NASA Astrophysics Data System (ADS)
Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun
2015-01-01
Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N, N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).
Protein quantification using a cleavable reporter peptide.
Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno
2015-02-06
Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described.
Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).
Arntzen, Magnus O; Koehler, Christian J; Treumann, Achim; Thiede, Bernd
2011-01-01
The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.
Santos, Hugo M; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Nunes-Miranda, J D; Fdez-Riverola, Florentino; Carvallo, R; Capelo, J L
2010-09-15
The decision peptide-driven tool implements a software application for assisting the user in a protocol for accurate protein quantification based on the following steps: (1) protein separation through gel electrophoresis; (2) in-gel protein digestion; (3) direct and inverse (18)O-labeling and (4) matrix assisted laser desorption ionization time of flight mass spectrometry, MALDI analysis. The DPD software compares the MALDI results of the direct and inverse (18)O-labeling experiments and quickly identifies those peptides with paralleled loses in different sets of a typical proteomic workflow. Those peptides are used for subsequent accurate protein quantification. The interpretation of the MALDI data from direct and inverse labeling experiments is time-consuming requiring a significant amount of time to do all comparisons manually. The DPD software shortens and simplifies the searching of the peptides that must be used for quantification from a week to just some minutes. To do so, it takes as input several MALDI spectra and aids the researcher in an automatic mode (i) to compare data from direct and inverse (18)O-labeling experiments, calculating the corresponding ratios to determine those peptides with paralleled losses throughout different sets of experiments; and (ii) allow to use those peptides as internal standards for subsequent accurate protein quantification using (18)O-labeling. In this work the DPD software is presented and explained with the quantification of protein carbonic anhydrase. Copyright (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzke, Melissa M.; Brown, Joseph N.; Gritsenko, Marina A.
2013-02-01
Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred frommore » one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.« less
Richardson, Keith; Denny, Richard; Hughes, Chris; Skilling, John; Sikora, Jacek; Dadlez, Michał; Manteca, Angel; Jung, Hye Ryung; Jensen, Ole Nørregaard; Redeker, Virginie; Melki, Ronald; Langridge, James I.; Vissers, Johannes P.C.
2013-01-01
A probability-based quantification framework is presented for the calculation of relative peptide and protein abundance in label-free and label-dependent LC-MS proteomics data. The results are accompanied by credible intervals and regulation probabilities. The algorithm takes into account data uncertainties via Poisson statistics modified by a noise contribution that is determined automatically during an initial normalization stage. Protein quantification relies on assignments of component peptides to the acquired data. These assignments are generally of variable reliability and may not be present across all of the experiments comprising an analysis. It is also possible for a peptide to be identified to more than one protein in a given mixture. For these reasons the algorithm accepts a prior probability of peptide assignment for each intensity measurement. The model is constructed in such a way that outliers of any type can be automatically reweighted. Two discrete normalization methods can be employed. The first method is based on a user-defined subset of peptides, while the second method relies on the presence of a dominant background of endogenous peptides for which the concentration is assumed to be unaffected. Normalization is performed using the same computational and statistical procedures employed by the main quantification algorithm. The performance of the algorithm will be illustrated on example data sets, and its utility demonstrated for typical proteomics applications. The quantification algorithm supports relative protein quantification based on precursor and product ion intensities acquired by means of data-dependent methods, originating from all common isotopically-labeled approaches, as well as label-free ion intensity-based data-independent methods. PMID:22871168
Kim, Jong-Seo; Fillmore, Thomas L; Liu, Tao; Robinson, Errol; Hossain, Mahmud; Champion, Boyd L; Moore, Ronald J; Camp, David G; Smith, Richard D; Qian, Wei-Jun
2011-12-01
Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.
Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie
2012-07-06
Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.
Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong
2015-01-01
Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.
Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.
2015-01-01
Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797
Quantitative interaction proteomics using mass spectrometry.
Wepf, Alexander; Glatter, Timo; Schmidt, Alexander; Aebersold, Ruedi; Gstaiger, Matthias
2009-03-01
We present a mass spectrometry-based strategy for the absolute quantification of protein complex components isolated through affinity purification. We quantified bait proteins via isotope-labeled reference peptides corresponding to an affinity tag sequence and prey proteins by label-free correlational quantification using the precursor ion signal intensities of proteotypic peptides generated in reciprocal purifications. We used this method to quantitatively analyze interaction stoichiometries in the human protein phosphatase 2A network.
Frost, Dustin C.; Greer, Tyler; Xiang, Feng; Liang, Zhidan; Li, Lingjun
2015-01-01
Rationale Relative quantification of proteins via their enzymatically digested peptide products determines disease biomarker candidate lists in discovery studies. Isobaric label-based strategies using TMT and iTRAQ allow for up to 10 samples to be multiplexed in one experiment, but their expense limits their use. The demand for cost-effective tagging reagents capable of multiplexing many samples led us to develop an 8-plex version of our isobaric labeling reagent, DiLeu. Methods The original 4-plex DiLeu reagent was extended to an 8-plex set by coupling isotopic variants of dimethylated leucine to an alanine balance group designed to offset the increasing mass of the label’s reporter group. Tryptic peptides from a single protein digest, a protein mixture digest, and Saccharomyces cerevisiae lysate digest were labeled with 8-plex DiLeu and analyzed via nanoLC-MS2 on a Q-Exactive Orbitrap mass spectrometer. Characteristics of 8-plex DiLeu-labeled peptides, including quantitative accuracy and fragmentation, were examined. Results An 8-plex set of DiLeu reagents with 1 Da-spaced reporters was synthesized at a yield of 36%. The average cost to label eight 100 μg peptide samples was calculated to be approximately $15. Normalized collision energy tests on the Q-Exactive revealed that a higher-energy collisional dissociation value of 27 generated the optimum number of high-quality spectral matches. Relative quantification of DiLeu-labeled peptides yielded normalized median ratios accurate to within 12% of their expected values. Conclusions Cost-effective 8-plex DiLeu reagents can be synthesized and applied to relative peptide and protein quantification. These labels increase the multiplexing capacity of our previous 4-plex implementation without requiring high-resolution instrumentation to resolve reporter ion signals. PMID:25981542
Simpson, Deborah M; Beynon, Robert J
2012-09-01
Systems biology requires knowledge of the absolute amounts of proteins in order to model biological processes and simulate the effects of changes in specific model parameters. Quantification concatamers (QconCATs) are established as a method to provide multiplexed absolute peptide standards for a set of target proteins in isotope dilution standard experiments. Two or more quantotypic peptides representing each of the target proteins are concatenated into a designer gene that is metabolically labelled with stable isotopes in Escherichia coli or other cellular or cell-free systems. Co-digestion of a known amount of QconCAT with the target proteins generates a set of labelled reference peptide standards for the unlabelled analyte counterparts, and by using an appropriate mass spectrometry platform, comparison of the intensities of the peptide ratios delivers absolute quantification of the encoded peptides and in turn the target proteins for which they are surrogates. In this review, we discuss the criteria and difficulties associated with surrogate peptide selection and provide examples in the design of QconCATs for quantification of the proteins of the nuclear factor κB pathway.
Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng
2014-09-01
Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.
Fang, Bin; Hoffman, Melissa A.; Mirza, Abu-Sayeef; Mishall, Katie M.; Li, Jiannong; Peterman, Scott M.; Smalley, Keiran S. M.; Shain, Kenneth H.; Weinberger, Paul M.; Wu, Jie; Rix, Uwe; Haura, Eric B.; Koomen, John M.
2015-01-01
Cancer biologists and other healthcare researchers face an increasing challenge in addressing the molecular complexity of disease. Biomarker measurement tools and techniques now contribute to both basic science and translational research. In particular, liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for multiplexed measurements of protein biomarkers has emerged as a versatile tool for systems biology. Assays can be developed for specific peptides that report on protein expression, mutation, or post-translational modification; discovery proteomics data rapidly translated into multiplexed quantitative approaches. Complementary advances in affinity purification enrich classes of enzymes or peptides representing post-translationally modified or chemically labeled substrates. Here, we illustrate the process for the relative quantification of hundreds of peptides in a single LC-MRM experiment. Desthiobiotinylated peptides produced by activity-based protein profiling (ABPP) using ATP probes and tyrosine-phosphorylated peptides are used as examples. These targeted quantification panels can be applied to further understand the biology of human disease. PMID:25782629
Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.
2014-01-01
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597
Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M
2011-09-22
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong
2014-07-01
Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations
Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.
2013-01-01
Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359
Yin, Hong-Rui; Zhang, Lei; Xie, Li-Qi; Huang, Li-Yong; Xu, Ye; Cai, San-Jun; Yang, Peng-Yuan; Lu, Hao-Jie
2013-09-06
Novel biomarker verification assays are urgently required to improve the efficiency of biomarker development. Benefitting from lower development costs, multiple reaction monitoring (MRM) has been used for biomarker verification as an alternative to immunoassay. However, in general MRM analysis, only one sample can be quantified in a single experiment, which restricts its application. Here, a Hyperplex-MRM quantification approach, which combined mTRAQ for absolute quantification and iTRAQ for relative quantification, was developed to increase the throughput of biomarker verification. In this strategy, equal amounts of internal standard peptides were labeled with mTRAQ reagents Δ0 and Δ8, respectively, as double references, while 4-plex iTRAQ reagents were used to label four different samples as an alternative to mTRAQ Δ4. From the MRM trace and MS/MS spectrum, total amounts and relative ratios of target proteins/peptides of four samples could be acquired simultaneously. Accordingly, absolute amounts of target proteins/peptides in four different samples could be achieved in a single run. In addition, double references were used to increase the reliability of the quantification results. Using this approach, three biomarker candidates, ademosylhomocysteinase (AHCY), cathepsin D (CTSD), and lysozyme C (LYZ), were successfully quantified in colorectal cancer (CRC) tissue specimens of different stages with high accuracy, sensitivity, and reproducibility. To summarize, we demonstrated a promising quantification method for high-throughput verification of biomarker candidates.
Cheng, Dongwan; Zheng, Li; Hou, Junjie; Wang, Jifeng; Xue, Peng; Yang, Fuquan; Xu, Tao
2015-01-01
The absolute quantification of target proteins in proteomics involves stable isotope dilution coupled with multiple reactions monitoring mass spectrometry (SID-MRM-MS). The successful preparation of stable isotope-labeled internal standard peptides is an important prerequisite for the SID-MRM absolute quantification methods. Dimethyl labeling has been widely used in relative quantitative proteomics and it is fast, simple, reliable, cost-effective, and applicable to any protein sample, making it an ideal candidate method for the preparation of stable isotope-labeled internal standards. MRM mass spectrometry is of high sensitivity, specificity, and throughput characteristics and can quantify multiple proteins simultaneously, including low-abundance proteins in precious samples such as pancreatic islets. In this study, a new method for the absolute quantification of three proteases involved in insulin maturation, namely PC1/3, PC2 and CPE, was developed by coupling a stable isotope dimethyl labeling strategy for internal standard peptide preparation with SID-MRM-MS quantitative technology. This method offers a new and effective approach for deep understanding of the functional status of pancreatic β cells and pathogenesis in diabetes.
Automated selected reaction monitoring software for accurate label-free protein quantification.
Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik
2012-07-06
Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.
Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M
2010-01-01
Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.
auf dem Keller, Ulrich; Prudova, Anna; Gioia, Magda; Butler, Georgina S.; Overall, Christopher M.
2010-01-01
Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed. PMID:20305283
Quaternary ammonium isobaric tag for a relative and absolute quantification of peptides.
Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew
2018-02-01
Isobaric labeling quantification of peptides has become a method of choice for mass spectrometry-based proteomics studies. However, despite of wide variety of commercially available isobaric tags, none of the currently available methods offers significant improvement of sensitivity of detection during MS experiment. Recently, many strategies were applied to increase the ionization efficiency of peptides involving chemical modifications introducing quaternary ammonium fixed charge. Here, we present a novel quaternary ammonium-based isobaric tag for relative and absolute quantification of peptides (QAS-iTRAQ 2-plex). Upon collisional activation, the new stable benzylic-type cationic reporter ion is liberated from the tag. Deuterium atoms were used to offset the differential masses of a reporter group. We tested the applicability of QAS-iTRAQ 2-plex reagent on a series of model peptides as well as bovine serum albumin tryptic digest. Obtained results suggest usefulness of this isobaric ionization tag for relative and absolute quantification of peptides. Copyright © 2017 John Wiley & Sons, Ltd.
Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver
2016-09-02
Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.
Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin
2012-08-01
A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.
Chahrour, Osama; Malone, John
2017-01-01
Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Boersema, Paul J.; Foong, Leong Yan; Ding, Vanessa M. Y.; Lemeer, Simone; van Breukelen, Bas; Philp, Robin; Boekhorst, Jos; Snel, Berend; den Hertog, Jeroen; Choo, Andre B. H.; Heck, Albert J. R.
2010-01-01
Several mass spectrometry-based assays have emerged for the quantitative profiling of cellular tyrosine phosphorylation. Ideally, these methods should reveal the exact sites of tyrosine phosphorylation, be quantitative, and not be cost-prohibitive. The latter is often an issue as typically several milligrams of (stable isotope-labeled) starting protein material are required to enable the detection of low abundance phosphotyrosine peptides. Here, we adopted and refined a peptidecentric immunoaffinity purification approach for the quantitative analysis of tyrosine phosphorylation by combining it with a cost-effective stable isotope dimethyl labeling method. We were able to identify by mass spectrometry, using just two LC-MS/MS runs, more than 1100 unique non-redundant phosphopeptides in HeLa cells from about 4 mg of starting material without requiring any further affinity enrichment as close to 80% of the identified peptides were tyrosine phosphorylated peptides. Stable isotope dimethyl labeling could be incorporated prior to the immunoaffinity purification, even for the large quantities (mg) of peptide material used, enabling the quantification of differences in tyrosine phosphorylation upon pervanadate treatment or epidermal growth factor stimulation. Analysis of the epidermal growth factor-stimulated HeLa cells, a frequently used model system for tyrosine phosphorylation, resulted in the quantification of 73 regulated unique phosphotyrosine peptides. The quantitative data were found to be exceptionally consistent with the literature, evidencing that such a targeted quantitative phosphoproteomics approach can provide reproducible results. In general, the combination of immunoaffinity purification of tyrosine phosphorylated peptides with large scale stable isotope dimethyl labeling provides a cost-effective approach that can alleviate variation in sample preparation and analysis as samples can be combined early on. Using this approach, a rather complete qualitative and quantitative picture of tyrosine phosphorylation signaling events can be generated. PMID:19770167
Seibert, Cathrin; Davidson, Brian R; Fuller, Barry J; Patterson, Laurence H; Griffiths, William J; Wang, Yuqin
2009-04-01
Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total, 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labeled tryptic peptide and analyzed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labeled tryptic peptides and their natural unlabeled analogues quantification could be performed over the range of 0.1-1.5 pmol on column. Liver microsomes from four individuals were analyzed for CYP2E1 giving values of 88-200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 to 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP isoforms in a single sample.
Seibert, Cathrin; Davidson, Brian R.; Fuller, Barry J.; Patterson, Laurence H.; Griffiths, William J.; Wang, Yuqin
2009-01-01
Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labelled tryptic peptide and analysed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labelled tryptic peptides and their natural unlabelled analogues quantification could be performed over the range of 0.1 – 1.5 pmol on column. Liver microsomes from four individuals were analysed for CYP2E1 giving values of 88 - 200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 – 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP-isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP-isoforms in a single sample. PMID:19714871
Thomas, Martin; Huck, Nicola; Hoehenwarter, Wolfgang; Conrath, Uwe; Beckers, Gerold J M
2015-01-01
In eukaryotic cells many diverse cellular functions are regulated by reversible protein phosphorylation. In recent years, phosphoproteomics has become a powerful tool for studying protein phosphorylation because it enables unbiased localization, and site-specific quantification of in vivo phosphorylation of hundreds of proteins in a single experiment. A common strategy for identifying phosphoproteins and their phosphorylation sites from complex biological samples is the enrichment of phosphopeptides from digested cellular lysates followed by mass spectrometry. However, despite high sensitivity of modern mass spectrometers the large dynamic range of protein abundance and the transient nature of protein phosphorylation remained major pitfalls in MS-based phosphoproteomics. This is particularly true for plants in which the presence of secondary metabolites and endogenous compounds, the overabundance of ribulose-1,5-bisphosphate carboxylase and other components of the photosynthetic apparatus, and the concurrent difficulties in protein extraction necessitate two-step phosphoprotein/phosphopeptide enrichment strategies (Nakagami et al., Plant Cell Physiol 53:118-124, 2012).Approaches for label-free peptide quantification are advantageous due to their low cost and experimental simplicity, but they lack precision. These drawbacks can be overcome by metabolic labeling of whole plants with heavy nitrogen ((15)N) which allows combining two samples very early in the phosphoprotein enrichment workflow. This avoids sample-to-sample variation introduced by the analytical procedures and it results in robust relative quantification values that need no further standardization. The integration of (15)N metabolic labeling into tandem metal-oxide affinity chromatography (MOAC) (Hoehenwarter et al., Mol Cell Proteomics 12:369-380, 2013) presents an improved and highly selective approach for the identification and accurate site-specific quantification of low-abundance phosphoproteins that is based on the successive enrichment of light and heavy nitrogen-labeled phosphoproteins and peptides. This improved strategy combines metabolic labeling of whole plants with the stable heavy nitrogen isotope ((15)N), protein extraction under denaturing conditions, phosphoprotein enrichment using Al(OH)3-based MOAC, and tryptic digest of enriched phosphoproteins followed by TiO2-based MOAC of phosphopeptides and quantitative phosphopeptide measurement by liquid chromatography (LC) and high-resolution accurate mass (HR/AM) mass spectrometry (MS). Thus, tandem MOAC effectively targets the phosphate moiety of phosphoproteins and phosphopeptides and allows probing of the phosphoproteome to unprecedented depth, while (15)N metabolic labeling enables accurate relative quantification of measured peptides and direct comparison between samples.
Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd
2015-05-15
Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.
Hoofnagle, Andrew N; Whiteaker, Jeffrey R; Carr, Steven A; Kuhn, Eric; Liu, Tao; Massoni, Sam A; Thomas, Stefani N; Townsend, R Reid; Zimmerman, Lisa J; Boja, Emily; Chen, Jing; Crimmins, Daniel L; Davies, Sherri R; Gao, Yuqian; Hiltke, Tara R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Meyer, Matthew R; Qian, Wei-Jun; Schoenherr, Regine M; Scott, Mitchell G; Shi, Tujin; Whiteley, Gordon R; Wrobel, John A; Wu, Chaochao; Ackermann, Brad L; Aebersold, Ruedi; Barnidge, David R; Bunk, David M; Clarke, Nigel; Fishman, Jordan B; Grant, Russ P; Kusebauch, Ulrike; Kushnir, Mark M; Lowenthal, Mark S; Moritz, Robert L; Neubert, Hendrik; Patterson, Scott D; Rockwood, Alan L; Rogers, John; Singh, Ravinder J; Van Eyk, Jennifer E; Wong, Steven H; Zhang, Shucha; Chan, Daniel W; Chen, Xian; Ellis, Matthew J; Liebler, Daniel C; Rodland, Karin D; Rodriguez, Henry; Smith, Richard D; Zhang, Zhen; Zhang, Hui; Paulovich, Amanda G
2016-01-01
For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care. © 2015 American Association for Clinical Chemistry.
Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C
2006-01-01
Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.
Targeted Feature Detection for Data-Dependent Shotgun Proteomics
2017-01-01
Label-free quantification of shotgun LC–MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification (“FFId”), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between “internal” and “external” (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the “uncertain” feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS (www.openms.org). PMID:28673088
Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
Weisser, Hendrik; Choudhary, Jyoti S
2017-08-04
Label-free quantification of shotgun LC-MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification ("FFId"), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between "internal" and "external" (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the "uncertain" feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS ( www.openms.org ).
An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe
2015-12-26
Comprehensive MS analysis of peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we set off by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed bymore » identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our result demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from the MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing value for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage than AMT. Taken together, we propose an optimal informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT) for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.« less
Chang, Ying-Che; Tang, Hong-Wen; Liang, Suh-Yuen; Pu, Tsung-Hsien; Meng, Tzu-Ching; Khoo, Kay-Hooi; Chen, Guang-Chao
2013-05-03
Although stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was first developed as a cell culture-based technique, stable isotope-labeled amino acids have since been successfully introduced in vivo into select multicellular model organisms by manipulating the feeding diets. An earlier study by others has demonstrated that heavy lysine labeled Drosophila melanogaster can be derived by feeding with an exclusive heavy lysine labeled yeast diet. In this work, we have further evaluated the use of heavy lysine and/or arginine for metabolic labeling of fruit flies, with an aim to determine its respective quantification accuracy and versatility. In vivo conversion of heavy lysine and/or heavy arginine to several nonessential amino acids was observed in labeled flies, leading to distorted isotope pattern and underestimated heavy to light ratio. These quantification defects can nonetheless be rectified at protein level using the normalization function. The only caveat is that such a normalization strategy may not be suitable for every biological application, particularly when modified peptides need to be individually quantified at peptide level. In such cases, we showed that peptide ratios calculated from the summed intensities of all isotope peaks are less affected by the heavy amino acid conversion and therefore less sequence-dependent and more reliable. Applying either the single Lys8 or double Lys6/Arg10 metabolic labeling strategy to flies, we quantitatively mapped the proteomic changes during the onset of metamorphosis and upon amino acid deprivation. The expression of a number of steroid hormone 20-hydroxyecdysone regulated proteins was found to be changed significantly during larval-pupa transition, while several subunits of the V-ATPase complex and components regulating actomyosin were up-regulated under starvation-induced autophagy conditions.
Zhu, Qi; Burzykowski, Tomasz
2011-03-01
To reduce the influence of the between-spectra variability on the results of peptide quantification, one can consider the (18)O-labeling approach. Ideally, with such labeling technique, a mass shift of 4 Da of the isotopic distributions of peptides from the labeled sample is induced, which allows one to distinguish the two samples and to quantify the relative abundance of the peptides. It is worth noting, however, that the presence of small quantities of (16)O and (17)O atoms during the labeling step can cause incomplete labeling. In practice, ignoring incomplete labeling may result in the biased estimation of the relative abundance of the peptide in the compared samples. A Markov model was developed to address this issue (Zhu, Valkenborg, Burzykowski. J. Proteome Res. 9, 2669-2677, 2010). The model assumed that the peak intensities were normally distributed with heteroscedasticity using a power-of-the-mean variance funtion. Such a dependence has been observed in practice. Alternatively, we formulate the model within the Bayesian framework. This opens the possibility to further extend the model by the inclusion of random effects that can be used to capture the biological/technical variability of the peptide abundance. The operational characteristics of the model were investigated by applications to real-life mass-spectrometry data sets and a simulation study. © American Society for Mass Spectrometry, 2011
Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan
2012-01-01
This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoofnagle, Andrew N.; Whiteaker, Jeffrey R.; Carr, Steven A.
2015-12-30
The Clinical Proteomic Tumor Analysis Consortium (1) (CPTAC) of the National Cancer Institute (NCI) is a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of robust technologies and workflows for the quantitative measurements of proteins. The Assay Development Working Group of the CPTAC Program aims to foster broad uptake of targeted mass spectrometry-based assays employing isotopically labeled peptides for confident assignment and quantification, including multiple reaction monitoring (MRM; also referred to as Selected Reaction Monitoring), parallel reaction monitoring (PRM), and other targeted methods.
Leung, Kit-Yi; Lescuyer, Pierre; Campbell, James; Byers, Helen L; Allard, Laure; Sanchez, Jean-Charles; Ward, Malcolm A
2005-08-01
A novel strategy consisting of cleavable Isotope-Coded Affinity Tag (cICAT) combined with MASCOT Distiller was evaluated as a tool for the quantification of proteins in "abnormal" patient plasma, prepared by pooling samples from patients with acute stroke. Quantification of all light and heavy cICAT-labelled peptide ion pairs was obtained using MASCOT Distiller combined with a proprietary software. Peptides displaying differences were selected for identification by MS. These preliminary results show the promise of our approach to identify potential biomarkers.
NASA Astrophysics Data System (ADS)
Jayasena, T.; Poljak, A.; Braidy, N.; Zhong, L.; Rowlands, B.; Muenchhoff, J.; Grant, R.; Smythe, G.; Teo, C.; Raftery, M.; Sachdev, P.
2016-10-01
Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies.
Sheng, Quanhu; Li, Rongxia; Dai, Jie; Li, Qingrun; Su, Zhiduan; Guo, Yan; Li, Chen; Shyr, Yu; Zeng, Rong
2015-01-01
Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994. PMID:25435543
NASA Astrophysics Data System (ADS)
Griffiths, John R.; Chicooree, Navin; Connolly, Yvonne; Neffling, Milla; Lane, Catherine S.; Knapman, Thomas; Smith, Duncan L.
2014-05-01
Protein modification by ubiquitination and SUMOylation occur throughout the cell and are responsible for numerous cellular functions such as apoptosis, DNA replication and repair, and gene transcription. Current methods for the identification of such modifications using mass spectrometry predominantly rely upon tryptic isopeptide tag generation followed by database searching with in vitro genetic mutation of SUMO routinely required. We have recently described a novel approach to ubiquitin and SUMO modification detection based upon the diagnostic a' and b' ions released from the isopeptide tags upon collision-induced dissociation of reductively methylated Ubl isopeptides (RUbI) using formaldehyde. Here, we significantly extend those studies by combining data-independent acquisition (DIA) with alternative labeling reagents to improve diagnostic ion coverage and enable relative quantification of modified peptides from both MS and MS/MS signals. Model synthetic ubiquitin and SUMO-derived isopeptides were labeled with mTRAQ reagents (Δ0, Δ4, and Δ8) and subjected to LC-MS/MS with SWATH acquisition. Novel diagnostic ions were generated upon CID, which facilitated the selective detection of these modified peptides. Simultaneous MS-based and MS/MS-based relative quantification was demonstrated for both Ub and SUMO-derived isopeptides across three channels in a background of mTRAQ-labeled Escherichia coli digest.
IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT.
Arntzen, Magnus Ø; Koehler, Christian J; Barsnes, Harald; Berven, Frode S; Treumann, Achim; Thiede, Bernd
2011-02-04
Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.
Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.
Chahrour, Osama; Cobice, Diego; Malone, John
2015-09-10
Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.
Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi
2016-05-01
The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.
2014-01-01
To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields. PMID:25000943
Xenopoulos, Alex; Fadgen, Keith; Murphy, Jim; Skilton, St. John; Prentice, Holly; Stapels, Martha
2012-01-01
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry. PMID:22327428
Alghanem, Bandar; Nikitin, Frédéric; Stricker, Thomas; Duchoslav, Eva; Luban, Jeremy; Strambio-De-Castillia, Caterina; Muller, Markus; Lisacek, Frédérique; Varesio, Emmanuel; Hopfgartner, Gérard
2017-05-15
In peptide quantification by liquid chromatography/mass spectrometry (LC/MS), the optimization of multiple reaction monitoring (MRM) parameters is essential for sensitive detection. We have compared different approaches to build MRM assays, based either on flow injection analysis (FIA) of isotopically labelled peptides, or on the knowledge and the prediction of the best settings for MRM transitions and collision energies (CE). In this context, we introduce MRMOptimizer, an open-source software tool that processes spectra and assists the user in selecting transitions in the FIA workflow. MS/MS spectral libraries with CE voltages from 10 to 70 V are automatically acquired in FIA mode for isotopically labelled peptides. Then MRMOptimizer determines the optimal MRM settings for each peptide. To assess the quantitative performance of our approach, 155 peptides, representing 84 proteins, were analysed by LC/MRM-MS and the peak areas were compared between: (A) the MRMOptimizer-based workflow, (B1) the SRMAtlas transitions set used 'as-is'; (B2) the same SRMAtlas set with CE parameters optimized by Skyline. 51% of the three most intense transitions per peptide were shown to be common to both A and B1/B2 methods, and displayed similar sensitivity and peak area distributions. The peak areas obtained with MRMOptimizer for transitions sharing either the precursor ion charge state or the fragment ions with the SRMAtlas set at unique transitions were increased 1.8- to 2.3-fold. The gain in sensitivity using MRMOptimizer for transitions with different precursor ion charge state and fragment ions (8% of the total), reaches a ~ 11-fold increase. Isotopically labelled peptides can be used to optimize MRM transitions more efficiently in FIA than by searching databases. The MRMOptimizer software is MS independent and enables the post-acquisition selection of MRM parameters. Coefficients of variation for optimal CE values are lower than those obtained with the SRMAtlas approach (B2) and one additional peptide was detected. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari
2015-04-15
Protein NP24 is a thaumatin-like protein contained in tomato (Lycopersicon esculentum Mill.). This protein is reported to be a putative tomato allergen and is listed as a food allergen in Structural Database of Allergenic Proteins (SDAP). In this research, we developed the quantitative analysis of NP24 by employing the protein absolute quantification (AQUA) technology composed of stable isotope-labelled internal standard (SIIS) peptide (GQTWVINAPR[(13)C6,(15)N4]) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). A linear relationship (r(2)>0.99) was found throughout the concentration range (2.0-500 fmol/μL). The coefficients of variation (CVs) measured on each of the five days when NP24 contained in the tomato skin was analysed did not exceed 13%. Our developed assay of NP24 will contribute to the allergological examination of tomato and its derived products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Guanghui; Wu, Wells W; Zeng, Weihua; Chou, Chung-Lin; Shen, Rong-Fong
2006-05-01
A critical step in protein biomarker discovery is the ability to contrast proteomes, a process referred generally as quantitative proteomics. While stable-isotope labeling (e.g., ICAT, 18O- or 15N-labeling, or AQUA) remains the core technology used in mass spectrometry-based proteomic quantification, increasing efforts have been directed to the label-free approach that relies on direct comparison of peptide peak areas between LC-MS runs. This latter approach is attractive to investigators for its simplicity as well as cost effectiveness. In the present study, the reproducibility and linearity of using a label-free approach to highly complex proteomes were evaluated. Various amounts of proteins from different proteomes were subjected to repeated LC-MS analyses using an ion trap or Fourier transform mass spectrometer. Highly reproducible data were obtained between replicated runs, as evidenced by nearly ideal Pearson's correlation coefficients (for ion's peak areas or retention time) and average peak area ratios. In general, more than 50% and nearly 90% of the peptide ion ratios deviated less than 10% and 20%, respectively, from the average in duplicate runs. In addition, the multiplicity ratios of the amounts of proteins used correlated nicely with the observed averaged ratios of peak areas calculated from detected peptides. Furthermore, the removal of abundant proteins from the samples led to an improvement in reproducibility and linearity. A computer program has been written to automate the processing of data sets from experiments with groups of multiple samples for statistical analysis. Algorithms for outlier-resistant mean estimation and for adjusting statistical significance threshold in multiplicity of testing were incorporated to minimize the rate of false positives. The program was applied to quantify changes in proteomes of parental and p53-deficient HCT-116 human cells and found to yield reproducible results. Overall, this study demonstrates an alternative approach that allows global quantification of differentially expressed proteins in complex proteomes. The utility of this method to biomarker discovery is likely to synergize with future improvements in the detecting sensitivity of mass spectrometers.
Spainhour, John Christian G; Janech, Michael G; Schwacke, John H; Velez, Juan Carlos Q; Ramakrishnan, Viswanathan
2014-01-01
Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of error.
Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.
Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang S J; Zhang, Jianqiu Michelle
2013-01-01
In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.
Accurate LC Peak Boundary Detection for 16 O/ 18 O Labeled LC-MS Data
Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang (SJ); Zhang, Jianqiu (Michelle)
2013-01-01
In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements. PMID:24115998
Rogeberg, Magnus; Almdahl, Ina Selseth; Wettergreen, Marianne; Nilsson, Lars N G; Fladby, Tormod
2015-11-06
The amyloid beta (Aβ) peptide is the main constituent of the plaques characteristic of Alzheimer's disease (AD). Measurement of Aβ1-42 in cerebrospinal fluid (CSF) is a valuable marker in AD research, where low levels indicate AD. Although the use of immunoassays measuring Aβ1-38 and Aβ1-40 in addition to Aβ1-42 has increased, quantitative assays of other Aβ peptides remain rarely explored. We recently discovered novel Aβ peptides in CSF using antibodies recognizing the Aβ mid-domain region. Here we have developed a method using both Aβ N-terminal and mid-domain antibodies for immunoprecipitation in combination with isobaric labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for relative quantification of endogenous Aβ peptides in CSF. The developed method was used in a pilot study to produce Aβ peptide profiles from 38 CSF samples. Statistical comparison between CSF samples from 19 AD patients and 19 cognitively healthy controls revealed no significant differences at group level. A significant correlation was found between several larger C-terminally truncated Aβ peptides and protein biomarkers for neuronal damage, particularly prominent in the control group. Comparison of the isobaric quantification with immunoassays measuring Aβ1-38 or Aβ1-40 showed good correlation (r(2) = 0.84 and 0.85, respectively) between the two analysis methods. The developed method could be used to assess disease-modifying therapies directed at Aβ production or degradation.
TAPAS: tools to assist the targeted protein quantification of human alternative splice variants.
Yang, Jae-Seong; Sabidó, Eduard; Serrano, Luis; Kiel, Christina
2014-10-15
In proteomes of higher eukaryotes, many alternative splice variants can only be detected by their shared peptides. This makes it highly challenging to use peptide-centric mass spectrometry to distinguish and to quantify protein isoforms resulting from alternative splicing events. We have developed two complementary algorithms based on linear mathematical models to efficiently compute a minimal set of shared and unique peptides needed to quantify a set of isoforms and splice variants. Further, we developed a statistical method to estimate the splice variant abundances based on stable isotope labeled peptide quantities. The algorithms and databases are integrated in a web-based tool, and we have experimentally tested the limits of our quantification method using spiked proteins and cell extracts. The TAPAS server is available at URL http://davinci.crg.es/tapas/. luis.serrano@crg.eu or christina.kiel@crg.eu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J
2016-09-02
Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.
Standardization approaches in absolute quantitative proteomics with mass spectrometry.
Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2017-07-31
Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and elemental) proteomics is provided in this review. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine
2016-11-01
The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.
Sjödin, Marcus O D; Wetterhall, Magnus; Kultima, Kim; Artemenko, Konstantin
2013-06-01
The analytical performance of three different strategies, iTRAQ (isobaric tag for relative and absolute quantification), dimethyl labeling (DML) and label free (LF) for relative protein quantification using shotgun proteomics have been evaluated. The methods have been explored using samples containing (i) Bovine proteins in known ratios and (ii) Bovine proteins in known ratios spiked into Escherichia coli. The latter case mimics the actual conditions in a typical biological sample with a few differentially expressed proteins and a bulk of proteins with unchanged ratios. Additionally, the evaluation was performed on both QStar and LTQ-FTICR mass spectrometers. LF LTQ-FTICR was found to have the highest proteome coverage while the highest accuracy based on the artificially regulated proteins was found for DML LTQ-FTICR (54%). A varying linearity (k: 0.55-1.16, r(2): 0.61-0.96) was shown for all methods within selected dynamic ranges. All methods were found to consistently underestimate Bovine protein ratios when matrix proteins were added. However, LF LTQ-FTICR was more tolerant toward a compression effect. A single peptide was demonstrated to be sufficient for a reliable quantification using iTRAQ. A ranking system utilizing several parameters important for quantitative proteomics demonstrated that the overall performance of the five different methods was; DML LTQ-FTICR>iTRAQ QStar>LF LTQ-FTICR>DML QStar>LF QStar. Copyright © 2013 Elsevier B.V. All rights reserved.
Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari
2016-08-01
Pru av 2, a pathogenesis-related (PR) protein present in the sweet cherry (Prunus avium L.) fruit, is the principal allergen of cherry and one of the chief causes of pollen food syndrome (oral allergy syndrome). In this study, a quantitative assay for this protein was developed with the use of the protein absolute quantification (AQUA) method, which consists of liquid chromatography/tandem mass spectrometry (LC/MS/MS) employing TGC[CAM]STDASGK[(13)C6,(15)N2], a stable isotope-labelled internal standard (SIIS) peptide. This assay gave a linear relationship (r(2)>0.99) in a concentration range (2.3-600fmol/μL), and the overall coefficient of variation (CV) for multiple tests was 14.6%. Thus, the contents of this allergenic protein in sweet cherry products could be determined using this assay. This assay should be valuable for allergological investigations of Pru av 2 in sweet cherry and detection of protein contamination in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kopylov, Arthur T; Myasoedov, Nikolay F; Dadayan, Alexander K; Zgoda, Victor G; Medvedev, Alexei E; Zolotarev, Yurii A
2016-06-15
Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sano, Shozo; Tagami, Shinji; Hashimoto, Yuuki; Yoshizawa-Kumagaye, Kumiko; Tsunemi, Masahiko; Okochi, Masayasu; Tomonaga, Takeshi
2014-02-07
Selected/multiple reaction monitoring (SRM/MRM) has been widely used for the quantification of specific proteins/peptides, although it is still challenging to quantitate low abundant proteins/peptides in complex samples such as plasma/serum. To overcome this problem, enrichment of target proteins/peptides is needed, such as immunoprecipitation; however, this is labor-intense and generation of antibodies is highly expensive. In this study, we attempted to quantify plasma low abundant APLP1-derived Aβ-like peptides (APL1β), a surrogate marker for Alzheimer's disease, by SRM/MRM using stable isotope-labeled reference peptides without immunoaffinity enrichment. A combination of Cibacron Blue dye mediated albumin removal and acetonitrile extraction followed by C18-strong cation exchange multi-StageTip purification was used to deplete plasma proteins and unnecessary peptides. Optimal and validated precursor ions to fragment ion transitions of APL1β were developed on a triple quadruple mass spectrometer, and the nanoliquid chromatography gradient for peptide separation was optimized to minimize the biological interference of plasma. Using the stable isotope-labeled (SI) peptide as an internal control, absolute concentrations of plasma APL1β peptide could be quantified as several hundred amol/mL. To our knowledge, this is the lowest detection level of endogenous plasma peptide quantified by SRM/MRM.
Dupré, Mathieu; Gilquin, Benoit; Fenaille, François; Feraudet-Tarisse, Cécile; Dano, Julie; Ferro, Myriam; Simon, Stéphanie; Junot, Christophe; Brun, Virginie; Becher, François
2015-08-18
The development of rapid methods for unambiguous identification and precise quantification of protein toxins in various matrices is essential for public health surveillance. Nowadays, analytical strategies classically rely on sensitive immunological assays, but mass spectrometry constitutes an attractive complementary approach thanks to direct measurement and protein characterization ability. We developed here an innovative multiplex immuno-LC-MS/MS method for the simultaneous and specific quantification of the three potential biological warfare agents, ricin, staphylococcal enterotoxin B, and epsilon toxin, in complex human biofluids and food matrices. At least 7 peptides were targeted for each toxin (43 peptides in total) with a quadrupole-Orbitrap high-resolution instrument for exquisite detection specificity. Quantification was performed using stable isotope-labeled toxin standards spiked early in the sample. Lower limits of quantification were determined at or close to 1 ng·mL(-1). The whole process was successfully applied to the quantitative analysis of toxins in complex samples such as milk, human urine, and plasma. Finally, we report new data on toxin stability with no evidence of toxin degradation in milk in a 48 h time frame, allowing relevant quantitative toxin analysis for samples collected in this time range.
Lo, Andy; Weiner, Joel H; Li, Liang
2013-09-17
Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Wijeratne, Aruna B.; Manning, Janet R.; Schultz, Jo El J.; Greis, Kenneth D.
2013-01-01
Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. In this report, an MS-based strategy utilizing an inexpensive acetone-based peptide labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Since the chemistry for RABA-labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 vs. hearts expressing low molecular weight fibroblast growth factor-2 (LMW FGF2) to relate low molecular weight fibroblast growth factor-2 (LMW FGF2) mediated cardioprotective phenomena induced by ischemia/reperfusion (I/R) injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g. connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g. cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification phosphoproteomic studies to identify and verify biologically-relevant phosphorylation changes in whole tissues. PMID:24016359
Hölttä, Mikko; Minthon, Lennart; Hansson, Oskar; Holmén-Larsson, Jessica; Pike, Ian; Ward, Malcolm; Kuhn, Karsten; Rüetschi, Ulla; Zetterberg, Henrik; Blennow, Kaj; Gobom, Johan
2015-02-06
Many disease processes in the brain are reflected in the protein composition of the cerebrospinal fluid (CSF). In addition to proteins, CSF also contains a large number of endogenous peptides whose potential as disease biomarkers largely remains to be explored. We have developed a novel workflow in which multiplex isobaric labeling is used for simultaneous quantification of endogenous CSF peptides and proteins by liquid chromatography coupled with mass spectrometry. After the labeling of CSF samples, endogenous peptides are separated from proteins by ultrafiltration. The proteins retained on the filters are trypsinized, and the tryptic peptides are collected separately. We evaluated this technique in a comparative pilot study of CSF peptide and protein profiles in eight patients with Alzheimer's disease (AD) and eight nondemented controls. We identified several differences between the AD and control group among endogenous peptides derived from proteins known to be associated with AD, including neurosecretory protein VGF (ratios AD/controls 0.45-0.81), integral membrane protein 2B (ratios AD/controls 0.72-0.84), and metallothionein-3 (ratios AD/controls 0.51-0.61). Analysis of tryptic peptides identified several proteins that were altered in the AD group, some of which have previously been reported as changed in AD, for example, VGF (ratio AD/controls 0.70).
Visualization of LC-MS/MS proteomics data in MaxQuant.
Tyanova, Stefka; Temu, Tikira; Carlson, Arthur; Sinitcyn, Pavel; Mann, Matthias; Cox, Juergen
2015-04-01
Modern software platforms enable the analysis of shotgun proteomics data in an automated fashion resulting in high quality identification and quantification results. Additional understanding of the underlying data can be gained with the help of advanced visualization tools that allow for easy navigation through large LC-MS/MS datasets potentially consisting of terabytes of raw data. The updated MaxQuant version has a map navigation component that steers the users through mass and retention time-dependent mass spectrometric signals. It can be used to monitor a peptide feature used in label-free quantification over many LC-MS runs and visualize it with advanced 3D graphic models. An expert annotation system aids the interpretation of the MS/MS spectra used for the identification of these peptide features. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muratovic, Aida Zuberovic; Hagström, Thomas; Rosén, Johan; Granelli, Kristina; Hellenäs, Karl-Erik
2015-09-11
A method that uses mass spectrometry (MS) for identification and quantification of protein toxins, staphylococcal enterotoxins A and B (SEA and SEB), in milk and shrimp is described. The analysis was performed using a tryptic peptide, from each of the toxins, as the target analyte together with the corresponding (13)C-labeled synthetic internal standard peptide. The performance of the method was evaluated by analyzing spiked samples in the quantification range 2.5-30 ng/g (R² = 0.92-0.99). The limit of quantification (LOQ) in milk and the limit of detection (LOD) in shrimp was 2.5 ng/g, for both SEA and SEB toxins. The in-house reproducibility (RSD) was 8%-30% and 5%-41% at different concentrations for milk and shrimp, respectively. The method was compared to the ELISA method, used at the EU-RL (France), for milk samples spiked with SEA at low levels, in the quantification range of 2.5 to 5 ng/g. The comparison showed good coherence for the two methods: 2.9 (MS)/1.8 (ELISA) and 3.6 (MS)/3.8 (ELISA) ng/g. The major advantage of the developed method is that it allows direct confirmation of the molecular identity and quantitative analysis of SEA and SEB at low nanogram levels using a label and antibody free approach. Therefore, this method is an important step in the development of alternatives to the immune-assay tests currently used for staphylococcal enterotoxin analysis.
Tu, Chengjian; Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun
2017-01-30
Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches. We hypothesize that more quantifiable spectra and peptides in a protein, even including less confident peptides, could help reduce variations and improve protein quantification. Hence the peptide retrieval strategy was developed and evaluated in two spike-in sample sets with different LC-MS/MS variations using both MS1- and MS2-based quantitative approach. The list of confidently identified proteins using the standard target-decoy search strategy was fixed and more spectra/peptides with less confidence matched to confident proteins were retrieved. However, the total peptide-spectrum-match false discovery rate (PSM FDR) after retrieval analysis was still controlled at a confident level of FDR≤1%. As expected, the penalty for occasionally incorporating incorrect peptide identifications is negligible by comparison with the improvements in quantitative performance. More quantifiable peptides, lower missing value rate, better quantitative accuracy and precision were significantly achieved for the same protein identifications by this simple strategy. This strategy is theoretically applicable for any quantitative approaches in proteomics and thereby provides more quantitative information, especially on low-abundance proteins. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Attard, Troy J.; Carter, Melissa D.; Fang, Mengxuan; Johnson, Rudolph C.; Reid, Gavin E.
2018-05-01
Microcystin (MC) peptides produced by cyanobacteria pose a hepatotoxic threat to human health upon ingestion from contaminated drinking water. While rapid MC identification and quantification in contaminated body fluids or tissue samples is important for patient treatment and outcomes, conventional immunoassay-based measurement strategies typically lack the specificity required for unambiguous determination of specific MC variants, whose toxicity can significantly vary depending on their structures. Furthermore, the unambiguous identification and accurate quantitation of MC variants using tandem mass spectrometry (MS/MS)-based methods can be limited due to a current lack of appropriate stable isotope-labeled internal standards. To address these limitations, we have systematically examined here the sequence and charge state dependence to the formation and absolute abundance of both "global" and "variant-specific" product ions from representative MC-LR, MC-YR, MC-RR, and MC-LA peptides, using higher-energy collisional dissociation (HCD)-MS/MS, ion-trap collision-induced dissociation (CID)-MS/MS and CID-MS3, and 193 nm ultraviolet photodissociation (UPVD)-MS/MS. HCD-MS/MS was found to provide the greatest detection sensitivity for both global and variant-specific product ions in each of the MC variants, except for MC-YR where a variant-specific product uniquely formed via UPVD-MS/MS was observed with the greatest absolute abundance. A simple methodology for the preparation and characterization of 18O-stable isotope-labeled MC reference materials for use as internal standards was also developed. Finally, we have demonstrated the applicability of the methods developed herein for absolute quantification of MC-LR present in human urine samples, using capillary scale liquid chromatography coupled with ultra-high resolution / accurate mass spectrometry and HCD-MS/MS.
