing Information [ Top of Page ] OVEN PREPARED: Product is fully cooked and ready to eat. [ Top of Page ] YOUNG TURKEY: Turkeys of either sex that are less than 8 months of age according to present regulations. [ Top of Page ] Last ...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 610.60 - Container label.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Container label. 610.60 Section 610.60 Food and... GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.60 Container label. (a) Full label. The following items shall appear on the label affixed to each container of a product capable of bearing a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Labels. 460.12 Section 460.12 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Labels. 460.12 Section 460.12 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Labels. 460.12 Section 460.12 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labels. 460.12 Section 460.12 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Labels. 460.12 Section 460.12 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.12 Labels. If you are a manufacturer, you must label all packages of your insulation. The labels...
21 CFR 201.71 - Magnesium labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Magnesium labeling. 201.71 Section 201.71 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.71 Magnesium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...
21 CFR 201.71 - Magnesium labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Magnesium labeling. 201.71 Section 201.71 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.71 Magnesium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...
21 CFR 201.71 - Magnesium labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Magnesium labeling. 201.71 Section 201.71 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.71 Magnesium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...
9 CFR 317.4 - Labeling approval.
Code of Federal Regulations, 2014 CFR
2014-01-01
... labeling of such final labeling has been submitted for approval to the Food Labeling Division, Regulatory... Secretary upon request. (b) The Food Labeling Division shall permit submission for approval of only sketch... Food Labeling Division, Regulatory Programs, Food Safety and Inspection Service, U.S. Department...
21 CFR 201.72 - Potassium labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
21 CFR 201.64 - Sodium labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...
Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng
2011-09-12
In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Senovilla, José M. M.
2010-08-01
Standard singularity theorems are proven in Lorentzian manifolds of arbitrary dimension n if they contain closed trapped submanifolds of arbitrary co-dimension. By using the mean curvature vector to characterize trapped submanifolds, a unification of the several possibilities for the boundary conditions in the traditional theorems and their generalization to an arbitrary co-dimension is achieved. The classical convergence conditions must be replaced by a condition on sectional curvatures, or tidal forces, which reduces to the former in the cases of the co-dimension 1, 2 or n.
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-04-15
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
A Generalized Mixture Framework for Multi-label Classification
Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos
2015-01-01
We develop a novel probabilistic ensemble framework for multi-label classification that is based on the mixtures-of-experts architecture. In this framework, we combine multi-label classification models in the classifier chains family that decompose the class posterior distribution P(Y1, …, Yd|X) using a product of posterior distributions over components of the output space. Our approach captures different input–output and output–output relations that tend to change across data. As a result, we can recover a rich set of dependency relations among inputs and outputs that a single multi-label classification model cannot capture due to its modeling simplifications. We develop and present algorithms for learning the mixtures-of-experts models from data and for performing multi-label predictions on unseen data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods. PMID:26613069
Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data
NASA Astrophysics Data System (ADS)
Anirudh, Rushil; Thiagarajan, Jayaraman J.; Bremer, Timo; Kim, Hyojin
2016-03-01
Early detection of lung nodules is currently the one of the most effective ways to predict and treat lung cancer. As a result, the past decade has seen a lot of focus on computer aided diagnosis (CAD) of lung nodules, whose goal is to efficiently detect, segment lung nodules and classify them as being benign or malignant. Effective detection of such nodules remains a challenge due to their arbitrariness in shape, size and texture. In this paper, we propose to employ 3D convolutional neural networks (CNN) to learn highly discriminative features for nodule detection in lieu of hand-engineered ones such as geometric shape or texture. While 3D CNNs are promising tools to model the spatio-temporal statistics of data, they are limited by their need for detailed 3D labels, which can be prohibitively expensive when compared obtaining 2D labels. Existing CAD methods rely on obtaining detailed labels for lung nodules, to train models, which is also unrealistic and time consuming. To alleviate this challenge, we propose a solution wherein the expert needs to provide only a point label, i.e., the central pixel of of the nodule, and its largest expected size. We use unsupervised segmentation to grow out a 3D region, which is used to train the CNN. Using experiments on the SPIE-LUNGx dataset, we show that the network trained using these weak labels can produce reasonably low false positive rates with a high sensitivity, even in the absence of accurate 3D labels.
Linear and quadratic models of point process systems: contributions of patterned input to output.
Lindsay, K A; Rosenberg, J R
2012-08-01
In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike.
The Input Hypothesis: An Inside Look.
ERIC Educational Resources Information Center
Higgs, Theodore V.
1985-01-01
Summarizes and discusses Krashen's "input hypothesis" as presented in his "Principles and Practice in Second Language Acquisition." Suggests that the input hypothesis fails to account convincingly for arrested second language acquisition in an acquisition-rich environment and that it is not directly applicable to U.S. high school and university…
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND..., requests for input and/or Web site), as well as through a notice in the Federal Register, from...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.607 - Stakeholder input.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...
7 CFR 3430.907 - Stakeholder input.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...
Input Effects within a Constructionist Framework
ERIC Educational Resources Information Center
Boyd, Jeremy K.; Goldberg, Adele E.
2009-01-01
Constructionist approaches to language hypothesize that grammar can be learned from the input using domain-general mechanisms. This emphasis has engendered a great deal of research--exemplified in the present issue--that seeks to illuminate the ways in which input-related factors can both drive and constrain constructional acquisition. In this…
Managing Input during Assistive Technology Product Design
ERIC Educational Resources Information Center
Choi, Young Mi
2011-01-01
Many different sources of input are available to assistive technology innovators during the course of designing products. However, there is little information on which ones may be most effective or how they may be efficiently utilized within the design process. The aim of this project was to compare how three types of input--from simulation tools,…
Modality of Input and Vocabulary Acquisition
ERIC Educational Resources Information Center
Sydorenko, Tetyana
2010-01-01
This study examines the effect of input modality (video, audio, and captions, i.e., on-screen text in the same language as audio) on (a) the learning of written and aural word forms, (b) overall vocabulary gains, (c) attention to input, and (d) vocabulary learning strategies of beginning L2 learners. Twenty-six second-semester learners of Russian…
Goodman, Mark M.; Shi, Bing Zhi; Keil, Robert N.
