Science.gov

Sample records for labelled red cell

  1. Hemobilia detected by Tc-99m labeled red blood cells

    SciTech Connect

    Winzelberg, G.G.; Wholey, M.H.; Ismail-Beigi, F.

    1982-01-01

    Tc-99m labeled red blood cells were successfully used to determine the site of hemorrhage in a 67-year-old man with hemobilia. A false hepatic artery aneurysm was confirmed at angiography and ultimately successfully embolized. The relative merits of using Tc-99m labeled red blood cells for detecting sources of upper gastrointestinal bleeding are discussed.

  2. Dependence of technetium-99m red blood cell labeling efficiency on red cell surface charge.

    PubMed

    Seldin, D W; Simchon, S; Jan, K M; Chien, S; Alderson, P O

    1988-10-01

    The mechanisms by which [99mTc]pertechnetate becomes attached to stannous-primed red blood cells are not known in detail. To study the problem further, the effect of red cell surface charge on labeling efficiency was evaluated. Red cell surface charge was reduced by using the enzyme neuraminidase to remove the terminal charge-bearing sialic acid moiety of the membrane glycoprotein. Forty-five blood samples from six volunteers were treated with neuraminidase for varying lengths of time, resulting in the removal of from 11% to 99% of the normal negative surface charge, as determined from electrophoretic mobility measurements. There was excellent linear correlation between labeling efficiency and the remaining red cell surface charge for values down to 20% of normal (r = 0.89). When surface charge was less than 20% of normal, labeling efficiency was constant at 30%. Eleven blood samples from three donors were divided into two groups that were treated with neuraminidase either before or after they were labeled. The labeling efficiency was independent of the order in which the steps were performed. No evidence for shifting of the radiolabel from the cell membrane to hemoglobin was found. The results suggest that clinical conditions associated with a reduction of sialic acid on the erythrocyte membrane may be one cause of decreased red blood cell labeling efficiency, and that increased membrane permeability for reduced technetium species may be responsible for the decrease.

  3. Technetium-99m-labeled red blood cell imaging

    SciTech Connect

    Front, D.; Israel, O.; Groshar, D.; Weininger, J.

    1984-07-01

    Red blood cells labeled with 99mTc constitute a suitable intravascular agent for imaging of vascular abnormalities. Hemangiomas are characterized by low perfusion and a high blood pool. This ''perfusion blood-pool mismatch,'' not encountered in other lesions, may help in the specific diagnosis of this tumor. This is particularly so in cavernous hemangiomas of the liver where three-phase 99mTc-labeled red blood cell scintigraphy should precede liver biopsy. Red cell scintigraphy also is useful for establishing the vascular nature of hemangiomas of the head and neck and the skin and for diagnosis of venous occlusion. Heat-damaged red blood cells provide a specific spleen imaging agent. This should be used when patients with suspected splenic pathology have equivocal colloid scintigraphy.

  4. Radionuclide-labeled red blood cells: current status and future prospects

    SciTech Connect

    Srivastava, S.C.; Chervu, L.R.

    1984-04-01

    Radiolabeling of red cells and their clinical and research application in nuclear medicine constitute an area of continued interest and steady growth during the past two decades. Technetium-/sup 99/m-labeled red cells in particular have revolutionized the field of cardiovascular nuclear medicine by making possible the external evaluation of various heart parameters with minimum radiation dose or trauma to the patient. Among other areas of study that use /sup 99/mTc -RBC are blood pool imaging, detection of vascular malformations, red cell mass determination, detection of gastrointestinal bleeding, and of hemangiomas. Heat-damaged /sup 99/mTc -RBC find application in spleen imaging, accessory spleen localization, detection of GI bleeding, and in other areas. A critical evaluation is presented of the various in vitro and in vivo labeling techniques that are currently available for red cell labeling. Even though the presently used procedures provide satisfactory labeled preparations, ideal radioisotopic RBC labels remain to be developed. Intermediate (2-3 days) as well as long-lived (approximately 30 days) radionuclidic labels are highly desirable for a number of clinical procedures where /sup 99/mTc is not useful due to its short half-life. New approaches such as the use of radiolabeled antibodies to red cell antigens, or labeling specific receptor sites in the cell may lead to substantial improvements in the labeling methodology and could yield labeled cells with the least damage and maximum in vivo stability.

  5. Evaluation of red blood cell labelling methods based on a statistical model for red blood cell survival.

    PubMed

    Korell, Julia; Coulter, Carolyn V; Duffull, Stephen B

    2011-12-21

    The aim of this work is to compare different labelling methods that are commonly used to estimate the lifespan of red blood cells (RBCs), e.g. in anaemia of renal failure, where the effect of treatment with erythropoietin depends on the lifespan of RBCs. A previously developed model for the survival time of RBCs that accounts for plausible physiological processes of RBC destruction was used to simulate ideal random and cohort labelling methods for RBCs, as well as the flaws associated with these methods (e.g. reuse of label and loss of the label from the surviving RBCs). Random labelling with radioactive chromium and cohort labelling using heavy nitrogen were considered. Blood sampling times were determined for RBC survival studies using both labelling methods by applying the theory of optimal design. It was assessed whether the underlying parameter values of the model are estimable from these studies, and the precision of the parameter estimates were calculated. In theory, parameter estimation would be possible for both types of ideal labelling methods without flaws. However, flaws associated with random labelling are significant and not all parameters controlling RBC survival in the model can be estimated with good precision. In contrast, cohort labelling shows good precision in the parameter estimates even in the presence of reuse and prolonged incorporation of the label. A model based analysis of RBC survival studies is recommended in future to account for limitations in methodology as well as likely causes of RBC destruction. PMID:21945607

  6. Kit for the selective labeling of red blood cells in whole blood with [sup 99]Tc

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1992-05-26

    Disclosed herein are a method and kit for the preparation of [sup 99m]Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium. No Drawings

  7. Kit for the selective labeling of red blood cells in whole blood with .sup.9 TC

    DOEpatents

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1992-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium.

  8. Gallbladder visualization during technetium-99m-labeled red cell scintigraphy for gastrointestinal bleeding

    SciTech Connect

    Brill, D.R.

    1985-12-01

    Localization of radionuclide activity in the gallbladder was seen on delayed views following injection of 99mTc-labeled red blood cells for gastrointestinal bleeding in five patients. The mechanism for this unusual finding probably relates to labeling of heme, the biochemical precursor of bilirubin. All patients had had prior transfusions. All but one had severe renal impairment, probably an important predisposing factor.

  9. Immunospecific red cell binding of iodine /sup 125/-labeled immunoglobulin G erythrocyte autoantibodies

    SciTech Connect

    Masouredis, S.P.; Branks, M.J.; Garratty, G.; Victoria, E.J.

    1987-09-01

    The primary interaction of autoantibodies with red cells has been studied by using labeled autoantibodies. Immunoglobulin G red cell autoantibodies obtained from IgG antiglobulin-positive normal blood donors were labeled with radioactive iodine and compared with alloanti-D with respect to their properties and binding behavior. Iodine /sup 125/-labeled IgG autoantibody migrated as a single homogeneous peak with the same relative mobility as human IgG on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric focusing pattern of labeled autoantibodies varied from donor to donor but was similar to that of alloanti-D, consisting of multiple IgG populations with isoelectric points in the neutral to alkaline range. /sup 125/I-autoantibody bound to all human red cells of common Rh phenotypes. Evidence for immunospecific antibody binding of the labeled autoantibody was based on variation in equilibrium binding to nonhuman and human red cells of common and rare phenotypes, enhanced binding after red cell protease modification, antiglobulin reactivity of cell-bound IgG comparable to that of cell-bound anti-D, and saturation binding in autoantibody excess. Scatchard analysis of two /sup 125/I-autoantibody preparations yielded site numbers of 41,500 and 53,300 with equilibrium constants of 3.7 and 2.1 X 10(8) L X mol-1. Dog, rabbit, rhesus monkey, and baboon red cells were antigen(s) negative by quantitative adsorption studies adsorbing less than 3% of the labeled autoantibody. Reduced ability of rare human D--red blood cells to adsorb the autoantibody and identification of donor autoantibodies that bind to Rh null red blood cells indicated that eluates contained multiple antibody populations of complex specificities in contrast to anti-D, which consists of a monospecific antibody population. Another difference is that less than 70% of the autoantibody IgG was adsorbed by maximum binding red blood cells as compared with greater than 85% for alloanti-D.

  10. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.

    PubMed

    Knorr, Gergely; Kozma, Eszter; Herner, András; Lemke, Edward A; Kele, Péter

    2016-06-20

    The synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes.

  11. Tc-99m-labeled red blood cells for the measurement of red cell mass in newborn infants: concise communication

    SciTech Connect

    Linderkamp, O.; Betke, K.; Fendel, H.; Klemm, J.; Lorenzen, K.; Riegel, K.P.

    1980-07-01

    In vitro and in vivo investigations were performed to examine the binding of Tc-99m to neonatal red blood cells (RBC). Labeling efficiency was about 90%, and unbound Tc-99m less than 3% after one washing, in premature and full-term newborns and in children. Thus presence of high percentages of fetal hemoglobin (Hb F) did not influence the labeling of RBCs with Tc-99m. RBCs of 11 newborns were hemolysed and the distribution of Tc-99m on RBC components was analyzed. Although Hb F percentage averaged (60.0 +- 8.10)% (s.d.), only (11.9 +- 3.7)% of Tc-99m was bound by Hb F, whereas (45.0 +- 6.1)% was associated with Hb A. RBC membranes bound (13.7 +- 4.3)% and (29.3 +- 4.0)% were found unbound in hemolysates. These results indicate that Tc-99m preferentially binds to beta chains. In vivo equilibration of Tc-99m RBCs and of albumin labeled with Evans blue was investigated in five newborn infants. Tc-99m RBCs were stable in each case during the first hour after injection. Elution of Tc-99m from RBCs was (3.4 +- 1.5)% per h. Body-to-venous hematocrit ratio averaged 0.86 +- 0.03.

  12. Radionuclide-labeled red blood cell imaging of vascular malformations in children

    SciTech Connect

    Sloan, G.M.; Bolton, L.L.; Miller, J.H.; Reinisch, J.F.; Nichter, L.S.

    1988-09-01

    Vascular malformations, particularly in the absence of cutaneous changes, can be difficult to distinguish from other soft tissue masses in children. We have used technetium-99m-labeled red blood cell scintigraphy to study 47 lesions in 43 children. Thirty-nine lesions showed increased flow and were, therefore, diagnosed as vascular malformations. Subsequent biopsy of 10 of these lesions confirmed that diagnosis. The other 29 lesions with increased flow were followed for 10 months to 5 years and the clinical course was consistent with vascular malformation in every case. Eight lesions showed no increased flow on technetium scan. One of these subsequently proved to be a hemangioma. The others have turned out not to be vascular malformations. Therefore, in our experience, the technetium-99m-labeled red blood cell scan has had 98% sensitivity and 100% specificity in diagnosing vascular malformations in children.

  13. Accuracy of blood volume estimations in critically ill children using 125I-labelled albumin and 51Cr-labelled red cells.

    PubMed

    Linderkamp, O; Holthausen, H; Seifert, J; Butenandt, I; Riegel, K P

    1977-06-01

    Blood volume was estimated using 51chromium labelled red cells and 125iodinated human serum albumin in 5 children with sepsis, in 6 burned children and 7 children with acute lymphoblastic leukaemia. Studies of the equilibration pattern demonstrated that the mixing time of labelled red cells was prolonged to 40 minutes or more in 5 children, indicating the existence of slowly circulating red cells. Mixing of labelled albumin was complete within 10 minutes in 15 patients and within 20 minutes in all the children studied. In a burned patient with severe sepsis, exchange transfusion improved the clinical state and normalized the equilibration pattern of labelled red cells. The mean body/venous haematocrit ratio was 0.893+/-0.018 (SD) in the children with sepsis, 0.859+/-0.052 in the burned patients, and 0.916+/-0.078 in the children with acute lymphoblastic leukaemia, increasing with spleen size in the latter group. PMID:267010

  14. Hyperemic peripheral red marrow in a patient with sickle cell anemia demonstrated on Tc-99m labeled red blood cell venography

    SciTech Connect

    Heiden, R.A.; Locko, R.C.; Stent, T.R. )

    1991-03-01

    A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologic status of the sickle cell patient.

  15. Method and kit for the selective labeling of red blood cells in whole blood with Tc-99m

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1988-07-05

    Disclosed herein are a method and kit for the preparation of [sup 99m]Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available for the reduction of technetium. No Drawings

  16. Method and kit for the selective labeling of red blood cells in whole blood with TC-99M

    DOEpatents

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1988-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for the reduction of technetium.

  17. Technetium labelled red blood cell scintigraphy in the diagnosis of intestinal haemorrhage.

    PubMed Central

    Harvey, M. H.; Neoptolemos, J. P.; Watkin, E. M.; Cosgriff, P.; Barrie, W. W.

    1985-01-01

    99m-Technetium labelled red blood cell scintigraphy was used in the investigation of 15 adult patients with suspected small or large bowel bleeding requiring at least five units of blood (mean 14.3 units) and one neonate with rectal bleeding. Scintigraphy was found to be an accurate method of detecting the site of haemorrhage and was superior to angiography. This technique may be of particular value in patients with profuse colonic haemorrhage when the view at colonoscopy is poor. Images Fig. 1 Fig. 2 Fig. 3 PMID:3872094

  18. Hepatic cavernous hemangioma: diagnosis with /sup 99m/Tc-labeled red cells and single-photon emission CT

    SciTech Connect

    Brodsky, R.I.; Friedman, A.C.; Maurer, A.H.; Radecki, P.D.; Caroline, D.F.

    1987-01-01

    During the performance of high-resolution real-time abdominal sonography, small echogenic hepatic masses are frequently discovered. A second imaging test to confirm the suspected diagnosis of hemangioma is often required. Planar labeled red-cell imaging will often not detect hemangiomas smaller than 3 cm. We studied 14 patients with labeled red-cell scintigraphy and single-photon emission CT (SPECT). Six hemangiomas were diagnosed by SPECT that would have been missed by planar imaging alone. All six were smaller than 2.5 cm. With the addition of SPECT, labeled red-cell scintigraphy has specificity and sensitivity that make it at least as reliable as dynamic CT for the noninvasive diagnosis of hepatic cavernous hemangioma.

  19. Localization of obscure gastrointestinal bleeding by technetium 99m-labeled red blood cell scintigraphy.

    PubMed

    Wang, C S; Tzen, K Y; Huang, M J; Wang, J Y; Chen, M F

    1992-01-01

    When a bleeding source from the gastrointestinal (GI) tract cannot be identified with conventional diagnostic studies, it is known as GI bleeding of an obscure origin. In the past three years, in vivo Technetium 99m-labeled red blood cell scintigraphy (RBC scan) has been added to our armamentarium for the diagnosis of obscure GI bleeding. Out of a total of 26 cases, the bleeders could be detected in 12 or 46.2% by RBC scan. The time required ranged from 15 minutes to 24 hours (median, one hour). In 14 patients with active bleeding during the scan period, 11 had positive scans (sensitivity, 78.6%). In 12 patients with inactive bleeding, 11 had negative scans (specificity, 91.7%). Angiography was conducted in nine cases, with all showing negative findings; however, six of them had a positive focus by RBC scan. Laparotomy was performed in seven scan-positive patients, and in three scan-negative patients because of a positive Meckel's scan (two cases) or recurrent bleeding (one case). Of the 12 scan-positive patients, incorrect localization was noted in two patients due to rapid transit of the labeled RBC in the small bowel. False localization could be prevented by shortening the sequential imaging interval. It is concluded that an RBC scan is a very sensitive and safe tool for detection of GI bleeding of an intermittent nature, because the bleeder can be monitored for 24 hours after a single injection. It can be used as a preangiographic screening test and to guide the surgeon in surgical planning or decision-making.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1352337

  20. Assessment of soft tissue hemangiomas in children utilizing Tc-99m labelled red blood cells

    SciTech Connect

    Miller, J.H.

    1984-01-01

    Hemangiomas may present in infancy as soft tissue masses. Occasionally these lesions may be extensive or may not be clinically recognized as a hemangioma, often causing concern for the presence of a malignant lesion. In later childhood these lesions, which may be occult, may cause overgrowth of an extremity. Evaluation of soft tissue masses suspected of being a hemangioma utilizing Technetium 99m labelled red blood cells has been very valuable. This method allows a dynamic evaluation of first pass blood flow. Subsequent static scintiphotos allow an assessment of the lesion itself. These scintiphotos may be obtained sequentially to evaluate therapy. Twenty patients were evaluated by this method ranging in age from two months to eleven years. There were 13 females and seven males. Lesions evaluated by this method include six hemangiomas of the head and neck: parotic region (2), facial (3), and tongue (1). Extremity lesions were evaluated in six children including both upper extremity (1) and lower extremity (5). Torso lesions evaluated include chest wall (2), abdominal wall (2), and one hemangioma of the gut. This procedure is quickly performed on an outpatient basis, has high anatomic resolution, provides and assessment of these lesions in a manner not available by any other imaging procedure and usually requires no sedation. The radiation exposure for this procedure is low (approximately, a 400mR total body dose) and has been well tolerated by both patients and their parents. Scintigraphic evaluation should be the first diagnostic method utilized in the evaluation of these lesions.

  1. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  2. Splenic scintigraphy using Tc-99m-labeled heat-denatured red blood cells in pediatric patients: concise communication

    SciTech Connect

    Ehrlich, C.P.; Papanicolaou, N.; Treves, S.; Hurwitz, R.A.; Richards, P.

    1982-03-01

    Ten children underwent splenic imaging with heat-denatured red blood cells labeled with technetium-99m (Tc-99m DRBC). The presenting problems included the heterotaxia syndrome, recurrent idiopathic thrombocytopenic purpura following splenectomy, mass in the left posterior hemithorax, and blunt abdominal trauma. In nine patients, the presence or absence of splenic tissue was established. A splenic hematoma was identified in the tenth patient. All patients were initially scanned with Tc-99m sulfur colloid (Tc-99m SC), and were selected for Tc-99m DRBC scintigraphy only after the results of the SC scans failed to establish the clinical problem beyond doubt. The availability of kits containing stannous ions, essential for efficient and stable labeling of red blood cells with Tc-99m and requiring only a small volume of blood, make splenic scintigraphy in children a relatively simple and definitive diagnostic procedure, when identification of splenic tissue is of clinical importance.

  3. Design of an automated algorithm for labeling cardiac blood pool in gated SPECT images of radiolabeled red blood cells

    SciTech Connect

    Hebert, T.J. |; Moore, W.H.; Dhekne, R.D.; Ford, P.V.; Wendt, J.A.; Murphy, P.H.; Ting, Y.

    1996-08-01

    The design of an automated computer algorithm for labeling the cardiac blood pool within gated 3-D reconstructions of the radiolabeled red blood cells is investigated. Due to patient functional abnormalities, limited resolution, and noise, certain spatial and temporal features of the cardiac blood pool that one would anticipate finding in every study are not present in certain frames or with certain patients. The labeling of the cardiac blood pool requires an algorithm that only relies upon features present in all patients. The authors investigate the design of a fully-automated region growing algorithm for this purpose.

  4. Technetium-99m labeled red blood cells for the detection and localization of cavernous hemangiomas of the bone

    SciTech Connect

    Lenane, P.

    1986-09-01

    Labeled red blood cells (RBCs) have already been proven useful in the detection and localization of many vascular abnormalities. One such abnormality is that of a cavernous hemangioma. Cavernous hemangiomas have a distinct circulation and have been found in many areas of the body. The ability to utilize this unique circulation is important to consider when choosing a diagnostic exam. This paper reports a case demonstrating the usefulness of labeled red blood cells for the detection and localization of cavernous hemangioma of the bone. A 31-yr-old female present with a history of persistent generalized headaches for many years. About 1 yr prior to the exam, she noticed that her headaches had become more localized to the right side of her head. Physical examination revealed a palpable lump developing on the right side of her head which was sensitive to the touch. The patient was then scheduled for a CT scan to be followed by both a bone scan and a /sup 99m/Tc blood-pool scan. A flow study using 15 mCi /sup 99m/Tc labeled RBCs was performed in the right lateral position at 1.5 sec/frame for 32 frames. Immediate blood-pool images 30-min, and 1-hr delayed images were recorded.

  5. Clinical evaluation of a /sup 51/Cr-labeled red blood cell survival test for in vivo blood compatibility testing

    SciTech Connect

    Pineda, A.A.; Dharkar, D.D.; Wahner, H.W.

    1984-01-01

    Modified red blood cell survival studies with use of 51Cr were performed in three groups of subjects. Group 1 consisted of normal subjects who were given labeled autologous blood, group 2 were subjects in need of blood transfusions and given labeled ABO and Rh crossmatch-compatible blood, and group 3 were patients in need of blood transfusion but in whom problems arose in finding compatible blood. The results of the studies suggest that for patients with blood compatibility problems, normal red blood cell survival values at 1 hour do not exclude the possibility of severe hemolysis 24 hours later. Thus, if a 1-hour test result is normal, the procedure should be extended routinely to 24 hours. Moreover, the test can be used to evaluate the clinical importance of antibodies. We showed that anti-Yka and anti-Lan were clinically significant, but high-titer, low-avidity antibodies, anti-Kna, anti-I, and anti-HI were clinically insignificant in the cases studied. This finding emphasizes the importance of an in vivo test for the final compatibility evaluation in complicated blood replacement problems.

  6. Effect of exercise on erythrocyte count and blood activity concentration after technetium-99m in vivo red blood cell labeling

    SciTech Connect

    Konstom, M.A.; Tu'meh, S.; Wynne, J.; Beck, J.R.; Kozlowski, J.; Holman, B.L.

    1982-09-01

    The effects of exercise on blood radiotracer concentration after technetium-99m in vivo red blood cell labeling was studied. After red blood cell labeling, 13 subjects underwent maximal supine bicycle exercise. Radioactivity, analyzed with a well counter, was measured in heparinized venous blood samples drawn at rest and during peak exercise. Changes in activity were compared with changes in erythrocyte count. Activity and erythrocyte counts increased in erythrocyte count (r=0.78), but did not correlate with either duration of exercise or maximal heart rate. Twenty minutes after termination of exercise, activity and erythrocyte count had decreased from peak exercise values but remained higher than preexercise values. In nine nonexercised control subjects, samples drawn 20 minutes apart showed no change in activity or in erythrocyte count. It was concluded that exercise increases blood activity, primarily because of an increase in erythrocyte count. During radionuclide ventriculography, blood activity must be measured before and after any intervention, particularly exercise, before a change in left ventricular activity can be attributed to a change in left ventricular volume.

  7. Effect of Peumus boldus on the labeling of red blood cells and plasma proteins with technetium-99m.

    PubMed

    Reiniger, I W; de Oliveira, J F; Caldeira-de-Araújo, A; Bernardo-Filho, M

    1999-08-01

    Peumus boldus is used in popular medicine in Brazil. The influence of Peumus boldus on the labeling of red blood cells and plasma proteins with 99mTc was studied. Stannous chloride and 99mTc pertechnetate were incubated with blood and a tincture of Peumus boldus. Aliquots of plasma and blood cells were isolated from the mixture and treated with trichloroacetic acid (TCA). After separation, analysis of the soluble and insoluble fractions showed a rapid uptake of the radioactivity by blood cells in the presence of the drug, whereas there was a slight decrease in the amount of 99mTc radioactivity in the TCA-insoluble fraction of plasma. PMID:10376326

  8. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGES

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; et al

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  9. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    SciTech Connect

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.

  10. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    PubMed Central

    Liu, Daniel S.; Nivón, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-01-01

    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies. PMID:25313043

  11. Radiotherapy and technetium-99m-labeled red blood cell scintigraphy for hemoptysis from chronic MRSA infection

    PubMed Central

    Lapuz, Carminia; Gupta, Sandeep K.; Bennett, Elizabeth A.; Tang, Colin I.

    2013-01-01

    Aim To discuss the application of external beam radiotherapy (EBRT) and technetium-99m-labeled red blood cell scintigraphy (LRBCS) in life-threatening hemoptysis from a non-malignant condition. Materials and methods This case report presents a patient with persistent hemoptysis secondary to chronic Methicillin-resistant Staphylococcus aureus (MRSA) infection in whom conventional management failed to localize the site of pulmonary bleeding or to provide effective therapy. Results EBRT was successfully given for life-threatening hemoptysis with improvement in quality of life for nearly 1 year. LRBCS was used to localize the source of further bleeding and facilitate targeted therapy. Conclusion EBRT can be an effective and well-tolerated modality in treating life-threatening hemoptysis refractory to conventional methods. LRBCS is a non-invasive diagnostic tool that can be used to detect the source of pulmonary bleeding. PMID:24416570

  12. Technetium-99m-labeled red blood cells in the evaluation of hemangiomas of the liver in infants and children

    SciTech Connect

    Miller, J.H.

    1987-09-01

    The vascular origin lesions of the liver (capillary hemangioma/infantile hemangioendothelioma) that present in infancy or early childhood often have a typical clinical picture of hepatomegaly and congestive heart failure. These lesions rarely present as asymptomatic hepatomegaly, simulating a primary hepatic malignancy. These lesions may also simulate a primary or secondary hepatic malignancy on cross-sectional imaging or angiography. Scintigraphic evaluations with technetium-99m-labeled red blood cells offers an accurate method of identification of these lesions, and allows differentiation from other common primary or secondary hepatic masses in infancy or childhood. This scintigraphic method may also be used to follow these patients after medical, radiation, or embolization therapy. Experience with seven patients with these tumors is reported and compared with eight children with other primary or secondary liver tumors also evaluated by this method.

  13. Accelerated removal of antibody-coated red blood cells from the circulation is accurately tracked by a biotin label

    PubMed Central

    Mock, Donald M.; Lankford, Gary L.; Matthews, Nell I.; Burmeister, Leon F.; Kahn, Daniel; Widness, John A.; Strauss, Ronald G.

    2013-01-01

    BACKGROUND Safe, accurate methods to reliably measure circulating red blood cell (RBC) kinetics are critical tools to investigate pathophysiology and therapy of anemia, including hemolytic anemias. This study documents the ability of a method using biotin-labeled RBCs (BioRBCs) to measure RBC survival (RCS) shortened by coating with a highly purified monomeric immunoglobulin G antibody to D antigen. STUDY DESIGN AND METHODS Autologous RBCs from 10 healthy D+ subjects were labeled with either biotin or 51Cr (reference method), coated (opsonized) either lightly (n = 4) or heavily (n = 6) with anti-D, and transfused. RCS was determined for BioRBCs and for 51Cr independently as assessed by three variables: 1) posttransfusion recovery at 24 hours (PTR24) for short-term RCS; 2) time to 50% decrease of the label (T50), and 3) mean potential life span (MPL) for long-term RCS. RESULTS BioRBCs tracked both normal and shortened RCS accurately relative to 51Cr. For lightly coated RBCs, mean PTR24, T50, and MPL results were not different between BioRBCs and 51Cr. For heavily coated RBCs, both short-term and long-term RCS were shortened by approximately 17 and 50%, respectively. Mean PTR24 by BioRBCs (84 ± 18%) was not different from 51Cr (81 ± 10%); mean T50 by BioRBCs (23 ± 17 days) was not different from 51Cr (22 ± 18 days). CONCLUSION RCS shortened by coating with anti-D can be accurately measured by BioRBCs. We speculate that BioRBCs will be useful for studying RCS in conditions involving accelerated removal of RBCs including allo- and autoimmune hemolytic anemias. PMID:22023312

  14. Placental localization in abdominal pregnancy using technetium-99m-labeled red blood cells

    SciTech Connect

    Martin, B.; Payan, J.M.; Jones, J.S.; Buse, M.G. )

    1990-06-01

    In a patient with third trimester abdominal pregnancy with fetal demise, technetium-99m-labeled erythrocytes ({sup 99m}Tc-RBCs) localized the placenta preoperatively, after nonvisualization by ultrasonography and arteriography. Extrauterine placental localization by blood-pool imaging may be useful when ultrasound fails.

  15. Definitive diagnosis of hepatic hemangiomas: MR imaging versus Tc-99m-labeled red blood cell SPECT

    SciTech Connect

    Birnbaum, B.A.; Weinreb, J.C.; Megibow, A.J.; Sanger, J.J.; Lubat, E.; Kanamuller, H.; Noz, M.E.; Bosniak, M.A. )

    1990-07-01

    Thirty-seven patients with 69 suspected hemangiomas found by means of computed tomography (CT) and/or ultrasound were studied with both 0.5-T magnetic resonance (MR) imaging and single photon emission CT (SPECT) with technetium-99m-labeled red blood cells. Using a criterion of perfusion-blood pool mismatch, SPECT readers diagnosed 50 of 64 hemangiomas and all five nonhemangiomas (sensitivity, 78% (95% confidence interval, 0.664 - 0.864); accuracy, 80% (0.69 - 0.877)). Qualitative analysis of lesion signal intensity on T2-weighted spin-echo MR images allowed readers to diagnose 58 of 64 hemangiomas and four of five nonhemangiomas (sensitivity, 91% (0.814 - 0.96); accuracy, 90% (0.807 - 0.951)). Because of the significantly higher cost of MR imaging and its inability to categorically differentiate hemangiomas from hypervascular metastases, the authors consider SPECT to be the method of choice for diagnosing hepatic hemangiomas. MR imaging should be reserved for the diagnosis of lesions smaller than 2.0 cm and for those 2.5 cm and smaller adjacent to the heart or major hepatic vessels; in such cases MR imaging was found superior to SPECT.

  16. Red cell aging in vivo

    PubMed Central

    Ganzoni, A. M.; Oakes, R.; Hillman, R. S.

    1971-01-01

    Previous studies of red cell structure and metabolism during the aging process have relied upon in vitro techniques of cell separation into various age populations. Probably the most common approach is to isolate the older red cells with the assumption that they are more dense. This may lead to a number of inconsistencies in observations, and may certainly raise questions about possible cell changes secondary to manipulative procedures. For this reason, an experimental system was devised where a normal red cell population could be studied, while aging, in an in vivo environment. The initial red cell mass of a large number of inbred rats was transferred repeatedly into an ever smaller number of animals, making it possible to follow an aging population of red cells up to 48 days while preventing contamination with newly produced cells by suppression of erythropoiesis with transfusion-induced polycythemia. During this period, samples of progressively older red cells could be obtained for measurements of red cell constant. It was noted that the normal rat red cell undergoes both volume reduction and significant hemoglobin content loss with aging. In addition, the hemoglobin concentration within the cell demonstrated an early rise after a return to nearly normal values. These findings are noteworthy in that they help to explain the characteristics of life-spans of cohort labeled red cell populations in small animals, and provide a possible example of a cell's remodeling process within the spleen. PMID:5090053

  17. Detection of Intrathoracic Bleeding by 99mTc-Labeled Red Blood Cell SPECT/CT After Wedge Biopsy of Pulmonary Angiosarcoma.

    PubMed

    Provost, Karine; Charest, Mathieu

    2016-09-01

    A 52-y-old man presenting with dyspnea and a massive effusion in the right pleural cavity underwent wedge biopsies of pulmonary lesions found on thoracic CT, leading to a diagnosis of pleural angiosarcoma. Bleeding developed postoperatively and was investigated using pulmonary CT angiography, which failed to identify a site of active bleeding. (99m)Tc-labeled red blood cell (RBC) SPECT/CT of the chest was performed, and the site was rapidly located. To our knowledge, this is the first case reported in the literature of localization of intrathoracic bleeding using (99m)Tc-RBC SPECT/CT. PMID:27363446

  18. Label-free cell profiling.

    PubMed

    Schasfoort, Richard B M; Bentlage, Arthur E H; Stojanovic, Ivan; van der Kooi, Alex; van der Schoot, Ellen; Terstappen, Leon W M M; Vidarsson, Gestur

    2013-08-01

    A surface plasmon resonance (SPR) array imaging method is outlined for label-free cell profiling. Red blood cells (RBCs) were injected into a flow chamber on top of a spotted sensor surface. Spots contained antibodies to various RBC membrane antigens. A typical sensorgram showed an initial response corresponding to cell sedimentation (S) followed by a specific upward response (T) corresponding to specific binding of cells during a critical wash step. The full analysis cycle for RBC profiling was less than 6 min. The sensor surface could be regenerated at least 100 times, allowing the determination of a cell surface antigen profile of RBCs.

  19. Red blood cell production

    MedlinePlus

    ... cells are an important element of blood. Their job is to transport oxygen to the body’s tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts ...

  20. Effect of exercise on erythrocyte count and blood activity concentration after /sup 99m/Tc in vivo red blood cell labeling

    SciTech Connect

    Konstam, M.A.; Tu'meh, S.; Wynne, J.; Beck, J.R.; Kozlowski, J.; Holman, B.L.

    1982-09-01

    We studied the effect of exercise on blood radiotracer concentration after /sup 99m/Tc in vivo red blood cell labeling. After red blood cell labeling, 13 subjects underwent maximal supine bicycle exercise. Radioactivity, analyzed with a well counter, was measured in heparinized venous blood samples drawn at rest and during peak exercise. Changes in activity were compared with changes in erythrocyte count. Activity and erythrocyte counts increased during exercise in all 13 subjects. Percent increase in activity correlated with percent increase in erythrocyte count (r . -0.78), but did not correlate with either duration of exercise or maximal heart rate. Twenty minutes after termination of exercise, activity and erythrocyte count had decreased from peak exercise values but remained higher than preexercise values. In nine nonexercised control subjects, samples drawn 20 minutes apart showed no change in activity or in erythrocyte count. We conclude that exercise increases blood activity, primarily because of an increase in erythrocyte count. During radionuclide ventriculography, blood activity must be measured before and after any intervention, particularly exercise, before a change in left ventricular activity can be attributed to a change in left ventricular volume.

  1. Radiolabeled red blood cells: status, problems, and prospects

    SciTech Connect

    Srivastava, S.C.

    1983-01-01

    Radionuclidic labels for red cells can be divided into two main categories - cohort or pulse labels, and random labels. The random labels are incorporated into circulating cells of all ages and the labeling process is usually carried out in vitro. The red cell labels in predominant use involve random labeling and employ technetium-99m, chromium-51, indium-111, and gallium-68, roughly in that order. The extent of usefulness depends on the properties of the label such as the half-life, decay mode, and in-vivo stability, etc. Labeled cells can be used for red cell survival measurements when the half-life of the radionuclide is sufficiently long. The major portion of this article deals with random labels.

  2. Use of an oral stable isotope label to confirm variation in red blood cell mean age that influences HbA1c interpretation

    PubMed Central

    Lindsell, Christopher J.; Rogge, Mary Colleen; Haggerty, Shannon; Wagner, David A.; Palascak, Mary B.; Mehta, Shilpa; Hibbert, Jacqueline M.; Joiner, Clinton H.; Franco, Robert S.; Cohen, Robert M.

    2014-01-01

    HbA1c is commonly used to monitor glycemic control. However, there is growing evidence that the relationship between HbA1c and mean blood glucose (MBG) is influenced by variation in red blood cell (RBC) lifespan in hematologically normal individuals. Correction of HbA1c for mean RBC age (MRBC) requires a noninvasive, accurate, and affordable method to measure RBC survival. In this study, we evaluated whether a stable isotope approach would satisfy these requirements. RBC lifespan and MRBC were determined in a group of nine hematologically normal diabetic and nondiabetic subjects using oral 15N-glycine to label heme in an age cohort of RBC. The MRBC was 58.7 ± 9.1 (2SD) days and RBC lifespan was 106 ± 21 (2SD) days. This degree of variation (±15 - 20%) is consistent with previous studies using other techniques. In a subset of seven subjects, MRBC determined with the biotin label technique were available from approximately five years prior, and strongly correlated with the stable isotope values (R2 = 0.79). This study suggests that the MRBC is stable over time but varies substantially among individuals, and supports the importance of its variation in HbA1c interpretation. The characteristics of the stable isotope method support its suitability for studies to directly evaluate the impact of variation in MRBC on the interpretation of HbA1c. PMID:25293624

  3. Red cell enzymes.

    PubMed

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  4. Recent developments in blood cell labeling research

    SciTech Connect

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-09-07

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs.

  5. Red blood cells, multiple sickle cells (image)

    MedlinePlus

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  6. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia

    PubMed Central

    Boas, Franz Edward; Forman, Linda; Beutler, Ernest

    1998-01-01

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells. PMID:9501218

  7. Far-red fluorescent tag for protein labelling.

    PubMed

    Fradkov, Arkady F; Verkhusha, Vladislav V; Staroverov, Dmitry B; Bulina, Maria E; Yanushevich, Yurii G; Martynov, Vladimir I; Lukyanov, Sergey; Lukyanov, Konstantin A

    2002-11-15

    Practical applications of green fluorescent protein ('GFP')-like fluorescent proteins (FPs) from species of the class Anthozoa (sea anemones, corals and sea pens) are strongly restricted owing to their oligomeric nature. Here we suggest a strategy to overcome this problem by the use of two covalently linked identical red FPs as non-oligomerizing fusion tags. We have applied this approach to the dimeric far-red fluorescent protein HcRed1 and have demonstrated superiority of the tandem tag in the in vivo labelling of fine cytoskeletal structures and tiny nucleoli. In addition, a possibility of effective fluorescence resonance energy transfer ('FRET') between enhanced yellow FP mutant ('EYFP') and tandem HcRed1 was demonstrated in a protease assay.

  8. Red blood cells, sickle cell (image)

    MedlinePlus

    ... is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). The abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as ...

  9. Red cell metabolism in red and grey kangaroos.

    PubMed

    Agar, N S

    1977-12-15

    Glucose utilization, lactate production and glutathione regeneration were measured in the red blood cells of 2 species of Australian Marsupials, Eastern grey Kangaroo (Macropus gigantus) and red kangaroo (Macropus rufus), and were found to be significantly lower in the red blood cells from grey than that of red kangaroos.