Strzemińska, I; Sainte Rose Fanchine, S; Anquetin, G; Reisberg, S; Noël, V; Pham, M C; Piro, B
2016-07-15
The main objective of this work was to validate a label-free electrochemical method of protein detection using peptides as capture probes. As a proof-of-concept, we used a 7 amino acids sequence (HSSKLQL) specific for Prostate Specific Antigen. We investigated various electrografting conditions of two anilines (2-[(4-aminophenyl)sulfanyl]-8-hydroxy-1,4-naphthoquinone and 4-azidoaniline) further converted in situ into their corresponding diazonium salts on glassy carbon electrodes. It was demonstrated that the best method to obtain a mixed layer is the simultaneous electroreduction of the two diazonium salts. 4-azidoaniline was used to covalently immobilize the ethynyl-functionalized peptide probe by click coupling, and the hydroxynaphthoquinone derivative plays the role of electrochemical transducer of the peptide-protein recognition. The proteolytic activity of PSA towards a small peptide substrate carrying streptavidin at its distal end was also investigated to design an original sensing architecture leading to a reagentless, label free, and "signal-on" PSA sensor. Without optimization, the limit of quantification can be estimated in the nM to pM range. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Qi; Zhang, Jingshun; Ke, Xing; Lai, Shiyun; Li, Duo; Yang, Jinchuan; Mo, Weimin; Ren, Yiping
2016-09-01
In recent years, there is an increasing need to measure the concentration of individual proteins in human milk, instead of total human milk proteins. Due to lack of human milk protein standards, there are only few quantification methods established. The objective of the present work was to develop a simple and rapid quantification method for simultaneous determination of α-lactalbumin and β-casein in human milk using signature peptides according to a modified quantitative proteomics strategy. The internal standards containing the signature peptide sequences were synthesized with isotope-labeled amino acids. The purity of synthesized peptides as standards was determined by amino acid analysis method and area normalization method. The contents of α-lactalbumin and β-casein in human milk were measured according to the equimolar relationship between the two proteins and their corresponding signature peptides. The method validation results showed a satisfied linearity (R(2)>0.99) and recoveries (97.2-102.5% for α-lactalbumin and 99.5-100.3% for β-casein). The limit of quantification for α-lactalbumin and β-casein was 8.0mg/100g and 1.2mg/100g, respectively. CVs for α-lactalbumin and β-casein in human milk were 5.2% and 3.0%. The contents of α-lactalbumin and β-casein in 147 human milk samples were successfully determined by the established method and their contents were 205.5-578.2mg/100g and 116.4-467.4mg/100g at different lactation stages. The developed method allows simultaneously determination of α-lactalbumin and β-casein in human milk. The quantitative strategy based on signature peptide should be applicable to other endogenous proteins in breast milk and other body fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments.
Cannataro, Mario; Cuda, Giovanni; Gaspari, Marco; Greco, Sergio; Tradigo, Giuseppe; Veltri, Pierangelo
2007-07-15
Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high. We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein identification process and, consequently, on the amount of potentially critical information in clinical studies. The EIPeptiDi tool is available at http://bioingegneria.unicz.it/~veltri/projects/eipeptidi/ with a demo data set. EIPeptiDi significantly increases the number of peptides identified and quantified in analyzed samples, thus reducing the number of unassigned H/L pairs and allowing a better comparative analysis of sample data sets.
Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Paik, Young-Ki
2017-12-01
Mass spectrometry (MS) is a widely used proteome analysis tool for biomedical science. In an MS-based bottom-up proteomic approach to protein identification, sequence database (DB) searching has been routinely used because of its simplicity and convenience. However, searching a sequence DB with multiple variable modification options can increase processing time, false-positive errors in large and complicated MS data sets. Spectral library searching is an alternative solution, avoiding the limitations of sequence DB searching and allowing the detection of more peptides with high sensitivity. Unfortunately, this technique has less proteome coverage, resulting in limitations in the detection of novel and whole peptide sequences in biological samples. To solve these problems, we previously developed the "Combo-Spec Search" method, which uses manually multiple references and simulated spectral library searching to analyze whole proteomes in a biological sample. In this study, we have developed a new analytical interface tool called "Epsilon-Q" to enhance the functions of both the Combo-Spec Search method and label-free protein quantification. Epsilon-Q performs automatically multiple spectral library searching, class-specific false-discovery rate control, and result integration. It has a user-friendly graphical interface and demonstrates good performance in identifying and quantifying proteins by supporting standard MS data formats and spectrum-to-spectrum matching powered by SpectraST. Furthermore, when the Epsilon-Q interface is combined with the Combo-Spec search method, called the Epsilon-Q system, it shows a synergistic function by outperforming other sequence DB search engines for identifying and quantifying low-abundance proteins in biological samples. The Epsilon-Q system can be a versatile tool for comparative proteome analysis based on multiple spectral libraries and label-free quantification.
Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences*
Pirmoradian, Mohammad
2017-01-01
Most implementations of mass spectrometry-based proteomics involve enzymatic digestion of proteins, expanding the analysis to multiple proteolytic peptides for each protein. Currently, there is no consensus of how to summarize peptides' abundances to protein concentrations, and such efforts are complicated by the fact that error control normally is applied to the identification process, and do not directly control errors linking peptide abundance measures to protein concentration. Peptides resulting from suboptimal digestion or being partially modified are not representative of the protein concentration. Without a mechanism to remove such unrepresentative peptides, their abundance adversely impacts the estimation of their protein's concentration. Here, we present a relative quantification approach, Diffacto, that applies factor analysis to extract the covariation of peptides' abundances. The method enables a weighted geometrical average summarization and automatic elimination of incoherent peptides. We demonstrate, based on a set of controlled label-free experiments using standard mixtures of proteins, that the covariation structure extracted by the factor analysis accurately reflects protein concentrations. In the 1% peptide-spectrum match-level FDR data set, as many as 11% of the peptides have abundance differences incoherent with the other peptides attributed to the same protein. If not controlled, such contradicting peptide abundance have a severe impact on protein quantifications. When adding the quantities of each protein's three most abundant peptides, we note as many as 14% of the proteins being estimated as having a negative correlation with their actual concentration differences between samples. Diffacto reduced the amount of such obviously incorrectly quantified proteins to 1.6%. Furthermore, by analyzing clinical data sets from two breast cancer studies, our method revealed the persistent proteomic signatures linked to three subtypes of breast cancer. We conclude that Diffacto can facilitate the interpretation and enhance the utility of most types of proteomics data. PMID:28302922
Lin, Na; Chen, Si; Zhang, Hong; Li, Junmin; Fu, Linglin
2018-02-07
Major royal jelly protein 1 (MRJP1) is the most abundant protein in royal jelly (RJ), and the level of MRJP1 has been suggested as a promising parameter for standardization and evaluation of RJ authenticity in quality. Here, a quantitative method was developed for the quantification of MRJP1 in RJ based on a signature peptide and a stable isotope-labeled internal standard peptide FFDYDFGSDER*(R*, 13 C 6 , 15 N 4 ) by ultraperformance liquid chromatography-tandem mass spectrometry. Recoveries of the established method ranged from 85.33 to 95.80%, and both the intra- and interday precision were RSD < 4.97%. Quantification results showed that content of MRJP1 in fresh RJ was 41.96-55.01 mg/g. Abnormal levels of MRJP1 were found in three commercial RJs and implied that these samples were of low quality and might be adulterated. Results of the present work suggested that the developed method could be successfully applied to quantify MRJP1 in RJ and also could evaluate the quality of RJ.
Skillbäck, Tobias; Mattsson, Niklas; Hansson, Karl; Mirgorodskaya, Ekaterina; Dahlén, Rahil; van der Flier, Wiesje; Scheltens, Philip; Duits, Floor; Hansson, Oskar; Teunissen, Charlotte; Blennow, Kaj; Zetterberg, Henrik; Gobom, Johan
2017-10-17
We present a new, quantification-driven proteomic approach to identifying biomarkers. In contrast to the identification-driven approach, limited in scope to peptides that are identified by database searching in the first step, all MS data are considered to select biomarker candidates. The endopeptidome of cerebrospinal fluid from 40 Alzheimer's disease (AD) patients, 40 subjects with mild cognitive impairment, and 40 controls with subjective cognitive decline was analyzed using multiplex isobaric labeling. Spectral clustering was used to match MS/MS spectra. The top biomarker candidate cluster (215% higher in AD compared to controls, area under ROC curve = 0.96) was identified as a fragment of pleiotrophin located near the protein's C-terminus. Analysis of another cohort (n = 60 over four clinical groups) verified that the biomarker was increased in AD patients while no change in controls, Parkinson's disease or progressive supranuclear palsy was observed. The identification of the novel biomarker pleiotrophin 151-166 demonstrates that our quantification-driven proteomic approach is a promising method for biomarker discovery, which may be universally applicable in clinical proteomics.
Zhi, Wenbo; Wang, Meiyao
2014-01-01
The validation of putative biomarker candidates has become the major bottle-neck in protein biomarker development. Conventional immunoaffinity methods are limited by the availability of antibodies and kits. Here we demonstrated the feasibility of using the selected reaction monitoring (SRM) without isotope labeling to achieve fast and reproducible quantification of serum proteins. The SRM/MRM assays for three standard serum proteins, including ceruloplasmin (CP), serum aymloid A (SAA) and sex hormone binding globulin (SHBG) have good linear ranges, generally 103 – 104. There are almost perfect correlations between SRM intensities and the loaded peptide amounts (R2 is usually ~0.99). Our data suggest that SRM/MRM is able to quantify proteins at 0.2 – 2 fmol level, which are comparable to the commercial ELISA/LUMINEX kits for these proteins. Excellent correlations between SRM/MRM and ELISA/LUMINEX assays were observed for SAA and SHBG (R2 = 0.928 and 0.851 respectively). The correlation between SRM/MRM and ELISA for CP is less desirable (R2 = 0.565). The reproducibility for SRM/MRM assays is generally very good but may depend on the proteins/peptides (R2 = 0.931 and 0.882 for SAA and SHBG, and 0.723 for CP). SRM/MRM assay without isotope labeling is a rapid and useful method for protein biomarker validation in a modest number of samples and is especially useful when other assays such as ELISA or Luminex beads are not available. PMID:21594933
Bilbao, Aivett; Zhang, Ying; Varesio, Emmanuel; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard
2016-01-01
Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which in turn is detrimental for accurate quantification. The “non-outlier fragment ion” (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high priority fragment ions these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative dataset (i.e. the SWATH Gold Standard), indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest dataset, NOFI properly assigns low priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80 against 0.76 for the Spectronaut interference detection algorithm. PMID:26412574
Al Ali, Ahmad; Touboul, David; Le Caër, Jean-Pierre; Schmitz-Afonso, Isabelle; Flinois, Jean-Pierre; Marchetti, Catherine; De Waziers, Isabelle; Brunelle, Alain; Laprévote, Olivier; Beaune, Philippe
2014-08-01
Cytochromes P450 (CYPs) play critical roles in oxidative metabolism of many endogenous and exogenous compounds. Protein expression levels of CYPs in liver provide relevant information for a better understanding of the importance of CYPs in pharmacology and toxicology. This work aimed at establishing a simple method to quantify six CYPs (CYP3A4, CYP3A5, CYP1A2, CYP2D6, CYP2C9, and CYP2J2) in various biological samples without isotopic labeling. The biological matrix was spiked with the standard peptides prior to the digestion step to realize a label-free quantification by mass spectrometry. The method was validated and applied to quantify these six isoforms in both human liver microsomes and mitochondria, but also in recombinant expression systems such as baculosomes and the HepG2 cell line. The results showed intra-assay and interassay accuracy and precision within 16 % and 5 %, respectively, at the low quality control level, and demonstrated the advantages of the method in terms of reproducibility and cost.
Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill
2015-01-01
Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.
Brambilla, Francesca; Resta, Donatella; Isak, Ilena; Zanotti, Marco; Arnoldi, Anna
2009-01-01
Quantitative proteomics based on MS is useful for pointing out the differences in some food proteomes relevant to human nutrition. Stable isotope label-free (SIF) techniques are suitable for comparing an unlimited number of samples by the use of relatively simple experimental workflows. We have developed an internal standard label-free method based on the intensities of peptide precursor ions from MS/MS spectra, collected in data dependent runs, for the simultaneous qualitative characterization and relative quantification of storage proteins of Lupinus albus seeds in protein extracts of four lupin cultivars (cv Adam, Arés, Lucky, Multitalia). The use of an innovative microfluidic system, the HPLC-Chip, coupled with a classical IT mass spectrometer, has allowed a complete qualitative characterization of all proteins. In particular, the homology search mode has permitted to identify single amino acid substitutions in the sequences of vicilins (beta-conglutin precursor and vicilin-like protein). The MS/MS sequencing of substituted peptides confirms the high heterogeneity of vicilins according to the peculiar characteristics of the vicilin-encoding gene family. Two suitable bioinformatics parameters were optimized for the differential analyses of the main bioactive proteins: the "normalized protein average of common reproducible peptides" (N-ACRP) for gamma-conglutin, which is a homogeneous protein, and the "normalized protein mean peptide spectral intensity" (N-MEAN) for the highly heterogenous class of the vicilins.
Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies.
Vanhee, Celine; Janvier, Steven; Desmedt, Bart; Moens, Goedele; Deconinck, Eric; De Beer, Jacques O; Courselle, Patricia
2015-09-01
Recent advances in genomics, recombinant expression technologies and peptide synthesis have led to an increased development of protein and peptide therapeutics. Unfortunately this goes hand in hand with a growing market of counterfeit and illegal biopharmaceuticals, including substances that are still under pre-clinical and clinical development. These counterfeit and illegal protein and peptide substances could imply severe health threats as has been demonstrated by numerous case reports. The Belgian Federal Agency for Medicines and Health Products (FAMHP) and customs are striving, together with their global counterparts, to curtail the trafficking and distributions of these substances. At their request, suspected protein and peptide preparations are analysed in our Official Medicines Control Laboratory (OMCL). It stands to reason that a general screening method would be beneficiary in the battle against counterfeit and illegal peptide drugs. In this paper we present such general screening method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the identification of counterfeit and illegal injectable peptide preparations, extended with a subsequent quantification method using ultra-high performance liquid chromatography with diode array detection (UHPLC-DAD). The screening method, taking only 30 min, is able to selectively detect 25 different peptides and incorporates the proposed minimum of five identification points (IP) as has been recommended for sports drug testing applications. The group of peptides represent substances which have already been detected in illegal and counterfeit products seized by different European countries as well as some biopharmaceutical peptides which have not been confiscated yet by the controlling agencies, but are already being used according to the many internet users forums. Additionally, we also show that when applying the same LC gradient, it is also possible to quantify these peptides without the need for derivatization or the use of expensive labelled peptides. This quantification method was successfully validated for a representative subset of 10 different peptides by using the "total error" approach in accordance with the validation requirements of ISO-17025. Copyright © 2015 Elsevier B.V. All rights reserved.
Sadygov, Rovshan G.; Zhao, Yingxin; Haidacher, Sigmund J.; Starkey, Jonathan M.; Tilton, Ronald G.; Denner, Larry
2010-01-01
We describe a method for ratio estimations in 18O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allows commonly used ion trap mass spectrometers to attain isotopic resolution, which make them amenable to use in labeling schemes such as 18O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach which may be uniquely suited to these data types. The software implementation uses power spectrum to remove high-frequency noise, and band-filter contributions from co-eluting species of differing charge states. From the elemental composition of a peptide sequence we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins, and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer. PMID:20568695
Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2013-01-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613
de Blois, Erik; Chan, Ho Sze; Konijnenberg, Mark; de Zanger, Rory; Breeman, Wouter A P
2012-01-01
An overview how to measure and to quantify radiolysis by the addition of quenchers and to maintain Radio-Chemical Purity (RCP) of vulnerable methionine-containing regulatory peptides is presented. High RCP was only achieved with a combination of quenchers. However, quantification of RCP is not standardized, and therefore comparison of radiolabelling and RCP of regulatory peptides between different HPLC-systems and between laboratories is cumbersome. Therefore we suggest a set of standardized requirements to quantify RCP by HPLC for radiolabelled DTPA- or DOTA-peptides. Moreover, a dosimetry model was developed to calculate the doses in the reaction vials during radiolabelling and storage of the radiopeptides, and to predict RCP in the presence and absence of quenchers. RCP was measured by HPLC, and a relation between radiation dose and radiolysis of RCP was established. The here described quenchers are tested individually as ƒ(concentration) to investigate efficacy to reduce radiolysis of radiolabelled methionine-containing regulatory peptides.
MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J
2015-03-01
Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of drug pharmacokinetics, pharmacodynamics, and of chemically treated and genetically modified mouse models. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Mindaye, S T; Spiric, J; David, N A; Rabin, R L; Slater, J E
2017-12-01
German cockroach (GCr) allergen extracts are complex and heterogeneous products, and methods to better assess their potency and composition are needed for adequate studies of their safety and efficacy. The objective of this study was to develop an assay based on liquid chromatography and multiple reaction monitoring mass spectrometry (LC-MRM MS) for rapid, accurate, and reproducible quantification of 5 allergens (Bla g 1, Bla g 2, Bla g 3, Bla g 4, and Bla g 5) in crude GCr allergen extracts. We first established a comprehensive peptide library of allergens from various commercial extracts as well as recombinant allergens. Peptide mapping was performed using high-resolution MS, and the peptide library was then used to identify prototypic and quantotypic peptides to proceed with MRM method development. Assay development included a systematic optimization of digestion conditions (buffer, digestion time, and trypsin concentration), chromatographic separation, and MS parameters. Robustness and suitability were assessed following ICH (Q2 [R1]) guidelines. The method is precise (RSD < 10%), linear over a wide range (r > 0.99, 0.01-1384 fmol/μL), and sensitive (LLOD and LLOQ <1 fmol/μL). Having established the parameters for LC-MRM MS, we quantified allergens from various commercial GCr extracts and showed considerable variability that may impact clinical efficacy. Our data demonstrate that the LC-MRM MS method is valuable for absolute quantification of allergens in GCr extracts and likely has broader applicability to other complex allergen extracts. Definitive quantification provides a new standard for labelling of allergen extracts, which will inform patient care, enable personalized therapy, and enhance the efficacy of immunotherapy for environmental and food allergies. © 2017 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J.; Li, Ming
2013-01-01
Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables. PMID:22552787
Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J; Li, Ming; Tabb, David L
2012-09-01
Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables.
Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard
2017-11-01
Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sturm, Robert; Sheynkman, Gloria; Booth, Clarissa; Smith, Lloyd M; Pedersen, Joel A; Li, Lingjun
2012-09-01
Substantial evidence indicates that the disease-associated conformer of the prion protein (PrP(TSE)) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrP(TSE) has the ability to convert the conformation of the normal prion protein (PrP(C)) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrP(TSE) at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrP(TSE), the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.
Sturm, Robert; Kreitinger, Gloria; Booth, Clarissa; Smith, Lloyd; Pedersen, Joel; Li, Lingjun
2012-01-01
Substantial evidence indicates that the disease-associated conformer of the prion protein (PrPTSE) constitutes the etiological agent in prion diseases. These diseases affect multiple mammalian species. PrPTSE has the ability to convert the conformation of the normal prion protein (PrPC) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrPTSE at sub-femtomole levels while animal bioassays, cell culture, and in vitro conversion assays offer ultrasensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein’s signature peptide, often with sub-femtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrPTSE, the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors’ knowledge, this is the first report of the use of a non-tryptic peptide in a LC-MRM AQUA workflow. PMID:22714949
NASA Astrophysics Data System (ADS)
Sturm, Robert; Sheynkman, Gloria; Booth, Clarissa; Smith, Lloyd M.; Pedersen, Joel A.; Li, Lingjun
2012-09-01
Substantial evidence indicates that the disease-associated conformer of the prion protein (PrPTSE) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrPTSE has the ability to convert the conformation of the normal prion protein (PrPC) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrPTSE at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrPTSE, the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.
Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre
2016-12-02
Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.
Ahn, Sung Hee; Bae, Yong Jin; Moon, Jeong Hee; Kim, Myung Soo
2013-09-17
We propose to divide matrix suppression in matrix-assisted laser desorption ionization into two parts, normal and anomalous. In quantification of peptides, the normal effect can be accounted for by constructing the calibration curve in the form of peptide-to-matrix ion abundance ratio versus concentration. The anomalous effect forbids reliable quantification and is noticeable when matrix suppression is larger than 70%. With this 70% rule, matrix suppression becomes a guideline for reliable quantification, rather than a nuisance. A peptide in a complex mixture can be quantified even in the presence of large amounts of contaminants, as long as matrix suppression is below 70%. The theoretical basis for the quantification method using a peptide as an internal standard is presented together with its weaknesses. A systematic method to improve quantification of high concentration analytes has also been developed.
Bollineni, Ravi Chand; Fedorova, Maria; Hoffmann, Ralf
2013-09-07
Mass spectrometry (MS) of 'carbonylated proteins' often involves derivatization of reactive carbonyl groups to facilitate their enrichment, identification and quantification. Among the many reported reagents, 2,4-dinitrophenylhydrazine (DNPH), biotin hydrazide (BHZ) and O-(biotinylcarbazoylmethyl) hydroxylamine (ARP) are the most frequently used. Despite their common use in carbonylation research, their reactivity towards protein-bound carbonyls has not been quantitatively evaluated in detail, to the best of our knowledge. Thus we studied the reactivity and specificity of these reagents towards different classes of reactive carbonyl groups (e.g. aldehydes, ketones and lactams), each being represented by a synthetic peptide carrying an accordingly modified residue. All three tagging reagents were selective for aliphatic aldehydes and ketones. Lactams and carbonyl-containing tryptophan oxidation products, however, were labelled only at low levels or not at all. Whereas DNPH derivatization was efficient under the published standard conditions, the derivatization conditions for BHZ and ARP had to be altered. Acidic conditions provided quantitative labelling yields for ARP. Peptides derivatized with DNPH, BHZ and ARP fragmented efficiently in tandem mass spectrometry, when the experimental conditions were chosen carefully for each reagent. Importantly, the tested carbonylated peptides did not cross-react with amino groups in other proteins present during sample preparations or enzymatic digestion. Thus, it appears favourable to digest proteins first and then derivatise the reactive carbonyl groups more efficiently at the peptide level under acidic conditions. The carbonylated model peptides used in this study might be valid internal standards for carbonylation proteomics.
Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2014-02-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.
Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing
2008-02-01
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhou; Adams, Rachel M; Chourey, Karuna
2012-01-01
A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less
LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.
Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei
2012-12-01
Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple Reaction Monitoring Enables Precise Quantification of 97 Proteins in Dried Blood Spots*
Chambers, Andrew G.; Percy, Andrew J.; Yang, Juncong; Borchers, Christoph H.
2015-01-01
The dried blood spot (DBS) methodology provides a minimally invasive approach to sample collection and enables room-temperature storage for most analytes. DBS samples have successfully been analyzed by liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM-MS) to quantify a large range of small molecule biomarkers and drugs; however, this strategy has only recently been explored for MS-based proteomics applications. Here we report the development of a highly multiplexed MRM assay to quantify endogenous proteins in human DBS samples. This assay uses matching stable isotope-labeled standard peptides for precise, relative quantification, and standard curves to characterize the analytical performance. A total of 169 peptides, corresponding to 97 proteins, were quantified in the final assay with an average linear dynamic range of 207-fold and an average R2 value of 0.987. The total range of this assay spanned almost 5 orders of magnitude from serum albumin (P02768) at 18.0 mg/ml down to cholinesterase (P06276) at 190 ng/ml. The average intra-assay and inter-assay precision for 6 biological samples ranged from 6.1–7.5% CV and 9.5–11.0% CV, respectively. The majority of peptide targets were stable after 154 days at storage temperatures from −20 °C to 37 °C. Furthermore, protein concentration ratios between matching DBS and whole blood samples were largely constant (<20% CV) across six biological samples. This assay represents the highest multiplexing yet achieved for targeted protein quantification in DBS samples and is suitable for biomedical research applications. PMID:26342038
Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S
2014-11-01
Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.
van der Burgt, Yuri E M; Cobbaert, Christa M; Dalebout, Hans; Smit, Nico; Deelder, André M
2012-08-01
In this study temperature-dependent instability of the cTnI subunit of the three-protein complex NIST SRM2921 was demonstrated using a mass spectrometric tryptic peptide mapping approach. The results were compared to the cTnI subunit obtained as a protein standard from Calbiochem with identical amino acid sequence. Both the three-protein complex from NIST as well as the cTnI subunit were incubated at elevated temperatures and then evaluated with respect to the primary sequence. The corresponding peptide maps were analyzed using LC-MS/MS. From a Mascot database search in combination with "semiTrypsin" tolerance it was found that two peptide backbone cleavages had occurred in subunit cTnI in NIST SRM2921 material upon incubation at 37°C, namely between amino acids at 148/149 and 194/195. The Calbiochem standard did not show increased levels of "unexpected" peptides in tryptic peptide maps. One of the two peptide backbone cleavages could also be monitored using a "single-step" MALDI-MS approach, i.e. without the need for peptide separation. The amount of degradation appeared rather constant in replicate temperature-instability experiments. However, for accurate quantification internal labelled standards are needed. Copyright © 2012 Elsevier B.V. All rights reserved.
Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M
2010-05-01
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.
Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.
2010-01-01
Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases. PMID:20305284
Zanetti Polzi, Laura; Amadei, Andrea; Aschi, Massimiliano; Daidone, Isabella
2011-08-03
Molecular-level structural information on amyloid aggregates is of great importance for the understanding of protein-misfolding-related deseases. Nevertheless, this kind of information is experimentally difficult to obtain. In this work, we used molecular dynamics (MD) simulations combined with a mixed quantum mechanics/molecular mechanics theoretical methodology, the perturbed matrix method (PMM), in order to study the amide I' IR spectrum of fibrils formed by a short peptide, the H1 peptide, derived from residues 109 through 122 of the Syrian hamster prion protein. The PMM/MD approach allows isolation of the amide I' signal arising from any desired peptide group of the polypeptide chain and quantification of the effect of the excitonic coupling on the frequency position. The calculated single-residue signals were found to be in good agreement with the experimental site-specific spectra obtained by means of isotope-labeled IR spectroscopy, providing a means for their interpretation at the molecular level. In particular, our results confirm the experimental hypothesis that residues ala117 are aligned in all strands and that the alignment gives rise to a red shift of the corresponding site-specific amide I' mode due to strong excitonic coupling among the ala117 peptide groups. In addition, our data show that a red shift of the amide I' band due to strong excitonic coupling can also occur for amino acids adjacent in sequence to the aligned ones. Thus, a red shift of the signal of a given isotope-labeled amino acid does not necessarily imply that the peptide groups under consideration are aligned in the β-sheet.
Gil, Jeovanis; Cabrales, Ania; Reyes, Osvaldo; Morera, Vivian; Betancourt, Lázaro; Sánchez, Aniel; García, Gerardo; Moya, Galina; Padrón, Gabriel; Besada, Vladimir; González, Luis Javier
2012-02-23
Growth hormone-releasing peptide 6 (GHRP-6, His-(DTrp)-Ala-Trp-(DPhe)-Lys-NH₂, MW=872.44 Da) is a potent growth hormone secretagogue that exhibits a cytoprotective effect, maintaining tissue viability during acute ischemia/reperfusion episodes in different organs like small bowel, liver and kidneys. In the present work a quantitative method to analyze GHRP-6 in human plasma was developed and fully validated following FDA guidelines. The method uses an internal standard (IS) of GHRP-6 with ¹³C-labeled Alanine for quantification. Sample processing includes a precipitation step with cold acetone to remove the most abundant plasma proteins, recovering the GHRP-6 peptide with a high yield. Quantification was achieved by LC-MS in positive full scan mode in a Q-Tof mass spectrometer. The sensitivity of the method was evaluated, establishing the lower limit of quantification at 5 ng/mL and a range for the calibration curve from 5 ng/mL to 50 ng/mL. A dilution integrity test was performed to analyze samples at higher concentration of GHRP-6. The validation process involved five calibration curves and the analysis of quality control samples to determine accuracy and precision. The calibration curves showed R² higher than 0.988. The stability of the analyte and its internal standard (IS) was demonstrated in all conditions the samples would experience in a real time analyses. This method was applied to the quantification of GHRP-6 in plasma from nine healthy volunteers participating in a phase I clinical trial. Copyright © 2011 Elsevier B.V. All rights reserved.
Colangelo, Christopher M.; Ivosev, Gordana; Chung, Lisa; Abbott, Thomas; Shifman, Mark; Sakaue, Fumika; Cox, David; Kitchen, Rob R.; Burton, Lyle; Tate, Stephen A; Gulcicek, Erol; Bonner, Ron; Rinehart, Jesse; Nairn, Angus C.; Williams, Kenneth R.
2015-01-01
We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling (xMRM) that improves Signal/Noise by >2-fold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, Normalized Group Area Ratio (NGAR), MLR normalization, weighted regression analysis, and data dissemination through the Yale Protein Expression Database. As a proof of principle we developed a robust 90 minute LC-MRM assay for Mouse/Rat Post-Synaptic Density (PSD) fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label-free and SIS analyses. Overall, our first method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC-MRM assay. PMID:25476245
Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up.
Soler, Maria; Estevez, M-Carmen; Moreno, Maria de Lourdes; Cebolla, Angel; Lechuga, Laura M
2016-05-15
Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*
Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias
2016-01-01
The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553
On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry
NASA Astrophysics Data System (ADS)
Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri
2018-02-01
Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.
Csősz, É; Emri, G; Kalló, G; Tsaprailis, G; Tőzsér, J
2015-10-01
The healthy human skin with its effective antimicrobial defense system forms an efficient barrier against invading pathogens. There is evidence suggesting that the composition of this chemical barrier varies between diseases, making the easily collected sweat an ideal candidate for biomarker discoveries. Our aim was to provide information about the normal composition of the sweat, and to study the chemical barrier found at the surface of skin. Sweat samples from healthy individuals were collected during sauna bathing, and the global protein panel was analysed by label-free mass spectrometry. SRM-based targeted proteomic methods were designed and stable isotope labelled reference peptides were used for method validation. Ninety-five sweat proteins were identified, 20 of them were novel proteins. It was shown that dermcidin is the most abundant sweat protein, and along with apolipoprotein D, clusterin, prolactin-inducible protein and serum albumin, they make up 91% of secreted sweat proteins. The roles of these highly abundant proteins were reviewed; all of which have protective functions, highlighting the importance of sweat glands in composing the first line of innate immune defense system, and maintaining the epidermal barrier integrity. Our findings with regard to the proteins forming the chemical barrier of the skin as determined by label-free quantification and targeted proteomics methods are in accordance with previous studies, and can be further used as a starting point for non-invasive sweat biomarker research. © 2015 European Academy of Dermatology and Venereology.
Adrait, Annie; Lebert, Dorothée; Trauchessec, Mathieu; Dupuis, Alain; Louwagie, Mathilde; Masselon, Christophe; Jaquinod, Michel; Chevalier, Benoît; Vandenesch, François; Garin, Jérôme; Bruley, Christophe; Brun, Virginie
2012-06-06
Enterotoxin A (SEA) is a staphylococcal virulence factor which is suspected to worsen septic shock prognosis. However, the presence of SEA in the blood of sepsis patients has never been demonstrated. We have developed a mass spectrometry-based assay for the targeted and absolute quantification of SEA in serum. To enhance sensitivity and specificity, we combined an immunoaffinity-based sample preparation with mass spectrometry analysis in the selected reaction monitoring (SRM) mode. Absolute quantification of SEA was performed using the PSAQ™ method (Protein Standard Absolute Quantification), which uses a full-length isotope-labeled SEA as internal standard. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) were estimated at 352pg/mL and 1057pg/mL, respectively. SEA recovery after immunocapture was determined to be 7.8±1.4%. Therefore, we assumed that less than 1femtomole of each SEA proteotypic peptide was injected on the liquid chromatography column before SRM analysis. From a 6-point titration experiment, quantification accuracy was determined to be 77% and precision at LLOQ was lower than 5%. With this sensitive PSAQ-SRM assay, we expect to contribute to decipher the pathophysiological role of SEA in severe sepsis. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2011 Elsevier B.V. All rights reserved.
El Amrani, Mohsin; Szanto, Celina L; Hack, C Erik; Huitema, Alwin D R; Nierkens, Stefan; van Maarseveen, Erik M
2018-06-25
Neuroblastoma is one of the most commonly found solid tumors in children. The monoclonal antibody dinutuximab (DNX) targets the sialic acid-containing glycosphingolipid GD2 expressed on almost all neuroblastoma tumor cells and induces cell lysis. However, the expression of GD2 is not limited to tumor cells only, but is also present on central nerve tissue and peripheral nerve cells explaining dinutuximab toxicity. The most common adverse reactions are pain and discomfort, which may lead to discontinuation of the treatment. Furthermore, there is little to no data available on exposure and effect relationships of dinutuximab. We, therefore, developed an easy method in order to quantify dinutuximab levels in human plasma. Ammonium sulfate (AS) was used to precipitate all immunoglobulins (IgGs) in human plasma. After centrifugation, supernatant containing albumin was decanted and the precipitated IgG fraction was re-dissolved in a buffer containing 0.5% sodium dodecyl sulfate (SDS). Samples were then reduced, alkylated, and digested with trypsin. Finally, a signature peptide in complementarity determining region 1 of DNX heavy chain was quantified on LC-MS/MS using a stable isotopically labeled peptide as internal standard. AS purification efficiently removed 97.5% of the albumin fraction in the supernatant layer. The validation performed on DNX showed that within-run and between-run coefficients of variation (CV) for lower limit of quantification (LLOQ) were 5.5 and 1.4%, respectively. The overall CVs for quality control (QC) low, QC med, and QC high levels were < 5%. Linearity in the range 1-32 mg/L was excellent (r 2 > 0.999). Selectivity, stability, and matrix effect were in concordance with EMA guidelines. In conclusion, a method to quantify DNX in human plasma was successfully developed. In addition, the high and robust process efficiency enabled the utilization of a stable isotopically labeled (SIL) peptide instead of SIL DNX, which was commercially unavailable. Graphical abstract.
2012-01-01
Naturally occurring native peptides provide important information about physiological states of an organism and its changes in disease conditions but protocols and methods for assessing their abundance are not well-developed. In this paper, we describe a simple procedure for the quantification of non-tryptic peptides in body fluids. The workflow includes an enrichment step followed by two-dimensional fractionation of native peptides and MS/MS data management facilitating the design and validation of LC- MRM MS assays. The added value of the workflow is demonstrated in the development of a triplex LC-MRM MS assay used for quantification of peptides potentially associated with the progression of liver disease to hepatocellular carcinoma. PMID:22304756
Yamamoto, Kazuki; Chikaoka, Yoko; Hayashi, Gosuke; Sakamoto, Ryosuke; Yamamoto, Ryuji; Sugiyama, Akira; Kodama, Tatsuhiko; Okamoto, Akimitsu; Kawamura, Takeshi
2015-01-01
Mass spectrometric proteomics is an effective approach for identifying and quantifying histone post-translational modifications (PTMs) and their binding proteins, especially in the cases of methylation and acetylation. However, another vital PTM, phosphorylation, tends to be poorly quantified because it is easily lost and inefficiently ionized. In addition, PTM binding proteins for phosphorylation are sometimes resistant to identification because of their variable binding affinities. Here, we present our efforts to improve the sensitivity of detection of histone H4 tail peptide phosphorylated at serine 1 (H4S1ph) and our successful identification of an H4S1ph binder candidate by means of a chemical proteomics approach. Our nanoLC-MS/MS system permitted semi-quantitative label-free analysis of histone H4 PTM dynamics of cell cycle-synchronized HeLa S3 cells, including phosphorylation, methylation, and acetylation. We show that H4S1ph abundance on nascent histone H4 unmethylated at lysine 20 (H4K20me0) peaks from late S-phase to M-phase. We also attempted to characterize effects of phosphorylation at H4S1 on protein–protein interactions. Specially synthesized photoaffinity bait peptides specifically captured 14-3-3 proteins as novel H4S1ph binding partners, whose interaction was otherwise undetectable by conventional peptide pull-down experiments. This is the first report that analyzes dynamics of PTM pattern on the whole histone H4 tail during cell cycle and enables the identification of PTM binders with low affinities using high-resolution mass spectrometry and photo-affinity bait peptides. PMID:26819910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.
Current proteomics approaches are comprised of both broad discovery measurements as well as more quantitative targeted measurements. These two different measurement types are used to initially identify potentially important proteins (e.g., candidate biomarkers) and then enable improved quantification for a limited number of selected proteins. However, both approaches suffer from limitations, particularly the lower sensitivity, accuracy, and quantitation precision for discovery approaches compared to targeted approaches, and the limited proteome coverage provided by targeted approaches. Herein, we describe a new proteomics approach that allows both discovery and targeted monitoring (DTM) in a single analysis using liquid chromatography, ion mobility spectrometrymore » and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled peptides for target ions are spiked into tryptic digests and both the labeled and unlabeled peptides are broadly detected using LC-IMS-MS instrumentation, allowing the benefits of discovery and targeted approaches. To understand the possible improvement of the DTM approach, it was compared to LC-MS broad measurements using an accurate mass and time tag database and selected reaction monitoring (SRM) targeted measurements. The DTM results yielded greater peptide/protein coverage and a significant improvement in the detection of lower abundance species compared to LC-MS discovery measurements. DTM was also observed to have similar detection limits as SRM for the targeted measurements indicating its potential for combining the discovery and targeted approaches.« less
Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas
2013-01-01
Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937
Guitot, Karine; Scarabelli, Silvia; Drujon, Thierry; Bolbach, Gérard; Amoura, Mehdi; Burlina, Fabienne; Jeltsch, Albert; Sagan, Sandrine; Guianvarc'h, Dominique
2014-07-01
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei
2018-06-04
Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.
Shabanpoor, Fazel; Gait, Michael J
2013-11-11
We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.
Yang, Yun
2017-02-17
Protein tyrosine nitration is considered an important non-enzymatic post-translational modification. In the tyrosine nitration process, 3-nitrotyrosine is formed and recognized as a biomarker of nitrosative/nitrative stress implicated in inflammatory responses and age-related disorders. In view of the complexity of biological samples and the ultra-low abundance of protein-incorporated nitrotyrosine, selective enrichment of nitrotyrosine-containing peptides prior to chromatographic separation is crucial. Herein, I report a simple yet highly specific and efficient enrichment method for nitrotyrosine-containing peptides. After blocking all primary amines in the sample by acetylation with acetic anhydride, I then further converted all nitrotyrosine residues into aminotyrosine residues by reduction with dithiothreitol and hemin. Therefore, I eliminated the side-product with 80Da adduct, since inevitable considerable amount of which was generated in the widely used reduction mediated by sodium dithionite. Both acetylation and reduction yields were close to 100%, and my one-pot sample derivatization applied no solid phase extraction steps or sample transference to avoid sample loss. To capture and release aminotyrosine-containing peptides, I synthesized an N-hydroxysuccinimide-ester-functionalized stationary phase which had very high affinity towards amino groups and possessed a base-cleavable ester linker to retrieve targeted peptides by hydrolysis. I validated this strategy by highly efficient enrichment of the targeted peptide from complex matrices of trypsin-digested bovine serum albumin (BSA) and human plasma spiked with derivatized nitrotyrosine-containing angiotensin II. My enrichment method successfully removed most untargeted peptides in those samples. By relative quantification with home-made identical and stable-isotope labelled internal standards, I investigated the recoveries of a nitrotyrosine-containing peptide from complex biological matrices during enrichment for the first time. Mean recoveries were 49.8% and 41.1% (n=6) for the enrichment of nitrotyrosine-containing angiotensin II from 1:100 (w/w) BSA digest and from 1:10 000 (w/w) human plasma digest, respectively. My enrichment method demonstrated great potential in future applications to clinical samples and biomarker discovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter
2016-08-01
Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or <0.2% of the total protein contained in a blastomere in the 16-cell embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ulke-Lemée, Annegret; Lau, Arthur; Nelson, Michelle C; James, Matthew T; Muruve, Daniel A; MacDonald, Justin A
2018-06-09
Inflammation is an integral component of many diseases, including chronic kidney disease (CKD). ASC (apoptosis-associated speck-like protein containing CARD, also PYCARD) is the key inflammasome adaptor protein in the innate immune response. Since ASC specks, a macromolecular condensate of ASC protein, can be released by inflammasome-activated cells into the extracellular space to amplify inflammatory responses, the ASC protein could be an important biomarker in diagnostic applications. Herein, we describe the development and validation of a multiple reaction monitoring mass spectrometry (MRM-MS) assay for the accurate quantification of ASC in human biospecimens. Limits of detection and quantification for the signature DLLLQALR peptide (used as surrogate for the target ASC protein) were determined by the method of standard addition using synthetic isotope-labeled internal standard (SIS) peptide and urine matrix from a healthy donor (LOQ was 8.25 pM, with a ~ 1000-fold linear range). We further quantified ASC in the urine of CKD patients (8.4 ± 1.3 ng ASC/ml urine, n = 13). ASC was positively correlated with proteinuria and urinary IL-18 in CKD samples but not with urinary creatinine. Unfortunately, the ASC protein is susceptible to degradation, and patient urine that was thawed and refrozen lost 85% of the ASC signal. In summary, the MRM-MS assay provides a robust means to quantify ASC in biological samples, including clinical biospecimens; however, sample collection and storage conditions will have a critical impact on assay reliability.
Amao, Michiko; Kitahara, Yoshiro; Tokunaga, Ayaka; Shimbo, Kazutaka; Eto, Yuzuru; Yamada, Naoyuki
2015-03-01
Glucagon-like peptide-1 (GLP-1) is an incretin peptide that regulates islet hormone secretion. During recent years, incretin-based therapies have been widely used for patients with type 2 diabetes. GLP-1 peptides undergo N- and C-terminal processing for gain or loss of functions. We developed a method to quantify picomolar quantities of intact GLP-1 peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By employing this label-free selected reaction monitoring (SRM) method, we were able to analyze secreted GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amid from human enteroendocrine NCI-H716 cells after stimulation with nateglinide, glucose, and sucralose. The absolute total concentrations of secreted GLP-1 peptides at baseline and after stimulation with nateglinide, glucose, and sucralose were 167.3, 498.9, 238.3, and 143.1 pM, respectively. Meanwhile, the ratios of GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amide) to total GLP-1 peptides were similar (6 ± 3, 26 ± 3, and 78 ± 5%, respectively). The SRM assay can analyze the concentrations of individual GLP-1 peptides and, therefore, is a tool to investigate the physiological roles of GLP-1 peptides. Furthermore, the molecular species secreted from NCI-H716 cells were unknown. Therefore, we performed a secretopeptidome analysis of supernatants collected from cultured NCI-H716 cells. Together with GLP-1 peptides, we detected neuroendocrine convertase 1, which regulates peptide hormones released from intestinal endocrine L-cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Chakraborty, Tandra R; Tkalych, Oleg; Nanno, Daniela; Garcia, Angelo L; Devi, Lakshmi A; Salton, Stephen R J
2006-05-17
Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsenko, Marina A.; Xu, Zhe; Liu, Tao
Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less
Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor
2013-01-01
Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430
Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D
2016-01-01
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Relative quantification of biomarkers using mixed-isotope labeling coupled with MS
Chapman, Heidi M; Schutt, Katherine L; Dieter, Emily M; Lamos, Shane M
2013-01-01
The identification and quantification of important biomarkers is a critical first step in the elucidation of biological systems. Biomarkers take many forms as cellular responses to stimuli and can be manifested during transcription, translation, and/or metabolic processing. Increasingly, researchers have relied upon mixed-isotope labeling (MIL) coupled with MS to perform relative quantification of biomarkers between two or more biological samples. MIL effectively tags biomarkers of interest for ease of identification and quantification within the mass spectrometer by using isotopic labels that introduce a heavy and light form of the tag. In addition to MIL coupled with MS, a number of other approaches have been used to quantify biomarkers including protein gel staining, enzymatic labeling, metabolic labeling, and several label-free approaches that generate quantitative data from the MS signal response. This review focuses on MIL techniques coupled with MS for the quantification of protein and small-molecule biomarkers. PMID:23157360
Recent advances in stable isotope labeling based techniques for proteome relative quantification.
Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui
2014-10-24
The large scale relative quantification of all proteins expressed in biological samples under different states is of great importance for discovering proteins with important biological functions, as well as screening disease related biomarkers and drug targets. Therefore, the accurate quantification of proteins at proteome level has become one of the key issues in protein science. Herein, the recent advances in stable isotope labeling based techniques for proteome relative quantification were reviewed, from the aspects of metabolic labeling, chemical labeling and enzyme-catalyzed labeling. Furthermore, the future research direction in this field was prospected. Copyright © 2014 Elsevier B.V. All rights reserved.
Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong
2012-11-15
Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.
MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant.
Zhou, Tao; Li, Chuyu; Zhao, Wene; Wang, Xinru; Wang, Fuqiang; Sha, Jiahao
2016-01-01
MaxQuant is a proteomic software widely used for large-scale tandem mass spectrometry data. We have designed and developed an enhanced result reporting tool for MaxQuant, named as MaxReport. This tool can optimize the results of MaxQuant and provide additional functions for result interpretation. MaxReport can generate report tables for protein N-terminal modifications. It also supports isobaric labelling based relative quantification at the protein, peptide or site level. To obtain an overview of the results, MaxReport performs general descriptive statistical analyses for both identification and quantification results. The output results of MaxReport are well organized and therefore helpful for proteomic users to better understand and share their data. The script of MaxReport, which is freely available at http://websdoor.net/bioinfo/maxreport/, is developed using Python code and is compatible across multiple systems including Windows and Linux.
Velikyan, Irina; Lindhe, Örjan
2018-01-01
Monitoring general disease marker such as angiogenesis may contribute to the development of personalized medicine and improve therapy outcome. Readily availability of positron emitter based imaging agents providing quantification would expand clinical positron emission tomography (PET) applications. Generator produced 68Ga provides PET images of high resolution and the half-life time frame is compatible with the pharmacokinetics of small peptides comprising arginine-glycine-aspartic acid (RGD) sequence specific to αvβ3 integrin receptors. The main objective of this study was to develop a method for 68Ga-labeling of RGD containing bicyclic octapeptide ([68Ga]Ga-DOTA-RGD) with high specific radioactivity and preclinically assess its imaging potential. DOTA-RGD was labeled using generator eluate preconcentration technique and microwave heating. The binding and organ distribution properties of [68Ga]Ga-DOTA-RGD were tested in vitro by autoradiography of frozen tumor sections, and in vivo in mice carrying a Lewis Lung carcinoma graft (LL2), and in non-human primate (NHP). Another peptide with aspartic acid-glycine-phenylalanine sequence was used as a negative control. The full 68Ga radioactivity eluted from two generators was quantitatively incorporated into 3-8 nanomoles of the peptide conjugates. The target binding specificity was confirmed by blocking experiments. The specific uptake in the LL2 mice model was observed in vivo and confirmed in the corresponding ex vivo biodistribution experiments. Increased accumulation of the radioactivity was detected in the wall of the uterus of the female NHP probably indicating neovascularization. [68Ga]Ga-DOTA-RGD demonstrated potential for the imaging of angiogenesis. PMID:29531858
Multiple products monitoring as a robust approach for peptide quantification.
Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee
2009-07-01
Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.
Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling.
Nilse, Lars; Sigloch, Florian Christoph; Biniossek, Martin L; Schilling, Oliver
2015-08-01
Reliable detection of peptides in LC-MS data is a key algorithmic step in the analysis of quantitative proteomics experiments. While highly abundant peptides can be detected reliably by most modern software tools, there is much less agreement on medium and low-intensity peptides in a sample. The choice of software tools can have a big impact on the quantification of proteins, especially for proteins that appear in lower concentrations. However, in many experiments, it is precisely this region of less abundant but substantially regulated proteins that holds the biggest potential for discoveries. This is particularly true for discovery proteomics in the pharmacological sector with a specific interest in key regulatory proteins. In this viewpoint article, we discuss how the development of novel software algorithms allows us to study this region of the proteome with increased confidence. Reliable results are one of many aspects to be considered when deciding on a bioinformatics software platform. Deployment into existing IT infrastructures, compatibility with other software packages, scalability, automation, flexibility, and support need to be considered and are briefly addressed in this viewpoint article. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.
2014-12-01
An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.
Data Pre-Processing for Label-Free Multiple Reaction Monitoring (MRM) Experiments
Chung, Lisa M.; Colangelo, Christopher M.; Zhao, Hongyu
2014-01-01
Multiple Reaction Monitoring (MRM) conducted on a triple quadrupole mass spectrometer allows researchers to quantify the expression levels of a set of target proteins. Each protein is often characterized by several unique peptides that can be detected by monitoring predetermined fragment ions, called transitions, for each peptide. Concatenating large numbers of MRM transitions into a single assay enables simultaneous quantification of hundreds of peptides and proteins. In recognition of the important role that MRM can play in hypothesis-driven research and its increasing impact on clinical proteomics, targeted proteomics such as MRM was recently selected as the Nature Method of the Year. However, there are many challenges in MRM applications, especially data pre‑processing where many steps still rely on manual inspection of each observation in practice. In this paper, we discuss an analysis pipeline to automate MRM data pre‑processing. This pipeline includes data quality assessment across replicated samples, outlier detection, identification of inaccurate transitions, and data normalization. We demonstrate the utility of our pipeline through its applications to several real MRM data sets. PMID:24905083
Data Pre-Processing for Label-Free Multiple Reaction Monitoring (MRM) Experiments.
Chung, Lisa M; Colangelo, Christopher M; Zhao, Hongyu
2014-06-05
Multiple Reaction Monitoring (MRM) conducted on a triple quadrupole mass spectrometer allows researchers to quantify the expression levels of a set of target proteins. Each protein is often characterized by several unique peptides that can be detected by monitoring predetermined fragment ions, called transitions, for each peptide. Concatenating large numbers of MRM transitions into a single assay enables simultaneous quantification of hundreds of peptides and proteins. In recognition of the important role that MRM can play in hypothesis-driven research and its increasing impact on clinical proteomics, targeted proteomics such as MRM was recently selected as the Nature Method of the Year. However, there are many challenges in MRM applications, especially data pre‑processing where many steps still rely on manual inspection of each observation in practice. In this paper, we discuss an analysis pipeline to automate MRM data pre‑processing. This pipeline includes data quality assessment across replicated samples, outlier detection, identification of inaccurate transitions, and data normalization. We demonstrate the utility of our pipeline through its applications to several real MRM data sets.
NASA Astrophysics Data System (ADS)
Chiu, Jasper Z. S.; Tucker, Ian G.; McDowell, Arlene
2016-11-01
High sensitivity quantification of the putative cell-penetrating peptide di-arginine-histidine (RRH) associated with poly (ethyl-cyanoacrylate) (PECA) nanoparticles was achieved without analyte separation, using a novel application of isobaric-tagging and high matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometry. Isobaric-tagging reaction equilibrium was reached after 5 min, with 90% or greater RRH peptide successfully isobaric-tagged after 60 min. The accuracy was greater than 90%, which indicates good reliability of using isobaric-tagged RRH as an internal standard for RRH quantification. The sample intra- and inter-spot coefficients of variations were less than 11%, which indicate good repeatability. The majority of RRH peptides in the nanoparticle formulation were physically associated with the nanoparticles (46.6%), whereas only a small fraction remained unassociated (13.7%). The unrecovered RRH peptide (~40%) was assumed to be covalently associated with PECA nanoparticles.
Barthélemy, Nicolas R; Gabelle, Audrey; Hirtz, Christophe; Fenaille, François; Sergeant, Nicolas; Schraen-Maschke, Susanna; Vialaret, Jérôme; Buée, Luc; Junot, Christophe; Becher, François; Lehmann, Sylvain
2016-01-01
Microtubule-associated Tau proteins are major actors in neurological disorders, the so-called tauopathies. In some of them, and specifically in Alzheimer's disease (AD), hyperphosphorylated forms of Tau aggregate into neurofibrillary tangles. Following and understanding the complexity of Tau's molecular profile with its multiple isoforms and post-translational modifications represent an important issue, and a major analytical challenge. Immunodetection methods are, in fact, limited by the number, specificity, sensitivity, and capturing property of the available antibodies. Mass spectrometry (MS) has recently allowed protein quantification in complex biological fluids using isotope-labeled recombinant standard for absolute quantification (PSAQ). To study Tau proteins, which are found at very low concentrations within the cerebrospinal fluid (CSF), we relied on an innovative two-step pre-fractionation strategy, which was not dependent on immuno-enrichment. We then developed a sensitive multiplex peptide detection capability using targeted high-resolution MS to quantify Tau-specific peptides covering its entire sequence. This approach was used on a clinical cohort of patients with AD, progressive supranuclear palsy (PSP), and dementia with Lewy body (DLB) and with control non-neurodegenerative disorders. We uncovered a common CSF Tau molecular profile characterized by a predominance of central core expression and 1N/3R isoform detection. While PSP and DLB tau profiles showed minimal changes, AD was characterized by a unique pattern with specific modifications of peptide distribution. Taken together these results provide important information on Tau biology for future therapeutic interventions, and improved molecular diagnosis of tauopathies.
Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa
2011-01-01
A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers. PMID:21474793
Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi
2013-08-01
Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.
Peptide-membrane Interactions by Spin-labeling EPR
Smirnova, Tatyana I.; Smirnov, Alex I.
2016-01-01
Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established method that has recently grown in popularity as an experimental technique, with multiple applications in protein and peptide science. The growth is driven by development of labeling strategies, as well as by considerable technical advances in the field, that are paralleled by an increased availability of EPR instrumentation. While the method requires an introduction of a paramagnetic probe at a well-defined position in a peptide sequence, it has been shown to be minimally destructive to the peptide structure and energetics of the peptide-membrane interactions. In this chapter, we describe basic approaches for using SDSL EPR spectroscopy to study interactions between small peptides and biological membranes or membrane mimetic systems. We focus on experimental approaches to quantify peptide-membrane binding, topology of bound peptides, and characterize peptide aggregation. Sample preparation protocols including spin-labeling methods and preparation of membrane mimetic systems are also described. PMID:26477253
2015-01-01
The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573
Qiu, Xi; Bi, Yi-An; Balogh, Larissa M; Lai, Yurong
2013-09-01
Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) protein expression in liver tissue and to characterize the modulation of protein expression in sandwich-cultured human (SCHH) and rat hepatocytes (SCRH). The lower limit of quantification was established to be 5 fmol on column with a standard curve that was linear up to 2000 fmol. The accuracy and precision were evaluated with three quality control samples and known amounts of synthetic proteotypic peptides that were spiked into the membrane protein extracts. The overall relative error and coefficient of variation were less than 10%. The expression of Ntcp in mouse and rat was significant higher than that in human (five-fold) and monkey (two-fold) and ranked as mouse > rat > monkey > human. In the cultured hepatocytes, although significant downregulation of Ntcp expression in SCRH at day 5 after the culture was detected, NTCP expression in SCHH was comparable to the suspension hepatocytes. The results suggested that NTCP/Ntcp modulation in cultured hepatocytes is species specific. Copyright © 2013 Wiley Periodicals, Inc.
Hewel, Johannes A.; Liu, Jian; Onishi, Kento; Fong, Vincent; Chandran, Shamanta; Olsen, Jonathan B.; Pogoutse, Oxana; Schutkowski, Mike; Wenschuh, Holger; Winkler, Dirk F. H.; Eckler, Larry; Zandstra, Peter W.; Emili, Andrew
2010-01-01
Effective methods to detect and quantify functionally linked regulatory proteins in complex biological samples are essential for investigating mammalian signaling pathways. Traditional immunoassays depend on proprietary reagents that are difficult to generate and multiplex, whereas global proteomic profiling can be tedious and can miss low abundance proteins. Here, we report a target-driven liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy for selectively examining the levels of multiple low abundance components of signaling pathways which are refractory to standard shotgun screening procedures and hence appear limited in current MS/MS repositories. Our stepwise approach consists of: (i) synthesizing microscale peptide arrays, including heavy isotope-labeled internal standards, for use as high quality references to (ii) build empirically validated high density LC-MS/MS detection assays with a retention time scheduling system that can be used to (iii) identify and quantify endogenous low abundance protein targets in complex biological mixtures with high accuracy by correlation to a spectral database using new software tools. The method offers a flexible, rapid, and cost-effective means for routine proteomic exploration of biological systems including “label-free” quantification, while minimizing spurious interferences. As proof-of-concept, we have examined the abundance of transcription factors and protein kinases mediating pluripotency and self-renewal in embryonic stem cell populations. PMID:20467045
Duan, Xiaotao; Young, Rebecca; Straubinger, Robert M.; Page, Brian J.; Cao, Jin; Wang, Hao; Yu, Haoying; Canty, John M.; Qu, Jun
2009-01-01
For label-free expression profiling of tissue proteomes, efficient protein extraction, thorough and quantitative sample cleanup and digestion procedures, as well as sufficient and reproducible chromatographic separation, are highly desirable but remain challenging. However, optimal methodology has remained elusive, especially for proteomes that are rich in membrane proteins, such as the mitochondria. Here we describe a straightforward and reproducible sample preparation procedure, coupled with a highly selective and sensitive nano-LC/Orbitrap analysis, which enables reliable and comprehensive expression profiling of tissue mitochondria. The mitochondrial proteome of swine heart was selected as a test system. Efficient protein extraction was accomplished using a strong buffer containing both ionic and non-ionic detergents. Overnight precipitation was used for cleanup of the extract, and the sample was subjected to an optimized 2-step, on-pellet digestion approach. In the first step, the protein pellet was dissolved via a 4 h tryptic digestion under vigorous agitation, which nano-LC/LTQ/ETD showed to produce large and incompletely cleaved tryptic peptides. The mixture was then reduced, alkylated, and digested into its full complement of tryptic peptides with additional trypsin. This solvent precipitation/on-pellet digestion procedure achieved significantly higher and more reproducible peptide recovery of the mitochondrial preparation, than observed using a prevalent alternative procedure for label-free expression profiling, SDS-PAGE/in-gel digestion (87% vs. 54%). Furthermore, uneven peptide losses were lower than observed with SDS-PAGE/in-gel digestion. The resulting peptides were sufficiently resolved by a 5 h gradient using a nano-LC configuration that features a low-void-volume, high chromatographic reproducibility, and an LTQ/Orbitrap analyzer for protein identification and quantification. The developed method was employed for label-free comparison of the mitochondrial proteomes of myocardium from healthy animals vs. those with hibernating myocardium. Each experimental group consisted of a relatively large number of animals (n=10), and samples were analyzed in random order to minimize quantitative false-positives. Using this approach, 904 proteins were identified and quantified with high confidence, and those mitochondrial proteins that were altered significantly between groups were compared with the results of a parallel 2D-DIGE analysis. The sample preparation and analytical strategy developed here represents an advancement that can be adapted to analyze other tissue proteomes. PMID:19290621
Russell, Jason D.; Scalf, Mark; Book, Adam J.; Ladror, Daniel T.; Vierstra, Richard D.; Smith, Lloyd M.; Coon, Joshua J.
2013-01-01
Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1. PMID:23536786
Russell, Jason D; Scalf, Mark; Book, Adam J; Ladror, Daniel T; Vierstra, Richard D; Smith, Lloyd M; Coon, Joshua J
2013-01-01
Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1.
Lavallée-Adam, Mathieu; Rauniyar, Navin; McClatchy, Daniel B; Yates, John R
2014-12-05
The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enriched with abundant proteins with reproducible quantification measurements across a set of replicates. To this end, we developed PSEA-Quant, a protein set enrichment analysis algorithm for label-free and label-based protein quantification data sets. It offers an alternative approach to classic GO analyses, models protein annotation biases, and allows the analysis of samples originating from a single condition, unlike analogous approaches such as GSEA and PSEA. We demonstrate that PSEA-Quant produces results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics quantification data sets by providing meaningful biological insights.
2015-01-01
The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enriched with abundant proteins with reproducible quantification measurements across a set of replicates. To this end, we developed PSEA-Quant, a protein set enrichment analysis algorithm for label-free and label-based protein quantification data sets. It offers an alternative approach to classic GO analyses, models protein annotation biases, and allows the analysis of samples originating from a single condition, unlike analogous approaches such as GSEA and PSEA. We demonstrate that PSEA-Quant produces results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics quantification data sets by providing meaningful biological insights. PMID:25177766
NASA Astrophysics Data System (ADS)
Meyer, Jesse G.; D'Souza, Alexandria K.; Sorensen, Dylan J.; Rardin, Matthew J.; Wolfe, Alan J.; Gibson, Bradford W.; Schilling, Birgit
2016-11-01
Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.
Domnanich, Katharina A; Müller, Cristina; Farkas, Renata; Schmid, Raffaella M; Ponsard, Bernard; Schibli, Roger; Türler, Andreas; van der Meulen, Nicholas P
2017-01-01
Recently, 44 Sc (T 1/2 = 3.97 h, Eβ + av = 632 keV, I = 94.3 %) has emerged as an attractive radiometal candidate for PET imaging using DOTA-functionalized biomolecules. The aim of this study was to investigate the potential of using NODAGA for the coordination of 44 Sc. Two pairs of DOTA/NODAGA-derivatized peptides were investigated in vitro and in vivo and the results obtained with 44 Sc compared with its 68 Ga-labeled counterparts.DOTA-RGD and NODAGA-RGD, as well as DOTA-NOC and NODAGA-NOC, were labeled with 44 Sc and 68 Ga, respectively. The radiopeptides were investigated with regard to their stability in buffer solution and under metal challenge conditions using Fe 3+ and Cu 2+ . Time-dependent biodistribution studies and PET/CT imaging were performed in U87MG and AR42J tumor-bearing mice. Both RGD- and NOC-based peptides with a DOTA chelator were readily labeled with 44 Sc and 68 Ga, respectively, and remained stable over at least 4 half-lives of the corresponding radionuclide. In contrast, the labeling of NODAGA-functionalized peptides with 44 Sc was more challenging and the resulting radiopeptides were clearly less stable than the DOTA-derivatized matches. 44 Sc-NODAGA peptides were clearly more susceptible to metal challenge than 44 Sc-DOTA peptides under the same conditions. Instability of 68 Ga-labeled peptides was only observed if they were coordinated with a DOTA in the presence of excess Cu 2+ . Biodistribution data of the 44 Sc-labeled peptides were largely comparable with the data obtained with the 68 Ga-labeled counterparts. It was only in the liver tissue that the uptake of 68 Ga-labeled DOTA compounds was markedly higher than for the 44 Sc-labeled version and this was also visible on PET/CT images. The 44 Sc-labeled NODAGA-peptides showed a similar tissue distribution to those of the DOTA peptides without any obvious signs of in vivo instability. Although DOTA revealed to be the preferred chelator for stable coordination of 44 Sc, the data presented in this work indicate the possibility of using NODAGA in combination with 44 Sc. In view of a clinical study, thorough investigations will be necessary regarding the labeling conditions and storage solutions in order to guarantee sufficient stability of 44 Sc-labeled NODAGA compounds.
A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities
Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García
2014-01-01
The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426
Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning
2014-01-01
The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447
Remily-Wood, Elizabeth R; Benson, Kaaron; Baz, Rachid C; Chen, Y Ann; Hussein, Mohamad; Hartley-Brown, Monique A; Sprung, Robert W; Perez, Brianna; Liu, Richard Z; Yoder, Sean J; Teer, Jamie K; Eschrich, Steven A; Koomen, John M
2014-10-01
Quantitative MS assays for Igs are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, for example, multiple myeloma (MM). Using LC-MS/MS data, Ig constant region peptides, and transitions were selected for LC-MRM MS. Quantitative assays were used to assess Igs in serum from 83 patients. RNA sequencing and peptide-based LC-MRM are used to define peptides for quantification of the disease-specific Ig. LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1-4, IgA1-2, IgM, IgD, and IgE, as well as kappa (κ) and lambda (λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 MM cell line and two MM patients. LC-MRM assays targeting constant region peptides determine the type and isoform of the involved Ig and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher inter-assay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo
2017-09-01
The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for discovery and label-free PRM analysis have been deposited to the ProteomeXchange Consortium with identifiers
Poulcharidis, Dimitrios; Belfor, Kimberley
2017-01-01
Membrane-compound exchange is vital for cell-to-cell communication, yet quantification of this process is difficult. Here we present a method using flow cytometry in combination with bioorthogonal and fluorescent labelling techniques to quantify the amount of exchange of cholesterol and sialylated compounds between cells. We demonstrate that direct cell–cell contact is the likely mechanism of sterol-exchange and show that by manipulating the contact time between cells using complementary coiled-coil peptides results in an enhanced exchange rate of membrane components between cells. PMID:28970937
ICPD-a new peak detection algorithm for LC/MS.
Zhang, Jianqiu; Haskins, William
2010-12-01
The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.
Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.
2015-01-01
Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302
Guo, Guangyu; Li, Ning
2011-07-01
In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.
Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu
2014-04-01
Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Absolute quantification of histone PTM marks by MRM-based LC-MS/MS.
Gao, Jun; Liao, Rijing; Yu, Yanyan; Zhai, Huili; Wang, Yingqi; Sack, Ragna; Peters, Antoine H F M; Chen, Jiajia; Wu, Haiping; Huang, Zheng; Hu, Min; Qi, Wei; Lu, Chris; Atadja, Peter; Oyang, Counde; Li, En; Yi, Wei; Zhou, Shaolian
2014-10-07
The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 μM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.
Meyer, Jesse G.; D’Souza, Alexandria K.; Sorensen, Dylan J.; ...
2016-09-02
Post-translational modification of lysine residues by N ε-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods canmore » overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.« less
Qin, Haifang; Jiang, Xiyuan; Fan, Jie; Wang, Jianpeng; Liu, Li; Qiu, Lin; Wang, Jianhao; Jiang, Pengju
2017-01-01
Capillary electrophoresis with fluorescence detection was utilized to probe the self-assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self-assemble. Their self-assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0-0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Goda, Ryoya; Kobayashi, Nobuhiro
2012-05-01
To evaluate the usefulness of the peptide adsorption-controlled liquid chromatography-tandem mass spectrometry (PAC-LC-MS/MS) for reproducible measurement of peptides in biological fluids, simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides (Aβ38, Aβ40, Aβ42 and Aβ43) in dog cerebrospinal fluid (CSF) was tried. Each stable isotope labeled Aβ was used as the internal standard to minimize the influence of CSF matrix on the reproducible Aβ quantitation. To reduce a loss of Aβ during the pretreatment procedures, the dog CSF diluted by water-acetic acid-methanol (2:6:1, v/v/v) was loaded on PAC-LC-MS/MS directly. Quantification of the Aβ in the diluted dog CSF was carried out using multiple reaction monitoring (MRM) mode. The [M+5H(5+)] and b(5+) ion fragment of each peptide were chosen as the precursor and product ions for MRM transitions of each peptide. The calibration curves were drawn from Aβ standard calibration solutions using PAC-LC-MS/MS. Analysis of dog CSF samples suggests that the basal concentration of Aβ38, Aβ40, Aβ42 and Aβ43 in dog CSF is approximately 300, 900, 200 and 30 pM, respectively. This is the first time Aβ concentrations in dog CSF have been reported. Additionally, the evaluation of intra- and inter-day reproducibility of analysis of Aβ standard solution, the freeze-thaw stability and the room temperature stability of Aβ standard solution suggest that the PAC-LC-MS/MS method enables reproducible Aβ quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.
A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*
Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri
2016-01-01
Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564
Tritium labeling of amino acids and peptides with liquid and solid tritium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P.C.; Coronado, P.R.; Peng, C.T.
Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially usefulmore » agents for labeling peptides and proteins.« less
UNiquant, a program for quantitative proteomics analysis using stable isotope labeling.
Huang, Xin; Tolmachev, Aleksey V; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A; Smith, Richard D; Chan, Wing C; Hinrichs, Steven H; Fu, Kai; Ding, Shi-Jian
2011-03-04
Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.
UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling
Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian
2011-01-01
Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445
Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.
Fojan, Peter; Gurevich, Leonid
2017-01-01
The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.
Peptide and protein quantitation by acid-catalyzed 18O-labeling of carboxyl groups.
Haaf, Erik; Schlosser, Andreas
2012-01-03
We have developed a new method that applies acidic catalysis with hydrochloric acid for (18)O-labeling of peptides at their carboxyl groups. With this method, peptides get labeled at their C-terminus, at Asp and Glu residues, and at carboxymethylated cysteine residues. Oxygen atoms at phosphate groups of phosphopeptide are not exchanged. Our elaborated labeling protocol is easy to perform, fast (5 h and 30 min), and results in 95-97 atom % incorporation of (18)O at carboxyl groups. Undesired side reactions, such as deamidation or peptide hydrolysis, occur only at a very low level under the conditions applied. In addition, data analysis can be performed automatically using common software tools, such as Mascot Distiller. We have demonstrated the capability of this method for the quantitation of peptides as well as for phosphopeptides. © 2011 American Chemical Society
Teixeira, Luis Gustavo D; Malavolta, Luciana; Bersanetti, Patrícia A; Schreier, Shirley; Carmona, Adriana K; Nakaie, Clovis R
2015-01-01
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra.
Teixeira, Luis Gustavo D.; Malavolta, Luciana; Bersanetti, Patrícia A.; Schreier, Shirley; Carmona, Adriana K.; Nakaie, Clovis R.
2015-01-01
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra. PMID:26317625
Detection of Peptide-based nanoparticles in blood plasma by ELISA.
Bode, Gerard H; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J G; Schmitz, Christoph; Sinner, Frank M; Losen, Mario; Steinbusch, Harry W M; Frank, Hans-Georg; Martinez-Martinez, Pilar
2015-01-01
The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions.
Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA
Bode, Gerard H.; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J. G.; Schmitz, Christoph; Sinner, Frank M.; Losen, Mario; Steinbusch, Harry W. M.; Frank, Hans-Georg; Martinez-Martinez, Pilar
2015-01-01
Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions. PMID:25996618
Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms.
Baum, Richard P; Kulkarni, Harshad R; Carreras, Cecilia
2012-05-01
Theranostics of neuroendocrine neoplasms (NENs) based on molecular imaging using receptor positron emission tomography/computed tomography (PET/CT) with (68)Ga-labeled somatostatin (SMS) analogs and molecular radiotherapy applying peptide receptor radionuclide therapy (PRRNT) with (90)Y- and/or (177)Lu-labeled peptides has paved the way to personalized medicine. SMS receptor PET/CT enables very accurate detection of NENs and their metastases with high diagnostic sensitivity and specificity and provides quantitative, reproducible data that can be used for selecting patients for PRRNT and evaluation of therapy response. Among other advantages are the fast imaging protocol (total study time, 60-90 minutes), low radiation burden (10-12 mSv), flexibility in daily use, and lower cost than octreotide scintigraphy. As we move toward personalized medicine, the diagnostic information obtained from PET/CT must be improved, that is, by fast routine quantification of lesions. PRRNT is highly effective for the treatment of NENs, even in very advanced cases, and lends a benefit in overall survival of several years. In addition, significant improvement in clinical symptoms and excellent palliation can be achieved. In patients with progressive NENs, fractionated, personalized PRRNT with lower doses of radioactivity given over a longer period (Bad Berka Concept) results in good therapeutic responses. By this concept, severe hematologic and/or renal toxicity can be reduced or completely avoided, and the quality of life can be improved. Sequential (DUO-PRRNT) and concurrent (TANDEM-PRRNT) administrations of radiopeptides are more effective in progressive NEN than using either radionuclide alone. PRRNT should only be performed at specialized centers, as NEN patients need highly individualized interdisciplinary treatment and long-term care. Copyright © 2012 Elsevier Inc. All rights reserved.
Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring*
Lawless, Craig; Holman, Stephen W.; Brownridge, Philip; Lanthaler, Karin; Harman, Victoria M.; Watkins, Rachel; Hammond, Dean E.; Miller, Rebecca L.; Sims, Paul F. G.; Grant, Christopher M.; Eyers, Claire E.; Beynon, Robert J.
2016-01-01
Defining intracellular protein concentration is critical in molecular systems biology. Although strategies for determining relative protein changes are available, defining robust absolute values in copies per cell has proven significantly more challenging. Here we present a reference data set quantifying over 1800 Saccharomyces cerevisiae proteins by direct means using protein-specific stable-isotope labeled internal standards and selected reaction monitoring (SRM) mass spectrometry, far exceeding any previous study. This was achieved by careful design of over 100 QconCAT recombinant proteins as standards, defining 1167 proteins in terms of copies per cell and upper limits on a further 668, with robust CVs routinely less than 20%. The selected reaction monitoring-derived proteome is compared with existing quantitative data sets, highlighting the disparities between methodologies. Coupled with a quantification of the transcriptome by RNA-seq taken from the same cells, these data support revised estimates of several fundamental molecular parameters: a total protein count of ∼100 million molecules-per-cell, a median of ∼1000 proteins-per-transcript, and a linear model of protein translation explaining 70% of the variance in translation rate. This work contributes a “gold-standard” reference yeast proteome (including 532 values based on high quality, dual peptide quantification) that can be widely used in systems models and for other comparative studies. PMID:26750110
Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen
2012-04-01
Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.
Spin-labelled diketopiperazines and peptide-peptoid chimera by Ugi-multi-component-reactions.
Sultani, Haider N; Haeri, Haleh H; Hinderberger, Dariush; Westermann, Bernhard
2016-12-28
For the first time, spin-labelled coumpounds have been obtained by isonitrile-based multi component reactions (IMCRs). The typical IMCR Ugi-protocols offer a simple experimental setup allowing structural variety by which labelled diketopiperazines (DKPs) and peptide-peptoid chimera have been synthesized. The reaction keeps the paramagnetic spin label intact and offers a simple and versatile route to a large variety of new and chemically diverse spin labels.
13C-13C rotational resonance in a transmembrane peptide: A comparison of the fluid and gel phases
NASA Astrophysics Data System (ADS)
Langlais, Denis B.; Hodges, Robert S.; Davis, James H.
1999-05-01
A comparative study of two doubly 13C labeled amphiphilic transmembrane peptides was undertaken to determine the potential of rotational resonance for measuring internuclear distances through the direct dipolar coupling in the presence of motion. The two peptides, having the sequence acetyl-K2-G-L16-K2-A-amide, differed only in the position of 13C labels. The first peptide, [1-13C]leu11:[α-13C]leu12, had labels on adjacent residues, at the carbonyl of leu11 and the α carbon of leu12. The second, [1-13C]leu8:[α-13\\|C]leu11, was labeled on consecutive turns of the α-helical peptide. The internuclear distance between labeled positions of the first peptide, which for an ideal α helix has a value of 2.48 Å, is relatively independent of internal flexibility or peptide conformational change. The dipolar coupling between these two nuclei is sensitive to motional averaging by molecular reorientation, however, making this peptide ideal for investigating these motions. The internuclear distance between labels on the second peptide has an expected static ideal α-helix value of 4.6 Å, but this is sensitive to internal flexibility. In addition, the dipolar coupling between these two nuclei is much weaker because of their larger separation, making this peptide a much more difficult test of the rotational resonance technique. The dipolar couplings between the labeled nuclei of these two peptides were measured by rotational resonance in the dry peptide powders and in multilamellar dispersions with dimyristoylphosphatidylcholine in the gel phase, at -10 °C, and in the fluid phase, at 40 °C. The results for the peptide having adjacent labels can be readily interpreted in terms of a simple model for the peptide motion. The results for the second peptide show that, in the fluid phase, the motionally averaged dipolar coupling is too small to be measured by rotational resonance. Rotational resonance, rotational echo double resonance, and related techniques can be used to obtain reliable and valuable dipolar couplings in static solid and membrane systems. The interpretation of these couplings in terms of internuclear distances is straightforward in the absence of molecular motion. These techniques hold considerable promise for membrane protein structural studies under conditions, such as at low temperatures, where molecular motion does not modulate the dipolar couplings. However, a typical membrane at physiological temperatures exhibits complex molecular motions. In the absence of an accurate and detailed description of both internal and whole body molecular motions, it is unlikely that techniques of this type, which are based on extracting distances from direct internuclear dipolar couplings, can be used to study molecular structure under these conditions. Furthermore, the reduction in the strengths of the dipolar couplings by these motions dramatically reduces the useful range of distances which can be measured.
pyQms enables universal and accurate quantification of mass spectrometry data.
Leufken, Johannes; Niehues, Anna; Sarin, L Peter; Wessel, Florian; Hippler, Michael; Leidel, Sebastian A; Fufezan, Christian
2017-10-01
Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Identification and quantification of human kidney atrial natriuretic peptide receptors.
Kahana, L; Yechiely, H; Mecz, Y; Lurie, A
1995-04-01
The present study determined 125I-label atrial natriuretic peptide (ANP) binding sites in human kidney glomerular and papillary membranes. The membranes were prepared from non-malignant renal tissue obtained at nephrectomy of patients with renal carcinoma. To evaluate the proportion of ANP receptor classes ANP-R1 (ANPR-A, -B) versus ANP-R2 (ANPR-C), competitive binding studies were performed using [125I]-ANP in the presence of increasing concentrations of ANP or an internally ring-deleted analog, des(Gln116, Ser117, Gly118, Leu119, Gly120)ANP(102-121), called C-ANP, which binds selectively to ANPR-C receptors. Analysis of the competitive binding curve with ANP in glomerular membranes suggested the presence of one group of high-affinity receptors with dissociation constant Kd = 26 +/- 12 pmol/l and density Bmax = 101 +/- 47 nmol/kg protein. A decrease of 10-30% in Bmax with no change in Kd was obtained in the presence of excess (10(-6) mol/l) C-ANP, suggesting the existence of a small amount of a second class of receptors, the ANPR-C class. The densities of ANPR-A, -B versus ANPR-C receptors in human glomeruli, calculated from competitive inhibition experiments, were 75 +/- 42 and 22 +/- 16 nmol/kg protein (N = 8). Autoradiography of the sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions showed two bands: a highly labeled 130kD band and a weakly labeled 66 kD band, both displaced by ANP. Only the 66-kD band was displaced by the C-ANP analog. Human papilla membrane, as shown by competition binding studies and SDS gel electrophoresis, presented only one class of receptors with Kd = 40 +/- 23 pmol/l (mean +/- SD, N = 3) and Bmax = 17 +/- 6.3 nmol/kg protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven
2018-01-16
Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.
Immunochemical Detection Methods for Gluten in Food Products: Where Do We Go from Here?
Slot, I D Bruins; van der Fels-Klerx, H J; Bremer, M G E G; Hamer, R J
2016-11-17
Accurate and reliable quantification methods for gluten in food are necessary to ensure proper product labeling and thus safeguard the gluten sensitive consumer against exposure. Immunochemical detection is the method of choice, as it is sensitive, rapid and relatively easy to use. Although a wide range of detection kits are commercially available, there are still many difficulties in gluten detection that have not yet been overcome. This review gives an overview of the currently commercially available immunochemical detection methods, and discusses the problems that still exist in gluten detection in food. The largest problems are encountered in the extraction of gluten from food matrices, the choice of epitopes targeted by the detection method, and the use of a standardized reference material. By comparing the available techniques with the unmet needs in gluten detection, the possible benefit of a new multiplex immunoassay is investigated. This detection method would allow for the detection and quantification of multiple harmful gluten peptides at once and would, therefore, be a logical advancement in gluten detection in food.
Bae, Yong Jin; Park, Kyung Man; Ahn, Sung Hee; Moon, Jeong Hee; Kim, Myung Soo
2014-08-01
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Panizza, Elena; Branca, Rui M M; Oliviusson, Peter; Orre, Lukas M; Lehtiö, Janne
2017-07-03
Protein phosphorylation is involved in the regulation of most eukaryotic cells functions and mass spectrometry-based analysis has made major contributions to our understanding of this regulation. However, low abundance of phosphorylated species presents a major challenge in achieving comprehensive phosphoproteome coverage and robust quantification. In this study, we developed a workflow employing titanium dioxide phospho-enrichment coupled with isobaric labeling by Tandem Mass Tags (TMT) and high-resolution isoelectric focusing (HiRIEF) fractionation to perform in-depth quantitative phosphoproteomics starting with a low sample quantity. To benchmark the workflow, we analyzed HeLa cells upon pervanadate treatment or cell cycle arrest in mitosis. Analyzing 300 µg of peptides per sample, we identified 22,712 phosphorylation sites, of which 19,075 were localized with high confidence and 1,203 are phosphorylated tyrosine residues, representing 6.3% of all detected phospho-sites. HiRIEF fractions with the most acidic isoelectric points are enriched in multiply phosphorylated peptides, which represent 18% of all the phospho-peptides detected in the pH range 2.5-3.7. Cross-referencing with the PhosphoSitePlus database reveals 1,264 phosphorylation sites that have not been previously reported and kinase association analysis suggests that a subset of these may be functional during the mitotic phase.
In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides
2017-01-01
Collagen, the major structural component of nearly all mammalian tissues, undergoes extensive proteolytic remodeling during developmental states and a variety of life-threatening diseases such as cancer, myocardial infarction, and fibrosis. While degraded collagen could be an important marker of tissue damage, it is difficult to detect and target using conventional tools. Here, we show that a designed peptide (collagen hybridizing peptide: CHP), which specifically hybridizes to the degraded, unfolded collagen chains, can be used to image degraded collagen and inform tissue remodeling activity in various tissues: labeled with 5-carboxyfluorescein and biotin, CHPs enabled direct localization and quantification of collagen degradation in isolated tissues within pathologic states ranging from osteoarthritis and myocardial infarction to glomerulonephritis and pulmonary fibrosis, as well as in normal tissues during developmental programs associated with embryonic bone formation and skin aging. The results indicate the general correlation between the level of collagen remodeling and the amount of denatured collagen in tissue and show that the CHP probes can be used across species and collagen types, providing a versatile tool for not only pathology and developmental biology research but also histology-based disease diagnosis, staging, and therapeutic screening. This study lays the foundation for further testing CHP as a targeting moiety for theranostic delivery in various animal models. PMID:28877431
ICPD-A New Peak Detection Algorithm for LC/MS
2010-01-01
Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790
Lin, Ping-Ping; Chen, Wei-Li; Yuan, Fei; Sheng, Lei; Wu, Yu-Jia; Zhang, Wei-Wei; Li, Guo-Qing; Xu, Hong-Rong; Li, Xue-Ning
2017-12-01
Amyloid beta (Aβ) peptides in cerebrospinal fluid are extensively estimated for identification of Alzheimer's disease (AD) as diagnostic biomarkers. Unfortunately, their pervasive application is hampered by interference from Aβ propensity of self-aggregation, nonspecifically bind to surfaces and matrix proteins, and by lack of quantitive standardization. Here we report on an alternative Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous measurement of human amyloid beta peptides Aβ1-38, Aβ1-40 and Aβ1-42 in cerebrospinal fluid (CSF) using micro-elution solid phase extraction (SPE). Samples were pre-processing by the mixed-mode micro-elution solid phase extraction and quantification was performed in the positive ion multiple reaction monitoring (MRM) mode using electrospray ionization. The stable-isotope labeled Aβ peptides 15 N 51 - Aβ1-38, 15 N 53 - Aβ1-40 and 15 N 55 - Aβ1-42 peptides were used as internal standards. And the artificial cerebrospinal fluid (ACSF) containing 5% rat plasma was used as a surrogate matrix for calibration curves. The quality control (QC) samples at 0.25, 2 and 15ng/mL were prepared. A "linear" regression (1/x 2 weighting): y=ax+b was used to fit the calibration curves over the concentration range of 0.1-20ng/mL for all three peptides. Coefficient of variation (CV) of intra-batch and inter-batch assays were all less than 6.44% for Aβ1-38, 6.75% for Aβ1-40 and 10.74% for Aβ1-42. The precision values for all QC samples of three analytes met the acceptance criteria. Extract recoveries of Aβ1-38, Aβ1-40 and Aβ1-42 were all greater than 70.78%, both in low and high QC samples. The stability assessments showed that QC samples at both low and high levels could be stable for at least 24h at 4°C, 4h at room temperature and through three freeze-thaw cycles without sacrificing accuracy or precision. And no significant carryover effect was observed. This validated UHPLC/MS/MS method was successfully applied to the quantitation of Aβ peptides in real human CSF samples. Our work may provide a reference method for simultaneous quantitation of human Aβ1-38, Aβ1-40 and Aβ1-42 from CSF. Copyright © 2017 Elsevier B.V. All rights reserved.
Monitoring of protease catalyzed reactions by quantitative MALDI MS using metal labeling.
Gregorius, Barbara; Jakoby, Thomas; Schaumlöffel, Dirk; Tholey, Andreas
2013-05-21
Quantitative mass spectrometry is a powerful tool for the determination of enzyme activities as it does not require labeled substrates and simultaneously allows for the identification of reaction products. However, major restrictions are the limited number of samples which can be measured in parallel due to the need for isotope labeled internal standards. Here we describe the use of metal labeling of peptides for the setup of multiplexed enzyme activity assays. After proteolytic reaction, using the protease trypsin, remaining substrates and peptide products formed in the reaction were labeled with metal chelators complexing rare earth metal ions. Labeled peptides were quantified with high accuracy and over a wide dynamic range (at least 2 orders of magnitude) using MALDI MS in case of simple peptide mixtures or by LC-MALDI MS for complex substrate mixtures and used for the monitoring of time-dependent product formation and substrate consumption. Due to multiplexing capabilities and accuracy, the presented approach will be useful for the determination of enzyme activities with a wide range of biochemical and biotechnological applications.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M
2015-02-18
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.
2016-01-01
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741
A multi-center study benchmarks software tools for label-free proteome quantification
Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan
2016-01-01
The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404
A multicenter study benchmarks software tools for label-free proteome quantification.
Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan
2016-11-01
Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.
Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.
2013-01-01
PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347
Detecting molecular forms of antithrombin by LC-MRM-MS: defining the measurands.
Ruhaak, L Renee; Romijn, Fred P H T M; Smit, Nico P M; van der Laarse, Arnoud; Pieterse, Mervin M; de Maat, Moniek P M; Haas, Fred J L M; Kluft, Cornelis; Amiral, Jean; Meijer, Piet; Cobbaert, Christa M
2018-05-01
Antithrombin (AT) is a critical regulator of coagulation, and its overall activity is typically measured using functional tests. A large number of molecular forms of AT have been identified and each individual carries multiple molecular proteoforms representing variable activities. Conventional functional tests are completely blind for these proteoforms. A method that ensures properly defined measurands for AT is therefore needed. We here assess whether mass spectrometry technology, in particular multiple reaction monitoring (MRM), is suitable for the quantification of AT and the qualitative detection of its molecular proteoforms. Plasma proteins were denatured, reduced and alkylated prior to enzymatic digestion. MRM transitions were developed towards tryptic peptides and glycopeptides using AT purified from human plasma. For each peptide, three transitions were measured, and stable isotope-labeled peptides were used for quantitation. Completeness of digestion was assessed using digestion time curves. MRM transitions were developed for 19 tryptic peptides and 4 glycopeptides. Two peptides, FDTISEK and FATTFYQHLADSK, were used for quantitation, and using a calibration curve of isolated AT in 40 g/L human serum albumin, CVs below 3.5% were obtained for FDTISEK, whereas CVs below 8% were obtained for FATTFYQHLADSK. Of the 26 important AT mutations, 20 can be identified using this method, while altered glycosylation profiles can also be detected. We here show the feasibility of the liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) technique for the quantitation of AT and the qualitative analysis of most of its molecular proteoforms. Knowing the measurands will enable standardization of AT tests by providing in-depth information on the molecular proteoforms of AT.
Domanski, Dominik; Murphy, Leigh C.; Borchers, Christoph H.
2010-01-01
We have developed a phosphatase-based phosphopeptide quantitation (PPQ) method for determining phosphorylation stoichiometry in complex biological samples. This PPQ method is based on enzymatic dephosphorylation, combined with specific and accurate peptide identification and quantification by multiple reaction monitoring (MRM) detection with stable-isotope-labeled standard peptides. In contrast with the classical MRM methods for the quantitation of phosphorylation stoichiometry, the PPQ-MRM method needs only one non-phosphorylated SIS (stable isotope-coded standard) and two analyses (one for the untreated and one for the phosphatase-treated sample), from which the expression and modification levels can accurately be determined. From these analyses, the % phosphorylation can be determined. In this manuscript, we compare the PPQ-MRM method with an MRM method without phosphatase, and demonstrate the application of these methods to the detection and quantitation of phosphorylation of the classic phosphorylated breast cancer biomarkers (ERα and HER2), and for phosphorylated RAF and ERK1, which also contain phosphorylation sites with important biological implications. Using synthetic peptides spiked into a complex protein digest, we were able to use our PPQ-MRM method to accurately determine the total phosphorylation stoichiometry on specific peptides, as well as the absolute amount of the peptide and phosphopeptide present. Analyses of samples containing ERα protein revealed that the PPQ-MRM is capable of determining phosphorylation stoichiometry in proteins from cell lines, and is in good agreement with determinations obtained using the direct MRM approach in terms of phosphorylation and total protein amount. PMID:20524616
NASA Astrophysics Data System (ADS)
Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel
2006-02-01
Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.
Liu, Yufang; Pischetsrieder, Monika
2017-03-08
Health-promoting effects of kefir may be partially caused by bioactive peptides. To evaluate their formation or degradation during gastrointestinal digestion, we monitored changes of the peptide profile in a model of (1) oral, (2) gastric, and (3) small intestinal digestion of kefir. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analyses revealed clearly different profiles between digests 2/3 and kefir/digest 1. Subsequent ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry identified 92 peptides in total (25, 25, 43, and 30, partly overlapping in kefir and digests 1, 2, and 3, respectively), including 16 peptides with ascribed bioactivity. Relative quantification in scheduled multiple reaction monitoring mode showed that many bioactive peptides were released by simulated digestion. Most prominently, the concentration of angiotensin-converting enzyme inhibitor β-casein 203-209 increased approximately 10 000-fold after combined oral, gastric, and intestinal digestion. Thus, physiological digestive processes may promote bioactive peptide formation from proteins and oligopeptides in kefir. Furthermore, bioactive peptides present in certain compartments of the gastrointestinal tract may exert local physiological effects.
Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel
2016-01-01
(68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
A method for the 32P labeling of peptides or peptide nucleic acid oligomers
NASA Technical Reports Server (NTRS)
Kozlov, I. A.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
A novel approach to the radioactive labeling of peptides and PNA oligomers is described. It is based on the conjugation of a deoxynucleoside 3'-phosphate with the terminal amine of the substrate, followed by phosphorylation of the 5'-hydroxyl group of the nucleotide using T4 polynucleotide kinase and [gamma-32P]ATP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Bourland, R.E.; Fernstrom, J.D.
1981-01-01
L(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin were purified from hypothalami and neurohypophyses 4 h after rats received L(/sup 35/S)Cys via the third ventricle. After acetic acid extraction, Sephadex G-25 filtration, and chemoadsorption to C18-silica (Sep-Pak cartridges), the labeled peptides were rapidly separated by gradient elution, reversed phase, high pressure liquid chromatography (HPLC). The identity and isotopic purity of the labeled peptides were determined by several reversed phase HPLC procedures in conjunction with chemical modification. The labeled peptide fractions were at least 50% radiochemically pure. Using this HPLC isolation procedure, incorporation of L-(/sup 35/S)Cys into each peptide was determined in hydratedmore » and dehydrated rats. Label incorporation into arginine vasopressin and oxytocin in the hypothalamus and the neurohypophysis of dehydrated rats was 2-3 times greater than that in hydrated rats. Incorporation of label into hypothalamic and neurohypophyseal somatostatin was unaffected by the hydration state of the animal. This procedure thus provides a very rapid, but sensitive, set of techniques for studying the control of small peptide biosynthesis in the brain.« less
Covalent dye attachment influences the dynamics and conformational properties of flexible peptides
Crevenna, Alvaro H.; Bomblies, Rainer; Lamb, Don C.