1999-01-26
Novel compounds having the structure: ##STR1## where X in .beta. configuration is phenyl, naphthyl; 2,3 or 4-iodophenyl; 2,3 or 4-(trimethylsilyl)phenyl; 3,4,5 or 6-iodonaphthyl; 3,4,5 or 6-(trimethylsilyl)naphthyl; 2,3 or 4-(trialkylstannyl)phenyl; or 3,4,5 or 6-(trialkylstannyl)naphthyl Y in .beta. configuration is Y.sub.1 or Y.sub.2, where Y.sub.1 is 2-fluoroethoxy, 3-fluoropropoxy, 4-fluorobutoxy, 2-fluorocyclopropoxy, 2 or 3-fluorocyclobutoxy, R,S 1'-fluoroisopropoxy, R 1'-fluoroisopropoxy, S 1'-fluoroisopropoxy, 1',3'-difluoroisopropoxy, R,S 1'-fluoroisobutoxy, R 1'-fluoroisobutoxy, S 1'-fluoroisobutoxy, R,S 4'-fluoroisobutoxy, R 4'-fluoroisobutoxy, S 4'-fluoroisobutoxy, or 1',1'-di(fluoromethyl)isobutoxy, and Y.sub.2 is 2-methanesulfonyloxy ethoxy, 3-methanesulfonyloxy propoxy, 4-methanesulfonyloxy butoxy, 2-methanesulfonyloxy cyclopropoxy, 2 or 3-methanesulfonyloxy cyclobutoxy, 1'methanesulfonyloxy isopropoxy, 1'-fluoro, 3'-methanesulfonyloxy isopropoxy, 1'-methanesulfonyloxy, 3'-fluoro isopropoxy, 1'-methanesulfonyloxy isobutoxy, or 4'-methanesulfonyloxy isobutoxy bind dopamine transporter protein and can be labeled with .sup.18 F or .sup.123 I for imaging.
Synthesis Of Labeled Metabolites
Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert
2004-03-23
The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.
NASA Astrophysics Data System (ADS)
Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars
2015-01-01
This study presents an analytical approach to simulate nuclide migration through a channel in a fracture accounting for an arbitrary-length decay chain. The nuclides are retarded as they diffuse in the porous rock matrix and stagnant zones in the fracture. The Laplace transform and similarity transform techniques are applied to solve the model. The analytical solution to the nuclide concentrations at the fracture outlet is governed by nine parameters representing different mechanisms acting on nuclide transport through a fracture, including diffusion into the rock matrices, diffusion into the stagnant water zone, chain decay and hydrodynamic dispersion. Furthermore, to assess how sensitive the results are to parameter uncertainties, the Sobol method is applied in variance-based global sensitivity analyses of the model output. The Sobol indices show how uncertainty in the model output is apportioned to the uncertainty in the model input. This method takes into account both direct effects and interaction effects between input parameters. The simulation results suggest that in the case of pulse injections, ignoring the effect of a stagnant water zone can lead to significant errors in the time of first arrival and the peak value of the nuclides. Likewise, neglecting the parent and modeling its daughter as a single stable species can result in a significant overestimation of the peak value of the daughter nuclide. It is also found that as the dispersion increases, the early arrival time and the peak time of the daughter decrease while the peak value increases. More importantly, the global sensitivity analysis reveals that for time periods greater than a few thousand years, the uncertainty of the model output is more sensitive to the values of the individual parameters than to the interaction between them. Moreover, if one tries to evaluate the true values of the input parameters at the same cost and effort, the determination of priorities should follow a certain
Statistical identification of effective input variables. [SCREEN
Vaurio, J.K.
1982-09-01
A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications.
Input, innateness, and induction in language acquisition.
Morgan, J L
1990-11-01
Input and innateness compliment one another in language acquisition. Children exposed to different languages acquire different languages. Children's language experience, however, underdetermines the grammars that they acquire; the constraints that are not supplied by input must be available endogenously, and the ultimate origin of these endogenous contributions to acquisition may be traced to the biology of the mind. To the extent that assumptions of innateness encourage greater explicitness in the formulation of theories of acquisition, they should be welcomed. Excessively powerful assumptions of innateness may not be subject to empirical disconfirmation, however. Therefore, attention should be devoted to the development of a theory of language input, particularly with regard to identifying invariants of input. In combination with a linguistic theory providing an account of the endstate of acquisition, a theory of input would permit the deduction of properties of the mind that underlie the acquisition of language.
Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.
Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun
2015-08-01
Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern. PMID
Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.
Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun
2015-08-01
Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.
Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitrary Polyhedral Mesh
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2012-01-01
This paper summarizes procedures of generating the arbitrary polyhedral mesh as well as presents sample results from its application to the numerical solution of a single-element LDI combustor using a preliminary version of the new OpenNCC.
NASA Astrophysics Data System (ADS)
Niffenegger, Robert; Olson, Abraham; Chen, Yong P.
2012-06-01
We have constructed an all-optical ^87Rb BEC apparatus, which is currently creating condensates in a 1550nm cross beam optical dipole trap every 30s. We present experimental progress toward implementing reconfigurable arbitrary optical potentials and artificial gauge fields in our apparatus. Time-averaged, dynamically-reconfigurable, arbitrary-shaped optical potentials are generated using a dual-axis AOM controlled by a two-channel high-bandwidth arbitrary RF waveform generator. Using a blue-detuned 532nm laser, we have demonstrated various optical potential geometries such as a tilting wedge, checkerboard and elliptical barriers. Such arbitrary, reconfigurable optical potentials will be used to explore quantum phase transitions in superfluids. Our excellent optical access also allows the addition of Raman beams of various arrangements. Raman dressed states can be used to induce spin dependent artificial gauge fields for studying physics such as the spin Hall effect.
21 CFR 1302.04 - Location and size of symbol on label and labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Location and size of symbol on label and labeling. 1302.04 Section 1302.04 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE LABELING... and labeling. The symbol shall be prominently located on the label or the labeling of the...
21 CFR 1302.04 - Location and size of symbol on label and labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Location and size of symbol on label and labeling. 1302.04 Section 1302.04 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE LABELING... and labeling. The symbol shall be prominently located on the label or the labeling of the...
Muller, J.F.
1987-01-01
An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.
Measuring Input Thresholds on an Existing Board
NASA Technical Reports Server (NTRS)
Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.
2011-01-01
A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and
How to trace organic matter input by living plants into and within the soil?
NASA Astrophysics Data System (ADS)
Studer, M. S.; Abiven, S.; Schmidt, M. W. I.; Siegwolf, R. T. W.