  10. Red blood cell morphology.

    PubMed

    Ford, J

    2013-06-01

    The foundation of laboratory hematologic diagnosis is the complete blood count and review of the peripheral smear. In patients with anemia, the peripheral smear permits interpretation of diagnostically significant red blood cell (RBC) findings. These include assessment of RBC shape, size, color, inclusions, and arrangement. Abnormalities of RBC shape and other RBC features can provide key information in establishing a differential diagnosis. In patients with microcytic anemia, RBC morphology can increase or decrease the diagnostic likelihood of thalassemia. In normocytic anemias, morphology can assist in differentiating among blood loss, marrow failure, and hemolysis-and in hemolysis, RBC findings can suggest specific etiologies. In macrocytic anemias, RBC morphology can help guide the diagnostic considerations to either megaloblastic or nonmegaloblastic causes. Like all laboratory tests, RBC morphologies must be interpreted with caution, particularly in infants and children. When used properly, RBC morphology can be a key tool for laboratory hematology professionals to recommend appropriate clinical and laboratory follow-up and to select the best tests for definitive diagnosis. PMID:23480230

  11. Red blood cell morphology.

    PubMed

    Ford, J

    2013-06-01

    The foundation of laboratory hematologic diagnosis is the complete blood count and review of the peripheral smear. In patients with anemia, the peripheral smear permits interpretation of diagnostically significant red blood cell (RBC) findings. These include assessment of RBC shape, size, color, inclusions, and arrangement. Abnormalities of RBC shape and other RBC features can provide key information in establishing a differential diagnosis. In patients with microcytic anemia, RBC morphology can increase or decrease the diagnostic likelihood of thalassemia. In normocytic anemias, morphology can assist in differentiating among blood loss, marrow failure, and hemolysis-and in hemolysis, RBC findings can suggest specific etiologies. In macrocytic anemias, RBC morphology can help guide the diagnostic considerations to either megaloblastic or nonmegaloblastic causes. Like all laboratory tests, RBC morphologies must be interpreted with caution, particularly in infants and children. When used properly, RBC morphology can be a key tool for laboratory hematology professionals to recommend appropriate clinical and laboratory follow-up and to select the best tests for definitive diagnosis.

  12. Red blood cells, sickle cells (image)

    MedlinePlus

    These crescent or sickle-shaped red blood cells (RBCs) are present with Sickle cell anemia, and stand out clearly against the normal round RBCs. These abnormally shaped cells may become entangled and ...

  13. Red blood cells, spherocytosis (image)

    MedlinePlus

    Spherocytosis is a hereditary disorder of the red blood cells (RBCs), which may be associated with a mild anemia. Typically, the affected RBCs are small, spherically shaped, and lack the light centers seen ...

  14. Red Blood Cell Antibody Identification

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Identification Share this page: Was this page helpful? Also known as: Alloantibody Identification; Antibody ID, RBC; RBC Ab ID Formal name: Red Blood Cell ...

  15. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1977-01-01

    Blood samples from Spacelab crewmembers were studied for possible environment effects on red cell components. Analysis involved peroxidation of red cell lipids, enzymes of red cell metabolism, and levels of 2,3-diphosphoglyceric acid and adenosine triphosphate. Results show that there is no evidence of lipid peroxidation, that biochemical effect known to be associated with irreversible red cell damage. Changes observed in glycolytic intermediates and enzymes cannot be directly implicated as indicating evidence of red cell damage.

  16. Techniques for measuring red cell, platelet, and WBC survival

    SciTech Connect

    Mayer, K.; Freeman, J.E.

    1986-01-01

    Blood cell survival studies yield valuable information concerning production and destruction of cells circulating in the bloodstream. Methodologies for the measurement of red cell survival include nonisotopic methods such as differential agglutination and hemolysis. The isotopic label may be radioactive or, if not, will require availability of a mass spectrograph. These methods fall into two categories, one where red cells of all ages are labeled (/sup 51/Cr, DFP32, etc.) and those employing a cohort label of newly formed cells (/sup 14/C glycine, /sup 75/Se methionine, etc.). Interpretation of results for methodology employed and mechanism of destruction, random or by senescence, are discussed. A similar approach is presented for platelet and leukocyte survival studies. The inherent difficulties and complications of sequestration, storage, and margination of these cells are emphasized and discussed. 38 references.

  17. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label

    PubMed Central

    Yotapan, Nattawut; Charoenpakdee, Chayan; Wathanathavorn, Pawinee; Ditmangklo, Boonsong

    2014-01-01

    Summary DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA) was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV–vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA–DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes. PMID:25246975

  18. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.

  19. Red blood cell volume in preterm neonates

    SciTech Connect

    Quaife, M.A.; Dirksen, J.W.; Paxson, C.L. Jr.; McIntire, R.H. Jr.

    1981-10-01

    In the high-risk neonate, the direct determination of the red cell volume by radionuclide dilution technique appears to be the singularly definitive method of defining treatment efficacy, and is thus a useful evaluation and management tool for the pediatrician. For effective patient management, the red blood cell(RBC) volume of 69 preterm and term neonates was determined. The method utilized, Tc-99m-labeled RBCs, provided a fast and accurate answer with a large reduction in the absorbed radiation dose. In the population studied within a high-risk newborn ICU, the mean RBC volumes between the preterm and term neonates were without significant difference. Grouping and analysis of the RBC volume data with respect to birth weight, gestational ages, and 1- and 5-minute Apgar scores revealed on statistical difference. The mean value found in our population, 32.2 +/- 9.2 ml/kg, however, does differ from those previously reported in which the determinations were made using an indirect estimation from the plasma compartment.

  20. Visualization of cutaneous hemangioma with Tc-99m tagged red blood cells

    SciTech Connect

    Gordon, L.; Vujic, I.; Spicer, K.M.

    1981-10-01

    Scintigraphy with Tc-99m labeled red blood cells (RBCs) was used to evaluate a patient with a large cutaneous hemangioma. The usefulness of this procedure when combined with arteriography is discussed.

  1. Acquired loss of red cell Kell antigens.

    PubMed

    Vengelen-Tyler, V; Gonzalez, B; Garratty, G; Kruppe, C; Johnson, C L; Mueller, K A; Marsh, W L

    1987-02-01

    A 19-year-old patient with a long history of idiopathic thrombocytopenic purpura developed a potent antibody against a high-incidence antigen in the Kell blood group system. The direct antiglobulin test on his red cells was negative. His cells exhibited profound depression of Kell blood group antigens, but antigens of other blood groups were normal. Transfusion of incompatible blood was well tolerated and differential agglutination tests, using selected Rh antisera, showed in vivo survival of the transfused red cells for more than 8 weeks. However, the transfused red cells also showed acquired loss of Kell antigens. Five months after the initial findings, Kell-related antibody disappeared and Kell antigens reappeared on his red cells. The patient's serum stored from the initial investigation now reacted with his freshly collected red cells. These data suggest that an environmental agent in the patient's plasma was responsible for the temporary loss of Kell antigens from red cells in his circulation.

  2. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  3. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  4. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  5. Chemical toxicity of red cells.

    PubMed Central

    Piomelli, S

    1981-01-01

    Exposure to toxic chemicals may result in alterations of red cell function. In certain cases, the toxic effect requires a genetic predisposition and thus affects only a restricted number of individuals; in other instances, the toxic effect is exerted on the hematopoietic system of every person. Glucose-6-phosphate dehydrogenase deficiency is probably the most widespread genetic disorder. It is observed at highest frequency in populations from subtropical countries as a result of its selective advantage vis à vis falciparum malaria. The gene controlling this enzyme is located on the X-chromosome; thus, the defect is sex-linked. Individuals with a genetic defect of this enzyme are extremely susceptible to hemolysis, when exposed to oxidant drugs (such as certain antimalarials and sulfonamides) because of the inability of their red cells to regenerate NADPH. Lead poisoning result in profound effects on the process of heme synthesis. Among the steps most sensitive to lead toxicity are the enzyme delta-aminolevulinic acid dehydratase and the intramitochondrial step that leads to the incorporation of iron into protoporphyrin. By these mechanisms, in severe lead intoxication there is an accumulation of large amounts of delta-aminolevulinic acid (a compound with inherent neurotoxicity), and there are abnormalities of mitochondrial function in all cells of the body. Individuals living in an industrialized society are unavoidably exposed to some environmental lead. Recent evidence indicates that, even at levels of exposure which do not increase the blood lead level above values presently considered normal, abnormalities of heme synthesis are clearly detectable. PMID:7016524

  6. Inflight Assay of Red Blood Cell Deformability

    NASA Technical Reports Server (NTRS)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  7. Transbilayer mobility and distribution of red cell phospholipids during storage.

    PubMed Central

    Geldwerth, D; Kuypers, F A; Bütikofer, P; Allary, M; Lubin, B H; Devaux, P F

    1993-01-01

    We studied phospholipid topology and transbilayer mobility in red cells during blood storage. The distribution of phospholipids was determined by measuring the reactivity of phosphatidylethanolamine with fluorescamine and the degradation of phospholipids by phospholipase A2 and sphingomyelinase C. Phospholipid mobility was measured by determining transbilayer movements of spin-labeled phospholipids. We were unable to detect a change in the distribution of endogenous membrane phospholipids in stored red cells even after 2-mo storage. The rate of inward movement of spin-labeled phosphatidylethanolamine and phosphatidylserine was progressively reduced, whereas that for phosphatidylcholine was increased. These changes in phospholipid translocation correlated with a fall in cellular ATP. However, following restoration of ATP, neither the rate of aminophospholipid translocation nor the transbilayer movement of phosphatidylcholine were completely corrected. Taken together, our findings demonstrate that red cell storage alters the kinetics of transbilayer mobility of phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine, the activity of the aminophospholipid translocase, but not the asymmetric distribution of endogenous membrane phospholipids, at least at a level detectable with phospholipases. Thus, if phosphatidylserine appearance on the outer monolayer is a signal for red cell elimination, the amount that triggers macrophage recognition is below the level of detection upon using the phospholipase technique. PMID:8325999

  8. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  9. Frozen red cells in Rhesus immunization.

    PubMed

    Cook, I A; Robb, A L; Mitchell, R; McLaren, E A; Urbaniak, S; Robertson, A E

    1980-04-01

    The use of frozen washed cells in varying doses in primary Rh immunization is compared to two groups of men with the use of fresh washed cells in a third group. In the first two groups, using frozen cells, doses ranging from 0.5 to 20 ml of whole blood (Group I) are compared with a 200.0 ml dose of red cell concentrate (Group II), while Group III served as a control using a 20 ml dose of fresh washed red cell suspension (9.0 ml concentrated red cell equivalent). The response rate was 93% in Group II compared with only 43% in Group I, suggesting the desirability of using relatively large doses of Rh-positive red cells for primary Rh immunization. The use of frozen washed cells from a special panel for 'booster' injections is also recommended.

  10. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  11. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  12. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  13. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  14. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  15. Polarity Sensitive Bioorthogonally Applicable Far-Red Emitting Labels for Postsynthetic Nucleic Acid Labeling by Copper-Catalyzed and Copper-Free Cycloaddition.

    PubMed

    Eördögh, Ádám; Steinmeyer, Jeannine; Peewasan, Krisana; Schepers, Ute; Wagenknecht, Hans-Achim; Kele, Péter

    2016-02-17

    Two series of new, water-soluble, membrane-permeable, far-red/NIR emitting benzothiazolium-based fluorescent labels with large Stokes' shifts were synthesized that can be conjugated to alkyne-modified biomolecules through their azide moiety via azide-alkyne cycloaddition. We have used these azide bearing labels to make fluorescent DNA constructs using copper-catalyzed "click" reaction. All dyes showed good or remarkable fluorescence intensity enhancement upon conjugation to DNA. We also investigated the possibility to incorporate the benzocyclooctyne motif through rigid (ethnynyl) or flexible (ethyl) linkers into the DNA, thus enabling copper-free labeling schemes. We observed that there is a marked difference between the two linkers applied in terms of optical properties of the labeled oligonucleotides. We have also tested the in vivo labeling potential of these newly synthesized dyes on HeLa cells previously transfected with cyclooctynylated DNA. Confocal fluorescent images showed that the dyes are all able to cross the membrane and suitable for background-fluorescence free fluorescent tagging of nucleic acids. Moreover, we have observed different accumulation of the two dye series in the endosomal particles, or in the nuclei, respectively. PMID:26786593

  16. Red cell membrane: past, present, and future

    PubMed Central

    Gallagher, Patrick G.

    2008-01-01

    As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types. PMID:18988878

  17. Studies with nonradioisotopic sodium chromate. I. Development of a technique for measuring red cell volume

    SciTech Connect

    Heaton, W.A.; Hanbury, C.M.; Keegan, T.E.; Pleban, P.; Holme, S. )

    1989-10-01

    A nonradioisotopic method for measuring red cell volume that involves the use of 52Cr-sodium chromate as the red cell label and of graphite furnace atomic absorption analysis of chromium is described. The technique allows the labelling of 20 mL of packed red cells with 40 to 50 micrograms of sodium chromate (Na2CrO4) in 30 minutes at 22 degrees C with 94 +/- 6 percent uptake. Approximately 40 micrograms of Na2CrO4 was injected for in vivo studies. This results in posttransfusion in vivo red cell chromium levels after sample processing in the range of 1 to 7 micrograms per L, which could be quantitated accurately (coefficient of variation = 4.7%) by Zeeman electrothermal atomic absorption spectrophotometry. The labeling concentration of chromium did not cause increased hemolysis, and the labeled cells exhibited an osmotic fragility curve similar to that of unlabeled, fresh ACD red cells. Red cell glutathione peroxidase was unaffected by labeling, although glutathione reductase was reduced by approximately 13 percent (p less than 0.05). The 52Cr red cell volume-measuring method was evaluated by concurrent in vivo studies with the standard 51Cr and 125I-albumin methods for that procedure. Simultaneous measurement of red cell volumes in seven volunteers by the 51Cr, 52Cr, and 125I-albumin techniques correlated highly with each other (r greater than 0.76), with mean values of 2294 +/- 199, 2191 +/- 180, and 2243 +/- 291 mL, respectively. The standard deviations of the differences were small: 134 mL for 52Cr versus 51Cr and 183 mL for 52Cr versus 125I.

  18. Avoiding Anemia: Boost Your Red Blood Cells

    MedlinePlus

    ... link, please review our exit disclaimer . Subscribe Avoiding Anemia Boost Your Red Blood Cells If you’re ... and sluggish, you might have a condition called anemia. Anemia is a common blood disorder that many ...

  19. Evaluation of an additive solution for preservation of canine red blood cells.

    PubMed

    Wardrop, K J; Owen, T J; Meyers, K M

    1994-01-01

    The effect of an additive preservative solution on canine red blood cell posttransfusion viability (PTV) and on selected canine red blood cell biochemical parameters was studied. One unit (450 mL) of blood was collected from 6 clinically normal dogs into the anticoagulant citrate phosphate dextrose, centrifuged, and the plasma removed. The red blood cells were then suspended in 100 mL of a saline, adenine, dextrose, and mannitol solution and stored at 4 degrees C. Aliquots were removed for study at 1, 10, 20, 30, 37, and 44 days. The 24-hour PTV of autologous red blood cells was determined using a sodium chromate (51Cr) label. Red blood cell concentrations of 2,3-diphosphoglycerate (2,3-DPG), adenosine-5'-triphosphate (ATP), and pH were also determined. Canine red blood cell PTV, pH, ATP, and 2,3-DPG concentrations decreased during storage (P < .05). The PTV decreased from 94% using day 1 red blood cells to 80% and 75% using day 37 and day 44 red blood cells, respectively (P < .05). Although the mean PTV of the day 44 stored units equaled the Food and Drug Administration (FDA) minimum standard for human red blood cells, the PTV was substandard in 75% of the day 44 units. The FDA standard was exceeded in 83% of the day 37 units. It was concluded that 37-day-old canine red blood cells preserved with a saline, adenine, dextrose, and mannitol solution are of acceptable quality for transfusion.

  20. Red cell membrane lipids in hemoglobinopathies.

    PubMed

    Kuypers, Frans A

    2008-11-01

    The complex mixture of lipids and proteins of the red blood cell membrane is well maintained during the life of the cell. Lipid analysis of the red cell reveals hundreds of phospholipid molecular species and cholesterol that differ with respect to their (polar) head group, and (apolar) side chains. These molecules move rapidly in the plane, as well as across the lipid bilayer. This dynamic movement is highly organized. In the plane of the bilayer, areas enriched in certain lipids accommodate protein structure and modulate function. While lipids move across the bilayer, the organization is highly asymmetric. Amino phospholipids are mainly found on the inside and choline containing phospholipids on the outside. Both the composition and organization of the red cell membrane is maintained throughout the life of the red cell by an intricate mechanism that involves enzymes, transporters and cytosolic factors. Key proteins that maintain red blood cell lipid organization have recently been identified. Alterations in these mechanisms, as the result of the globin mutations in sickle cell disease or thalassemia will lead to loss of membrane viability, apoptosis during erythropoiesis, early demise of the cell in the circulation, and when these cells are not removed appropriately their presence has pathologic consequences.

  1. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  2. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  3. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  4. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  5. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  6. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  7. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  8. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  9. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  10. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  11. Synthesis of 5-nitro-2-(N-3-(4-azidophenyl)-propylamino)-benzoic acid: Photoaffinity labeling of human red blood cell ghosts with a 5-nitro-2-(3-phenylpropylamino)-benzoic acid analog

    SciTech Connect

    Branchini, B.R.; Murtiashaw, M.H.; Egan, L.A. )

    1991-04-15

    A photoaffinity analog of the potent epithelial chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid has been synthesized and characterized. In the dark, this reagent, 5-nitro-2-(N-3-(4-azidophenyl)-propylamino)-benzoic acid, and the parent compound reversibly inhibited chloride efflux in human red blood cell ghosts. Irradiation of ghost membranes with 350 microM arylazide analog reduced the rate of chloride efflux to 33% of the control value. The photoinactivation process was not reversed by exhaustive washing of ghost membranes. Covalent incorporation of the photoaffinity reagent was supported by difference ultraviolet spectroscopy, which indicated the attachment of the substituted 2-amino-5-nitrobenzoic acid chromophore to ghost membranes. The novel photolabeling agent described here should be a useful structural probe for chloride channels in erythrocyte membranes and epithelial cells.

  12. Hydrogen peroxide production by red blood cells.

    PubMed

    Giulivi, C; Hochstein, P; Davies, K J

    1994-01-01

    Red blood cells are frequently employed in studies of oxidative stress. Technical difficulties have previously prevented the measurement of H2O2 production by red blood cells, except during exposure to certain drugs or toxicants. We now show that a combination of glutathione depletion and 3-amino-1,2,4-triazole (aminotriazole) treatment can be used to measure the endogenous generation of H2O2 by red blood cells. In our studies, aminotriazole was used as an H2O2 dependent (irreversible) catalase inhibitor, and catalase inhibition was used as an indirect measure of H2O2 production. Our results indicate that H2O2 is generated at a rate of 1.36 +/- 0.2 microM/h (3.9 +/- 0.6 nmol.h-1.g Hb-1), and that the steady-state red blood cell concentration of H2O2 is approximately 2 x 10(-10) M. Kinetic comparisons of H2O2 production and oxyhemoglobin autooxidation (which generates O2.- that dismutases to H2O2) indicate that the latter is probably the main source of H2O2 in red blood cells.

  13. Detection and Quantification of Magnetically Labeled Cells by Cellular MRI

    PubMed Central

    Liu, Wei; Frank, Joseph A.

    2008-01-01

    Labeling cells with superparamagnetic iron oxide (SPIO) nanoparticles, paramagnetic contrast agent (gadolinium) or perfluorocarbons allows for the possibility of tracking single or clusters of labeled cells within target tissues following either direct implantation or intravenous injection. This review summarizes the practical issues regarding detection and quantification of magnetically labeled cells with various MRI contrast agents with a focus on SPIO nanoparticles. PMID:18995978

  14. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1974-01-01

    On the basis of these background data, metabolic studies were performed on humans involved in space flight. These studies included the Skylab experiences. The primary purpose of the investigations was to study red cells for: (1) evidences of lipid peroxidation, or (2) changes at various points in the glycolytic pathway. The Skylab missions were an opportunity to study blood samples before, during, and after flight and to compare results with simultaneous controls. No direct evidence that lipid peroxidation had occurred in the red blood cells was apparent in the studies.

  15. Models for the red blood cell lifespan.

    PubMed

    Shrestha, Rajiv P; Horowitz, Joseph; Hollot, Christopher V; Germain, Michael J; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter; Chait, Yossi

    2016-06-01

    The lifespan of red blood cells (RBCs) plays an important role in the study and interpretation of various clinical conditions. Yet, confusion about the meanings of fundamental terms related to cell survival and their quantification still exists in the literature. To address these issues, we started from a compartmental model of RBC populations based on an arbitrary full lifespan distribution, carefully defined the residual lifespan, current age, and excess lifespan of the RBC population, and then derived the distributions of these parameters. For a set of residual survival data from biotin-labeled RBCs, we fit models based on Weibull, gamma, and lognormal distributions, using nonlinear mixed effects modeling and parametric bootstrapping. From the estimated Weibull, gamma, and lognormal parameters we computed the respective population mean full lifespans (95 % confidence interval): 115.60 (109.17-121.66), 116.71 (110.81-122.51), and 116.79 (111.23-122.75) days together with the standard deviations of the full lifespans: 24.77 (20.82-28.81), 24.30 (20.53-28.33), and 24.19 (20.43-27.73). We then estimated the 95th percentiles of the lifespan distributions (a surrogate for the maximum lifespan): 153.95 (150.02-158.36), 159.51 (155.09-164.00), and 160.40 (156.00-165.58) days, the mean current ages (or the mean residual lifespans): 60.45 (58.18-62.85), 60.82 (58.77-63.33), and 57.26 (54.33-60.61) days, and the residual half-lives: 57.97 (54.96-60.90), 58.36 (55.45-61.26), and 58.40 (55.62-61.37) days, for the Weibull, gamma, and lognormal models respectively. Corresponding estimates were obtained for the individual subjects. The three models provide equally excellent goodness-of-fit, reliable estimation, and physiologically plausible values of the directly interpretable RBC survival parameters.

  16. Induced Pluripotent Stem Cell Labeling Using Quantum Dots

    PubMed Central

    Yukawa, Hiroshi; Suzuki, Kaoru; Kano, Yuki; Yamada, Tatsuya; Kaji, Noritada; Ishikawa, Tetsuya; Baba, Yoshinobu

    2013-01-01

    Induced pluripotent stem (iPS) cells have received remarkable attention as the cell sources for clinical applications of regenerative medicine including stem cell therapy. Additionally, labeling technology is in high demand for tracing transplanted cells used in stem cell therapy. In this study, we used quantum dots (QDs), which have distinct fluorescence abilities in comparison with traditional probes, as the labeling materials and investigated whether iPS cells could be labeled with QDs with no cytotoxicity. iPS cells could not be labeled with QDs alone but required the use of cell-penetrating peptides such as octaarginine (R8). No significant cytotoxicity to iPS cells was confirmed by up to 8 nM QDs, and the iPS cells labeled with QDs maintained their undifferentiated state and pluripotency. These data suggest that QDs can be used for fluorescence labeling of iPS cells. PMID:26858884

  17. Red blood cell-incompatible allogeneic hematopoietic progenitor cell transplantation.

    PubMed

    Rowley, S D; Donato, M L; Bhattacharyya, P

    2011-09-01

    Transplantation of hematopoietic progenitor cells from red cell-incompatible donors occurs in 30-50% of patients. Immediate and delayed hemolytic transfusion reactions are expected complications of red cell-disparate transplantation and both ABO and other red cell systems such as Kidd and rhesus can be involved. The immunohematological consequences of red cell-incompatible transplantation include delayed red blood cell recovery, pure red cell aplasia and delayed hemolysis from viable lymphocytes carried in the graft ('passenger lymphocytes'). The risks of these reactions, which may be abrupt in onset and fatal, are ameliorated by graft processing and proper blood component support. Red blood cell antigens are expressed on endothelial and epithelial tissues in the body and could serve to increase the risk of GvHD. Mouse models indicate that blood cell antigens may function as minor histocompatibility antigens affecting engraftment. Similar observations have been found in early studies of human transplantation for transfused recipients, although current conditioning and immunosuppressive regimens appear to overcome this affect. No deleterious effects from the use of red cell-incompatible hematopoietic grafts on transplant outcomes, such as granulocyte and platelet engraftments, the incidences of acute or chronic GvHD, relapse risk or OS, have been consistently demonstrated. Most studies, however, include limited number of patients, varying diagnoses and differing treatment regimens, complicating the detection of an effect of ABO-incompatible transplantation. Classification of patients by ABO phenotype ignoring the allelic differences of these antigens also may obscure the effect of red cell-incompatible transplantation on transplant outcomes. PMID:21897398

  18. Metabolic dependence of red cell deformability

    PubMed Central

    Weed, Robert I.; LaCelle, Paul L.; Merrill, Edward W.

    1969-01-01

    The contribution of the metabolic state of human erythrocytes to maintenance of cellular deformability was studied during and after in vitro incubation in serum for periods up to 28 hr. An initial loss of membrane deformability became apparent between 4 and 6 hr when cellular adenosine triphosphate (ATP) levels were approximately 70% of initial values. Membrane deformability then remained stable between 6 and 10 hr. After 10 hr, when cellular ATP had decreased to < 15% of initial values, progressive parallel changes occurred in red cell calcium which increased 400% by 24 hr and in the viscosity of red cell suspensions which had risen 500-750% at 24 hr. A further progressive decrease in membrane deformability also occurred and was reflected by a 1000% increase in negative pressure required to deform the membrane. Red cell filterability decreased to zero as the disc-sphere shape transformation ensued. These changes were accompanied by an increase in ghost residual hemoglobin and nonhemoglobin protein. Regeneration of ATP in depleted cells by incubation with adenosine produced significant reversal of these changes, even in the presence of ouabain. Introduction of calcium into reconstituted ghosts prepared from fresh red cells mimicked the depleted state, and introduction of ATP, ethylenediamine tetraacetate (EDTA), and magnesium into depleted cells mimicked the adenosine effects in intact depleted cells. ATP added externally to 24-hr depleted cells was without effect. Simultaneous introduction of EDTA, ATP, or magnesium along with calcium into reconstituted ghosts prevented the marked decrease in deformability produced by calcium alone. Incorporation of adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), NADP, reduced form (NADPH), glutatione, reduced form (GSH), inosine triphosphate (ITP), guanosine triphosphate (GTP), and uridine triphosphate (UTP) was without effect. These data suggest that a major role of ATP in maintenance

  19. Viscoelastic Transient of Confined Red Blood Cells

    PubMed Central

    Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel

    2015-01-01

    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871

  20. Thermoelasticity of red blood cell membrane.

    PubMed Central

    Waugh, R; Evans, E A

    1979-01-01

    The elastic properties of the human red blood cell membrane have been measured as functions of temperature. The area compressibility modulus and the elastic shear modulus, which together characterize the surface elastic behavior of the membrane, have been measured over the temperature range of 2-50 degrees C with micropipette aspiration of flaccid and osmotically swollen red cells. In addition, the fractional increase in membrane surface area from 2-50 degrees C has been measured to give a value for the thermal area expansivity. The value of the elastic shear modulus at 25 degrees C was measured to be 6.6 X 10(-3) dyne/cm. The change in the elastic shear modulus with temperature was -6 X 10(-5) dyne/cm degrees C. Fractional forces were shown to be only on the order of 10-15%. The area compressibility modulus at 25 degrees C was measured to be 450 dyne/cm. The change in the area compressibility modulus with temperature was -6 dyne/cm degrees C. The thermal area expansivity for red cell membrane was measured to be 1.2 X 10(-3)/degrees C. With this data and thermoelastic relations the heat of expansion is determined to be 110-200 ergs/cm2; the heat of extension is 2 X 10(-2) ergs/cm2 for unit extension of the red cell membrane. The heat of expansion is of the order anticipated for a lipid bilayer idealized as twice the behavior of a monolayer at an oil-water interface. The observation that the heat of extension is positive demonstrates that the entropy of the material increases with extension, and that the dominant mechanism of elastic energy storage is energetic. Assuming that the red cell membrane shear rigidity is associated with "spectrin," unit extension of the membrane increases the configurational entropy of spectrin by 500 cal/mol. Images FIGURE 3 PMID:262408

  1. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  2. Properties of Hemoglobin Solutions in Red Cells

    PubMed Central

    Gary-Bobo, C. M.; Solomon, A. K.

    1968-01-01

    The present studies are concerned with a detailed examination of the apparent anomalous osmotic behavior of human red cells. Red cell water has been shown to behave simultaneously as solvent water for nonelectrolytes and nonsolvent water, in part, for electrolytes. The nonsolvent properties are based upon assumptions inherent in the conventional van't Hoff equation. However, calculations according to the van't Hoff equation give osmotic volumes considerably in excess of total cell water when the pH is lowered beyond the isoelectric point for hemoglobin; hence the van't Hoff equation is inapplicable for the measurement of the solvent properties of the red cell. Furthermore, in vitro measurements of osmotic and other properties of 3.7 millimolal solutions of hemoglobin have failed to reveal the presence of any salt exclusion. A new hypothesis has been developed from thermodynamic principles alone, which predicts that, at constant pH, the net charge on the hemoglobin molecule decreases with increased hemoglobin concentration. The existence of such cooperative interaction may be inferred from the effect of pH on the changes in hemoglobin net charge as the spacing between the molecules decreases. The resultant movement of counterions across the cell membrane causes the apparent anomalous osmotic behavior. Quantitative agreement has been found between the anion shift predicted by the equation and that observed in response to osmotic gradients. The proposed mechanism appears to be operative in a variety of tissues and could provide an electrical transducer for osmotic signals. PMID:5688085

  3. Anti-galactose antibodies do not bind to normal human red cells

    SciTech Connect

    Kay, M.M.B.; Bosman, G.J.C.G.M.

    1986-03-01

    The authors investigated the possibility that senescent cell IgG might have an anti-galactose (anti-gal) specificity as suggested by others. Anti-gal was isolated from normal human serum with ..cap alpha.. melibiose-agarose. The assays used were hemagglutination, rosetting, phagocytosis, and /sup 125/I protein A binding assay, immunoblotting, and glycine/HCL, pH 2.3, versus sugar elutions. Results revealed binding of anti-gal to rabbit but not human RBC. Immunoblotting of anti-gal revealed labeling of approx.29 bands in rabbit red cell membranes and no labeling of autologous human red cell membranes. The authors attempted to inhibit binding of anti-gal with various sugars. Melibiose caused enhancement rather than inhibition of agglutination when used at concentrations reported by previous investigators to cause inhibition. Neither ..cap alpha.. melibiose or galactose caused inhibition of phagocytosis of senescent cells. Senescent cell IgG was not displaced from freshly isolated old red cells by incubation with melibiose or galactose as determined by an /sup 125/I protein A binding assay. The authors were also unable to elute IgG from stored red cells with galactose. The authors conclude that senescent cell IgG does not have an anti-galactose specificity. The authors were unable to demonstrate an anti-gal antibody to normal human red cells.

  4. Detection of an ileal cavernous hemangioma by technetium-99m red blood cell imaging

    SciTech Connect

    Holloway, H.; Johnson, J.; Sandler, M.

    1988-01-01

    Patients with arteriovenous malformations of the bowel may have multiple symptoms secondary to chronic blood loss. A case of ileal cavernous hemangioma detected by Tc-99m labeled red blood cell imaging in the absence of active gastrointestinal bleeding is presented.

  5. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  6. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  7. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  8. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  9. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  10. Red blood cell (RBC) transfusion rates among US chronic dialysis patients during changes to Medicare end-stage renal disease (ESRD) reimbursement systems and erythropoiesis stimulating agent (ESA) labels

    PubMed Central

    2014-01-01

    Background Several major ESRD-related regulatory and reimbursement changes were introduced in the United States in 2011. In several large, national datasets, these changes have been associated with decreases in erythropoiesis stimulating agent (ESA) utilization and hemoglobin concentrations in the ESRD population, as well as an increase in the use of red blood cell (RBC) transfusions in this population. Our objective was to examine the use of RBC transfusion before and after the regulatory and reimbursement changes implemented in 2011 in a prevalent population of chronic dialysis patients in a large national claims database. Methods Patients in the Truven Health MarketScan Commercial and Medicare Databases with evidence of chronic dialysis were selected for the study. The proportion of chronic dialysis patients who received any RBC transfusion and RBC transfusion event rates per 100 patient-months were calculated in each month from January 1, 2007 to March 31, 2012. The results were analyzed overall and stratified by primary health insurance payer (commercial payer or Medicare). Results Overall, the percent of chronic dialysis patients with RBC transfusion and RBC transfusion event rates per 100 patient-months increased between January 2007 and March 2012. When stratified by primary health insurance payer, it appears that the increase was driven by the primary Medicare insurance population. While the percent of patients with RBC transfusion and RBC transfusion event rates did not increase in the commercially insured population between 2007 and 2012 they did increase in the primary Medicare insurance population; the majority of the increase occurred in 2011 during the same time frame as the ESRD-related regulatory and reimbursement changes. Conclusions The regulatory and reimbursement changes implemented in 2011 may have contributed to an increase in the use of RBC transfusions in chronic dialysis patients in the MarketScan dataset who were covered by Medicare plus

  11. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  12. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  13. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reagent Red Blood Cells. 660.30 Section 660.30 Food... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be Reagent...

  14. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  15. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  16. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  17. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  18. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  19. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  20. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  1. Anemia and transfusion of red blood cells.

    PubMed

    Cortés Buelvas, Armando

    2013-10-01

    The red cells transfusion is a mainstay in the treatment of anemic patients. These blood transfusions are not without risks. The risk-benefit profile for red cell transfusions to treat anaemia is uncertain, but they may contribute to adverse patient outcomes in some situations. The ability of a patient to tolerate anaemia depends on their clinical condition and the presence of any significant co-morbidity; maintenance of circulating volume is of paramount importance. There is no universal transfusion trigger. Advances in the development and validation of physiological, accessible, practical and reliable markers to guide therapy are expected. To improve patients' outcomes, further study is required to more fully explore the risk of anemia, optimal hemoglobin level, and the risk and efficacy of RBC transfusion. Future clinical investigations with high priority should determine the efficacy of transfusion in those classified as uncertain scenarios. In the absence of data, it is prudent that transfusion is administered with caution in these clinical scenarios.

  2. Reversibility of red blood cell deformation

    NASA Astrophysics Data System (ADS)

    Zeitz, Maria; Sens, P.

    2012-05-01

    The ability of cells to undergo reversible shape changes is often crucial to their survival. For red blood cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of μm dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar “pearling instability.”

  3. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  4. [Current aspects in red blood cell substitutes].

    PubMed

    Wang, Yanfeng; Pan, Jilun; Yu, Yaoting

    2004-06-01

    Red blood cell substitutes are a group of oxygen carriers designed to temporarily replace transfused blood. Current developing products include perfluorocarbon-based and hemoglobin-based oxygen carrier. Each product is unique in its limitations and advantages. A number of products are in advanced clinical trials and nearing market. When they are available for use it is likely that development will accelerate and even better products will substantially alleviate the world-wide shortage of blood for transfusion.

  5. From Red Cells to Soft Porous Lubrication

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Gacka, Thomas; Nathan, Rungun; Crawford, Robert; Vucbmss Team

    2014-11-01

    Biological scientists have wondered, since the motion of red cells was first observed in capillaries, how the highly flexible red cell can move with so little friction in tightly fitting microvessels without being damaged or undergoing hemolysis. Theoretical studies (Feng and Weinbaum, 2000, JFM; Wu et al., 2004, PRL) attributed this frictionless motion to the dramatically enhanced hydrodynamic lifting force generated inside the soft, porous, endothelial surface layer (ESL) covering the inner surfaces of our capillaries, as a red blood cell glides over it. Herein we report the first experimental examination of this concept. The results conclusively demonstrate that significant fraction of the overall lifting force generated in a soft porous layer as a planing surface glides over it, is contributed by the pore fluid pressure, and thus frictional loss is reduced significantly. Moreover, the experimental predictions showed excellent agreement with the experimental data. This finding has the potential of dramatically changing existing lubrication approaches, and can result in substantial savings in energy consumption and thus reduction in greenhouse gas emissions.

  6. Red blood cell transfusion in newborn infants.

    PubMed

    Whyte, Robin K; Jefferies, Ann L

    2014-04-01

    Red blood cell transfusion is an important and frequent component of neonatal intensive care. The present position statement addresses the methods and indications for red blood cell transfusion of the newborn, based on a review of the current literature. The most frequent indications for blood transfusion in the newborn are the acute treatment of perinatal hemorrhagic shock and the recurrent correction of anemia of prematurity. Perinatal hemorrhagic shock requires immediate treatment with large quantities of red blood cells; the effects of massive transfusion on other blood components must be considered. Some guidelines are now available from clinical trials investigating transfusion in anemia of prematurity; however, considerable uncertainty remains. There is weak evidence that cognitive impairment may be more severe at follow-up in extremely low birth weight infants transfused at lower hemoglobin thresholds; therefore, these thresholds should be maintained by transfusion therapy. Although the risks of transfusion have declined considerably in recent years, they can be minimized further by carefully restricting neonatal blood sampling. PMID:24855419

  7. Osmotic properties of human red cells.

    PubMed

    Solomon, A K; Toon, M R; Dix, J A

    1986-01-01

    When an osmotic pressure gradient is applied to human red cells, the volume changes anomalously, as if there were a significant fraction of "nonosmotic water" which could not serve as solvent for the cell solutes, a finding which has been discussed widely in the literature. In 1968, Gary-Bobo and Solomon (J. Gen. Physiol. 52:825) concluded that the anomalies could not be entirely explained by the colligative properties of hemoglobin (Hb) and proposed that there was an additional concentration dependence of the Hb charge (ZHb). A number of investigators, particularly Freedman and Hoffman (1979, J. Gen. Physiol. 74:157) have been unable to confirm Gary-Bobo and Solomon's experimental evidence for this concentration dependence of ZHb and we now report that we are also unable to repeat the earlier experiments. Nonetheless, there still remains a significant anomaly which amounts to 12.5 +/- 0.8% of the total isosmotic cell water (P much less than 0.0005, t test), even after taking account of the concentration dependence of the Hb osmotic coefficient and all the other known physical chemical constraints, ideal and nonideal. It is suggested that the anomalies at high Hb concentration in shrunken cells may arise from the ionic strength dependence of the Hb osmotic coefficient. In swollen red cells at low ionic strength, solute binding to membrane and intracellular proteins is increased and it is suggested that this factor may account, in part, for the anomalous behavior of these cells.

  8. Labeling of mesenchymal stem cells by bioconjugated quantum dots.

    PubMed

    Shah, Bhranti S; Clark, Paul A; Moioli, Eduardo K; Stroscio, Michael A; Mao, Jeremy J

    2007-10-01

    Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells.

  9. Labeling of Mesenchymal Stem Cells by Bioconjugated Quantum Dots

    PubMed Central

    Shah, Bhranti S.; Clark, Paul A.; Moioli, Eduardo K.; Stroscio, Michael A.; Mao, Jeremy J.

    2015-01-01

    Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells. PMID:17887799

  10. Osmotic water permeability of human red cells

    SciTech Connect

    Terwilliger, T.C.; Solomon, A.K.

    1981-05-01

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.

  11. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke.