2017-01-01
Fluorescence spectroscopy techniques like Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) have become important tools for the in vitro and in vivo investigation of conformational dynamics in biomolecules. These methods rely on the distance-dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent acceptor fluorophore (FRET) or a non-fluorescent quencher, as used in FCS with photoinduced electron transfer (PET). The attachment of fluorophores to the molecule of interest can potentially alter the molecular properties and may affect the relevant conformational states and dynamics especially of flexible biomolecules like intrinsically disordered proteins (IDP). Using the intrinsically disordered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on the molecular properties. We perform extensive molecular dynamics simulations on the labeled and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experimental and simulated timescales of end-to-end fluctuations were found in excellent agreement. Comparison between simulations with and without labels reveal that the π-stacking interaction between the fluorophore labels traps the conformation of S-peptide in a single dominant state, while the unlabeled peptide undergoes continuous conformational rearrangements. Furthermore, we find that the open to closed transition rate of S-peptide is decreased by at least one order of magnitude by the fluorophore attachment. Our approach combining experimental and in silico methods provides a benchmark for the simulations and reveals the significant effect that fluorescence labeling can have on the conformational dynamics of small biomolecules, at least for inherently flexible short peptides. The presented protocol is not only useful for comparing PET-FCS experiments with simulation results but provides a strategy to minimize the influence on molecular properties when chosing labeling positions for fluorescence experiments. PMID:28542243
Mass Defect Labeling of Cysteine for Improving Peptide Assignment in Shotgun Proteomic Analyses
Hernandez, Hilda; Niehauser, Sarah; Boltz, Stacey A.; Gawandi, Vijay; Phillips, Robert S.; Amster, I. Jonathan
2006-01-01
A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2′-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology. PMID:16689545
Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan
2017-01-01
Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and therapeutic targets. PMID:28077793
González-García, Estefanía; García, María Concepción; Marina, María Luisa
2018-03-09
Prunus genus fruit seeds are sources of highly angiotensin-I-converting enzyme (ACE)-inhibitory peptides. The presence of peptides IYSPH, IYTPH, IFSPR, and VAIP seems to be related to this activity but no previous work has demonstrated the direct relationship between the concentration of these peptides and the antihypertensive activity of hydrolysates. This work describes the development of a method for the quantification of these peptides in Prunus seeds hydrolysates based on capillary liquid chromatography-IT-MS/MS. The analytical characteristics of the method were evaluated through the study of the linearity, LOD, LOQ, presence of matrix interferences, precision, and recovery. The developed methodology was applied to the determination of the four peptides in seed hydrolysates from different Prunus genus fruits: peaches (7 varieties), plums (2 varieties), nectarines (3 varieties), apricots (2 varieties), cherry, and paraguayo. Peaches and plums seed hydrolysates yielded the highest concentrations of these peptides while paraguayo one showed the lowest concentrations. A high correlation between peptides concentrations was demonstrated suggesting that the four peptides could be released from the same seed proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
[Progress in stable isotope labeled quantitative proteomics methods].
Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui
2013-06-01
Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.
Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F
2011-11-01
Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.
Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions
Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.
2009-01-01
Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790
Gaubert, Alexandra; Jeudy, Jérémy; Rougemont, Blandine; Bordes, Claire; Lemoine, Jérôme; Casabianca, Hervé; Salvador, Arnaud
2016-07-01
In a stricter legislative context, greener detergent formulations are developed. In this way, synthetic surfactants are frequently replaced by bio-sourced surfactants and/or used at lower concentrations in combination with enzymes. In this paper, a LC-MS/MS method was developed for the identification and quantification of enzymes in laundry detergents. Prior to the LC-MS/MS analyses, a specific sample preparation protocol was developed due to matrix complexity (high surfactant percentages). Then for each enzyme family mainly used in detergent formulations (protease, amylase, cellulase, and lipase), specific peptides were identified on a high resolution platform. A LC-MS/MS method was then developed in selected reaction monitoring (SRM) MS mode for the light and corresponding heavy peptides. The method was linear on the peptide concentration ranges 25-1000 ng/mL for protease, lipase, and cellulase; 50-1000 ng/mL for amylase; and 5-1000 ng/mL for cellulase in both water and laundry detergent matrices. The application of the developed analytical strategy to real commercial laundry detergents enabled enzyme identification and absolute quantification. For the first time, identification and absolute quantification of enzymes in laundry detergent was realized by LC-MS/MS in a single run. Graphical Abstract Identification and quantification of enzymes by LC-MS/MS.
Endoscopic detection of murine colonic dysplasia using a novel fluorescence-labeled peptide
NASA Astrophysics Data System (ADS)
Miller, Sharon J.; Joshi, Bishnu P.; Gaustad, Adam; Fearon, Eric R.; Wang, Thomas D.
2011-03-01
Current endoscopic screening does not detect all pre-malignant (dysplastic) colorectal mucosa, thus requiring the development of more sensitive, targeted techniques to improve detection. The presented work utilizes phage display to identify a novel peptide binder to colorectal dysplasia in a CPC;Apc mouse model. A wide-field, small animal endoscope capable of fluorescence excitation (450-475 nm) identified polyps via white light and also collected fluorescence images (510 nm barrier filter) of peptide binding. The peptide bound ~2-fold greater to the colonic adenomas when compared to the control peptide. We have imaged fluorescence-labeled peptide binding in vivo that is specific towards distal colonic adenomas.
Roosenburg, S; Laverman, P; Joosten, L; Cooper, M S; Kolenc-Peitl, P K; Foster, J M; Hudson, C; Leyton, J; Burnet, J; Oyen, W J G; Blower, P J; Mather, S J; Boerman, O C; Sosabowski, J K
2014-11-03
Cholecystokinin-2 (CCK-2) receptors, overexpressed in cancer types such as small cell lung cancers (SCLC) and medullary thyroid carcinomas (MTC), may serve as targets for peptide receptor radionuclide imaging. A variety of CCK and gastrin analogues has been developed, but a major drawback is metabolic instability or high kidney uptake. The minigastrin analogue PP-F11 has previously been shown to be a promising peptide for imaging of CCK-2 receptor positive tumors and was therefore further evaluated. The peptide was conjugated with one of the macrocyclic chelators DOTA, NOTA, or NODAGA. The peptide conjugates were then radiolabeled with either (68)Ga, (64)Cu, or (111)In. All (radio)labeled compounds were evaluated in vitro (IC50) and in vivo (biodistribution and PET/CT and SPECT/CT imaging). IC50 values were in the low nanomolar range for all compounds (0.79-1.51 nM). In the biodistribution studies, (68)Ga- and (111)In-labeled peptides showed higher tumor-to-background ratios than the (64)Cu-labeled compounds. All tested radiolabeled compounds clearly visualized the CCK2 receptor positive tumor in PET or SPECT imaging. The chelator did not seem to affect in vivo behavior of the peptide for (111)In- and (68)Ga-labeled peptides. In contrast, the biodistribution of the (64)Cu-labeled peptides showed high uptake in the liver and in other organs, most likely caused by high blood levels, probably due to dissociation of (64)Cu from the chelator and subsequent transchelation to proteins. Based on the present study, (68)Ga-DOTA-PP-F11 might be a promising radiopharmaceutical for PET/CT imaging of CCK2 receptor expressing tumors such as MTC and SCLC. Clinical studies are warranted to investigate the potential of this tracer.
Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.
Dittrich, Julia; Ceglarek, Uta
2017-01-01
The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.
Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal
2017-05-01
Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tritium-labeled (E,E)-2,5-Bis(4’-hydroxy-3’-carboxystyryl)benzene as a Probe for β-Amyloid Fibrils
Matveev, Sergey V.; Kwiatkowski, Stefan; Sviripa, Vitaliy M.; Fazio, Robert C.; Watt, David S.; LeVine, Harry
2014-01-01
Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[3H]-2,5-bis(4’-hydroxy-3’-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with synthetic Aβ and tau fibrils. PMID:25452000
Razavi, Morteza; Leigh Anderson, N; Pope, Matthew E; Yip, Richard; Pearson, Terry W
2016-09-25
Efficient robotic workflows for trypsin digestion of human plasma and subsequent antibody-mediated peptide enrichment (the SISCAPA method) were developed with the goal of improving assay precision and throughput for multiplexed protein biomarker quantification. First, an 'addition only' tryptic digestion protocol was simplified from classical methods, eliminating the need for sample cleanup, while improving reproducibility, scalability and cost. Second, methods were developed to allow multiplexed enrichment and quantification of peptide surrogates of protein biomarkers representing a very broad range of concentrations and widely different molecular masses in human plasma. The total workflow coefficients of variation (including the 3 sequential steps of digestion, SISCAPA peptide enrichment and mass spectrometric analysis) for 5 proteotypic peptides measured in 6 replicates of each of 6 different samples repeated over 6 days averaged 3.4% within-run and 4.3% across all runs. An experiment to identify sources of variation in the workflow demonstrated that MRM measurement and tryptic digestion steps each had average CVs of ∼2.7%. Because of the high purity of the peptide analytes enriched by antibody capture, the liquid chromatography step is minimized and in some cases eliminated altogether, enabling throughput levels consistent with requirements of large biomarker and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Jing, Li; Amster, I Jonathan
2009-10-15
Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.
Measuring peptide translocation into large unilamellar vesicles.
Spinella, Sara A; Nelson, Rachel B; Elmore, Donald E
2012-01-27
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.
Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao
2017-06-01
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.
Kyro, Kelly; Manandhar, Surya P.; Mullen, Daniel; Schmidt, Walter K.; Distefano, Mark D.
2012-01-01
Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-L-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design. PMID:22079863
Gunawardena, Harsha P; O'Brien, Jonathon; Wrobel, John A; Xie, Ling; Davies, Sherri R; Li, Shunqiang; Ellis, Matthew J; Qaqish, Bahjat F; Chen, Xian
2016-02-01
Single quantitative platforms such as label-based or label-free quantitation (LFQ) present compromises in accuracy, precision, protein sequence coverage, and speed of quantifiable proteomic measurements. To maximize the quantitative precision and the number of quantifiable proteins or the quantifiable coverage of tissue proteomes, we have developed a unified approach, termed QuantFusion, that combines the quantitative ratios of all peptides measured by both LFQ and label-based methodologies. Here, we demonstrate the use of QuantFusion in determining the proteins differentially expressed in a pair of patient-derived tumor xenografts (PDXs) representing two major breast cancer (BC) subtypes, basal and luminal. Label-based in-spectra quantitative peptides derived from amino acid-coded tagging (AACT, also known as SILAC) of a non-malignant mammary cell line were uniformly added to each xenograft with a constant predefined ratio, from which Ratio-of-Ratio estimates were obtained for the label-free peptides paired with AACT peptides in each PDX tumor. A mixed model statistical analysis was used to determine global differential protein expression by combining complementary quantifiable peptide ratios measured by LFQ and Ratio-of-Ratios, respectively. With minimum number of replicates required for obtaining the statistically significant ratios, QuantFusion uses the distinct mechanisms to "rescue" the missing data inherent to both LFQ and label-based quantitation. Combined quantifiable peptide data from both quantitative schemes increased the overall number of peptide level measurements and protein level estimates. In our analysis of the PDX tumor proteomes, QuantFusion increased the number of distinct peptide ratios by 65%, representing differentially expressed proteins between the BC subtypes. This quantifiable coverage improvement, in turn, not only increased the number of measurable protein fold-changes by 8% but also increased the average precision of quantitative estimates by 181% so that some BC subtypically expressed proteins were rescued by QuantFusion. Thus, incorporating data from multiple quantitative approaches while accounting for measurement variability at both the peptide and global protein levels make QuantFusion unique for obtaining increased coverage and quantitative precision for tissue proteomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
LeBlanc, André; Michaud, Sarah A; Percy, Andrew J; Hardie, Darryl B; Yang, Juncong; Sinclair, Nicholas J; Proudfoot, Jillaine I; Pistawka, Adam; Smith, Derek S; Borchers, Christoph H
2017-07-07
When quantifying endogenous plasma proteins for fundamental and biomedical research - as well as for clinical applications - precise, reproducible, and robust assays are required. Targeted detection of peptides in a bottom-up strategy is the most common and precise mass spectrometry-based quantitation approach when combined with the use of stable isotope-labeled peptides. However, when measuring protein in plasma, the unknown endogenous levels prevent the implementation of the best calibration strategies, since no blank matrix is available. Consequently, several alternative calibration strategies are employed by different laboratories. In this study, these methods were compared to a new approach using two different stable isotope-labeled standard (SIS) peptide isotopologues for each endogenous peptide to be quantified, enabling an external calibration curve as well as the quality control samples to be prepared in pooled human plasma without interference from endogenous peptides. This strategy improves the analytical performance of the assay and enables the accuracy of the assay to be monitored, which can also facilitate method development and validation.
Rauniyar, Navin
2015-01-01
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379
Bertaccini, Diego; Vaca, Sebastian; Carapito, Christine; Arsène-Ploetze, Florence; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine
2013-06-07
In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.
Cooke, R J; Björnestedt, R; Douglas, K T; McKie, J H; King, M D; Coles, B; Ketterer, B; Mannervik, B
1994-09-01
The glutathione transferases (GSTs) form a group of enzymes responsible for a wide range of molecular detoxications. The photoaffinity label S-(2-nitro-4-azidophenyl)glutathione was used to study the hydrophobic region of the active site of the rat liver GST 1-1 and 2-2 isoenzymes (class Alpha) as well as the rat class-Mu GST 3-3. Photoaffinity labelling was carried out using a version of S-(2-nitro-4-azidophenyl)glutathione tritiated in the arylazido ring. The labelling occurred with higher levels of radioisotope incorporation for the Mu than the Alpha families. Taking rat GST 3-3, 1.18 (+/- 0.05) mol of radiolabel from S-(2-nitro-4-azidophenyl)glutathione was incorporated per mol of dimeric enzyme, which could be blocked by the presence of the strong competitive inhibitor, S-tritylglutathione (Ki = 1.4 x 10(-7) M). Radiolabelling of the protein paralleled the loss of enzyme activity. Photoaffinity labelling by tritiated S-(2-nitro-4-azidophenyl)glutathione on a preparative scale (in the presence and absence of S-tritylglutathione) followed by tryptic digestion and purification of the labelled peptides indicated that GST 3-3 was specifically photolabelled; the labelled peptides were sequenced. Similarly, preparative photoaffinity labelling by S-(2-nitro-4-azidophenyl)glutathione of the rat liver 1-1 isoenzyme, the human GST A1-1 and the human-rat chimaeric GST, H1R1/1, was carried out with subsequent sequencing of radiolabelled h.p.l.c.-purified tryptic peptides. The results were interpreted by means of molecular-graphics analysis to locate photoaffinity-labelled peptides using the X-ray-crystallographic co-ordinates of rat GST 3-3 and human GST A1-1. The molecular-graphical analysis indicated that the labelled peptides are located within the immediate vicinity of the region occupied by S-substituted glutathione derivatives bound in the active-site cavity of the GSTs investigated.
Targeted radionuclide therapy for lung cancer with iodine-131-labeled peptide in a nude-mouse model.
Chen, Zhenzhu; Gao, Hongyi; Li, Man; Fang, Shun; Li, Guiping; Guo, Linlang
2017-06-01
Integrin α3β1 has been shown to be a novel candidate target for the imaging and specific therapy of non-small-cell lung cancer. We have previously reported on a peptide containing a novel motif of NGXG that specifically binds to the integrin α3 receptor on lung cancer cells using a one-bead one-peptide combinatorial library. In this study, we developed the peptide cNGEGQQc-based therapeutic agent labeling with radionuclide iodine-131 (I) and evaluated its characteristics including stability, biodistribution, antitumor activity, and safety. The results showed that I-cNGEGQQc was stable in serum. Furthermore, the biodistribution of I-cNGEGQQc was determined in normal mice and rabbits. In-vivo biodistribution studies showed that radiolabeled peptide in the kidney was significantly higher than that in other organs. Nude mice bearing lung cancer cell xenografts (H1975 and L78) were used as an in-vivo model for tumor-inhibition efficacy studies with I-cNGEGQQc. The tumor growth decreased significantly in mice receiving I-labeled peptide compared with the controls and the effect of I-labeled peptide can be blocked by unlabeled cNGEGQQc. Safety studies showed that I-cNGEGQQc was relatively safe for animals without significant toxicity. Our data suggest that I-cNGEGQQc has potential as a targeted radiotherapeutic agent for non-small-cell lung cancer.
(18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).
Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen
2009-09-01
Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to currently used chemoselective one-step (18)F-labelling protocols.
Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G
2018-03-01
A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2 + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.
Generation of Small 32P-Labeled Peptides as a Potential Approach to Colorectal Cancer Therapy
Abraham, John M.; Cheng, Yulan; Hamilton, James P.; Paun, Bogdan; Jin, Zhe; Agarwal, Rachana; Kan, Takatsugu; David, Stefan; Olaru, Alexandru; Yang, Jian; Ito, Tetsuo; Selaru, Florin M.; Mori, Yuriko; Meltzer, Stephen J.
2008-01-01
Cancers have been revealed to be extremely heterogenous in terms of the frequency and types of mutations present in cells from different malignant tumors. Thus, it is likely that uniform clinical treatment is not optimal for all patients, and that the development of individualized therapeutic regimens may be beneficial. We describe the generation of multiple, unique small peptides nine to thirty-four amino acids in length which, when labeled with the radioisotope 32P, bind with vastly differing efficiencies to cell lines derived from different colon adenocarcinomas. In addition, the most effective of these peptides permanently transfers the 32P radioisotope to colorectal cancer cellular proteins within two hours at a rate that is more than 150 times higher than in cell lines derived from other cancers or from the normal tissues tested. Currently, the only two FDA-approved radioimmunotherapeutic agents in use both employ antibodies directed against the B cell marker CD20 for the treatment of non-Hodgkin's lymphoma. By using the method described herein, large numbers of different 32P-labeled peptides can be readily produced and assayed against a broad spectrum of cancer types. This report proposes the development and use of 32P-labeled peptides as potential individualized peptide-binding therapies for the treatment of colon adenocarcinoma patients. PMID:18575578
Gao, Feng; Sihver, Wiebke; Bergmann, Ralf; Belter, Birgit; Bolzati, Cristina; Salvarese, Nicola; Steinbach, Jörg; Pietzsch, Jens; Pietzsch, Hans-Jürgen
2018-06-06
α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH 2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [ 99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [ 99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [ 99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, R.C.; Caldwell, H.D.
1985-01-01
The objective of this study was to determine if in-gel chloramine-T radioiodination adequately labels OM proteins to allow for accurate and precise structural comparison of these molecules. Therefore, intrinsically /sup 14/C-amino acid labeled proteins and /sup 125/I-labeled proteins were cleaved with two endopeptidic reagents and the peptide fragments separated by HPLC. A comparison of retention times of the fragments, as determined by differential radiation counting, thus indicated whether /sup 125/Ilabeling identified of all the peptide peaks seen in the /sup 14/Clabeled proteins. Results demonstrated that radioiodination yields complete and accurate information about the primary structure of outer membrane proteins. Inmore » addition, it permits the use of extremely small amounts of protein allowing for method optimization and multiple separations to insure reproducibility.« less
Richards, S L; Cawley, A T; Cavicchioli, R; Suann, C J; Pickford, R; Raftery, M J
2016-04-01
Over recent years threats to racing have expanded to include naturally occurring biological molecules, such as peptides and proteins, and their synthetic analogues. Traditionally, antibodies have been used to enable detection of these compounds as they allow purification and concentration of the analyte of interest. The rapid expansion of peptide-based therapeutics necessitates a similarly rapid development of suitable antibodies or other means of enrichment. Potential alternative enrichment strategies include the use of aptamers, which offer the significant advantage of chemical synthesis once the nucleic acid sequence is known. A method was developed for the enrichment, detection and quantitation of gonadotropin-releasing hormone (GnRH) in equine urine using aptamer-based enrichment and LC-MS/MS. The method achieved comparable limits of detection (1 pg/mL) and quantification (2.5 pg/mL) to previously published antibody-based enrichment methods. The intra- and inter-assay precision achieved was less than 10% at both 5 and 20 pg/mL, and displayed a working dynamic range of 2.5-100 pg/mL. Significant matrix enhancement (170 ± 8%) and low analytical recovery (29 ± 15%) was observed, although the use of an isotopically heavy labelled GnRH peptide, GnRH (Pro(13)C5,(15)N), as the internal standard provides compensation for these parameters. Within the current limits of detection GnRH was detectable up to 1h post administration in urine and identification of a urinary catabolite extended this detection window to 4h. Based on the results of this preliminary investigation we propose the use of aptamers as a viable alternative to antibodies in the enrichment of peptide targets from equine urine. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Kim, Kwan-Soo; Song, Ki-Bong
2013-05-01
The importance of early Alzheimer's disease (AD) detection has been recognized to diagnose people at high risk of AD. The existence of intra/extracellular beta-amyloid (Aβ) of brain neurons has been regarded as the most archetypal hallmark of AD. The existing computed-image-based neuroimaging tools have limitations on accurate quantification of nanoscale Aβ peptides due to optical diffraction during imaging processes. Therefore, we propose a new method that is capable of evaluating a small amount of Aβ peptides by using photo-sensitive field-effect transistor (p-FET) integrated with magnetic force-based microbead collecting platform and selenium(Se) layer (thickness ~700 nm) as an optical filter. This method demonstrates a facile approach for the analysis of Aβ quantification using magnetic force and magnetic silica microparticles (diameter 0.2~0.3 μm). The microbead collecting platform mainly consists of the p-FET sensing array and the magnet (diameter ~1 mm) which are placed beneath each sensing region of the p-FET, which enables the assembly of the Aβ antibody conjugated microbeads, captures the Aβ peptides from samples, measures the photocurrents generated by the Q-dot tagged with Aβ peptides, and consequently results in the effective Aβ quantification.
DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption.
Bruno, John Gordon; Carrillo, Maria P; Phillips, Taylor; Hanson, Douglas; Bohmann, Jonathan A
2011-09-01
A novel DNA aptamer beacon is described for quantification of a 26-amino acid C-telopeptide (CTx) of human type I bone collagen. One aptamer sequence and its reverse complement dominated the aptamer pool (31.6% of sequenced clones). Secondary structures of these aptamers were examined for potential binding pockets. Three-dimensional computer models which analyzed docking topologies and binding energies were in agreement with empirical fluorescence experiments used to select one candidate loop for beacon assay development. All loop structures from the aptamer finalists were end-labeled with TYE 665 and Iowa Black quencher for comparison of beacon fluorescence levels as a function of CTx concentration. The optimal beacon, designated CTx 2R-2h yielded a low ng/ml limit of detection using a commercially available handheld fluorometer. The CTx aptamer beacon bound full-length 26-amino acid CTx peptide, but not a shorter 8-amino acid segment of CTx peptide which is a common target for commercial CTx ELISA kits. The prototype assay was shown to detect CTx peptide from human urine after creatinine and urea were removed by size-exclusion chromatography to prevent nonspecific denaturing of the aptamer beacon. This work demonstrates the potential of aptamer beacons to be utilized for rapid and sensitive bone health monitoring in a handheld or point-of-care format.
Tempest: GPU-CPU computing for high-throughput database spectral matching.
Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A
2012-07-06
Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.
Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.
Sunbul, Murat; Nacheva, Lora; Jäschke, Andres
2015-08-19
Labeling of proteins with fluorescent dyes in live cells enables the investigation of their roles in biological systems by fluorescence microscopy. Because the labeling procedure should not disturb the native function of the protein of interest, it is of high importance to find the optimum labeling method for the problem to be studied. Here, we developed a rapid one-step method to covalently and site-specifically label proteins with a TexasRed fluorophore in vitro and in live bacteria. To this end, a genetically encodable TexasRed fluorophore-binding peptide (TR512) was converted into a reactive tag (ReacTR) by adjoining a cysteine residue which rapidly reacts with N-α-chloroacetamide-conjugated TexasRed fluorophore owing to the proximity effect; ReacTR tag first binds to the TexasRed fluorophore and this interaction brings the nucleophilic cysteine and the electrophilic N-α-chloroacetamide groups in close proximity. Our method has several advantages over existing methods: (i) it utilizes a peptide tag much smaller than fluorescent proteins, the SNAP, CLIP, or HaLo tags; (ii) it allows for labeling of proteins with a small, photostable, red-emitting TexasRed fluorophore; (iii) the probe used is very easy to synthesize; (iv) no enzyme is required to transfer the fluorophore to the peptide tag; and (v) labeling yields a stable covalent product in a very fast reaction.
Food for thought: Selecting the right enzyme for the digestion of gluten.
Colgrave, Michelle L; Byrne, Keren; Howitt, Crispin A
2017-11-01
Gluten describes a complex mixture of proteins found in wheat, rye, barley and oats that pose a health risk to people affected by conditions such as coeliac disease and non-coeliac gluten sensitivity. Complete digestion of gluten proteins is of critical importance during quantitative analysis. To this end, chymotrypsin was investigated for its ability to efficiently and reproducibly digest specific classes of gluten in barley. Using proteomics a chymotryptic peptide marker panel was elucidated and subjected to relative quantification using LC-MRM-MS. Thorough investigation of peptide markers revealed robust and reproducible quantification with CVs <15% was possible, however a greater proportion of non-specific cleavage variants were observed relative to trypsin. The selected peptide markers were assessed to ensure their efficient liberation from their parent proteins. While trypsin remains the preferred enzyme for quantification of the avenin-like A proteins, the B-, D- and γ-hordeins, chymotrypsin was the enzyme of choice for the C-hordeins. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Gergel, J R; McNamara, D J; Dobrusin, E M; Zhu, G; Saltiel, A R; Miller, W T
1994-12-13
Photoaffinity labeling and site-directed mutagenesis have been used to identify amino acid residues of the phospholipase C gamma 1 (PLC gamma 1) N-terminal SH2 domain involved in recognition of the activated epidermal growth factor receptor (EGFR). The photoactive amino acid p-benzoylphenylalanine (Bpa) was incorporated into phosphotyrosine-containing peptides derived from EGFR autophosphorylation sites Tyr992 and Tyr1068. Irradiation of these labels in the presence of SH2 domains showed cross-linking which was time-dependent and specific; labeling was inhibited with non-Bpa-containing peptides from EGFR in molar excess. The phosphotyrosine residue on the peptides was important for SH2 recognition, as dephosphorylated peptides did not cross-link. Radiolabeled peptides were used to identify sites of cross-linking to the N-terminal SH2 of PLC gamma 1. Bpa peptide-SH2 complexes were digested with trypsin, and radioactive fragments were purified by HPLC and analyzed by Edman sequencing. These experiments showed Arg562 and an additional site in the alpha A-beta B region of the SH2 domain, most likely Glu587, to be labeled by the Tyr992-derived peptide. Similar analysis of the reaction with the Tyr1068-derived photoaffinity label identified Leu653 as the cross-linked site. Mutation of the neighboring residues of Glu587 decreased photo-cross-linking, emphasizing the importance of this region of the molecule for recognition. These results are consistent with evidence from the v-Src crystal structure and implicate the loop spanning residues Gln640-Ser654 of PLC gamma 1 in specific recognition of phosphopeptides.
Syryamina, Victoria N; Isaev, Nikolay P; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Raap, Jan; Dzuba, Sergei A
2010-09-30
Trichogin GA IV is a lipopeptide antibiotic of fungal origin, which is known to be able to modify the membrane permeability. TOAC nitroxide spin-labeled analogues of this membrane active peptide were investigated in hydrated bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) by electron spin echo (ESE) spectroscopy. Because the TOAC nitroxide spin label is rigidly attached to the peptide backbone, it may report on the backbone orientational dynamics. The ESE signal in this system is observed below ∼150 K. Previously, three-pulse stimulated ESE was found to be sensitive to two types of orientational motion of spin-labeled POPC lipid bilayers at these temperatures. The first type is fast stochastic librations, with a correlation time on the nanosecond scale (which also manifests itself in a two-pulse primary ESE experiment). The second type is slow millisecond inertial rotations. In the present work, we find that at low molar peptide to lipid ratio (1:200), where the individual peptide molecules are randomly distributed at the membrane surface, the spin labels show only a fast type of motion. At the high molar peptide to lipid ratio (1:20), a slow motion is also observed. Because at this high concentration trichogin GA IV is known to change its orientation from the in-plane topology to the transmembrane disposition, the observed onset of a slow motion may be safely attributed to the dynamics of peptides, which are elongated along the lipid molecules of the membrane. The possible interrelation between this backbone rotational motion of the peptide antibiotic and the membrane leakage is discussed.
Autoradiographic localization of a gluten peptide during organ culture of human duodenal mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fluge, G.; Aksnes, L.
1983-01-01
An 125I-labeled subfraction of Frazer's fraction III (molecular weight, 8,000) was added to the culture medium during organ culture of duodenal biopsies from two patients with celiac disease in exacerbation. The isotope-labeled gluten peptide was localized by autoradiography after 6, 12, and 24 h of culture. At 6 h, labeling was located mainly in the basal layers of the biopsies. The tissue was well preserved. After 12 h in culture, the labeling had spread to the lamina propria and the crypts. A few grains were located over enterocytes and desquamated cells. Moderate histological signs of toxicity were observed. After 24more » h, there was marked toxic deterioration, comparable to that seen after culture with alpha-gliadin. Labeling had spread throughout the entire section. There seemed to be no specificity of the binding, for the entire section was affected. Culture with the identical gluten fraction, in the radionegative state, produced histological deterioration comparable to that seen after exposure to the isotope-labeled peptide. Gluten peptides are presented to the target cells in a unique way during organ culture, different from in vivo conditions. This may influence the results when the organ culture method is used to investigate the pathogenesis of celiac disease.« less
Jacob, Laurent; Combes, Florence; Burger, Thomas
2018-06-18
We propose a new hypothesis test for the differential abundance of proteins in mass-spectrometry based relative quantification. An important feature of this type of high-throughput analyses is that it involves an enzymatic digestion of the sample proteins into peptides prior to identification and quantification. Due to numerous homology sequences, different proteins can lead to peptides with identical amino acid chains, so that their parent protein is ambiguous. These so-called shared peptides make the protein-level statistical analysis a challenge and are often not accounted for. In this article, we use a linear model describing peptide-protein relationships to build a likelihood ratio test of differential abundance for proteins. We show that the likelihood ratio statistic can be computed in linear time with the number of peptides. We also provide the asymptotic null distribution of a regularized version of our statistic. Experiments on both real and simulated datasets show that our procedures outperforms state-of-the-art methods. The procedures are available via the pepa.test function of the DAPAR Bioconductor R package.
Yu, Chaowen; Huang, Shuodan; Wang, Ming; Zhang, Juan; Liu, Hao; Yuan, Zhaojian; Wang, Xingbin; He, Xiaoyan; Wang, Jie; Zou, Lin
2017-02-10
Traditional methods for thalassemia screening are time-consuming and easily affected by cell hemolysis or hemoglobin degradation in stored blood samples. Tandem mass spectrometry (MS/MS) proved to be an effective technology for sickle cell disorders (SCD) screening. Here, we developed a novel MS/MS method for β-thalassemia screening from dried blood spots (DBS). Stable isotopic-labeled peptides were used as internal standards for quantification and calculation of the α:β-globin ratios. We used the α:β-globin ratio cutoffs to differentiate between normal individuals and patients with thalassemia. About 781 patients and 300 normal individuals were analyzed. The α:β-globin ratios showed significant difference between normal and β-thalassemia patients (P<0.01), particularly when the disease was homozygous or double heterozygous with another α- or β-thalassemia mutation. In the parallel study, all cases screened for suspected thalassemia from six hundred DBS samples by using this MS/MS method were successfully confirmed by genotyping. The intra-assay and inter-assay CVs of the ratios ranged from 2.4% to 3.9% and 4.7% to 7.1%, and there was no significant sample carryover or matrix effect for this MS/MS method. Combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. Traditional methods for thalassemia screening were depending on the structural integrity of tetramers and could be affected by hemolysis and degradation of whole blood samples, especially when stored. We used proteospecific peptides produced by the tryptic digestion of each globin to evaluate the production ratio between α- and β-globin chains, which turned out to be quite stable even when stored for more than two months. Though most of the peptides were specific to α-globin or β-globin, we only chose four most informative peptides and its stable isotopic-labeled peptides as internal standards for analysis, which could obtain a high accuracy. Currently, we are the first to address the application of MS/MS for thalassemia screening, when combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, T.V.; Takeda, Y.; Krause, J.E.
1990-01-01
The presence of N-terminally extended forms of neurokinin A has recently been reported in the mammalian brain. Among them, gamma-preprotachykinin-(72-92)-peptide amide (gamma-PPT-(72-92)-NH2), a peptide derived by posttranslational processing of gamma-preprotachykinin, is most prominent. We report here that this peptide most likely acts on neurokinin-2 receptor sites since neurokinin A (a putative neurokinin-2 agonist) and gamma-PPT-(72-92)-NH2 are potent competitors of 125I-labeled gamma-PPT-(72-92)-NH2 binding whereas selective neurokinin-1 and -3 agonists are not. Moreover, the distribution of 125I-labeled gamma-PPT-(72-92)-NH2 and 125I-labeled neurokinin A binding sites are very similar in rat brain. On the other hand, 125I-labeled Bolton-Hunter-substance P (a neurokinin-1 ligand) and 125I-labeledmore » Bolton-Hunter-eledoisin (a neurokinin-3 ligand) binding sites are differentially located in this tissue. Thus, it appears that gamma-PPT-(72-92)-NH2 binds to neurokinin-2 receptors and should be considered as a putative endogenous ligand for this receptor class.« less
Mendive-Tapia, Lorena; Subiros-Funosas, Ramon; Zhao, Can; Albericio, Fernando; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc
2017-08-01
Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C 2 -BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).
Purification and antibacterial activity of recombinant warnericin RK expressed in Escherichia coli.
Verdon, Julien; Girardin, Nicolas; Marchand, Adrienne; Héchard, Yann; Berjeaud, Jean-Marc
2013-06-01
Warnericin RK is a small cationic peptide produced by Staphylococcus warneri RK. This peptide has an antimicrobial spectrum of activity almost restricted to the Legionella genus. It is a membrane-active peptide with a proposed detergent-like mechanism of action at high concentration. Moreover, the fatty acids content of Legionella was shown to modulate the peptide activity. In order to decipher the mode of action in details using solid-state NMR spectroscopy, large amount of an isotopic labeled peptide is required. Since it is less expensive to obtain such a peptide biologically, we report here methods to express warnericin RK in Escherichia coli with or without a fusion partner and to purify resulting recombinant peptides. The cDNA fragment encoding warnericin RK was synthesized and ligated into three expression vectors. Two fusion peptides, carrying polyhistidine tag in N- or C-terminal and a native peptide, without tag, were expressed in E. coli cells. Fusion peptides were purified, with a yield of 3 mg/l, by affinity chromatography and reverse-phase HPLC. The recombinant native peptide was purified using a two-step purification method consisting of a hydrophobic chromatography followed by a reverse-phase HPLC step with a yield of 1.4 mg/l. However, the anti-Legionella activity was lower for both tagged peptide probably because of structural modifications. So, the native recombinant peptide was preferentially chosen for (15)N-labeling experiments. Our results suggest that the developed production and purification procedures will be useful in obtaining a large quantity of recombinant isotope-labeled warnericin RK for further studies.
Doneanu, Catalin; Fang, Jing; Alelyunas, Yun; Yu, Ying Qing; Wrona, Mark; Chen, Weibin
2018-04-17
The analysis of low-level (1-100 ppm) protein impurities (e.g., host-cell proteins (HCPs)) in protein biotherapeutics is a challenging assay requiring high sensitivity and a wide dynamic range. Mass spectrometry-based quantification assays for proteins typically involve protein digestion followed by the selective reaction monitoring/multiple reaction monitoring (SRM/MRM) quantification of peptides using a low-resolution (Rs ~1,000) tandem quadrupole mass spectrometer. One of the limitations of this approach is the interference phenomenon observed when the peptide of interest has the "same" precursor and fragment mass (in terms of m/z values) as other co-eluting peptides present in the sample (within a 1-Da window). To avoid this phenomenon, we propose an alternative mass spectrometric approach, a high selectivity (HS) MRM assay that combines the ion mobility separation of peptide precursors with the high-resolution (Rs ~30,000) MS detection of peptide fragments. We explored the capabilities of this approach to quantify low-abundance peptide standards spiked in a monoclonal antibody (mAb) digest and demonstrated that it has the sensitivity and dynamic range (at least 3 orders of magnitude) typically achieved in HCP analysis. All six peptide standards were detected at concentrations as low as 0.1 nM (1 femtomole loaded on a 2.1-mm ID chromatographic column) in the presence of a high-abundance peptide background (2 µg of a mAb digest loaded on-column). When considering the MW of rabbit phosphorylase (97.2 kDa), from which the spiked peptides were derived, the LOQ of this assay is lower than 50 ppm. Relative standard deviations (RSD) of peak areas (n = 4 replicates) were less than 15% across the entire concentration range investigated (0.1-100 nM or 1-1,000 ppm) in this study.
Analysis of illegal peptide drugs via HILIC-DAD-MS.
Janvier, Steven; De Sutter, Evelien; Wynendaele, Evelien; De Spiegeleer, Bart; Vanhee, Celine; Deconinck, Eric
2017-11-01
Biopharmaceuticals have established themselves as highly efficient medicines, and are still one of the fastest growing parts of the health-product industry. Unfortunately, the introduction of these promising new drugs went hand in hand with the creation of a black market for illegal and counterfeit biotechnology drugs. Particularly popular are the lyophilised peptides with a molecular weight of less than 5kDa. Most of them are meant for subcutaneous injection and are easily accessible via the internet. In recent years, different methods based on reversed phase liquid chromatography have been developed to detect and quantify these peptides. The emerging of more polar peptides however requires the introduction of other separation techniques. Therefore, we set out to develop and validate an analytical method based on hydrophilic interaction liquid chromatography (HILIC) to identify and quantify the most frequently encountered illegal peptides on the European market. For this objective, five different HILIC columns were selected and screened for their chromatographic performance. Among those columns, the ZIC HILIC column showed the best performance under the tested screening conditions in terms of resolution and symmetry factor for the targeted peptide set. Hence, the operational conditions were further optimised for the identification of illegal preparations via mass spectrometry (MS) and quantification via UV. Validation was performed via accuracy profiles based on the ISO 17025 guideline. The obtained validated HILIC-method allows for the detection and quantification of the most frequently encountered illegal peptides on the internet in a total run time of 35min including post gradient equilibration and online cleaning step. Combined with a previously developed RPLC-method, the ZIC HILIC system allows for the detection and quantification of a wide spectrum of illicit peptide drugs available on the internet. Furthermore, the developed method could also be envisaged for the detection of new emerging polar peptide drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Grassetti, Andrew V; Hards, Rufus; Gerber, Scott A
2017-07-01
Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.
Abbatiello, Susan E; Mani, D R; Keshishian, Hasmik; Carr, Steven A
2010-02-01
Multiple reaction monitoring mass spectrometry (MRM-MS) of peptides with stable isotope-labeled internal standards (SISs) is increasingly being used to develop quantitative assays for proteins in complex biological matrices. These assays can be highly precise and quantitative, but the frequent occurrence of interferences requires that MRM-MS data be manually reviewed, a time-intensive process subject to human error. We developed an algorithm that identifies inaccurate transition data based on the presence of interfering signal or inconsistent recovery among replicate samples. The algorithm objectively evaluates MRM-MS data with 2 orthogonal approaches. First, it compares the relative product ion intensities of the analyte peptide to those of the SIS peptide and uses a t-test to determine if they are significantly different. A CV is then calculated from the ratio of the analyte peak area to the SIS peak area from the sample replicates. The algorithm identified problematic transitions and achieved accuracies of 94%-100%, with a sensitivity and specificity of 83%-100% for correct identification of errant transitions. The algorithm was robust when challenged with multiple types of interferences and problematic transitions. This algorithm for automated detection of inaccurate and imprecise transitions (AuDIT) in MRM-MS data reduces the time required for manual and subjective inspection of data, improves the overall accuracy of data analysis, and is easily implemented into the standard data-analysis work flow. AuDIT currently works with results exported from MRM-MS data-processing software packages and may be implemented as an analysis tool within such software.
Abbatiello, Susan E.; Mani, D. R.; Keshishian, Hasmik; Carr, Steven A.
2010-01-01
BACKGROUND Multiple reaction monitoring mass spectrometry (MRM-MS) of peptides with stable isotope–labeled internal standards (SISs) is increasingly being used to develop quantitative assays for proteins in complex biological matrices. These assays can be highly precise and quantitative, but the frequent occurrence of interferences requires that MRM-MS data be manually reviewed, a time-intensive process subject to human error. We developed an algorithm that identifies inaccurate transition data based on the presence of interfering signal or inconsistent recovery among replicate samples. METHODS The algorithm objectively evaluates MRM-MS data with 2 orthogonal approaches. First, it compares the relative product ion intensities of the analyte peptide to those of the SIS peptide and uses a t-test to determine if they are significantly different. A CV is then calculated from the ratio of the analyte peak area to the SIS peak area from the sample replicates. RESULTS The algorithm identified problematic transitions and achieved accuracies of 94%–100%, with a sensitivity and specificity of 83%–100% for correct identification of errant transitions. The algorithm was robust when challenged with multiple types of interferences and problematic transitions. CONCLUSIONS This algorithm for automated detection of inaccurate and imprecise transitions (AuDIT) in MRM-MS data reduces the time required for manual and subjective inspection of data, improves the overall accuracy of data analysis, and is easily implemented into the standard data-analysis work flow. AuDIT currently works with results exported from MRM-MS data-processing software packages and may be implemented as an analysis tool within such software. PMID:20022980
Bache, Nicolai; Rand, Kasper D; Roepstorff, Peter; Ploug, Michael; Jørgensen, Thomas J D
2008-12-01
We have previously shown that peptide amide hydrogens undergo extensive intramolecular migration (i.e., complete hydrogen scrambling) upon collisional activation of protonated peptides (Jørgensen et al. J. Am. Chem. Soc. 2005, 127, 2785-2793). The occurrence of hydrogen scrambling enforces severe limitations on the application of gas-phase fragmentation as a convenient method to obtain information about the site-specific deuterium uptake for proteins and peptides in solution. To investigate whether deprotonated peptides exhibit a lower level of scrambling relative to their protonated counterparts, we have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H/(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.I.; Bodwell, J.E.; Mendel, D.B.
1988-05-17
Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with (/sup 3/H)dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single (/sup 3/H)dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the (/sup 3/H)dexamethasone 21-mesylate was located at position 5 frommore » the amino terminus. Dual-isotope labeling studies with (/sup 3/H)dexamethasone 21-mesylate and (/sup 35/S)methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of (/sup 3/H)dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells.« less
Wenke, Jamie L.; McDonald, W. Hayes; Schey, Kevin L.
2016-01-01
Purpose To quantify protein changes in the morphologically distinct remodeling zone (RZ) and adjacent regions of the human lens outer cortex using spatially directed quantitative proteomics. Methods Lightly fixed human lens sections were deparaffinized and membranes labeled with fluorescent wheat germ agglutinin (WGA-TRITC). Morphology directed laser capture microdissection (LCM) was used to isolate tissue from four distinct regions of human lens outer cortex: differentiating zone (DF), RZ, transition zone (TZ), and inner cortex (IC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the plasma membrane fraction from three lenses (21-, 22-, and 27-year) revealed changes in major cytoskeletal proteins including vimentin, filensin, and phakinin. Peptides from proteins of interest were quantified using multiple reaction monitoring (MRM) mass spectrometry and isotopically-labeled internal peptide standards. Results Results revealed an intermediate filament switch from vimentin to beaded filament proteins filensin and phakinin that occurred at the RZ. Several other cytoskeletal proteins showed significant changes between regions, while most crystallins remained unchanged. Targeted proteomics provided accurate, absolute quantification of these proteins and confirmed vimentin, periplakin, and periaxin decrease from the DF to the IC, while filensin, phakinin, and brain acid soluble protein 1 (BASP1) increase significantly at the RZ. Conclusions Mass spectrometry-compatible fixation and morphology directed laser capture enabled proteomic analysis of narrow regions in the human lens outer cortex. Results reveal dramatic cytoskeletal protein changes associated with the RZ, suggesting that one role of these proteins is in membrane deformation and/or the establishment of ball and socket joints in the human RZ. PMID:27537260
NASA Astrophysics Data System (ADS)
Roskamp, M.; Coulter, T.; Ding, Y.; Perrins, R.; Espinosa Garcia, C.; Pace, A.; Hale, S.; Robinson, A.; Williams, P.; Aguilera Peral, U.; Patel, K.; Palmer, D.
2017-04-01
Ultra-small glycan-passivated gold nanoparticles of <2nm diameter were funtionalised with a short HS-EG(8)-COOH ligand. The nanoparticles were subsequently labelled, in a stoichiometrically controllable manner, with integrin-binding peptide SIKVAV and the maytansinoid cytotoxin DM4. In vitro assays showed significantly increased integrin-mediated uptake of SIKVAV labelled nanoparticles in HepG2 cells. SIKVAV targeted nanoparticle binding was shown to be outcompeted with free SIKVAV peptide, indicating target specific uptake. DM4 was passively attached to nanoparticles via sulfhydryl ligand exchange at the gold nanoparticle surface, which rendered them highly cytotoxic (IC50 ˜1 × 10-9M). In a rat model, pharmacokinetic studies showed that nanoparticle biodistribution was strongly altered by labelling with either peptide and DM4 moieties.
Chan, Ho Sze; de Blois, Erik; Konijnenberg, Mark W; Morgenstern, Alfred; Bruchertseifer, Frank; Norenberg, Jeffrey P; Verzijlbergen, Fred J; de Jong, Marion; Breeman, Wouter A P
2017-01-01
213 Bismuth ( 213 Bi, T 1/2 = 45.6 min) is one of the most frequently used α-emitters in cancer research. High specific activity radioligands are required for peptide receptor radionuclide therapy. The use of generators containing less than 222 MBq 225 Ac (actinium), due to limited availability and the high cost to produce large-scale 225 Ac/ 213 Bi generators, might complicate in vitro and in vivo applications though.Here we present optimized labelling conditions of a DOTA-peptide with an 225 Ac/ 213 Bi generator (< 222 MBq) for preclinical applications using DOTA-Tyr 3 -octreotate (DOTATATE), a somatostatin analogue. The following labelling conditions of DOTATATE with 213 Bi were investigated; peptide mass was varied from 1.7 to 7.0 nmol, concentration of TRIS buffer from 0.15 mol.L -1 to 0.34 mol.L -1 , and ascorbic acid from 0 to 71 mmol.L -1 in 800 μL. All reactions were performed at 95 °C for 5 min. After incubation, DTPA (50 nmol) was added to stop the labelling reaction. Besides optimizing the labelling conditions, incorporation yield was determined by ITLC-SG and radiochemical purity (RCP) was monitored by RP-HPLC up to 120 min after labelling. Dosimetry studies in the reaction vial were performed using Monte Carlo and in vitro clonogenic assay was performed with a rat pancreatic tumour cell line, CA20948. At least 3.5 nmol DOTATATE was required to obtain incorporation ≥ 99 % with 100 MBq 213 Bi (at optimized pH conditions, pH 8.3 with 0.15 mol.L -1 TRIS) in a reaction volume of 800 μL. The cumulative absorbed dose in the reaction vial was 230 Gy/100 MBq in 30 min. A minimal final concentration of 0.9 mmol.L -1 ascorbic acid was required for ~100 MBq (t = 0) to minimize radiation damage of DOTATATE. The osmolarity was decreased to 0.45 Osmol/L.Under optimized labelling conditions, 213 Bi-DOTATATE remained stable up to 2 h after labelling, RCP was ≥ 85 %. In vitro showed a negative correlation between ascorbic acid concentration and cell survival. 213 Bismuth-DOTA-peptide labelling conditions including peptide amount, quencher and pH were optimized to meet the requirements needed for preclinical applications in peptide receptor radionuclide therapy.