2012-04-01
Terrestrial ecosystems are the third largest carbon storage depot. Recent research has shown that roots and root-derived compounds may play an important role in the long-term stabilization of carbon within the soil. The study of the influence of plants on soil OM stabilization processes asks for advanced methods, which can be used to differentiate various pools and fluxes without disturbing the plant-soil system. One powerful tool matching these demands is stable isotope analysis. A common method is the artificial labelling of new plant assimilates by exposing the plants in a pulse (short time period) or continuously to CO2 strongly enriched with the heavy carbon isotope (13C). In addition the use of multiple isotopes has proven to lead to further insights in plant physiological processes and on OM cycling. In this study we tested the potential of pulse versus continuous multi-isotope labelling technique for studying OM input and stabilization within the soil. We developed a facility (MICE - Multi Isotope labelling in a Controlled Environment) to label plants in the lab under controlled conditions with 13C, 18O and 2H isotopes. The aboveground parts (shoot) of the plant-soil system are hermetically separated from the lower parts (roots, soil) to prevent the diffusion of the labelled gas into the soil. CO2 enriched in 13C (99atom% and 10atom% for the pulse and continuous labelling, respectively) and depleted water vapour (δ18O = -320-370‰ and δ2H=-750-810‰) were added to the aboveground system. Each labelling experiment was conducted with 15 plants (Populus deltoides x nigra) for 8 and 14 days, respectively. At five sampling dates the leaf, stem, root and soil bulk material was analysed for δ13C and δ 18O. In addition the δ13C of the microbial biomass (chloroform fumigation extraction) and the soil respiration (Keeling plot approach) was measured. In both experiments the plant biomass and the soil respiration has been significantly labelled with 13C (up to
ERIC Educational Resources Information Center
Jarvis, Lorna Hernandez; Merriman, William E.; Barnett, Michelle; Hanba, Jessica; Van Haitsma, Kylee S.
2004-01-01
Children tend to choose an entity they cannot already label, rather than one they can, as the likely referent of a novel noun. The effect of input that contradicts this strategy on the interpretation of other novel nouns was investigated. In pre- and posttests, 4-year-olds were asked to judge whether novel nouns referred to "name-similar" familiar…
Technology Transfer Automated Retrieval System (TEKTRAN)
Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...
Lower bound on concurrence for arbitrary-dimensional tripartite quantum states
NASA Astrophysics Data System (ADS)
Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun
2016-09-01
In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l-dimensional tripartite quantum states.
Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu Wen, Shuangchun
2015-07-27
We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
NASA Astrophysics Data System (ADS)
Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2014-02-01
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
Arbitrary magnetic field modulations to a semiconductor pump with two types of spin-orbit couplings
NASA Astrophysics Data System (ADS)
Yunchang, Xiao; Changyong, Zhu; Rixing, Wang
2016-01-01
Arbitrary magnetic field modulations to the semiconductor pump with both the Rashba and Dresselhaus spin-orbit couplings (SOC) are studied. The pump is driven by double time-dependent delta potentials, which are formed in the interfaces between the semiconductor region and two normal leads. Based on the Floquet scattering approach, our calculations show that various currents can be pumped by couplings of the magnetic fields and the SOCs. Pure spin currents modulated by the arbitrary magnetic fields are discussed in detail.
Regridding Scientific Mesh Data Using Arbitrary Cell Neighborhood Information
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter
2015-04-01
A spacial case of the regrid operator uses information of neighboring cells of a cell of interest to perform interpolation on scientific meshes. Example use-cases are smoothing skewed data fields, computing value of the first derivative in oceanographic applications, etc. Using neighbors' information is proved to improve the accuracy of the computations for a cell of interest. The regrid works in two steps: mapping step which assigns to each cell of a mesh a set of its neighboring cells and interpolation step which estimates the data on each cell by combining the data from its neighbors. The common method to specify a cell neighborhood is the stencil string which is originally defined only for structured meshes, e.g., five-point stencil. The stencil was later generalized to express neighborhood on unstructured meshes. A stencil w.r.t. an unstructured mesh consists of a sequence of digits representing the dimensions of neighboring cells of a cell. For instance, the stencil 010 w.r.t. a mesh means any calculation for a vertex needs to have access to all the adjacent vertices (i.e., vertices sharing an edge with the vertex of interest). The stencil uses hard coded dimensions and thus contains no topological abstraction. Moreover, it is not obvious whether the result is the union of elements visited in each intermediate layer (hull) or the elements only in the last layer (halo). In addition, it is not possible to filter intermediate cells using predicates. Finally, existing mesh libraries (e.g., GrAL and GridFields) which accommodate the stencil concept do not provide a generic implementation, i.e., a specific Python or C++ APIs needs to be implemented for each stencil. We propose a neighborhood expression which uses the topological relationships (i.e., boundary, co-boundary, and adjacencies) to express arbitrary cell neighborhood. The expression contains any number of the topological relationships w.r.t. to a mesh and a cell as initial context of the neighborhood
Characteristic operator functions for quantum input-plant-output models and coherent control
Gough, John E.
2015-01-15
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.
Characteristic operator functions for quantum input-plant-output models and coherent control
NASA Astrophysics Data System (ADS)
Gough, John E.
2015-01-01
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.
Wireless, relative-motion computer input device
Holzrichter, John F.; Rosenbury, Erwin T.
2004-05-18
The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.
Homosexual Labeling by University Youths
ERIC Educational Resources Information Center
Nyberg, Kenneth L.; Alston, Jon P.
1977-01-01
Details the responses of young, urban, college-educated people on their attitudes toward homosexuals, specifically focusing on issues of public identification and negative labeling as it effects homosexual persons and their behaviors. (Author/RK)
... 1 serving. You should also pay attention to trans fats on any food label. These fats raise "bad" ... foods and desserts. Many fast food restaurants use trans fats for frying. If a food has these fats, ...
Dietary Supplement Label Database (DSLD)
... Print Report Error T he Dietary Supplement Label Database (DSLD) is a joint project of the National ... participants in the latest survey in the DSLD database (NHANES): The search options: Quick Search, Browse Dietary ...
... Environment Kids Health Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The ... Pay close attention to serving sizes. Products labeled "light" or "lite" must have 1/3 fewer calories ...
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.
Interaction potentials from arbitrary multi-particle trajectory data.
Jenkins, Ian C; Crocker, John C; Sinno, Talid
2015-09-21
Understanding the complex physics of particle-based systems at the nanoscale and mesoscale increasingly relies on simulation methods, empowered by exponential advances in computing speed. A major impediment to progress lies in reliably obtaining the interaction potential functions that control system behavior - which are key inputs for any simulation approach - and which are often difficult or impossible to obtain directly using traditional experimental methods. Here, we present a straightforward methodology for generating pair potential functions from large multi-particle trajectory datasets, with no operational constraints regarding their state of equilibration, degree of damping or presence of hydrodynamic interactions. Using simulated datasets, we demonstrate that the method is highly robust against trajectory perturbations from Brownian motion and common errors introduced by particle tracking algorithms. Given the recent rapid pace of advancement in high-speed and three-dimensional microscopy and associated particle tracking algorithms, we anticipate a near future experimental regime where easily collected high-dimensional trajectory sets can be rapidly converted to the detailed interaction and hydrodynamic force fields required to replicate the system's physics in simulation.
Electrothermal branding for embryo labeling.