    PubMed

    Modo, M; Beech, J S; Meade, T J; Williams, S C R; Price, J

    2009-08-01

    Non-invasive identification of transplanted neural stem cells in vivo by pre-labelling with contrast agents may play an important role in the translation of cell therapy to the clinic. Understanding the impact of these labels on the cells' ability to repair is therefore vital. In rats with middle cerebral artery occlusion (MCAo), a model of stroke, the transhemispheric migration of MHP36 cells labelled with the bimodal contrast agent GRID was detected on magnetic resonance images (MRI) up to 4 weeks following transplantation. However, compared to MHP36 cells labelled with the red fluorescent dye PKH26, GRID-labelled transplants did not significantly improve behaviour, and performance was akin to non-treated animals. Likewise, the evolution of anatomical damage as assessed by serial, T(2)-weighted MRI over 1 year indicated that GRID-labelled transplants resulted in a slight increase in lesion size compared to MCAo-only animals, whereas the same, PKH26-labelled cells significantly decreased lesion size by 35%. Although GRID labelling allows the in vivo identification of transplanted cells up to 1 month after transplantation, it is likely that some is gradually degraded inside cells. The translation of cellular imaging therefore does not only require the in vitro assessment of contrast agents on cellular functions, but also requires the chronic, in vivo assessment of the label on the stem cells' ability to repair in preclinical models of neurological disease. PMID:18634886

  12. Non-tuberculous Mycobacteriosis with T-cell Lymphoma in a Red Panda (Ailurus fulgens).

    PubMed

    Fuke, N; Hirai, T; Makimura, N; Goto, Y; Habibi, W A; Ito, S; Trang, N T; Koshino, K; Takeda, M; Yamaguchi, R

    2016-01-01

    A 9-year-old male red panda (Ailurus fulgens) became emaciated and died. Necropsy examination revealed systemic lymphadenomegaly. The liver, lungs and left kidney contained multifocal yellow nodules. Microscopical examination revealed granulomatous inflammation in the liver, lungs, kidney, spleen and lymph nodes, with numerous acid-fast bacilli. Sequencing of genetic material isolated from the tissues classified the pathogen as Mycobacterium gastri. Lymphoma was found in the liver, lungs, kidney and lymph nodes. The neoplastic cells were strongly labelled for expression of CD3, Ki67 and proliferating cell nuclear antigen by immunohistochemistry. This is the first report of M. gastri infection with T-cell lymphoma in a red panda.

  13. Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres.

    PubMed

    Rembaum, A; Yen, R C; Kempner, D H; Ugelstad, J

    1982-08-13

    Polyacrolein (PA) microspheres were synthesized by means of ionizing radiation and shown to contain aldehyde groups which form covalent bounds with amino compounds and proteins. PA microspheres made fluorescent after reaction with fluorescein-labeled antibodies were found to specifically label sensitized sheep red blood cells (SRBC). PA microspheres could also be grafted onto a variety of polymeric spheres of different sizes and composition by ionizing radiation. These hybrid spheres, i.e., preformed polymeric spheres with PA microspheres grafted on their surfaces could bind antibodies which retained specificity of reaction with cell surface receptors. Purification of sensitized SRBC from a mixture containing chicken red blood cells (CRBC) by means of hybrids magnetic spheres in a magnetic field was demonstrated. PMID:7130709

  14. What makes red cells dysmorphic in glomerular haematuria?

    PubMed

    Rath, B; Turner, C; Hartley, B; Chantler, C

    1992-09-01

    Although red cell morphology has been used to localise the site of haematuria in the urinary tract, the cause of red cell deformity is still speculative. We have conducted experiments in vitro using venous red cells which indicate that hypochromia depends mainly upon sodium concentration and occurs when this falls below 75 mmol/l. We simulated the passage of red cells through the renal tubule by sequentially treating them with fluids of composition similar to those in different tubular segments, and produced anisocytosis and hypochromia but not the typical "bizarre deformity"--the hallmark of glomerular haematuria. We conclude that dual injury is required to produce the "typical" dysmorphic red cells in glomerular haematuria. First, mechanical damage caused by passage of red blood cells through the glomerular basement membrane followed by a second, osmotic, injury sustained by red cells during passage through the hypotonic tubular segment. PMID:1457323

  15. Neocytolysis: physiological down-regulator of red-cell mass

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Rice, L.; Udden, M. M.; Driscoll, T. B.

    1997-01-01

    It is usually considered that red-cell mass is controlled by erythropoietin-driven bone marrow red-cell production, and no physiological mechanisms can shorten survival of circulating red cells. In adapting to acute plethora in microgravity, astronauts' red-cell mass falls too rapidly to be explained by diminished red-cell production. Ferrokinetics show no early decline in erythropolesis, but red cells radiolabelled 12 days before launch survive normally. Selective destruction of the youngest circulating red cells-a process we call neocytolysis-is the only plausible explanation. A fall in erythropoietin below a threshold is likely to initiate neocytolysis, probably by influencing surface-adhesion molecules. Recognition of neocytolysis will require re-examination of the pathophysiology and treatment of several blood disorders, including the anaemia of renal disease.

  16. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. PMID:26079610

  17. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells.

  18. Impact of glycocalyx structure on red cell-red cell affinity in polymer suspensions.

    PubMed

    Rad, Samar; Meiselman, Herbert J; Neu, Björn

    2014-11-01

    A theoretical framework based on macromolecular depletion has been utilized in order to examine the energetics of red blood cell interactions. Three different glycocalyx structures are considered and cell-cell affinities are calculated by superposition of depletion, steric and electrostatic interactions. The theoretical model predicts a non-monotonic dependence of the interaction energies on polymer size. Further, our results indicate that the glycocalyx segment distribution has a large impact on adhesion energies between cells: a linear segment distribution induces the strongest adhesion between cells followed by pseudo-tail and uniform distributions. Our approach confirms the concept of a depletion mechanism for RBC aggregation, and also provides new insights that may eventually help to understand and quantify cellular factors that control red blood cell interactions in health and disease.

  19. Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids

    PubMed Central

    Zhao, Wujun; Zhu, Taotao; Cheng, Rui; Liu, Yufei; He, Jian; Qiu, Hong; Wang, Lianchun; Nagy, Tamas; Querec, Troy D.; Unger, Elizabeth R.

    2016-01-01

    In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h−1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples. PMID:27478429

  20. Anesthetics and red blood cell rheology

    NASA Astrophysics Data System (ADS)

    Aydogan, Burcu; Aydogan, Sami

    2014-05-01

    There are many conditions where it is useful for anesthetists to have a knowledge of blood rheology. Blood rheology plays an important role in numerous clinical situations. Hemorheologic changes may significantly affect the induction and recovery times with anesthetic agents. But also, hemorheologic factors are directly or indirectly affected by many anesthetic agents or their metabolites. In this review, the blood rheology with special emphasis on its application in anesthesiology, the importance hemorheological parameters in anesthesiology and also the effect of some anesthetic substances on red blood cell rheology were presented.

  1. Hemoglobin-based red blood cell substitutes.

    PubMed

    Chang, Thomas Ming Swi

    2004-09-01

    Polyhemoglobin is already well into the final stages of clinical trials in humans with one approved for routine clinical use in South Africa. Conjugated hemoglobin is also in ongoing clinical trials. Meanwhile, recombinant Hb has been modified to modulate the effects of nitric oxide. Other systems contain antioxidant enzymes for those clinical applications that may have potential problems related to ischemia-reperfusion injuries. Other developments are based on hemoglobin-lipid vesicles and also the use of nanotechnology and biodegradable copolymers to prepare nanodimension artificial red blood cells containing hemoglobin and complex enzyme systems.

  2. State of the science of blood cell labeling

    SciTech Connect

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs.

  3. Open Gradient Magnetic Red Blood Cell Sorter Evaluation on Model Cell Mixtures

    PubMed Central

    Moore, Lee R.; Nehl, Franzisca; Dorn, Jenny; Chalmers, Jeffrey J.; Zborowski, Maciej

    2014-01-01

    The emerging applications of biological cell separation to rare circulating tumor cell (CTC) detection and separation from blood rely on efficient methods of red blood cell (RBC) debulking. The two most widely used methods of centrifugation and RBC lysis have been associated with the concomitant significant losses of the cells of interest (such as progenitor cells or circulating tumor cells). Moreover, RBC centrifugation and lysis are not well adapted to the emerging diagnostic applications, relying on microfluidics and micro-scale total analytical systems. Therefore, magnetic RBC separation appears a logical alternative considering the high iron content of the RBC (normal mean 105 fg) as compared to the white blood cell iron content (normal mean 1.6 fg). The typical magnetic forces acting on a RBC are small, however, as compared to typical forces associated with centrifugation or the forces acting on synthetic magnetic nanoparticles used in current magnetic cell separations. This requires a significant effort in designing and fabricating a practical magnetic RBC separator. Applying advanced designs to the low cost, high power permanent magnets currently available, and building on the accumulated knowledge of the immunomagnetic cell separation methods and devices, an open gradient magnetic red blood cell (RBC) sorter was designed, fabricated and tested on label-free cell mixtures, with potential applications to RBC debulking from whole blood samples intended for diagnostic tests. PMID:24910468

  4. Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics.

    PubMed

    Bourquin, Yannyk; Syed, Abeer; Reboud, Julien; Ranford-Cartwright, Lisa C; Barrett, Michael P; Cooper, Jonathan M

    2014-05-26

    One significant challenge in medical diagnostics lies in the development of label-free methods to separate different cells within complex biological samples. Here we demonstrate a generic, low-power ultrasonic separation technique, able to enrich different cell types based upon their physical properties. For malaria, we differentiate between infected and non-infected red blood cells in a fingerprick-sized drop of blood. We are able to achieve an enrichment of circulating cells infected by the ring stage of the parasite over nonparasitized red blood cells by between two and three orders of magnitude in less than 3 seconds (enabling detection at parasitemia levels as low as 0.0005%). In a second example, we also show that our methods can be used to enrich different cell types, concentrating Trypanosoma in blood at very low levels of infection, on disposable, low-cost chips. PMID:24677583

  5. Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics**

    PubMed Central

    Bourquin, Yannyk; Syed, Abeer; Reboud, Julien; Ranford-Cartwright, Lisa C; Barrett, Michael P; Cooper, Jonathan M

    2014-01-01

    One significant challenge in medical diagnostics lies in the development of label-free methods to separate different cells within complex biological samples. Here we demonstrate a generic, low-power ultrasonic separation technique, able to enrich different cell types based upon their physical properties. For malaria, we differentiate between infected and non-infected red blood cells in a fingerprick-sized drop of blood. We are able to achieve an enrichment of circulating cells infected by the ring stage of the parasite over nonparasitized red blood cells by between two and three orders of magnitude in less than 3 seconds (enabling detection at parasitemia levels as low as 0.0005 %). In a second example, we also show that our methods can be used to enrich different cell types, concentrating Trypanosoma in blood at very low levels of infection, on disposable, low-cost chips. PMID:24677583

  6. Red cell antigens: Structure and function

    PubMed Central

    Pourazar, Abbasali

    2007-01-01

    Landsteiner and his colleagues demonstrated that human beings could be classified into four groups depending on the presence of one (A) or another (B) or both (AB) or none (O) of the antigens on their red cells. The number of the blood group antigens up to 1984 was 410. In the next 20 years, there were 16 systems with 144 antigens and quite a collection of antigens waiting to be assigned to systems, pending the discovery of new information about their relationship to the established systems. The importance of most blood group antigens had been recognized by immunological complications of blood transfusion or pregnancies; their molecular structure and function however remained undefined for many decades. Recent advances in molecular genetics and cellular biochemistry resulted in an abundance of new information in this field of research. In this review, we try to give some examples of advances made in the field of ‘structure and function of the red cell surface molecules.’ PMID:21938229

  7. Mechanosensing Dynamics of Red blood Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  8. Application of fluorescence labeled liposome nanoparticles in the cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Jianbing; Li, Huimin; He, Xiaoxiao; Gong, Ping; Wang, Kemin; Zhang, Shouchun

    2007-05-01

    Fluorescence labeled liposome nanoparticles were prepared by dispersion of film method. The size of nanoparticles was around 50 nm. DPPE-FITC synthesized in our lab was used to label the liposome nanoparticles. Anti-cytokeratins 19 antibody was connected to the surface of the fluorescence liposome nanoparticles. After incubation with MGC cells and COS-7 cells for 30 min, MGC cells were selectively recognized by anti-cytokeratins 19 antibody modified liposome nanoparticles and well imaged under laser confocal microscope. This fluorescence labeled liposome nanoparticles is expected to have good applications in cell recognition and tumor diagnosis.

  9. Instant magnetic labeling of tumor cells by ultrasound in vitro

    NASA Astrophysics Data System (ADS)

    Mo, Runyang; Yang, Jian; Wu, Ed X.; Lin, Shuyu

    2011-09-01

    Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling.

  10. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  11. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  12. Single scattering by red blood cells.

    PubMed

    Hammer, M; Schweitzer, D; Michel, B; Thamm, E; Kolb, A

    1998-11-01

    A highly diluted suspension of red blood cells (hematocrit 0.01) was illuminated with an Ar or a dye laser in the wavelength range of 458-660 nm. The extinction and the angle-resolved intensity of scattered light were measured and compared with the predictions of Mie theory, the Rayleigh-Gans approximation, and the anomalous diffraction approximation. Furthermore, empirical phase functions were fitted to the measurements. The measurements were in satisfactory agreement with the predictions of Mie theory. However, better agreement was found with the anomalous diffraction model. In the Rayleigh-Gans approximation, only small-angle scattering is described appropriately. The scattering phase function of erythrocytes may be represented by the Gegenbauer kernel phase function. PMID:18301575

  13. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    PubMed

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-01

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  14. Kit for the rapid preparation of .sup.99m Tc red blood cells

    DOEpatents

    Richards, Powell; Smith, Terry D.

    1976-01-01

    A method and sample kit for the preparation of .sup.99m Tc-labeled red blood cells in a closed, sterile system. A partially evacuated tube, containing a freeze-dried stannous citrate formulation with heparin as an anticoagulant, allows whole blood to be automatically drawn from the patient. The radioisotope is added at the end of the labeling sequence to minimize operator exposure. Consistent 97% yields in 20 minutes are obtained with small blood samples. Freeze-dried kits have remained stable after five months.

  15. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells.

    PubMed

    Naganbabu, Matharishwan; Perkins, Lydia A; Wang, Yi; Kurish, Jeffery; Schmidt, Brigitte F; Bruchez, Marcel P

    2016-06-15

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  16. Hemoglobin s polymerization and red cell membrane changes.

    PubMed

    Kuypers, Frans A

    2014-04-01

    Different pathways lead from the simple point mutation in hemoglobin to the membrane changes that characterize the altered interaction of the sickle red blood cell with its environment, including endothelial cells, white blood cells, and platelets. Polymerization and oxidation-induced damage to both lipid and protein components of the red cell membrane, as well as the generation of bioreactive membrane material (microparticles), has a profound effect on all tissues and organs, and defines the vasculopathy of the patient with sickle cell disease.

  17. Destruction of newly released red blood cells in space flight

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.

    1996-01-01

    Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.

  18. Control of red blood cell mass during spaceflight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Alfrey, C. P.; Driscoll, T. B.; Smith, S. M.; Nyquist, L. E.

    1996-01-01

    Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.

  19. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  20. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  1. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells

    PubMed Central

    Mairbäurl, Heimo

    2013-01-01

    During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518

  2. Red blood cells in retinal vascular disorders.

    PubMed

    Agrawal, Rupesh; Sherwood, Joseph; Chhablani, Jay; Ricchariya, Ashutosh; Kim, Sangho; Jones, Philip H; Balabani, Stavroula; Shima, David

    2016-01-01

    Microvascular circulation plays a vital role in regulating physiological functions, such as vascular resistance, and maintaining organ health. Pathologies such as hypertension, diabetes, or hematologic diseases affect the microcirculation posing a significant risk to human health. The retinal vasculature provides a unique window for non-invasive visualisation of the human circulation in vivo and retinal vascular image analysis has been established to predict the development of both clinical and subclinical cardiovascular, metabolic, renal and retinal disease in epidemiologic studies. Blood viscosity which was otherwise thought to play a negligible role in determining blood flow based on Poiseuille's law up to the 1970s has now been shown to play an equally if not a more important role in controlling microcirculation and quantifying blood flow. Understanding the hemodynamics/rheology of the microcirculation and its changes in diseased states remains a challenging task; this is due to the particulate nature of blood, the mechanical properties of the cells (such as deformability and aggregability) and the complex architecture of the microvasculature. In our review, we have tried to postulate a possible role of red blood cell (RBC) biomechanical properties and laid down future framework for research related to hemorrheological aspects of blood in patients with retinal vascular disorders.

  3. Developmental Plasticity of Red Blood Cell Homeostasis

    PubMed Central

    Golub, Mari S.; Hogrefe, Casey E.; Malka, Roy; Higgins, John M.

    2014-01-01

    Most human physiologic set points like body temperature are tightly regulated and show little variation between healthy individuals. Red blood cell (RBC) characteristics such as hematocrit (HCT) and mean cell volume (MCV) are stable within individuals but can vary by 20% from one healthy person to the next. The mechanisms for the majority of this inter-individual variation are unknown and do not appear to involve common genetic variation. Here we show that environmental conditions present during development, namely in utero iron availability, can exert long-term influence on a set point related to the RBC life cycle. In a controlled study of rhesus monkeys and a retrospective study of humans, we use a mathematical model of in vivo RBC population dynamics to show that in utero iron deficiency is associated with a lowered threshold for RBC clearance and turnover. This in utero effect is plastic, persisting at least two years after birth and after the cessation of iron deficiency. Our study reports a rare instance of developmental plasticity in the human hematologic systems and also shows how mathematical modeling can be used to identify cellular mechanisms involved in the adaptive control of homeostatic set points. PMID:24415575

  4. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  5. Red blood cell storage duration and trauma.

    PubMed

    Sparrow, Rosemary L

    2015-04-01

    Numerous retrospective clinical studies suggest that transfusion of longer stored red blood cells (RBCs) is associated with an independent risk of poorer outcomes for certain groups of patients, including trauma, intensive care, and cardiac surgery patients. Large multicenter randomized controlled trials are currently underway to address the concern about RBC storage duration. However, none of these randomized controlled trials focus specifically on trauma patients with hemorrhage. Major trauma, particularly due to road accidents, is the leading cause of critical injury in the younger-than-40-year-old age group. Severe bleeding associated with major trauma induces hemodynamic dysregulation that increases the risk of hypoxia, coagulopathy, and potentially multiorgan failure, which can be fatal. In major trauma, a multitude of stress-associated changes occur to the patient's RBCs, including morphological changes that increase cell rigidity and thereby alter blood flow hemodynamics, particularly in the microvascular vessels, and reduce RBC survival. Initial inflammatory responses induce deleterious cellular interactions, including endothelial activation, RBC adhesion, and erythrophagocytosis that are quickly followed by profound immunosuppressive responses. Stored RBCs exhibit similar biophysical characteristics to those of trauma-stressed RBCs. Whether transfusion of RBCs that exhibit storage lesion changes exacerbates the hemodynamic perturbations already active in the trauma patient is not known. This article reviews findings from several recent nonrandomized studies examining RBC storage duration and clinical outcomes in trauma patients. The rationale for further research on RBC storage duration in the trauma setting is provided.

  6. Impact of cellular properties on red cell-red cell affinity in plasma-like suspensions

    NASA Astrophysics Data System (ADS)

    Rad, S.; Neu, B.

    2009-10-01

    The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biological and biophysical interest, yet the mechanistic details governing this process are still being explored. In this report an approach is described to compute the interaction energy between RBC by considering cellular properties as well as polymer properties. Cell-cell affinities were calculated as functions of glycocalyx thickness and glycocalyx volume concentration as well as bulk polymer concentration. Our theoretical predictions show that cell-cell affinities do not monotonically increase with polymer size and concentration, but rather demonstrate an optimum dextran molecular mass and concentration which depends on cellular properties of RBC. These results show qualitative agreement with recent experimental observations. In conclusion, our model not only confirms the concept of a depletion mechanism for RBC aggregation but also provides new insights which should help understanding how cellular properties control in vivo RBC interactions.

  7. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be...

  8. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be...

  9. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be...

  10. The red cell mass-arterial oxygen relationship in normal man

    PubMed Central

    Weil, John V.; Jamieson, Gail; Brown, Donald W.; Grover, Robert F.

    1968-01-01

    The normal relationship between red cell mass measured, with 51chromium-labeled red cells, and arterial oxygen saturation (SaO2) over the range from 97.3 to 83.4% was examined by studying 73 normal men residing at sea level and altitudes of 1600 and 3100 m. A simple, linear relationship between SaO2 and red cell mass was found over the entire range (r = - 0.7524, P < 0.001). In contrast, a correlation between red cell mass and arterial O2 tension was found only over the lower half of the range of O2 tensions where SaO2 was also decreased (r = - 0.7731, P < 0.005). This suggested that O2 saturation rather than tension is the more important determinant of the erythropoietic response to chronic hypoxia. If this response is regulated by tissue O2 tension, then it will be influenced by O2 transport, which, in turn, is a function of blood flow and arterial O2 content, and hence SaO2. In nine patients with chronic obstructive airway disease the relationship between red cell mass and SaO2 was also determined and was found to be steeper than in the normal subjects (P < 0.05). Images PMID:5658592

  11. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this paragraph. (6) For Whole Blood, Plasma, Platelets, and partial units of Red Blood Cells, the... exceptions: (1) The Rh blood group shall be printed as follows: (i) Rh positive: Use black print on white..., deglycerolized, or washed Red Blood Cell products, red blood cell labels shall include: (i) The volume and...

  12. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... units of Red Blood Cells, the volume of the product, accurate to within ±10 percent; or optionally for... (name of antibody).” (2) Except for frozen, deglycerolized, or washed Red Blood Cell products, red blood cell labels shall include: (i) The volume and kind of Whole Blood, including the type of...

  13. Seasonal cell proliferation in the chemosensory epithelium and brain of red-backed salamanders, Plethodon cinereus.

    PubMed

    Dawley, E M; Fingerlin, A; Hwang, D; John, S S; Stankiewicz, C A

    2000-06-01

    The chemosensory epithelium of vertebrates retains the ability to produce new receptor neurons throughout life, presumably as a mechanism to replace aging or damaged receptors. We examined cell division in the main olfactory and vomeronasal epithelia of red-backed salamanders (Plethodon cinereus) because previous studies had shown that the volume of sensory epithelia changes seasonally. Cell division was compared throughout the year by injecting salamanders once with 5-bromo-2'-deoxyuridine (BrdU), which is incorporated into the DNA of cells during DNA synthesis, and sacrificing them one hour after injection. We used immunocytochemistry to locate cells that had arisen from cell division since BrdU injection and compared the number of labeled cells per area among animals. Animals collected in May had significantly more labeled nuclei than animals collected in any other month. However, proliferation rates among the other months were not significantly different and were quite low. Labeled nuclei also were found around the cerebral ventricles of salamanders collected in May, but rarely in any other month, although other tissues in the head often were heavily labeled. Cell proliferation appears to be up-regulated in the chemosensory epithelia and in the telencephalon during May, and we hypothesize that new receptors, and perhaps their interneurons in the telencephalon, are being generated in anticipation of seasonal events that are mediated by chemoreception.

  14. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  15. Abnormal Red Cell Structure and Function in Neuroacanthocytosis

    PubMed Central

    Cluitmans, Judith C. A.; Tomelleri, Carlo; Yapici, Zuhal; Dinkla, Sip; Bovee-Geurts, Petra; Chokkalingam, Venkatachalam; De Franceschi, Lucia; Brock, Roland; Bosman, Giel J. G. C. M.

    2015-01-01

    Background Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation. Objective The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration. Methods We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members. Results We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients’ cells, however, are more fragile, as observed in a spleen-mimicking device. Conclusion These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis. PMID:25933379

  16. Red Cell Membrane Permeability Deduced from Bulk Diffusion Coefficients

    PubMed Central

    Redwood, W. R.; Rall, E.; Perl, W.

    1974-01-01

    The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes. PMID:4443795

  17. Lack of Erythropoietic Inhibitory Effect of Serum From Patients with Congenital Pure Red Cell Aplasia

    ERIC Educational Resources Information Center

    Geller, Gary; And Others

    1975-01-01

    Serum of five children ages 1 to 19 months with congenital pure red cell aplasia (incomplete or defective development of red blood cells) was injected in normal mice to determine possible inhibition of red blood cell formulating stimulants. (CL)

  18. Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling.

    PubMed

    Marchant, J S; Stutzmann, G E; Leissring, M A; LaFerla, F M; Parker, I

    2001-07-01

    DsRed, a recently cloned red fluorescent protein, has attracted great interest as an expression tracer and fusion partner for multicolor imaging. We report that three-photon excitation (lambda <760 nm) rapidly changes the fluorescence of DsRed from red to green when viewed subsequently by conventional (one-photon) epifluorescence. Mechanistically, three-photon excitation (lambda <760 nm) selectively bleaches the mature, red-emitting form of DsRed, thereby enhancing emission from the immature green form through reduction of fluorescence resonance energy transfer (FRET). The "greening" effect occurs in live mammalian cells at the cellular and subcellular levels, and the resultant color change persists for >30 h without affecting cell viability. This technique allows individual cells, organelles, and fusion proteins to be optically marked and has potential utility for studying cell lineage, organelle dynamics, and protein trafficking, as well as for selective retrieval of cells from a population. We describe optimal parameters to induce the color change of DsRed, and demonstrate applications that show the potential of this optical highlighter.

  19. [Promising technologies of packed red blood cells production and storage].

    PubMed

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.

  20. [Promising technologies of packed red blood cells production and storage].

    PubMed

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield. PMID:24611298

  1. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  2. Effects of helicopter transport on red blood cell components

    PubMed Central

    Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou

    2012-01-01

    Background There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Materials and methods Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. Results During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. Discussion These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance. PMID:22153688

  3. Production of Alexa Fluor 488-labeled reovirus and characterization of target cell binding, competence, and immunogenicity of labeled virions.

    PubMed

    Fecek, Ronald J; Busch, Ryan; Lin, Hong; Pal, Kasturi; Cunningham, Cynthia A; Cuff, Christopher F

    2006-07-31

    Respiratory enteric orphan virus (reovirus) has been used to study many aspects of the biology and genetics of viruses, viral infection, pathogenesis, and the immune response to virus infection. This report describes the functional activity of virus labeled with Alexa Fluor 488, a stable fluorescent dye. Matrix assisted laser desorption-time of flight analysis indicated that Alexa Fluor 488 labeled the outer capsid proteins of reovirus. Labeled virus bound to murine L929 fibroblasts as determined by flow cytometry and fluorescence microscopy, and the specificity of binding were demonstrated by competitive inhibition with non-labeled virus. Labeled reovirus induced apoptosis and cytopathic effect in infected L929 cells. Mice infected with labeled virus mounted robust serum antibody and CD8(+) T-cell responses, indicating that labeled virus retained immunogenicity in vivo. These results indicate that Alexa Fluor 488-labeled virus provides a powerful new tool to analyze reovirus infection in vitro and in vivo.

  4. Role of Calcium in Phosphatidylserine Externalisation in Red Blood Cells from Sickle Cell Patients

    PubMed Central

    Weiss, Erwin; Rees, David Charles; Gibson, John Stanley

    2011-01-01

    Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates Ca2+ entry, providing an obvious link with phosphatidylserine exposure. The role of Ca2+ was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [Ca2+] was increased. This effect was inhibited by dipyridamole, intracellular Ca2+ chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high K+ saline. Ca2+ levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with Ca2+ entry through the deoxygenation-induced pathway (Psickle), activating the Gardos channel. [Ca2+] required for phosphatidylserine scrambling are in the range achievable in vivo. PMID:21490763

  5. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  6. Human red blood cells' physiological water exchange with the plasma.

    PubMed

    Kargol, M; Kargol, A; Przestalski, M; Siedlecki, J; Karpińska, M; Rogowski, M

    2005-01-01

    In the present paper, fundamental issues related to the mechanisms of human red blood cells' physiological water exchange with the plasma (for the stationary conditions) have been discussed. It has been demonstrated, on the basis of mechanistic transport equations for membrane transport that red blood cells are capable of exchanging considerable amounts of water with the plasma. Water absorption is osmosis-driven, and its removal occurs according to the hydromechanics principle, i.e. is driven by the turgor pressure of red blood cells. This newly-acquired knowledge of these issues may appear highly useful for clinical diagnosis of blood diseases and blood circulation failures. PMID:16358974

  7. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.

    PubMed

    Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas

    2015-09-15

    Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.

  8. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    SciTech Connect

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.; Masouredis, S.P. )

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.

  9. Delayed positive gastrointestinal bleeding studies with technetium-99m-red blood cells: Utility of a second injection

    SciTech Connect

    Jacobson, A.F. )

    1991-02-01

    Two patients studied with technetium-99m-labeled red blood cells (RBCs) for gastrointestinal bleeding had positive findings only on 24-hr delayed images, at which time the site of bleeding could not be ascertained. In each instance, when additional delayed images suggested that active bleeding was occurring, a second aliquot of RBCs was labeled and injected. Sites of active hemorrhage were identified following further imaging in both patients. When delayed GI bleeding images are positive, further views should be obtained to ascertain if the pattern of intraluminal activity changes. If renewed active hemorrhage is suspected, reinjection with a second dose of labeled RBCs may identify the bleeding site.

  10. Lipopolysaccharide from Proteus mirabilis O29 induces changes in red blood cell membrane lipids and proteins.

    PubMed

    Gwoździński, Krzysztof; Pieniazek, Anna; Kaca, Wiesław

    2003-03-01

    Alterations in red blood cell (RBC) plasma membranes, i.e. in lipids and proteins, and osmotic fragility of these cells after treatment with Proteus mirabilis O29 endotoxin (lipolysaccharide (LPS)) were examined using a spin labelling method. At the highest concentration of LPS, insignificantly decreased fluidity of membrane lipids was observed. Changes in conformation of membrane proteins were determined by two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (MSL) and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The analysis of spectra of MSL and ISL showed modifications in membrane proteins in red blood cells treated with the highest concentration of lipopolysaccharide. On the other hand, in the case of isolated membranes, disturbances in membrane were observed for all concentrations of LPS. The alterations in membrane lipids and proteins are paralleled in a significant rise in osmotic fragility of RBCs upon endotoxin treatment. These results provide experimental evidence that P. mirabilis O29 LPS causes deleterious changes in membranes of human red blood cells. They show that action of lipopolysaccharide mainly concerns the membrane cytoskeleton. PMID:12531246

  11. Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients.

    PubMed

    Pesciotta, Esther N; Sriswasdi, Sira; Tang, Hsin-Yao; Speicher, David W; Mason, Philip J; Bessler, Monica

    2014-01-01

    Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.

  12. Dysferlin and Other Non-Red Cell Proteins Accumulate in the Red Cell Membrane of Diamond-Blackfan Anemia Patients

    PubMed Central

    Pesciotta, Esther N.; Sriswasdi, Sira; Tang, Hsin-Yao; Speicher, David W.; Mason, Philip J.; Bessler, Monica

    2014-01-01

    Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA. PMID:24454878

  13. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  14. X-ray microscopic studies of labeled nuclear cell structures

    NASA Astrophysics Data System (ADS)

    Vogt, S.; Schneider, G.; Steuernagel, A.; Lucchesi, J.; Schulze, E.; Rudolph, D.; Schmahl, G.

    2000-05-01

    In X-ray microscopy different proteins are not readily distinguishable. However, in cell biology it is often desirable to localize single proteins, e.g., inside the cell nucleus. This can be achieved by immunogold labeling. Colloidal gold conjugated antibodies are used to mark the protein specifically. With silver solution these are enlarged so as to heighten their contrast. The strong absorption of silver allows easy visualization of the label in the nuclei. In this study male specific lethal 1 protein in male Drosophila melanogaster cells was labeled. This protein forms, together with four other proteins, a complex that is associated with the male X chromosome. It regulates dosage compensation by enhancing X-linked gene transcription in males. Room temperature and cyro transmission X-ray microscopic images (taken with the Göttingen TXM at BESSY) of these labeled cells are shown. Confocal laser scan microscopy ascertains the correct identification of the label in the X-ray micrographs, and allows comparison of the structural information available from both instruments.

  15. Labeling cells for in vivo tracking using (19)F MRI.

    PubMed

    Srinivas, Mangala; Boehm-Sturm, Philipp; Figdor, Carl G; de Vries, I Jolanda; Hoehn, Mathias

    2012-12-01

    Noninvasive in vivo cell tracking is crucial to fully understand the function of mobile and/or transplanted cells, particularly immune cells and cellular therapeutics. (19)F MRI for cell tracking has several advantages; chief among them are its noninvasive nature which allows longitudinal data acquisition, use of a stable, non-radioactive isotope permitting long-term tracking, the absence of confounding endogenous signal, and the ability to quantify cell numbers from image data. However, generation of sufficient signal i.e. (19)F cell loading is a key challenge, particularly with non-phagocytic cells such as lymphocytes and stem cells. A range of (19)F cell labels have been developed, including emulsions, particles, polymers, and agents for clinical use. Various animal and primary human cells, such as dendritic cells, lymphocytes and phagocytes have been successfully labeled and studied in models of autoimmune disease, inflammation and transplant rejection. Primary human cells, particularly dendritic cells as used in vaccine therapy have been tested for imminent clinical application. Here, we summarize current cell loading strategies and sensitivity of in vivo cell imaging with (19)F MRI, and discuss the processing of image data for accurate quantification of cell numbers. This novel technology is uniquely applicable to the longitudinal and quantitative tracking of cells in vivo.

  16. Interfacial polymerization for colorimetric labeling of protein expression in cells.

    PubMed

    Lilly, Jacob L; Sheldon, Phillip R; Hoversten, Liv J; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium.

  17. Formation of dimethylthioarsenicals in red blood cells

    SciTech Connect

    Naranmandura, Hua; Suzuki, Kazuo T.

    2008-03-15

    The bladder and skin are the primary targets for arsenic-induced carcinogenicity in mammals. Thioarsenicals dimethylmonothioarsinic (DMMTA{sup V}) and dimethyldithioarsinic (DMDTA{sup V}) acids are common urinary metabolites, the former being much more toxic than non-thiolated dimethylarsinic acid (DMA{sup V}) and comparable to dimethylarsinous acid (DMA{sup III}) in epidermoid cells, suggesting that the metabolic production of thioarsenicals may be a risk factor for the development of cancer in these organs. To reveal their production sites (tissues/body fluids), we examined the uptake and transformation of the four dimethylated arsenicals by incubation with rat and human red blood cells (RBCs). Although DMA{sup V} and DMDTA{sup V} were not taken up by either type of RBCs, DMA{sup III} and DMMTA{sup V} were taken up by both (more efficiently by rat ones), though DMMTA{sup V} was taken up slowly, and then the arsenic transformed into DMDTA{sup V} was excreted from both types of animal RBCs. On the other hand, although DMA{sup III} taken up rapidly by rat RBCs was retained in the RBCs, that taken up by human RBCs was immediately transformed into DMMTA{sup V} and then excreted into the incubation medium without being retained in the RBCs. In a separate experiment, arsenic remaining in primary rat hepatocytes after incubation with 1.5 {mu}M DMA{sup III} was recovered from the incubation medium in the forms of DMA{sup V} and DMMTA{sup V} in the presence of human RBCs, but not in the presence of rat RBCs (in which the arsenic was bound to hemoglobin). Thus, DMMTA{sup V} was detected in the medium only in the presence of human RBCs and increased with incubation time. It was proposed that arsenic is excreted from hepatocytes into the bloodstream in the form of DMA{sup III} and then taken up by RBCs in humans, where it is transformed into DMMTA{sup V} and then excreted again into the bloodstream.

  18. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  19. Non-tuberculous Mycobacteriosis with T-cell Lymphoma in a Red Panda (Ailurus fulgens).

    PubMed

    Fuke, N; Hirai, T; Makimura, N; Goto, Y; Habibi, W A; Ito, S; Trang, N T; Koshino, K; Takeda, M; Yamaguchi, R

    2016-01-01

    A 9-year-old male red panda (Ailurus fulgens) became emaciated and died. Necropsy examination revealed systemic lymphadenomegaly. The liver, lungs and left kidney contained multifocal yellow nodules. Microscopical examination revealed granulomatous inflammation in the liver, lungs, kidney, spleen and lymph nodes, with numerous acid-fast bacilli. Sequencing of genetic material isolated from the tissues classified the pathogen as Mycobacterium gastri. Lymphoma was found in the liver, lungs, kidney and lymph nodes. The neoplastic cells were strongly labelled for expression of CD3, Ki67 and proliferating cell nuclear antigen by immunohistochemistry. This is the first report of M. gastri infection with T-cell lymphoma in a red panda. PMID:27421619

  20. Effect of an electrical left ventricular assist device on red blood cell and platelet survival in the cow. Technical report

    SciTech Connect

    Melaragno, A.J.; Vecchione, J.J.; Katchis, R.J.; Abdu, W.A.; Ouellet, R.P.

    1982-04-23

    Blood volume measurements were made in cows after infusion of human 125 iodine albumin and autologous 51 chromium-labeled red blood cells. Repeated intravenous infusions of iodinated human albumin did not appear to isosensitize the cows. When the cow red blood cells were incubated at 37 C after labeling with 51 chromium, there was elution of the 51 chromium, and the 51 chromium T 50 values were 45 hours in both healthy cows and cows with LVAD's. Measurements also were made in the cow platelets labeled with 51 chromium or 111 Indium-oxine. The platelets labeled with 51 chromium had T 50 values of 4 days, and platelets labeled with 111 Indium-oxine had T 50 values of 0.9 to 2.7 days. 51 chromium-labeled platelets had similar T 50 values in healthy cows and cows with LVAD's. Bovine platelets isolated from units of blood using serial differential centrifugation were labeled with 51 chromium or with 111 Indium-oxine, and after infusion in healthy cows and cows with LVAD's measurements were made of platelet circulation and distribution. The disappearance of platelet radioactivity from the blood was linear with time, and the platelet lifespan was 6-10 days. The presence of an LVAD did not affect initial recovery or lifespan of cow platelets.

  1. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    SciTech Connect

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-03-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging.

  2. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells. PMID:26554882

  3. Antigen specific killing assay using CFSE labeled target cells.

    PubMed

    Durward, Marina; Harms, Jerome; Splitter, Gary

    2010-11-09

    Carboxyfluorescein diacetate succinimidyl ester (CFSE) can be used to easily and quickly label a cell population of interest for in vivo investigation. This labeling has classically been used to study proliferation and migration. In the method presented here, we have shortened the timeline after adoptive transfer to look at survival and killing of epitope specific CFSE labeled target cells. The level of specific killing of a CD8 + T cell clone can indicate the quality of the response, as their quantity may be misleading. Specific CD8+ T cells can become functionally exhausted over time with a decline in cytokine production and killing. Also, certain CD8 + T cell clones may not kill as well as others with differing TCR specificities. For effective Cell Mediated Immunity (CMI), antigens must be identified that produce not only adequate numbers of responding T cells, but also functionally robust responding T cells. Here we assess the percent cell specific killing of two peptide specific T cell clones in BALB/c mice.