Colonization State Influences the Hemocyte Proteome in a Beneficial Squid–Vibrio Symbiosis*
Schleicher, Tyler R.; VerBerkmoes, Nathan C.; Shah, Manesh; Nyholm, Spencer V.
2014-01-01
The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri alters the hemocyte proteome and reveals proteins that may be important for maintaining host–symbiont specificity. PMID:25038065
Han, Chia-Li; Chen, Jinn-Shiun; Chan, Err-Cheng; Wu, Chien-Peng; Yu, Kun-Hsing; Chen, Kuei-Tien; Tsou, Chih-Chiang; Tsai, Chia-Feng; Chien, Chih-Wei; Kuo, Yung-Bin; Lin, Pei-Yi; Yu, Jau-Song; Hsueh, Chuen; Chen, Min-Chi; Chan, Chung-Chuan; Chang, Yu-Sun; Chen, Yu-Ju
2011-01-01
We developed a multiplexed label-free quantification strategy, which integrates an efficient gel-assisted digestion protocol, high-performance liquid chromatography tandem MS analysis, and a bioinformatics alignment method to determine personalized proteomic profiles for membrane proteins in human tissues. This strategy provided accurate (6% error) and reproducible (34% relative S.D.) quantification of three independently purified membrane fractions from the same human colorectal cancer (CRC) tissue. Using CRC as a model, we constructed the personalized membrane protein atlas of paired tumor and adjacent normal tissues from 28 patients with different stages of CRC. Without fractionation, this strategy confidently quantified 856 proteins (≥2 unique peptides) across different patients, including the first and robust detection (Mascot score: 22,074) of the well-documented CRC marker, carcinoembryonic antigen 5 by a discovery-type proteomics approach. Further validation of a panel of proteins, annexin A4, neutrophils defensin A1, and claudin 3, confirmed differential expression levels and high occurrences (48–70%) in 60 CRC patients. The most significant discovery is the overexpression of stomatin-like 2 (STOML2) for early diagnostic and prognostic potential. Increased expression of STOML2 was associated with decreased CRC-related survival; the mean survival period was 34.77 ± 2.03 months in patients with high STOML2 expression, whereas 53.67 ± 3.46 months was obtained for patients with low STOML2 expression. Further analysis by ELISA verified that plasma concentrations of STOML2 in early-stage CRC patients were elevated as compared with those of healthy individuals (p < 0.001), suggesting that STOML2 may be a noninvasive serological biomarker for early CRC diagnosis. The overall sensitivity of STOML2 for CRC detection was 71%, which increased to 87% when combined with CEA measurements. This study demonstrated a sensitive, label-free strategy for differential analysis of tissue membrane proteome, which may provide a roadmap for the subsequent identification of molecular target candidates of multiple cancer types. PMID:21209152
Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex
McBride, William J.; D’Souza, Christopher A.; Sharkey, Robert M.; Karacay, Habibe; Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M.
2010-01-01
We reported previously the feasibility to radiolabel peptides with fluorine-18 (18F) using a rapid, one-pot, method that first mixes 18F− with Al3+, and then binds the (Al18F)2+ complex to a NOTA ligand on the peptide. In this report, we examined several new NOTA ligands and determined how temperature, reaction time, and reagent concentration affected the radiolabeling yield. Four structural variations of the NOTA ligand had isolated radiolabeling yields ranging from 5.8% to 87% under similar reaction conditions. All of the Al18F NOTA complexes were stable in vitro in human serum and those that were tested in vivo also were stable. The radiolabeling reactions were performed at 100°C and the peptides could be labeled in as little as five minutes. The IMP467 peptide could be labeled up to 115 GBq/μmol (3100 Ci/mmol), with a total reaction and purification time of 30 min without chromatographic purification. PMID:20540570
Sun, Xiaohong; Ouyang, Yue; Chu, Jinfang; Yan, Jing; Yu, Yan; Li, Xiaoqiang; Yang, Jun; Yan, Cunyu
2014-04-18
A sensitive and reliable in-advance stable isotope labeling strategy was developed for simultaneous relative quantification of 8 acidic plant hormones in sub-milligram amount of plant materials. Bromocholine bromide (BETA) and its deuterated counterpart D9-BETA were used to in-advance derivatize control and sample extracts individually, which were then combined and subjected to solid-phase extraction (SPE) purification followed by UPLC-MS/MS analysis. Relative quantification of target compounds was obtained by calculation of the peak area ratios of BETA/D9-BETA labeled plant hormones. The in-advance stable isotope labeling strategy realized internal standard-based relative quantification of multiple kinds of plant hormones independent of availability of internal standard of every analyte with enhanced sensitivity of 1-3 orders of magnitude. Meanwhile, the in-advance labeling contributes to higher sample throughput and more reliability. The method was successfully applied to determine 8 plant hormones in 0.8mg DW (dry weight) of seedlings and 4 plant hormones from single seed of Arabidopsis thaliana. The results show the potential of the method in relative quantification of multiple plant hormones in tiny plant tissues or organs, which will advance the knowledge of the crosstalk mechanism of plant hormones. Copyright © 2014 Elsevier B.V. All rights reserved.
Tabachnick, M; Perret, V
1987-08-01
[125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.
Kimura, Richard H.; Miao, Zheng; Cheng, Zhen; Gambhir, Sanjiv S.; Cochran, Jennifer R.
2010-01-01
Previously, we used directed evolution to engineer mutants of the Ecballium elaterium trypsin inhibitor (EETI-II) knottin that bind to αvβ3 and αvβ5 integrin receptors with low nanomolar affinity, and showed that Cy5.5- or 64Cu-DOTA-labeled knottin peptides could be used to image integrin expression in mouse tumor models using near-infrared fluorescence (NIRF) imaging or positron emission tomography (PET). Here, we report the development of a dual-labeled knottin peptide conjugated to both NIRF and PET imaging agents for multimodality imaging in living subjects. We created an orthogonally-protected peptide-based linker for stoichiometric coupling of 64Cu-DOTA and Cy5.5 onto the knottin N-terminus, and confirmed that conjugation did not affect binding to αvβ3 and αvβ5 integrins. NIRF and PET imaging studies in tumor xenograft models showed that Cy5.5 conjugation significantly increased kidney uptake and retention compared to the knottin peptide labeled with 64Cu-DOTA alone. In the tumor, the dual-labeled 64Cu-DOTA/Cy5.5 knottin probe showed decreased wash-out leading to significantly better retention (p < 0.05) compared to the 64Cu-DOTA-labeled knottin probe. Tumor uptake was significantly reduced (p < 0.05) when the dual-labeled probe was co-injected with an excess of unlabeled competitor and when tested in a tumor model with lower levels of integrin expression. Finally, plots of tumor-to-background tissue ratios for Cy5.5 versus 64Cu uptake were well correlated over several time points post injection, demonstrating pharmacokinetic cross validation of imaging labels. This dual-modality NIRF/PET imaging agent is promising for further development in clinical applications where high sensitivity and high-resolution are desired, such as detection of tumors located deep within the body and image-guided surgical resection. PMID:20131753
Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B
1989-06-01
PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.
Improved iodine radiolabels for monoclonal antibody therapy.
Stein, Rhona; Govindan, Serengulam V; Mattes, M Jules; Chen, Susan; Reed, Linda; Newsome, Guy; McBride, Bill J; Griffiths, Gary L; Hansen, Hans J; Goldenberg, David M
2003-01-01
A major disadvantage of (131)iodine (I)-labeled monoclonal antibodies (MAbs) for radioimmunotherapy has been the rapid diffusion of iodotyrosine from target cells after internalization and catabolism of the radioiodinated MAbs. We recently reported that a radioiodinated, diethylenetriaminepentaacetic acid-appended peptide, designated immunomedics' residualizing peptide 1 (IMP-R1), was a residualizing iodine label that overcame many of the limitations that had impeded the development of residualizing iodine for clinical use. To determine the factors governing the therapeutic index of the labeled MAb, as well as the factors required for production of radioiodinated MAb in high yield and with high specific activity, variations in the peptide structure of IMP-R1 were evaluated. A series of radioiodinated, diethylenetriaminepentaacetic acid-appended peptide moieties (IMP-R1 through IMP-R8) that differed in overall hydrophilicity and charge were compared. Radioiodinations of the peptides followed by conjugations to disulfide-reduced RS7 (an anti-epithelial glycoprotein-1 MAb) furnished radioimmunoconjugates in good overall incorporations, with immunoreactivities comparable to that of directly radioiodinated RS7. Specific activities of up to 8 mCi/mg and yields > 80% have been achieved. In vitro processing experiments showed marked increases in radioiodine retention with all of the adducts; radioiodine retention at 45 h was up to 86% greater in cells than with directly iodinated RS7. Each of the (125)I-peptide-RS7 conjugates was compared with (131)I-RS7 (labeled by the chloramine-T method) in paired-label biodistribution studies in nude mice bearing human lung tumor xenografts. All of the residualizing substrates exhibited significantly enhanced retention in tumor in comparison to directly radioiodinated RS7, but the nontarget uptakes differed significantly among the residualizing labels. The best labels were IMP-R4 and IMP-R8, showing superior tumor-to-non-tumor ratios by virtue of high tumor uptake and retention and low normal organ uptake, as well as superior radiochemical properties. The therapeutic efficacy of (131)I-IMP-R4-RS7 was compared with that of conventionally (131)I-labeled RS7 and (90)yttrium-RS7 in the nude mice lung cancer model. The therapeutic efficacy of (131)I-IMP-R4-RS7 and (90)yttrium-RS7 were equivalent, and both agents yielded significantly improved control of tumor growth compared with conventional (131)I-labeled RS7.
RECENT ADVANCES IN QUANTITATIVE NEUROPROTEOMICS
Craft, George E; Chen, Anshu; Nairn, Angus C
2014-01-01
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. PMID:23623823
Recent advances in quantitative neuroproteomics.
Craft, George E; Chen, Anshu; Nairn, Angus C
2013-06-15
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. Copyright © 2013. Published by Elsevier Inc.
Guo, Yu-Qi; Wu, Qing-Ping; Shao, Xiao-Xia; Shen, Ting; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun
2015-06-01
Relaxin family peptides are a group of peptide hormones with divergent biological functions. Mature relaxin family peptides are typically composed of two polypeptide chains with three disulfide linkages, rendering their preparation a challenging task. In the present study, we established an efficient approach for preparation of the chimeric relaxin family peptide R3/I5 through secretory overexpression in Pichia pastoris and in vitro enzymatic maturation. A designed single-chain R3/I5 precursor containing the B-chain of human relaxin-3 and the A-chain of human INSL5 was overexpressed in PichiaPink strain 1 by high-density fermentation in a two-liter fermenter, and approximately 200 mg of purified precursor was obtained from one liter of the fermentation supernatant. We also developed an economical approach for preparation of the uniformly (15)N-labeled R3/I5 precursor by culturing in shaking flasks, and approximately 15 mg of purified (15)N-labeled precursor was obtained from one liter of the culture supernatant. After purification by cation ion-exchange chromatography and reverse-phase high performance liquid chromatography, the R3/I5 precursor was converted to the mature two-chain form by sequential treatment with endoproteinase Lys-C and carboxypeptidase B. The mature R3/I5 peptide had an α-helix-dominated conformation and retained full receptor-binding and receptor activation activities. Thus, Pichia overexpression was an efficient approach for sample preparation and isotopic labeling of the chimeric R3/I5 peptide. This approach could also be extended to the preparation of other relaxin family peptides in future studies.
The Assay Development Working Group (ADWG) of the CPTAC Program is currently drafting a document to propose best practices for generation, quantification, storage, and handling of peptide standards used for mass spectrometry-based assays, as well as interpretation of quantitative proteomic data based on peptide standards. The ADWG is seeking input from commercial entities that provide peptide standards for mass spectrometry-based assays or that perform amino acid analysis.
Absolute quantification of DcR3 and GDF15 from human serum by LC-ESI MS
Lancrajan, Ioana; Schneider-Stock, Regine; Naschberger, Elisabeth; Schellerer, Vera S; Stürzl, Michael; Enz, Ralf
2015-01-01
Biomarkers are widely used in clinical diagnosis, prognosis and therapy monitoring. Here, we developed a protocol for the efficient and selective enrichment of small and low concentrated biomarkers from human serum, involving a 95% effective depletion of high-abundant serum proteins by partial denaturation and enrichment of low-abundant biomarkers by size exclusion chromatography. The recovery of low-abundance biomarkers was above 97%. Using this protocol, we quantified the tumour markers DcR3 and growth/differentiation factor (GDF)15 from 100 μl human serum by isotope dilution mass spectrometry, using 15N metabolically labelled and concatamerized fingerprint peptides for the both proteins. Analysis of three different fingerprint peptides for each protein by liquid chromatography electrospray ionization mass spectrometry resulted in comparable concentrations in three healthy human serum samples (DcR3: 27.23 ± 2.49 fmol/ml; GDF15: 98.11 ± 0.49 fmol/ml). In contrast, serum levels were significantly elevated in tumour patients for DcR3 (116.94 ± 57.37 fmol/ml) and GDF15 (164.44 ± 79.31 fmol/ml). Obtained data were in good agreement with ELISA and qPCR measurements, as well as with literature data. In summary, our protocol allows the reliable quantification of biomarkers, shows a higher resolution at low biomarker concentrations than antibody-based strategies, and offers the possibility of multiplexing. Our proof-of-principle studies in patient sera encourage the future analysis of the prognostic value of DcR3 and GDF15 for colon cancer patients in larger patient cohorts. PMID:25823874
ID-SERS Based Reference Method for Quantification of Large Biomolecules on a Single Chip
NASA Astrophysics Data System (ADS)
Yaghobian, Fatemeh; Stosch, Rainer; Henrion, André; Güttler, Bernd
2010-08-01
Accuracy and precision of quantitative SERS results have been significantly increased by applying a method based on the so-called isotope-dilution (ID) principle. In this ID-SERS approach, an isotopically labeled analogue of the target molecule (isotopologue) is spiked to the sample at a known concentration. Due to the slight difference in their molar masses, some Raman bands of the heavier isotopologue are red-shifted with respect to the same signals resulting from the unlabelled compound. As a result, spectra evaluation is reduced to the determination of intensity ratios rather than absolute intensities, and the unknown quantity of the analyte can be calculated from the known quantity of the standard. This procedure is of particular interest in the development of highly accurate reference procedures for metrology in chemistry. Because the sample is spiked prior to any further treatment, potential loss of material or matrix effects would equally affect both isotopologues, without influencing the final result. The method has been successfully applied for quantifying small diagnostic marker molecules like creatinine at their relevant serum concentration levels using silver colloids as SERS substrates. Now, the ID-SERS approach has been realized as a "one-chip" approach using "Bio-chips" made of intrinsically grown spherical silver nanoparticles with gaps less than 10 nm in between (Fig. 1). In addition, the scope of the method has been extended to larger biomolecules like peptides which will be shown using the example of the human growth-hormone (hGH) peptide T12 at physiologically relevant serum concentration levels (Fig. 2). Further developments towards the quantification of full proteins will also be reported.
Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei
2015-02-06
Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.
Leymarie, Nancy; Griffin, Paula J.; Jonscher, Karen; Kolarich, Daniel; Orlando, Ron; McComb, Mark; Zaia, Joseph; Aguilan, Jennifer; Alley, William R.; Altmann, Friederich; Ball, Lauren E.; Basumallick, Lipika; Bazemore-Walker, Carthene R.; Behnken, Henning; Blank, Michael A.; Brown, Kristy J.; Bunz, Svenja-Catharina; Cairo, Christopher W.; Cipollo, John F.; Daneshfar, Rambod; Desaire, Heather; Drake, Richard R.; Go, Eden P.; Goldman, Radoslav; Gruber, Clemens; Halim, Adnan; Hathout, Yetrib; Hensbergen, Paul J.; Horn, David M.; Hurum, Deanna; Jabs, Wolfgang; Larson, Göran; Ly, Mellisa; Mann, Benjamin F.; Marx, Kristina; Mechref, Yehia; Meyer, Bernd; Möginger, Uwe; Neusüβ, Christian; Nilsson, Jonas; Novotny, Milos V.; Nyalwidhe, Julius O.; Packer, Nicolle H.; Pompach, Petr; Reiz, Bela; Resemann, Anja; Rohrer, Jeffrey S.; Ruthenbeck, Alexandra; Sanda, Miloslav; Schulz, Jan Mirco; Schweiger-Hufnagel, Ulrike; Sihlbom, Carina; Song, Ehwang; Staples, Gregory O.; Suckau, Detlev; Tang, Haixu; Thaysen-Andersen, Morten; Viner, Rosa I.; An, Yanming; Valmu, Leena; Wada, Yoshinao; Watson, Megan; Windwarder, Markus; Whittal, Randy; Wuhrer, Manfred; Zhu, Yiying; Zou, Chunxia
2013-01-01
One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods. PMID:23764502
Feasibility and availability of ⁶⁸Ga-labelled peptides.
Decristoforo, Clemens; Pickett, Roger D; Verbruggen, Alfons
2012-02-01
(68)Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from (68)Ge/(68)Ga generators, making it independent of cyclotron production. (68)Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of (68)Ga-labelled peptides, including generator technology, (68)Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. (68)Ge/(68)Ga generators based on SnO(2), TiO(2) or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for (68)Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of (68)Ga-labelled peptides outside the marketing authorization track are also discussed.
Accurate proteome-wide protein quantification from high-resolution 15N mass spectra
2011-01-01
In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods. PMID:22182234
Charge Transfer Between Quantum Dots and Peptide-Coupled Redox Complexes
2009-01-01
labeled with reactive metal complexes includ- ing a ruthenium chelate (Ru), a bis-bipyridine ruthe- nium chelate (ruthenium-bpy), and a ferrocene metal...of unconjugated QDs and the metal complex–labeled peptides immobilized on indium tin oxide (ITO) electrodes. The ruthenium and ferrocene peptide...Ag/AgCI E v s. N H E E v s. v ac uu m (e V ) Ruthenium Ferrocene Ruthenium-bpy DHLA QDs DHLA-PEG QDs Quantum dot Metal complex CB VB E0X of QDs Fe
EBprot: Statistical analysis of labeling-based quantitative proteomics data.
Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon
2015-08-01
Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pyrylium-based dye and charge tagging in proteomics.
Bayer, Malte; König, Simone
2016-11-01
The pyrylium group is a selective reagent for ε-amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N-hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py-1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py-1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N-terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py-1 recommends itself for N-terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a- and b-type ion series were observed for N-terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manzanares-Palenzuela, C Lorena; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; López-Ruiz, Beatriz
2015-06-15
Current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) with a minimum content of 0.9% would benefit from the availability of reliable and rapid methods to detect and quantify DNA sequences specific for GMOs. Different genosensors have been developed to this aim, mainly intended for GMO screening. A remaining challenge, however, is the development of genosensing platforms for GMO quantification, which should be expressed as the number of event-specific DNA sequences per taxon-specific sequences. Here we report a simple and sensitive multiplexed electrochemical approach for the quantification of Roundup-Ready Soybean (RRS). Two DNA sequences, taxon (lectin) and event-specific (RR), are targeted via hybridization onto magnetic beads. Both sequences are simultaneously detected by performing the immobilization, hybridization and labeling steps in a single tube and parallel electrochemical readout. Hybridization is performed in a sandwich format using signaling probes labeled with fluorescein isothiocyanate (FITC) or digoxigenin (Dig), followed by dual enzymatic labeling using Fab fragments of anti-Dig and anti-FITC conjugated to peroxidase or alkaline phosphatase, respectively. Electrochemical measurement of the enzyme activity is finally performed on screen-printed carbon electrodes. The assay gave a linear range of 2-250 pM for both targets, with LOD values of 650 fM (160 amol) and 190 fM (50 amol) for the event-specific and the taxon-specific targets, respectively. Results indicate that the method could be applied for GMO quantification below the European labeling threshold level (0.9%), offering a general approach for the rapid quantification of specific GMO events in foods. Copyright © 2015 Elsevier B.V. All rights reserved.
Remily-Wood, Elizabeth R.; Benson, Kaaron; Baz, Rachid C.; Chen, Y. Ann; Hussein, Mohamad; Hartley-Brown, Monique A.; Sprung, Robert W.; Perez, Brianna; Liu, Richard Z.; Yoder, Sean; Teer, Jamie; Eschrich, Steven A.; Koomen, John M.
2014-01-01
Purpose Quantitative mass spectrometry assays for immunoglobulins (Igs) are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, e.g. multiple myeloma. Experimental design Using LC-MS/MS data, Ig constant region peptides and transitions were selected for liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM). Quantitative assays were used to assess Igs in serum from 83 patients. Results LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1–4, IgA1–2, IgM, IgD, and IgE, as well as kappa(κ) and lambda(λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 multiple myeloma cell line and two MM patients. Conclusions and Clinical Relevance LC-MRM assays targeting constant region peptides determine the type and isoform of the involved immunoglobulin and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher interassay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. PMID:24723328
Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J
2003-02-01
The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved compared to RGD/tricine since quantitation of the cell binding results suggests that the number of alpha(V)beta(3) integrin proteins per cell might be limited.
Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein
Volkmann, Gerrit; Liu, Xiang-Qin
2009-01-01
Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230
Takemori, Nobuaki; Takemori, Ayako; Tanaka, Yuki; Endo, Yaeta; Hurst, Jane L.; Gómez-Baena, Guadalupe; Harman, Victoria M.; Beynon, Robert J.
2017-01-01
A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system. PMID:29055021
Wang, Hongbin; Zhang, Yongqian; Gui, Shuqi; Zhang, Yong; Lu, Fuping; Deng, Yulin
2017-08-15
Comparisons across large numbers of samples are frequently necessary in quantitative proteomics. Many quantitative methods used in proteomics are based on stable isotope labeling, but most of these are only useful for comparing two samples. For up to eight samples, the iTRAQ labeling technique can be used. For greater numbers of samples, the label-free method has been used, but this method was criticized for low reproducibility and accuracy. An ingenious strategy has been introduced, comparing each sample against a 18 O-labeled reference sample that was created by pooling equal amounts of all samples. However, it is necessary to use proportion-known protein mixtures to investigate and evaluate this new strategy. Another problem for comparative proteomics of multiple samples is the poor coincidence and reproducibility in protein identification results across samples. In present study, a method combining 18 O-reference strategy and a quantitation and identification-decoupled strategy was investigated with proportion-known protein mixtures. The results obviously demonstrated that the 18 O-reference strategy had greater accuracy and reliability than other previously used comparison methods based on transferring comparison or label-free strategies. By the decoupling strategy, the quantification data acquired by LC-MS and the identification data acquired by LC-MS/MS are matched and correlated to identify differential expressed proteins, according to retention time and accurate mass. This strategy made protein identification possible for all samples using a single pooled sample, and therefore gave a good reproducibility in protein identification across multiple samples, and allowed for optimizing peptide identification separately so as to identify more proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Leptihn, Sebastian; Har, Jia Yi; Chen, Jianzhu; Ho, Bow; Wohland, Thorsten; Ding, Jeak Ling
2009-05-11
Antimicrobial peptides are found in all kingdoms of life. During the evolution of multicellular organisms, antimicrobial peptides were established as key elements of innate immunity. Most antimicrobial peptides are thought to work by disrupting the integrity of cell membranes, causing pathogen death. As antimicrobial peptides target the membrane structure, pathogens can only acquire resistance by a fundamental change in membrane composition. Hence, the evolution of pathogen resistance has been a slow process. Therefore antimicrobial peptides are valuable alternatives to classical antibiotics against which multiple drug-resistant bacteria have emerged. For potential therapeutic applications as antibiotics a thorough knowledge of their mechanism of action is essential. Despite the increasingly comprehensive understanding of the biochemical properties of these peptides, the actual mechanism by which antimicrobial peptides lyse microbes is controversial. Here we investigate how Sushi 1, an antimicrobial peptide derived from the horseshoe crab (Carcinoscorpius rotundicauda), induces lysis of Gram-negative bacteria. To follow the entire process of antimicrobial action, we performed a variety of experiments including transmission electron microscopy and fluorescence correlation spectroscopy as well as single molecule tracking of quantum dot-labeled antimicrobial peptides on live bacteria. Since in vitro measurements do not necessarily correlate with the in vivo action of a peptide we developed a novel fluorescent live bacteria lysis assay. Using fully functional nanoparticle-labeled Sushi 1, we observed the process of antimicrobial action at the single-molecule level. Recently the hypothesis that many antimicrobial peptides act on internal targets to kill the bacterium has been discussed. Here, we demonstrate that the target sites of Sushi 1 are outer and inner membranes and are not cytosolic. Further, our findings suggest four successive steps of the bactericidal process: 1) Binding, mediated mainly by charged residues in the peptide; 2) Peptide association, as peptide concentration increases evidenced by a change in diffusive behavior; 3) Membrane disruption, during which lipopolysaccharide is not released; and 4) Lysis, by leakage of cytosolic content through large membrane defects.
Sulfur analysis by inductively coupled plasma-mass spectrometry: A review
NASA Astrophysics Data System (ADS)
Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.
2015-06-01
In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.
Hasegawa, Koki; Kawachi, Emi; Uehara, Yoshinari; Yoshida, Tsuyoshi; Imaizumi, Satoshi; Ogawa, Masahiro; Miura, Shin-Ichiro; Saku, Keijiro
2017-01-01
We examined the 68 Ga labeling of the α-helical peptide, DOTA-FAMP, and evaluated conformational changes during radiolabeling. 68 Ga-DOTA-FAMP is a positron emission tomography probe candidate for atherosclerotic plaques. The labeling yield achieved by Zhernosekov's method (using acetone for 68 Ga purification) was compared with that achieved by the original and 2 modified Mueller's methods (using NaCl solution). Modified method I involves desalting the 68 Ga prior to labeling, and modified method II involves the inclusion of ethanol in the labeling solution. The labeling yield using Zhernosekov's method was 62% ± 5.4%. In comparison, Mueller's original method gave 8.9% ± 1.7%. Modified method I gave a slight improvement of 32% ± 2.1%. Modified method II further increased the yield to 66% ± 3.4%. Conformational changes were determined by circular dichroism spectroscopy, revealing that these differences could be attributed to conformational changes. Heat treatment affects peptide conformation, which leads to aggregation and decreases the labeling yield. Mueller's method is simpler, but harsh conditions preclude its application to biomolecules. To suppress aggregation, we included a desalting process and added ethanol in the labeling solution. These changes significantly improved the labeling yield. Before use for imaging, conformational changes of biomolecules during radiolabeling should be evaluated by circular dichroism spectroscopy to ensure the homogeneity of the labeled product. Copyright © 2016 John Wiley & Sons, Ltd.
Hou, Xiao-bin; Hu, Yong-cheng; He, Jin-quan
2013-02-01
To investigate the feasibility of determining the surface density of arginine-glycine-aspartic acid (RGD) peptides grafted onto allogeneic bone by an isotopic tracing method involving labeling these peptides with (125) I, evaluating the impact of the input concentration of RGD peptides on surface density and establishing the correlation between surface density and their input concentration. A synthetic RGD-containing polypeptide (EPRGDNYR) was labeled with (125) I and its specific radioactivity calculated. Reactive solutions of RGD peptide with radioactive (125) I-RGD as probe with input concentrations of 0.01 mg/mL, 0.10 mg/mL, 0.50 mg/mL, 1.00 mg/mL, 2.00 mg/mL and 4.00 mg/mL were prepared. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linking agent, reactions were induced by placing allogeneic bone fragments into reactive solutions of RGD peptide of different input concentrations. On completion of the reactions, the surface densities of RGD peptides grafted onto the allogeneic bone fragments were calculated by evaluating the radioactivity and surface areas of the bone fragments. The impact of input concentration of RGD peptides on surface density was measured and a curve constructed. Measurements by a radiodensity γ-counter showed that the RGD peptides had been labeled successfully with (125) I. The allogeneic bone fragments were radioactive after the reaction, demonstrating that the RGD peptides had been successfully grafted onto their surfaces. It was also found that with increasing input concentration, the surface density increased. It was concluded that the surface density of RGD peptides is quantitatively related to their input concentration. With increasing input concentration, the surface density gradually increases to saturation value. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.
Reinhardt, Ulrike; Lotze, Jonathan; Mörl, Karin; Beck-Sickinger, Annette G; Seitz, Oliver
2015-10-21
Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments.
Hölttä, Mikko; Dean, Robert A; Siemers, Eric; Mawuenyega, Kwasi G; Sigurdson, Wendy; May, Patrick C; Holtzman, David M; Portelius, Erik; Zetterberg, Henrik; Bateman, Randall J; Blennow, Kaj; Gobom, Johan
2016-03-07
In Alzheimer's disease, beta-amyloid peptides in the brain aggregate into toxic oligomers and plaques, a process which is associated with neuronal degeneration, memory loss, and cognitive decline. One therapeutic strategy is to decrease the production of potentially toxic beta-amyloid species by the use of inhibitors or modulators of the enzymes that produce beta-amyloid from amyloid precursor protein (APP). The failures of several such drug candidates by lack of effect or undesired side-effects underscore the importance to monitor the drug effects in the brain on a molecular level. Here we evaluate if peptidomic analysis in cerebrospinal fluid (CSF) can be used for this purpose. Fifteen human healthy volunteers, divided into three groups, received a single dose of placebo or either 140 mg or 280 mg of the γ-secretase inhibitor semagacestat (LY450139). Endogenous peptides in CSF, sampled prior to administration of the drug and at six subsequent time points, were analyzed by liquid chromatography coupled to mass spectrometry, using isobaric labeling based on the tandem mass tag approach for relative quantification. Out of 302 reproducibly detected peptides, 11 were affected by the treatment. Among these, one was derived from APP and one from amyloid precursor-like protein 1. Nine peptides were derived from proteins that may not be γ-secretase substrates per se, but that are regulated in a γ-secretase-dependent manner. These results indicate that a CSF peptidomic approach may be a valuable tool both to verify target engagement and to identify other pharmacodynamic effects of the drug. Data are available via ProteomeXchange with identifier PXD003075. NCT00765115 , registered 30/09/2008.
Altai, Mohamed; Honarvar, Hadis; Wållberg, Helena; Strand, Joanna; Varasteh, Zohreh; Rosestedt, Maria; Orlova, Anna; Dunås, Finn; Sandström, Mattias; Löfblom, John; Tolmachev, Vladimir; Ståhl, Stefan
2014-11-24
Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs. Copyright © 2014 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Cologna, Stephanie M.; Crutchfield, Christopher A.; Searle, Brian C.; Blank, Paul S.; Toth, Cynthia L.; Ely, Alexa M.; Picache, Jaqueline A.; Backlund, Peter S.; Wassif, Christopher A.; Porter, Forbes D.; Yergey, Alfred L.
2017-01-01
Protein quantification, identification and abundance determination are important aspects of proteome characterization and are crucial in understanding biological mechanisms and human diseases. Different strategies are available to quantify proteins using mass spectrometric detection, and most are performed at the peptide level and include both targeted and un-targeted methodologies. Discovery-based or un-targeted approaches oftentimes use covalent tagging strategies (i.e., iTRAQ®, TMT™) where reporter ion signals collected in the tandem MS experiment are used for quantification. Herein we investigate the behavior of the iTRAQ 8-plex chemistry using MALDI-TOF/TOF instrumentation. The experimental design and data analysis approach described is simple and straightforward, which allows researchers to optimize data collection and proper analysis within a laboratory. iTRAQ reporter ion signals were normalized within each spectrum to remove peptide biases. An advantage of this approach is that missing reporter ion values can be accepted for purposes of protein identification and quantification with the need for ANOVA analysis. We investigate the distribution of reporter ion peak areas in an equimolar system and a mock biological system and provide recommendations for establishing fold-change cutoff values at the peptide level for iTRAQ datasets. These data provide a unique dataset available to the community for informatics training and analysis. PMID:26288259
Toyo'oka, Toshimasa; Mantani, Tomomi; Kato, Masaru
2003-01-01
This paper characterized the labelling and de-labelling reagents for reversible labelling of tyrosine (Tyr)-containing peptide, which involves detection and recovery. The phenolic hydroxyl group (-OH) in Tyr structure reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F), and 1-fluoro-2,4-dinitrobenzene (DNFB) under mild conditions at room temperature at pH 9.3. The labels in the resulting derivatives were removed with the treatment of nucleophiles, such as thiols (cysteine, N-acetyl-L-cysteine and dithiothreitol) and amines (dimethylamine, methylamine, diethylamine, ethylamine and pyrrolidine). The de-labelling reactions of NBD-labelled N-acetyl-L-tyrosine (N-AcTyr) with the nucleophiles produced N-AcTyr, accompanied by NBD-nucleophile. Although DBD-F and DNFB also successfully labeled the -OH group in N-AcTyr, the efficiency of Cbond;O bond cleavage and recovery of N-AcTyr by the nucleophiles was relatively low compared with NBD-label. Among the de-labelling reagents, N-acetyl-L-cysteine and dimethylamine were recommended for the elimination of NBD moiety, with respect to the reaction rate, the side reaction, and the yield of recovery. The proposed procedure, which includes the labelling with NBD-F and the removal of NBD moiety by the nucleophiles, was successfully applied to the reversible labelling of N-terminal amine-blocked peptides, i.e. N-AcTyr-Val-Gly, Z-Glu-Tyr, Z-Phe-Tyr, N-Formyl-Met-Leu-Tyr, and N-AcArg-Pro-Pro-Gly-Phe-Ser-Pro-Tyr-Arg. Copyright 2003 John Wiley & Sons, Ltd.
We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...
Megger, Dominik A; Pott, Leona L; Rosowski, Kristin; Zülch, Birgit; Tautges, Stephanie; Bracht, Thilo; Sitek, Barbara
2017-01-01
Tandem mass tags (TMT) are usually introduced at the levels of isolated proteins or peptides. Here, for the first time, we report the labeling of whole cells and a critical evaluation of its performance in comparison to conventional labeling approaches. The obtained results indicated that TMT protein labeling using intact cells is generally possible, if it is coupled to a subsequent enrichment using anti-TMT antibody. The quantitative results were similar to those obtained after labeling of isolated proteins and both were found to be slightly complementary to peptide labeling. Furthermore, when using NHS-based TMT, no specificity towards cell surface proteins was observed in the case of cell labeling. In summary, the conducted study revealed first evidence for the general possibility of TMT cell labeling and highlighted limitations of NHS-based labeling reagents. Future studies should therefore focus on the synthesis and investigation of membrane impermeable TMTs to increase specificity towards cell surface proteins.
Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.
2015-01-01
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262
Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R
2015-02-01
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Werner, Jeffrey J; Ptak, A Celeste; Rahm, Brian G; Zhang, Sheng; Richardson, Ruth E
2009-10-01
The quantification of trace proteins in complex environmental samples and mixed microbial communities would be a valuable monitoring tool in countless applications, including the bioremediation of groundwater contaminated with chlorinated solvents. Measuring the concentrations of specific proteins provides unique information about the activity and physiological state of organisms in a sample. We developed sensitive (< 5 fmol), selective bioindicator assays for the absolute quantification of select proteins used by Dehalococcoides spp. when reducing carbon atoms in the common pollutants trichloroethene (TCE) and tetrachloroethene (PCE). From complex whole-sample digests of two different dechlorinating mixed communities, we monitored the chromatographic peaks of selected tryptic peptides chosen to represent 19 specific Dehalococcoides proteins. This was accomplished using multiple-reaction monitoring (MRM) assays using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), which provided the selectivity, sensitivity and reproducibility required to quantify Dehalococcoides proteins in complex samples. We observed reproducible peak areas (average CV = 0.14 over 4 days, n = 3) and linear responses in standard curves (n = 5, R(2) > 0.98) using synthetic peptide standards spiked into a background matrix of sediment peptides. We detected and quantified TCE reductive dehalogenase (TceA) at 7.6 +/- 1.7 x 10(3) proteins cell(-1) in the KB1 bioaugmentation culture, previously thought to be lacking TceA. Fragmentation data from MS/MS shotgun proteomics experiments were helpful in developing the MRM targets. Similar shotgun proteomics data are emerging in labs around the world for many environmentally relevant microbial proteins, and these data are a valuable resource for the future development of MRM assays. We expect targeted peptide quantification in environmental samples to be a useful tool in environmental monitoring.
Jiang, Wenting; Liu, Liang; Chen, Yun
2018-03-06
Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.
Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 Peptide for Tumor Targeting.
Kazemi, Ziba; Zahmatkesh, Mona Haddad; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal
2017-08-24
D4 small peptide (Leu-Ala-Arg-Leu-Leu-Thr) was selected as an appropriate agent for specific targeting of epidermal growth factor receptor (EGFR). The aim of study was to investigate the 99mTc-labeled D4 peptide for non-small cell lung tumor targeting. HYNIC-(Ser)3-D4 peptide was labeled with 99mTc using mixture of tricine and ethylenediamine diacetic acid (EDDA) as co-ligands. The in vitro cellular uptake of radiolabeled peptide was evaluated by blocking test on human non-small cell lung cancer (A-549) cell line and its biodistribution was evaluated in A-549 xenografted nude mice. This conjugated peptide was labeled with 99mTc in high radiochemical purity and it was highly stable in buffer and serum. The un-blocked to blocked cellular radioactivity ratio was 4- fold that showed a specific binding of this radiolabeled peptide on A-549 cell. Animal biodistribution in A-549 xenografted nude mice showed rapid clearance from blood and other non-target organs. Tumor uptake values as %ID/g (percentage of injection dose per gram of tissue) were 2.47% and 1.30% at 1 and 4 h after injection. This study showed the 99mTc-EDDA/tricine-HYNIC-(Ser)3-D4 peptide had tumor targeting on the non-small cell lung tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
2014-01-01
Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC-MS/MS phosphoproteome investigation. The results of iPhos-facilitated targeted LC-MS/MS analysis convey more thorough and confident phosphopeptide identification than the results of pure DDA-based analysis. PMID:25521246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J.
2014-12-17
Mass spectrometry-based targeted quantification is a promising technology for site-specific quantification of posttranslational modifications (PTMs). However, a major constraint of most targeted MS approaches is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents to enrich specific PTMs. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometries using a highly sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM). PRISM provides effective enrichment of target peptides within a given fraction from complex biological matrix with minimal sample losses, followed by selected reactionmore » monitoring (SRM) quantification. The PRISM-SRM approach enabled direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) from as little as 25 µg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided >10-fold improvement in signal intensities, presumably due to the better peptide recovery of PRISM for handling small size samples. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of EGF at both the peak activation (10 min) and steady state (2 h). At 10 min, the maximal ERK activation was observed with 0.3 ng/mL dose, whereas the maximal steady state level of ERK activation at 2 h was at 3 ng/ml dose, corresponding to 1200 and 9000 occupied receptors, respectively. At 10 min, the maximally activated pTpY isoform represented ~40% of total ERK, falling to less than 10% at 2 h. The time course and dose-response profiles of individual phosphorylated ERK isoforms indicated that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed, model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.« less
Wei, A P; Blumenthal, D K; Herron, J N
1994-05-01
A novel concept is described for directly coupling fluorescence emission to protein-ligand binding. It is based on shifting the intramolecular monomer<-->dimer equilibrium of two fluorescent dyes linked by a short spacer. A 13-residue peptide, recognized by a monoclonal antibody against human chorionic gonadotrophin (hCG), was labeled with fluorescein (F) and tetramethylrhodamine (T) at its N- and C-terminus, respectively. Spectral evidence suggests that when the conjugate is free in solution, F and T exist as an intramolecular dimer. Fluorescence quenching of fluorescein and rhodamine is approximately 98% and approximately 90%, respectively, due to dimerization. When the double-labeled peptide is bound to anti-hCG, however, the rhodamine fluorescence increases by up to 7.8-fold, depending upon the excitation wavelength. This is attributed to the dissociation of intramolecular dimers brought about by conformational changes of the conjugate upon binding. Fluorescein fluorescence, on the other hand, was still quenched because of excited-state energy transfer and residual ground-state interactions. Antibody binding also resulted in a approximately 3.4-fold increase in fluorescence anisotropy of the peptide. These changes in intensity and anisotropy allow direct measurement of antigen-antibody binding with a fluorescence plate reader or a polarization analyzer, without the need for separation steps and labeling antibodies. Because recent advances in peptide technology have allowed rapid and economical identification of antigen-mimicking peptides, the double-labeled peptide approach offers many opportunities for developing new diagnostic assays and screening new therapeutic drugs. It also has many potential applications to techniques involving recombinant antibodies, biosensors, cell sorting, and DNA probes.
Masterson, Larry R; Bortone, Nadia; Yu, Tao; Ha, Kim N; Gaffarogullari, Ece C; Nguyen, Oanh; Veglia, Gianluigi
2009-04-01
Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI(5-24)). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His(6) tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.
99m Tc-HYNIC-(Ser)3 -J18 peptide: A radiotracer for non-small-cell lung cancer targeting.
Shaghaghi, Zahra; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal
2018-02-14
Radiolabeled peptide could be a useful tool for the diagnosis of non-small-cell lung cancer (NSCLC). In this study, HYNIC-(Ser) 3 -J18 peptide was labeled with 99m Tc using EDDA/tricine as coligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular-specific binding and tumor targeting in A-549 cells and tumor-bearing mice, respectively. The high radiochemical purity was obtained and this radiolabeled peptide exhibited high stability in buffer and serum. The radiolabeled peptide showed high affinity for the A-549 cells with a dissociation constant value (K D ) of 4.4 ± 0.8 nm. The tumor-muscles ratios were 2.7 and 4.4 at 1 and 2 hr after injection of 99m Tc-(EDDA/tricine)-HYNIC-(Ser) 3 -J18 in tumor-bearing mice. The tumor uptake was decreased after preinjection with non-labeled peptide for this radiolabeled peptide in blocking experiment. The results of this study showed the 99m Tc-(EDDA/tricine)-(Ser) 3 -HYNIC-J18 peptide might be a promising radiolabeled peptide for NSCLC targeting. © 2018 John Wiley & Sons A/S.
Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo
2018-04-25
Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.
To elute or not to elute in immunocapture bottom-up LC-MS.
Levernæs, Maren Christin Stillesby; Broughton, Marianne Nordlund; Reubsaet, Léon; Halvorsen, Trine Grønhaug
2017-06-15
Immunocapture-based bottom-up LC-MS is a promising technique for the quantification of low abundant proteins. Magnetic immunocapture beads provide efficient enrichment from complex samples through the highly specific interaction between the target protein and its antibody. In this article, we have performed the first thorough comparison between digestion of proteins while bound to antibody coated beads versus after elution from the beads. Two previously validated immunocapture based MS methods for the quantification of pro-gastrin releasing peptide (ProGRP) and human chorionic gonadotropin (hCG) were used as model systems. The tryptic peptide generation was shown to be protein dependent and influenced by protein folding and accessibility towards trypsin both on-beads and in the eluate. The elution of proteins bound to the beads was also shown to be incomplete. In addition, the on-beads digestion suffered from non-specific binding of the trypsin generated peptides. A combination of on-beads digestion and elution may be applied to improve both the quantitative (peak area of the signature peptides) and qualitative yield (number of missed cleavages, total number of identified peptides, coverage, signal intensity and number of zero missed cleavage peptides) of the target proteins. The quantitative yield of signature peptides was shown to be reproducible in all procedures tested. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Schnekenburger, Jürgen; Ketelhut, Steffi
2017-02-01
We investigated the capabilities of digital holographic microscopy (DHM) for label-free quantification of the response of living single cells to chemical stimuli in 3D assays. Fibro sarcoma cells were observed in a collagen matrix inside 3D chemotaxis chambers with a Mach-Zehnder interferometer-based DHM setup. From the obtained series of quantitative phase images, the migration trajectories of single cells were retrieved by automated cell tracking and subsequently analyzed for maximum migration distance and motility. Our results demonstrate DHM as a highly reliable and efficient tool for label-free quantification of chemotaxis in 2D and 3D environments.
Fretz, Marjan M.; Penning, Neal A.; Al-Taei, Saly; Futaki, Shiroh; Takeuchi, Toshihide; Nakase, Ikuhiko; Storm, Gert; Jones, Arwyn T.
2007-01-01
Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4–12 °C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 °C incubations. At temperatures between 12 and 30 °C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 °C. Small increases in the extracellular peptide concentration in 37 °C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-β-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane. PMID:17217340
Protein-based stable isotope probing.
Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten
2010-12-01
We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.
Clark, K D; Pech, L L; Strand, M R
1997-09-12
Insect blood cells (hemocytes) play an essential role in defense against parasites and other pathogenic organisms that infect insects. A key class of hemocytes involved in insect cellular immunity is plasmatocytes. Here we describe the isolation and identification of a peptide from the moth Pseudoplusia includens that mediates the spreading of plasmatocytes to foreign surfaces. This peptide, designated plasmatocyte-spreading peptide (PSP1), contains 23 amino acid residues in the following sequence: H-ENFNGGCLAGYMRTADGRCKPTF-OH. In vitro assays using the synthetic peptide at concentrations >/=2 nM induced plasmatocytes from P. includens to spread on the surface of culture dishes. Injection of this peptide into P. includens larvae caused a transient depletion of plasmatocytes from circulation. Labeling studies indicated that this peptide induced 75% of plasmatocytes that were double-labeled by the monoclonal antibodies 49G3A3 and 43E9A8 to spread, whereas plasma induced significantly more plasmatocytes to spread. This suggests that only a certain subpopulation of plasmatocytes responds to the peptide and that other peptidyl factors mediate plasmatocyte adhesion responses.
Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.
2015-01-01
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570
Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M
2011-07-01
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.
Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I.; Marcotte, Edward M.
2011-01-01
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for all possible PSMs and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for all detected proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652
Comparison of three dimeric 18F-AlF-NOTA-RGD tracers.
Guo, Jinxia; Lang, Lixin; Hu, Shuo; Guo, Ning; Zhu, Lei; Sun, Zhongchan; Ma, Ying; Kiesewetter, Dale O; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan
2014-04-01
RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.
Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.
Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu
2015-05-29
The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.