Wang, L; Beebe, D J; Williams, A R; Easley, K D
1997-11-01
A novel embryo labeling technique based on electrothermal branding is developed. Two types of micro branding irons are fabricated and tested. One utilizes 25 microns tungsten wire as the heating element. The other utilizes surface micromachining techniques to fabricate polysilicon branding irons. The thermal behavior of the branding irons and the heat distributions in the embryos are analytically modeled. Micron-scale labels on unfertilized bovine embryos are achieved.
Eikvil, Line; Jenssen, Tor-Kristian; Holden, Marit
2015-06-01
Document collections resulting from searches in the biomedical literature, for instance, in PubMed, are often so large that some organization of the returned information is necessary. Clustering is an efficient tool for organizing search results. To help the user to decide how to continue the search for relevant documents, the content of each cluster can be characterized by a set of representative keywords or cluster labels. As different users may have different interests, it can be desirable with solutions that make it possible to produce labels from a selection of different topical categories. We therefore introduce the concept of multi-focus cluster labeling to give users the possibility to get an overview of the contents through labels from multiple viewpoints. The concept for multi-focus cluster labeling has been established and has been demonstrated on three different document collections. We illustrate that multi-focus visualizations can give an overview of clusters along axes that general labels are not able to convey. The approach is generic and should be applicable to any biomedical (or other) domain with any selection of foci where appropriate focus vocabularies can be established. A user evaluation also indicates that such a multi-focus concept is useful.
Scaling of global input-output networks
NASA Astrophysics Data System (ADS)
Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming
2016-06-01
Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.
Computing functions by approximating the input
NASA Astrophysics Data System (ADS)
Goldberg, Mayer
2012-12-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their output. Our approach assumes only the most rudimentary knowledge of algebra and trigonometry, and makes no use of calculus.
Stein's neuronal model with pooled renewal input.
Rajdl, Kamil; Lansky, Petr
2015-06-01
The input of Stein's model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein's model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein's model is compared with the original Stein's model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability. PMID:25910437
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Kelkar, S. S.; Lee, F. C.
1983-01-01
A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.
Input/output system for multiprocessors
Bernick, D.L.; Chan, K.K.; Chan, W.M.; Dan, Y.F.; Hoang, D.M.; Hussain, Z.; Iswandhi, G.I.; Korpi, J.E.; Sanner, M.W.; Zwangerman, J.A.
1989-04-11
A device controller is described, comprising: a first port-input/output controller coupled to a first input/output channel bus; and a second port-input/output controlled coupled to a second input/output channel bus; each of the first and second port-input/output controllers having: a first ownership latch means for granting shared ownership of the device controller to a first host processor to provide a first data path on a first I/O channel through the first port I/O controller between the first host processor and any peripheral, and at least a second ownership latch means operative independently of the first ownership latch means for granting shared ownership of the device controller to a second host processor independently of the first port input/output controller to provide a second data path on a second I/O channel through the second port I/O controller between the second host processor and any peripheral devices coupled to the device controller.
OpenCL based machine learning labeling of biomedical datasets
NASA Astrophysics Data System (ADS)
Amoros, Oscar; Escalera, Sergio; Puig, Anna
2011-03-01
In this paper, we propose a two-stage labeling method of large biomedical datasets through a parallel approach in a single GPU. Diagnostic methods, structures volume measurements, and visualization systems are of major importance for surgery planning, intra-operative imaging and image-guided surgery. In all cases, to provide an automatic and interactive method to label or to tag different structures contained into input data becomes imperative. Several approaches to label or segment biomedical datasets has been proposed to discriminate different anatomical structures in an output tagged dataset. Among existing methods, supervised learning methods for segmentation have been devised to easily analyze biomedical datasets by a non-expert user. However, they still have some problems concerning practical application, such as slow learning and testing speeds. In addition, recent technological developments have led to widespread availability of multi-core CPUs and GPUs, as well as new software languages, such as NVIDIA's CUDA and OpenCL, allowing to apply parallel programming paradigms in conventional personal computers. Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community. In a first stage, Adaboost trains a binary classifier from a set of pre-labeled samples described by a set of features. This binary classifier is defined as a weighted combination of weak classifiers. Each weak classifier is a simple decision function estimated on a single feature value. Then, at the testing stage, each weak classifier is independently applied on the features of a set of unlabeled samples. In this work, we propose an alternative representation of the Adaboost binary classifier. We use this proposed representation to define a new GPU-based parallelized Adaboost testing stage using OpenCL. We provide numerical experiments based on large available data sets and we compare our results to CPU-based strategies in terms of time and
Impact of arbitrary and mean transfer of dental casts to the articulator on centric occlusal errors.
Morneburg, Thomas R; Pröschel, Peter A
2011-06-01
When fabricating dental restorations, casts are usually transferred to the articulator based on arbitrary hinge axes or mean values instead of true hinge axis points. Using arbitrary hinge axis points or mean values can lead to occlusal errors if the vertical relation is changed in the articulator (e.g., when a centric record is used). This study predicted the probability of occlusal errors occurring in a group of subjects when casts are mounted based on arbitrary hinge axis points or mean values. In 57 healthy volunteers, true hinge axis points, arbitrary hinge axis points, right infraorbital point, maxillary incisal point, and the palatal cusps of the second molars were determined. Mean hinge axis points were established based on Balkwill angles between 17° and 25°. Occlusal errors evoked by cast mounting in relation to arbitrary or mean axes compared to true hinge axes were calculated. Errors were determined for vertical relation settings of 2 and 4 mm. With 2 mm vertical relation, occlusal errors ≥340 µm occurred with a 10% probability with arbitrary hinge axis mounting. At the same probability level, the error increased moderately to ≥440 µm with mean value mounting and a Balkwill angle of 17°. With a Balkwill angle of 25° occlusal errors ≥1,120 µm occurred with 10% probability. Occlusal errors increased considerably with a vertical relation setting of 4 mm. If vertical relation shall be altered, a transfer of the casts according to arbitrary hinge axes is recommended. If casts are transferred according to mean values, errors are bigger depending on the articulator used.
21 CFR 610.60 - Container label.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Container label. 610.60 Section 610.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.60 Container label. (a) Full label....
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Labeling. 225.180 Section 225.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR MEDICATED FEEDS Labeling § 225.180 Labeling. Labels shall...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Labeling. 225.180 Section 225.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR MEDICATED FEEDS Labeling § 225.180 Labeling. Labels shall...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
9 CFR 381.132 - Labeling approval.
Code of Federal Regulations, 2010 CFR
2010-01-01
... been submitted for approval to the Food Labeling Division, Regulatory Programs, Food Safety and... request. (b) The Food Labeling Division shall permit submission for approval of only sketch labeling, as... Labeling Division, Regulatory Programs, Food Safety and Inspection Service, U.S. Department of...