  4. Reflectance confocal microscopy of red blood cells: simulation and experiment

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2015-01-01

    Measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient’s health. In this work, we have simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the morphological parameters and the resulting characteristic interference patterns of the cell. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry that imaged the cells in a linear flow without artificial staining. By matching the simulated patterns to confocal images of the cells, this method could be used for measuring cell morphology in three dimensions and for studying their physiology. PMID:26600999

  5. Method for determining properties of red blood cells

    DOEpatents

    Gourley, Paul L.

    2001-01-01

    A method for quantifying the concentration of hemoglobin in a cell, and indicia of anemia, comprises determining the wavelength of the longitudinal mode of a liquid in a laser microcavity; determining the wavelength of the fundamental transverse mode of a red blood cell in the liquid in the laser microcavity; and determining if the cell is anemic from the difference between the wavelength of the longitudinal mode and the fundamental transverse mode. In addition to measuring hemoglobin, the invention includes a method using intracavity laser spectroscopy to measure the change in spectra as a function of time for measuring the influx of water into a red blood cell and the cell's subsequent rupture.

  6. Red blood cell-derived microparticles: An overview.

    PubMed

    Westerman, Maxwell; Porter, John B

    2016-07-01

    The red blood cell (RBC) is historically the original parent cell of microparticles (MPs). In this overview, we describe the discovery and the early history of red cell-derived microparticles (RMPs) and present an overview of the evolution of RMP. We report the formation, characteristics, effects of RMP and factors which may affect RMP evaluation. The review examines RMP derived from both normal and pathologic RBC. The pathologic RBC studies include sickle cell anemia (SCA), sickle cell trait (STr), thalassemia intermedia (TI), hereditary spherocytosis (HS), hereditary elliptocytosis (HE), hereditary stomatocytosis (HSt) and glucose-6-phosphate dehydrogenase deficiency (G6PD). PMID:27282583

  7. The Effect of Shape Memory on Red Blood Cell Motions

    NASA Astrophysics Data System (ADS)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  8. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  9. Deep Learning in Label-free Cell Classification.

    PubMed

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  10. Deep Learning in Label-free Cell Classification.

    PubMed

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  11. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  12. Deep Learning in Label-free Cell Classification

    DOE PAGES

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  13. Cinnamomum zeylanicum extract on the radiolabelling of blood constituents and the morphometry of red blood cells: in vitro assay.

    PubMed

    Benarroz, M O; Fonseca, A S; Rocha, G S; Frydman, J N G; Rocha, V C; Pereira, M O; Bernardo-Filho, M

    2008-02-01

    Effects of Cinnamomum zeylanicum (cinnamon) on the labelling of blood constituents with technetium-99m(99mTc) and on the morphology of red blood cells were studied. Blood samples from Wistar rats were incubated with cinnamon extract for 1 hour or with 0.9% NaCl, as control. Labelling of blood constituents with 99mTc was performed. Plasma (P) and blood cells (BC), soluble (SF-P and SF-BC) and insoluble (IF-P and IF-BC) fractions were separated. The radioactivity in each fraction was counted and the percentage of radioactivity incorporated (%ATI) was calculated. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphological analysis of the red blood cells was evaluated. The data showed that the cinnamon extract decreased significantly (p<0.05) the %ATI on BC, IF-P and IF-BC. No modifications were verified on shape of red blood cells. Cinnamon extracts could alter the labelling of blood constituents with 99mTc, and although our results were obtained with animals, precaution is suggested in interpretations of nuclear medicine examinations involving the labelling of blood constituents in patients who are using cinnamon.

  14. Label-free density difference amplification-based cell sorting.

    PubMed

    Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P

    2014-11-01

    The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities. PMID:25553185

  15. Isotopic Labeling of Red Cabbage Anthocyanins with Atmospheric 13-CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopic labeling of plants provides a unique opportunity for understanding metabolic processes. A significant challenge of isotopic labeling during plant growth is that isotopes must be administered without disrupting plant development and at sufficient levels for mass spectral analysis. We describ...

  16. Immunomicrospheres - Reagents for cell labeling and separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Dreyer, W. J.

    1980-01-01

    Immunomicrospheres are specially designed microscopic particles that have antibodies or similar molecules chemically bound to their surfaces. The antibody-coated microspheres react in a highly specific way with target cells, viruses, or other antigenic agents. Immunomicrospheres may be synthesized so that they incorporate compounds that are highly radioactive, intensely fluorescent, magnetic, electron opaque, highly colored, or pharmacologically active. These various types of microspheres may be coated with pure, highly specific monoclonal antibodies obtained by the new hybridoma cell cloning techniques or with conventional antibody preparations. Some of the many present and potential applications for these new reagents are (1) new types of radioimmune or immunofluorescent assays, (2) improved fluorescence microscopy, (3) separation of cells on the basis of the fluorescent, electrophoretic, or magnetic properties of bound immunomicrospheres, (4) markers for use in several types of electron or standard light microscopy, and (5) delivery of lethal compouds to specific undesirable living cells. The combination of the various new types of synthetic microspheres and the newly available homogeneous antibodies offers new opportunities in research, diagnosis, and therapy.

  17. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  18. Theory of the sphering of red blood cells.

    PubMed

    Fung, Y C; Tong, P

    1968-02-01

    A rigorous mathematical solution of the sphering of a red blood cell is obtained under the assumptions that the red cells is a fluid-filled shell and that it can swell into a perfect sphere in an appropriate hypotonic medium. The solution is valid for finite strain of the cell membrane provided that the membrane is isotropic, elastic and incompressible. The most general nonlinear elastic stress-strain law for the membrane in a state of generalized plane stress is used. A necessary condition for a red cell to be able to sphere is that its extensional stiffness follow a specific distribution over the membrane. This distribution is strongly influenced by the surface tension in the cell membrane. A unique relation exists between the extensional stiffness, pressure differential, surface tension, and the ratio of the radius of the sphere to that of the undeformed red cell. The functional dependence of this stiffness distribution on various physical parameters is presented. A critique of some current literature on red cell mechanics is presented. PMID:5639934

  19. [Effects of superparamagnetic iron-oxide particles-labeling on the multi-diffentiation of rabbit marrow mesenchymal stem cell in vitro].

    PubMed

    Jin, Xuhong; Yang, Liu; Zhang, Shou; Dun, Xiaojun; Wang, Fuyou; Tan, Hongbo

    2012-02-01

    The aim of this study was to label rabbit bone derived mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide particles (SPIO) and to study the effects of magnetic labeling on the multi-differentiation of BMSCs. Rabbit BMSCs were isolated, purified, expanded, then coincubated with SPIO(25 microg/ml) complexed to protamine sulfate (Pro) transfection agents overnight. Prussian blue staining and transmission electron microscopy were performed to show intracellular iron. Cell differentiation was evaluated. Both labeled and unlabeled BMSCs were subjected to osteogenic, adipogenic and chondrogenic differentiation to assess their differentiation capacity for 21 d. Osteogenic cells were stained with alizarin red to reveal calcium deposition, adipogenic cells were stained with oil redO' respectively. Chondrogenic cells stained with Safranin-O, glycosamino glycans, and type II collagen production was assessed by standard immunohistochemistry. Cell with immunohistochemistry staining were detected by polarized light microscopy and analysed by Image-Pro Plus software. The results showed that intracytoplasmic nanoparticles were stained with Prussian blue and observed by transmission electron microscopy clearly except the unlabeled control. As compared with the nonlabeled cells, it showed no statistically significant difference on the differentiation of the labeled BMSCs. And the differentiation of the labeled cells were unaffected by the endosomal incorporation of SPIO. In summary, BMSCs can be labeled with SPIO without significant change in cell multi-differentiation capacity. PMID:22404022

  20. Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond.

    PubMed

    Lien, Zhi-Yi; Hsu, Tzu-Chia; Liu, Kuang-Kai; Liao, Wei-Siang; Hwang, Kuo-Chu; Chao, Jui-I

    2012-09-01

    Nanodiamond, a promising carbon nanomaterial, develops for biomedical applications such as cancer cell labeling and detection. Here, we establish the nanodiamond-bearing cancer cell lines using the fluorescent and magnetic nanodiamond (FMND). Treatment with FMND particles did not significantly induce cytotoxicity and growth inhibition in HFL-1 normal lung fibroblasts and A549 lung cancer cells. The fluorescence intensities and particle complexities were increased in a time- and concentration-dependent manner by treatment with FMND particles in lung cancer cells; however, the existence of FMND particles inside the cells did not alter cellular size distribution. The FMND-bearing lung cancer cells could be separated by the fluorescent and magnetic properties of FMNDs using the flow cytometer and magnetic device, respectively. The FMND-bearing cancer cells were identified by the existence of FMNDs using flow cytometer and confocal microscope analysis. More importantly, the cell morphology, viability, growth ability and total protein expression profiles in the FMND-bearing cells were similar to those of the parental cells. The separated FMND-bearing cells with various generations were cryopreservation for further applications. After re-thawing the FMND-bearing cancer cell lines, the cells still retained the cell survival and growth ability. Additionally, a variety of human cancer types including colon (RKO), breast (MCF-7), cervical (HeLa), and bladder (BFTC905) cancer cells could be used the same strategy to prepare the FMND-bearing cancer cells. These results show that the FMND-bearing cancer cell lines, which reserve the parental cell functions, can be applied for specific cancer cell labeling and tracking.

  1. Effect of misoprostol and cimetidine on gastric cell labeling index

    SciTech Connect

    Fich, A.; Arber, N.; Sestieri, M.; Zajicek, G.; Rachmilewitz, D.

    1985-07-01

    The effect of misoprostol and cimetidine on gastric cell turnover was studied. Endoscopic biopsy specimens of fundic and antral mucosa were obtained from duodenal ulcer patients before and after 4 wk of therapy with cimetidine 1.2 g/day or misoprostol 800 micrograms/day. Biopsy specimens were incubated with (/sup 3/H)thymidine. Glandular column length and number of labeled cells were determined after autoradiography. There was no significant difference in column length of antral or fundic glands before or after therapy with cimetidine and misoprostol. The number of antral and fundic labeled cells was significantly decreased after misoprostol treatment (3.6 +/- 0.3 and 4.6 +/- 0.4, mean +/- SE), as opposed to their respective number before therapy (6.9 +/- 0.5 and 8.3 +/- 0.8) (p less than 0.01). On the other hand, after treatment with cimetidine, the number of antral and fundic labeled cells was significantly higher (11.8 +/- 0.9 and 7.5 +/- 1.0, respectively) as compared with their number before therapy (5.7 +/- 0.5 and 5.6 +/- 0.6, respectively). The decreased gastric cell turnover induced by misoprostol indicates that the trophic effect of prostanoids on gastric mucosa is not due to an increase in cellular kinetics. The increased gastric cell turnover induced by cimetidine may contribute to its therapeutic effect in peptic ulcer disease.

  2. Variation in Growth, Colonization of Maize, and Metabolic Parameters of GFP- and DsRed-Labeled Fusarium verticillioides Strains.

    PubMed

    Wu, Lei; Conner, R L; Wang, Xiaoming; Xu, Rongqi; Li, Hongjie

    2016-08-01

    Autofluorescent proteins are frequently applied as visual markers in the labeling of filamentous fungi. Genes gfp and DsRed were transformed into the genome of Fusarium verticillioides via the Agrobacterium tumefaciens-mediated transformation method. The selected transformants displayed a bright green or red fluorescence in all the organelles of the growing fungal mycelia and spores (except for the vacuoles) both in cultures and in the maize (Zea mays) roots they colonized. The results of gene-specific polymerase chain reaction (PCR) analysis and the thermal asymmetrical interlaced (TAIL)-PCR analysis demonstrated that gfp and DsRed were integrated on different chromosomes of the fungus. Reductions in the colony growth on the plates at pH 4.0 and 5.5 was observed for the green fluorescent protein (GFP)-transformant G3 and the DsRed-transformant R4, but transformants G4 and R1 grew as well as the wild-type strain at pH 4.0. The speed of growth of all the transformants was similar to the wild-type strain at pH ≥ 7. The insertion of gfp and DsRed did not alter the production of extracellular enzymes and fumonisin B by F. verticillioides. The transformants expressing GFP and DsRed proteins were able to colonize maize roots. However, the four transformants examined produced fewer CFU in the root samples than the wild-type strain during a sampling period of 7 to 28 days after inoculation. PMID:27088391

  3. [Consideration on high gradient magnetic separation of red cells].

    PubMed

    Iacob, Gh; Ciochină, Al D; Herea, D D; Dimitriu, Cristina; Chiruţă, Roxana; Vieru, Cristina; Stratone, Ana

    2004-01-01

    The red cells exhibit a proper magnetism due to hemoglobin. In a prototype of high gradient magnetic separator equipped with an ordered ferromagnetic matrix, a set of experiments with blood to determine the influence of the process parameters on the efficiency of the erythrocytes capture was realized. Dependent on the values of the magnetic induction (1.76-2.01 T), average blood flow velocity through the matrix (0.55-1.1 mm/s), and stationary time in the matrix, different values of concentration for the red cells in the matrix were obtained. For tests realized with integral blood, the concentration was approximately 20%, while for tests with diluted blood the concentration fluctuated from 14.51% to 29.90%. A blood recirculation through the matrix led to a concentration of 37.86%. The magnetic separation method permits an acceptable red cells concentration, without apparent destructive effects on the cells.

  4. Computational modeling of red blood cells: A symplectic integration algorithm

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Ladd, Anthony J. C.

    2010-03-01

    Red blood cells can undergo shape transformations that impact the rheological properties of blood. Computational models have to account for the deformability and red blood cells are often modeled as elastically deformable objects. We present a symplectic integration algorithm for deformable objects. The surface is represented by a set of marker points obtained by surface triangulation, along with a set of fiber vectors that describe the orientation of the material plane. The various elastic energies are formulated in terms of these variables and the equations of motion are obtained by exact differentiation of a discretized Hamiltonian. The integration algorithm preserves the Hamiltonian structure and leads to highly accurate energy conservation, hence he method is expected to be more stable than conventional finite element methods. We apply the algorithm to simulate the shape dynamics of red blood cells.

  5. Target analysis studies of red cell water and urea transport.

    PubMed

    Dix, J A; Ausiello, D A; Jung, C Y; Verkman, A S

    1985-12-01

    Radiation inactivation was used to determine the nature and molecular weight of water and urea transporters in the human red cell. Red cells were frozen to -50 degrees C in a cryoprotectant solution, irradiated with 1.5 MeV electrons, thawed, washed and assayed for osmotic water and urea permeability by stopped-flow light scattering. The freezing and thawing process did not affect the rates of water or urea transport or the inhibitory potency of p-chloromercuribenzenesulfonate (pCMBS) on water transport and of phloretin on urea transport. Red cell urea transport inactivated with radiation (0-4 Mrad) with a single target size of 469 +/- 36 kDa. 40 microM phloretin inhibited urea flux by approx. 50% at each radiation dose, indicating that urea transporters surviving radiation were inhibitable. Water transport did not inactivate with radiation; however, the inhibitory potency of 2.5 mM pCMBS decreased from 86 +/- 1% to 4 +/- 9% over a 0-2 Mrad dose range. These studies suggest that red cell water transport either required one or more low-molecular-weight proteins, or is lipid-mediated, and that the pCMBS-binding site which regulates water flow inactivates with radiation. These results also suggest that red cell urea transport is mediated by a specific, high-molecular-weight protein. These results do not support the hypothesis that a band 3 dimer (190 kDa) mediates red cell osmotic water and urea transport. PMID:2998469

  6. Retrograde labelling of serotonergic projections onto the neuroendocrine bag cells of Aplysia.

    PubMed

    McPherson, D R; Blankenship, J E

    1991-02-25

    Injection of rhodamine-conjugated latex microspheres into the right bag cell cluster of Aplysia brasiliana yielded retrograde labelling of a small number of cells in the cerebral and abdominal ganglia. Subsequent staining for serotonin immunoreactivity demonstrated consistent double-labelling in specific cerebral and abdominal ganglion serotonergic cells. The double-labelled populations were also stained in vivo by prior treatment with 5,7-dihydroxytryptamine. These retrogradely labelled serotonergic neurons may represent sources of inhibitory input to the neuroendocrine bag cells.

  7. Blood cell labelling. Theory and methods: radiation hazards.

    PubMed

    Trott, N G; Akbari, R B

    1984-02-01

    The chief physical properties of the radionuclide In111 are outlined, and compared with those of three other radionuclides, Tc99m, I131 and Cr51 which have similar applications. It is pointed out that the gamma-rays of In111 are appreciably more penetrating in lead than those of Tc99m and the significance of this, both in the use of shielding on syringes and in the effectiveness of lead glass screens is discussed. Examples are given of the dosimetry for In111 labelled cells in humans and it is noted that the absorbed dose in the spleen per mCi (37 MBq) injected may be some 10 rad (0.1 Gy). The problems that have been noted of damage to cells arising from oxine labelling and now considered to be due to radiation damage are briefly reviewed. PMID:6719926

  8. Morphological changes in neutron irradiated red blood cells.

    PubMed

    Nelson, A C; Wyle, H R

    1985-01-01

    Living human red blood cells (erythrocytes) were irradiated with a beam of thermal neutrons having a thermal neutron flux of 9.4 X 10(9) neutrons/cm2 per sec corresponding to a dose rate of 5 Gray per hour. The neutron beam was obtained from the thermal neutron facility at the MIT Nuclear Reactor and contained some gamma-ray contamination which contributes approximately 8% of the dose effect. Approximately 92% of the dose effect is due to the neutron radiation. Populations of neutron irradiated red blood cells were examined under scanning electron microscopy to observe morphological changes due to the radiation dose. The thermal neutron doses ranged from zero for controls to 75 Gray, and cell populations were examined at various post-irradiation time periods of 10, 48, and 96 h. A four-stage discoid to spheroid shape transformation of the damaged red blood cells was characterized, and the time dependence of each transformation stage was determined for both unirradiated and irradiated cells. The radiation dose caused an initial dose-dependent shift from Stage 1 to Stage 2 with an associated increase in the transformation rate constants. The thermal neutron doses delivered are considered to be in the low dose range for radiation effects on red blood cells, yet the pronounced effects indicate a high relative biological effectiveness (RBE) for thermal neutrons.

  9. Photoacoustic response of suspended and hemolyzed red blood cells

    NASA Astrophysics Data System (ADS)

    Saha, Ratan K.; Karmakar, Subhajit; Roy, Madhusudan

    2013-07-01

    The effect of confinement of hemoglobin molecules on photoacoustic (PA) signal is studied experimentally. The PA amplitudes for samples with suspended red blood cells (SRBCs) and hemolyzed red blood cells (HRBCs) were found to be comparable at each hematocrit for 532 nm illumination. The difference between the corresponding amplitudes increased with increasing hematocrit for 1064 nm irradiation. For example, the PA amplitude for the SRBCs was about 260% higher than that of the HRBCs at 40% hematocrit. This observation may help to develop a PA method detecting hemolysis noninvasively.

  10. Exploratory design in medical nanotechnology: a mechanical artificial red cell.

    PubMed

    Freitas, R A

    1998-07-01

    Molecular manufacturing promises precise control of matter at the atomic and molecular level, allowing the construction of micron-scale machines comprised of nanometer-scale components. Medical nanomachines will be among the earliest applications. The artificial red blood cell or "respirocyte" proposed here is a bloodborne spherical 1-micron diamondoid 1000-atm pressure vessel with active pumping powered by endogenous serum glucose, able to deliver 236 times more oxygen to the tissues per unit volume than natural red cells and to manage carbonic acidity. An onboard nanocomputer and numerous chemical and pressure sensors enable complex device behaviors remotely reprogrammable by the physician via externally applied acoustic signals.

  11. Cell Labeling and Injection in Developing Embryonic Mouse Hearts

    PubMed Central

    Dirschinger, Ralf J.; Evans, Sylvia M.; Puceat, Michel

    2014-01-01

    Testing the fate of embryonic or pluripotent stem cell-derivatives in in vitro protocols has led to controversial outcomes that do not necessarily reflect their in vivo potential. Preferably, these cells should be placed in a proper embryonic environment in order to acquire their definite phenotype. Furthermore, cell lineage tracing studies in the mouse after labeling cells with dyes or retroviral vectors has remained mostly limited to early stage mouse embryos with still poorly developed organs. To overcome these limitations, we designed standard and ultrasound-mediated microinjection protocols to inject various agents in targeted regions of the heart in mouse embryos at E9.5 and later stages of development.  Embryonic explant or embryos are then cultured or left to further develop in utero. These agents include fluorescent dyes, virus, shRNAs, or stem cell-derived progenitor cells. Our approaches allow for preservation of the function of the organ while monitoring migration and fate of labeled and/or injected cells. These technologies can be extended to other organs and will be very helpful to address key biological questions in biology of development. PMID:24797676

  12. Labeling Cytosolic Targets in Live Cells with Blinking Probes

    PubMed Central

    Xu, Jianmin; Chang, Jason; Yan, Qi; Dertinger, Thomas; Bruchez, Marcel; Weiss, Shimon

    2013-01-01

    With the advent of superresolution imaging methods, fast dynamic imaging of biological processes in live cells remains a challenge. A subset of these methods requires the cellular targets to be labeled with spontaneously blinking probes. The delivery and specific targeting of cytosolic targets and the control of the probes’ blinking properties are reviewed for three types of blinking probes: quantum dots, synthetic dyes, and fluorescent proteins. PMID:23930154

  13. Ultra-fast stem cell labelling using cationised magnetoferritin

    NASA Astrophysics Data System (ADS)

    Correia Carreira, S.; Armstrong, J. P. K.; Seddon, A. M.; Perriman, A. W.; Hartley-Davies, R.; Schwarzacher, W.

    2016-03-01

    Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised magnetoferritin did not adversely affect the membrane integrity, proliferation and multi-lineage differentiation capacity of hMSCs, which provides the first detailed evidence for the biocompatibility of magnetoferritin. The combination of synthetic ease and flexibility, the rapidity of labelling and absence of cytotoxicity make this novel nanoparticle system an easily accessible and versatile platform for a range of cell-based therapies in regenerative medicine.Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised

  14. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias.

  15. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    NASA Astrophysics Data System (ADS)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43‑ symmetric stretch vibrations at 959 cm‑1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.

  16. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    PubMed Central

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-01-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43− symmetric stretch vibrations at 959 cm−1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis. PMID:27225821

  17. Label-free cell separation and sorting in microfluidic systems

    PubMed Central

    Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed

    2010-01-01

    Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490

  18. Labeling and imaging cells in the zebrafish hindbrain.

    PubMed

    Jayachandran, Pradeepa; Hong, Elim; Brewster, Rachel

    2010-07-25

    Key to understanding the morphogenetic processes that shape the early vertebrate embryo is the ability to image cells at high resolution. In zebrafish embryos, injection of plasmid DNA results in mosaic expression, allowing for the visualization of single cells or small clusters of cells (1) . We describe how injection of plasmid DNA encoding membrane-targeted Green Fluorescent Protein (mGFP) under the control of a ubiquitous promoter can be used for imaging cells undergoing neurulation. Central to this protocol is the methodology for imaging labeled cells at high resolution in sections and also in real time. This protocol entails the injection of mGFP DNA into young zebrafish embryos. Embryos are then processed for vibratome sectioning, antibody labeling and imaging with a confocal microscope. Alternatively, live embryos expressing mGFP can be imaged using time-lapse confocal microscopy. We have previously used this straightforward approach to analyze the cellular behaviors that drive neural tube formation in the hindbrain region of zebrafish embryos (2). The fixed preparations allowed for unprecedented visualization of cell shapes and organization in the neural tube while live imaging complemented this approach enabling a better understanding of the cellular dynamics that take place during neurulation.

  19. Optofluidic device for label-free cell classification from whole blood.

    PubMed

    Wu, Tsung-Feng; Lo, Yu-Hwa

    2015-01-01

    A unique optofluidic lab-on-a-chip device that can detect optically encoded forward scattering signals is demonstrated. With a unique design of a spatial mask that patterns the intensity distribution of the illuminating light, the position and velocity of each travelling cell in the flow can be measured with submicrometer resolution, which enables the generation of a cell distribution plot over the cross section of the channel. The distribution of cells is highly sensitive to its size and stiffness, both being important biomarkers for cell classification without cell labelling. The optical-coding technique offers an easy route to classify cells based on their size and stiffness. Because the stiffness and size of neutrophils are distinct from other types of white blood cells, the number of neutrophils can be detected from other white blood cells and red blood cells. Above all, the enumeration of neutrophil concentration can be obtained from only 5 μL of human blood with a simple blood preparation process saving the usual steps of anticoagulation, centrifugation, antibody labelling, or filtering. The optofluidic system is compact, inexpensive, and simple to fabricate and operate. The system uses a commodity laser diode and a Si PIN photoreceiver and digital signal processing to extract vital information about cells and suppress the noise from the encoded optical scattering signals. The optofluidic device holds promise to be a point-of-care and home care device to measure neutrophil concentration, which is the key indicator of the immune functions for cancer patients undergoing chemotherapy. PMID:25626540

  20. Dynamic quantitative microscopy and nanoscopy of red blood cells in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2012-03-01

    We have applied wide-field digital interferometric techniques to quantitatively image sickle red blood cells (RBCs) [1] in a noncontact label-free manner, and measure the nanometer-scale fluctuations in their thickness as an indication of their stiffness. The technique can simultaneously measure the fluctuations for multiple spatial points on the RBC and thus yields a map describing the stiffness of each RBC in the field of view. Using this map, the local rigidity regions of the RBC are evaluated quantitatively. Since wide-field digital interferometry is a quantitative holographic imaging technique rather than one-point measurement, it can be used to simultaneously evaluate cell transverse morphology plus thickness in addition to its stiffness profile. Using this technique, we examine the morphology and dynamics of RBCs from individuals who suffer from sickle cell disease, and find that the sickle RBCs are significantly stiffer than healthy RBCs. Furthermore, we show that the technique is sensitive enough to distinguish various classes of sickle RBCs, including sickle RBCs with visibly-normal morphology, compared to the stiffer crescent-shaped sickle RBCs.

  1. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Blood Cells, the volume of the product, accurate to within ±10 percent; or optionally for Platelets, the... Rh blood groups must be printed as follows: (i) Rh positive: Use black print on white background and...) Except for frozen, deglycerolized, or washed Red Blood Cell products, Red Blood Cell labels must...

  2. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Blood Cells, the volume of the product, accurate to within ±10 percent; or optionally for Platelets, the... Rh blood groups must be printed as follows: (i) Rh positive: Use black print on white background and...) Except for frozen, deglycerolized, or washed Red Blood Cell products, Red Blood Cell labels must...

  3. Mesenchymal progenitor cells in red and yellow bone marrow.

    PubMed

    Gurevitch, O; Slavin, S; Resnick, I; Khitrin, S; Feldman, A

    2009-01-01

    Marrow cavities in all bones of newborn mammals contain haematopoietic tissue and stromal microenvironment that support haematopoiesis (haematopoietic microenvironment), known as red bone marrow (BM). From the early postnatal period onwards, the haematopoietic microenvironment, mainly in tubular bones of the extremities, is replaced by mesenchymal cells that accumulate lipid drops, known as yellow BM, whereas haematopoietic tissue gradually disappears. We analysed the ability of mesenchymal cell progenitors in red and yellow BM to produce bone and haematopoietic microenvironment in vivo after transplantation into normal or haematopoietically deficient (irradiated and old) recipients. We found that (1) normal substitution of red with yellow BM results from a gradual loss of mesenchymal stem cells (MSCs) capable of developing bone and haematopoietic microenvironment; (2) the mesenchymal cell population in tubular bones still containing active haematopoietic tissue gradually becomes depleted of MSCs, starting from a young age; (3) haematopoietic microenvironment is incapable of self-maintenance and its renewal depends on the presence of precursor cells; (4) the mesenchymal cell population remaining in areas with yellow BM contains cells able to develop functionally active haematopoietic microenvironment in conditions of haematopoietic insufficiency. Our data also indicate the possible existence of bi-potential stromal precursor cells producing either bone in normal, or bone together with active haematopoietic microenvironment in irradiated or old recipients. This study opens a spectrum of opportunities for the extension of haematopoietic territories by substituting the fat contents of BM cavities with haematopoietic tissue, thereby improving haematopoiesis compromised by cytotoxic treatments, irradiation, ageing, etc.

  4. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein.

    PubMed

    Victoria, E J; Pierce, S W; Branks, M J; Masouredis, S P

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10% (dog, 2.6%; rhesus monkey, 7.4%), consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3. Unlike RBC autoantibodies from antiglobulin-positive normal blood donors

  5. Commercial Nanoparticles for Stem Cell Labeling and Tracking

    PubMed Central

    Wang, Yaqi; Xu, Chenjie; Ow, Hooisweng

    2013-01-01

    Stem cell therapy provides promising solutions for diseases and injuries that conventional medicines and therapies cannot effectively treat. To achieve its full therapeutic potentials, the homing process, survival, differentiation, and engraftment of stem cells post transplantation must be clearly understood. To address this need, non-invasive imaging technologies based on nanoparticles (NPs) have been developed to track transplanted stem cells. Here we summarize existing commercial NPs which can act as contrast agents of three commonly used imaging modalities, including fluorescence imaging, magnetic resonance imaging and photoacoustic imaging, for stem cell labeling and tracking. Specifically, we go through their technologies, industry distributors, applications and existing concerns in stem cell research. Finally, we provide an industry perspective on the potential challenges and future for the development of new NP products. PMID:23946821

  6. Label-free electronic detection of target cells

    NASA Astrophysics Data System (ADS)

    Esfandyarpour, Rahim; Javanmard, Mehdi; Harris, James; Davis, Ronald W.

    2014-03-01

    In this manuscript we describe an electronic label-free method for detection of target cells, which has potential applications ranging from pathogen detection for food safety all the way to detection of circulating tumor cells for cancer diagnosis. The nanoelectronic platform consists of a stack of electrodes separated by a 30nm thick insulating layer. Cells binding to the tip of the sensor result in a decrease in the impedance at the sensing tip due to an increase in the fringing capacitance between the electrodes. As a proof of concept we demonstrate the ability to detect Saccharomyces Cerevisae cells with high specificity using a sensor functionalized with Concanavalin A. Ultimately we envision using this sensor in conjunction with a technology for pre-concentration of target cells to develop a fully integrated micro total analysis system.

  7. Functionalized nanopipettes: toward label-free, single cell biosensors

    PubMed Central

    Actis, Paolo; Mak, Andy C.

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113

  8. Labeling index in squamous cell carcinoma of the larynx

    SciTech Connect

    Balzi, M.; Ninu, B.M.; Becciolini, A.; Scubla, E.; Boanini, P.; Gallina, E.; Gallo, O.; Fini-Storchi, O.; Bondi, R. )

    1991-07-01

    Two cell kinetic parameters, the 3H-thymidine labeling index (TLI) and the mitotic index (MI), were studied in vitro on fragments of squamous cell carcinoma tissue of the larynx. They were evaluated to identify those elements able to characterize the growth of these solid tumors. The values of these parameters were analyzed as a function of the clinical stage and the involvement of the regional lymph nodes. Results showed a statistically significant increase in the TLI from stage T1 to T3. No statistically significant differences in the TLI values were observed between the patients with positive and negative lymph nodes.

  9. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen. PMID:20363780

  10. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen.

  11. Exposure of the Rh0(D) antigen on the surface and cytoplasmic domains of the red cell membrane.

    PubMed Central

    Kleeman, J E; Masouredis, S P; Victoria, E J

    1982-01-01

    Inside-out (IO) and right-side-out (RO) vesicles derived form human red blood cells were tested for their ability to bind 125I-labelled IgG anti-RHO(D). The binding of anti-RHO(D) to RO vesicles from RHO(D)-positive cells was quantitatively similar to that exhibited by intact cells when compared on a membrane surface area basis. There was no significant binding of labelled antibody to IO vesicles from RhO(D)-positive cells or to either RO or IO vesicles derived from RhO(D)-negative cells. The RhO(D) antigen was immunologically accessible on only the plasma side of the membrane in RhO(D)-positive red cells, as has been shown for blood group antigens defined by carbohydrate determinants. No immunologically reactive RhO(D) antigen was present on either RO or IO vesicles derived from RHO(D)-negative red cells. PMID:6799392

  12. Hypoxia, hormones, and red blood cell function in chick embryos.

    PubMed

    Dragon, Stefanie; Baumann, Rosemarie

    2003-04-01

    The red blood cell function of avian embryos is regulated by cAMP. Adenosine A(2A) and beta-adrenergic receptor activation during hypoxic conditions cause changes in the hemoglobin oxygen affinity and CO(2) transport. Furthermore, experimental evidence suggests a general involvement of cAMP in terminal differentiation of avian erythroblasts.

  13. Automated microbiological assay of thiamin in serum and red cells.

    PubMed Central

    Icke, G; Nicol, D

    1994-01-01

    AIMS--To develop a sensitive, direct, automated method for the measurement of serum and red cell thiamin. METHODS--A microbiological assay using a chloramphenicol resistant strain of Lactobacillus fermenti as the test organism was developed. Addition of chloramphenicol and cycloheximide to the assay medium suppressed bacterial and yeast contamination and enabled tests to be automated without recourse to aseptic procedures. Evaluation of the assay included precision analysis and estimation of thiamin recovery. Results obtained on red cell extracts were compared with an established colorimetric (thiochrome) method. RESULTS--Acceptable intrabatch and interbatch precision was obtained and good recovery of thiamin added to serum was obtained. Non-parametric reference ranges based on the results from 505 healthy people were: serum thiamin 11.3-35.0 nmol/l and red cell thiamin 190-400 nmol/l. Results were not age or gender related. The method gave results for red cell thiamin which were significantly higher than those obtained with an established thiochrome method. CONCLUSIONS--This automated microbiological assay is sensitive to 2.0 nmol/l of thiamin and allows tests to be set up at the rate of 100 per hour and after 20-22 hours allows incubation results to be read at 60 per hour. The method has proved reliable, suitable for the assay of large numbers of samples, and relatively inexpensive to perform. PMID:8089221

  14. Full dynamics of a red blood cell in shear flow.

    PubMed

    Dupire, Jules; Socol, Marius; Viallat, Annie

    2012-12-18

    At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenvironment, blood flow may be severely impaired. The nonlinear interplay between cell rheology and flow may generate complex dynamics, which remain largely unexplored experimentally. Under simple shear flow, only two motions, "tumbling" and "tank-treading," have been described experimentally and relate to cell mechanics. Here, we elucidate the full dynamics of red blood cells in shear flow by coupling two videomicroscopy approaches providing multidirectional pictures of cells, and we analyze the mechanical origin of the observed dynamics. We show that contrary to common belief, when red blood cells flip into the flow, their orientation is determined by the shear rate. We discuss the "rolling" motion, similar to a rolling wheel. This motion, which permits the cells to avoid energetically costly deformations, is a true signature of the cytoskeleton elasticity. We highlight a hysteresis cycle and two transient dynamics driven by the shear rate: an intermittent regime during the "tank-treading-to-flipping" transition and a Frisbee-like "spinning" regime during the "rolling-to-tank-treading" transition. Finally, we reveal that the biconcave red cell shape is highly stable under moderate shear stresses, and we interpret this result in terms of stress-free shape and elastic buckling. PMID:23213229

  15. Red blood cell replacement, or nanobiotherapeutics with enhanced red blood cell functions?

    PubMed

    Chang, Thomas Ming Swi

    2015-06-01

    Why is this important? Under normal circumstances, donor blood is the best replacement for blood. However, there are exceptions: During natural epidemics (e.g., HIV, Ebola, etc.) or man-made epidemics (terrorism, war, etc.), there is a risk of donor blood being contaminated, and donors being disqualified because they have contracted disease. Unlike red blood cells (RBCs), blood substitutes can be sterilized to remove infective agents. Heart attack and stroke are usually caused by obstruction of arterial blood vessels. Unlike RBCs, which are particulate, blood substitutes are in the form of a solution that can perfuse through obstructed vessels with greater ease to reach the heart and brain, as has been demonstrated in animal studies. Severe blood loss from injuries sustained during accidents, disasters, or war may require urgent blood transfusion that cannot wait for transportation to the hospital for blood group testing. Unlike RBCs, blood substitutes do not have specific blood groups, and can be administered on the spot. RBCs have to be stored under refrigeration for up to 42 days, and are thus difficult to transport and store in times of disaster and at the battlefront. Blood substitutes can be stored at room temperature for more than 1 year, compared to the RBC shelf life of 1 day, at room temperature. In cases of very severe hemorrhagic shock, there is usually a safety window of 60 min for blood replacement, beyond which there could be problems related to irreversible shock. Animal studies show that a particular type of blood substitute, with enhanced RBC enzymes, may be able to prolong the duration of the safety window.

  16. Red blood cell replacement, or nanobiotherapeutics with enhanced red blood cell functions?

    PubMed

    Chang, Thomas Ming Swi

    2015-06-01

    Why is this important? Under normal circumstances, donor blood is the best replacement for blood. However, there are exceptions: During natural epidemics (e.g., HIV, Ebola, etc.) or man-made epidemics (terrorism, war, etc.), there is a risk of donor blood being contaminated, and donors being disqualified because they have contracted disease. Unlike red blood cells (RBCs), blood substitutes can be sterilized to remove infective agents. Heart attack and stroke are usually caused by obstruction of arterial blood vessels. Unlike RBCs, which are particulate, blood substitutes are in the form of a solution that can perfuse through obstructed vessels with greater ease to reach the heart and brain, as has been demonstrated in animal studies. Severe blood loss from injuries sustained during accidents, disasters, or war may require urgent blood transfusion that cannot wait for transportation to the hospital for blood group testing. Unlike RBCs, blood substitutes do not have specific blood groups, and can be administered on the spot. RBCs have to be stored under refrigeration for up to 42 days, and are thus difficult to transport and store in times of disaster and at the battlefront. Blood substitutes can be stored at room temperature for more than 1 year, compared to the RBC shelf life of 1 day, at room temperature. In cases of very severe hemorrhagic shock, there is usually a safety window of 60 min for blood replacement, beyond which there could be problems related to irreversible shock. Animal studies show that a particular type of blood substitute, with enhanced RBC enzymes, may be able to prolong the duration of the safety window. PMID:26096663

  17. Red blood cell homeostasis: recognition of distinct types of damaged homologous red blood cells by a mouse macrophage cell line.

    PubMed

    Singer, J A; Morrison, M; Walker, W S

    1987-06-01

    The mouse macrophage (M phi) cell line IC-21 preferentially ingests a subpopulation of homologous red blood cells (MRBC) from normal mice. This subpopulation presumably bears the so-called transfusion lesion, a consequence of damage acquired during the drawing and processing of blood. To determine if all damaged MRBC were recognized by a common receptor site on IC-21 M phi, we prepared suspensions of MRBC damaged in vitro by treatment with tannic acid and compared the phagocytic uptake of these cells with those bearing the transfusion lesion. Trypsin treatment of IC-21 M phi rendered them unable to recognize MRBC bearing the transfusion lesion; but it had no effect on the uptake of tannic acid-damaged MRBC, showing that IC-21 M phi have separate recognition sites for these two populations of damaged MRBC. PMID:3474332

  18. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  19. Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax

    PubMed Central

    Zimmerman, Peter A.; Ferreira, Marcelo U.; Howes, Rosalind E.; Mercereau-Puijalon, Odile

    2013-01-01

    Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fya antigen, compared to Fyb, is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria. PMID:23384621

  20. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  1. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. PMID:21503355

  2. Backward elastic light scattering of malaria infected red blood cells

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  3. Computational cell analysis for label-free detection of cell properties in a microfluidic laminar flow.