Sahu, Indra D; Mayo, Daniel J; Subbaraman, Nidhi; Inbaraj, Johnson J; McCarrick, Robert M; Lorigan, Gary A
2017-08-01
Characterizing membrane protein structure and dynamics in the lipid bilayer membrane is very important but experimentally challenging. EPR spectroscopy offers a unique set of techniques to investigate a membrane protein structure, dynamics, topology, and distance constraints in lipid bilayers. Previously our lab demonstrated the use of magnetically aligned phospholipid bilayers (bicelles) for probing topology and dynamics of the membrane peptide M2δ of the acetyl choline receptor (AchR) as a proof of concept. In this study, magnetically aligned phospholipid bilayers and rigid spin labels were further utilized to provide improved dynamic information and topology of M2δ peptide. Seven TOAC-labeled AchR M2δ peptides were synthesized to demonstrate the utility of a multi-labeling amino acid substitution alignment strategy. Our data revealed the helical tilts to be 11°, 17°, 9°, 17°, 16°, 11°, 9°±4° for residues I7TOAC, Q13TOAC, A14TOAC, V15TOAC, C16TOAC, L17TOAC, and L18TOAC, respectively. The average helical tilt of the M2δ peptide was determined to be ∼13°. This study also revealed that the TOAC labels were attached to the M2δ peptide with different dynamics suggesting that the sites towards the C-terminal end are more rigid when compared to the sites towards the N-terminus. The dynamics of the TOAC labeled sites were more resolved in the aligned samples when compared to the randomly disordered samples. This study highlights the use of magnetically aligned lipid bilayer EPR technique to determine a more accurate helical tilt and more resolved local dynamics of AchR M2δ peptide. Copyright © 2017 Elsevier B.V. All rights reserved.
Yim, Cheng-Bin; Franssen, Gerben M.; Schuit, Robert C.; Luurtsema, Gert; Liu, Shuang; Oyen, Wim J. G.; Boerman, Otto C.
2010-01-01
Purpose Due to the restricted expression of αvβ3 in tumours, αvβ3 is considered a suitable receptor for tumour targeting. In this study the αvβ3-binding characteristics of 68Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their 111In-labelled counterparts. Methods A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]2) and a tetrameric (E{E[c(RGDfK)]2}2) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with 68Ga. In vitro αvβ3-binding characteristics were determined in a competitive binding assay. In vivo αvβ3-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. Results The IC50 values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2 were 23.9 ± 1.22, 8.99 ± 1.20 and 1.74 ± 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 ± 1.15, 3.34 ± 1.16 and 1.80 ± 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the 68Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 ± 0.30, 5.24 ± 0.27 and 7.11 ± 0.67%ID/g, respectively) was comparable to that of their 111In-labelled counterparts (2.70 ± 0.29, 5.61 ± 0.85 and 7.32 ± 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. Conclusion The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The 68Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of αvβ3 expression with PET. Electronic supplementary material The online version of this article (doi:10.1007/s00259-010-1615-x) contains supplementary material, which is available to authorized users. PMID:20857099
Hultsch, Christina; Berndt, Mathias; Bergmann, Ralf; Wuest, Frank
2007-07-01
Three methods for (18)F-labeling of dimeric and tetrameric neurotensin(8-13) derivatives were evaluated with respect to the labeling yield and the required peptide amounts. Labeling using N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) gave low radiochemical yield for the dimeric peptides. Coupling of the tetramer with [(18)F]SFB was not successful. High yields were obtained for labeling of the aminooxy-functionalized neurotensin(8-13) dimer using 4-[(18)F]fluorobenzaldehyde ([(18)F]FBA) whilst coupling of the corresponding tetramer gave only low yields. Labeling of sulfydryl-functionalized neurotensin(8-13) derivatives using the maleinimide 4-[(18)F]fluorobenzaldehyde-O-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl]-oxime ([(18)F]FBAM) resulted in high radiochemical yields for both, the dimer and the tetramer. Therefore, [(18)F]FBAM seems to be the most suitable (18)F-labeling agent for multivalent neurotensin(8-13) derivatives.
Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen
2013-01-01
We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107
Stephenson, Karin A; Banerjee, Sangeeta Ray; Sogbein, Oyebola O; Levadala, Murali K; McFarlane, Nicole; Boreham, Douglas R; Maresca, Kevin P; Babich, John W; Zubieta, Jon; Valliant, John F
2005-01-01
A new solid-phase synthetic methodology was developed that enables libraries of peptide-based Tc(I)/Re(I) radiopharmaceuticals to be prepared using a conventional automated peptide synthesizer. Through the use of a tridentate ligand derived from N-alpha-Fmoc-l-lysine, which we refer to as a single amino acid chelate (SAAC), a series of 12 novel bioconjugates [R-NH(CO)ZLF(SAAC)G, R = ethyl, isopropyl, n-propyl, tert-butyl, n-butyl, benzyl; Z = Met, Nle] that are designed to target the formyl peptide receptor (FPR) were prepared. Construction of the library was carried out in a multiwell format on an Advanced ChemTech 348 peptide synthesizer where multi-milligram quantities of each peptide were isolated in high purity without HPLC purification. After characterization, the library components were screened for their affinity for the FPR receptor using flow cytometry where the K(d) values were found to be in the low micromolar range (0.5-3.0 microM). Compound 5j was subsequently labeled with (99m)Tc(I) and the product isolated in high radiochemical yield using a simple Sep-Pak purification procedure. The retention time of the labeled compound matched that of the fully characterized Re-analogue which was prepared through the use of the same solid-phase synthesis methodology that was used to construct the library. The work reported here is a rare example of a method by which libraries of peptide-ligand conjugates and their rhenium complexes can be prepared.
von Haller, Priska D; Yi, Eugene; Donohoe, Samuel; Vaughn, Kelly; Keller, Andrew; Nesvizhskii, Alexey I; Eng, Jimmy; Li, Xiao-jun; Goodlett, David R; Aebersold, Ruedi; Watts, Julian D
2003-07-01
Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanneste, Y.; Pauwels, S.; Lambotte, L.
The metabolism of brain natriuretic peptide (BNP) was studied in rats infused with 125I-BNP. During the infusion, the intact peptide was progressively converted to labelled degradative products, separated into nine peaks of radioactivity on HPLC, and accounting for approximately 70% of total plasma radioactivity at the plateau phase. After stopping the infusion, intact BNP disappeared with a half-life of 1.23 +/- 0.35 min whereas the labelled fragments accounted for progressively greater proportion of total activity. The degradation of BNP was significantly reduced by phosphoramidon (t1/2, 11.28 +/- 0.49 min) and captopril (t1/2, 6.99 +/- 0.34 min). A maximal effect wasmore » observed when both protease inhibitors were given simultaneously (t1/2, 15.3 +/- 0.48 min). When 125I-BNP was incubated in vitro with purified endopeptidase 24.11 (E-24.11) and angiotensin-converting enzyme (ACE), there was a time-dependent disappearance of the intact peptide associated with the generation of six labelled fragments, corresponding to fragments found in vivo. In serum the peptide was rapidly degraded with a half-life of 4.6 +/- 0.1 min, and the pattern of labelled fragments was similar to that observed during in vitro incubation with ACE. Captopril significantly reduced the rate of degradation of BNP in serum. The results allow to associate two define enzyme activities, namely E-24.11 and ACE, with the metabolism of BNP in vitro. They also indicate that, despite a close homology between ANP and BNP, the two peptides undergo different pathways of clearance.« less
Prince, Deidré; Rossouw, Daniel; Davids, Claudia; Rubow, Sietske
2017-12-01
This study was aimed to develop single vial 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide kits to be used with fractionated eluates from a SnO 2 -based 68 Ge/ 68 Ga generator. Kits were formulated with 35 μg DOTA-Tyr 3 -Thre 8 -octreotide, DOTA-[Tyr 3 ]-octreotide and DOTA-[NaI 3 ]-octreotide (DOTATATE, DOTATOC and DOTANOC) and sodium acetate powder, vacuum-dried and stored at -20 °C for up to 12 months. Labelling of the kits was carried out with 2 ml 68 Ga eluate. Comparative labelling was carried out using aqueous DOTA-peptide stock solutions kept frozen at -20 °C for up to 12 months. The quality of the kits was found to be suitable over a 1-year storage period (pH, sterility, endotoxin content, radiolabelling efficiency and radiochemical yields of 68 Ga-labelled DOTA-peptides). Radiochemical yields ranged from 73 to 83 %, while those obtained from stock solutions from 64 to 79 %. No significant decline in kit labelling yields was observed over a 12-month storage period. The single vial kit formulations met the quality release specifications for human administration and appear to be highly advantageous over using peptide stock solutions in terms of stability and user-friendliness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, K.; Luftig, R.B.
1988-01-01
The authors detected phosphorylation of the major Moloney murine leukemia virus (M-MuLV) capsid polypeptide, p30, by using /sup 32/P/sub i/-labeled virions. This was observed both on two-dimensional polyacrylamide gels directly or on one-dimensional gels of viral lysates that had been immunoprecipitated with monospecific goat anti-p30 serum. The phosphorylation event had been difficult to detect because pp12 the major virion phosphoprotein incorporates almost all of the /sup 32/P label added to infected cells. When immunoprecipitates from M-MuLV lysates labeled with /sup 32/P/sub i/ were compared with those labeled with (/sup 35/S)methionine, it was calculated that the degree of phosphorylation at themore » p30 domain of Pr65/sup gag/ was only 0.22 to 0.54% relative to phosphorylation at the p12 domain. Two-dimensional gel electrophoresis of the /sup 32/P-labeled p30 immunoprecipitates showed that there were three phosphorylated p30 forms with isoelectric points (pIs) of 5.7, 5.8, and 6.0. These forms were generally more acidic than the (/sup 35/S) methionine-labeled p30 forms, which had pIs of 6.0, 6.1, 6.3 (the major constituent with > 80% of the label), and 6.6. The predominant phosphoamino acid of the major phosphorylated p30 form (pI 5.8) was phosphoserine. Further, tryptic peptide analysis of this p30 form showed that only one peptide was predominantly phosphorylated. Based on a comparison of specific labeling of p30 tryptic peptides with (/sup 14/C)sesrine, (/sup 35/S)methionine, and /sup 32/P/sub i/, we tentatively assigned the phosphorylation site to a 2.4-kilodalton NH/sub 2/-terminal peptide containing triple tandem serines spanning the region from amino acids 4 to 24.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, R.; Ross, P.; Weinhouse, H.
1991-06-15
To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- andmore » 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.« less
Quantification of confocal images of biofilms grown on irregular surfaces
Ross, Stacy Sommerfeld; Tu, Mai Han; Falsetta, Megan L.; Ketterer, Margaret R.; Kiedrowski, Megan R.; Horswill, Alexander R.; Apicella, Michael A.; Reinhardt, Joseph M.; Fiegel, Jennifer
2014-01-01
Bacterial biofilms grow on many types of surfaces, including flat surfaces such as glass and metal and irregular surfaces such as rocks, biological tissues and polymers. While laser scanning confocal microscopy can provide high-resolution images of biofilms grown on any surface, quantification of biofilm-associated bacteria is currently limited to bacteria grown on flat surfaces. This can limit researchers studying irregular surfaces to qualitative analysis or quantification of only the total bacteria in an image. In this work, we introduce a new algorithm called modified connected volume filtration (MCVF) to quantify bacteria grown on top of an irregular surface that is fluorescently labeled or reflective. Using the MCVF algorithm, two new quantification parameters are introduced. The modified substratum coverage parameter enables quantification of the connected-biofilm bacteria on top of the surface and on the imaging substratum. The utility of MCVF and the modified substratum coverage parameter were shown with Pseudomonas aeruginosa and Staphylococcus aureus biofilms grown on human airway epithelial cells. A second parameter, the percent association, provides quantified data on the colocalization of the bacteria with a labeled component, including bacteria within a labeled tissue. The utility of quantifying the bacteria associated with the cell cytoplasm was demonstrated with Neisseria gonorrhoeae biofilms grown on cervical epithelial cells. This algorithm provides more flexibility and quantitative ability to researchers studying biofilms grown on a variety of irregular substrata. PMID:24632515
Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tujin; Sun, Xuefei; Gao, Yuqian
2013-07-05
We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM) for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50-100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion and the multiplexing potential of this technique. Limits of quantification (LOQs) at low ng/mL levels with a medianmore » CV of ~12% were achieved for proteins spiked into human female serum using as little as 2 µL serum. PRISM-SRM provided up to ~1000-fold improvement in the LOQ when compared to conventional SRM measurements. Multiplexing capability of PRISM-SRM was also evaluated by two sets of serum samples with 6 and 21 target peptides spiked at the low attomole/µL levels. The results from SRM measurements for pooled or post-concatenated samples were comparable to those obtained from individual peptide fractions in terms of signal-to-noise ratios and SRM peak area ratios of light to heavy peptides. PRISM-SRM was applied to measure several ng/mL-level endogenous plasma proteins, including prostate-specific antigen, in clinical patient sera where correlation coefficients > 0.99 were observed between the results from PRISM-SRM and ELISA assays. Our results demonstrate that PRISM-SRM can be successfully used for quantification of low-abundance endogenous proteins in highly complex samples. Moderate throughput (50 samples/week) can be achieved by applying the post-concatenation or fraction multiplexing strategies. We anticipate broad applications for targeted PRISM-SRM quantification of low-abundance cellular proteins in systems biology studies as well as candidate biomarkers in biofluids.« less
Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry
NASA Astrophysics Data System (ADS)
Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad
2015-12-01
A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.
ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES
Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...
Nemirovskiy, Olga; Li, Wenlin Wendy; Szekely-Klepser, Gabriella
2010-01-01
Biomarkers play an increasingly important role for drug efficacy and safety evaluation in all stages of drug development. It is especially important to develop and validate sensitive and selective biomarkers for diseases where the onset of the disease is very slow and/or the disease progression is hard to follow, i.e., osteoarthritis (OA). The degradation of Type II collagen has been associated with the disease state of OA. Matrix metalloproteinases (MMPs) are enzymes that catalyze the degradation of collagen and therefore pursued as potential targets for the treatment of OA. Peptide biomarkers of MMP activity related to type II collagen degradation were identified and the presence of these peptides in MMP digests of human articular cartilage (HAC) explants and human urine were confirmed. An immunoaffinity LC/MS/MS assay for the quantification of the most abundant urinary type II collagen neoepitope (uTIINE) peptide, a 45-mer with 5 HO-proline residues was developed and clinically validated. The assay has subsequently been applied to analyze human urine samples from clinical studies. We have shown that the assay is able to differentiate between symptomatic OA and normal subjects, indicating that uTIINE can be used as potential biomarker for OA. This chapter discusses the assay procedure and provides information on the validation experiments used to evaluate the accuracy, precision, and selectivity data with attention to the specific challenges related to the quantification of endogenous protein/peptide biomarker analytes. The generalized approach can be used as a follow-up to studies whereby proteomics-based urinary biomarkers are identified and an assay needs to be developed. Considerations for the validation of such an assay are described.
Agger, Sean A.; Marney, Luke C.; Hoofnagle, Andrew N.
2011-01-01
BACKGROUND If liquid-chromatography–multiple-reaction–monitoring mass spectrometry (LC-MRM/MS) could be used in the large-scale preclinical verification of putative biomarkers, it would obviate the need for the development of expensive immunoassays. In addition, the translation of novel biomarkers to clinical use would be accelerated if the assays used in preclinical studies were the same as those used in the clinical laboratory. To validate this approach, we developed a multiplexed assay for the quantification of 2 clinically well-known biomarkers in human plasma, apolipoprotein A-I and apolipoprotein B (apoA-I and apoB). METHODS We used PeptideAtlas to identify candidate peptides. Human samples were denatured with urea or trifluoroethanol, reduced and alkylated, and digested with trypsin. We compared reversed-phase chromatographic separation of peptides with normal flow and microflow, and we normalized endogenous peptide peak areas to internal standard peptides. We evaluated different methods of calibration and compared the final method with a nephelometric immunoassay. RESULTS We developed a final method using trifluoroethanol denaturation, 21-h digestion, normal flow chromatography-electrospray ionization, and calibration with a single normal human plasma sample. For samples injected in duplicate, the method had intraassay CVs <6% and interassay CVs <12% for both proteins, and compared well with immunoassay (n = 47; Deming regression, LC-MRM/MS = 1.17 × immunoassay – 36.6; Sx|y = 10.3 for apoA-I and LC-MRM/MS = 1.21 × immunoassay + 7.0; Sx|y = 7.9 for apoB). CONCLUSIONS Multiplexed quantification of proteins in human plasma/serum by LC-MRM/MS is possible and compares well with clinically useful immunoassays. The potential application of single-point calibration to large clinical studies could simplify efforts to reduce day-to-day digestion variability. PMID:20923952
Analysis of iodinated quorum sensing peptides by LC-UV/ESI ion trap mass spectrometry.
Janssens, Yorick; Verbeke, Frederick; Debunne, Nathan; Wynendaele, Evelien; Peremans, Kathelijne; De Spiegeleer, Bart
2018-02-01
Five different quorum sensing peptides (QSP) were iodinated using different iodination techniques. These iodinated peptides were analyzed using a C 18 reversed phase HPLC system, applying a linear gradient of water and acetonitrile containing 0.1% (m/v) formic acid as mobile phase. Electrospray ionization (ESI) ion trap mass spectrometry was used for the identification of the modified peptides, while semi-quantification was performed using total ion current (TIC) spectra. Non-iodinated peptides and mono- and di-iodinated peptides (NIP, MIP and DIP respectively) were well separated and eluted in that order. Depending on the used iodination method, iodination yields varied from low (2%) to high (57%).
Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI
Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid
2015-01-01
Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892
Mohammadnejad, Javad; Rasaee, Mohammad Javad; Babaei, Mohammad Hosein; Paknejad, Malihe; Hasan, Zahir Mohammad; Salouti, Mojtaba; Gandomkar, Mostafa; Sadri, Keyvan
2010-01-01
PR81 is a monoclonal antibody that binds with high affinity to MUC1, which is over expressed on breast and other tumors. The objective of this study was to compare the two labeling methods (direct and indirect radioiodination) for application of this antibody against MUC1 as a radioimmunotherapeutical agent.Monoclonal antibody (PR81) against the tandem repeat of the core protein (MUC1) was prepared, characterized, purified, and labeled with 131I using the direct (chloramin-T) and indirect (Fmoc-D-Tyr (tBu)-D-Tyr (tBu)-D-Lys (Boc)-OH (YYK) attached to N-hydroxysuccinimide as a linker between PR81 and 131I) methods. The immunoreactivity of 131I-PR81 and 131I-TP-PR81 complexes with MUC1 (the native protein), BSA-P20 (a 20 amino acid corresponding the tandem repeat of MUC1) and MCF7 cell line were performed by RIA. In vitro stability of 131I-PR81 and 131I-YYK-peptide-PR81 complexes in human serum was determined by thin layer chromatography (TLC). Cell toxicity and in vitro internalization studies were performed with the MCF7 cell line, and the tissue biodistribution of the 131I-PR81 and 131I- YYK-peptide -PR81 complexes was evaluated in normal BALB/c mice at 4, 24 and 48 hrs. The labeling efficiency was determined by measuring the percentage recovery of radioactivity in the final product relative to the initial activity in the shipment vial, was found to be 59.9% +/- 7.9% for direct and 50% +/- 3.2% for indirect methods. 131I-PR81 and 131I- YYK- peptide -PR81 complexes showed high immunoreactivity towards MUC1 protein, BSA-P20 and MCF7 cell line. In vitro stability of the labeled products in human serum which was measured by thin layer chromatography (TLC) was found to be more than 50% over 24 hr for 131I-PR81 and 70% for 131I- YYK-peptide -PR81 complexes. Cell toxicity and in vitro internalization studies showed that the 131I-PR81 and 131I- YYK-peptide -PR81 complexes inhibited 80% growth of the MCF7 cultured cell lines in vitro in a high concentration and up to 40% of the 131I-PR81 and 60% of the 131I- YYK-peptide -PR81 complexes internalized after 24 h. Biodistribution studies were performed in normal BALB/c mice at 4, 24 and 48 hrs post-injection. Thyroid and stomach levels from PR81 labeled with 131I- YYK-peptide were two- to three- fold less than those with directly labeled 131I-PR81, suggesting low recognition of its D-iodotyrosine residue by endogenous deiodinase. These results show that the indirect labeling was better than the indirect labeling and 131I- YYK-peptide -PR81 may be considered as a promising candidate for therapy of breast cancer.
Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes.
Boros, Eszter; Pinkhasov, Omar R; Caravan, Peter
2018-01-01
Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Two known peptide-DOTA conjugates were chelated with nat Ga and nat In. Limit of detection of HPLC-ICP-MS for 69 Ga and 115 In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. The limits of detection were 0.16 pmol for 115 In and 0.53 pmol for 69 Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.
Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.
Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W
2015-11-01
Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.
An unusual form of lipid linkage to the CD45 peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Akiko; Maizel, A.L.
1990-11-02
Some protein kinases and phosphatases are myristoylated on their amino terminus, which perhaps contributes to subcellular localization or regulation. Glycoprotein CD45, a hematopoietic tyrosine phosphatase, was examined for fatty acid content. The CD45 protein incorporated ({sup 3}H)myristate, but little ({sup 3}H)palmitate. The label was not metabolized and reincorporated into amino acids or saccharides, as revealed by peptide maps of CD45 labeled with ({sup 3}H)myristate, {sup 14}C-labeled amino acids, ({sup 35}S)methionine, or {sup 125}I, and glycosidase treatments, respectively. The myristate label was resistant to mild alkaline methanolysis and was found in fatty acid and sphingosine, indicating an unusual form of lipidmore » attachment to CD45.« less
Yan, Tongmeng; Gao, Song; Peng, Xiaojuan; Shi, Jian; Xie, Cong; Li, Qiang; Lu, Linlin; Wang, Ying; Zhou, Fuyuan; Liu, Zhongqiu; Hu, Ming
2015-03-01
To determine the liver expression of cytochrome P450 (CYPs) and uridine 5'-diphosphate-glucuronosyltransferases (UGTs), the major phase I and II metabolism enzymes responsible for clearance and detoxification of drugs, xenobiotic and endogenous substances. A validated isotope label-free method was established for absolute and simultaneous quantification of 9 CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D, 2E1 and 3A4) and 5 UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes using LC-MS/MS. The LC-MS/MS method displayed excellent dynamic range (at least 250-fold) and high sensitivity for each of the signature peptides with acceptable recovery, accuracy and precision. The protein expression profile of CYP and UGT isoforms were then determined in match microsomes samples prepared from patients with HBV-positive human hepatocellular carcinoma (HCC). In the tumor microsomes, the average absolute amounts of 8 major CYP isoforms (except CYP2C19) and 3 UGT isoforms (UGT1A1, UGT1A4 and UGT2B7) were decreased significantly (p < 0.05), whereas UGT1A6 and UGT1A9 levels were unchanged (p > 0.05). In addition, among isoforms with altered expression, 6 of 8 CYP isoforms and all three UGT isoforms were much more variable in tumor microsomes. Lastly, the importance of CYP3A4 was greatly diminished whereas the importance of UGT1A6 was enhanced in tumor microsomes. The use of an isotope label-free absolute quantification method for the simultaneous determination of 9 CYPs and 5 UGTs in human liver microsomes reveals that expression levels of CYPs and UGTs in human liver are severely impact by HCC, which could impact drug metabolism, disposition and pharmacotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Song; Shi, Tujin; Fillmore, Thomas L.
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined withmore » precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.« less
Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A
2017-08-01
Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.
Lin, Sheng; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A
2013-05-28
Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.
Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart
2012-02-01
Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods. Copyright © 2011 Elsevier Inc. All rights reserved.
Perzanowska, Anna; Fatalska, Agnieszka; Wojtas, Grzegorz; Lewandowicz, Andrzej; Michalak, Agata; Krasowski, Grzegorz; Borchers, Christoph H; Dadlez, Michal; Domanski, Dominik
2018-03-01
The goal of this work was to develop an LC-MRM assay for the quantitative analysis of a set of established and diagnostically important cytokeratin (CK) markers used in cancer diagnosis, prognosis, and therapy monitoring. Second, the potential of this assay in lung cancer diagnosis through pleural effusion (PE) analysis was examined. A multiplexed MRM assay was developed for 17 CKs and their select caspase-cleaved fragments. Isotope-labeled standard peptides were used for high assay specificity and absolute peptide quantitation; with robust standard-flow LC coupled to a latest-generation triple-quadrupole instrument for high sensitivity. The potential clinical applicability was demonstrated by the analysis of 118 PE samples. The MRM assay was evaluated for endogenous detection, linearity, precision, upper and lower limits of quantification, selectivity, reproducibility and peptide stability, and is generally applicable to any epithelial cancer study. A set of 118 patients with known pathologies allowed us to define the range of CK levels in clinical PE samples. Specific CKs were able to differentiate cancer-related PEs from those caused by benign ailments. In addition, they allowed to differentiate between PEs from subjects with small cell lung cancer versus non-small cell lung carcinoma, and to further differentiate the latter into its two subtypes, adenocarcinoma and squamous cell carcinoma. An MRM-based CK assay for carcinoma studies can differentiate between the three lung cancer histological types using less-invasive PE sampling providing potential therapy-guiding information on patients that are inoperable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker
2016-10-01
Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-11-19
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-01-01
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535
Botchkarev, V A; Eichmüller, S; Peters, E M; Pietsch, P; Johansson, O; Maurer, M; Paus, R
1997-04-01
Close contacts between mast cells (MC) and nerve fibers have previously been demonstrated in normal and inflamed skin by light and electron microscopy. A key step for any study in MC-nerve interactions in situ is to simultaneously visualize both communication partners, preferably with the option of double labelling the nerve fibers. For this purpose, we developed the following triple-staining technique. After paraformaldehyde-picric acid perfusion fixation, cryostat sections of back skin from C57BL/6 mice were incubated with a primary rat monoclonal antibody to substance P (SP), followed by incubation with a secondary goat-anti-rat TRITC-conjugated IgG. A rabbit antiserum to CGRP was then applied, followed by a secondary goat-anti-rabbit FITC-conjugated IgG. MCs were visualized by incubation with AMCA-labelled avidin, or (for a more convenient quantification of close MC-nerve fiber contacts) with a mixture of TRITC- and FITC-labelled avidins. Using this simple, novel covisualization method, we were able to show that MC-nerve associations in mouse skin are, contrary to previous suggestions, highly selective for nerve fiber types, and that these interactions are regulated in a hair cycle-dependent manner: in telogen and early anagen skin, MCs preferentially contacted CGRP-immunoreactive (IR) or SP/CGRP-IR double-labelled nerve fibers. Compared with telogen values, there was a significant increase in the number of close contacts between MCs and tyrosine hydroxylase-IR fibers during late anagen, and between MCs and peptide histidine-methionine-IR and choline acetyl transferase-IR fibers during catagen.
McCarthy, Jason R.; Weissleder, Ralph
2007-01-01
Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pas, H.H.; Robillard, G.T.
1988-07-26
The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less
A novel facile method of labeling octreotide with (18)F-fluorine.
Laverman, Peter; McBride, William J; Sharkey, Robert M; Eek, Annemarie; Joosten, Lieke; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C
2010-03-01
Several methods have been developed to label peptides with (18)F. However, in general these are laborious and require a multistep synthesis. We present a facile method based on the chelation of (18)F-aluminum fluoride (Al(18)F) by 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The method is characterized by the labeling of NOTA-octreotide (NOTA-d-Phe-cyclo[Cys-Phe-d-Trp-Lys-Thr-Cys]-Throl (MH(+) 1305) [IMP466]) with (18)F. Octreotide was conjugated with the NOTA chelate and labeled with (18)F in a 2-step, 1-pot method. The labeling procedure was optimized with regard to the labeling buffer, peptide, and aluminum concentration. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice and compared with that of (68)Ga-labeled IMP466. In addition, small-animal PET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 50% yield. The labeled product was purified by high-performance liquid chromatography to remove unbound Al(18)F and unlabeled peptide. The radiolabeling, including purification, was performed in 45 min. The specific activity was 45,000 GBq/mmol, and the peptide was stable in serum for 4 h at 37 degrees C. Labeling was performed at pH 4.1 in sodium citrate, sodium acetate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 2-(N-morpholino)ethanesulfonic acid buffer and was optimal in sodium acetate buffer. The apparent 50% inhibitory concentration of the (19)F-labeled IMP466 determined on AR42J cells was 3.6 nM. Biodistribution studies at 2 h after injection showed a high tumor uptake of (18)F-IMP466 (28.3 +/- 5.2 percentage injected dose per gram [%ID/g]; tumor-to-blood ratio, 300 +/- 90), which could be blocked by an excess of unlabeled peptide (8.6 +/- 0.7 %ID/g), indicating that the accumulation in the tumor was receptor-mediated. Biodistribution of (68)Ga-IMP466 was similar to that of (18)F-IMP466. (18)F-IMP466 was stable in vivo, because bone uptake was only 0.4 +/- 0.2 %ID/g, whereas free Al(18)F accumulated rapidly in the bone (36.9 +/- 5.0 %ID/g at 2 h after injection). Small-animal PET/CT scans showed excellent tumor delineation and high preferential accumulation in the tumor. NOTA-octreotide could be labeled rapidly and efficiently with (18)F using a 2-step, 1-pot method. The compound was stable in vivo and showed rapid accretion in somatostatin receptor subtype 2-expressing AR42J tumors in nude mice. This method can be used to label other NOTA-conjugated compounds with (18)F.
Mustafa, Mehnaz G.; Petersen, John R.; Ju, Hyunsu; Cicalese, Luca; Snyder, Ned; Haidacher, Sigmund J.; Denner, Larry; Elferink, Cornelis
2013-01-01
Chronic hepatic disease damages the liver, and the resulting wound-healing process leads to liver fibrosis and the subsequent development of cirrhosis. The leading cause of hepatic fibrosis and cirrhosis is infection with hepatitis C virus (HCV), and of the patients with HCV-induced cirrhosis, 2% to 5% develop hepatocellular carcinoma (HCC), with a survival rate of 7%. HCC is one of the leading causes of cancer-related death worldwide, and the poor survival rate is largely due to late-stage diagnosis, which makes successful intervention difficult, if not impossible. The lack of sensitive and specific diagnostic tools and the urgent need for early-stage diagnosis prompted us to discover new candidate biomarkers for HCV and HCC. We used aptamer-based fractionation technology to reduce serum complexity, differentially labeled samples (six HCV and six HCC) with fluorescent dyes, and resolved proteins in pairwise two-dimensional difference gel electrophoresis. DeCyder software was used to identify differentially expressed proteins and spots picked, and MALDI-MS/MS was used to determine that ApoA1 was down-regulated by 22% (p < 0.004) in HCC relative to HCV. Differential expression quantified via two-dimensional difference gel electrophoresis was confirmed by means of 18O/16O stable isotope differential labeling with LC-MS/MS zoom scans. Technically independent confirmation was demonstrated by triple quadrupole LC-MS/MS selected reaction monitoring (SRM) assays with three peptides specific to human ApoA1 (DLATVYVDVLK, WQEEMELYR, and VSFLSALEEYTK) using 18O/16O-labeled samples and further verified with AQUA peptides as internal standards for quantification. In 50 patient samples (24 HCV and 26 HCC), all three SRM assays yielded highly similar differential expression of ApoA1 in HCC and HCV patients. These results validated the SRM assays, which were independently confirmed by Western blotting. Thus, ApoA1 is a candidate member of an SRM biomarker panel for early diagnosis, prognosis, and monitoring of HCC. Future multiplexing of SRM assays for other candidate biomarkers is envisioned to develop a biomarker panel for subsequent verification and validation studies. PMID:24008390
Shaghaghi, Zahra; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal
2018-05-15
The early diagnosis of non-small cell lung cancer (NSCLC) is important for increasing survival rate and improving quality life of patients. The aim of this study was to investigate 99m Tc-(tricine)-HYNIC-(Ser) 3 -J18 for targeting and imaging of NSCLC in A-549 xenografted nude mice. The (Ser) 3 -J18 peptide was conjugated with HYNIC and labeled with 99m Tc using tricine as a co-ligand. The radiolabeled peptide was evaluated for its radiochemical purity, stability, receptor binding and internalization in vitro. The future experiments were performed for tumor targeting and imaging in A-549 tumor-bearing mice. 99m Tc-(tricine)-HYNIC-(Ser) 3 -J18 was obtained at high labeling efficiency at room temperature and favorable stability in saline and human plasma. At the cellular level, the radiolabeled peptide specifically bond to A-549 cells with a K D 4.1 ± 1.3 nM. Biodistribution study revealed tumor to blood and tumor to muscle ratios were about 3.12 and 5.63 respectively after 2 h injection of radiolabeled peptide. These ratios were significantly decreased by co-injection of excess non-labeled peptide in mice. This radiolabeled peptide selectively targeted to NSCLC tumor and exhibited a high target uptake combined with acceptable low background activity for tumor imaging in mice. The results of this study and its comparison with another study showed that 99m Tc-(tricine)-HYNIC-(Ser) 3 -J18 is better than previously reported radiolabeled peptide as 99m Tc-(EDDA/tricine)-HYNIC-(Ser) 3 -J18 for NSCLC targeting and imaging. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Hesse, Almut
2016-01-01
Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481
Balkin, Ethan R; Liu, Dijie; Jia, Fang; Ruthengael, Varyanna C; Shaffer, Suzanne M; Miller, William H; Lewis, Michael R
2014-01-01
The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene in non-Hodgkin's lymphoma (NHL) is a dominant inhibitor of apoptosis. We developed a (177)Lu-labeled bcl-2 antisense peptide nucleic acid (PNA)-peptide conjugate designed for dual modality NHL therapy, consisting of a radiopharmaceutical capable of simultaneously down-regulating apoptotic resistance and delivering cytotoxic internally emitted radiation. DOTA-anti-bcl-2-Tyr(3)-octreotate was synthesized, labeled with (177)Lu, and purified using RP-HPLC. The PNA-peptide conjugate was evaluated in Mec-1 NHL-bearing mice and compared to [(177)Lu]DOTA-Tyr(3)-octreotate in biodistribution and excretion studies. These data were then used to generate in vivo dosimetry models. The PNA-peptide conjugate was readily prepared and radiolabeled in high yield and radiochemical purity. An in vivo blocking study determined that administration of 50 μg of non-radioactive PNA-peptide was the optimal mass for maximum delivery to the tumor. Based on that result, a dosing regimen of (177)Lu-PNA-peptide, for radiologic effect, followed by the optimal mass of non-radioactive compound, for antisense effect, was designed. Using that dosing regimen, biodistribution of the PNA-peptide showed uptake in the tumor with minimal washout over a 4-day period. Uptakes in receptor-positive normal organs were low and displayed nearly complete washout by 24h. Dosimetry models showed that the tumor absorbed dose of the PNA-peptide conjugate was approximately twice that of the peptide-only conjugate. Biodistribution data showed specific tumor targeting of the (177)Lu-labeled PNA-peptide compound with minimal receptor-positive normal tissue uptake when compared to [(177)Lu]DOTA-Tyr(3)-octreotate. In vivo dosimetry models predicted a more favorable tumor absorbed dose from [(177)Lu]DOTA-anti-bcl-2-Tyr(3)-octreotate. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.
2013-02-20
Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Applicationmore » of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.« less
Maier, Barbara; Vogeser, Michael
2013-04-01
Isotope dilution LC-MS/MS methods used in the clinical laboratory typically involve multi-point external calibration in each analytical series. Our aim was to test the hypothesis that determination of target analyte concentrations directly derived from the relation of the target analyte peak area to the peak area of a corresponding stable isotope labelled internal standard compound [direct isotope dilution analysis (DIDA)] may be not inferior to conventional external calibration with respect to accuracy and reproducibility. Quality control samples and human serum pools were analysed in a comparative validation protocol for cortisol as an exemplary analyte by LC-MS/MS. Accuracy and reproducibility were compared between quantification either involving a six-point external calibration function, or a result calculation merely based on peak area ratios of unlabelled and labelled analyte. Both quantification approaches resulted in similar accuracy and reproducibility. For specified analytes, reliable analyte quantification directly derived from the ratio of peak areas of labelled and unlabelled analyte without the need for a time consuming multi-point calibration series is possible. This DIDA approach is of considerable practical importance for the application of LC-MS/MS in the clinical laboratory where short turnaround times often have high priority.
Wang, Hao; Straubinger, Robert M; Aletta, John M; Cao, Jin; Duan, Xiaotao; Yu, Haoying; Qu, Jun
2009-03-01
Protein arginine (Arg) methylation serves an important functional role in eucaryotic cells, and typically occurs in domains consisting of multiple Arg in close proximity. Localization of methylarginine (MA) within Arg-rich domains poses a challenge for mass spectrometry (MS)-based methods; the peptides are highly charged under electrospray ionization (ESI), which limits the number of sequence-informative products produced by collision induced dissociation (CID), and loss of the labile methylation moieties during CID precludes effective fragmentation of the peptide backbone. Here the fragmentation behavior of Arg-rich peptides was investigated comprehensively using electron-transfer dissociation (ETD) and CID for both methylated and unmodified glycine-/Arg-rich peptides (GAR), derived from residues 679-695 of human nucleolin, which contains methylation motifs that are widely-represented in biological systems. ETD produced abundant information for sequencing and MA localization, whereas CID failed to provide credible identification for any available charge state (z = 2-4). Nevertheless, CID produced characteristic neutral losses that can be employed to distinguish among different types of MA, as suggested by previous works and confirmed here with product ion scans of high accuracy/resolution by an LTQ/Orbitrap. To analyze MA-peptides in relatively complex mixtures, a method was developed that employs nano-LC coupled to alternating CID/ETD for peptide sequencing and MA localization/characterization, and an Orbitrap for accurate precursor measurement and relative quantification of MA-peptide stoichiometries. As proof of concept, GAR-peptides methylated in vitro by protein arginine N-methyltransferases PRMT1 and PRMT7 were analyzed. It was observed that PRMT1 generated a number of monomethylated (MMA) and asymmetric-dimethylated peptides, while PRMT7 produced predominantly MMA peptides and some symmetric-dimethylated peptides. This approach and the results may advance understanding of the actions of PRMTs and the functional significance of Arg methylation patterns.
Wang, Hao; Straubinger, Robert M.; Aletta, John M.; Cao, Jin; Duan, Xiaotao; Yu, Haoying; Qu, Jun
2012-01-01
Protein arginine (Arg) methylation serves an important functional role in eukaryotic cells, and typically occurs in domains consisting of multiple Arg in close proximity. Localization of methylarginine (MA) within Arg-rich domains poses a challenge for mass spectrometry (MS)-based methods; the peptides are highly-charged under electrospray ionization (ESI), which limits the number of sequence-informative products produced by collision induced dissociation (CID), and loss of the labile methylation moieties during CID precludes effective fragmentation of the peptide backbone. Here the fragmentation behavior of Arg-rich peptides was investigated comprehensively using electron transfer dissociation (ETD) and CID for both methylated and unmodified glycine-/Arg-rich peptides (GAR), derived from residues 679-695 of human nucleolin, which contains methylation motifs that are widely-represented in biological systems. ETD produced abundant information for sequencing and MA localization, whereas CID failed to provide credible identification for any available charge state (z=2-4). Nevertheless, CID produced characteristic neutral losses that can be employed to distinguish among different types of MA, as suggested by previous works and confirmed here with product ion scans of high accuracy/resolution by an LTQ/Orbitrap. To analyze MA-peptides in relatively complex mixtures, a method was developed that employs nano-LC coupled to alternating CID/ETD for peptide sequencing and MA localization/characterization, and an Orbitrap for accurate precursor measurement and relative quantification of MA-peptide stoichiometries. As proof of concept, GAR-peptides methylated in vitro by protein arginine N-methyltransferases PRMT1 and PRMT7 were analyzed. It was observed that PRMT1 generated a number of monomethylated (MMA) and asymmetric-dimethylated peptides, while PRMT7 produced predominantly MMA peptides and some symmetric-dimethylated peptides. This approach and the results may advance understanding of the actions of PRMTs and the functional significance of Arg methylation patterns. PMID:19110445
2015-01-01
Food consumption is an important behavior that is regulated by an intricate array of neuropeptides (NPs). Although many feeding-related NPs have been identified in mammals, precise mechanisms are unclear and difficult to study in mammals, as current methods are not highly multiplexed and require extensive a priori knowledge about analytes. New advances in data-independent acquisition (DIA) MS/MS and the open-source quantification software Skyline have opened up the possibility to identify hundreds of compounds and quantify them from a single DIA MS/MS run. An untargeted DIA MSE quantification method using Skyline software for multiplexed, discovery-driven quantification was developed and found to produce linear calibration curves for peptides at physiologically relevant concentrations using a protein digest as internal standard. By using this method, preliminary relative quantification of the crab Cancer borealis neuropeptidome (<2 kDa, 137 peptides from 18 families) was possible in microdialysates from 8 replicate feeding experiments. Of these NPs, 55 were detected with an average mass error below 10 ppm. The time-resolved profiles of relative concentration changes for 6 are shown, and there is great potential for the use of this method in future experiments to aid in correlation of NP changes with behavior. This work presents an unbiased approach to winnowing candidate NPs related to a behavior of interest in a functionally relevant manner, and demonstrates the success of such a UPLC-MSE quantification method using the open source software Skyline. PMID:25552291
Schmerberg, Claire M; Liang, Zhidan; Li, Lingjun
2015-01-21
Food consumption is an important behavior that is regulated by an intricate array of neuropeptides (NPs). Although many feeding-related NPs have been identified in mammals, precise mechanisms are unclear and difficult to study in mammals, as current methods are not highly multiplexed and require extensive a priori knowledge about analytes. New advances in data-independent acquisition (DIA) MS/MS and the open-source quantification software Skyline have opened up the possibility to identify hundreds of compounds and quantify them from a single DIA MS/MS run. An untargeted DIA MS(E) quantification method using Skyline software for multiplexed, discovery-driven quantification was developed and found to produce linear calibration curves for peptides at physiologically relevant concentrations using a protein digest as internal standard. By using this method, preliminary relative quantification of the crab Cancer borealis neuropeptidome (<2 kDa, 137 peptides from 18 families) was possible in microdialysates from 8 replicate feeding experiments. Of these NPs, 55 were detected with an average mass error below 10 ppm. The time-resolved profiles of relative concentration changes for 6 are shown, and there is great potential for the use of this method in future experiments to aid in correlation of NP changes with behavior. This work presents an unbiased approach to winnowing candidate NPs related to a behavior of interest in a functionally relevant manner, and demonstrates the success of such a UPLC-MS(E) quantification method using the open source software Skyline.
Amicosante, G; Oratore, A; Joris, B; Galleni, M; Frère, J M; Van Beeumen, J
1988-01-01
Both forms of the chromosome-encoded beta-lactamase of Citrobacter diversus react with beta-iodopenicillanate at a rate characteristic of class A beta-lactamases. The active site of form I was labelled with the same reagent. The sequence of the peptide obtained after trypsin hydrolysis is identical with that of a peptide obtained in a similar manner from the chromosome-encoded beta-lactamase of Klebsiella pneumoniae. PMID:2848500
Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry
Mendoza, Vanessa Leah; Vachet, Richard W.
2009-01-01
For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300
Wu, Yiman; Li, Liang
2012-12-18
For mass spectrometry (MS)-based metabolomics, it is important to use the same amount of starting materials from each sample to compare the metabolome changes in two or more comparative samples. Unfortunately, for biological samples, the total amount or concentration of metabolites is difficult to determine. In this work, we report a general approach of determining the total concentration of metabolites based on the use of chemical labeling to attach a UV absorbent to the metabolites to be analyzed, followed by rapid step-gradient liquid chromatography (LC) UV detection of the labeled metabolites. It is shown that quantification of the total labeled analytes in a biological sample facilitates the preparation of an appropriate amount of starting materials for MS analysis as well as the optimization of the sample loading amount to a mass spectrometer for achieving optimal detectability. As an example, dansylation chemistry was used to label the amine- and phenol-containing metabolites in human urine samples. LC-UV quantification of the labeled metabolites could be optimally performed at the detection wavelength of 338 nm. A calibration curve established from the analysis of a mixture of 17 labeled amino acid standards was found to have the same slope as that from the analysis of the labeled urinary metabolites, suggesting that the labeled amino acid standard calibration curve could be used to determine the total concentration of the labeled urinary metabolites. A workflow incorporating this LC-UV metabolite quantification strategy was then developed in which all individual urine samples were first labeled with (12)C-dansylation and the concentration of each sample was determined by LC-UV. The volumes of urine samples taken for producing the pooled urine standard were adjusted to ensure an equal amount of labeled urine metabolites from each sample was used for the pooling. The pooled urine standard was then labeled with (13)C-dansylation. Equal amounts of the (12)C-labeled individual sample and the (13)C-labeled pooled urine standard were mixed for LC-MS analysis. This way of concentration normalization among different samples with varying concentrations of total metabolites was found to be critical for generating reliable metabolome profiles for comparison.
Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics.
Prasad, Bhagwat; Unadkat, Jashvant D
2014-07-01
Drug transporter expression in tissues (in vivo) usually differs from that in cell lines used to measure transporter activity (in vitro). Therefore, quantification of transporter expression in tissues and cell lines is important to develop scaling factor for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition. Since traditional immunoquantification methods are semiquantitative, targeted proteomics is now emerging as a superior method to quantify proteins, including membrane transporters. This superiority is derived from the selectivity, precision, accuracy, and speed of analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, LC-MS/MS proteomics has broader applicability because it does not require selective antibodies for individual proteins. There are a number of recent research and review papers that discuss the use of LC-MS/MS for transporter quantification. Here, we have compiled from the literature various elements of MRM proteomics to provide a comprehensive systematic strategy to quantify drug transporters. This review emphasizes practical aspects and challenges in surrogate peptide selection, peptide qualification, peptide synthesis and characterization, membrane protein isolation, protein digestion, sample preparation, LC-MS/MS parameter optimization, method validation, and sample analysis. In particular, bioinformatic tools used in method development and sample analysis are discussed in detail. Various pre-analytical and analytical sources of variability that should be considered during transporter quantification are highlighted. All these steps are illustrated using P-glycoprotein (P-gp) as a case example. Greater use of quantitative transporter proteomics will lead to a better understanding of the role of drug transporters in drug disposition.
Seyer, Alexandre; Fenaille, François; Féraudet-Tarisse, Cecile; Volland, Hervé; Popoff, Michel R; Tabet, Jean-Claude; Junot, Christophe; Becher, François
2012-06-05
Epsilon toxin (ETX) is one of the most lethal toxins produced by Clostridium species and is considered as a potential bioterrorist weapon. Here, we present a rapid mass spectrometry-based method for ETX quantification in complex matrixes. As a prerequisite, naturally occurring prototoxin and toxin species were first structurally characterized by top-down and bottom-up experiments, to identify the most pertinent peptides for quantification. Following selective ETX immunoextraction and trypsin digestion, two proteotypic peptides shared by all the toxin forms were separated by ultraperformance liquid chromatography (UPLC) and monitored by ESI-MS (electrospray ionization-mass spectrometry) operating in the multiple reaction monitoring mode (MRM) with collision-induced dissociation. Thorough protocol optimization, i.e., a 15 min immunocapture, a 2 h enzymatic digestion, and an UPLC-MS/MS detection, allowed the whole quantification process including the calibration curve to be performed in less than 4 h, without compromising assay robustness and sensitivity. The assay sensitivity in milk and serum was estimated at 5 ng·mL(-1) for ETX, making this approach complementary to enzyme linked immunosorbent assay (ELISA) techniques.