9 CFR 381.132 - Labeling approval.
Code of Federal Regulations, 2014 CFR
2014-01-01
... product unless the sketch labeling of such final labeling has been submitted for approval to the Food Labeling Division, Regulatory Programs, Food Safety and Inspection Service, and approved by such division... authorized representative of the Secretary upon request. (b) The Food Labeling Division shall...
9 CFR 381.132 - Labeling approval.
Code of Federal Regulations, 2011 CFR
2011-01-01
... been submitted for approval to the Food Labeling Division, Regulatory Programs, Food Safety and... request. (b) The Food Labeling Division shall permit submission for approval of only sketch labeling, as... Labeling Division, Regulatory Programs, Food Safety and Inspection Service, U.S. Department of...
9 CFR 381.132 - Labeling approval.
Code of Federal Regulations, 2012 CFR
2012-01-01
... been submitted for approval to the Food Labeling Division, Regulatory Programs, Food Safety and... request. (b) The Food Labeling Division shall permit submission for approval of only sketch labeling, as... Labeling Division, Regulatory Programs, Food Safety and Inspection Service, U.S. Department of...
9 CFR 381.132 - Labeling approval.
Code of Federal Regulations, 2013 CFR
2013-01-01
... been submitted for approval to the Food Labeling Division, Regulatory Programs, Food Safety and... request. (b) The Food Labeling Division shall permit submission for approval of only sketch labeling, as... Labeling Division, Regulatory Programs, Food Safety and Inspection Service, U.S. Department of...
40 CFR 211.108 - Sample label.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...
Code of Federal Regulations, 2010 CFR
2010-04-01
... eliminated by labeling or a change in labeling, or change in advertising if the device is a restricted device... person(s) responsible for the labeling or advertising of the device specifying: (1) The deception or risk... labeling, or change in advertising if the device is a restricted device, necessary to correct the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... edges of the label. If you wish to change the format of this single component label, you must petition... no closer than 3/16″ (.48 cm) from the side edges of the label. If you wish to change the format of.... All labels must be capable of withstanding extremes of weather conditions for a period of at least...
Code of Federal Regulations, 2014 CFR
2014-01-01
... edges of the label. If you wish to change the format of this single component label, you must petition... no closer than 3/16″ (.48 cm) from the side edges of the label. If you wish to change the format of.... All labels must be capable of withstanding extremes of weather conditions for a period of at least...
Code of Federal Regulations, 2013 CFR
2013-01-01
... edges of the label. If you wish to change the format of this single component label, you must petition... no closer than 3/16″ (.48 cm) from the side edges of the label. If you wish to change the format of.... All labels must be capable of withstanding extremes of weather conditions for a period of at least...
Optimal policy for labeling training samples
NASA Astrophysics Data System (ADS)
Lipsky, Lester; Lopresti, Daniel; Nagy, George
2013-01-01
Confirming the labels of automatically classified patterns is generally faster than entering new labels or correcting incorrect labels. Most labels assigned by a classifier, even if trained only on relatively few pre-labeled patterns, are correct. Therefore the overall cost of human labeling can be decreased by interspersing labeling and classification. Given a parameterized model of the error rate as an inverse power law function of the size of the training set, the optimal splits can be computed rapidly. Projected savings in operator time are over 60% for a range of empirical error functions for hand-printed digit classification with ten different classifiers.
Andi's Story: An Oral History of a Woman Labeled Learning Disabled
ERIC Educational Resources Information Center
Polo, Maude Ann
2010-01-01
Traditional special education research has excluded personal stories told by those most affected by the special education system. Specialists continue to diagnose, label, and provide assistance to persons with learning disabilities with little input from the persons most affected. The field continues to rely on the medical model, placing the locus…
ERIC Educational Resources Information Center
Kabadayi, Abdulkadir
2006-01-01
Language, as is known, is acquired under certain conditions: rapid and sequential brain maturation and cognitive development, the need to exchange information and to control others' actions, and an exposure to appropriate speech input. This research aims at analyzing preschoolers' overgeneralizations of the object labeling process in different…
Incorporation of probabilistic seismic phase labels into a Bayesian multiple-event seismic locator
Myers, S; Johannesson, G; Hanley, W
2008-01-17
We add probabilistic phase labels to the multiple-event joint probability function of Myers et al., 2007 that formerly included event locations, travel-time corrections, and arrival-time measurement precision. Prior information on any of the multiple-event parameters may be used. The phase-label model includes a null label that captures phases not belonging to the collection of phases under consideration. Using the Markov-Chain Monte Carlo method, samples are drawn from the multiple-event joint probability function to infer the posteriori distribution that is consistent with priors and the arrival-time data set. Using this approach phase-label error can be accessed and phase-label error is propagated to all other multiple-event parameters. We test the method using a ground-truth data set of nuclear explosions at the Nevada Test Site. We find that posteriori phase labels agree with the meticulously analyzed data set in more than 97% of instances and the results are robust even when the input phase-label information is discarded. Only when a large percentage of the arrival-time data are corrupted does prior phase label information improve resolution of multiple-event parameters. Simultaneous modeling of the entire multiple-event system results in accurate posteriori probability regions for each multiple-event parameter.
BEECH, D. J.; ROCHE, E. D.; SIBBONS, P. D.; ROSSDALE, P. D.; OUSEY, J. C.
2000-01-01
Mean glomerular volume has previously been estimated, using stereological techniques, specifically the point-sampled intercept (PSI), either from isotropic or from vertical sections. As glomeruli are approximately spherical structures, the same stereological technique was carried out on vertical and arbitrary sections to determine whether section orientation had any effect on mean glomerular volume estimation. Equine kidneys from 10 individuals were analysed using the PSI method of estimating volume-weighted mean glomerular volume (MGV); for each kidney, arbitrary and vertical sections were analysed. MGVs were not significantly different between arbitrary and vertical sections (P = 0.691) when analysing the data with the paired t test; when plotting MGV estimates from arbitrary sections against those from vertical sections the intercept was found not to be significantly different from zero (P > 0.8) and the slope of the regression line not to be significantly different from 1.0 (P > 0.4). For the estimation of MGV in equine kidneys using PSI, arbitrary sections may be used if it is not possible to use isotropic or vertical sections, but some caution must be exercised in the interpretation of results so gained. PMID:11005722
Six axis force feedback input device
NASA Technical Reports Server (NTRS)
Ohm, Timothy (Inventor)
1998-01-01
The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.
21 CFR 201.70 - Calcium labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... product is more than 3.2 grams: “Ask a doctor before use if you have 1 kidney stones a calcium-restricted... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Calcium labeling. 201.70 Section 201.70 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.70 Calcium labeling. (a) The labeling...