    PubMed

    Zhang, Alex Ce; Gu, Yi; Han, Yuanyuan; Mei, Zhe; Chiu, Yu-Jui; Geng, Lina; Cho, Sung Hwan; Lo, Yu-Hwa

    2016-06-20

    Although a flow cytometer, being one of the most popular research and clinical tools for biomedicine, can analyze cells based on the cell size, internal structures such as granularity, and molecular markers, it provides little information about the physical properties of cells such as cell stiffness and physical interactions between the cell membrane and fluid. In this paper, we propose a computational cell analysis technique using cells' different equilibrium positions in a laminar flow. This method utilizes a spatial coding technique to acquire the spatial position of the cell in a microfluidic channel and then uses mathematical algorithms to calculate the ratio of cell mixtures. Most uniquely, the invented computational cell analysis technique can unequivocally detect the subpopulation of each cell type without labeling even when the cell type shows a substantial overlap in the distribution plot with other cell types, a scenario limiting the use of conventional flow cytometers and machine learning techniques. To prove this concept, we have applied the computation method to distinguish live and fixed cancer cells without labeling, count neutrophils from human blood, and distinguish drug treated cells from untreated cells. Our work paves the way for using computation algorithms and fluidic dynamic properties for cell classification, a label-free method that can potentially classify over 200 types of human cells. Being a highly cost-effective cell analysis method complementary to flow cytometers, our method can offer orthogonal tests in companion with flow cytometers to provide crucial information for biomedical samples. PMID:27163941

  4. Intracellular energetic units in red muscle cells.

    PubMed Central

    Saks, V A; Kaambre, T; Sikk, P; Eimre, M; Orlova, E; Paju, K; Piirsoo, A; Appaix, F; Kay, L; Regitz-Zagrosek, V; Fleck, E; Seppet, E

    2001-01-01

    The kinetics of regulation of mitochondrial respiration by endogenous and exogenous ADP in muscle cells in situ was studied in skinned cardiac and skeletal muscle fibres. Endogenous ADP production was initiated by addition of MgATP; under these conditions the respiration rate and ADP concentration in the medium were dependent on the calcium concentration, and 70-80% of maximal rate of respiration was achieved at ADP concentration below 20 microM in the medium. In contrast, when exogenous ADP was added, maximal respiration rate was observed only at millimolar concentrations. An exogenous ADP-consuming system consisting of pyruvate kinase (PK; 20-40 units/ml) and phosphoenolpyruvate (PEP; 5 mM), totally suppressed respiration activated by exogenous ADP, but the respiration maintained by endogenous ADP was not suppressed by more than 20-40%. Creatine (20 mM) further activated respiration in the presence of ATP and PK+PEP. Short treatment with trypsin (50-500 nM for 5 min) decreased the apparent K(m) for exogenous ADP from 300-350 microM to 50-60 microM, increased inhibition of respiration by PK+PEP system up to 70-80%, with no changes in MgATPase activity and maximal respiration rates. Electron-microscopic observations showed detachment of mitochondria and disordering of the regular structure of the sarcomere after trypsin treatment. Two-dimensional electrophoresis revealed a group of at least seven low-molecular-mass proteins in cardiac skinned fibres which were very sensitive to trypsin and not present in glycolytic fibres, which have low apparent K(m) for exogenous ADP. It is concluded that, in oxidative muscle cells, mitochondria are incorporated into functional complexes ('intracellular energetic units') with adjacent ADP-producing systems in myofibrils and in sarcoplasmic reticulum, probably due to specific interaction with cytoskeletal elements responsible for mitochondrial distribution in the cell. It is suggested that these complexes represent the basic

  5. Live-cell protein labelling with nanometre precision by cell squeezing

    PubMed Central

    Kollmannsperger, Alina; Sharei, Armon; Raulf, Anika; Heilemann, Mike; Langer, Robert; Jensen, Klavs F.; Wieneke, Ralph; Tampé, Robert

    2016-01-01

    Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy. PMID:26822409

  6. Red/far-red fluorescing DNA-specific anthraquinones for nucl:cyto segmentation and viability reporting in cell-based assays.

    PubMed

    Edward, Roy

    2012-01-01

    The advent and wide use of image-based, high-content screening assay formats demands reliable solutions for cellular compartment segmentation to track critical events-for example, those reported by GFP fusions within cell cycle control pathways, signaling pathways, protein translocations, and those associated with drug-induced toxicity such as mitochondrial membrane depolarization, plasma membrane permeabilization, and reactive oxygen species. To meet this need, a series of nuclear/cytoplasmic discriminating probes has been developed: the supravital dyes DRAQ5™ and CyTRAK Orange™ and most recently the viability dye DRAQ7™. These are all spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. As red/far-red emitting dyes, they provide convenient fluorescent emission signatures which are spectrally separated from the majority of commonly used reporter proteins (e.g., eGFP, YFP, mRFP), and a wide range of fluorescent tags such as Alexafluor 488, fluorescein, and Cy2 and fluorescent functional probes used to report cell health status or demark organellar structures. In addition, they are not excited by UV wavelengths thus avoiding complications of the frequently seen pharmacophore UV-autofluorescence in drug discovery. Conversely, their preferential red excitation reduces interference by biological sample autofluorescence. High water solubility and high-affinity DNA-binding properties provide a convenient means of stoichiometrically labeling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Powerfully, they permit the simultaneous and differential labeling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions, and most recently compound in vitro toxicology testing. In one case, DRAQ7™, the core structure has been chemically

  7. Membranotropic photobiomodulation on red blood cell deformability

    NASA Astrophysics Data System (ADS)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  8. SCF increases in utero-labeled stem cells migration and improves wound healing.

    PubMed

    Zgheib, Carlos; Xu, Junwang; Mallette, Andrew C; Caskey, Robert C; Zhang, Liping; Hu, Junyi; Liechty, Kenneth W

    2015-01-01

    Diabetic skin wounds lack the ability to heal properly and constitute a major and significant complication of diabetes. Nontraumatic lower extremity amputations are the number one complication of diabetic skin wounds. The complexity of their pathophysiology requires an intervention at many levels to enhance healing and wound closure. Stem cells are a promising treatment for diabetic skin wounds as they have the ability to correct abnormal healing. Stem cell factor (SCF), a chemokine expressed in the skin, can induce stem cells migration, however the role of SCF in diabetic skin wound healing is still unknown. We hypothesize that SCF would correct the impairment and promote the healing of diabetic skin wounds. Our results show that SCF improved wound closure in diabetic mice and increased HIF-1α and vascular endothelial growth factor (VEGF) expression levels in these wounds. SCF treatment also enhanced the migration of red fluorescent protein (RFP)-labeled skin stem cells via in utero intra-amniotic injection of lenti-RFP at E8. Interestingly these RFP+ cells are present in the epidermis, stain negative for K15, and appear to be distinct from the already known hair follicle stem cells. These results demonstrate that SCF improves diabetic wound healing in part by increasing the recruitment of a unique stem cell population present in the skin.

  9. Alterations of red cell membrane properties in neuroacanthocytosis.

    PubMed

    Siegl, Claudia; Hamminger, Patricia; Jank, Herbert; Ahting, Uwe; Bader, Benedikt; Danek, Adrian; Gregory, Allison; Hartig, Monika; Hayflick, Susan; Hermann, Andreas; Prokisch, Holger; Sammler, Esther M; Yapici, Zuhal; Prohaska, Rainer; Salzer, Ulrich

    2013-01-01

    Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington's disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. PMID:24098554

  10. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    NASA Astrophysics Data System (ADS)

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-06-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.

  11. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    PubMed Central

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-01-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging. PMID:27339882

  12. Blood volume and red cell life span (M113), part C

    NASA Technical Reports Server (NTRS)

    Johnson, P. C., Jr.

    1973-01-01

    Prechamber, in-chamber, and postchamber blood samples taken from Skylab simulation crewmembers did not indicate significant shortening of the red cell life span during the mission. This does not suggest that the space simulation environment could not be associated with red cell enzyme changes. It does show that any changes in enzymes were not sufficiently great to significantly shorten red cell survival. There was no evidence of bone marrow erythropoetic suppression nor was there any evidence of increased red cell destruction.

  13. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOEpatents

    Bitensky, Mark W.

    1995-01-01

    Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.

  14. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOEpatents

    Bitensky, M.W.

    1995-12-19

    A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.

  15. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  16. Automated microscopy system for detection and genetic characterization of fetal nucleated red blood cells on slides

    NASA Astrophysics Data System (ADS)

    Ravkin, Ilya; Temov, Vladimir

    1998-04-01

    The detection and genetic analysis of fetal cells in maternal blood will permit noninvasive prenatal screening for genetic defects. Applied Imaging has developed and is currently evaluating a system for semiautomatic detection of fetal nucleated red blood cells on slides and acquisition of their DNA probe FISH images. The specimens are blood smears from pregnant women (9 - 16 weeks gestation) enriched for nucleated red blood cells (NRBC). The cells are identified by using labeled monoclonal antibodies directed to different types of hemoglobin chains (gamma, epsilon); the nuclei are stained with DAPI. The Applied Imaging system has been implemented with both Olympus BX and Nikon Eclipse series microscopes which were equipped with transmission and fluorescence optics. The system includes the following motorized components: stage, focus, transmission, and fluorescence filter wheels. A video camera with light integration (COHU 4910) permits low light imaging. The software capabilities include scanning, relocation, autofocusing, feature extraction, facilities for operator review, and data analysis. Detection of fetal NRBCs is achieved by employing a combination of brightfield and fluorescence images of nuclear and cytoplasmic markers. The brightfield and fluorescence images are all obtained with a single multi-bandpass dichroic mirror. A Z-stack of DNA probe FISH images is acquired by moving focus and switching excitation filters. This stack is combined to produce an enhanced image for presentation and spot counting.

  17. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    PubMed Central

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-01-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394

  18. Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin

    2014-08-01

    Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP).

  19. Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Chai; Deng, Yu-Lin; Lin, Yi; Pang, Dai-Wen; Qing, Hong; Qu, Feng; Xie, Hai-Yan

    2008-06-01

    Two new techniques, aptamer-based specific recognition and quantum dot (QD)-based fluorescence labeling, are becoming increasingly important in biosensing. In this study, these two techniques have been coupled together to construct a new kind of fluorescent QD-labeled aptamer (QD-Apt) nanoprobe by conjugating GBI-10 aptamer to the QD surface. GBI-10 is a single-stranded DNA (ssDNA) aptamer for tenascin-C, which distributes on the surface of glioma cells as a dominant extracellular matrix protein. The QD-Apt nanoprobe can recognize the tenascin-C on the human glioma cell surface, which will be helpful for the development of new convenient and sensitive in vitro diagnostic assays for glioma. The QD-Apt nanoprobe has particular features such as strong fluorescence, stability, monodispersity and uniformity. In addition, this probe preparation method is universal, so it is expected to provide a new type of stable nanoprobe for high-throughput and fast biosensing detection and bioimaging. New methods for real-time and dynamic tracking and imaging can be accordingly developed.

  20. Online biomedical resources for malaria-related red cell disorders.

    PubMed

    Piel, Frédéric B; Howes, Rosalind E; Nyangiri, Oscar A; Moyes, Catherine L; Williams, Thomas N; Weatherall, David J; Hay, Simon I

    2013-07-01

    Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed.

  1. Online Biomedical Resources for Malaria-Related Red Cell Disorders

    PubMed Central

    Piel, Frédéric B; Howes, Rosalind E; Nyangiri, Oscar A; Moyes, Catherine L; Williams, Thomas N; Weatherall, David J; Hay, Simon I

    2013-01-01

    Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed. PMID:23568771

  2. Online biomedical resources for malaria-related red cell disorders.

    PubMed

    Piel, Frédéric B; Howes, Rosalind E; Nyangiri, Oscar A; Moyes, Catherine L; Williams, Thomas N; Weatherall, David J; Hay, Simon I

    2013-07-01

    Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed. PMID:23568771

  3. Automation of cross-matching and red cell antibody screening.

    PubMed

    Wattar, B; Lambermont, M; Govaerts, A

    1982-01-01

    This automatic system combines the major cross-match with screening for allo- and autoantibodies. Moreover, the detected antibodies can be identified on a panel of frozen and thawed red blood cells (RBC). The system is made up of two connected samplers, three channels working, respectively, with bromelin PVP, LISP and saline PVP at 4 degrees C, three colorimeters or three red cell autocounters and their recorders. The optimal speed is 50 samples/h and one whole test requires 19 min. Our experience indicates that this automatic system is appreciably more sensitive and much more rapid and efficient than manual techniques. In spite of increased sensitivity, the ratio of rejected bags does not exceed 2.7%. PMID:7090333

  4. Color contrast of red blood cells on solid substrate

    NASA Astrophysics Data System (ADS)

    Paiziev, Adkham A.

    2013-02-01

    In present study we developed the new method of colour visualization of red blood cells without using any chemical staining. The method based on physical phenomena a white light interference on thin transparent films. It is shown that in the case of thin human blood smears colour interference contrast occurs on solid polished substrates. The best contrast shows substrates with maximal refractive index (Mo, W, Si). These materials have been selected as substrate instead of ordinary microscopic slide in reflected light microscopy. It is shown that reflection of incident white light from blood cell surface and boundary cell-substrate generate two coherent lights. The second one (object signal) after passing through red blood cell gathers additional phase and after interference interaction with reference signal (light reflected from outer cell surface) enables cell image in colour. Number of blood smears of healthy persons (control) and patients who were diagnosed with cancer are presented. It is concluded that the offered method may be used as an effective diagnostic tool to detect early stage blood cells lesion by its interference painting in white light. Offered method may be used in research laboratories, hospitals, diagnostic centres, emergency medicine and other as complementary diagnostic tool to present convenient optical and electron microscopy technique.

  5. Characterization of red blood cells (RBCs) using dual Brillouin/Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Bustamante-Lopez, Sandra C.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-04-01

    Erythrocytes, or red blood cells, transport oxygen to and carbon dioxide from the body's tissues and organs. Red blood cell mechanical properties are altered in a number of diseases such as sickle cell anaemia and malaria. Additionally, mechanically modified red blood cell ghosts are being considered as a long-term, biocompatible carrier for drug delivery and for blood analyte sensing. Brillouin spectroscopy enables viscoelastic characterization of samples at the microscale. In this report, Brillouin spectroscopy is applied to characterize the mechanical properties of red blood cells and red blood cell ghosts.

  6. Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    PubMed Central

    El-Sadik, Abir O; El-Ansary, Afaf; Sabry, Sherif M

    2010-01-01

    Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration. PMID:22291483

  7. Cell-selective labelling of proteomes in Drosophila melanogaster

    PubMed Central

    Erdmann, Ines; Marter, Kathrin; Kobler, Oliver; Niehues, Sven; Abele, Julia; Müller, Anke; Bussmann, Julia; Storkebaum, Erik; Ziv, Tamar; Thomas, Ulrich; Dieterich, Daniela C.

    2015-01-01

    The specification and adaptability of cells rely on changes in protein composition. Nonetheless, uncovering proteome dynamics with cell-type-specific resolution remains challenging. Here we introduce a strategy for cell-specific analysis of newly synthesized proteomes by combining targeted expression of a mutated methionyl-tRNA synthetase (MetRS) with bioorthogonal or fluorescent non-canonical amino-acid-tagging techniques (BONCAT or FUNCAT). Substituting leucine by glycine within the MetRS-binding pocket (MetRSLtoG) enables incorporation of the non-canonical amino acid azidonorleucine (ANL) instead of methionine during translation. Newly synthesized proteins can thus be labelled by coupling the azide group of ANL to alkyne-bearing tags through ‘click chemistry'. To test these methods for applicability in vivo, we expressed MetRSLtoG cell specifically in Drosophila. FUNCAT and BONCAT reveal ANL incorporation into proteins selectively in cells expressing the mutated enzyme. Cell-type-specific FUNCAT and BONCAT, thus, constitute eligible techniques to study protein synthesis-dependent processes in complex and behaving organisms. PMID:26138272

  8. My passion and passages with red blood cells.

    PubMed

    Hoffman, Joseph F

    2008-01-01

    This article mainly presents, in sequential panels of time, an overview of my professional involvements and laboratory experiences. I became smitten with red blood cells early on, and this passion remains with me to this day. I highlight certain studies, together with those who performed the work, recognizing that it was necessary to limit the details and the topics chosen for discussion. I am uncertain of the interest a personal account has for others, but at least it's here for the record.

  9. Hemoglobin-based red blood cell substitutes and nitric oxide.

    PubMed

    Yu, Binglan; Bloch, Kenneth D; Zapol, Warren M

    2009-04-01

    Hemoglobin-based oxygen carriers (HBOCs) have been studied for decades as red blood cell substitutes. Profound vasoconstrictor effects have limited the clinical utility of HBOCs and are attributable to avid scavenging of nitric oxide (NO). Inhaling NO can charge the body's stores of NO metabolites without producing hypotension and can prevent systemic hypertension induced when HBOCs are subsequently infused. Concurrent breathing of low NO doses can prevent pulmonary vasoconstriction after HBOC infusion without augmenting plasma methemoglobinemia.

  10. Characterization of the self-rotational motion of stored red blood cells by using optically-induced electrokinetics.

    PubMed

    Liang, Wenfeng; Wang, Yuechao; Zhang, Hemin; Liu, Lianqing

    2016-06-15

    We report a label-free approach toward the object of characterizing the self-rotational motions of red blood cells (RBCs) during storage under the optically-induced electrokinetics-based microfluidics mechanism. A theoretical analysis of the transmembrane potential across RBCs was performed getting a threshold voltage for keeping cellular biological integrity. Then, by investigation of the self-rotational behaviors of the individual RBCs in larger population, the RBCs that were stored more than three weeks statistically showed the distinctive self-rotational speed. Results verified that the self-rotational biomarkers of the RBCs could be used to label-free reckon the qualities of the stored RBCs in this kind of microfluidics chip. This finding may be further developed as a new criterion to real-time and label-free monitoring of the banked blood qualities, thereby diminishing the blood transfusion venture.

  11. Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

  12. Extremes of urine osmolality - Lack of effect on red blood cell survival

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Fleming, J. E.

    1980-01-01

    Rats were allowed a third of normal water intake for 20 days, and food consumption decreased. The reticulocyte count indicated a suppression of erythropoiesis. Urine osmolality increased from 2,000 mosmol/kg to 3,390 mosmol/kg. Random hemolysis and senescence of a cohort of red blood cell (RBC) previously labeled with (2-(C-14)) glycine was monitored via the production of (C-14)O. Neither hemolysis nor senescence was affected. Following water restriction, the polydipsic rats generated a hypotonic urine. Urine osmolality decreased to 1,300 mosmol/kg for at least 6 days; a reticulocytosis occurred, but RBC survival was unaffected. These results contradict those previously reported, which suggest that RBC survival is influenced by the osmotic stress imposed on the RBC by extremes of urine tonicity. This discrepancy, it is concluded, is due to differences in the methods employed for measuring RBC survival. The random-labeling technique employed previously assumes a steady state between RBC production and destruction. The cohort-labeling technique used here measures hemolysis and senescence independent of changes in RBC production, which is known to be depressed by fasting.

  13. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    NASA Astrophysics Data System (ADS)

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-12-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses.

  14. Depletion of membrane skeleton in red blood cell vesicles.

    PubMed Central

    Iglic, A; Svetina, S; Zeks, B

    1995-01-01

    A possible physical interpretation of the partial detachment of the membrane skeleton in the budding region of the cell membrane and consequent depletion of the membrane skeleton in red blood cell vesicles is given. The red blood cell membrane is considered to consist of the bilayer part and the membrane skeleton. The skeleton is, under normal conditions, bound to the bilayer over its whole area. It is shown that, when in such conditions it is in the expanded state, some cell shape changes can induce its partial detachment. The partial detachment of the skeleton from the bilayer is energetically favorable if the consequent decrease of the skeleton expansion energy is larger than the corresponding increase of the bilayer-skeleton binding energy. The effect of shape on the skeleton detachment is analyzed theoretically for a series of the pear class shapes, having decreasing neck diameter and ending with a parent-daughter pair of spheres. The partial detachment of the skeleton is promoted by narrowing of the cell neck, by increasing the lateral tension in the skeleton and its area expansivity modulus, and by diminishing the attraction forces between the skeleton and the bilayer. If the radius of the daughter vesicle is sufficiently small relative to the radius of the parent cell, the daughter vesicle can exist either completely underlaid with the skeleton or completely depleted of the skeleton. PMID:7669905

  15. Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia

    NASA Astrophysics Data System (ADS)

    Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.

    1983-06-01

    A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.

  16. Shape anisotropy induces rotations in optically trapped red blood cells

    NASA Astrophysics Data System (ADS)

    Bambardekar, Kapil; Dharmadhikari, Jayashree A.; Dharmadhikari, Aditya K.; Yamada, Toshihoro; Kato, Tsuyoshi; Kono, Hirohiko; Fujimura, Yuichi; Sharma, Shobhona; Mathur, Deepak

    2010-07-01

    A combined experimental and theoretical study is carried out to probe the rotational behavior of red blood cells (RBCs) in a single beam optical trap. We induce shape changes in RBCs by altering the properties of the suspension medium in which live cells float. We find that certain shape anisotropies result in the rotation of optically trapped cells. Indeed, even normal (healthy) RBCs can be made to rotate using linearly polarized trapping light by altering the osmotic stress the cells are subjected to. Hyperosmotic stress is found to induce shape anisotropies. We also probe the effect of the medium's viscosity on cell rotation. The observed rotations are modeled using a Langevin-type equation of motion that takes into account frictional forces that are generated as RBCs rotate in the medium. We observe good correlation between our measured data and calculated results.

  17. Red blood cell clustering in Poiseuille microcapillary flow

    NASA Astrophysics Data System (ADS)

    Tomaiuolo, Giovanna; Lanotte, Luca; Ghigliotti, Giovanni; Misbah, Chaouqi; Guido, Stefano

    2012-05-01

    Red blood cells (RBC) flowing in microcapillaries tend to associate into clusters, i.e., small trains of cells separated from each other by a distance comparable to cell size. This process is usually attributed to slower RBCs acting to create a sequence of trailing cells. Here, based on the first systematic investigation of collective RBC flow behavior in microcapillaries in vitro by high-speed video microscopy and numerical simulations, we show that RBC size polydispersity within the physiological range does not affect cluster stability. Lower applied pressure drops and longer residence times favor larger RBC clusters. A limiting cluster length, depending on the number of cells in a cluster, is found by increasing the applied pressure drop. The insight on the mechanism of RBC clustering provided by this work can be applied to further our understanding of RBC aggregability, which is a key parameter implicated in clotting and thrombus formation.

  18. Training the next generation analyst using red cell analytics

    NASA Astrophysics Data System (ADS)

    Graham, Meghan N.; Graham, Jacob L.

    2016-05-01

    We have seen significant change in the study and practice of human reasoning in recent years from both a theoretical and methodological perspective. Ubiquitous communication coupled with advances in computing and a plethora of analytic support tools have created a push for instantaneous reporting and analysis. This notion is particularly prevalent in law enforcement, emergency services and the intelligence community (IC), where commanders (and their civilian leadership) expect not only a birds' eye view of operations as they occur, but a play-by-play analysis of operational effectiveness. This paper explores the use of Red Cell Analytics (RCA) as pedagogy to train the next-gen analyst. A group of Penn State students in the College of Information Sciences and Technology at the University Park campus of The Pennsylvania State University have been practicing Red Team Analysis since 2008. RCA draws heavily from the military application of the same concept, except student RCA problems are typically on non-military in nature. RCA students utilize a suite of analytic tools and methods to explore and develop red-cell tactics, techniques and procedures (TTPs), and apply their tradecraft across a broad threat spectrum, from student-life issues to threats to national security. The strength of RCA is not always realized by the solution but by the exploration of the analytic pathway. This paper describes the concept and use of red cell analytics to teach and promote the use of structured analytic techniques, analytic writing and critical thinking in the area of security and risk and intelligence training.

  19. Monoclonal gammopathy-associated pure red cell aplasia.

    PubMed

    Korde, Neha; Zhang, Yong; Loeliger, Kelsey; Poon, Andrea; Simakova, Olga; Zingone, Adriana; Costello, Rene; Childs, Richard; Noel, Pierre; Silver, Samuel; Kwok, Mary; Mo, Clifton; Young, Neal; Landgren, Ola; Sloand, Elaine; Maric, Irina

    2016-06-01

    Pure red cell aplasia (PRCA) is a rare disorder characterized by inhibition of erythroid precursors in the bone marrow and normochromic, normocytic anaemia with reticulocytopenia. Among 51 PRCA patients, we identified 12 (24%) patients having monoclonal gammopathy, monoclonal gammopathy of undetermined significance or smouldering multiple myeloma, with presence of monoclonal protein or abnormal serum free light chains and atypical bone marrow features of clonal plasmacytosis, hypercellularity and fibrosis. Thus far, three patients treated with anti-myeloma based therapeutics have responded with reticulocyte recovery and clinical transfusion independence, suggesting plasma cells play a key role in the pathogenesis of this specific monoclonal gammopathy-associated PRCA. PMID:26999424

  20. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    NASA Astrophysics Data System (ADS)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  1. Dealcoholated red wine induces autophagic and apoptotic cell death in an osteosarcoma cell line.

    PubMed

    Tedesco, I; Russo, M; Bilotto, S; Spagnuolo, C; Scognamiglio, A; Palumbo, R; Nappo, A; Iacomino, G; Moio, L; Russo, G L

    2013-10-01

    Until recently, the supposed preventive effects of red wine against cardiovascular diseases, the so-called "French Paradox", has been associated to its antioxidant properties. The interest in the anticancer capacity of polyphenols present in red wine strongly increased consequently to the enormous number of studies on resveratrol. In this study, using lyophilized red wine, we present evidence that its anticancer effect in a cellular model is mediated by apoptotic and autophagic cell death. Using a human osteosarcoma cell line, U2Os, we found that the lyophilized red wine was cytotoxic in a dose-dependent manner with a maximum effect in the range of 100-200 μg/ml equivalents of gallic acid. A mixed phenotype of types I/II cell death was evidenced by means of specific assays following treatment of U2Os with lyophilized red wine, e.g., autophagy and apoptosis. We found that cell death induced by lyophilized red wine proceeded through a mechanism independent from its anti-oxidant activity and involving the inhibition of PI3K/Akt kinase signaling. Considering the relative low concentration of each single bioactive compound in lyophilized red wine, our study suggests the activation of synergistic mechanism able to inhibit growth in malignant cells.

  2. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells

    PubMed Central

    Dalmark, Mads; Wieth, Jens Otto

    1972-01-01

    1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of 36Cl- efflux from radioactively labelled cells. Between 0 and 10° C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole. 2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0·2% of the value found in a chloride medium. 3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above. 4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0·4% of the rate of chloride self-exchange found in the chloride medium. 5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride. 6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged. 7. The self-exchange of salicylate across the human red cell membrane occurred by a

  3. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    PubMed

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  4. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    PubMed Central

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage. PMID:25206807

  5. Leukocyte transport by red blood cells in a microvessel

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan

    2009-11-01

    A simulation model is used to study the transport of relatively large, spherical, and stiff white blood cells (leukocytes) by the relatively smaller and highly flexible red cell as they flow in the microcirculation. Their interaction dynamics are thought to be an important component of the inflammation response, in which leukocytes bind to the walls of blood vessels. The red cells are modeled in the simulations as highly deformable three-dimensional shells encasing a Newtonian fluid, and the viscous-flow equation is solved via a boundary integral formulation in which the cell shapes discretized by global spectral basis functions. For slow flow rates, it is found that the leukocyte is predominantly adjacent the vessel walls, whereas for faster flow rates this configuration appears to become unstable and the leukocyte traverses the whole vessel in a seemingly random fashion. For the straight round tubes simulated thus far, the stable leukocyte stand-off distance is always beyond the range of the binding molecules that capture it, which suggests that vessel inhomogeneities or interactions with other white cells are needed to create contact and thereby binding with the vessel walls.

  6. Flow of Red Blood Cells in Stenosed Microvessels

    PubMed Central

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  7. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  8. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    PubMed

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used.

  9. Changes in En(a-) human red blood cell membranes during in vivo ageing.

    PubMed

    Shinozuka, T; Miyata, Y; Takei, S; Yoshida, R; Ogamo, A; Nakagawa, Y; Kuroda, N; Yanagida, J

    1996-01-01

    The human red blood cells with phenotype En(a-) were characterized by the lack of MN antigens. The red blood cells with phenotype En(a-) which were found in a Japanese family were tested to clarify the changes in membrane surfaces of the red blood cells during in vivo ageing. The contents of sialic acid, glucose, mannose, galactose, fucose, N-acetylglucosamine and N-acetylgalactosamine of the red blood cell membranes obtained from the old red blood cells with phenotype En(a-) were significantly lower than those of the young red blood cell membranes. Neither the young nor the old red blood cells with phenotype En(a-) showed the agglutination with Arachis hypogaea (PNA) which was capable of binding to T agglutinogen. It is presumed that En(a-) red blood cells are not exposed to sialidase in vivo. In comparison with the young En(a-) red blood cell membranes, the number and the distribution density of lectin receptor sites on the old ones for Limulus polyphemus (LPA), Canavalia ensiformis (Con A), Triticum vulgaris (WGA) and Bauhinia purpurea (BPA) were significantly lower. It is thought that En(a-) red blood cell ageing is accompanied by elimination of some sialoglycoconjugates which have affinity for LPA, Con A, WGA and BPA, whereas En(a-) red blood cells lack glycophorin A. PMID:8866734

  10. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking.

    PubMed

    Kim, Saejeong J; Lewis, Bobbi; Steiner, Mark-Steven; Bissa, Ursula V; Dose, Christian; Frank, Joseph A

    2016-01-01

    To develop effective stem cell therapies, it is important to track therapeutic cells non-invasively and monitor homing to areas of pathology. The purpose of this study was to design and evaluate the labeling efficiency of commercially available dextran-coated superparamagnetic iron oxide nanoparticles, FeraTrack Direct (FTD), in various stem and immune cells; assess the cytotoxicity and tolerability of the FTD in stem cells; and monitor stem cell homing using FTD-labeled bone-marrow-derived mesenchymal stromal cells (BMSCs) and neural stem cells (NSCs) in a tumor model by in vivo MRI. BMSCs, NSCs, hematopoietic stem cells (HSCs), T-lymphocytes, and monocytes were labeled effectively with FTD without the need for transfection agents, and Prussian blue (PB) staining and transmission electron microscopy (TEM) confirmed intracellular uptake of the agent. The viability, proliferation, and functionality of the labeled cells were minimally or not affected after labeling. When 10(6) FTD-labeled BMSCs or NSCs were injected into C6 glioma bearing nude mice, the cells homing to the tumors were detected as hypointense regions within the tumor using 3 T clinical MRI up to 10 days post injection. Histological analysis confirmed the homing of injected cells to the tumor by the presence of PB positive cells that are not macrophages. Labeling of stem cells or immune cells with FTD was non-toxic, and should facilitate the translation of this agent to clinical trials for evaluation of trafficking of cells by MRI.

  11. Diffusional solute flux during osmotic water flow across the human red cell membrane.

    PubMed

    Brahm, J; Galey, W R

    1987-05-01

    The effect of solvent drag on the unidirectional efflux of labeled water, urea, and chloride from human red cells was studied by means of the continuous flow tube method under conditions of osmotic equilibrium and net volume flow. Solvent (water) flow out of cells was created by mixing cells equilibrated in 100 mM salt solution with a 200-mM or 250-mM salt solution, while flow of water into cells was obtained by equilibrating the cells in the higher concentration and mixing them with the 100-mM solution. Control experiments constitute measurements of efflux of [14C]ethanol in normal cells and 3H2O in cells treated with p-chloromercuribenzosulfonate under the conditions described above. In both instances, the solute is known to penetrate the membrane through nonporous pathways. As anticipated, the tracer flux of neither urea nor chloride showed any dependence on net solvent flow, regardless of the direction. If one assumes the recently reported reflection coefficient for urea of 0.7, the urea tracer flux should change by at least 24% under volume flow conditions. Since such changes would be easily detected with our method, we conclude that the pathways for water, for urea, and for chloride are functionally separated. PMID:3037007

  12. Determination of Urea Permeability in Red Cells by Minimum Method

    PubMed Central

    Sha'afi, R. I.; Rich, G. T.; Mikulecky, D. C.; Solomon, A. K.

    1970-01-01

    A new method has been developed for measuring the permeability coefficient, ω, of small nonelectrolytes. The method depends upon a mathematical analysis of the time course of cell volume changes in the neighborhood of the minimum volume following addition of a permeating solute to an isosmolal buffer. Coefficients determined by the minimum volume method agree with those obtained using radioactive tracers. ω for urea in human red cells was found to decrease as the volume flow, Jv, into the cell increased. Such behavior is entirely unexpected for a single uniform rate-limiting barrier on the basis of the linear phenomenological equations derived from irreversible thermodynamics. However, the present findings are consonant with a complex membrane system consisting of a tight barrier on the outer face of the human red cell membrane and a somewhat less restrictive barrier behind it closer to the inner membrane face. A theoretical analysis of such a series model has been made which makes predictions consistent with the experimental findings. PMID:5435779

  13. Red cell glycolytic enzyme disorders caused by mutations: an update.

    PubMed

    Climent, Fernando; Roset, Feliu; Repiso, Ada; Pérez de la Ossa, Pablo

    2009-06-01

    Glycolysis is one of the principle pathways of ATP generation in cells and is present in all cell tissues; in erythrocytes, glycolysis is the only pathway for ATP synthesis since mature red cells lack the internal structures necessary to produce the energy vital for life. Red cell deficiencies have been detected in all erythrocyte glycolytic pathways, although their frequencies differ owing to diverse causes, such as the affected enzyme and severity of clinical manifestations. The number of enzyme deficiencies known is endless. The most frequent glycolysis abnormality is pyruvate kinase deficiency, since around 500 cases are known, the first of which was reported in 1961. However, only approximately 200 cases were due to mutations. In contrast, only one case of phosphoglycerate mutase BB type mutation, described in 2003, has been detected. Most mutations are located in the coding sequences of genes, while others, missense, deletions, insertions, splice defects, premature stop codons and promoter mutations, are also frequent. Understanding of the crystal structure of enzymes permits molecular modelling studies which, in turn, reveal how mutations can affect enzyme structure and function. PMID:19519368

  14. Full-field velocity imaging of red blood cells in capillaries with spatiotemporal demodulation autocorrelation

    NASA Astrophysics Data System (ADS)

    Wang, Mingyi; Zeng, Yaguang; Dong, Nannan; Liao, Riwei; Yang, Guojian

    2016-03-01

    We propose a full-field optical method for the label-free and quantitative mapping of the velocities of red blood cells (RBCs) in capillaries. It integrates spatiotemporal demodulation and an autocorrelation algorithm, and measures RBC velocity according to the ratio of RBC length to lag time. Conventionally, RBC length is assumed to be a constant and lag time is taken as a variable, while our method treats both of them as variables. We use temporal demodulation and the Butterworth spatial filter to separate RBC signal from background signal, based on which we obtain the RBC length by image segmentation and lag time by autocorrelation analysis. The RBC velocity calculated now is more accurate. The validity of our method is verified by an in vivo experiment on a mouse ear. Owing to its higher image signal-to-noise ratio, our method can be used for mapping RBC velocity in the turbid tissue case.

  15. Deformation of red blood cells using acoustic radiation forces

    PubMed Central

    Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter

    2014-01-01

    Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070

  16. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    PubMed

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells. PMID:26013297

  17. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    PubMed

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  18. Long-term effect of vital labelling on mixed Schwann cell cultures.

    PubMed

    Mosahebi, A; Woodward, B; Green, C; Martin, R; Terenghi, G

    2000-06-01

    Schwann cell transplantation following neuronal injury could encourage regeneration of spinal cord as well as improving peripheral nerve gap repair. In order to gain a better understanding of the role of transplanted Schwann cells in vivo, it is essential to be able to follow their behaviour after transplantation. Our aim was to evaluate the suitability of two vital fluorescent labels on the proliferation rate and phenotypic stability of Schwann cells, in either pure culture or mixed co-culture. Primary cultures of Schwann cells were obtained from Dark Agouti and Lewis neonatal rats and labelled with H33342 and PKH26, respectively. In mixed cultures, a 50: 50 mixture of Dark Agouti and Lewis Schwann cells was present. Labelled cultured cells were examined at 1, 2 and 4 weeks for viability and phenotypic marker expression of S100, GFAP, p75, MHC I, MHC II and compared with corresponding unlabelled cells. The results showed that although there was no deleterious interaction in the mixed cultures, the viability was reduced by the labelling after 2 weeks. Labelled cells could be distinguished up to 4 weeks, but there was leakage of H33342 label after 2 weeks. Labelled Schwann cells showed reduced expression of phenotypic markers, especially p75 when labelled with H33342. In conclusion, H33342 and PKH26 can be used as fluorescent markers of Schwann cells for short-term studies, for a maximum of 2 weeks, but different markers may be needed for longer experiments.

  19. Blood bank issues associated with red cell exchanges in sickle cell disease.

    PubMed

    Sarode, Ravindra; Altuntas, Fevzi

    2006-12-01

    Sickle cell disease (SCD) patients are prone to develop complications that include stroke, acute chest syndrome, and other crises. Some of these complications require chronic transfusion therapy or red cell exchange (RCE), either for therapeutic or prophylactic reasons. Due to a discrepancy of red cell antigens between African Americans and Caucasians (majority blood donors), the incidence of alloantibody formation is very high, which makes it difficult to find compatible red cell units, especially for urgent RCE. Some of the above conditions require immediate oxygen delivery to the tissues. Thus, SCD patients undergoing RCE should receive red blood cells with special attributes that include matching for Rh and Kell blood group antigens; RBCs should be fresh in order to provide (1) immediate oxygen delivery and (2) longer surviving cells to reduce the interval between RCE. Also, these units should be pre-storage leukoreduced to prevent febrile non-hemolytic reactions and screened for sickle cell traits to avoid transfusing red cells containing HbS. This requires a concerted effort between the apheresis unit, the local blood bank, and the central blood supplier. PMID:17177280

  20. 99mTc red blood cell scintigraphy in evaluating focal liver lesions

    SciTech Connect

    Rabinowitz, S.A.; McKusick, K.A.; Strauss, H.W.