NASA Astrophysics Data System (ADS)
Arsene, Cristian G.; Schulze, Dirk; Kratzsch, Jürgen; Henrion, André
2012-12-01
Amphiphilic peptide conjugation affords a significant increase in sensitivity with protein quantification by electrospray-ionization mass spectrometry. This has been demonstrated here for human growth hormone in serum using N-(3-iodopropyl)-N,N,N-dimethyloctylammonium iodide (IPDOA-iodide) as derivatizing reagent. The signal enhancement achieved in comparison to the method without derivatization enables extension of the applicable concentration range down to the very low concentrations as encountered with clinical glucose suppression tests for patients with acromegaly. The method has been validated using a set of serum samples spiked with known amounts of recombinant 22 kDa growth hormone in the range of 0.48 to 7.65 \\mug/L. The coefficient of variation (CV) calculated, based on the deviation of results from the expected concentrations, was 3.5% and the limit of quantification (LoQ) was determined as 0.4 \\mug/L. The potential of the method as a tool in clinical practice has been demonstrated with patient samples of about 1 \\mug/L.
Mass spectrometry-based proteomics: basic principles and emerging technologies and directions.
Van Riper, Susan K; de Jong, Ebbing P; Carlis, John V; Griffin, Timothy J
2013-01-01
As the main catalytic and structural molecules within living systems, proteins are the most likely biomolecules to be affected by radiation exposure. Proteomics, the comprehensive characterization of proteins within complex biological samples, is therefore a research approach ideally suited to assess the effects of radiation exposure on cells and tissues. For comprehensive characterization of proteomes, an analytical platform capable of quantifying protein abundance, identifying post-translation modifications and revealing members of protein complexes on a system-wide level is necessary. Mass spectrometry (MS), coupled with technologies for sample fractionation and automated data analysis, provides such a versatile and powerful platform. In this chapter we offer a view on the current state of MS-proteomics, and focus on emerging technologies within three areas: (1) New instrumental methods; (2) New computational methods for peptide identification; and (3) Label-free quantification. These emerging technologies should be valuable for researchers seeking to better understand biological effects of radiation on living systems.
Lee, SangWook; Lee, Jong Hyun; Kwon, Hyuck Gi; Laurell, Thomas; Jeong, Ok Chan; Kim, Soyoun
2018-01-01
Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.
Identification and quantification of the rat hepatocyte asialoglycoprotein receptor.
Schwartz, A L; Marshak-Rothstein, A; Rup, D; Lodish, H F
1981-01-01
The asialoglycoprotein receptor from rat liver was purified by solubilization and affinity chromatography on asialoorosomucoid-Sepharose. The preparation yielded four distinct polypeptides of Mr 40,000-120,000. We prepared a monoclonal antibody that both immunoprecipitates solubilized receptor activity and blocks the binding of galactose-terminal glycoproteins to immobilized receptor. The monoclonal antibody and a rabbit antireceptor antiserum immunoprecipitated all four polypeptide species. Peptide analysis by two-dimensional chromatography of the individual 125I-labeled species showed nearly identical patterns, which also suggested that the four polypeptides have a similar primary structure. To identify and quantitate the asialoglycoprotein receptor on the hepatocyte cell surface, intact cells were iodinated with lactoperoxidase, and the solubilized membranes were treated with antireceptor antibody. The Mr 55,000 and Mr 65,000 species were the major species found. Our results suggest that the Mr of the surface receptor is at least 55,000 and that it comprises between 1-2% of the iodinated hepatocyte surface protein. Images PMID:6267585
Lao, Yexing; Yang, Cuiping; Zou, Wei; Gan, Manquan; Chen, Ping; Su, Weiwei
2012-05-01
The cryptand Kryptofix 2.2.2 is used extensively as a phase-transfer reagent in the preparation of [18F]fluoride-labelled radiopharmaceuticals. However, it has considerable acute toxicity. The aim of this study was to develop and validate a method for rapid (within 1 min), specific and sensitive quantification of Kryptofix 2.2.2 at trace levels. Chromatographic separations were carried out by rapid-resolution liquid chromatography (Agilent ZORBAX SB-C18 rapid-resolution column, 2.1 × 30 mm, 3.5 μm). Tandem mass spectra were acquired using a triple quadrupole mass spectrometer equipped with an electrospray ionization interface. Quantitative mass spectrometric analysis was conducted in positive ion mode and multiple reaction monitoring mode for the m/z 377.3 → 114.1 transition for Kryptofix 2.2.2. The external standard method was used for quantification. The method met the precision and efficiency requirements for PET radiopharmaceuticals, providing satisfactory results for specificity, matrix effect, stability, linearity (0.5-100 ng/ml, r(2)=0.9975), precision (coefficient of variation < 5%), accuracy (relative error < ± 3%), sensitivity (lower limit of quantification=0.5 ng) and detection time (<1 min). Fluorodeoxyglucose (n=6) was analysed, and the Kryptofix 2.2.2 content was found to be well below the maximum permissible levels approved by the US Food and Drug Administration. The developed method has a short analysis time (<1 min) and high sensitivity (lower limit of quantification=0.5 ng/ml) and can be successfully applied to rapid quantification of Kryptofix 2.2.2 at trace levels in fluorodeoxyglucose. This method could also be applied to other [18F]fluorine-labelled radiopharmaceuticals that use Kryptofix 2.2.2 as a phase-transfer reagent.
Daumar, Pierre; Wanger-Baumann, Cindy A.; Pillarsetty, NagaVaraKishore; Fabrizio, Laura; Carlin, Sean D.; Andreev, Oleg A.; Reshetnyak, Yana K.; Lewis, Jason S.
2012-01-01
Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative control [18F]-L-K-pHLIP revealed pH-dependent tumor retention. This reliable and efficient protocol promises to be useful for the 18F-labeling of large peptides such as pHLIP and will accelerate the evaluation of numerous [18F]-pHLIP analogues as potential PET tracers. PMID:22784215
Zhang, Yi; Askenazi, Manor; Jiang, Jingrui; Luckey, C. John; Griffin, James D.; Marto, Jarrod A.
2010-01-01
The FLT3 receptor tyrosine kinase plays an important role in normal hematopoietic development and leukemogenesis. Point mutations within the activation loop and in-frame tandem duplications of the juxtamembrane domain represent the most frequent molecular abnormalities observed in acute myeloid leukemia. Interestingly these gain-of-function mutations correlate with different clinical outcomes, suggesting that signals from constitutive FLT3 mutants activate different downstream targets. In principle, mass spectrometry offers a powerful means to quantify protein phosphorylation and identify signaling events associated with constitutively active kinases or other oncogenic events. However, regulation of individual phosphorylation sites presents a challenging case for proteomics studies whereby quantification is based on individual peptides rather than an average across different peptides derived from the same protein. Here we describe a robust experimental framework and associated error model for iTRAQ-based quantification on an Orbitrap mass spectrometer that relates variance of peptide ratios to mass spectral peak height and provides for assignment of p value, q value, and confidence interval to every peptide identification, all based on routine measurements, obviating the need for detailed characterization of individual ion peaks. Moreover, we demonstrate that our model is stable over time and can be applied in a manner directly analogous to ubiquitously used external mass calibration routines. Application of our error model to quantitative proteomics data for FLT3 signaling provides evidence that phosphorylation of tyrosine phosphatase SHP1 abrogates the transformative potential, but not overall kinase activity, of FLT3-D835Y in acute myeloid leukemia. PMID:20019052
Selective Photoaffinity Labeling Identifies the Signal Peptide Binding Domain on SecA
Musial-Siwek, Monika; Rusch, Sharyn L.; Kendall, Debra A.
2007-01-01
SecA, an ATPase crucial to the Sec-dependent translocation machinery in Escherichia coli, recognizes and directly binds the N-terminal signal peptide of an exported preprotein. This interaction plays a central role in the targeting and transport of preproteins via the SecYEG channel. Here we identify the Signal Peptide Binding Groove (SPBG) on SecA addressing a key issue regarding the SecA-preprotein interaction. We employ a synthetic signal peptide containing the photoreactive benzoylphenylalanine to efficiently and specifically label SecA containing a unique Factor Xa site. Comparison of the photolabeled fragment from the subsequent proteolysis of several SecAs, which vary only in the location of the Factor Xa site, reveals one 53-residue segment in common with the entire series. The covalently modified SecA segment produced is the same in aqueous solution and in lipid vesicles. This spans amino acids 269 to 322 of the E. coli protein, which is distinct from a previously proposed signal peptide binding site, and contributes to a hydrophobic peptide binding groove evident in molecular models of SecA. PMID:17084862
Evaluation of ⁹⁹(m)Tc-labeled antibiotics for infection detection.
Lambrecht, Fatma Yurt
2011-01-01
One of the fields of research in nuclear medicine is the development of new radiopharmaceuticals for imaging infection and inflammation in humans. For this development, several antimicrobial peptides, antibiotics, antibiotic peptide and chemotactic peptides, etc., have been radiolabeled with different radionuclides (⁶⁷Ga, ⁹⁹(m)Tc, ¹¹¹In, ¹⁸F, ¹³¹I, etc.) and their imaging potentials studied. Actually, it is very important to distinguish between infection and inflammation. In this respect, radiolabeled antibiotics have advantages because many of the properties of the ideal infection-specific agent through antibiotics localizes in infection site. In this review, only ⁹⁹(m)Tc-labeled antibiotics are evaluated and discussed.
Joshi, Bishnu P; Dai, Zhenzhen; Gao, Zhenghong; Lee, Jeong Hoon; Ghimire, Navin; Chen, Jing; Prabhu, Anoop; Wamsteker, Erik J; Kwon, Richard S; Elta, Grace H; Stoffel, Elena M; Pant, Asha; Kaltenbach, Tonya; Soetikno, Roy M; Appelman, Henry D; Kuick, Rork; Turgeon, D Kim; Wang, Thomas D
2017-04-01
Many cancers in the proximal colon develop via from sessile serrated adenomas (SSAs), which have flat, subtle features that are difficult to detect with conventional white-light colonoscopy. Many SSA cells have the V600E mutation in BRAF. We investigated whether this feature could be used with imaging methods to detect SSAs in patients. We used phage display to identify a peptide that binds specifically to SSAs, using subtractive hybridization with HT29 colorectal cancer cells containing the V600E mutation in BRAF and Hs738.St/Int cells as a control. Binding of fluorescently labeled peptide to colorectal cancer cells was evaluated with confocal fluorescence microscopy. Rats received intra-colonic 0.0086 mg/kg, 0.026 mg/kg, or 0.86 mg/kg peptide or vehicle and morbidity, mortality, and injury were monitored twice daily to assess toxicity. In the clinical safety study, fluorescently labeled peptide was topically administered, using a spray catheter, to the proximal colon of 25 subjects undergoing routine outpatient colonoscopies (3 subjects were given 2.25 μmol/L and 22 patients were given 76.4 μmol/L). We performed blood cell count, chemistry, liver function, and urine analyses approximately 24 hours after peptide administration. In the clinical imaging study, 38 subjects undergoing routine outpatient colonoscopies, at high risk for colorectal cancer, or with a suspected unresected proximal colonic polyp, were first evaluated by white-light endoscopy to identify suspicious regions. The fluorescently labeled peptide (76.4 μmol/L) was administered topically to proximal colon, unbound peptide was washed away, and white-light, reflectance, and fluorescence videos were recorded digitally. Fluorescence intensities of SSAs were compared with those of normal colonic mucosa. Endoscopists resected identified lesions, which were analyzed histologically by gastrointestinal pathologists (reference standard). We also analyzed the ability of the peptide to identify SSAs vs adenomas, hyperplastic polyps, and normal colonic mucosa in specimens obtained from the tissue bank at the University of Michigan. We identified the peptide sequence KCCFPAQ and measured an apparent dissociation constant of K d = 72 nM and an apparent association time constant of K = 0.174 min -1 (5.76 minutes). During fluorescence imaging of patients during endoscopy, regions of SSA had 2.43-fold higher mean fluorescence intensity than that for normal colonic mucosa. Fluorescence labeling distinguished SSAs from normal colonic mucosa with 89% sensitivity and 92% specificity. The peptide had no observed toxic effects in animals or patients. In the analysis of ex vivo specimens, peptide bound to SSAs had significantly higher mean fluorescence intensity than to hyperplastic polyps. We have identified a fluorescently labeled peptide that has no observed toxic effects in animals or humans and can be used for wide-field imaging of lesions in the proximal colon. It distinguishes SSAs from normal colonic mucosa with 89% sensitivity and 92% specificity. This targeted imaging method might be used in early detection of premalignant serrated lesions during routine colonoscopies. ClinicalTrials.gov ID: NCT02156557. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Detection of Sessile Serrated Adenomas in Proximal Colon Using Wide-field Fluorescence Endoscopy
Joshi, Bishnu P.; Dai, Zhenzhen; Gao, Zhenghong; Lee, Jeong Hoon; Ghimire, Navin; Chen, Jing; Prabhu, Anoop; Wamsteker, Erik J.; Kwon, Richard S.; Elta, Grace H.; Stoffel, Elena M.; Pant, Asha; Kaltenbach, Tonya; Soetikno, Roy M.; Appelman, Henry D.; Kuick, Rork; Turgeon, D. Kim; Wang, Thomas D.
2018-01-01
Background & Aims Many cancers in the proximal colon develop via from sessile serrated adenomas (SSAs), which have flat, subtle features that are difficult to detect with conventional white-light colonoscopy. Many SSA cells have the V600E mutation in BRAF. We investigated whether this feature could be used with imaging methods to detect SSAs in patients. Methods We used phage display to identify a peptide that binds specifically to SSAs, using subtractive hybridization with HT29 colorectal cancer cells containing the V600E mutation in BRAF and Hs738.St/Int cells as a control. Binding of fluorescently labeled peptide to colorectal cancer cells was evaluated with confocal fluorescence microscopy. Rats received intra-colonic 0.0086 mg/kg, 0.026 mg/kg, or 0.86 mg/kg peptide or vehicle and morbidity, mortality, and injury were monitored twice daily to assess toxicity. In the clinical safety study, fluorescently labeled peptide was topically administered, using a spray catheter, to the proximal colon of 25 subjects undergoing routine outpatient colonoscopies (3 subjects were given 2.25 µmol/L and 22 patients were given 76.4 µmol/L). We performed blood cell count, chemistry, liver function, and urine analyses approximately 24 hrs after peptide administration. In the clinical imaging study, 38 subjects undergoing routine outpatient colonoscopies, at high risk for colorectal cancer, or with a suspected unresected proximal colonic polyp, were first evaluated by white-light endoscopy, to identify suspicious regions. The fluorescently labeled peptide (76.4 µmol/L) was administered topically to proximal colon, unbound peptide was washed away, and white-light, reflectance, and fluorescence videos were recorded digitally. Fluorescence intensities of SSAs were compared with those of normal colonic mucosa. Endoscopists resected identified lesions, which were analyzed histologically by gastrointestinal pathologists (reference standard). We also analyzed the ability of the peptide to identify SSAs vs adenomas, hyperplastic polyps, and normal colonic mucosa in specimens obtained from the tissue bank at the University of Michigan. Results We identified the peptide sequence KCCFPAQ, and measured an apparent dissociation constant of kd = 72 nM and an apparent association time constant of k = 0.174 min−1 (5.76 min). During fluorescence imaging of patients during endoscopy, regions of SSA had 2.43-fold higher mean fluorescence intensity than that for normal colonic mucosa. Fluorescence labeling distinguished SSAs from normal colonic mucosa with 89% sensitivity and 92% specificity. The peptide had no observed toxic effects in animals or patients. In the analysis of ex vivo specimens, peptide bound to SSAs had significantly higher mean fluorescence intensity than to hyperplastic polyps. Conclusions We have identified a fluorescently labeled peptide that has no observed toxic effects in animals or humans and can be used for wide-field imaging of lesions in the proximal colon. It distinguishes SSAs from normal colonic mucosa with 89% sensitivity and 92% specificity. This targeted imaging method might be used in early detection of pre-malignant serrated lesions during routine colonoscopies. ClinicalTrials.gov no: NCT02156557 PMID:28012848
Huang, Miao; Xiong, Chiyi; Lu, Wei; Zhang, Rui; Zhou, Min; Huang, Qian; Weinberg, Jeffrey; Li, Chun
2014-02-01
In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both (64)Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N',N″,N‴-tetraacetic acid. The conjugate was then labeled with (64)Cu for in vitro binding and in vivo dual μPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. μPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells.
Huang, Miao; Xiong, Chiyi; Lu, Wei; Zhang, Rui; Zhou, Min; Huang, Qian; Weinberg, Jeffrey; Li, Chun
2013-01-01
Purpose In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both 64Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. Materials and Methods TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N′,N″,N‴ -tetraacetic acid. The conjugate was then labeled with 64Cu for in vitro binding and in vivo dual μPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. Results μPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. Conclusions Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells. PMID:23918654
NASA Astrophysics Data System (ADS)
Waliczek, Mateusz; Kijewska, Monika; Rudowska, Magdalena; Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew
2016-11-01
Mass spectrometric analysis of trace amounts of peptides may be problematic due to the insufficient ionization efficiency resulting in limited sensitivity. One of the possible ways to overcome this problem is the application of ionization enhancers. Herein we developed new ionization markers based on 2,4,6-triphenylpyridinium and 2,4,6-trimethylpyridinium salts. Using of inexpensive and commercially available pyrylium salt allows selective derivatization of primary amino groups, especially those sterically unhindered, such as ɛ-amino group of lysine. The 2,4,6-triphenylpyridinium modified peptides generate in MS/MS experiments an abundant protonated 2,4,6-triphenylpyridinium ion. This fragment is a promising reporter ion for the multiple reactions monitoring (MRM) analysis. In addition, the fixed positive charge of the pyridinium group enhances the ionization efficiency. Other advantages of the proposed ionization enhancers are the simplicity of derivatization of peptides and the possibility of convenient incorporation of isotopic labels into derivatized peptides.
Quantitation of Human Cytochrome P450 2D6 Protein with Immunoblot and Mass Spectrometry Analysis
Yu, Ai-Ming; Qu, Jun; Felmlee, Melanie A.; Cao, Jin; Jiang, Xi-Ling
2009-01-01
Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05–0.50 versus 0.025–0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoform-specific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information. PMID:18832475
Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje
2016-02-01
In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.
Find Pairs: The Module for Protein Quantification of the PeakQuant Software Suite
Eisenacher, Martin; Kohl, Michael; Wiese, Sebastian; Hebeler, Romano; Meyer, Helmut E.
2012-01-01
Abstract Accurate quantification of proteins is one of the major tasks in current proteomics research. To address this issue, a wide range of stable isotope labeling techniques have been developed, allowing one to quantitatively study thousands of proteins by means of mass spectrometry. In this article, the FindPairs module of the PeakQuant software suite is detailed. It facilitates the automatic determination of protein abundance ratios based on the automated analysis of stable isotope-coded mass spectrometric data. Furthermore, it implements statistical methods to determine outliers due to biological as well as technical variance of proteome data obtained in replicate experiments. This provides an important means to evaluate the significance in obtained protein expression data. For demonstrating the high applicability of FindPairs, we focused on the quantitative analysis of proteome data acquired in 14N/15N labeling experiments. We further provide a comprehensive overview of the features of the FindPairs software, and compare these with existing quantification packages. The software presented here supports a wide range of proteomics applications, allowing one to quantitatively assess data derived from different stable isotope labeling approaches, such as 14N/15N labeling, SILAC, and iTRAQ. The software is publicly available at http://www.medizinisches-proteom-center.de/software and free for academic use. PMID:22909347
Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays
NASA Astrophysics Data System (ADS)
Nguyen, Huy Q.; Brower, Kara; Harink, Björn; Baxter, Brian; Thorn, Kurt S.; Fordyce, Polly M.
2017-02-01
Protein-peptide interactions are essential for cellular responses. Despite their importance, these interactions remain largely uncharacterized due to experimental challenges associated with their measurement. Current techniques (e.g. surface plasmon resonance, fluorescence polarization, and isothermal calorimetry) either require large amounts of purified material or direct fluorescent labeling, making high-throughput measurements laborious and expensive. In this report, we present a new technology for measuring antibody-peptide interactions in vitro that leverages spectrally encoded beads for biological multiplexing. Specific peptide sequences are synthesized directly on encoded beads with a 1:1 relationship between peptide sequence and embedded code, thereby making it possible to track many peptide sequences throughout the course of an experiment within a single small volume. We demonstrate the potential of these bead-bound peptide libraries by: (1) creating a set of 46 peptides composed of 3 commonly used epitope tags (myc, FLAG, and HA) and single amino-acid scanning mutants; (2) incubating with a mixture of fluorescently-labeled antimyc, anti-FLAG, and anti-HA antibodies; and (3) imaging these bead-bound libraries to simultaneously identify the embedded spectral code (and thus the sequence of the associated peptide) and quantify the amount of each antibody bound. To our knowledge, these data demonstrate the first customized peptide library synthesized directly on spectrally encoded beads. While the implementation of the technology provided here is a high-affinity antibody/protein interaction with a small code space, we believe this platform can be broadly applicable to any range of peptide screening applications, with the capability to multiplex into libraries of hundreds to thousands of peptides in a single assay.
Xiao, Xuan; Wang, Pu; Lin, Wei-Zhong; Jia, Jian-Hua; Chou, Kuo-Chen
2013-05-15
Antimicrobial peptides (AMPs), also called host defense peptides, are an evolutionarily conserved component of the innate immune response and are found among all classes of life. According to their special functions, AMPs are generally classified into ten categories: Antibacterial Peptides, Anticancer/tumor Peptides, Antifungal Peptides, Anti-HIV Peptides, Antiviral Peptides, Antiparasital Peptides, Anti-protist Peptides, AMPs with Chemotactic Activity, Insecticidal Peptides, and Spermicidal Peptides. Given a query peptide, how can we identify whether it is an AMP or non-AMP? If it is, can we identify which functional type or types it belong to? Particularly, how can we deal with the multi-type problem since an AMP may belong to two or more functional types? To address these problems, which are obviously very important to both basic research and drug development, a multi-label classifier was developed based on the pseudo amino acid composition (PseAAC) and fuzzy K-nearest neighbor (FKNN) algorithm, where the components of PseAAC were featured by incorporating five physicochemical properties. The novel classifier is called iAMP-2L, where "2L" means that it is a 2-level predictor. The 1st-level is to answer the 1st question above, while the 2nd-level is to answer the 2nd and 3rd questions that are beyond the reach of any existing methods in this area. For the conveniences of users, a user-friendly web-server for iAMP-2L was established at http://www.jci-bioinfo.cn/iAMP-2L. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Jonathan S.; Williams, Angela; Wooliver, Craig
Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.
Wall, Jonathan S.; Williams, Angela; Wooliver, Craig; ...
2016-08-11
Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.
Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.
2016-01-01
Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933
Orme, Rowan P; Gates, Monte A; Fricker-Gates, Rosemary A
2010-08-15
Cell transplantation using stem cell-derived neurons is commonly viewed as a candidate therapy for neurodegenerative diseases. However, methods for differentiating stem cells into homogenous populations of neurons suitable for transplant remain elusive. This suggests that there are as yet unknown signalling factors working in vivo to specify neuronal cell fate during development. These factors could be manipulated to better differentiate stem cells into neural populations useful for therapeutic transplantation. Here a quantitative proteomics approach is described for investigating cell signalling in the developing central nervous system (CNS), using the embryonic ventral mesencephalon as a model. Briefly, total protein was extracted from embryonic ventral midbrain tissue before, during and after the birth of dopaminergic neurons, and digested using trypsin. Two-dimensional liquid chromatography, coupled with tandem mass spectrometry, was then used to identify proteins from the tryptic peptides. Isobaric tagging for relative and absolute quantification (iTRAQ) reagents were used to label the tryptic peptides and facilitate relative quantitative analysis. The success of the experiment was confirmed by the identification of proteins known to be expressed in the developing ventral midbrain, as well as by Western blotting, and immunolabelling of embryonic tissue sections. This method of protein discovery improves upon previous attempts to identify novel signalling factors through microarray analysis. Importantly, the methods described here could be applied to virtually any aspect of development. (c) 2010 Elsevier B.V. All rights reserved.
Heidler, Juliana; Hardt, Stefanie; Wittig, Ilka; Tegeder, Irmgard
2016-12-01
Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13-15 months) female progranulin-deficient mice (GRN -/- ) and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE) versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS) on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015) was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ) values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].
Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.
Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram
2002-02-01
We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.
Ebner, Jennifer; Baum, Florian; Pischetsrieder, Monika
2016-09-16
Peptide profiles of different drinking milk samples were examined to study how the peptide fingerprint of milk reflects processing conditions. The combination of a simple and fast method for peptide extraction using stage tips and MALDI-TOF-MS enabled the fast and easy generation and relative quantification of peptide fingerprints for high-temperature short-time (HTST), extended shelf life (ESL) and ultra-high temperature (UHT) milk of the same dairies. The relative quantity of 16 peptides changed as a function of increasing heat load. Additional heating experiments showed that among those, the intensity of peptide β-casein 196-209 (m/z 1460.9Da) was most heavily influenced by heat treatment indicating a putative marker peptide for milk processing conditions. Storage experiments with HTST- and UHT milk revealed that the differences between different types of milk samples were not only caused by the heating process. Relevant was also the proteolytic activity of enzymes during storage, which were differently influenced by the heat treatment. These results indicate that the peptide profile may be suitable to monitor processing as well as storage conditions of milk. In the present study, peptide profiling of different types of milk was carried out by MALDI-TOF-MS after stage-tip extraction and relative quantification using an internal reference peptide. Although MALDI-TOF-MS covers only part of the peptidome, the method is easy and quick and is, therefore, suited for routine analysis to address several aspects of food authenticity. Using this method, 16 native peptides were detected in milk that could be modulated by different industrial processes. Subsequent heating and storage experiments with pasteurized and UHT milk confirmed that these peptides are indeed related to the production or storage conditions of the respective products. Furthermore, the heating experiments revealed one peptide, namely the β-casein-derived sequence β-casein 196-209, which underwent particularly sensitive modulation by heat treatment. The present results indicate that the modulated peptides, and especially β-casein 196-209, may be suitable markers to monitor processing parameters for industrial milk production. Furthermore, the model experiments suggest mechanisms leading to the formation or degradation of peptides, which help to evaluate putative marker peptides. Copyright © 2016 Elsevier B.V. All rights reserved.
Brown, Christopher John; Srinivasan, Deepa; Jun, Lee Hui; Coomber, David; Verma, Chandra S; Lane, David P
2008-03-01
Florescence anisotropy measurements using FAM-labelled p53 peptides showed that the binding of the peptides to MDM2 was dependant upon the phosphorylation of p53 at Thr18 and that this binding was modulated by the electrostatic properties of MDM2. In agreement with computational predictions, the binding to phosphorylated p53 peptide, in comparison to the unphosphorylated p53 peptide, was enhanced upon mutation of 3 key residues on the MDM2 surface.
Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening.
Jardin, Julien; Mollé, Daniel; Piot, Michel; Lortal, Sylvie; Gagnaire, Valérie
2012-04-02
Due to increasingly available bacterial genomes in databases, proteomic tools have recently been used to screen proteins expressed by micro-organisms in food in order to better understand their metabolism in situ. While the main objective is the systematic identification of proteins, the next step will be to bridge the gap between identification and quantification of these proteins. For that purpose, a new mass spectrometry-based approach was applied, using isobaric tagging reagent for quantitative proteomic analysis (iTRAQ), which are amine specific and yield labelled peptides identical in mass. Experimental Swiss-type cheeses were manufactured from microfiltered milk using Streptococcus thermophilus ITG ST20 and Lactobacillus helveticus ITG LH1 as lactic acid starters. At three ripening times (7, 20 and 69 days), cheese aqueous phases were extracted and enriched in bacterial proteins by fractionation. Each sample, standardised in protein amount prior to proteomic analyses, was: i) analysed by 2D-electrophoresis for qualitative analysis and ii) submitted to trypsinolysis, and labelled with specific iTRAQ tag, one per ripening time. The three labelled samples were mixed together and analysed by nano-LC coupled on-line with ESI-QTOF mass spectrometer. Thirty proteins, both from bacterial or bovine origin, were identified and efficiently quantified. The free bacterial proteins detected were enzymes from the central carbon metabolism as well as stress proteins. Depending on the protein considered, the quantity of these proteins in the cheese aqueous extract increased from 2.5 to 20 fold in concentration from day 7 to day 69 of ripening. Copyright © 2012 Elsevier B.V. All rights reserved.
Salavati, Ali; Puranik, Ameya; Kulkarni, Harshad R; Budiawan, Hendra; Baum, Richard P
2016-05-01
As therapeutic options in advanced medullary and non-iodine avid differentiated (nonmedullary) thyroid cancers are limited and associated with significant toxicity, targeting of somatostatin receptors (SSTRs) for internal radiation therapy provides a promising option. Theranostics (therapy and diagnosis) using radiolabeled somatostatin analogues has proved to be a milestone in the management of SSTR-expressing tumors. Peptide receptor radionuclide therapy using (177)Lu-labeled or (90)Y-labeled somatostatin analogues may have a significant role in the management of medullary and nonmedullary thyroid cancers in those patients where PET/CT with (68)Ga-labeled somatostatin analogues demonstrates significant SSTR expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Böhm, Ingrid
2011-08-01
The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).
Matsushima, Ayami; Takano, Katsuhiro; Yoshida, Taichi; Takeda, Yukimasa; Yokotani, Satoru; Shimohigashi, Yasuyuki; Shimohigashi, Miki
2007-06-01
Many lines of evidence have suggested that neuropeptides other than pigment-dispersing factor (PDF) are involved in regulating insect circadian rhythms, and FMRFamide-related peptides are additional candidates acting as such neuromodulators. Double-immunolabelling in insect brains with anti-crustacean beta-PDH and anti-FMRFamide antibodies had previously suggested that insect PDF and FMRFamide-like peptides may coexist in the same cells. However, it is critical for this kind of comparative investigations to use antibodies of proven specificity, to eliminate the possibility of both reciprocal cross-reactivity and the detection of unknown peptides. In the present study, we achieved the cDNA cloning of an fmrf mRNA from the housefly Musca domestica, for which co-localization of FMRFamide and PDF peptides was previously suggested. In order to examine the possible co-expression of this gene with the pdf gene, we carried out double-labelled in situ hybridization for simultaneous detection of both pdf and fmrf mRNAs in housefly, Musca brains. The results clearly indicated that they occur in distinctly different cells. This was also proven for the fruit fly Drosophila melanogaster by similar double-labelled in situ hybridization. The results thus revealed no reason to evoke the physiological release of FMRFamide and PDF peptides from the same neurons.
Photoaffinity labeling of the primer binding domain in murine leukemia virus reverse transcriptase.
Tirumalai, R S; Modak, M J
1991-07-02
We have labeled the primer binding domain of murine leukemia virus reverse transcriptase (MuLV RT) by covalently cross-linking 5' end labeled d(T)8 to MuLV RT, using ultraviolet light energy. The specificity and the functional significance of the primer cross-linking reaction were demonstrated by the fact that (i) other oligomeric primers, tRNAs, and also template-primers readily compete with radiolabeled d(T)8 for the cross-linking reaction, (ii) under similar conditions, the competing primers and template-primer also inhibit the DNA polymerase activity of MuLV RT to a similar extent, (iii) substrate deoxynucleotides have no effect, and (iv) the reaction is sensitive to high ionic strength. In order to identify the primer binding domains/sites in MuLV RT; tryptic digests prepared from the covalently cross-linked MuLV RT and [32P]d(T)8 complexes were resolved on C-18 columns by reverse-phase HPLC. Three distinct radiolabeled peptides were found to contain the majority of the bound primer. Of these, peptide I contained approximately 65% radioactivity, while the remainder was associated with peptides II and III. Amino acid composition and sequence analyses of the individual peptides revealed that peptide I spans amino acid residues 72-80 in the primary amino acid sequence of MuLV RT and is located in the polymerase domain. The primer cross-linking site appears to be at or near Pro-76. Peptides II and III span amino acid residues 602-609 and 615-622, respectively, and are located in the RNase H domain. The probable cross-linking sites in peptides II and III are suggested to be at or near Leu-604 and Leu-618, respectively.
Ihling, Christian; Schmidt, Andreas; Kalkhof, Stefan; Schulz, Daniela M; Stingl, Christoph; Mechtler, Karl; Haack, Michael; Beck-Sickinger, Annette G; Cooper, Dermot M F; Sinz, Andrea
2006-08-01
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.
Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease.
Lygirou, Vasiliki; Latosinska, Agnieszka; Makridakis, Manousos; Mullen, William; Delles, Christian; Schanstra, Joost P; Zoidakis, Jerome; Pieske, Burkert; Mischak, Harald; Vlahou, Antonia
2018-04-17
Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. LC-MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann-Whitney p value ≤ 0.05) and a minimum of twofold change. Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related protein 2 [LRP2], protein SZT2) for which a mechanism of action is suggested. This proteomic study provides a comprehensive dataset to be used for integrative and functional studies in the field. The observed protein changes reflect known CVD-related processes (e.g. lipid uptake, inflammation) but also novel hypotheses for further investigation including a potential pleiotropic role of LPR2 but also links of SZT2 to CVD.
Neutron-Encoded Protein Quantification by Peptide Carbamylation
NASA Astrophysics Data System (ADS)
Ulbrich, Arne; Merrill, Anna E.; Hebert, Alexander S.; Westphall, Michael S.; Keller, Mark P.; Attie, Alan D.; Coon, Joshua J.
2014-01-01
We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.
NASA Astrophysics Data System (ADS)
Kapty, Janice Sarah
We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical yield. We report the first experiments where PS-binding peptides were radiolabeled with 18F and evaluated as possible radiotracers for imaging apoptosis. We investigated two radio-peptides ([ 18F]FBAM-CLIKKPF and [18F]FBAM-CPGDLSR) in vitro and in vivo as possible radiotracers able to bind to apoptotic cells and to image chemotherapy induced apoptosis.
Analysis of high accuracy, quantitative proteomics data in the MaxQB database.
Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias
2012-03-01
MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.
Miao, Yubin; Gallazzi, Fabio; Guo, Haixun; Quinn, Thomas P
2008-02-01
The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.
Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad
2015-10-01
Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.
Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.
2016-01-01
We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262
Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A
2016-08-01
We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Ling; Willard, Belinda; Rachdaoui, Nadia; Kirwan, John P.; Sadygov, Rovshan G.; Stanley, William C.; Previs, Stephen; McCullough, Arthur J.; Kasumov, Takhar
2012-01-01
Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a 2H2O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. 2H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with 2H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions. PMID:22393261
Erfani, Mostafa; Zarrabi Ahrabi, Nakisa; Shafiei, Mohammad; Shirmardi, Seyed Pezhman
2014-03-01
In this study, a new neurotensin (NT) analog was labeled with (99m) Tc via HYNIC chelator and tricine as coligand and investigated further. An NT (7-13) analog was prepared, and labeling with (99m) Tc was performed. The internalization rate and biodistribution of radiopeptide were studied in HT-29 cells and nude mice bearing tumor, respectively. Radiolabeling with (99m) Tc was performed at high specific activities (54 MBq/nmol) with an acceptable labeling yield (>95%). In vitro cell line studies showed a specific internalization uptake up to 13.23 ± 0.45% during 4 h which was blocked in the presence of excess cold peptide to 0.83 ± 0.15%. In biodistribution studies, uptake was observed in NT receptor-positive organs so that after 1 h the uptakes in mouse intestine and tumor were 1.23 ± 0.16% ID/g and 1.12 ± 0.11% ID/g, respectively. In animals co-injected with excess cold peptide, reduction uptake in tumor and intestines were 73% (1.10% vs. 0.29% ID/g at 4 h) and 61% (1.22% vs. 0.47% ID/g at 4 h) respectively. Predominant renal excretion pathway with a highest accumulation of activity in bladder was observed for this radiopeptide. This radiolabeled peptide could be a candidate for detection of NT positive tumors. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Henry, R. L.; Takemoto, L. J.; Murphy, J.; Gallegos, G. L.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
The molecular architecture of the soybean photosystem 1 reaction center complex was examined using a combination of surface labeling and immunological methodology on isolated thylakoid membranes. Synthetic peptides (12 to 14 amino acids in length) were prepared which correspond to the N-terminal regions of the 83 and 82.4 kDa subunits of photosystem 1 (the PsaA and PsaB proteins, respectively). Similarly, a synthetic peptide was prepared corresponding to the C-terminal region of the PsaB subunit. These peptides were conjugated to a carrier protein, and were used for the production of polyclonal antibodies in rabbits. The resulting sera could distinguish between the PsaA and PsaB photosystem 1 subunits by Western blot analysis, and could identify appropriate size classes of cyanogen bromide cleavage fragments as predicted from the primary sequences of these two subunits. When soybean thylakoid membranes were surface-labeled with N-hydroxysuccinimidobiotin, several subunits of the complete photosystem 1 lipid/protein complex incorporated label. These included the light harvesting chlorophyll proteins of photosystem 1, and peptides thought to aid in the docking of ferredoxin to the complex during photosynthetic electron transport. However, the PsaA and PsaB subunits showed very little biotinylation. When these subunits were examined for the domains to which biotin did attach, most of the observed label was associated with the N-terminal domain of the PsaA subunit, as identified using a domain-specific polyclonal antisera.
Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel
2017-08-01
High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stachowicz, Aneta; Siudut, Jakub; Suski, Maciej; Olszanecki, Rafał; Korbut, Ryszard; Undas, Anetta; Wiśniewski, Jacek R
2017-01-01
It is well known that fibrin network binds a large variety of proteins, including inhibitors and activators of fibrinolysis, which may affect clot properties, such as stability and susceptibility to fibrinolysis. Specific plasma clot composition differs between individuals and may change in disease states. However, the plasma clot proteome has not yet been in-depth analyzed, mainly due to technical difficulty related to the presence of a highly abundant protein-fibrinogen and fibrin that forms a plasma clot. The aim of our study was to optimize quantitative proteomic analysis of fibrin clots prepared ex vivo from citrated plasma of the peripheral blood drawn from patients with prior venous thromboembolism (VTE). We used a multiple enzyme digestion filter aided sample preparation, a multienzyme digestion (MED) FASP method combined with LC-MS/MS analysis performed on a Proxeon Easy-nLC System coupled to the Q Exactive HF mass spectrometer. We also evaluated the impact of peptide fractionation with pipet-tip strong anion exchange (SAX) method on the obtained results. Our proteomic approach revealed 476 proteins repeatedly identified in the plasma fibrin clots from patients with VTE including extracellular vesicle-derived proteins, lipoproteins, fibrinolysis inhibitors, and proteins involved in immune responses. The MED FASP method using three different enzymes: LysC, trypsin and chymotrypsin increased the number of identified peptides and proteins and their sequence coverage as compared to a single step digestion. Peptide fractionation with a pipet-tip strong anion exchange (SAX) protocol increased the depth of proteomic analyses, but also extended the time needed for sample analysis with LC-MS/MS. The MED FASP method combined with a label-free quantification is an excellent proteomic approach for the analysis of fibrin clots prepared ex vivo from citrated plasma of patients with prior VTE.
Hight, Matthew R; Cheung, Yiu-Yin; Nickels, Michael L; Dawson, Eric S; Zhao, Ping; Saleh, Samir; Buck, Jason R; Tang, Dewei; Washington, M Kay; Coffey, Robert J; Manning, H Charles
2014-04-15
Apoptosis, or programmed cell death, can be leveraged as a surrogate measure of response to therapeutic interventions in medicine. Cysteine aspartic acid-specific proteases, or caspases, are essential determinants of apoptosis signaling cascades and represent promising targets for molecular imaging. Here, we report development and in vivo validation of [(18)F]4-fluorobenzylcarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone ([(18)F]FB-VAD-FMK), a novel peptide-based molecular probe suitable for quantification of caspase activity in vivo using positron emission tomography (PET). Supported by molecular modeling studies and subsequent in vitro assays suggesting probe feasibility, the labeled pan-caspase inhibitory peptide, [(18)F]FB-VAD-FMK, was produced in high radiochemical yield and purity using a simple two-step, radiofluorination. The biodistribution of [(18)F]FB-VAD-FMK in normal tissue and its efficacy to predict response to molecularly targeted therapy in tumors was evaluated using microPET imaging of mouse models of human colorectal cancer. Accumulation of [(18)F]FB-VAD-FMK was found to agree with elevated caspase-3 activity in response to Aurora B kinase inhibition as well as a multidrug regimen that combined an inhibitor of mutant BRAF and a dual PI3K/mTOR inhibitor in (V600E)BRAF colon cancer. In the latter setting, [(18)F]FB-VAD-FMK PET was also elevated in the tumors of cohorts that exhibited reduction in size. These studies illuminate [(18)F]FB-VAD-FMK as a promising PET imaging probe to detect apoptosis in tumors and as a novel, potentially translatable biomarker for predicting response to personalized medicine. ©2014 AACR.
Meakin, James A; Jezzard, Peter
2013-03-01
Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.
Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.
2010-01-01
The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016
De Silva, Channa R.; Vagner, Josef; Lynch, Ronald; Gillies, Robert J.; Hruby, Victor J.
2010-01-01
Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improved sensitivity and affordability in high throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as DTPA derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIA) have not yet been successfully used with more stable chelators, e.g. DOTA derivatives, due to the incomplete release of lanthanide(III) ions from the complex. Here, a modified and an optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA labeled peptides. Complete release of Eu(III) ions from DOTA labeled ligands was observed using hydrochloric acid (2.0 M) prior to the luminescent enhancement step. NDP-α-MSH labeled with Eu(III)-DOTA was synthesized and the binding affinity to cells overexpressing the human melanocortin-4 receptors (hMC4R) was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA labeled heterobivalent peptide to the cells expressing both hMC4R and CCK-2 (Cholecystokinin) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries. PMID:19852924
Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway.
Yi, Lian; Shi, Tujin; Gritsenko, Marina A; X'avia Chan, Chi-Yuet; Fillmore, Thomas L; Hess, Becky M; Swensen, Adam C; Liu, Tao; Smith, Richard D; Wiley, H Steven; Qian, Wei-Jun
2018-04-17
Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway as our model. A total of 43 phosphopeptides from the EGFR-MAPK pathway were selected for the study. The recovery and sensitivity of two commonly used enrichment methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO 2 ), combined with selected reaction monitoring (SRM)-MS were evaluated. The recovery of phosphopeptides by IMAC and TiO 2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1 to 100 μg starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 μg peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25 μg range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 10 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.
Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Shi, Tujin; Gritsenko, Marina A.
2018-03-27
Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway as our model. 43 phosphopeptides from the EGFR–MAPK pathway were selected for the study. The recovery and sensitivity of a workflow consisted of two commonly used enrichmentmore » methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2), combined with selected reaction monitoring (SRM)-MS, were evaluated. The recovery of phosphopeptides by IMAC and TiO2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1-100 g starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 g peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25g range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 3 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.« less
Translocation and Endocytosis for Cell-penetrating Peptide Internalization
Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine
2009-01-01
Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tok, J B
2004-11-11
Several peptide libraries containing up to 2 million unique peptide ligands have been synthesized. The peptides are attached onto a 80 micron resin and the length of these peptide ligands ranges from 5 to 9 amino acid residues. Using a novel calorimetric assay, the libraries were screened for binding to the ganglioside-binding domain of Clostridium Tetanus Toxin, a structural similar analog of the Clostridium Botulinum toxin. Several binding peptide sequences were identified, in which the detailed binding kinetics are currently underway using the Surface Plasmon Resonance (SPR) technique.
Isoelectric focusing of proteins and peptides
NASA Technical Reports Server (NTRS)
Egen, N.
1979-01-01
Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.
Hoekman, Berend; Breitling, Rainer; Suits, Frank; Bischoff, Rainer; Horvatovich, Peter
2012-01-01
Data processing forms an integral part of biomarker discovery and contributes significantly to the ultimate result. To compare and evaluate various publicly available open source label-free data processing workflows, we developed msCompare, a modular framework that allows the arbitrary combination of different feature detection/quantification and alignment/matching algorithms in conjunction with a novel scoring method to evaluate their overall performance. We used msCompare to assess the performance of workflows built from modules of publicly available data processing packages such as SuperHirn, OpenMS, and MZmine and our in-house developed modules on peptide-spiked urine and trypsin-digested cerebrospinal fluid (CSF) samples. We found that the quality of results varied greatly among workflows, and interestingly, heterogeneous combinations of algorithms often performed better than the homogenous workflows. Our scoring method showed that the union of feature matrices of different workflows outperformed the original homogenous workflows in some cases. msCompare is open source software (https://trac.nbic.nl/mscompare), and we provide a web-based data processing service for our framework by integration into the Galaxy server of the Netherlands Bioinformatics Center (http://galaxy.nbic.nl/galaxy) to allow scientists to determine which combination of modules provides the most accurate processing for their particular LC-MS data sets. PMID:22318370
Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco
2009-08-15
To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.
Aiyetan, Paul; Zhang, Bai; Zhang, Zhen; Zhang, Hui
2014-01-01
Mass spectrometry based glycoproteomics has become a major means of identifying and characterizing previously N-linked glycan attached loci (glycosites). In the bottom-up approach, several factors which include but not limited to sample preparation, mass spectrometry analyses, and protein sequence database searches result in previously N-linked peptide spectrum matches (PSMs) of varying lengths. Given that multiple PSM scan map to a glycosite, we reason that identified PSMs are varying length peptide species of a unique set of glycosites. Because associated spectra of these PSMs are typically summed separately, true glycosite associated spectra counts are lost or complicated. Also, these varying length peptide species complicate protein inference as smaller sized peptide sequences are more likely to map to more proteins than larger sized peptides or actual glycosite sequences. Here, we present XGlycScan. XGlycScan maps varying length peptide species to glycosites to facilitate an accurate quantification of glycosite associated spectra counts. We observed that this reduced the variability in reported identifications of mass spectrometry technical replicates of our sample dataset. We also observed that mapping identified peptides to glycosites provided an assessment of search-engine identification. Inherently, XGlycScan reported glycosites reduce the complexity in protein inference. We implemented XGlycScan in the platform independent Java programing language and have made it available as open source. XGlycScan's source code is freely available at https://bitbucket.org/paiyetan/xglycscan/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/xglycscan/downloads. The graphical user interface version can also be found at https://bitbucket.org/paiyetan/xglycscangui/src and https://bitbucket.org/paiyetan/xglycscangui/downloads respectively.
Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-03-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.
Graumann, Johannes; Scheltema, Richard A.; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-01-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides “on-the-fly” within 30 ms, well within the time constraints of a shotgun fragmentation “topN” method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available. PMID:22171319
Sheep antibodies to soluble rat collagen
Chidlow, J. W.; Bourne, F. J.; Bailey, A. J.
1974-01-01
Sheep were immunized by multiple injections of acid-extracted rat tail tendon tropocollagen. Antibody activity could be demonstrated by quantitative precipitation and passive haemagglutination against denatured tropocollagen. Immunodiffusion experiments showed strong precipitin lines with denatured tendon tropocollagen, and with peptides obtained by CNBr digestion of whole rat tail tendon. Immunoelectrophoresis showed one line with denatured tropocollagen but four lines with the CNBr digest of whole tendon indicating at least four antigenic determinants. Immunosorbents prepared from antisera raised against tropocollagen readily absorbed labelled peptides from CNBr digests of rat tail tendons reduced with tritiated borohydride. These peptides were recoverable by desorption with 1 M ammonia and had a hydroxyproline and hydroxylysine content typical of collagen but increased tyrosine levels. Presence of the normal reducible components of collagen known to be involved in cross-linking was confirmed by ion-exchange chromatography, and there was an increase in the proportion of fraction C. The majority of the tritium label was found in a cross-linked peptide, or group of peptides, with molecular weight around 60,000. The technique therefore has the potential for further development in the isolation of specific collagen peptides. ImagesFIG. 3FIG. 4 PMID:4140151
Stable isotope, site-specific mass tagging for protein identification
Chen, Xian
2006-10-24
Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.
Kessler, Jan H; Mommaas, Bregje; Mutis, Tuna; Huijbers, Ivo; Vissers, Debby; Benckhuijsen, Willemien E; Schreuder, Geziena M Th; Offringa, Rienk; Goulmy, Els; Melief, Cornelis J M; van der Burg, Sjoerd H; Drijfhout, Jan W
2003-02-01
We report the development, validation, and application of competition-based peptide binding assays for 13 prevalent human leukocyte antigen (HLA) class I alleles. The assays are based on peptide binding to HLA molecules on living cells carrying the particular allele. Competition for binding between the test peptide of interest and a fluorescein-labeled HLA class I binding peptide is used as read out. The use of cell membrane-bound HLA class I molecules circumvents the need for laborious biochemical purification of these molecules in soluble form. Previously, we have applied this principle for HLA-A2 and HLA-A3. We now describe the assays for HLA-A1, HLA-A11, HLA-A24, HLA-A68, HLA-B7, HLA-B8, HLA-B14, HLA-B35, HLA-B60, HLA-B61, and HLA-B62. Together with HLA-A2 and HLA-A3, these alleles cover more than 95% of the Caucasian population. Several allele-specific parameters were determined for each assay. Using these assays, we identified novel HLA class I high-affinity binding peptides from HIVpol, p53, PRAME, and minor histocompatibility antigen HA-1. Thus these convenient and accurate peptide-binding assays will be useful for the identification of putative cytotoxic T lymphocyte epitopes presented on a diverse array of HLA class I molecules.
Zhao, Shuang; Luo, Xian; Li, Liang
2016-11-01
A key step in metabolomics is to perform accurate relative quantification of the metabolomes in comparative samples with high coverage. Hydroxyl-containing metabolites are an important class of the metabolome with diverse structures and physical/chemical properties; however, many of them are difficult to detect with high sensitivity. We present a high-performance chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) technique for in-depth profiling of the hydroxyl submetabolome, which involves the use of acidic liquid-liquid extraction to enrich hydroxyl metabolites into ethyl acetate from an aqueous sample. After drying and then redissolving in acetonitrile, the metabolite extract is labeled using a base-activated 12 C- or 13 C-dansylation reaction. A fast step-gradient LC-UV method is used to determine the total concentration of labeled metabolites. On the basis of the concentration information, a 12 C-labeled individual sample is mixed with an equal mole amount of a 13 C-labeled pool or control for relative metabolite quantification. The 12 C-/ 13 C-labeled mixtures are individually analyzed by LC-MS, and the resultant peak pairs of labeled metabolites in MS are measured for relative quantification and metabolite identification. A standard library of 85 hydroxyl compounds containing MS, retention time, and MS/MS information was constructed for positive metabolite identification based on matches of two or all three of these parameters with those of an unknown. Using human urine as an example, we analyzed samples of 1:1 12 C-/ 13 C-labeled urine in triplicate with triplicate runs per sample and detected an average of 3759 ± 45 peak pairs or metabolites per run and 3538 ± 71 pairs per sample with 3093 pairs in common (n = 9). Out of the 3093 peak pairs, 2304 pairs (75%) could be positively or putatively identified based on metabolome database searches, including 20 pairs positively identified using the dansylated hydroxyl standards library. The majority of detected metabolites were those containing hydroxyl groups. This technique opens a new avenue for the detailed characterization of the hydroxyl submetabolome in metabolomics research.
Doll, Stephanie; Woolum, Karen; Kumar, Krishan
2016-09-01
A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.
Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.
Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang
2012-05-01
Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. Copyright © 2012 Elsevier B.V. All rights reserved.
Mayo, Daniel J; Sahu, Indra D; Lorigan, Gary A
2018-07-01
Aligned CW-EPR membrane protein samples provide additional topology interactions that are absent from conventional randomly dispersed samples. These samples are aptly suited to studying antimicrobial peptides because of their dynamic peripheral topology. In this study, four consecutive substitutions of the model antimicrobial peptide magainin 2 were synthesized and labeled with the rigid TOAC spin label. The results revealed the helical tilts to be 66° ± 5°, 76° ± 5°, 70° ± 5°, and 72° ± 5° for the TOAC substitutions H7, S8, A9, and K10 respectively. These results are consistent with previously published literature. Using the EPR (electron paramagnetic resonance) mechanical alignment technique, these substitutions were used to critically assess the topology and surface orientation of the peptide with respect to the membrane. This methodology offers a rapid and simple approach to investigate the structural topology of antimicrobial peptides. Copyright © 2018 Elsevier B.V. All rights reserved.
Nuriel, Tal; Deeb, Ruba S.; Hajjar, David P.; Gross, Steven S.
2008-01-01
Nitration of tyrosine residues by nitric oxide (NO)-derived species results in the accumulation of 3-nitrotyrosine in proteins, a hallmark of nitrosative stress in cells and tissues. Tyrosine nitration is recognized as one of the multiple signaling modalities used by NO-derived species for the regulation of protein structure and function in health and disease. Various methods have been described for the quantification of protein 3-nitrotyrosine residues, and several strategies have been presented toward the goal of proteome-wide identification of protein tyrosine modification sites. This chapter details a useful protocol for the quantification of 3-nitrotyrosine in cells and tissues using high-pressure liquid chromatography with electrochemical detection. Additionally, this chapter describes a novel biotin-tagging strategy for specific enrichment of 3-nitrotyrosine-containing peptides. Application of this strategy, in conjunction with high-throughput MS/MS-based peptide sequencing, is anticipated to fuel efforts in developing comprehensive inventories of nitrosative stress-induced protein-tyrosine modification sites in cells and tissues. PMID:18554526
Bortolami, R; Calzà, L; Lucchi, M L; Giardino, L; Callegari, E; Manni, E; Pettorossi, V E; Barazzoni, A M; Lalatta Costerbosa, G
1991-04-26
The peripheral territories of sheep trigeminal neurons which send their central process to the brainstem through the oculomotor nerve were investigated by the use of fluorescent tracers in double-labeling experiments. For this purpose Diamidino yellow (DY) injection into the oculomotor nerve was combined with Fast blue (FB) injection either into the extraocular muscles (EOMs), or the cornea, or the superior eyelid. Double-labeled DY + FB cells were found in the ophthalmic region of the trigeminal ganglion in addition to single-labeled DY or FB cells. The DY and DY + FB-labeled trigeminal cells were analysed immunocytochemically for their content of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and cholecystokinin-8 (CCK-8)-like. All single-labeled DY cells showed SP-, CGRP- or CCK-8-like immunoreactivity. Double-labeled DY + FB neurons innervating the EOMs were immunoreactive for each of the three peptides, whereas double-labeled neurons supplying the cornea were only CGRP-like positive. The findings suggest that, in the sheep, trigeminal neurons which send their process centrally through the oculomotor nerve supply the EOMs, the cornea, and the superior eyelid and contain neuropeptides which are usually associated with pain sensation.
Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt
2007-01-01
This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510
Project research optimized the quantification technique for carbohydrates that also allows quantification of other non-polar molecular markers based on using an isotopically labeled internal standard (D-glucose-1,2,3,4,5,6,6-d7) to monitor extraction efficiency, extraction usi...
NASA Astrophysics Data System (ADS)
Samanta, Anirban; Walper, Scott A.; Susumu, Kimihiro; Dwyer, Chris L.; Medintz, Igor L.
2015-04-01
The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed.The ability to control light energy within de novo nanoscale structures and devices will greatly benefit their continuing development and ultimate application. Ideally, this control should extend from generating the light itself to its spatial propagation within the device along with providing defined emission wavelength(s), all in a stand-alone modality. Here we design and characterize macromolecular nanoassemblies consisting of semiconductor quantum dots (QDs), several differentially dye-labeled peptides and the enzyme luciferase which cumulatively demonstrate many of these capabilities by engaging in multiple-sequential energy transfer steps. To create these structures, recombinantly-expressed luciferase and the dye-labeled peptides were appended with a terminal polyhistidine sequence allowing for controlled ratiometric self-assembly around the QDs via metal-affinity coordination. The QDs serve to provide multiple roles in these structures including as central assembly platforms or nanoscaffolds along with acting as a potent energy harvesting and transfer relay. The devices are activated by addition of coelenterazine H substrate which is oxidized by luciferase producing light energy which sensitizes the central 625 nm emitting QD acceptor by bioluminescence resonance energy transfer (BRET). The sensitized QD, in turn, acts as a relay and transfers the energy to a first peptide-labeled Alexa Fluor 647 acceptor dye displayed on its surface. This dye then transfers energy to a second red-shifted peptide-labeled dye acceptor on the QD surface through a second concentric Förster resonance energy transfer (FRET) process. Alexa Fluor 700 and Cy5.5 are both tested in the role of this terminal FRET acceptor. Photophysical analysis of spectral profiles from the resulting sequential BRET-FRET-FRET processes allow us to estimate the efficiency of each of the transfer steps. Importantly, the efficiency of each step within this energy transfer cascade can be controlled to some extent by the number of enzymes/peptides displayed on the QD. Further optimization of the energy transfer process(es) along with potential applications of such devices are finally discussed. Electronic supplementary information (ESI) available: This material includes control experimental data and select deconvoluted spectra. See DOI: 10.1039/c5nr00828j
IDAWG: Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells
Orlando, Ron; Lim, Jae-Min; Atwood, James A.; Angel, Peggi M.; Fang, Meng; Aoki, Kazuhiro; Alvarez-Manilla, Gerardo; Moremen, Kelley W.; York, William S.; Tiemeyer, Michael; Pierce, Michael; Dalton, Stephen; Wells, Lance
2012-01-01
Robust quantification is an essential component of comparative –omic strategies. In this regard, glycomics lags behind proteomics. Although various isotope-tagging and direct quantification methods have recently enhanced comparative glycan analysis, a cell culture labeling strategy, that could provide for glycomics the advantages that SILAC provides for proteomics, has not been described. Here we report the development of IDAWG, Isotopic Detection of Aminosugars With Glutamine, for the incorporation of differential mass tags into the glycans of cultured cells. In this method, culture media containing amide-15N-Gln is used to metabolically label cellular aminosugars with heavy nitrogen. Because the amide side chain of Gln is the sole source of nitrogen for the biosynthesis of GlcNAc, GalNAc, and sialic acid, we demonstrate that culturing mouse embryonic stems cells for 72 hours in the presence of amide-15N-Gln media results in nearly complete incorporation of 15N into N-linked and O-linked glycans. The isotopically heavy monosaccharide residues provide additional information for interpreting glycan fragmentation and also allow quantification in both full MS and MS/MS modes. Thus, IDAWG is a simple to implement, yet powerful quantitative tool for the glycomics toolbox. PMID:19449840
Virus detection and quantification using electrical parameters
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.
2014-10-01
Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles.
Richardson, Stacie L.; Hanjra, Pahul; Zhang, Gang; Mackie, Brianna D.; Peterson, Darrell L.; Huang, Rong
2016-01-01
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase. PMID:25778392
Wanigasekara, Maheshika S K; Chowdhury, Saiful M
2016-09-07
Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging.
Clemis, Elizabeth J; Smith, Derek S; Camenzind, Alexander G; Danell, Ryan M; Parker, Carol E; Borchers, Christoph H
2012-04-17
MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins.
99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.
Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal
2018-02-19
Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.
Ex vivo 18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway.
Portelius, Erik; Mattsson, Niklas; Pannee, Josef; Zetterberg, Henrik; Gisslén, Magnus; Vanderstichele, Hugo; Gkanatsiou, Eleni; Crespi, Gabriela A N; Parker, Michael W; Miles, Luke A; Gobom, Johan; Blennow, Kaj
2017-02-20
Proteolytic degradation of amyloid β (Aβ) peptides has been intensely studied due to the central role of Aβ in Alzheimer's disease (AD) pathogenesis. While several enzymes have been shown to degrade Aβ peptides, the main pathway of Aβ degradation in vivo is unknown. Cerebrospinal fluid (CSF) Aβ42 is reduced in AD, reflecting aggregation and deposition in the brain, but low CSF Aβ42 is, for unknown reasons, also found in some inflammatory brain disorders such as bacterial meningitis. Using 18 O-labeling mass spectrometry and immune-affinity purification, we examined endogenous proteolytic processing of Aβ in human CSF. The Aβ peptide profile was stable in CSF samples from healthy controls but in CSF samples from patients with bacterial meningitis, showing increased leukocyte cell count, 18 O-labeling mass spectrometry identified proteolytic activities degrading Aβ into several short fragments, including abundant Aβ1-19 and 1-20. After antibiotic treatment, no degradation of Aβ was detected. In vitro experiments located the source of the proteolytic activity to blood components, including leukocytes and erythrocytes, with insulin-degrading enzyme as the likely protease. A recombinant version of the mid-domain anti-Aβ antibody solanezumab was found to inhibit insulin-degrading enzyme-mediated Aβ degradation. 18 O labeling-mass spectrometry can be used to detect endogenous proteolytic activity in human CSF. Using this technique, we found an enzymatic activity that was identified as insulin-degrading enzyme that cleaves Aβ in the mid-domain of the peptide, and could be inhibited by a recombinant version of the mid-domain anti-Aβ antibody solanezumab.
Convergent synthesis of 13N-labelled Peptidic structures using aqueous [13N]NH3.
Blower, Julia E; Cousin, Samuel F; Gee, Antony D
2017-01-01
Nitrogen-13 has a 10-min half-life which places time constraints on the complexity of viable synthetic methods for its incorporation into PET imaging agents. In exploring ways to overcome this limitation, we have used the Ugi reaction to develop a rapid one-pot method for radiolabelling peptidic molecules using [ 13 N]NH 3 as a synthetic precursor. Carrier-added [ 13 N]NH 3 (50 μL) was added to a solution of carboxylic acid, aldehyde, and isocyanide in 2,2,2-TFE (200 μL). The mixture was heated in a microwave synthesiser at 120 °C for 10 min. Reactions were analysed by radio-HPLC and radio-LCMS. Isolation of the target 13 N-labelled peptidic Ugi compound was achieved via semi-preparative radio-HPLC as demonstrated for Ugi 1. Radio-HPLC analysis of each reaction confirmed the formation of radioactive products co-eluting with their respective reference standards with radiochemical yields of the crude products ranging from 11% to 23%. Two cyclic γ-lactam structures were also achieved via intra-molecular reactions. Additional radioactive by-products observed in the radio-chromatogram were identified as 13 N-labelled di-imines formed from the reaction of [ 13 N]NH 3 with two isocyanide molecules. The desired 13 N-labelled Ugi product was isolated using semi-preparative HPLC. We have developed a one-pot method that opens up new routes to radiolabel complex, peptidic molecules with 13 N using aqueous [ 13 N]NH 3 as a synthetic precursor.
Peptidome analysis of human skim milk in term and preterm milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Jun; Cui, Xian-wei; Zhang, Jun
Highlights: •A method was developed for preparation of peptide extracts from human milk. •Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 peptide-like features. •419 Peptides were identified by LC–MS/MS from 34 proteins. •Isotope dimethyl labeling analysis revealed 41 peptides differentially expressed. -- Abstract: The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. Due to the difficulties associated with detection technology of the peptides, the expression of the peptides present in human milk is not known widely. In recent years,more » peptidome analysis has received increasing attention. In this report, the analysis of endogenous peptides in human milk was done by mass spectrometry. A method was also developed by our researchers, which can be used in the extraction of peptide from human milk. Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 Da peptide-like features. Out of these, 419 peptides were identified by MS/MS. The identified peptides were found to originate from 34 proteins, of which several have been reported. Analysis of the peptides’ cleavage sites showed that the peptides are cleaved with regulations. This may reflect the protease activity and distribution in human body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery. Isotope dimethyl labeling analysis was also used to test the effects of premature delivery on milk protein composition in this study. Differences in peptides expression between breast milk in term milk (38–41 weeks gestation) and preterm milk (28–32 weeks gestation) were investigated in this study. 41 Peptides in these two groups were found expressed differently. 23 Peptides were present at higher levels in preterm milk, and 18 were present at higher levels in term milk.« less
Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio
2016-08-01
The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, Tanxi; Shu, Qingbo; Liu, Peibin; Niu, Lili; Guo, Xiaojing; Ding, Xiang; Xue, Peng; Xie, Zhensheng; Wang, Jifeng; Zhu, Nali; Wu, Peng; Niu, Lili; Yang, Fuquan
2016-01-01
Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling. PMID:26733148
Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J
2013-05-01
Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.
Wei, Juan; Antzutkin, Oleg N; Filippov, Andrei V; Iuga, Dinu; Lam, Pui Yiu; Barrow, Mark P; Dupree, Ray; Brown, Steven P; O'Connor, Peter B
2016-04-12
A combined approach, using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and solid-state NMR (Nuclear Magnetic Resonance), shows a high degree of polymorphism exhibited by Aβ species in forming hydrogen-bonded networks. Two Alzheimer's Aβ peptides, Ac-Aβ(16-22)-NH2 and Aβ(11-25), selectively labeled with (17)O and (15)N at specific amino acid residues were investigated. The total amount of peptides labeled with (17)O as measured by FTICR-MS enabled the interpretation of dephasing observed in (15)N{(17)O}REAPDOR solid-state NMR experiments. Specifically, about one-third of the Aβ peptides were found to be involved in the formation of a specific >C═(17)O···H-(15)N hydrogen bond with their neighbor peptide molecules, and we hypothesize that the rest of the molecules undergo ± n off-registry shifts in their hydrogen bonding networks.
Meat Authentication via Multiple Reaction Monitoring Mass Spectrometry of Myoglobin Peptides.
Watson, Andrew D; Gunning, Yvonne; Rigby, Neil M; Philo, Mark; Kemsley, E Kate
2015-10-20
A rapid multiple reaction monitoring (MRM) mass spectrometric method for the detection and relative quantitation of the adulteration of meat with that of an undeclared species is presented. Our approach uses corresponding proteins from the different species under investigation and corresponding peptides from those proteins, or CPCP. Selected peptide markers can be used for species detection. The use of ratios of MRM transition peak areas for corresponding peptides is proposed for relative quantitation. The approach is introduced by use of myoglobin from four meats: beef, pork, horse and lamb. Focusing in the present work on species identification, by use of predictive tools, we determine peptide markers that allow the identification of all four meats and detection of one meat added to another at levels of 1% (w/w). Candidate corresponding peptide pairs to be used for the relative quantification of one meat added to another have been observed. Preliminary quantitation data presented here are encouraging.
Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi
2018-01-01
Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.
Wang, Hongbin; Hu, Gaofei; Zhang, Yongqian; Yuan, Zheng; Zhao, Xuan; Zhu, Yong; Cai, De; Li, Yujuan; Xiao, Shengyuan; Deng, Yulin
2010-07-15
The post-digestion (18)O labeling method decouples protein digestion and peptide labeling. This method allows labeling conditions to be optimized separately and increases labeling efficiency. A common method for protein denaturation in proteomics is the use of urea. Though some previous studies have used urea-based protein denaturation before post-digestion (18)O labeling, the optimal (18)O labeling conditions in this case have not been yet reported. Present study investigated the effects of urea concentration and pH on the labeling efficiency and obtained an optimized protocol. It was demonstrated that urea inhibited (18)O incorporation depending on concentration. However, a urea concentration between 1 and 2M had minimal effects on labeling. It was also demonstrated that the use of FA to quench the digestion reaction severely affected the labeling efficiency. This study revealed the reason why previous studies gave different optimal pH for labeling. They neglect the effects of different digestion conditions on the labeling conditions. Excellent labeling quality was obtained at the optimized conditions using urea 1-2 M and pH 4.5, 98.4+/-1.9% for a standard protein mixture and 97.2+/-6.2% for a complex biological sample. For a 1:1 mixture analysis of the (16)O- and (18)O-labeled peptides from the same protein sample, the average abundance ratios reached 1.05+/-0.31, demonstrating a good quantitation quality at the optimized conditions. This work will benefit other researchers who pair urea-based protein denaturation with a post-digestion (18)O labeling method. 2010 Elsevier B.V. All rights reserved.
Schloß, Svenja; Wedell, Ines; Koch, Matthias; Rohn, Sascha; Maul, Ronald
2015-06-15
The hepatotoxin phomopsin A (PHO-A), a secondary metabolite mainly produced by the fungus Diaporthe toxica, occurs predominantly on sweet lupins. Along with the growing interest in sweet lupins for food and feed commodities, concerns have been raised about fungal infestations, and consequently, about the determination of PHO-A. High performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) represents the most suitable analytical technique for sensitive and selective detection of mycotoxins including PHO-A. However, isotopic labeled substances are needed as internal standards for a reliable and convenient quantification. As no isotope standard for PHO-A is currently available, a biosynthesis of fully (15)N6-labeled PHO-A was established by cultivation of D. toxica on defined media containing Na(15)NO3 and (15)N-labeled yeast extract as the only nitrogen sources. The identity of (15)N6-PHO-A was confirmed by high resolution mass spectrometry. The new (15)N6-labeled standard will facilitate the method development for PHO-A including a more accurate quantification by LC-MS/MS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J
2008-07-01
Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.
Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe
2017-06-01
Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.
Quantification of isotope-labelled and unlabelled folates in plasma, ileostomy and food samples.
Büttner, Barbara E; Öhrvik, Veronica E; Witthöft, Cornelia M; Rychlik, Michael
2011-01-01
New stable isotope dilution assays were developed for the simultaneous quantitation of [(13)C(5)]-labelled and unlabelled 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid, folic acid along with unlabelled tetrahydrofolic acid and 10-formylfolic acid in clinical samples deriving from human bioavailability studies, i.e. plasma, ileostomy samples, and food. The methods were based on clean-up by strong anion exchange followed by LC-MS/MS detection. Deuterated analogues of the folates were applied as the internal standards in the stable isotope dilution assays. Assay sensitivity was sufficient to detect all relevant folates in the respective samples as their limits of detection were below 0.62 nmol/L in plasma and below 0.73 μg/100 g in food or ileostomy samples. Quantification of the [(13)C(5)]-label in clinical samples offers the possibility to differentiate between folate from endogenous body pools and the administered dose when executing bioavailability trials.
NASA Astrophysics Data System (ADS)
Shagaghi, Nadin; Bhave, Mrinal; Palombo, Enzo A.; Clayton, Andrew H. A.
2017-03-01
To determine the mechanism(s) of action of antimicrobial peptides (AMPs) it is desirable to provide details of their interaction kinetics with cellular, sub-cellular and molecular targets. The synthetic peptide, PuroA, displays potent antimicrobial activities which have been attributed to peptide-induced membrane destabilization, or intracellular mechanisms of action (DNA-binding) or both. We used time-lapse fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM) to directly monitor the localization and interaction kinetics of a FITC- PuroA peptide on single Candida albicans cells in real time. Our results reveal the sequence of events leading to cell death. Within 1 minute, FITC-PuroA was observed to interact with SYTO-labelled nucleic acids, resulting in a noticeable quenching in the fluorescence lifetime of the peptide label at the nucleus of yeast cells, and cell-cycle arrest. A propidium iodide (PI) influx assay confirmed that peptide translocation itself did not disrupt the cell membrane integrity; however, PI entry occurred 25-45 minutes later, which correlated with an increase in fractional fluorescence of pores and an overall loss of cell size. Our results clarify that membrane disruption appears to be the mechanism by which the C. albicans cells are killed and this occurs after FITC-PuroA translocation and binding to intracellular targets.
Keiderling, Timothy A
2017-12-01
Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.
Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard
2015-03-01
Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR allowed the assessment of the number of SPIO-labeled cells in organs shortly after injection. Copyright © 2015 John Wiley & Sons, Ltd.
Peffers, Mandy J.; Thorpe, Chavaunne T.; Collins, John A.; Eong, Robin; Wei, Timothy K. J.; Screen, Hazel R. C.; Clegg, Peter D.
2014-01-01
Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging. PMID:25077967
Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike
2017-07-07
Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .
Zhang, Shenyan; Wen, Bo; Zhou, Baojin; Yang, Lei; Cha, Chao; Xu, Shaoxing; Qiu, Xuemei; Wang, Quanhui; Sun, Haidan; Lou, Xiaomin; Zi, Jin; Zhang, Yong; Lin, Liang; Liu, Siqi
2013-05-03
Members of human aldo-keto reductase (AKR) superfamily have been reported to be involved in cancer progression, whereas the final conclusion is not generally accepted. Herein, we propose a quantitative method to measure human AKR proteins in cells using mTRAQ-based multiple reaction monitoring (MRM). AKR peptides with multiple transitions were carefully selected upon tryptic digestion of the recombinant AKR proteins, while AKR proteins were identified by SDS-PAGE fractionation coupled with LC-MS/MS. Utilizing mTRAQ triplex labeling to produce the derivative peptides, calibration curves were generated using the mixed lysate as background, and no significantly different quantification of AKRs was elicited from the two sets of calibration curves under the mixed and single lysate as background. We employed this approach to quantitatively determine the 6 AKR proteins, AKR1A1, AKR1B1, AKR1B10, AKR1C1/C2, AKR1C3, and AKR1C4, in 7 different cancer cell lines and for the first time to obtain the absolute quantities of all the AKR proteins in each cell. The cluster plot revealed that AKR1A and AKR1B were widely distributed in most cancer cells with relatively stable abundances, whereas AKR1Cs were unevenly detected among these cells with diverse dynamic abundances. The AKR quantitative distribution in different cancer cells, therefore, may assist further exploration toward how the AKR proteins are involved in tumorigenesis.
Souza, Sheila M; Uchôa, Adriana F; Silva, José R; Samuels, Richard I; Oliveira, Antônia E A; Oliveira, Eliana M; Linhares, Ricardo T; Alexandre, Daniel; Silva, Carlos P
2010-09-01
The fate of vicilins ingested by Callosobruchus maculatus and the physiological importance of these proteins in larvae and adults were investigated. Vicilins were quantified by ELISA in the haemolymph and fat body during larval development (2nd to 4th instars), in pupae and adults, as well as in ovaries and eggs. Western blot analysis demonstrated that the majority of absorbed vicilins were degraded in the fat body. Tracing the fate of vicilins using FITC revealed that the FITC-vicilin complex was present inside cells of the fat body of the larvae and in the fat bodies of both male and female adult C. maculatus. Labelled vicilin was also detected in ovocytes and eggs. Based on the results presented here, we propose that following absorption, vicilins accumulate in the fat body, where they are partially degraded. These peptides are retained throughout the development of the insects and eventually are sequestered by the eggs. It is possible that accumulation in the eggs is a defensive strategy against pathogen attack as these peptides are known to have antimicrobial activity. Quantifications performed on internal organs from larvae of C. maculatus exposed to extremely dry seeds demonstrated that the vicilin concentration in the haemolymph and fat body was significantly higher when compared to larvae fed on control seeds. These results suggest that absorbed vicilins may also be involved in the survival of larvae in dry environments.
Urine Sample Preparation in 96-Well Filter Plates for Quantitative Clinical Proteomics
2015-01-01
Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ∼10 μg of total protein were processed by 96FASP and LC-MS resulting in 700–900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics. PMID:24797144
A new automated NaCl based robust method for routine production of gallium-68 labeled peptides
Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Watkins, G. Leonard; Breeman, Wouter A. P.
2017-01-01
A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [68Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time (< 15 min) and removal of organic solvents. The method produces high peptide-bound % (> 97%), and specific activity (> 40 MBq nmole−1 [68Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. PMID:23026223
Labeled Antimicrobial Peptides for Detection of Microorganisms
2008-12-01
1. INTRODUCTION Antimicrobial peptides (AMPs) are part of the innate defense system found in all organisms to protect them from microbial infection...2005) with antimicrobial activity against predominantly gram-negative bacteria. SMAP29 is from the cathelicidin family of peptides found in sheep ...in buffer, milk and apple juice. Cells were grown and prepared in PBST as described above. 20 III anti-£. coli 0157 paramagnetic Dyna-beads (Dynal
Evans, Adam R; Robinson, Renã A S
2013-11-01
Recently, we reported a novel proteomics quantitation scheme termed "combined precursor isotopic labeling and isobaric tagging (cPILOT)" that allows for the identification and quantitation of nitrated peptides in as many as 12-16 samples in a single experiment. cPILOT offers enhanced multiplexing and posttranslational modification specificity, however excludes global quantitation for all peptides present in a mixture and underestimates reporter ion ratios similar to other isobaric tagging methods due to precursor co-isolation. Here, we present a novel chemical workflow for cPILOT that can be used for global tagging of all peptides in a mixture. Specifically, through low pH precursor dimethylation of tryptic or LysC peptides followed by high pH tandem mass tags, the same reporter ion can be used twice in a single experiment. Also, to improve triple-stage mass spectrometry (MS(3) ) data acquisition, a selective MS(3) method that focuses on product selection of the y1 fragment of lysine-terminated peptides is incorporated into the workflow. This novel cPILOT workflow has potential for global peptide quantitation that could lead to enhanced sample multiplexing and increase the number of quantifiable spectra obtained from MS(3) acquisition methods. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Xiang; Fang, Chen; Yan, Jilin; Li, Huiling; Tu, Yifeng
2018-05-23
The C-peptide is a co-product of pancreatic β-cells during insulin secretion; its content in body fluid is closely related to diabetes. This paper reports an immune-sensing strategy for a simple and effective assay of C-peptide based on label-free electrochemiluminescent (ECL) signaling, with high sensitivity and specificity. The basal electrode was constructed of an indium tin oxide (ITO) glass as a conductive substrate, which was decorated by Au nanoparticles (AuNPs) with hydrolysed (3-aminopropyl)trimethoxysilane as the linker. The characteristics of the fabricated electrode were investigated by electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. After immobilizing the C-peptide antibody, which takes great advantage of AuNPs' binding capacity, this immunosensor can quantify C-peptide using luminol as the ECL probe. By measuring ECL inhibition, calibration can be established to report the C-peptide concentration between 0.05 ng mL -1 and 100 ng mL -1 with a detection limit of 0.0142 ng mL -1 . As a proof of concept, the proposed strategy is a promising and versatile platform for the clinical diagnosis, classification, and research of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.
Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon
2015-11-03
Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.
Schilling, Birgit; Rardin, Matthew J; MacLean, Brendan X; Zawadzka, Anna M; Frewen, Barbara E; Cusack, Michael P; Sorensen, Dylan J; Bereman, Michael S; Jing, Enxuan; Wu, Christine C; Verdin, Eric; Kahn, C Ronald; Maccoss, Michael J; Gibson, Bradford W
2012-05-01
Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.
Schilling, Birgit; Rardin, Matthew J.; MacLean, Brendan X.; Zawadzka, Anna M.; Frewen, Barbara E.; Cusack, Michael P.; Sorensen, Dylan J.; Bereman, Michael S.; Jing, Enxuan; Wu, Christine C.; Verdin, Eric; Kahn, C. Ronald; MacCoss, Michael J.; Gibson, Bradford W.
2012-01-01
Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models. PMID:22454539
Ma, Xiaoxi; Tang, Jijun; Li, Chunzheng; Liu, Qin; Chen, Jia; Li, Hua; Guo, Lei; Xie, Jianwei
2014-08-01
Ricin is a toxic protein derived from castor beans and composed of a cytotoxic A chain and a galactose-binding B chain linked by a disulfide bond, which can inhibit protein synthesis and cause cell death. Owing to its high toxicity, ease of preparation, and lack of medical countermeasures, ricin has been listed as both chemical and biological warfare agents. For homeland security or public safety, the unambiguous, sensitive, and rapid methods for identification and quantification of ricin in complicated matrices are of urgent need. Mass spectrometric analysis, which provides specific and sensitive characterization of protein, can be applied to confirm and quantify ricin. Here, we report a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method in which ricin was extracted and enriched from serum by immunocapture using anti-ricin monoclonal antibody 3D74 linked to magnetic beads, then digested by trypsin, and analyzed by LC-ESI-MS/MS. Among 19 distinct peptides observed in LC-quadrupole/time of flight-MS (LC-QTOF-MS), two specific and sensitive peptides, T7A ((49)VGLPINQR(56)) and T14B ((188)DNCLTSDSNIR(198)), were chosen, and a highly sensitive determination of ricin was established in LC-triple quadrupole-MS (LC-QqQ-MS) operating in multiple reaction monitoring mode. These specific peptides can definitely distinguish ricin from the homologous protein Ricinus communis agglutinin (RCA120), even though the amino acid sequence homology of the A-chain of ricin and RCA120 is up to ca. 93% and that of B-chain is ca. 85%. Furthermore, peptide T7A was preferred in the quantification of ricin because its sensitivity was at least one order of magnitude higher than that of the peptide T14B. Combined with immunocapture enrichment, this method provided a limit of detection of ca. 2.5 ng/mL and the limit of quantification was ca. 5 ng/mL of ricin in serum, respectively. Both precision and accuracy of this method were determined and the RSD was less than 15%. This established method was then applied to measure ricin in serum samples collected from rats exposed to ricin at the dosage of 50 μg/kg in an intravenous injection manner. The results showed that ca. 10 ng/mL of the residual ricin in poisoned rats serum could be detected even at 12 h after exposure.
Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.
Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong
2017-09-15
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Jing-xi; Gao, Li-jie; Cao, Wei; Zheng, Li; Chen, Jun-hui; Xu, Xiu-li; Wang, Xiao-ru
2014-12-01
This study was based on the thiol groups (-SH) of PC2~PC6, which could be reacted with the Monobromobimane (mBBr), in order to get polypeptide derivatives with fluorescent signal. A new method was developed for measuring the Polypeptides by high performance liquid chromatography with fluorescence detector, then the chromatographic conditions of HPLC was optimized; meawhile the reaction proportion of PCs and mBBr was identified by Trap-MS. The results showed that, the reaction proportion of PCs and mBBr was 1:1, the polypeptide derivatives had good stability; the five compounds separation was better, and the peak time focused on the 16.6~22.0 min; the linear correlation coefficient of PC2, PC3, PC4, PC5 and PC6 was >0.9991, and the limits of quantification were 0.3, 0.05, 0.3, 0.5 and 0.8 mg · L(-1) respectively, the recovery rate was 83.0%-102.0%; the method was reproducible, RSD<2%, this method for measuring the peptide compounds was rapid and accurate.
Malekzad, Hedieh; Zangabad, Parham Sahandi; Mohammadi, Hadi; Sadroddini, Mohsen; Jafari, Zahra; Mahlooji, Niloofar; Abbaspour, Somaye; Gholami, Somaye; Ghanbarpoor, Mana; Pashazadeh, Rahim; Beyzavi, Ali; Karimi, Mahdi; Hamblin, Michael R
2018-03-01
Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.
Martin, Emily B.; Kennel, Stephen J.; Richey, Tina; Wooliver, Craig; Osborne, Dustin; Williams, Angela; Stuckey, Alan; Wall, Jonathan S.
2014-01-01
Dynamic molecular imaging provides bio-kinetic data that is used to characterize novel radiolabeled tracers for the detection of disease. Amyloidosis is a rare protein misfolding disease that can affect many organs. It is characterized by extracellular deposits composed principally of fibrillar proteins and hypersulfated proteoglycans. We have previously described a peptide, p5, which binds preferentially to amyloid deposits in a murine model of reactive (AA) amyloidosis. We have determined the whole body distribution of amyloid by molecular imaging techniques using radioiodinated p5. The loss of radioiodide from imaging probes due to enzymatic reaction has plagued the use of radioiodinated peptides and antibodies. Therefore, we studied iodine-124-labeled p5 by using dynamic PET imaging of both amyloid-laden and healthy mice to assess the rates of amyloid binding, the relevance of dehalogenation and the fate of the radiolabeled peptide. Rates of blood pool clearance, tissue accumulation and dehalogenation of the peptide were estimated from the images. Comparisons of these properties between the amyloid-laden and healthy mice provided kinetic profiles whose differences may prove to be indicative of the disease state. Additionally, we performed longitudinal SPECT/CT imaging with iodine-125-labeled p5 up to 72 hours post injection to determine the stability of the radioiodinated peptide when bound to the extracellular amyloid. Our data show that amyloid-associated peptide, in contrast to the unbound peptide, is resistant to dehalogenation resulting in enhanced amyloid-specific imaging. These data further support the utility of this peptide for detecting amyloidosis and monitoring potential therapeutic strategies in patients. PMID:25102446
Martin, Emily B; Kennel, Stephen J; Richey, Tina; Wooliver, Craig; Osborne, Dustin; Williams, Angela; Stuckey, Alan; Wall, Jonathan S
2014-10-01
Dynamic molecular imaging provides bio-kinetic data that is used to characterize novel radiolabeled tracers for the detection of disease. Amyloidosis is a rare protein misfolding disease that can affect many organs. It is characterized by extracellular deposits composed principally of fibrillar proteins and hypersulfated proteoglycans. We have previously described a peptide, p5, which binds preferentially to amyloid deposits in a murine model of reactive (AA) amyloidosis. We have determined the whole body distribution of amyloid by molecular imaging techniques using radioiodinated p5. The loss of radioiodide from imaging probes due to enzymatic reaction has plagued the use of radioiodinated peptides and antibodies. Therefore, we studied iodine-124-labeled p5 by using dynamic PET imaging of both amyloid-laden and healthy mice to assess the rates of amyloid binding, the relevance of dehalogenation and the fate of the radiolabeled peptide. Rates of blood pool clearance, tissue accumulation and dehalogenation of the peptide were estimated from the images. Comparisons of these properties between the amyloid-laden and healthy mice provided kinetic profiles whose differences may prove to be indicative of the disease state. Additionally, we performed longitudinal SPECT/CT imaging with iodine-125-labeled p5 up to 72h post injection to determine the stability of the radioiodinated peptide when bound to the extracellular amyloid. Our data show that amyloid-associated peptide, in contrast to the unbound peptide, is resistant to dehalogenation resulting in enhanced amyloid-specific imaging. These data further support the utility of this peptide for detecting amyloidosis and monitoring potential therapeutic strategies in patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Alexandre, Daniel; Linhares, Ricardo T; Queiroz, Bruna; Fontoura, Luisa; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Bezerra, Cezar S; Oliveira, Eliana M; Demartini, Diogo R; Carlini, Célia R; Silva, Carlos P
2011-06-01
The fate of vicilins ingested by Callosobruchus maculatus and the physiological importance of these proteins in larvae and adults have been recently investigated. Vicilins have been demonstrated to be absorbed through the midgut epithelium, circulate in their trimeric form in the haemolymph and are deposited in the fat body. In fat body cells of both sexes, vicilins are partially hydrolyzed and the fragments are eventually deposited in the eggs. Tracking the fate of FITC-labelled vicilins in adult males revealed that the labelled vicilin fragments were also detected in oöcytes and eggs, when the males copulated with non-labelled females. Based on the results presented here, we propose that following absorption, vicilins accumulate in the fat body, where they are partially degraded. These peptides are retained throughout the development of the males and are eventually sequestered by the gonads and passed to the female gonads during copulation. It is possible that accumulation in the eggs is a defensive strategy against pathogen attack, as these peptides are known to have antimicrobial activity. The contribution of vicilin-derived peptides from seminal fluids may be an investment that helps to increase the offspring survival. This study provides additional insights into the possible contributions of males to female fecundity following copulation in C. maculatus. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cotham, Victoria C; Shaw, Jared B; Brodbelt, Jennifer S
2015-09-15
Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.
Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju
2017-10-01
Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Problem-Solving Test: The Mechanism of Protein Synthesis
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2009-01-01
Terms to be familiar with before you start to solve the test: protein synthesis, ribosomes, amino acids, peptides, peptide bond, polypeptide chain, N- and C-terminus, hemoglobin, [alpha]- and [beta]-globin chains, radioactive labeling, [[to the third power]H] and [[to the fourteenth power]C]leucine, cytosol, differential centrifugation, density…
Wouters, Bert; Vanhoutte, Dominique J D; Aarnoutse, Petra; Visser, Adriaan; Stassen, Catherine; Devreese, Bart; Kok, Wim Th; Schoenmakers, Peter J; Eeltink, Sebastiaan
2013-04-19
The present study concerns the application of visualization methods, i.e. coomassie-brilliant-blue-R staining (CBB-R), silver-nitrate staining, and fluorescamine labeling, and subsequent MALDI-MS analysis of intact proteins and peptides on the surface of flat-bed monoliths, intended for spatial two-dimensional chromatographic separations. The use of 100-μm thick macroporous poly(butyl methacrylate-co-ethylene dimethacrylate) flat-bed monoliths renders a fixation step obsolete, so that CBB-R and silver-nitrate staining and destaining could be achieved in 10-15 min as opposed to up to 24h, as is typical on 2D-PAGE gels. The detection limits remained comparable. The compatibility of the monolithic layer with subsequent MALDI-MS analysis of individual proteins and peptide spots was investigated with regards to mass accuracy, mass precision, resolution, and signal intensity. When comparing results from MALDI-MS analysis of proteins and peptides on a flat-bed monolith to results obtained directly on stainless-steel target plates, significant losses in mass precision, signal intensity, and an increased variation in resolution were observed. In addition, a loss in signal intensity up to two orders of magnitude was observed when using monolithic layers. After CCB-R and silver-nitrate staining and destaining to disrupt the protein-dye complexes no MALDI spectra with significant S/N ratios could be achieved. After fluorescamine labeling heterogeneous signals were observed, which resulted from a distribution in the number of fluorescence-labeled lysine groups and from the presence of labeled derivatives that had undergone condensation reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
Jung, Deokho; Min, Kyoungmi; Jung, Juyeon; Jang, Wonhee; Kwon, Youngeun
2013-05-01
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions.
Angell, Yu L; Burgess, Kevin
2007-10-01
This critical review concerns the impact of copper-mediated alkyne-azide cycloadditions on peptidomimetic studies. It discusses how this reaction has been used to insert triazoles into peptide chains, to link peptides to other functionalities (e.g. carbohydrates, polymers, and labels), and as a basis for evolution of less peptidic compounds as pharmaceutical leads. It will be of interest to those studying this click reaction, peptidomimetic secondary structure and function, and to medicinal chemists.
Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M
2007-12-26
The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.
Marques, Emerson Finco; Medeiros, Marisa H G; Di Mascio, Paolo
2017-11-01
Singlet molecular oxygen ( 1 O 2 ) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1 O 2 , and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1 O 2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [ 18 O]-labeled 1 O 2 released from thermolabile endoperoxides in association with nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC-MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [ 18 O]-labeling atoms in different amino acids. Copyright © 2017 John Wiley & Sons, Ltd.
Zhao, Xiang; Zhang, Mingkun; Wei, Dongshan; Wang, Yunxia; Yan, Shihan; Liu, Mengwan; Yang, Xiang; Yang, Ke; Cui, Hong-Liang; Fu, Weiling
2017-10-01
The aptamer and target molecule binding reaction has been widely applied for construction of aptasensors, most of which are labeled methods. In contrast, terahertz technology proves to be a label-free sensing tool for biomedical applications. We utilize terahertz absorption spectroscopy and molecular dynamics simulation to investigate the variation of binding-induced collective vibration of hydrogen bond network in a mixed solution of MUC1 peptide and anti-MUC1 aptamer. The results show that binding-induced alterations of hydrogen bond numbers could be sensitively reflected by the variation of terahertz absorption coefficients of the mixed solution in a customized fluidic chip. The minimal detectable concentration is determined as 1 pmol/μL, which is approximately equal to the optimal immobilized concentration of aptasensors.
2012-01-01
Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such, statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods and algorithms. PMID:23176545
Mani, D R; Abbatiello, Susan E; Carr, Steven A
2012-01-01
Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such, statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods and algorithms.
Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.
2015-01-01
In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412
Lapin, Guilherme Abbud Franco; Hochman, Bernardo; Nishioka, Michele Akemi; Maximino, Jessica Ruivo; Chadi, Gerson; Ferreira, Lydia Masako
2015-06-01
To describe and standardize a protocol that overcomes the technical limitations of Western blot (WB) analysis in the quantification of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) following nociceptive stimuli in rat skin. Male Wistar rats (Rattus norvegicus albinus) weighing 250 to 350 g were used in this study. Elements of WB analysis were adapted by using specific manipulation of samples, repeated cycles of freezing and thawing, more thorough maceration, and a more potent homogenizer; increasing lytic reagents; promoting greater inhibition of protease activity; and using polyvinylidene fluoride membranes as transfer means for skin-specific protein. Other changes were also made to adapt the WB analysis to a rat model. University research center. Western blot analysis adapted to a rat model. This research design has proven effective in collecting and preparing skin samples to quantify SP and CGRP using WB analysis in rat skin. This study described a research design that uses WB analysis as a reproducible, technically accessible, and cost-effective method for the quantification of SP and CGRP in rat skin that overcomes technical biases.