21 CFR 201.70 - Calcium labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... product is more than 3.2 grams: “Ask a doctor before use if you have 1 kidney stones a calcium-restricted... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Calcium labeling. 201.70 Section 201.70 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.70 Calcium labeling. (a) The labeling...
21 CFR 201.70 - Calcium labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... product is more than 3.2 grams: “Ask a doctor before use if you have 1 kidney stones a calcium-restricted... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Calcium labeling. 201.70 Section 201.70 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.70 Calcium labeling. (a) The labeling...
21 CFR 201.70 - Calcium labeling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... product is more than 3.2 grams: “Ask a doctor before use if you have 1 kidney stones a calcium-restricted... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Calcium labeling. 201.70 Section 201.70 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.70 Calcium labeling. (a) The labeling...
21 CFR 201.70 - Calcium labeling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... product is more than 3.2 grams: “Ask a doctor before use if you have 1 kidney stones a calcium-restricted... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Calcium labeling. 201.70 Section 201.70 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.70 Calcium labeling. (a) The labeling...
Nutrition Labeling Using a Computer Program
NASA Astrophysics Data System (ADS)
Metzger, Lloyd E.
The 1990 Nutrition Labeling and Education Act mandated nutritional labeling of most foods. As a result, a large portion of food analysis is performed for nutritional labeling purposes. A food labeling guide and links to the complete nutritional labeling regulations are available online at http://vm.cfsan.fda.gov/˜dms/flg-toc.html. However, interpretation of these regulations and the appropriate usage of rounding rules, available nutrient content claims, reference amounts, and serving size can be difficult.
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
49 CFR 172.430 - POISON label.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false POISON label. 172.430 Section 172.430... SECURITY PLANS Labeling § 172.430 POISON label. (a) Except for size and color, the POISON label must be as follows: EC02MR91.029 (b) In addition to complying with § 172.407, the background on the POISON label...
Schroth, Martin H.; Oostrom, Mart; Dobson, Richard; Zeyer, Josef
2008-08-01
Fluid/fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to predict fluid/fluid interfacial areas in porous media for arbitrary drainage/imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs, (2) the wetting fluid completely wets the porous medium’s solid surfaces, and (3) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage/imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBM’s predictions for interfacial area associated with free nonwetting-fluid are identical to those of a previously published geometry-based model (GBM). However, predictions for interfacial area associated with entrapped nonwetting-fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multifluid-flow simulations, the modified TBM may be easily incorporated in numerical codes.
Targeting single neuronal networks for gene expression and cell labeling in vivo.
Marshel, James H; Mori, Takuma; Nielsen, Kristina J; Callaway, Edward M
2010-08-26
To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.
Czajkowski, Rafał; Sugar, Jørgen; Zhang, Sheng-Jia; Couey, Jonathan J; Ye, Jing; Witter, Menno P
2013-10-01
Principal cells in layer V of the medial entorhinal cortex (MEC) have a nodal position in the cortical-hippocampal network. They are the main recipients of hippocampal output and receive inputs from several cortical areas, including a prominent one from the retrosplenial cortex (RSC), likely targeting basal dendrites of layer V neurons. The latter project to extrahippocampal structures but also relay information to the superficial layers of MEC, closing the hippocampal-entorhinal loop. In the rat, we electrophysiologically and morphologically characterized RSC input into MEC and conclude that RSC provides an excitatory input to layer V pyramidal cells. Ultrastructural analyses of anterogradely labeled RSC projections showed that RSC axons in layer V of MEC form predominantly asymmetrical, likely excitatory, synapses on dendritic spines (90%) or shafts (8%), with 2% symmetrical, likely inhibitory, synapses on shafts and spines. The overall excitatory nature of the RSC input was confirmed by an optogenetic approach. Patterned laser stimulation of channelrhodopsin-expressing presynaptic RSC axons evoked exclusively EPSPs in recorded postsynaptic layer V cells. All responding layer V pyramidal cells had an axon extending toward the white matter. Half of these neurons also sent an axon to superficial layers. Confocal imaging of RSC synapses onto MEC layer V neurons shown to project superficially by way of retrogradely labeling from superficial layers confirmed that proximal dendrites of superficially projecting cells are among the targets of inputs from RSC. The excitatory RSC input thus interacts with both entorhinal-cortical and entorhinal-hippocampal circuits.
NASA Astrophysics Data System (ADS)
Filioglou, M.; Balis, D.; Siomos, N.; Poupkou, A.; Dimopoulos, S.; Chaikovsky, A.
2016-06-01
A targeted sensitivity study of the LIRIC algorithm was considered necessary to estimate the uncertainty introduced to the volume concentration profiles, due to the arbitrary selection of user-defined input parameters. For this purpose three different tests were performed using Thessaloniki's Lidar data. Overall, tests in the selection of the regularization parameters, an upper and a lower limit test were performed. The different sensitivity tests were applied on two cases with different predominant aerosol types, a dust episode and a typical urban case.
Metrics for Labeled Markov Systems
NASA Technical Reports Server (NTRS)
Desharnais, Josee; Jagadeesan, Radha; Gupta, Vineet; Panangaden, Prakash
1999-01-01
Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning principles for reasoning about more robust notions of "approximate" equivalence between concurrent interacting probabilistic systems. The present results indicate that:We develop a family of metrics between partial labeled Markov chains to formalize the notion of distance between processes. We show that processes at distance zero are bisimilar. We describe a decision procedure to compute the distance between two processes. We show that reasoning about approximate equivalence can be done compositionally by showing that process combinators do not increase distance. We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show that parallel composition does not increase asymptotic distance.
Positron emitter labeled enzyme inhibitors
Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.
1990-04-03
This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.
Positron emitter labeled enzyme inhibitors
Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.
1987-05-22
This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.
Positron emitter labeled enzyme inhibitors
Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt
1990-01-01
This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.
Computer Generated Inputs for NMIS Processor Verification
J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly
2001-06-29
Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999.
Decontextualized language input and preschoolers' vocabulary development.
Rowe, Meredith L
2013-11-01
This article discusses the importance of using decontextualized language, or language that is removed from the here and now including pretend, narrative, and explanatory talk, with preschool children. The literature on parents' use of decontextualized language is reviewed and results of a longitudinal study of parent decontextualized language input in relation to child vocabulary development are explained. The main findings are that parents who provide their preschool children with more explanations and narrative utterances about past or future events in the input have children with larger vocabularies 1 year later, even with quantity of parent input and child prior vocabulary skill controlled. Recommendations for how to engage children in decontextualized language conversations are provided.
The input optics of Advanced LIGO
NASA Astrophysics Data System (ADS)
Tanner, D. B.; Arain, M. A.; Ciani, G.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Heintze, M.; Martin, R. M.; Mueller, C. L.; Williams, L. F.; Mueller, G.; Quetschke, V.; Korth, W. Z.; Reitze, D. H.; Derosa, R. T.; Effler, A.; Kokeyama, K.; Frolov, V. V.; Mullavey, A.; Poeld, J.