    1984-07-01

    To determine the accuracy of blood-pool imaging in the diagnosis of hepatic hemangiomas, 39 patients with various focal hepatic lesions were studied. The diagnoses in these patients were made by biopsy, angiography, surgical exploration, or clinical stability for a minimum of 14 months. The diagnoses were: hemangiomas (13 patients), hepatoma (three), metastases (19), abscesses (two), and liver cysts (two). After modified in vivo labeling of red blood cells with 20 mCi (740 MBq) of 99mTc pertechnetate, an initial flow study and early (1-15 min) and delayed (1-2 hr) static images were obtained. Increased blood-pool activity with a discordant flow pattern was seen in 11 of 13 patients with hemangiomas. False-negative scans occurred in two hemangiomas with extensive fibrosis. Two of three hepatomas had increased blood-pool activity associated with increased flow in a pattern identical to the increased blood-pool activity. None of the metastatic, abscess, or cystic lesions had increased blood-pool activity at any time after injection. It is concluded that 99mTc red blood cell imaging can distinguish hemangiomas from other focal liver lesions.

  1. /sup 99m/Tc red blood cell scintigraphy in evaluating focal liver lesions

    SciTech Connect

    Rabinowitz, S.A.; McKusick, K.A.; Strauss, H.W.

    1984-07-01

    To determine the accuracy of blood-pool imaging in the diagnosis of hepatic hemangiomas, 39 patients with various focal hepatic lesions were studied. The diagnoses in these patients were made by biopsy, angiography, surgical exploration, or clinical stability for a minimum of 14 months. The diagnoses were: hemangiomas (13 patients), hepatoma (three), metastases (19), abscesses (two), and liver cysts (two). After modified in vivo labeling of red blood cells with 20 mCi (740 MBq) of /sup 99m/Tc pertechnetate, an initial flow study and early (1-15 min) and delayed (1-2 hr) static images were obtained. Increased blood-pool activity with a discordant flow pattern was seen in 11 of 13 patients with hemangiomas. False-negative scans occurred in two hemangiomas with extensive fibrosis. None of the metastatic, abscess, or cystic lesions had increased blood-pool activity at any time after injection. It is concluded that /sup 99m/Tc red blood cell imaging can distinguish hemangiomas from other focal liver lesions.

  2. Glutaraldehyde fixation of sodium transport in dog red blood cells

    SciTech Connect

    Parker, J.C.

    1984-11-01

    The large increase in passive Na flux that occurs when dog red blood cells are caused to shrink is amiloride sensitive and inhibited when Cl is replaced by nitrate or thiocyanate. Activation and deactivation of this transport pathway by manipulation of cell volume is reversible. Brief treatment of the cells with 0.01-0.03% glutaraldehyde can cause the shrinkage-activated transporter to become irreversibly activated or inactivated, depending on the volume of the cells at the time of glutaraldehyde exposure. Thus, if glutaraldehyde is applied when the cells are shrunken, the amiloride-sensitive Na transporter is activated and remains so regardless of subsequent alterations in cell volume. If the fixative is applied to swollen cells, no amount of subsequent shrinkage will turn on the Na pathway. In its fixed state, the activated transporter is fully amiloride sensitive, but it is no longer inhibited when Cl is replaced by thiocyanate. The action of glutaraldehyde thus allows one to dissect the response to cell shrinkage into two phases. Activation of the pathway is affected by anions and is not prevented by amiloride. Once activated and fixed, the anion requirement disappears. Amiloride inhibits movement of Na through the activated transporter. These experiments demonstrate how a chemical cross-linking agent may be used to study the functional properties of a regulable transport pathway.

  3. Automatic analysis of microscopic images of red blood cell aggregates

    NASA Astrophysics Data System (ADS)

    Menichini, Pablo A.; Larese, Mónica G.; Riquelme, Bibiana D.

    2015-06-01

    Red blood cell aggregation is one of the most important factors in blood viscosity at stasis or at very low rates of flow. The basic structure of aggregates is a linear array of cell commonly termed as rouleaux. Enhanced or abnormal aggregation is seen in clinical conditions, such as diabetes and hypertension, producing alterations in the microcirculation, some of which can be analyzed through the characterization of aggregated cells. Frequently, image processing and analysis for the characterization of RBC aggregation were done manually or semi-automatically using interactive tools. We propose a system that processes images of RBC aggregation and automatically obtains the characterization and quantification of the different types of RBC aggregates. Present technique could be interesting to perform the adaptation as a routine used in hemorheological and Clinical Biochemistry Laboratories because this automatic method is rapid, efficient and economical, and at the same time independent of the user performing the analysis (repeatability of the analysis).

  4. Transport of diseased red blood cells in the spleen

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Pivkin, Igor; Dao, Ming

    2012-11-01

    A major function of the spleen is to remove old and diseased red blood cells (RBCs) with abnormal mechanical properties. We investigated this mechanical filtering mechanism by combining experiments and computational modeling, especially for red blood cells in malaria and sickle cell disease (SCD). First, utilizing a transgenic line for 3D confocal live imaging, in vitro capillary assays and 3D finite element modeling, we extracted the mechanical properties of both the RBC membrane and malaria parasites for different asexual malaria stages. Secondly, using a non-invasive laser interferometric technique, we optically measured the dynamic membrane fluctuations of SCD RBCs. By simulating the membrane fluctuation experiment using the dissipative particle dynamics (DPD) model, we retrieved mechanical properties of SCD RBCs with different shapes. Finally, based on the mechanical properties obtained from these experiments, we simulated the full fluid-structure interaction problem of diseased RBCs passing through endothelial slits in the spleen under different fluid pressure gradients using the DPD model. The effects of the mechanical properties of the lipid bilayer, the cytoskeleton and the parasite on the critical pressure of splenic passage of RBCs were investigated separately. This work is supported by NIH and Singapore-MIT Alliance for Science and Technology (SMART).

  5. Vibrational modes of hemoglobin in red blood cells.

    PubMed

    Martel, P; Calmettes, P; Hennion, B

    1991-02-01

    Equine red blood cells were washed in saline heavy water (2H2O) to exchange the hydrogen atoms of the non-hemoglobin components with deuterons. This led to novel neutron scattering measurements of protein vibrations within a cellular system and permitted a comparison with inelastic neutron scattering measurements on purified horse hemoglobin, either dry or wetted with 2H2O. As a function of wavevector transfer Q and the frequency transfer v the neutron response typified by the dynamic structure factor S(Q, v) was found to be similar for extracted and cellular hemoglobin at low and high temperatures. At 77 K, in the cells, a peak in S(Q, v) due to the protein was found near 0.7 THz, approximately half the frequency of a strong peak in the aqueous medium. Measurements at higher temperatures (170 and 230 K) indicated similar small shifts downwards in the peak frequencies of both components. At 260 K the low frequency component became predominantly quasielastic, but a significant inelastic component could still be ascribed to the aqueous scattering. Near 295 K the frequency responses of both components were similar and centered near zero. When scattering due to water is taken into account it appears that the protein neutron response in, or out of, red blood cells is little affected by hydration in the low frequency regime where Van der Waals forces are thought to be effective. PMID:1849028

  6. The nature of multiphoton fluorescence from red blood cells

    NASA Astrophysics Data System (ADS)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  7. Sodium-dependent magnesium uptake by ferret red cells.

    PubMed Central

    Flatman, P W; Smith, L M

    1991-01-01

    1. Magnesium uptake can be measured in ferret red cells incubated in media containing more than 1 mM-magnesium. Uptake is substantially increased if the sodium concentration in the medium is reduced. 2. Magnesium uptake is half-maximally activated by 0.37 mM-external magnesium when the external sodium concentration is 5 mM. Increasing the external sodium concentration increases the magnesium concentration needed to activate the system. 3. Magnesium uptake is increased by reducing the external sodium concentration. Uptake is half-maximum at sodium concentrations of 17, 22 and 62 nM when the external magnesium concentrations are 2, 5 and 10 mM respectively. 4. Replacement of external sodium with choline does not affect the membrane potential of ferret red cells over a 45 min period. 5. Magnesium uptake from media containing 5 mM-sodium is inhibited by amiloride, quinidine and imipramine. It is not affected by ouabain or bumetanide. Vanadate stimulates magnesium uptake but has no effect on magnesium efflux. 6. When cell ATP content is reduced to 19 mumol (1 cell)-1 by incubating cells for 3 h with 2-deoxyglucose, magnesium uptake falls by 50% in the presence of 5 mM-sodium and is completely abolished in the presence of 145 mM-sodium. Some of the inhibition may be due to the increase in intracellular ionized magnesium concentration ([Mg2+]i) from 0.7 to 1.0 mM which occurs under these conditions. 7. Magnesium uptake can be driven against a substantial electrochemical gradient if the external sodium concentration is reduced sufficiently. 8. These findings are discussed in terms of several possible models for magnesium transport. It is concluded that the majority of magnesium uptake observed in low-sodium media is via sodium-magnesium antiport. A small portion of uptake is through a parallel leak pathway. It is believed that the antiport is responsible for maintaining [Mg2+]i below electrochemical equilibrium in these cells at physiological external sodium concentration

  8. Utilization and quality of cryopreserved red blood cells in transfusion medicine.

    PubMed

    Henkelman, S; Noorman, F; Badloe, J F; Lagerberg, J W M

    2015-02-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized. PMID:25471135

  9. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  10. Enhanced detection of fluorescence quenching in labeled cells

    DOEpatents

    Crissman, Harry A.; Steinkamp, John A.

    1992-01-01

    A method is provided for quantifying BrdU labeled DNA in cells. The BrdU is incorporated into the DNA and the DNA is stained with a first fluorochrome having a fluorescence which is quenchable by BrdU. The first fluorochrome is preferably a thymidine base halogen analogue, such as a Hoechst fluorochrome. The DNA is then stained with a second fluorochrome having a fluorescence that is substantially uneffected by BrdU. The second fluorochrome may be selected from the group consisting of mithramycin, chromomycin A3, olivomycin, propidium iodide and ethidium bromine. The fluorescence from the first and second fluorochromes is then measured to obtain first and second output signals, respectively. The first output signal is substracted from the second output signal to obtain a difference signal which is functionally related to the quantity of BrdU incorporated into DNA. The technique is particularly useful for quantifying the synthesis of DNA during the S-phase of the cell cycle.

  11. Enhanced detection of fluorescence quenching in labeled cells

    DOEpatents

    Crissman, H.A.; Steinkamp, J.A.

    1987-11-30

    A method is provided for quantifying BrdU labeled DNA in cells. The BrdU is substituted onto the DNA and the DNA is stained with a first fluorochrome having a fluorescence which is quenchable by BrdU. The first fluorochrome is preferably a thymidine base halogen analogue, such as a Hoechst fluorochrome. The DNA is then stained with a second fluorochrome having a fluorescence which is substantially uneffected by BrdU. The second fluorochrome may be selected from the group consisting of mithramycin, chromomycin A3, olivomycin, propidium iodide and ethidium bromine. The fluorescence from the first and second fluorochromes is then measured to obtain first and second output signals, respectively. The first output signal is subtracted from the second output signal to obtain a difference signal which is functionally related to the quantity of BrdU incorporated into DNA. The technique is particularly useful for quantifying the synthesis of DNA during the S-phase of the cell cycle. 2 figs.

  12. Chaotic dynamics of red blood cells in oscillating shear flow

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Cordasco, Daniel

    2015-11-01

    A 3D computational study of deformable red blood cells in dilute suspension and subject to sinusoidally oscillating shear flow is considered. It is observed that the cell exhibits either a periodic motion or a chaotic motion. In the periodic motion, the cell reverses its orientation either about the flow direction or about the flow gradient, depending on the initial conditions. In certain parameter range, the initial conditions are forgotten and the cells become entrained in the same sequence of horizontal reversals. The chaotic dynamics is characterized by a nonperiodic sequence of horizontal and vertical reversals, and swings. The study provides the first conclusive evidence of the chaotic dynamics of fully deformable cells in oscillating flow using a deterministic numerical model without the introduction of any stochastic noise. An analysis of the chaotic dynamics shows that chaos is only possible in certain frequency bands when the cell membrane can rotate by a certain amount allowing the cells to swing near the maximum shear rate. We make a novel observation that the occurrence of the vertical or horizontal reversal depends only on whether a critical angle, that is independent of the flow frequency, is exceeded at the instant of flow reversal.

  13. Identification of Putative Bovine Mammary Epithelial Stem Cells by Their Retention of Labeled DNA Strands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem cells characteristically retain labeled DNA for extended periods due to their selective segregation of template DNA strands during mitosis. In this study, proliferating cells in the prepubertal bovine mammary gland were labeled using five daily-injections of 5-bromo-2-deoxyuridine (BrdU). Fiv...

  14. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  15. Labeling of human mesenchymal stem cell: Comparison between paramagnetic and superparamagnetic agents

    NASA Astrophysics Data System (ADS)

    Yang, Chung-Yi; Tai, Ming-Fong; Chen, Shin-Tai; Wang, Yi-Ting; Chen, Ya-Fang; Hsiao, Jong-Kai; Wang, Jaw-Lin; Liu, Hon-Man

    2009-04-01

    Paramagnetic and superparamagnetic substances are used to trace stem cell in living organisms under magnetic resonance imaging (MRI). We compared paramagnetic and superparamagnetic substance for their labeling efficiency by using clinically widely used gadolinium chelates and iron oxide nanoparticles. Without the aid of transfection agent, human mesenchymal stem cells were labeled with each agent separately in different concentration and the optimized concentration was determined by maintaining same cell viability as unlabeled cells. Iron oxide nanoparticle labeling has a detecting threshold of 12 500 cells in vitro, while gadolinium chelates labeling could be detected for at least 50 000 cells. In life animal study, we found there is an eightfold sensitivity in cells labeled with iron oxide superparamagnetic nanoparticles; however, the magnetic susceptibility artifact would obscure the detail of adjacent anatomical structures. We conclude that labeling stem cells with superparamagnetic substance is more efficacious. However, the cells labeled by superparamagnetic nanoparticles might interfere with the interpretation of anatomical structure. These findings would be beneficial to applications of magnetic substances toward stem cell biology and tissue engineering.

  16. Tension of red blood cell membrane in simple shear flow

    NASA Astrophysics Data System (ADS)

    Omori, T.; Ishikawa, T.; Barthès-Biesel, D.; Salsac, A.-V.; Imai, Y.; Yamaguchi, T.

    2012-11-01

    When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in a simple shear flow and the resulting elastic tensions on the membrane. The large deformation of the red blood cell is modelled by coupling a finite element method to solve the membrane mechanics and a boundary element method to solve the flows of the internal and external liquids. Depending on the capillary number Ca, ratio of the viscous to elastic forces, we observe three kinds of RBC motion: tumbling at low Ca, swinging at larger Ca, and breathing at the transitions. In the swinging regime, the region of the high principal tensions periodically oscillates, whereas that of the high isotropic tensions is almost unchanged. Due to the strain-hardening property of the membrane, the deformation is limited but the membrane tension increases monotonically with the capillary number. We have quantitatively compared our numerical results with former experimental results. It indicates that a membrane isotropic tension O(10-6 N/m) is high enough for molecular release from RBCs and that the typical maximum membrane principal tension for haemolysis would be O(10-4 N/m). These findings are useful to clarify not only the membrane rupture but also the mechanotransduction of RBCs.

  17. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones.

    PubMed

    Lodish, Harvey; Flygare, Johan; Chou, Song

    2010-07-01

    This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages.

  18. Red blood cell extrudes nucleus and mitochondria against oxidative stress.

    PubMed

    Zhang, Zhong-Wei; Cheng, Jian; Xu, Fei; Chen, Yang-Er; Du, Jun-Bo; Yuan, Ming; Zhu, Feng; Xu, Xiao-Chao; Yuan, Shu

    2011-07-01

    Mammal red blood cells (erythrocytes) contain neither nucleus nor mitochondria. Traditional theory suggests that the presence of a nucleus would prevent big nucleated erythrocytes to squeeze through these small capillaries. However, nucleus is too small to hinder erythrocyte deformation. And, there is no sound reason to abandon mitochondria for the living cells. Here, we found that mammal erythrocyte reactive oxygen species (ROS) levels kept stable under diabetes, ischemia reperfusion, and malaria conditions or in vitro sugar/heme treatments, whereas bird erythrocyte ROS levels increased dramatically in these circumstances. Nuclear and mitochondrial extrusion may help mammal erythrocytes to better adapt to high-sugar and high-heme conditions by limiting ROS generation. PMID:21698761

  19. Anisotropic light scattering of individual sickle red blood cells

    NASA Astrophysics Data System (ADS)

    Kim, Youngchan; Higgins, John M.; Dasari, Ramachandra R.; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  20. Retrograde labeling, enrichment, and characterization of retinal ganglion cells from the neonatal rat.

    PubMed

    Sarthy, P V; Curtis, B M; Catterall, W A

    1983-12-01

    We have developed a method for labeling retinal ganglion cells in neonatal rats by retrograde transport of the fluorescent dye, True Blue (TB), injected into the optic chiasm. Following proteolytic dissociation of labeled retinas into single cells, the labeled cells could be enriched 50- to 100-fold by centrifugation in a 5%/10% metrizamide gradient. When plated in Ham's F-10 medium in the presence of fetal calf serum and chick optic tectum-conditioned medium, the labeled cells could be maintained in vitro up to 48 hr. In these cultures, the ganglion cells (GCS) constituted 50 to 70% of the total cell population. When GC-rich fractions or GC cultures were stained with a monoclonal antibody to Thy-1 antigen, greater than 90% of the TB-labeled cells were reactive. In order to localize voltage-sensitive sodium channels, GC-rich cultures were reacted with 125I-scorpion toxin. Analysis of the autoradiograms showed that the density of silver grains was about 10-fold higher on TB-labeled cells than on nonfluorescent cells, or in controls which contained excess of unlabeled toxin. When GC cultures were incubated with micromolar concentrations of putative GC transmitters, aspartate and glutamate, the amino acids were accumulated by 15 to 20% of labeled cells. Several lectin receptors were also localized on TB-labeled cells in situ. Whereas the lectins wheat germ agglutinin, concanavalin A, peanut agglutinin, Dolichos biflorus agglutinin, and Limulus polyphemus agglutinin bound to TB-labeled cells, others such as Ricinus communis agglutinin I, Ulex, and Lotus lectins showed no binding. The lectin binding was specific since preincubation with the appropriate hapten sugar blocked lectin binding.

  1. Cell Labeling and Tracking Method without Distorted Signals by Phagocytosis of Macrophages

    PubMed Central

    Kang, Sun-Woong; Lee, Sangmin; Na, Jin Hee; Yoon, Hwa In; Lee, Dong-Eun; Koo, Heebeom; Cho, Yong Woo; Kim, Sun Hwa; Jeong, Seo Young; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2014-01-01

    Cell labeling and tracking are important processes in understanding biologic mechanisms and the therapeutic effect of inoculated cells in vivo. Numerous attempts have been made to label and track inoculated cells in vivo; however, these methods have limitations as a result of their biological effects, including secondary phagocytosis of macrophages and genetic modification. Here, we investigated a new cell labeling and tracking strategy based on metabolic glycoengineering and bioorthogonal click chemistry. We first treated cells with tetra-acetylated N-azidoacetyl-D-mannosamine to generate unnatural sialic acids with azide groups on the surface of the target cells. The azide-labeled cells were then transplanted to mouse liver, and dibenzyl cyclooctyne-conjugated Cy5 (DBCO-Cy5) was intravenously injected into mice to chemically bind with the azide groups on the surface of the target cells in vivo for target cell visualization. Unnatural sialic acids with azide groups could be artificially induced on the surface of target cells by glycoengineering. We then tracked the azide groups on the surface of the cells by DBCO-Cy5 in vivo using bioorthogonal click chemistry. Importantly, labeling efficacy was enhanced and false signals by phagocytosis of macrophages were reduced. This strategy will be highly useful for cell labeling and tracking. PMID:24578725

  2. Skeleton deformation of red blood cells during tank treading motions

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli

    2012-11-01

    By coupling a fluid-structure interaction algorithm with a three-level multiscale structural model, we simulate the tank treading responses of erythrocytes (red blood cells, or RBC) in shear flows. The fluid motion is depicted within the Stokes-flow framework, and is mathematically formulated with the boundary integral equations. The structural model takes into account the flexible connectivity between the lipid bilayer and the protein skeleton as well as the viscoelastic responses. The concentration of this study is on the transient process involving the development of the local area deformation of the protein skeleton. Under the assumption that the protein skeleton is stress-free in the natural biconcave configuration, our simulations indicate the following properties: (1) During tank treading motions it takes long time for significant area deformations to establish. For cells with diminished connectivity between the lipid bilayer and the protein skeleton (e.g. cells with mutations or defects), the relaxation time will be greatly reduced; (2) Deformations of the skeleton depend on the initial orientation of the cell with respect to the incoming flow; (3) The maximum area expansion occurs around the regions corresponding to the dimples in the original biconcave state; (4) Oscillations in cell geometry (breathing) and orientation (e.g. swinging) are observed. This work was supported by the National Heart, Lung, and Blood Institute under award number R01HL092793.

  3. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    SciTech Connect

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  4. Measuring skewness of red blood cell deformability distribution by laser ektacytometry

    SciTech Connect

    Nikitin, S Yu; Priezzhev, A V; Lugovtsov, A E; Ustinov, V D

    2014-08-31

    An algorithm is proposed for measuring the parameters of red blood cell deformability distribution based on laser diffractometry of red blood cells in shear flow (ektacytometry). The algorithm is tested on specially prepared samples of rat blood. In these experiments we succeeded in measuring the mean deformability, deformability variance and skewness of red blood cell deformability distribution with errors of 10%, 15% and 35%, respectively. (laser biophotonics)

  5. Research opportunities in loss of red blood cell mass in space flight

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.; Fisher, K. D.

    1985-01-01

    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.

  6. A model for oxygen-dependent backscattering spectroscopic contrast from single red blood cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Yi, Ji; Chen, Siyu; Zhang, Hao F.; Backman, Vadim

    2016-03-01

    The oxygen-dependent absorption of hemoglobin provides the fundamental contrast for all label-free techniques measuring blood oxygenation. When hemoglobin is packaged into red blood cells (RBCs), the structure of the cells creates light scattering which also depends on the absorption based on the Kramers-Kronig relationship. Thus a proper characterization of the optical behaviors of blood has been a key to any accurate measurement of blood oxygenation, particularly at the capillary level where RBCs are dispersed individually in contrast to a densely packed whole blood. Here we provided a theoretical model under Born Approximation to characterize the oxygen dependent backscattering spectroscopic contrast from single RBCs. Using this theoretical model, we conducted simulations on both oxygenated and deoxygenated single RBCs with different sizes for standard and possible deformed cell geometries in blood flow, all which suggested similar backscattering spectroscopic contrast and were confirmed by Mie Theory and experiments using visible Optical Coherence Tomography (visOCT). As long as the cell size satisfies Gaussian distribution with a coefficient variance (C.V.) large enough, there is clear absorption contrast between the backscattering spectra of oxygenated and deoxygenated single RBCs calculated by this model, so oxygen saturation can then be characterized. Thus, this theoretical model can be extended to extract absorption features of other scattering particles as long as they satisfy Born Approximation.

  7. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes.

    PubMed

    Melikyan, G B; White, J M; Cohen, F S

    1995-11-01

    Under fusogenic conditions, fluorescent dye redistributed from the outer monolayer leaflet of red blood cells (RBCs) to cells expressing glycophosphatidylinositol-anchored influenza virus hemagglutinin (GPI-HA) without transfer of aqueous dye. This suggests that hemifusion, but not full fusion, occurred (Kemble, G. W., T. Danieli, and J. M. White. 1994. Cell. 76:383-391). We extended the evidence for hemifusion by labeling the inner monolayer leaflets of RBCs with FM4-64 and observing that these inner leaflets did not become continuous with GPI-HA-expressing cells. The region of hemifusion-separated aqueous contents, the hemifusion diaphragm, appeared to be extended and was long-lived. But when RBCs hemifused to GPI-HA-expressing cells were osmotically swollen, some diaphragms were disrupted, and spread of both inner leaflet and aqueous dyes was observed. This was characteristic of full fusion: inner leaflet and aqueous probes spread to cells expressing wild-type HA (wt-HA). By simultaneous video fluorescence microscopy and time-resolved electrical admittance measurements, we rigorously demonstrated that GPI-HA-expressing cells hemifuse to planar bilayer membranes: lipid continuity was established without formation of fusion pores. The hemifusion area became large. In contrast, for cells expressing wt-HA, before lipid dye spread, fusion pores were always observed, establishing that full fusion occurred. We present an elastic coupling model in which the ectodomain of wt-HA induces hemifusion and the transmembrane domain, absent in the GPI-HA-expressing cells, mediates full fusion. PMID:7593189

  8. FM dyes label sterol-rich plasma membrane domains and are internalized independently of the cytoskeleton in characean internodal cells.

    PubMed

    Klima, Andreas; Foissner, Ilse

    2008-10-01

    We applied the endocytic markers FM1-43, FM4-64 and filipin to internodal cells of the green alga Chara corallina. Both FM dyes stained stable, long-living plasma membrane patches with a diameter of up to 1 microm. After 5 min, FM dyes labeled cortical, trembling structures up to 500 nm in size. After 15 min, FM dyes localized to endoplasmic organelles up to 1 microm in diameter, which migrated actively along actin bundles or participated in cytoplasmic mass streaming. After 30-60 min, FM fluorescence appeared in the membrane of small, endoplasmic vacuoles but not in that of the central vacuole. Some of the FM-labeled organelles were also stained by neutral red and lysotracker yellow, indicative of acidic compartments. Filipin, a sterol-specific marker, likewise labeled plasma membrane domains which co-localized with the FM patches. However, internalization of filipin could not be observed. KCN, cytochalasin D, latrunculin B and oryzalin had no effect on size, shape and distribution of FM- and filipin-labeled plasma membrane domains. Internalization of FM dyes was inhibited by KCN but not by drugs which interfere with the actin or microtubule cytoskeleton. Our data indicate that the plasma membrane of characean internodal cells contains discrete domains which are enriched in sterols and probably correspond to clusters of lipid rafts. The inhibitor experiments suggest that FM uptake is active but independent of actin filaments, actin polymerization and microtubules. The possible function of the sterol-rich, FM labeled plasma membrane areas and the significance of actin-independent FM internalization (via endocytosis or energy-dependent flippases) are discussed.

  9. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    PubMed Central

    Ariza de Schellenberger, Angela; Kratz, Harald; Farr, Tracy D; Löwa, Norbert; Hauptmann, Ralf; Wagner, Susanne; Taupitz, Matthias; Schnorr, Jörg; Schellenberger, Eyk A

    2016-01-01

    Sensitive cell detection by magnetic resonance imaging (MRI) is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP) and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP) designed by our department for magnetic particle imaging (MPI) with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC) by MRI. We achieved an average intracellular nanoparticle (NP) load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP-uptake-dependent biocompatibility studies and cell detection by MRI and future MPI. Additionally, using a 7 T MR imager equipped with a cryocoil resulted in approximately two times higher detection. In conclusion, we established labeling conditions for new high-relaxivity MCP, VSOP, and Resovist® for improved MRI of MSC with single-cell sensitivity. PMID:27110112

  10. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity.

    PubMed

    Ariza de Schellenberger, Angela; Kratz, Harald; Farr, Tracy D; Löwa, Norbert; Hauptmann, Ralf; Wagner, Susanne; Taupitz, Matthias; Schnorr, Jörg; Schellenberger, Eyk A

    2016-01-01

    Sensitive cell detection by magnetic resonance imaging (MRI) is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP) and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP) designed by our department for magnetic particle imaging (MPI) with discontinued Resovist(®) regarding their suitability for detection of single mesenchymal stem cells (MSC) by MRI. We achieved an average intracellular nanoparticle (NP) load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist(®) in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP-uptake-dependent biocompatibility studies and cell detection by MRI and future MPI. Additionally, using a 7 T MR imager equipped with a cryocoil resulted in approximately two times higher detection. In conclusion, we established labeling conditions for new high-relaxivity MCP, VSOP, and Resovist(®) for improved MRI of MSC with single-cell sensitivity. PMID:27110112

  11. Determination of single and repeated red cell volumes by the indicator dilution method using carbon monoxide as the indicator

    SciTech Connect

    Fukui, M.; Shigemi, K. )

    1989-11-01

    The use of radioactive isotopes limits clinical applications of blood volume measurement in the ICU. We measured red cell volumes with carbon monoxide-labeled RBC in six dogs and five human volunteers. The measured values obtained on the dogs were compared with the simultaneous measurements with the {sup 51}Cr method; the ratio of the carbon monoxide to {sup 51}Cr values ranged from 0.86 to 1.17, and the mean ratio was 1.0 +/- 0.1 (SD), r = .93. We infer from these results that the carbon monoxide method has several advantages over the {sup 51}Cr method: (a) the short labeling time (about 1 min), (b) rapidly decreasing background levels of carbon monoxide with FIO2 1.0, and (c) repeatability at intervals of several hours.

  12. Direct detection of red blood cell fragments: a new flow cytometric method to evaluate hemolysis in blood pumps.

    PubMed

    Linneweber, J; Chow, T W; Takano, T; Maeda, T; Nonaka, K; Schulte-Eistrup, S; Kawahito, S; Elert, O; Moake, J L; Nosé, Y

    2001-01-01

    Pump induced hemolysis is presently evaluated by measuring plasma free hemoglobin (fHb). However, this method has disadvantages because quantification of fHb depends on hematocrit (HCT) and hemoglobin (Hb) levels. The aim of this work was to devise a hemoglobin independent method, capable of quantifying cell trauma directly by measuring the number of red blood cell (RBC) fragments. Whole blood flow cytometry was used to quantify circulating RBC fragments derived from a roller pump (Sarns, Inc. Model 2 M 6,002) and a centrifugal pump (Gyro C1E3, Kyocera Corp.). The pumps were tested in a mock circuit for 2 hr (5 L/min flow against 100 mm Hg pressure head). Red blood cell fragments were quantified by a phycoerythrin (PE) labeled glycophorin A antibody specific for erythrocytes. Red blood cell fragments were smaller than the intact RBC population and overlapped in size with the platelet population (based on forward- and side-light scattering measurements). For the roller pump, the values for RBC fragments increased from 1,090 +/- 260/microl at 0 min to 14,880 +/- 5,900/microl after 120 min. In contrast, using the centrifugal pump, there was little increase in RBC fragments (from 730 +/- 270/microl at 0 min to 1,400 +/- 840/microl after 120 min). Flow cytometry can be used for the rapid, sensitive, hemoglobin independent evaluation of pump induced RBC trauma.

  13. Dynamic deformability of sickle red blood cells in microphysiological flow

    PubMed Central

    Alapan, Y.; Matsuyama, Y.; Little, J. A.; Gurkan, U. A.

    2016-01-01

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell’s aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. PMID:27437432

  14. Modeling of Red Blood Cells and Related Spleen Function

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Pivkin, Igor; Dao, Ming

    2011-11-01

    A key function of the spleen is to clear red blood cells (RBCs) with abnormal mechanical properties from the circulation. These abnormal mechanical properties may be due to RBC aging or RBC diseases, e.g., malaria and sickle cell anemia. Specifically, 10% of RBCs passing through the spleen are forced to squeeze into the narrow slits between the endothelial cells, and stiffer cells which get stuck are killed and digested by macrophages. To investigate this important physiological process, we employ three different approaches to study RBCs passage through these small slits, including analytical theory, Dissipative Particle Dynamics (DPD) simulation and Multiscale Finite Element Method (MS-FEM). By applying the analytical theory, we estimate the critical limiting geometries RBCs can pass. By using the DPD method, we study the full fluid-structure interaction problem, and compute RBC deformation under different pressure gradients. By employing the MS-FEM approach, we model the lipid bilayer and the cytoskeleton as two distinct layers, and focus on the cytoskeleton deformation and the bilayer-skeleton interaction force at the molecular level. Finally the results of these three approaches are compared to each other and correlated to the experimental observations.

  15. Labeling of Single Cells in the Central Nervous System of Drosophila melanogaster

    PubMed Central

    Rickert, Christof; Kunz, Thomas; Harris, Kerri-Lee; Whitington, Paul; Technau, Gerhard

    2013-01-01

    In this article we describe how to individually label neurons in the embryonic CNS of Drosophila melanogaster by juxtacellular injection of the lipophilic fluorescent membrane marker DiI. This method allows the visualization of neuronal cell morphology in great detail. It is possible to label any cell in the CNS: cell bodies of target neurons are visualized under DIC optics or by expression of a fluorescent genetic marker such as GFP. After labeling, the DiI can be transformed into a permanent brown stain by photoconversion to allow visualization of cell morphology with transmitted light and DIC optics. Alternatively, the DiI-labeled cells can be observed directly with confocal microscopy, enabling genetically introduced fluorescent reporter proteins to be colocalised. The technique can be used in any animal, irrespective of genotype, making it possible to analyze mutant phenotypes at single cell resolution. PMID:23486245

  16. Fluorescent liposomes to probe how DOTAP lipid concentrations can change red blood cells homeostasis

    NASA Astrophysics Data System (ADS)

    Matos, Anna L. L.; Pereira, Goreti; Santos, Beate S.; Fontes, Adriana

    2015-06-01

    Liposomes have been used to deliver DNA, drugs and, more recently, nanoparticles such as quantum dots, into living cells. Their electrostatic interaction with cell's surface (negatively charged) can lead to membrane destabilization and/or fusion, facilitating intracellular release of those compounds. Nevertheless, cationic lipids can modify living cells homeostasis, depending on their concentration. In this study, we observed that the DOTAP cationic lipid concentrations influence the red blood cells (RBCs) homeostasis. We used fluorescent fusogenic liposomes composed by three lipids: DOPE, DOTAP and DPPE-Rhodamine (1:0.1/0.3/0.5/0.8/1:0.1 mM respectively), varying DOTAP from 0.1 to 1 mM. To probe liposomes ability to fuse with cells, RBCs (1% in saline) were utilized. Liposomes were characterized by zeta potential, dynamic light scattering (DLS), fluorescence and transmission electron microscopy. Their interaction with RBCs was evaluated by fluorescence microscopy and flow cytometry. Zeta potential results showed that, from 0.1 to 1 mM concentration, the charge increases, due to the addition of DOTAP. Liposomes' diameter does not vary significantly when more DOTAP was added, except for the one containing 0.1 mM of DOTAP, according to DLS results. Flow cytometry and microscopy analysis showed that for all DOTAP' concentration applied, the liposomes were capable to label RBCs. However, as higher the amount of DOTAP in liposomes, the more harmful they were to cells. Thus, the results showed that it is possible to use lower concentrations of DOTAP keeping the fusogenic liposomes's ability and cell homeostasis. This is important to guarantee a greater efficiency in the delivery of nanoparticles or other active samples into cells.

  17. P2X and P2Y receptor signaling in red blood cells

    PubMed Central

    Sluyter, Ronald

    2015-01-01

    Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology. PMID:26579528

  18. Concise Review: Production of Cultured Red Blood Cells from Stem Cells

    PubMed Central

    2012-01-01

    In the Western world, the volunteer-based collection system covers most transfusion needs, but transient shortages regularly develop and blood supplies are vulnerable to potentially major disruptions. The production of cultured red blood cells from stem cells is slowly emerging as a potential alternative. The various cell sources, the niche applications most likely to reach the clinic first, and some of the remaining technical issues are reviewed here. PMID:23283554

  19. Acquired pure red cell aplasia: updated review of treatment

    PubMed Central

    Sawada, Kenichi; Fujishima, Naohito; Hirokawa, Makoto

    2008-01-01

    Pure red cell aplasia (PRCA) is a syndrome characterized by a severe normocytic anaemia, reticulocytopenia, and absence of erythroblasts from an otherwise normal bone marrow. Primary PRCA, or secondary PRCA which has not responded to treatment of the underlying disease, is treated as an immunologically-mediated disease. Although vigorous immunosuppressive treatments induce and maintain remissions in a majority of patients, they carry an increased risk of serious complications. Corticosteroids were used in the treatment of PRCA and this has been considered the treatment of first choice although relapse is not uncommon. Cyclosporine A (CsA) has become established as one of the leading drugs for treatment of PRCA. However, common concerns have been the number of patients treated with CsA who achieve sustained remissions and the number that relapse. This article reviews the current status of CsA therapy and compares it to other treatments for diverse PRCAs. PMID:18510682

  20. Plasma and red blood cell fatty acids in peroxisomal disorders.

    PubMed

    Moser, A B; Jones, D S; Raymond, G V; Moser, H W

    1999-02-01

    The demonstration of abnormal levels of fatty acids or plasmalogens in plasma or red blood cells is key to the diagnosis of peroxisomal disorders. We report the levels of 62 fatty acids and plasmalogens in patients with X-linked adrenoleukodystrophy (X-ALD), Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD), both at baseline and after dietary interventions. "Lorenzo's Oil" therapy in X-ALD normalizes the levels of saturated very long chain fatty acids in plasma, but leads to reduced levels of omega 6 and other omega 3 fatty acids, and requires monitoring and appropriate dietary supplements. Patients with ZS, NALD and IRD have reduced levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) which can be normalized by the oral administration of microencapsulated DHA and AA.

  1. Pure red cell aplasia following autoimmune hemolytic anemia: an enigma.

    PubMed

    Saha, M; Ray, S; Kundu, S; Chakrabarti, P

    2013-01-01

    A 26-year-old previously healthy female presented with a 6-month history of anemia. The laboratory findings revealed hemolytic anemia and direct antiglobulin test was positive. With a diagnosis of autoimmune hemolytic anemia (AIHA), prednisolone was started but was ineffective after 1 month of therapy. A bone marrow trephine biopsy revealed pure red cell aplasia (PRCA) showing severe erythroid hypoplasia. The case was considered PRCA following AIHA. This combination without clear underlying disease is rare. Human parvovirus B19 infection was not detected in the marrow aspirate during reticulocytopenia. The patient received azathioprine, and PRCA improved but significant hemolysis was once again documented with a high reticulocyte count. The short time interval between AIHA and PRCA phase suggested an increased possibility of the evolution of a single disease.

  2. Autoimmune Hemolytic Anemia and Red Blood Cell Autoantibodies.

    PubMed

    Quist, Erin; Koepsell, Scott

    2015-11-01

    Autoimmune hemolytic anemia is a rare disorder caused by autoreactive red blood cell (RBC) antibodies that destroy RBCs. Although autoimmune hemolytic anemia is rare, RBC autoantibodies are encountered frequently and can complicate transfusion workups, impede RBC alloantibody identification, delay distribution of compatible units, have variable clinical significance that ranges from benign to life-threatening, and may signal an underlying disease or disorder. In this review, we discuss the common presenting features of RBC autoantibodies, laboratory findings, ancillary studies that help the pathologist investigate the clinical significance of autoantibodies, and how to provide appropriate patient care and consultation for clinical colleagues. Pathologists must be mindful of, and knowledgeable about, this entity because it not only allows for direct clinical management but also can afford an opportunity to preemptively treat an otherwise silent malignancy or disorder.