2016-03-01
The Input Optics (IO) of advanced LIGO will be described. The IO consists of all the optics between the laser and the power recycling mirror. The scope of the IO includes the following hardware: phase modulators, power control, input mode cleaner, an in-vacuum Faraday isolator, and mode matching telescopes. The IO group has developed and characterized RTP-based phase modulators capable of operation at 180 W cw input power. In addition, the Faraday isolator is compensated for depolarization and thermal lensing effects up to the same power and is capable of achieving greater than 40 dB isolation. This research has been supported by the NSF through Grants PHY-1205512 and PHY-1505598. LIGO-G1600067.
China Refrigerator Information Label: Specification Development and Potential Impact
Fridley, David; Fridley, David; Zheng, Nina; Zhou, Nan; Aden, Nathaniel; Lin, Jiang; Jianhong, Cheng; Sakamoto, Tomoyuki
2008-02-01
In the last five years, China's refrigerator market has grown rapidly, and now urban markets are showing signs of saturation, with ownership rates in urban households reaching 92%. Rural markets continue to grow from a much lower base. As a result of this growth, the Chinese government in 2006 decided to revise the refrigerator standards and its associated efficiency grades for the mandatory energy information label. In the Chinese standards process, the efficiency grades for the information label are tied to the minimum standards. Work on the minimum standards revision began in 2006 and continued through the first half of 2007, when the draft standard was completed under the direction of the China National Institute of Standardization (CNIS). Development of the information label grades required consideration of stakeholder input, continuity with the previous grade classification, ease of implementation, and potential impacts on the market. In this process, CLASP, with the support of METI/IEEJ, collaborated with CNIS to develop the efficiency grades, providing technical input to the process, comment and advice on particular technical issues, and evaluation of the results. After three months of effort and three drafts of the final grade specifications, this work was completed. In addition, in order to effectively evaluate the impact of the label on China's market, CLASP further provided assistance to CNIS to collect data on both the efficiency distribution and product volume distribution of refrigerators on the market. The new information label thresholds to be implemented in 2008 maintain the approach first adopted in 2005 of establishing efficiency levels relative to the minimum standard, but increased the related required efficiency levels by 20% over those established in 2003 and implemented in 2005. The focus of improvement was on the standard refrigerator/freezer (class 5), which constitutes the bulk of the Chinese market. Indeed, the new requirements to
Denture labeling: A new approach.
Bansal, Pardeep K; Sharma, Akshey; Bhanot, Rajesh
2011-04-01
The need for denture labeling is important for forensic and social reasons in case patients need to be identified individually. The importance of denture marking has long been acknowledged by the dental profession. Over the years, various denture marking systems have been reported in the literature, but none till date fulfills all the prescribed ADA specifications. A simple, easy, inexpensive procedure for marking accurate identification marks on dentures with a lead foil is described here. The label caring the patient information is incorporated in the acrylic resin during the denture processing.
Projection-Specific Characteristics of Retinal Input to the Brain
Gauvain, Gregory
2015-01-01
The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences. PMID:25904807
Projection-specific characteristics of retinal input to the brain.
Gauvain, Gregory; Murphy, Gabe J
2015-04-22
The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences. PMID:25904807
Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements
NASA Astrophysics Data System (ADS)
Yu, Ren-Feng; Lin, You-Jun; Zhou, Ping
2016-08-01
In this paper, two schemes for joint remote preparation via linear optics elements are proposed. Firstly, we propose a scheme for joint remote preparation of an arbitrary two-photon state via linear-optical elements by using a five-qubit cluster state as the quantum channel. Then, the JRSP protocol of an arbitrary three-photon state via linear-optical elements, which was rarely considered in previous papers, is investigated. All the senders share the information of prepared state. The senders transform the quantum channel to the target quantum channel according to their information of prepared state, and the receiver can prepare the original state by performing corresponding operations on his entangled particles. Our scheme has advantage of transmitting less particles for joint remote preparing an arbitrary two-qubit state. Moreover, it is more convenience in application since it only requires linear-optical elements for joint remote preparation.
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field. PMID:26907066
Deterministic phase encoding encryption in arbitrary phase-step digital holography
NASA Astrophysics Data System (ADS)
Chang, Chi-Ching; Hsieh, Wang Ta; Kuo, Ming Kuei
2010-05-01
A deterministic phase-encoded encryption system, which adopts a lenticular lens array (LLA) sheet as a phase modulator (key), based on arbitrary two-step phase-shift interferometry (PSI), with an unknown phase step, is presented. The principle of encryption and decryption which is using a LLA in arbitrary unknown two-step PSI is given. With the aid of key holograms (right key), it can be theoretically shown that only the reconstructed object wavefront term will be left in the image plane, and all the accompany undesired terms be eliminated. Thus the hidden information of object wavefront in this encryption system can be numerically and successfully decrypted using arbitrary unknown two-step PSI with right key. For comparisons, computer simulations are carried out to verify the principle of encryption and decryption without key, with wrong key and with right key, respectively.
Yue, Song; Zhang, Zhao-chuan; Gao, Dong-ping
2015-04-15
In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, in which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.
Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons
Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas
2012-01-01
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887
An update of input instructions to TEMOD
NASA Technical Reports Server (NTRS)
1973-01-01
The theory and operation of a FORTRAN 4 computer code, designated as TEMOD, used to calcuate tubular thermoelectric generator performance is described in WANL-TME-1906. The original version of TEMOD was developed in 1969. A description is given of additions to the mathematical model and an update of the input instructions to the code. Although the basic mathematical model described in WANL-TME-1906 has remained unchanged, a substantial number of input/output options were added to allow completion of module performance parametrics as required in support of the compact thermoelectric converter system technology program.
Input/Output Subroutine Library Program
NASA Technical Reports Server (NTRS)
Collier, James B.
1988-01-01
Efficient, easy-to-use program moved easily to different computers. Purpose of NAVIO, Input/Output Subroutine Library, provides input/output package of software for FORTRAN programs that is portable, efficient, and easy to use. Implemented as hierarchy of libraries. At bottom is very small library containing only non-portable routines called "I/O Kernel." Design makes NAVIO easy to move from one computer to another, by simply changing kernel. NAVIO appropriate for software system of almost any size wherein different programs communicate through files.
Partially connected feedforward neural networks structured by input types.
Kang, Sanggil; Isik, Can
2005-01-01
This paper proposes a new method to model partially connected feedforward neural networks (PCFNNs) from the identified input type (IT) which refers to whether each input is coupled with or uncoupled from other inputs in generating output. The identification is done by analyzing input sensitivity changes as amplifying the magnitude of inputs. The sensitivity changes of the uncoupled inputs are not correlated with the variation on any other input, while those of the coupled inputs are correlated with the variation on any one of the coupled inputs. According to the identified ITs, a PCFNN can be structured. Each uncoupled input does not share the neurons in the hidden layer with other inputs in order to contribute to output in an independent manner, while the coupled inputs share the neurons with one another. After deriving the mathematical input sensitivity analysis for each IT, several experiments, as well as a real example (blood pressure (BP) estimation), are described to demonstrate how well our method works.
Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement.
Li, Wei; Yang, Yang; Yan, Hao; Liu, Yan
2013-06-12
In biomolecular programming, the properties of biomolecules such as proteins and nucleic acids are harnessed for computational purposes. The field has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. DNA has already been used to build complex molecular circuits, where the basic building blocks are logic gates that produce single outputs from one or more logical inputs. We designed and experimentally realized a three-input majority gate based on DNA strand displacement. One of the key features of a three-input majority gate is that the three inputs have equal priority, and the output will be true if any of the two inputs are true. Our design consists of a central, circular DNA strand with three unique domains between which are identical joint sequences. Before inputs are introduced to the system, each domain and half of each joint is protected by one complementary ssDNA that displays a toehold for subsequent displacement by the corresponding input. With this design the relationship between any two domains is analogous to the relationship between inputs in a majority gate. Displacing two or more of the protection strands will expose at least one complete joint and return a true output; displacing none or only one of the protection strands will not expose a complete joint and will return a false output. Further, we designed and realized a complex five-input logic gate based on the majority gate described here. By controlling two of the five inputs the complex gate can realize every combination of OR and AND gates of the other three inputs.
An explicit approach to conceptual density functional theory descriptors of arbitrary order
NASA Astrophysics Data System (ADS)
Heidar-Zadeh, Farnaz; Richer, Michael; Fias, Stijn; Miranda-Quintana, Ramón Alain; Chan, Matthew; Franco-Pérez, Marco; González-Espinoza, Cristina E.; Kim, Taewon David; Lanssens, Caitlin; Patel, Anand H. G.; Yang, Xiaotian Derrick; Vöhringer-Martinez, Esteban; Cárdenas, Carlos; Verstraelen, Toon; Ayers, Paul W.
2016-09-01
We present explicit formulas for arbitrary-order derivatives of the energy, grand potential, electron density, and higher-order response functions with respect to the number of electrons, and the chemical potential for any smooth and differentiable model of the energy versus the number of electrons. The resulting expressions for global reactivity descriptors (hyperhardnesses and hypersoftnesses), local reactivity descriptors (hyperFukui functions and local hypersoftnesses), and nonlocal response functions are easy to evaluate computationally. Specifically, the explicit formulas for global/local/nonlocal hypersoftnesses of arbitrary order are derived using Bell polynomials. Explicit expressions for global and local hypersoftness indicators up to fifth order are presented.
Park, H M; Lim, J Y
2009-08-15
The streaming potential of electrokinetic flows in microchannels affects flow rate and is usually exploited to determine the zeta potential of microchannels. In the present investigation, we derive a semianalytic formula for the streaming potential of microchannels with arbitrary cross-sectional shapes valid for high zeta potentials as well as reasonably low zeta potentials. This formula satisfies the Onsager reciprocity principle at the limit of low zeta potential where the Debye-Hückel approximation is valid. The simple semianalytic formula for the streaming potential derived in the present work can be employed to investigate electrokinetic flows and determine the zeta potentials of microchannels with arbitrary cross-sectional shapes. PMID:19464020
Three-dimensional zonal grids about arbitrary shapes by Poisson's equation
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1988-01-01
A method for generating 3-D finite difference grids about or within arbitrary shapes is presented. The 3-D Poisson equations are solved numerically, with values for the inhomogeneous terms found automatically by the algorithm. Those inhomogeneous terms have the effect near boundaries of reducing cell skewness and imposing arbitrary cell height. The method allows the region of interest to be divided into zones (blocks), allowing the method to be applicable to almost any physical domain. A FORTRAN program called 3DGRAPE has been written to implement the algorithm. Lastly, a method for redistributing grid points along lines normal to boundaries will be described.
A high-accuracy algorithm for designing arbitrary holographic atom traps.
Pasienski, Matthew; Demarco, Brian
2008-02-01
We report the realization of a new iterative Fourier-transform algorithm for creating holograms that can diffract light into an arbitrary two-dimensional intensity profile. We show that the predicted intensity distributions are smooth with a fractional error from the target distribution at the percent level. We demonstrate that this new algorithm outperforms the most frequently used alternatives typically by one and two orders of magnitude in accuracy and roughness, respectively. The techniques described in this paper outline a path to creating arbitrary holographic atom traps in which the only remaining hurdle is physical implementation.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Chen Pingxing; Li Chengzu
2003-12-01
We consider the relation between the orthogonality and the distinguishability of a set of arbitrary states (including multipartite states). It is shown that if a set of arbitrary states can be distinguished by local operations and classical communication (LOCC), each of the states can be written as a linear combination of product vectors such that all product vectors of one of the states are orthogonal to the other states. With this result we then prove a simple necessary condition for LOCC distinguishability of a class of orthogonal states. These conclusions may be useful in discussing the distinguishability of orthogonal quantum states further, understanding the essence of nonlocality and discussing the distillation of entanglement.
The monodromy matrix in the F-basis for arbitrary six-vertex models
NASA Astrophysics Data System (ADS)
Martins, M. J.; Zuparic, M.
2011-10-01
We present the expressions for the monodromy matrix elements of the six-vertex model in the F-basis for arbitrary Boltzmann weights. The results rely solely on the property of unitarity and Yang-Baxter relations, avoiding any specific parameterization of the weights. This allows us to write complete algebraic expressions for the inner products and the underlying domain wall partition functions in the case of arbitrary rapidities. We then apply our results for the trigonometric six-vertex model in the presence of inhomogeneous electric fields and obtain a determinant formula for the respective on-shell scalar products.
Yang, Chengfu; Yang, Jingjing; Huang, Ming; Xiao, Zhe; Peng, Jinhui
2011-01-17
Electromagnetic cloak is a device which makes an object "invisible" for electromagnetic irradiation in a certain frequency range. Material parameters for the complementary medium-assisted external cylindrical cloak with arbitrary cross section are derived based on combining the concepts of complementary media and transformation optics. It can make the object with arbitrary shape outside the cloaking domain invisible, as long as an "antiobject" is embedded in the complementary media layer. Moreover, we find that the shape, size and the position of the "antiobject" is dependent on the contour of the cloak and the coordinate transformation. The external cloaking effect has been verified by full-wave simulation. PMID:21263655