  3. Mobility Enhancement of Red Blood Cells with Biopolymers

    NASA Astrophysics Data System (ADS)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  4. SEM analysis of red blood cells in aged human bloodstains.

    PubMed

    Hortolà, P

    1992-08-01

    Mammal red blood cells (RBC) in bloodstains have been previously detected by light microscopy on stone tools from as early as 100,000 +/- 25,000 years ago. In order to evaluate the degree of morphological preservation of erythrocytes in bloodstains, an accidental human blood smear on white chert and several experimental bloodstains on hard substrates (the same stone-white chert; another type of stone-graywacke; a non-stone support-stainless steel), were stored in a room, in non-sterile and fluctuating conditions, for lengths of time ranging from 3 to 18 months. Afterwards, the specimens were coated with gold and examined by a Cambridge Stereoscan 120 scanning electron microscope. Results revealed a high preservation of RBC integrity, with the maintenance of several discocytary shapes, a low tendency to echinocytosis and a frequent appearance of a moon-like erythrocytary shape in the thinner areas of the bloodstains. PMID:1398371

  5. Magnetic nanoparticle effects on the red blood cells

    NASA Astrophysics Data System (ADS)

    Creangă, D. E.; Culea, M.; Nădejde, C.; Oancea, S.; Curecheriu, L.; Racuciu, M.

    2009-05-01

    In vitro tests on magnetite colloidal nanoparticles effects upon animal red blood cells were carried out. Magnetite cores were stabilized with citric acid in the form of biocompatible magnetic fluid administrated in different dilutions in the whole blood samples. The hemolysis extent was found increased up to 2.75 in horse blood and respectively up to 2.81 in the dog blood. The electronic transitions assigned to the heme group were found shifted with about 500 cm-1 or, respectively, affected by supplementary vibronic structures. The Raman vibrations assigned to oxyhemoglobin were much diminished in intensity probably due to the bonding of OH group from citrate shell to the heme iron ion.

  6. Synthesis of a fluorine-18 labeled hypoxic cell sensitizer

    SciTech Connect

    Jerabek, P.A.; Dischino, D.D.; Kilbourn, M.R.; Welch, M.J.

    1984-01-01

    The objective of this work was to synthesize a positron emitting radiosensitizing agent as a potential in vivo marker of hypoxic regions within tumors, and ischemic areas of the heart and brain. The method involved radiochemical synthesis of fluorine-18 labeled 1-(2-nitro-imidazolyl)-3-fluoro-2-propanol via nucleophilic ring opening of 1-(2,3-epoxypropyl)2-nitro-imidzole by fluorine-18 labeled tetrabutylammonium fluoride (TBAF). Fluroine-18 TBAF was prepared by the exchange reaction of TBAF with aqueous flourine-18 produced by proton bombardment of enriched oxygen-18 water. The aqueous solution was evaporated carefully by azeotropic distillation with acetonitrile. The fluorine-18 labeled TBAF was taken up in N,N-dimethylacetamide or dimethysulfoxide, then reacted with the episode at 60C for 30 minutes. Separation and identification of the fluorine-18 labeled products by high performance liquid chromatography showed a radioactive peak with a retention time identical to that of 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol and a second radioactive peak with a retention time three minutes longer in addition to unreacted fluorine-18 labeled TBAF. The second radioactive peak may represent fluorine-18 labeled 1-2-nitro-1-imidazolyl)-2-fluoro-3-propanol. The average radiochemical yield from reactions run in N,N-dimethylacetamide using 20 micromoles of TBAF and 1-2 mg of the epoxide was l7% in a synthesis time of about 40 minutes. The synthesis of fluorohydrins by the reaction of fluorine-18 labeled TBAF on epoxides represents a new method for the preparation of fluorine-18 labeled fluorohydrins.

  7. Anemia and red blood cell transfusion in neurocritical care

    PubMed Central

    Kramer, Andreas H; Zygun, David A

    2009-01-01

    Introduction Anemia is one of the most common medical complications to be encountered in critically ill patients. Based on the results of clinical trials, transfusion practices across the world have generally become more restrictive. However, because reduced oxygen delivery contributes to 'secondary' cerebral injury, anemia may not be as well tolerated among neurocritical care patients. Methods The first portion of this paper is a narrative review of the physiologic implications of anemia, hemodilution, and transfusion in the setting of brain-injury and stroke. The second portion is a systematic review to identify studies assessing the association between anemia or the use of red blood cell transfusions and relevant clinical outcomes in various neurocritical care populations. Results There have been no randomized controlled trials that have adequately assessed optimal transfusion thresholds specifically among brain-injured patients. The importance of ischemia and the implications of anemia are not necessarily the same for all neurocritical care conditions. Nevertheless, there exists an extensive body of experimental work, as well as human observational and physiologic studies, which have advanced knowledge in this area and provide some guidance to clinicians. Lower hemoglobin concentrations are consistently associated with worse physiologic parameters and clinical outcomes; however, this relationship may not be altered by more aggressive use of red blood cell transfusions. Conclusions Although hemoglobin concentrations as low as 7 g/dl are well tolerated in most critical care patients, such a severe degree of anemia could be harmful in brain-injured patients. Randomized controlled trials of different transfusion thresholds, specifically in neurocritical care settings, are required. The impact of the duration of blood storage on the neurologic implications of transfusion also requires further investigation. PMID:19519893

  8. Pure red cell aplasia secondary to treatment with erythropoietin.

    PubMed

    Locatelli, Francesco; Del Vecchio, Lucia

    2003-01-01

    Pure red cell aplasia (PRCA) is a rare condition defined as severe anemia secondary to the virtual absence of red blood cell precursors in the bone marrow. In the setting of patients treated with rHuEPO, the disease is generated by epoetin-induced antibodies that neutralise all the exogenous rHuEPO and cross-react with endogenous erythropoietin. As a result, serum erythropoietin levels are undetectable and erythropoiesis becomes ineffective. Only 4 cases of PRCA associated with rh-EPO have been reported before 1998. Thereafter, a sharp increase in the incidence of this rare condition has been reported, mainly associated with epoetin alpha use outside the United States. A number of possible mechanisms leading to PRCA development have been identified. Among these, modification of drug formulation and down stream processing probably has had a major role. Indeed, in 1998 the formulation of epoetin alpha in Europe was modified because of the fear of the "mad cow" syndrome. However, differences in molecule structure and glycosylation among different epoetins can not be excluded. It should also be underlined that the rise in the incidence of PRCA cases has been coincident with a major shift from intravenous to subcutaneous administration of rHuEPO. The abrupt rise in the incidence of PRCA cases observed in the last few years, deserves particular attention; however, we have to balance its severity, but extreme rarity, with the high number of chronic kidney disease patients who die each year because of cardiovascular disease that could partially be reduced by anemia treatment. PMID:14696747

  9. GABAergic and glycinergic pathways to goldfish retinal ganglion cells: an ultrastructural double label study

    SciTech Connect

    Muller, J.F.

    1987-01-01

    An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.

  10. Differentiation of normal and leukemic cells by 2D light scattering label-free static cytometry.

    PubMed

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-09-19

    Two-dimensional (2D) light scattering patterns of single microspheres, normal granulocytes and leukemic cells are obtained by label-free static cytometry. Statistical results of experimental 2D light scattering patterns obtained from standard microspheres with a mean diameter of 4.19 μm agree well with theoretical simulations. High accuracy rates (greater than 92%) for label-free differentiation of normal granulocytes and leukemic cells, both the acute and chronic leukemic cells, are achieved by analyzing the 2D light scattering patterns. Our label-free static cytometry is promising for leukemia screening in clinics. PMID:27661908

  11. Mn-doped Zinc Sulphide nanocrystals for immunofluorescent labeling of epidermal growth factor receptors on cells and clinical tumor tissues

    NASA Astrophysics Data System (ADS)

    J, Aswathy; V, Seethalekshmy N.; R, Hiran K.; R, Bindhu M.; K, Manzoor; Nair, Shantikumar V.; Menon, Deepthy

    2014-11-01

    The field of molecular detection and targeted imaging has evolved considerably with the introduction of fluorescent semiconductor nanocrystals. Manganese-doped zinc sulphide nanocrystals (ZnS:Mn NCs), which are widely used in electroluminescent displays, have been explored for the first time for direct immunofluorescent (IF) labeling of clinical tumor tissues. ZnS:Mn NCs developed through a facile wet chemistry route were capped using amino acid cysteine, conjugated to streptavidin and thereafter coupled to biotinylated epidermal growth factor receptor (EGFR) antibody utilizing the streptavidin-biotin linkage. The overall conjugation yielded stable EGFR antibody conjugated ZnS:Mn NCs (EGFR ZnS:Mn NCs) with a hydrodynamic diameter of 65 ± 15 nm, and having an intense orange-red fluorescence emission at 598 nm. Specific labeling of EGF receptors on EGFR+ve A431 cells in a co-culture with EGFR-ve NIH3T3 cells was demonstrated using these nanoprobes. The primary antibody conjugated fluorescent NCs could also clearly delineate EGFR over-expressing cells on clinical tumor tissues processed by formalin fixation as well as cryopreservation with a specificity of 86% and accuracy of 88%, in comparison to immunohistochemistry. Tumor tissues labeled with EGFR ZnS:Mn NCs showed good fluorescence emission when imaged after storage even at 15 months. Thus, ZnS nanobioconjugates with dopant-dependent and stable fluorescence emission show promise as an efficient, target-specific fluorophore that would enable long term IF labeling of any antigen of interest on clinical tissues.

  12. Detection and quantification of subtle changes in red blood cell density using a cell phone.

    PubMed

    Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C

    2016-08-16

    Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments. PMID:27431921

  13. Detection and quantification of subtle changes in red blood cell density using a cell phone.

    PubMed

    Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C

    2016-08-16

    Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments.

  14. Peripheral Red Blood Cell Split Chimerism as a Consequence of Intramedullary Selective Apoptosis of Recipient Red Blood Cells in a Case of Sickle Cell Disease

    PubMed Central

    Marziali, Marco; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid; Fraboni, Daniela; Paciaroni, Katia; Gallucci, Cristiano; Alfieri, Cecilia; Roveda, Andrea; De Angelis, Gioia; Cardarelli, Luisa; Ribersani, Michela; Andreani, Marco; Lucarelli, Guido

    2014-01-01

    Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC) has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80% circulating donor red blood cells (RBC). The analysis of apoptosis at the Bone Marrow level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism. PMID:25408852

  15. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  16. Depletion-mediated red blood cell aggregation in polymer solutions.

    PubMed

    Neu, Björn; Meiselman, Herbert J

    2002-11-01

    Polymer-induced red blood cell (RBC) aggregation is of current basic science and clinical interest, and a depletion-mediated model for this phenomenon has been suggested; to date, however, analytical approaches to this model are lacking. An approach is thus described for calculating the interaction energy between RBC in polymer solutions. The model combines electrostatic repulsion due to RBC surface charge with osmotic attractive forces due to polymer depletion near the RBC surface. The effects of polymer concentration and polymer physicochemical properties on depletion layer thickness and on polymer penetration into the RBC glycocalyx are considered for 40 to 500 kDa dextran and for 18 to 35 kDa poly (ethylene glycol). The calculated results are in excellent agreement with literature data for cell-cell affinities and with RBC aggregation-polymer concentration relations. These findings thus lend strong support to depletion interactions as the basis for polymer-induced RBC aggregation and suggest the usefulness of this approach for exploring interactions between macromolecules and the RBC glycocalyx. PMID:12414682

  17. Of macrophages and red blood cells; a complex love story

    PubMed Central

    de Back, Djuna Z.; Kostova, Elena B.; van Kraaij, Marian; van den Berg, Timo K.; van Bruggen, Robin

    2013-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages. PMID:24523696

  18. Manipulation of red blood cells with electric field

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  19. Labeling pluripotent stem cell-derived neural progenitors with iron oxide particles for magnetic resonance imaging.

    PubMed

    Sart, Sébastien; Bejarano, Fabian Calixto; Yan, Yuanwei; Grant, Samuel C; Li, Yan

    2015-01-01

    Due to the unlimited proliferation capacity and the unique differentiation ability of pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), large numbers of PSC-derived cell products are in demand for applications in drug screening, disease modeling, and especially cell therapy. In stem cell-based therapy, tracking transplanted cells with magnetic resonance imaging (MRI) has emerged as a powerful technique to reveal cell survival and distribution. This chapter illustrated the basic steps of labeling PSC-derived neural progenitors (NPs) with micron-sized particles of iron oxide (MPIO, 0.86 μm) for MRI analysis. The protocol described PSC expansion and differentiation into NPs, and the labeling of the derived cells either after replating on adherent surface or in suspension. The labeled cells can be analyzed using in vitro MRI analysis. The methods presented here can be easily adapted for cell labeling in cell processing facilities under current Good Manufacturing Practices (cGMP). The iron oxide-labeled NPs can be used for cellular monitoring of in vitro cultures and in vivo transplantation. PMID:25304204

  20. A semi-mechanistic red blood cell survival model provides some insight into red blood cell destruction mechanisms.

    PubMed

    Korell, Julia; Duffull, Stephen B

    2013-08-01

    Most mathematical models developed for the survival of haematological cell populations, in particular red blood cells (RBCs), follow the principle of parsimony. They focus on the predominant destruction mechanism of age-related cell death (senescence) and do not account for within subject variability in the RBC lifespan. However, assessment of the underlying physiological destruction mechanisms can be of interest in pathological conditions that affect RBC survival, for example sickle cell anaemia or anaemia of chronic kidney disease. We have previously proposed a semi-mechanistic RBC survival model which accounts for four different types of RBC destruction mechanisms. In this work, it is shown that the proposed model in combination with informative RBC survival data is able to provide a deeper insight into RBC destruction mechanisms. The proposed model was applied in a non-linear mixed effect modelling framework to biotin derived RBC survival data available from literature. Three mechanisms were estimable based on the available data of twelve subjects, including random destruction, senescence and destruction due to delayed failure. It was possible to identify three subjects with a decreased RBC survival in the study population. These three subjects all showed differences in the contribution of the estimated destruction mechanisms: an increased random destruction, versus an accelerated senescence, versus a combination of both.

  1. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  2. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  3. The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chung; Tsai, Lin-Wei; Perevedentseva, Elena; Chang, Hsin-Hou; Lin, Ching-Hui; Sun, Der-Shan; Lugovtsov, Andrei E.; Priezzhev, Alexander; Mona, Jani; Cheng, Chia-Liang

    2012-10-01

    Nanodiamond has been proven to be biocompatible and proposed for various biomedical applications. Recently, nanometer-sized diamonds have been demonstrated as an effective Raman/fluorescence probe for bio-labeling, as well as, for drug delivery. Bio-labeling/drug delivery can be extended to the human blood system, provided one understands the interaction between nanodiamonds and the blood system. Here, the interaction of nanodiamonds (5 and 100 nm) with human red blood cells (RBC) in vitro is discussed. Measurements have been facilitated using Raman spectroscopy, laser scanning fluorescence spectroscopy, and laser diffractometry (ektacytometry). Data on cell viability and hemolytic analysis are also presented. Results indicate that the nanodiamonds in the studied condition do not cause hemolysis, and the cell viability is not affected. Importantly, the oxygenation/deoxygenation process was not found to be altered when nanodiamonds interacted with the RBC. However, the nanodiamond can affect some RBC properties such as deformability and aggregation in a concentration dependent manner. These results suggest that the nanodiamond can be used as an effective bio-labeling and drug delivery tool in ambient conditions, without complicating the blood's physiological conditions. However, controlling the blood properties including deformability of RBCs and rheological properties of blood is necessary during treatment.

  4. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  5. Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells.

    PubMed

    Addington, Caroline P; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E; Kodibagkar, Vikram D

    2016-03-01

    Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality ((1)H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μL/10(4) cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by (1)H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast (1)H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability.

  6. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  7. Algal autolysate medium to label proteins for NMR in mammalian cells.

    PubMed

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia; Neri, Sara; Fragai, Marco

    2016-04-01

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained. PMID:27106902

  8. Interaction forces between red cells agglutinated by antibody. III. Micromanipulation.

    PubMed Central

    Tha, S P; Goldsmith, H L

    1988-01-01

    In the flow studies described in two previous papers (Tha, S. P., and H. L. Goldsmith, 1986, Biophys. J. 50:1109-1116; Tha, S. P., J. Shuster, and H. L. Goldsmith, 1986, Biophys. J. 50:1117-1126), hydrodynamic forces of the order of 10(-11) N (mu dyn) were applied to measure the force of separation of doublets of hardened, sphered human red blood cells cross-linked by anti-B antibody. The same cell preparation and hyperimmune antiserum has here been used to carry out experiments with micropipet aspiration techniques. One cell of a doublet was aspirated onto a holding pipet, and a second aspiration pipet was brought into proximity of the other cell so that the two pipets and the doublet were colinear. Suction was then raised until the two cells separated. Some doublets were assembled by aspiration of a singlet, bringing a second singlet into apposition with the first, and releasing it from the pipet which was then withdrawn. Cells could be repeatedly assembled and separated. At 3.56% vol/vol antiserum, the mean normal force of separation was 0.45 +/- 0.11 nN in phosphate-buffered saline suspensions containing 2.5 x 10(4) cells/microliter; at 1.22% vol/vol antiserum, the value was 0.22 +/- 0.11 nN. The above values of the force were approximately 2.5 x greater than those from the flow studies. The data could be fitted to a Poisson distribution with 0.05 nN as the force needed to break a single cross-bridge (c.f. 0.024 nN from the previous hydrodynamic data). The forces of separation of randomly assembled doublets were lower than those of preexisting doublets. Repeated assembly and separation of doublets showed that the cell surfaces are nonuniform in adhesion strength both over the local scale less than 0.25 micron2 and the cell population. Images FIGURE 2 PMID:3134058

  9. Hydrogen ion dynamics in human red blood cells.

    PubMed

    Swietach, Pawel; Tiffert, Teresa; Mauritz, Jakob M A; Seear, Rachel; Esposito, Alessandro; Kaminski, Clemens F; Lew, Virgilio L; Vaughan-Jones, Richard D

    2010-12-15

    Our understanding of pH regulation within red blood cells (RBCs) has been inferred mainly from indirect experiments rather than from in situ measurements of intracellular pH (pH(i)). The present work shows that carboxy-SNARF-1, a pH fluorophore, when used with confocal imaging or flow cytometry, reliably reports pH(i) in individual, human RBCs, provided intracellular fluorescence is calibrated using a 'null-point' procedure. Mean pH(i) was 7.25 in CO(2)/HCO(3)(-)-buffered medium and 7.15 in Hepes-buffered medium, and varied linearly with extracellular pH (slope of 0.77). Intrinsic (non-CO(2)/HCO(3)(-)-dependent) buffering power, estimated in the intact cell (85 mmol (l cell)(-1) (pH unit)(-1) at resting pH(i)), was somewhat higher than previous estimates from cell lysates (50-70 mmol (l cell)(-1) (pH unit)(-1)). Acute displacement of pH(i) (superfusion of weak acids/bases) triggered rapid pH(i) recovery. This was mediated via membrane Cl(-)/HCO(3)(-) exchange (the AE1 gene product), irrespective of whether recovery was from an intracellular acid or base load, and with no evident contribution from other transporters such as Na(+)/H(+) exchange. H(+)-equivalent flux through AE1 was a linear function of [H(+)](i) and reversed at resting pH(i), indicating that its activity is not allosterically regulated by pH(i), in contrast to other AE isoforms. By simultaneously monitoring pH(i) and markers of cell volume, a functional link between membrane ion transport, volume and pH(i) was demonstrated. RBC pH(i) is therefore tightly regulated via AE1 activity, but modulated during changes of cell volume. A comparable volume-pH(i) link may also be important in other cell types expressing anion exchangers. Direct measurement of pH(i) should be useful in future investigations of RBC physiology and pathology. PMID:20962000

  10. Mach-Zehnder interferometer for separation of platelets from red blood cells using dielectrophoretics

    NASA Astrophysics Data System (ADS)

    Shwetha, M.; Narayan, K.

    2016-03-01

    In this work, separation of platelets from red blood cells using Mach-Zehnder interferometer is shown using Dielectrophoretics (DEP). The proposed model demonstrates continuous separation of platelets from red blood cells. Mach-Zehnder Interferometer (MZI) has two arms, in which sensing arm will sense according to the applied voltage and separate the platelets from mixed blood cells. The platelets and the red blood cells will flow in two outlets of MZI. Microfluidic device is used to separate the RBC's and the platelets from the mixed blood cells.

  11. Mechanical properties of stored red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  12. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments

    PubMed Central

    Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J.; Macallan, Derek C.; Borghans, José A. M.; Asquith, Becca

    2015-01-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated 2H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  13. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.

    PubMed

    Ahmed, Raya; Westera, Liset; Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J; Macallan, Derek C; Borghans, José A M; Asquith, Becca

    2015-10-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  14. Cell birth and survival following seasonal periods of cell proliferation in the chemosensory epithelia of red-backed salamanders, Plethodon cinereus.

    PubMed

    Dawley, Ellen M; Nelsen, Meaghan; Lopata, Adrianne; Schwartz, Jessica; Bierly, Alison

    2006-01-01

    In addition to the continuous low levels of neurogenesis typical of adult vertebrates to replace damaged chemoreceptor cells, red-backed salamanders (Plethodon cinereus) experience an up-regulation of chemoreceptor epithelial cell proliferation on a seasonal basis. Significantly more cell division occurs in late spring than at any other time of the year, and we investigated the fate and life span of these newly generated cells. We used 5-bromo-2'-deoxyuridine (BrdU) immunocytochemical cell birth dating to examine cell proliferation and cell migration in the main olfactory and vomeronasal epithelia of red-backed salamanders collected in late spring who were allowed to survive for one hour or three, four, 25, 28, 42, 49 and 100 days post-injection. We examined new neuron growth in the vomeronasal and olfactory epithelia using antibodies against Growth Associated Protein-43 (GAP-43), a protein whose synthesis is up-regulated during axon growth. We also tracked apoptosis within both types of chemosensory epithelia using terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL). BrdU-immunoreactive cells were located extensively throughout the vomeronasal epithelia, particularly in the area posterior to the entrance of the nasolacrimal duct, not only after three days of survival, but also all of the longer experimental survival periods as well; BrdU-ir cells within the olfactory epithelia were rarely located after longer survival periods. Salamanders collected in late spring displayed extensive GAP-43 labeling in the vomeronasal epithelia posterior to the entrance of the nasolacrimal duct, indicating a large population of young vomeronasal receptor neurons. Finally, apoptotic cells were evident in this same post-nasolacrimal-duct-area of the vomeronasal organ and in the olfactory epithelium. We suggest that vomeronasal receptor neurons born in late spring function throughout the summer and may be associated with the animals' extensive territoriality

  15. Mechanical response of red blood cells entering a constriction

    PubMed Central

    Zeng, Nancy F.; Ristenpart, William D.

    2014-01-01

    Most work on the dynamic response of red blood cells (RBCs) to hydrodynamic stress has focused on linear velocity profiles. Relatively little experimental work has examined how individual RBCs respond to pressure driven flow in more complex geometries, such as the flow at the entrance of a capillary. Here, we establish the mechanical behaviors of healthy RBCs undergoing a sudden increase in shear stress at the entrance of a narrow constriction. We pumped RBCs through a constriction in a microfluidic device and used high speed video to visualize and track the flow behavior of more than 4400 RBCs. We show that approximately 85% of RBCs undergo one of four distinct modes of motion: stretching, twisting, tumbling, or rolling. Intriguingly, a plurality of cells (∼30%) exhibited twisting (rotation around the major axis parallel to the flow direction), a mechanical behavior that is not typically observed in linear velocity profiles. We present detailed statistical analyses on the dynamics of each motion and demonstrate that the behavior is highly sensitive to the location of the RBC within the channel. We further demonstrate that the observed tumbling, twisting, and rolling rotations can be rationalized qualitatively in terms of rigid body mechanics. The detailed experimental statistics presented here should serve as a useful resource for modeling of RBC behavior under physiologically important flow conditions. PMID:25553197

  16. Piezo1 links mechanical forces to red blood cell volume

    PubMed Central

    Cahalan, Stuart M; Lukacs, Viktor; Ranade, Sanjeev S; Chien, Shu; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis. DOI: http://dx.doi.org/10.7554/eLife.07370.001 PMID:26001274

  17. Piezo1 links mechanical forces to red blood cell volume.

    PubMed

    Cahalan, Stuart M; Lukacs, Viktor; Ranade, Sanjeev S; Chien, Shu; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis. PMID:26001274

  18. Reduction of prion infectivity in packed red blood cells

    SciTech Connect

    Morales, Rodrigo; Buytaert-Hoefen, Kimberley A.; Gonzalez-Romero, Dennisse; Castilla, Joaquin; Hansen, Eric T.; Hlavinka, Dennis; Goodrich, Raymond P.; Soto, Claudio

    2008-12-12

    The link between a new variant form of Creutzfeldt-Jakob disease (vCJD) and the consumption of prion contaminated cattle meat as well as recent findings showing that vCJD can be transmitted by blood transfusion have raised public health concerns. Currently, a reliable test to identify prions in blood samples is not available. The purpose of this study was to evaluate the possibility to remove scrapie prion protein (PrP{sup Sc}) and infectivity from red blood cell (RBC) suspensions by a simple washing procedure using a cell separation and washing device. The extent of prion removal was assessed by Western blot, PMCA and infectivity bioassays. Our results revealed a substantial removal of infectious prions ({>=}3 logs of infectivity) by all techniques used. These data suggest that a significant amount of infectivity present in RBC preparations can be removed by a simple washing procedure. This technology may lead to increased safety of blood products and reduce the risk of further propagation of prion diseases.

  19. Twisting of Red Blood Cells Entering a Constriction

    NASA Astrophysics Data System (ADS)

    Zeng, Nancy; Ristenpart, William

    2014-11-01

    Most work on the dynamic response of red blood cells (RBCs) to hydrodynamic stress has focused on linear velocity profiles. Relatively little experimental work has examined how individual RBCs respond to pressure driven flow in more complex geometries, such as the flow at the entrance of a capillary. Here, we establish the mechanical behaviors of healthy RBCs undergoing a sudden increase in shear stress at the entrance of a narrow constriction. We pumped RBCs through a constriction in an ex vivo microfluidic device and used high speed video to visualize and track the flow behavior of more than 4,400 RBCs. We show that approximately 85% of RBCs undergo one of four distinct modes of motion: stretching, twisting, tumbling, or rolling. Intriguingly, a plurality of cells (~30%) exhibited twisting (rotation around the major axis parallel to the flow direction), a mechanical behavior that is not typically observed in linear velocity profiles. We examine the mechanical origin of twisting using, as a limiting case, the equations of motion for rigid ellipsoids, and we demonstrate that the observed rotation is qualitatively consistent with rigid body theory.

  20. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  1. Integrating Cell Phone Imaging with Magnetic Levitation (i-LEV) for Label-Free Blood Analysis at the Point-of-Living.

    PubMed

    Baday, Murat; Calamak, Semih; Durmus, Naside Gozde; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2016-03-01

    There is an emerging need for portable, robust, inexpensive, and easy-to-use disease diagnosis and prognosis monitoring platforms to share health information at the point-of-living, including clinical and home settings. Recent advances in digital health technologies have improved early diagnosis, drug treatment, and personalized medicine. Smartphones with high-resolution cameras and high data processing power enable intriguing biomedical applications when integrated with diagnostic devices. Further, these devices have immense potential to contribute to public health in resource-limited settings where there is a particular need for portable, rapid, label-free, easy-to-use, and affordable biomedical devices to diagnose and continuously monitor patients for precision medicine, especially those suffering from rare diseases, such as sickle cell anemia, thalassemia, and chronic fatigue syndrome. Here, a magnetic levitation-based diagnosis system is presented in which different cell types (i.e., white and red blood cells) are levitated in a magnetic gradient and separated due to their unique densities. Moreover, an easy-to-use, smartphone incorporated levitation system for cell analysis is introduced. Using our portable imaging magnetic levitation (i-LEV) system, it is shown that white and red blood cells can be identified and cell numbers can be quantified without using any labels. In addition, cells levitated in i-LEV can be distinguished at single-cell resolution, potentially enabling diagnosis and monitoring, as well as clinical and research applications. PMID:26523938

  2. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.

    PubMed

    Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover. PMID:24952180

  3. Electrophoretic characterization of aldehyde-fixed red blood cells, kidney cells, lynphocytes and chamber coatings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Ground-based electrokinetic data on the electrophoresis flight experiment to be flown on the Apollo-Soyuz Test Project experiment MA-011 are stipulated. Aldehyde-fixed red blood cells, embryonic kidney cells and lymphocytes were evaluated by analytical particle electrophoresis. The results which aided in the interpretation of the final analysis of the MA-011 experiment are documented. The electrophoresis chamber surface modifications, the buffer, and the material used in the column system are also discussed.

  4. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  5. Time Dependent Assessment of Morphological Changes: Leukodepleted Packed Red Blood Cells Stored in SAGM

    PubMed Central

    2016-01-01

    Usually packed red blood cells (pRBCs) require specific conditions in storage procedures to ensure the maximum shelf life of up to 42 days in 2–6°C. However, molecular and biochemical consequences can affect the stored blood cells; these changes are collectively labeled as storage lesions. In this study, the effect of prolonged storage was assessed through investigating morphological changes and evaluating oxidative stress. Samples from leukodepleted pRBC in SAGM stored at 4°C for 42 days were withdrawn aseptically on day 0, day 14, day 28, and day 42. Morphological changes were observed using scanning electron microscopy and correlated with osmotic fragility and hematocrit. Oxidative injury was studied through assessing MDA level as a marker for lipid peroxidation. Osmotic fragility test showed that extended storage time caused increase in the osmotic fragility. The hematocrit increased by 6.6% from day 0 to day 42. The last 2 weeks show alteration in the morphology with the appearance of echinocytes and spherocytes. Storage lesions and morphological alterations appeared to affect RBCs during the storage period. Further studies should be performed to develop strategies that will aid in the improvement of stored pRBC quality and efficacy. PMID:26904677

  6. [In vitro generation of blood red cells from stem cells: a sketch of the future].

    PubMed

    Mazurier, Christelle; Douay, Luc

    2016-01-01

    Human adult pluripotent stem cells, stem cells of embryonic origin and induced pluripotent stem cells (iPS) provide cellular sources for new promising regenerative medicine approaches. Because these cells can be patient-specific, they allow considering a personalized medicine appropriate to the diagnosis of each. The generation of cultured red blood cells (cRBC) derived from stem cells is emblematic of personalized medicine. Indeed, these cells have the advantage of being selected according to a blood phenotype of interest and they may provide treatments to patients in situation of impossible transfusion (alloimmunized patients, rare phenotypes). Essential progresses have established proof of concept for this approach, still a concept some years ago. From adult stem cells, all steps of upstream research were successfully achieved, including the demonstration of the feasibility of injection into human. This leads us to believe that Red Blood Cells generated in vitro from stem cells will be the future players of blood transfusion. However, although theoretically ideal, these stem cells raise many biological challenges to overcome, although some tracks are identified. PMID:27286576

  7. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease.

    PubMed

    Mankelow, Tosti J; Griffiths, Rebecca E; Trompeter, Sara; Flatt, Joanna F; Cogan, Nicola M; Massey, Edwin J; Anstee, David J

    2015-10-01

    During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia.

  8. Increased cholesterol and decreased fluidity of red cell membranes (spur cell anemia) in progressive intrahepatic cholestasis.

    PubMed

    Balistreri, W F; Leslie, M H; Cooper, R A

    1981-04-01

    Progressive hemolytic anemia occurred in a 4 1/2-year-old girl with familial intrahepatic cholestasis; a peripheral smear contained bizarre spiculated "spur" red cells. Analysis of this patient's fresh red cells revealed a 59% increase in cholesterol content with a normal phospholipid content and therefore an increase in the cholesterol/phospholipid molar ratio to 1.35 (normal = 0.92). A similar abnormality of lipid composition was present in serum lipoproteins. The lipid abnormality in red cell membrane was associated with a decrease in membrane fluidity, as assessed by the fluorescence polarization of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene. Following incubation with patient's plasma, normal cells acquired a spur-shaped morphology with an associated decrease in osmotic fragility and a 25% increase in cholesterol content. The patient's cells, during incubation with normal plasma, acquired morphologic features of spiculated spherocytes with an increase in osmotic fragility and a 21% decrease in cholesterol content. Chenodeoxycholate and lithocholate were present in markedly elevated concentrations in serum. These studies show that a process identical to spur cell anemia in alcoholic cirrhosis may accompany severe liver disease in children with intrahepatic cholestasis.

  9. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo

    PubMed Central

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-01-01

    Here we describe “Supernova” series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain. PMID:27775045

  10. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    PubMed Central

    Patel, Sravan K.; Williams, Jonathan; Janjic, Jelena M.

    2013-01-01

    This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented. PMID:25586263

  11. Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells.

    PubMed

    Bosch, Peter J; Corrêa, Ivan R; Sonntag, Michael H; Ibach, Jenny; Brunsveld, Luc; Kanger, Johannes S; Subramaniam, Vinod

    2014-08-19

    Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines.

  12. Evaluation of Fluorophores to Label SNAP-Tag Fused Proteins for Multicolor Single-Molecule Tracking Microscopy in Live Cells

    PubMed Central

    Bosch, Peter J.; Corrêa, Ivan R.; Sonntag, Michael H.; Ibach, Jenny; Brunsveld, Luc; Kanger, Johannes S.; Subramaniam, Vinod

    2014-01-01

    Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines. PMID:25140415

  13. Antigen site distribution among weak A' red cell populations. A study of A3, Ax and Aend variants.

    PubMed Central

    Cartron, J P; Reyes, F; Gourdin, M F; Garretta, M; Salmon, C H

    1977-01-01

    The distribution of the A receptors was studied among 'agglutinated' and 'free' populations of A variant RBC (A3, AX, Aend) known to be either partially or weakly agglutinated by human anti-A reagents. Following separation of the red cell populations and disaggregation of the clumps by mild treatment with soluble blood group substances, it was shown after appropriate controls, that among A3 ARBC, the 'agglutinated' RBC have at least five times as 'free' RBC, these latter however being strongly A positive. The differences between the A antigenic content of the AX RBC were less pronounced. The most striking result was obtained with the Aend RBC, where two populations are clearly demonstrated; the first, including 5-10 per cent of the RBC, strongly agglutinates with anti-A and contains erythrocytes of high antigenic content (140,000 A receptors per cell). The second, including the majority of RBC could not be differentiated from the control O RBC. A wide heterogeneity of antibody binding capacity of the various populations of A3, AX and Aend red cells, was also demonstrated following ultrastructural examination by immunoelectron microscopy with peroxidase-conjugated antibodies. Such study reveals furthermore an heterogeneity of labelling from one cell to another in the same population of red blood cells. Comparison of 'week A' RBC and O RBC enzymatically converted into A RBC, demonstrates a similar pattern of reactivity between these cells, and supports the general relationship between antigen site density and red cell agglutination. It is concluded that the typical pattern of agglutinability of A3 and AX RBC arises both from their heterogeneous antigenic content and from the occurrence of an antigenic threshold below which red cells become non-agglutinable. The typical mixed-field agglutination pattern of Aend RBC merely reflects the occurrence of a probably true dual population of RBC. Finally, the mechanisms of inheritance of such well-known Mendelian characters

  14. Colloidal Properties of Nanoerythrosomes Derived from Bovine Red Blood Cells.

    PubMed

    Kuo, Yuan-Chia; Wu, Hsuan-Chen; Hoang, Dao; Bentley, William E; D'Souza, Warren D; Raghavan, Srinivasa R

    2016-01-12

    Liposomes are nanoscale containers that are typically synthesized from lipids using a high-shear process such as extrusion or sonication. While liposomes are extensively used in drug delivery, they do suffer from certain problems including limited colloidal stability and short circulation times in the body. As an alternative to liposomes, we explore a class of container structures derived from erythrocytes (red blood cells). The procedure involves emptying the inner contents of these cells (specifically hemoglobin) and resuspending the empty structures in buffer, followed by sonication. The resulting structures are termed nanoerythrosomes (NERs), i.e., they are membrane-covered nanoscale containers, much like liposomes. Cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) are employed for the first time to study these NERs. The results reveal that the NERs are discrete spheres (∼110 nm diameter) with a unilamellar membrane of thickness ∼4.5 nm. Remarkably, the biconcave disc-like shape of erythrocytes is also exhibited by the NERs under hypertonic conditions. Moreover, unlike typical liposomes, NERs show excellent colloidal stability in both buffer as well as in serum at room temperature, and are also able to withstand freeze-thaw cycling. We have explored the potential for using NERs as colloidal vehicles for targeted delivery. Much like conventional liposomes, NER membranes can be decorated with fluorescent or other markers, solutes can be encapsulated in the cores of the NERs, and NERs can be targeted to specifically bind to mammalian cells. Our study shows that NERs are a promising and versatile class of nanostructures. NERs that are harvested from a patient's own blood and reconfigured for nanomedicine can potentially offer several benefits including biocompatibility, minimization of immune response, and extended circulation time in the body. PMID:26684218

  15. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    NASA Astrophysics Data System (ADS)

    Patibandla, Phani K.; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-03-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (˜45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the

  16. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  17. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    PubMed

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  18. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    PubMed

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis. PMID:26659962

  19. Theoretical models for near forward light scattering by a Plasmodium falciparum infected red blood cell

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.

    2012-12-01

    A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.

  20. New carboxysilane-coated iron oxide nanoparticles for nonspecific cell labelling.

    PubMed

    Bridot, Jean-Luc; Stanicki, Dimitri; Laurent, Sophie; Boutry, Sébastien; Gossuin, Yves; Leclère, Philippe; Lazzaroni, Roberto; Vander Elst, Luce; Muller, Robert N

    2013-01-01

    Magnetic resonance imaging (MRI) offers the possibility of tracking cells labelled with a contrast agent and evaluating the progress of cell therapies. This requires efficient cell labelling with contrast agents. A basic incubation of cells with iron oxide nanoparticles (NPs) is a common method. This study reports the synthesis at the gram scale of iron oxide nanoparticles as MRI T₂ contrast agents for cell labelling. These NPs are based on small iron oxide cores coated with a thin polysiloxane shell presenting carboxylic acid functions. The iron oxide cores produced have been characterized by transmission electron microscopy, X-ray diffraction, ζ-potential, infrared, photon correlation spectroscopy, atomic force microscopy, magnetometry and relaxometric measurements. These measurements confirmed the expected surface modification by carboxysilane. Carboxylic groups created electrostatic repulsion between NPs when they are deprotonated. Therefore, highly concentrated aqueous solutions of carboxysilane coated iron oxide NPs can be obtained, up to 70% (w/w). These NPs could be used for cell labelling owing to their aggregation and re-dispersion properties. NPs precipitated in Dulbecco's modified Eagle medium induced a rapid association with 3 T6 fibroblast cells and could easily be re-dispersed in phosphate buffer saline solution to obtain properly labelled cells. PMID:24375902

  1. Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts.

    PubMed

    Gutmann, E; Mares, V; Stichová, J

    1976-03-01

    Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later. In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The presen experiments provide a direct proof of utilization of donor satelite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.

  2. Noninvasive Tracking of Encapsulated Insulin Producing Cells Labelled with Magnetic Microspheres by Magnetic Resonance Imaging

    PubMed Central

    Yim, Mandy M. W.; Foster, Jayne L.; Oberholzer, Jose

    2016-01-01

    Microencapsulated islets are usually injected free-floating into the peritoneal cavity, so the position of the grafts remains elusive after transplantation. This study aims to assess magnetic resonance imaging (MRI) as a noninvasive means to track microencapsulated insulin producing cells following transplantation. Encapsulated insulin producing cells (MIN6 and human islets) were labelled with magnetic microspheres (MM), assessed for viability and insulin secretion, and imaged in vitro using a clinical grade 3 T MRI and in vivo using both clinical grade 3 T and research grade 11.7 T MRI. Fluorescent imaging demonstrated the uptake of MM by both MIN6 and human islets with no changes in cell morphology and viability. MM labelling did not affect the glucose responsiveness of encapsulated MIN6 and islets in vitro. In vivo encapsulated MM-labelled MIN6 normalized sugar levels when transplanted into diabetic mice. In vitro MRI demonstrated that single microcapsules as well as clusters of encapsulated MM-labelled cells could be visualised clearly in agarose gel phantoms. In vivo encapsulated MM-labelled MIN6 could be visualised more clearly within the peritoneal cavity as discrete hypointensities using the high power 11.7 T but not the clinical grade 3 T MRI. This study demonstrates a method to noninvasively track encapsulated insulin producing cells by MM labelling and MRI.

  3. Noninvasive Tracking of Encapsulated Insulin Producing Cells Labelled with Magnetic Microspheres by Magnetic Resonance Imaging

    PubMed Central

    Yim, Mandy M. W.; Foster, Jayne L.; Oberholzer, Jose

    2016-01-01

    Microencapsulated islets are usually injected free-floating into the peritoneal cavity, so the position of the grafts remains elusive after transplantation. This study aims to assess magnetic resonance imaging (MRI) as a noninvasive means to track microencapsulated insulin producing cells following transplantation. Encapsulated insulin producing cells (MIN6 and human islets) were labelled with magnetic microspheres (MM), assessed for viability and insulin secretion, and imaged in vitro using a clinical grade 3 T MRI and in vivo using both clinical grade 3 T and research grade 11.7 T MRI. Fluorescent imaging demonstrated the uptake of MM by both MIN6 and human islets with no changes in cell morphology and viability. MM labelling did not affect the glucose responsiveness of encapsulated MIN6 and islets in vitro. In vivo encapsulated MM-labelled MIN6 normalized sugar levels when transplanted into diabetic mice. In vitro MRI demonstrated that single microcapsules as well as clusters of encapsulated MM-labelled cells could be visualised clearly in agarose gel phantoms. In vivo encapsulated MM-labelled MIN6 could be visualised more clearly within the peritoneal cavity as discrete hypointensities using the high power 11.7 T but not the clinical grade 3 T MRI. This study demonstrates a method to noninvasively track encapsulated insulin producing cells by MM labelling and MRI. PMID:27631014

  4. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair.

    PubMed

    Heymer, Andrea; Haddad, Daniel; Weber, Meike; Gbureck, Uwe; Jakob, Peter M; Eulert, Jochen; Nöth, Ulrich

    2008-04-01

    For the development of new therapeutical cell-based strategies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. We present a systematic and detailed study on the performance and biological impact of a simple and efficient labelling protocol for human mesenchymal stem cells (hMSCs). Commercially available very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake via endocytosis was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabelled cells, VSOP-labelling did neither influence the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect hMSCs in undergoing adipogenic, osteogenic or chondrogenic differentiation, as demonstrated histologically and by gene expression analyses. The efficiency of the labelling protocol was assessed with high-resolution MR imaging at 11.7T. VSOP-labelled hMSCs were visualised in a collagen type I hydrogel, which is in clinical use for matrix-based articular cartilage repair. The presence of VSOP-labelled hMSCs was indicated by distinct hypointense spots in the MR images, as a result of iron specific loss of signal intensity. In summary, this labelling technique has great potential to visualise hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging.

  5. Noninvasive Tracking of Encapsulated Insulin Producing Cells Labelled with Magnetic Microspheres by Magnetic Resonance Imaging.

    PubMed

    Vaithilingam, Vijayaganapathy; Yim, Mandy M W; Foster, Jayne L; Stait-Gardner, Timothy; Oberholzer, Jose; Tuch, Bernard E

    2016-01-01

    Microencapsulated islets are usually injected free-floating into the peritoneal cavity, so the position of the grafts remains elusive after transplantation. This study aims to assess magnetic resonance imaging (MRI) as a noninvasive means to track microencapsulated insulin producing cells following transplantation. Encapsulated insulin producing cells (MIN6 and human islets) were labelled with magnetic microspheres (MM), assessed for viability and insulin secretion, and imaged in vitro using a clinical grade 3 T MRI and in vivo using both clinical grade 3 T and research grade 11.7 T MRI. Fluorescent imaging demonstrated the uptake of MM by both MIN6 and human islets with no changes in cell morphology and viability. MM labelling did not affect the glucose responsiveness of encapsulated MIN6 and islets in vitro. In vivo encapsulated MM-labelled MIN6 normalized sugar levels when transplanted into diabetic mice. In vitro MRI demonstrated that single microcapsules as well as clusters of encapsulated MM-labelled cells could be visualised clearly in agarose gel phantoms. In vivo encapsulated MM-labelled MIN6 could be visualised more clearly within the peritoneal cavity as discrete hypointensities using the high power 11.7 T but not the clinical grade 3 T MRI. This study demonstrates a method to noninvasively track encapsulated insulin producing cells by MM labelling and MRI. PMID:27631014

  6. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.

    PubMed

    Wieth, J O

    1979-09-01

    1. Bicarbonate transport across human red cell membranes was studied between 0 and 10 degrees C at alkaline pH values by determining the efflux of 14C-labelled bicarbonate from resealed erythrocyte ghosts. Transfer of labelled CO2 was eliminated as a source of error, when formation of intracellular 14CO2 was inhibited with carbonic anhydrase inhibitors. The study showed that there are no fundamental differences between the characteristics of bicarbonate and of chloride self-exchange as has been inferred from previous studies of chloride-bicarbonate exchange. 2. Efflux of radioactivity could be reduced more than 99% by reversible and irreversible inhibitors of anion transport. Inhibition of both chloride and bicarbonate self-exchange was linearly related to the binding of 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) to the membranes. Complete (i.e. greater than 99%) inhibition was obtained after binding of 1.2 x 10(6) DIDS molecules per cell. 3. Bicarbonate self-exchange proved a saturable function of bicarbonate concentration, with a maximum at external and internal concentrations of approximately 100 mM, showing self-depression at higher bicarbonate concentrations, and half-maximum exchange flux at a concentration of 10 mM. The results were consistent with the hypothesis that the exchange mechanism has two anion binding sites, one mediating ion transport and the other causing transport inhibition. 4. Maximum exchange flux of bicarbonate was about 30% larger thant that of chloride, and the affinity of bicarbonate for the transport site was about three times larger than that of chloride. The apparent activation energy of bicarbonate exchange was 28 kcal/mole, the same order of magnitude as found for other inorganic anions between 0 and 10 degrees C. 5. The ability of other inorganic anions to exchange with bicarbonate decreased in the sequence Cl greater than NO3 greater than F greater than Br greater than or equal to I, corresponding to the sequence of

  7. Osmotic parameters of red blood cells from umbilical cord blood.

    PubMed

    Zhurova, Mariia; McGann, Locksley E; Acker, Jason P

    2014-06-01

    The transfusion of red blood cells from umbilical cord blood (cord RBCs) is gathering significant interest for the treatment of fetal and neonatal anemia, due to its high content of fetal hemoglobin as well as numerous other potential benefits to fetuses and neonates. However, in order to establish a stable supply of cord RBCs for clinical use, a cryopreservation method must be developed. This, in turn, requires knowledge of the osmotic parameters of cord RBCs. Thus, the objective of this study was to characterize the osmotic parameters of cord RBCs: osmotically inactive fraction (b), hydraulic conductivity (Lp), permeability to cryoprotectant glycerol (Pglycerol), and corresponding Arrhenius activation energies (Ea). For Lp and Pglycerol determination, RBCs were analyzed using a stopped-flow system to monitor osmotically-induced RBC volume changes via intrinsic RBC hemoglobin fluorescence. Lp and Pglycerol were characterized at 4°C, 20°C, and 35°C using Jacobs and Stewart equations with the Ea calculated from the Arrhenius plot. Results indicate that cord RBCs have a larger osmotically inactive fraction compared to adult RBCs. Hydraulic conductivity and osmotic permeability to glycerol of cord RBCs differed compared to those of adult RBCs with the differences dependent on experimental conditions, such as temperature and osmolality. Compared to adult RBCs, cord RBCs had a higher Ea for Lp and a lower Ea for Pglycerol. This information regarding osmotic parameters will be used in future work to develop a protocol for cryopreserving cord RBCs. PMID:24727610

  8. Smoking and red blood cell phospholipid membrane fatty acids.

    PubMed

    Murff, H J; Tindle, H A; Shrubsole, M J; Cai, Q; Smalley, W; Milne, G L; Swift, L L; Ness, R M; Zheng, W

    2016-09-01

    Smoking is associated with lower n-3 long chain polyunsaturated fatty acids (LCPUFA) concentrations; however, limited studies have accounted for dietary PUFA intake or whether tobacco dose or smoking duration influences this association. We measured red blood cell phospholipid (RBC) membrane concentrations of fatty acids in 126 current smokers, 311 former smokers, and 461 never smokers using gas liquid chromatography and tandem mass spectrometry. Smokers had lower RBC membrane percentages of total n-3 LCPUFAs compared to former smokers or never smokers (median percent: 5.46, [interquartile range (IQR) 4.52, 6.28] versus 6.39; [IQR: 5.18, 7.85] versus 6.59; [IQR 5.34, 8.01]) (p<0.001) and this association remained after adjusting for dietary PUFA intake. Duration of smoking and cigarettes per day were not associated with RBC membrane n-3 LCPUFA differences. Smoking is associated with lower n-3 LCPUFA RBC membrane percentages and this association was not influenced by diet or smoking dose or duration. PMID:27637337

  9. Analysis of Red Blood Cell Behavior in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Hosaka, Haruki; Omori, Toshihiro; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2012-11-01

    Red Blood Cell (RBC) is a main component of blood accounting for 40 percent in volume, and enclosed by a twodimensional hyper elastic membrane. RBCs strongly influence rheological properties and mass transport of blood. The deformation of RBCs in capillary and at narrowing is also important in considering mechano-transduction of RBCs and hemolysis, though it has not been clarified in detail. Thus, in this study, we investigated the behavior of a RBC flowing in a narrow tube. To carry out the fluid-structure interaction analysis, we coupled a boundary element method to analyze the velocity of the internal and external fluid with a finite element method to analyze the deformation of the membrane. The boundary element method has good calculation accuracy and its computational cost is low because three-dimensional flow filed can be calculated by a two-dimensional computational mesh. The background flow in a tube is pressure-driven Poiseuille flow. Additionally, to reduce the computational time, we implemented massive parallel computation by using GPUs. The results show that the deformation of a RBC is strongly affected by the Capillary number, which is the ratio of viscous force to the elastic force, radius of the tube, and the initial orientation.

  10. Red blood cell phenotype matching for various ethnic groups.

    PubMed

    Badjie, Karafa S W; Tauscher, Craig D; van Buskirk, Camille M; Wong, Clare; Jenkins, Sarah M; Smith, Carin Y; Stubbs, James R

    2011-01-01

    Patients requiring chronic transfusion support are at risk of alloimmunization after red blood cell (RBC) transfusion because of a disparity between donor and recipient antigen profiles. This research explored the probability of obtaining an exact extended phenotype match between blood donors randomly selected from our institution and patients randomly selected from particular ethnic groups. Blood samples from 1,000 blood donors tested by molecular method were evaluated for the predicted phenotype distribution of Rh, Kell, Kidd, Duffy, and MNS. A random subsample of 800 donor phenotypes was then evaluated for the probability of obtaining an exact match with respect to phenotype with a randomly selected patient from a particular ethnic group. Overall, there was a greater than 80 percent probability of finding an exact donor-recipient match for the K/k alleles in the Kell system. The probability ranged from 3 percent to 38 percent, depending on the ethnicity and disparities in phenotypic profiles, for the Rh, Kidd, Duffy, and MNS systems. A significant donor-recipient phenotype mismatch ratio exists with certain blood group antigens such that, with current routine ABO and D matching practices, recipients of certain ethnic groups are predisposed to alloimmunization. PMID:22356481

  11. Neonatal nucleated red blood cells in G6PD deficiency.

    PubMed

    Yeruchimovich, Mark; Shapira, Boris; Mimouni, Francis B; Dollberg, Shaul

    2002-05-01

    The objective of this study is to study the absolute number of nucleated red blood cells (RBC) at birth, an index of active fetal erythropoiesis, in infants with G6PD deficiency and in controls. We tested the hypothesis that hematocrit and hemoglobin would be lower, and absolute nucleated RBC counts higher, in the G6PD deficient and that these changes would be more prominent in infants exposed passively to fava bean through maternal diet. Thirty-two term infants with G6PD deficiency were compared with 30 term controls. Complete blood counts with manual differential counts were obtained within 12 hours of life. Absolute nucleated RBC and corrected leukocyte counts were computed from the Coulter results and the differential count. G6PD deficient patients did not differ from controls in terms of gestational age, birth weight, or Apgar scores or in any of the hematologic parameters studied, whether or not the mother reported fava beans consumption in the days prior to delivery. Although intrauterine hemolysis is possible in G6PD deficient fetuses exposed passively to fava beans, our study supports that such events must be very rare.

  12. Red blood cell parameters in antenatal nonsickling hemoglobinopathy screening

    PubMed Central

    Bencaiova, Gabriela; Dapoto, Kristina; Zimmermann, Roland; Krafft, Alexander

    2015-01-01

    Objective To find a hematological parameter and the cut-off level for identification of nonsickling hemoglobinopathies in pregnant women. Materials and methods Venous blood samples of 849 women with singleton pregnancies were collected at the first visit. All women who met inclusion criteria were examined for nonsickling hemoglobinopathy. On the basis of the sensitivity and the specificity of different cut-off levels for hematological parameters, we calculated the optimal clinically practicable parameter for screening of nonsickling hemoglobinopathies in pregnant women. Results On the basis of the sensitivity and the specificity, the best screening parameters for the identification of nonsickling hemoglobinopathies among nonanemic pregnant women are mean corpuscular volume (MCV) with cut-off ≤80 fL (Youden’s index 91.2%), mean corpuscular hemoglobin (MCH) <27.5 pg (Youden’s index 90.7%), and microcytosis (MRC) ≥3% (Youden’s index 90.2%). An analysis using receiver operating characteristic curves and the calculated Youden’s index showed that MCV ≤76 fL, MCH ≤24 pg, or MRC ≥10% are the best red blood cell indices for the screening of nonsickling hemoglobinopathy among anemic women with iron deficiency. Conclusion Our results suggest targeted screening for nonsickling hemoglobinopathies in nonanemic pregnant women with MCV ≤80 fL, MCH ≤27.5 pg, or MRC ≥3% and in anemic women with MCV ≤76 fL, MCH ≤24 pg, or MRC ≥10%. PMID:25914560

  13. Neonatal nucleated red blood cells in G6PD deficiency.

    PubMed

    Yeruchimovich, Mark; Shapira, Boris; Mimouni, Francis B; Dollberg, Shaul

    2002-05-01

    The objective of this study is to study the absolute number of nucleated red blood cells (RBC) at birth, an index of active fetal erythropoiesis, in infants with G6PD deficiency and in controls. We tested the hypothesis that hematocrit and hemoglobin would be lower, and absolute nucleated RBC counts higher, in the G6PD deficient and that these changes would be more prominent in infants exposed passively to fava bean through maternal diet. Thirty-two term infants with G6PD deficiency were compared with 30 term controls. Complete blood counts with manual differential counts were obtained within 12 hours of life. Absolute nucleated RBC and corrected leukocyte counts were computed from the Coulter results and the differential count. G6PD deficient patients did not differ from controls in terms of gestational age, birth weight, or Apgar scores or in any of the hematologic parameters studied, whether or not the mother reported fava beans consumption in the days prior to delivery. Although intrauterine hemolysis is possible in G6PD deficient fetuses exposed passively to fava beans, our study supports that such events must be very rare. PMID:12012283

  14. Amyloid β Levels in Human Red Blood Cells

    PubMed Central

    Kiko, Takehiro; Nakagawa, Kiyotaka; Satoh, Akira; Tsuduki, Tsuyoshi; Furukawa, Katsutoshi; Arai, Hiroyuki; Miyazawa, Teruo

    2012-01-01

    Amyloid β-peptide (Aβ) is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs) to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer's disease (AD). Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid) to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging), implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent. Trial Registration Controlled-Trials.com ISRCTN42483402 PMID:23166730

  15. Research Opportunities to Improve Neonatal Red Blood Cell Transfusion.

    PubMed

    Patel, Ravi Mangal; Meyer, Erin K; Widness, John A

    2016-10-01

    Red blood cell (RBC) transfusion is a common and lifesaving therapy for anemic neonates and infants, particularly among those born prematurely or undergoing surgery. However, evidence-based indications for when to administer RBCs and adverse effects of RBC transfusion on important outcomes including necrotizing enterocolitis, survival, and long-term neurodevelopmental impairment remain uncertain. In addition, blood-banking practices for preterm and term neonates and infants have been largely developed using studies from older children and adults. Use of and refinements in emerging technologies and advances in biomarker discovery and neonatal-specific RBC transfusion databases may allow clinicians to better define and tailor RBC transfusion needs and practices to individual neonates. Decreasing the need for RBC transfusion and developing neonatal-specific approaches in the preparation of donor RBCs have potential for reducing resource utilization and cost, improving outcomes, and assuring blood safety. Finally, large donor-recipient-linked cohort studies can provide data to better understand the balance of the risks and benefits of RBC transfusion in neonates. These studies may also guide the translation of new research into best practices that can rapidly be integrated into routine care. This review highlights key opportunities in transfusion medicine and neonatology for improving the preparation and transfusion of RBCs into neonates and infants. We focus on timely, currently addressable knowledge gaps that can increase the safety and efficacy of preterm and term neonatal and infant RBC transfusion practices.

  16. Research Opportunities to Improve Neonatal Red Blood Cell Transfusion.

    PubMed

    Patel, Ravi Mangal; Meyer, Erin K; Widness, John A

    2016-10-01

    Red blood cell (RBC) transfusion is a common and lifesaving therapy for anemic neonates and infants, particularly among those born prematurely or undergoing surgery. However, evidence-based indications for when to administer RBCs and adverse effects of RBC transfusion on important outcomes including necrotizing enterocolitis, survival, and long-term neurodevelopmental impairment remain uncertain. In addition, blood-banking practices for preterm and term neonates and infants have been largely developed using studies from older children and adults. Use of and refinements in emerging technologies and advances in biomarker discovery and neonatal-specific RBC transfusion databases may allow clinicians to better define and tailor RBC transfusion needs and practices to individual neonates. Decreasing the need for RBC transfusion and developing neonatal-specific approaches in the preparation of donor RBCs have potential for reducing resource utilization and cost, improving outcomes, and assuring blood safety. Finally, large donor-recipient-linked cohort studies can provide data to better understand the balance of the risks and benefits of RBC transfusion in neonates. These studies may also guide the translation of new research into best practices that can rapidly be integrated into routine care. This review highlights key opportunities in transfusion medicine and neonatology for improving the preparation and transfusion of RBCs into neonates and infants. We focus on timely, currently addressable knowledge gaps that can increase the safety and efficacy of preterm and term neonatal and infant RBC transfusion practices. PMID:27424006

  17. Diamond Blackfan anemia: a disorder of red blood cell development.

    PubMed

    Ellis, Steven R; Lipton, Jeffrey M

    2008-01-01

    Diamond Blackfan anemia (DBA) is an inherited hypoplastic anemia that typically presents in the first year of life. The genes identified to date that are mutated in DBA encode ribosomal proteins, and in these cases ribosomal protein haploinsufficiency gives rise to the disease. The developmental timing of DBA presentation suggests that the changes in red blood cell production that occur around the time of birth trigger a pathophysiological mechanism, likely linked to defective ribosome synthesis, which precipitates the hematopoietic phenotype. Variable presentation of other clinical phenotypes in DBA patients indicates that other developmental pathways may also be affected by ribosomal protein haploinsufficiency and that the involvement of these pathways is influenced by modifier genes. Understanding the molecular basis for the developmental timing of DBA presentation promises to shed light on a number of baffling features of this disease. This chapter also attempts to demonstrate how the marriage of laboratory and clinical science may enhance each and permit insights into human disease that neither alone can accomplish.

  18. Alteration of red blood cell aggregation during blood storage

    NASA Astrophysics Data System (ADS)

    Lim, Hyun-Jung; Nam, Jeong-Hun; Lee, Byoung-Kwon; Suh, Jang-Soo; Shin, Sehyun

    2011-06-01

    Even though the trade-off between the benefits and risks of blood transfusion has been discussed for the last several decades, it requires further understanding of the rheological changes in stored blood that include the alteration of red blood cell (RBC) aggregation. The RBC aggregation of stored blood in its autologous plasma was monitored through the storage period (35 days). The critical shear stress, as a measure of RBC aggregation, was determined by using a microfluidic aggregometer. Blood was processed into a blood bag containing the anticoagulant CPDA1 and stored at 4°C. It was subjected to assays after zero, seven, 14, and 35 days. The critical shear stress for stored blood did not change up to 14 days of storage but exhibited a significant decrease after 35 days of storage. These results were identical to those of the conventional aggregation index (AI). Also, in the alteration of RBC aggregation for blood storage, the effect of the plasma factor was slightly stronger than that of the cellular factor. Through the present study, the critical shear stress as a new measure of RBC aggregation may help to monitor and control the quality of blood storage.

  19. Red blood cell phenotype matching for various ethnic groups.

    PubMed

    Badjie, Karafa S W; Tauscher, Craig D; van Buskirk, Camille M; Wong, Clare; Jenkins, Sarah M; Smith, Carin Y; Stubbs, James R

    2011-01-01

    Patients requiring chronic transfusion support are at risk of alloimmunization after red blood cell (RBC) transfusion because of a disparity between donor and recipient antigen profiles. This research explored the probability of obtaining an exact extended phenotype match between blood donors randomly selected from our institution and patients randomly selected from particular ethnic groups. Blood samples from 1,000 blood donors tested by molecular method were evaluated for the predicted phenotype distribution of Rh, Kell, Kidd, Duffy, and MNS. A random subsample of 800 donor phenotypes was then evaluated for the probability of obtaining an exact match with respect to phenotype with a randomly selected patient from a particular ethnic group. Overall, there was a greater than 80 percent probability of finding an exact donor-recipient match for the K/k alleles in the Kell system. The probability ranged from 3 percent to 38 percent, depending on the ethnicity and disparities in phenotypic profiles, for the Rh, Kidd, Duffy, and MNS systems. A significant donor-recipient phenotype mismatch ratio exists with certain blood group antigens such that, with current routine ABO and D matching practices, recipients of certain ethnic groups are predisposed to alloimmunization.

  20. Red blood cell aggregation and microcirculation in rat cremaster muscle.

    PubMed

    Vicaut, E; Hou, X; Decuypère, L; Taccoen, A; Duvelleroy, M

    1994-01-01

    Using intravital microscopy of the rat cremaster muscle, we studied the effects of changing red blood cell (RBC) aggregation on RBC arteriolar velocity and perfused capillary density (PCD). To modify RBC aggregation, 2 and/or 10% dextran (molecular weights 40,000, 70,000 or 480,000) or fresh rat plasma was infused into adult male rats via a normovolemic hemodilution procedure. The high-molecular-weight dextrans (70,000 and 480,000) both induced RBC hyperaggregation associated with similar dose-dependent decreases in RBC arteriolar velocity (30 and 40% for dextran concentrations of 2 and 10%, respectively) and in PCD (35 and 37%, respectively, for the two concentrations). Conversely, with 40,000 molecular weight dextran or plasma, we observed a 30% increase in RBC arteriolar velocity, but no change in PCD or hyperaggregation. Intravenous injection of the antiaggregating drug troxerutin (10(-3) M), either before or after 2% dextran 70,000, significantly inhibited the effects of this dextran on RBC arteriolar velocity and on PCD. We conclude that RBC hyperaggregation can lead to changes in both arteriolar velocity and PCD and may, therefore, impair tissue oxygenation.

  1. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  2. Characterization of red blood cells with multiwavelength transmission spectroscopy.

    PubMed

    Serebrennikova, Yulia M; Huffman, Debra E; Garcia-Rubio, Luis H

    2015-01-01

    Multiwavelength transmission (MWT) spectroscopy was applied to the investigation of the morphological parameters and composition of red blood cells (RBCs). The MWT spectra were quantitatively analyzed with a Mie theory based interpretation model modified to incorporate the effects of the nonsphericity and orientation of RBCs. The MWT spectra of the healthy and anemic samples were investigated for the RBC indices in open and blinded studies. When MWT performance was evaluated against a standard reference system, very good agreement between two methods, with R (2) > 0.85 for all indices studied, was demonstrated. The RBC morphological parameters were used to characterize three types of anemia and to draw an association between RBC morphology and anemia severity. The MWT spectra of RBCs infected with malaria parasite Plasmodium falciparum at different life cycle stages were analyzed for RBC morphological parameters. The changes in the RBC volume, surface area, aspect ratio, and hemoglobin composition were used to trace the morphological and compositional alterations in the infected RBCs occurring with parasites' development and to provide insights into parasite-host interactions. The MWT method was shown to be reliable for determination of the RBC morphological parameters and to be valuable for identification of the RBC pathologic changes and disease states.

  3. Human red blood cells deformed under thermal fluid flow.

    PubMed

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  4. Characterization of Red Blood Cells with Multiwavelength Transmission Spectroscopy

    PubMed Central

    Serebrennikova, Yulia M.; Huffman, Debra E.; Garcia-Rubio, Luis H.

    2015-01-01

    Multiwavelength transmission (MWT) spectroscopy was applied to the investigation of the morphological parameters and composition of red blood cells (RBCs). The MWT spectra were quantitatively analyzed with a Mie theory based interpretation model modified to incorporate the effects of the nonsphericity and orientation of RBCs. The MWT spectra of the healthy and anemic samples were investigated for the RBC indices in open and blinded studies. When MWT performance was evaluated against a standard reference system, very good agreement between two methods, with R2 > 0.85 for all indices studied, was demonstrated. The RBC morphological parameters were used to characterize three types of anemia and to draw an association between RBC morphology and anemia severity. The MWT spectra of RBCs infected with malaria parasite Plasmodium falciparum at different life cycle stages were analyzed for RBC morphological parameters. The changes in the RBC volume, surface area, aspect ratio, and hemoglobin composition were used to trace the morphological and compositional alterations in the infected RBCs occurring with parasites' development and to provide insights into parasite-host interactions. The MWT method was shown to be reliable for determination of the RBC morphological parameters and to be valuable for identification of the RBC pathologic changes and disease states. PMID:25654099

  5. In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells.

    PubMed

    Chapanian, Rafi; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-04-01

    The in vivo circulation of hyperbranched polyglycerol (HPG) grafted red blood cells (RBCs) was investigated in mice. The number of HPG molecules grafted per RBC was measured using tritium labeled HPGs ((3)H-HPG) of different molecular weights; the values ranged from 1 × 10(5) to 2 × 10(6) molecules per RBC. HPG-grafted RBCs were characterized in vitro by measuring the electrophoretic mobility, complement mediated lysis, and osmotic fragility. Our results show that RBCs grafted with 1.5 × 10(5) HPG molecules per RBC having molecular weights 20 and 60 kDa have similar characteristics as that of control RBCs. The in vivo circulation of HPG-grafted RBCs was measured by a tail vain injection of (3)H-HPG60K-RBC in mice. The radioactivity of isolated RBCs, whole blood, plasma, different organs, urine and feces was evaluated at different time intervals. The portion of (3)H-HPG60K-RBC that survived the first day in mice (52%) remained in circulation for 50 days. Minimal accumulation radioactivity in organs other than liver and spleen was observed suggesting the normal clearance mechanism of modified RBCs. Animals gained normal weights and no abnormalities observed in necropsy analysis. The stability of the ester-amide linker between the RBC and HPG was evaluated by comparing the clearance rate of (3)H-HPG60K-RBC and PKH-26 lipid fluorescent membrane marker labeled HPG60K-RBCs. HPG modified RBCs combine the many advantages of a dendritic polymer and RBCs, and hold great promise in systemic drug delivery and other applications of functional RBC.

  6. Elastic area compressibility modulus of red cell membrane.

    PubMed Central

    Evans, E A; Waugh, R; Melnik, L

    1976-01-01

    Micropipette measurements of isotropic tension vs. area expansion in pre-swollen single human red cells gave a value of 288 +/- 50 SD dyn/cm for the elastic, area compressibility modulus of the total membrane at 25 degrees C. This elastic constant, characterizing the resistance to area expansion or compression, is about 4 X 10(4) times greater than the elastic modulus for shear rigidity; therefore, in situations where deformation of the membrane does not require large isotropic tensions (e.g., in passage through normal capillaries), the membrane can be treated by a simple constitutive relation for a two-dimensionally, incompressible material (i.e. fixed area). The tension was found to be linear and reversible for the range of area changes observed (within the experimental system resolution of 10%). The maximum fractional area expansion required to produce lysis was uniformly distributed between 2 and 4% with 3% average and 0.7% SD. By heating the cells to 50 degrees C, it appears that the structural matrix (responsible for the shear rigidity and most of the strength in isotropic tension) is disrupted and primarily the lipid bilayer resists lysis. Therefore, the relative contributions of the structural matrix and lipid bilayer to the elastic, area compressibility could be estimated. The maximum isotropic tension at 25 degrees C is 10-12 dyn/cm and at 50 degrees C is between 3 and 4 dyn/cm. From this data, the respective compressibilities are estimated at 193 dyn/cm and 95 dyn/cm for structural network and bilayer. The latter value correlates well with data on in vitro, monolayer surface pressure versus area curves at oil-water interfaces. Images FIGURE 2 PMID:1276386

  7. Measuring red blood cell aggregation forces using double optical tweezers.

    PubMed

    Fernandes, Heloise P; Fontes, Adriana; Thomaz, André; Castro, Vagner; Cesar, Carlos L; Barjas-Castro, Maria L

    2013-04-01

    Classic immunohematology approaches, based on agglutination techniques, have been used in manual and automated immunohematology laboratory routines. Red blood cell (RBC) agglutination depends on intermolecular attractive forces (hydrophobic bonds, Van der Walls, electrostatic forces and hydrogen bonds) and repulsive interactions (zeta potential). The aim of this study was to measure the force involved in RBC aggregation using double optical tweezers, in normal serum, in the presence of erythrocyte antibodies and associated to agglutination potentiator solutions (Dextran, low ionic strength solution [LISS] and enzymes). The optical tweezers consisted of a neodymium:yattrium aluminium garnet (Nd:YAG) laser beam focused through a microscope equipped with a minicam, which registered the trapped cell image in a computer where they could be analyzed using a software. For measuring RBC aggregation, a silica bead attached to RBCs was trapped and the force needed to slide one RBC over the other, as a function of the velocities, was determined. The median of the RBC aggregation force measured in normal serum (control) was 1 × 10(-3) (0.1-2.5) poise.cm. The samples analyzed with anti-D showed 2 × 10(-3) (1.0-4.0) poise.cm (p < 0.001). RBC diluted in potentiator solutions (Dextran 0.15%, Bromelain and LISS) in the absence of erythrocyte antibodies, did not present agglutination. High adherence was observed when RBCs were treated with papain. Results are in agreement with the imunohematological routine, in which non-specific results are not observed when using LISS, Dextran and Bromelain. Nevertheless, false positive results are frequently observed in manual and automated microplate analyzer using papain enzyme. The methodology proposed is simple and could provide specific information with the possibility of meansuration regarding RBC interaction.

  8. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhen; Zhang, Jun; Jiang, Shengwei; Lin, Gan; Luo, Bing; Yao, Huan; Lin, Yuchun; He, Chengyong; Liu, Gang; Lin, Zhongning

    2016-05-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.

  9. Monoclonal antibodies directed against human Rh antigens in tests with the red cells of nonhuman primates.

    PubMed

    Socha, W W; Ruffie, J

    1990-01-01

    Monoclonal antibodies against Rh related antigens on human red cells often crossreact with the red cells of the highest subhuman primate species. Depending on specificity of antibody, the species tested, and technique used, these reactions can be either species-specific or type specific. In tests with chimpanzee red cells, some of the latter type reactions have specificities related to the R antigen of the R-C-E-F blood group system of chimpanzee; specificities of some others seem to be unrelated to any known chimpanzee blood groups. Monoclonal anti-D reagents that give uniformly positive reactions with human D-positive (common and rare types) red cells, display wide individual differences in tests with chimpanzee blood. This indicates that there are minute structural variations of antibody molecules from one monoclonal anti-D antibodies apparently have no bearing on recognition of the D combining site on the human red cells, but come into play when in contact with chimpanzee rbcs. Some of the monoclonal antibodies directed against Rh and LW molecules are distinguished by unusually strong reactions with the red cells of the Old World monkeys (macaques and baboons), which is in contrast with negative or weak reactions of the same antibodies with the red cells of anthropoid apes and human bloods. One may recall, that polyclonal anti-Rh sera do not react with the blood of rhesus monkeys, the phenomenon that was the source of controversy surrounding the discovery of the rhesus factor of the human blood.

  10. Ethanol induces human red cell shape transformations and enhanced ligand-mediated agglutinability

    SciTech Connect

    Weinstein, R.S.; McLawhon, R.W.; Marikovsky, Y.

    1986-03-01

    Ethanol concentrations are markedly elevated in rat stomach wall when ulcerogenic doses of 100 % ethanol (2 ml for 5 to 10 minutes) are instilled in rat gastric lumen. The authors observed that red cells in gastric mucosal postcapillary venules become spiculated and interadherent under these conditions. The authors have now studied this phenomenon in vitro using washing human red cells. Concentrations of high grade ethanol ranging from 2 to 10% (v/v) in physiological buffered saline (pH 7.3) without Ca/sup + +/ or Mg/sup + +/ at 25/sup 0/C rapidly transformed human red cells into spiculated forms. 2% ethanol transformed human red cells into disco-echinocytes in 15 min. whereas 10% ethanol transformed red blood cells into echinocytes within 3 min. Washing out of ethanol at 1 hour reverted the echinocytes into discocytes. However, following 3 hours of incubation in 10% ethanol washing out of ethanol produced stomatocytes. The ethanol-induced echinocytic shape transformations were accompanied by a dose-related increase in red cell agglutinability with poly-L-lysine or the plant lectin wheat germ agglutinin. The enhanced agglutinability was reversed by restoring the red cell shape changes and alterations in surface properties may play a role in the pathogenesis of ethanol-induced gastric ulcers.

  11. Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin.

    PubMed

    Muzykantov, V R; Murciano, J C; Taylor, R P; Atochina, E N; Herraez, A

    1996-10-01

    Red blood cells (RBC) modified with biotin and streptavidin (SA) present an interesting potential drug delivery system. Biotinylation and SA attachment, however, alter the biocompatibility of RBC. We have reported that polyvalent SA attachment induces lysis of biotinylated RBC (b-RBC) by homologous complement via the alternative pathway. Lysis occurs due to inactivation of the membrane regulators of complement, DAF and CD59, cross-linked by SA. However, monovalent SA attachment does not induce lysis. On the basis of these findings we hypothesized that reduction of the biotin surface density on b-RBC would allow for monovalent SA attachment to b-RBC and that such SA/b-RBC should then be stable in the circulation. In the present work we injected into rats several different radiolabeled RBC probes: rat RBC biotinylated to varying degrees (bn-RBC, where bn represents the input micromolar concentration of biotinylating agent), as well as SA/bn-RBC. Extensively biotinylated rat RBC (b700-RBC, stable in serum in vitro) were rapidly cleared from the bloodstream. We further found that extensively biotinylated human b1000-RBC bound C3b from serum in vitro without detectable lysis, and that rat b700-RBC bound to isolated macrophages in a complement-dependent fashion. Therefore, nonlytic C3b flxation and uptake of C3b-carrying b700-RBC by macrophages appears to be the mechanism leading to clearance of b700-RBC in vivo. Moderately biotinylated RBC (b70-RBC and b240-RBC) were stable in serum in vitro. SA attachment to b240-RBC led to their rapid lysis in serum in vitro, lysis in the bloodstream, and clearance by the liver and spleen. SA attachment to b70-RBC led to fast elimination of SA/b70-RBC from the bloodstream, while in vitro SA/ b70-RBC were stable in serum. Modestly biotinylated RBC (b22-RBC) demonstrated only marginally decreased 60-min survival in the bloodstream regardless of SA attachment. Our in vitro studies indicate that b23-RBC bound approximately 10(5) SA

  12. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.

    PubMed

    Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline

    2016-04-01

    Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy. PMID:26846309

  13. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.

    PubMed

    Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline

    2016-04-01

    Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy.

  14. Membrane characteristics and osmotic fragility of red cells, fractionated with anglehead centrifugation and counterflow centrifugation.

    PubMed

    van der Vegt, S G; Ruben, A M; Werre, J M; de Gier, J; Staal, G E

    1985-11-01

    Red cell populations were separated on the basis of differences in density using anglehead centrifugation and on the basis of differences in mean cell volume using counterflow centrifugation. In the different fractions, mean surface area was calculated, phospholipid and cholesterol content determined as well as the osmotic behaviour in hypotonic salt solutions. Older red cells appeared to be more resistant to hypotonic salt solutions, due to favourable surface area to volume ratio. PMID:4063204

  15. Enhancement of heat transfer in red cell suspensions in vitro experiments.

    PubMed

    Carr, R T; Tiruvaloor, N R

    1989-05-01

    New data on laminar heat convection with red cell suspensions have been gathered for both heating and cooling. When compared to data for the suspending medium alone, it is apparent that the red cells enhance laminar heat transfer when Pe greater than 4. This is probably due to particle movements. These new data disagree with earlier studies which indicated no enhancement of heat transfer for blood cell suspensions. The data do agree with previous correlations for enhanced thermal transport in sheared suspensions.

  16. A study of membrane protein defects and alpha hemoglobin chains of red blood cells in human beta thalassemia

    SciTech Connect

    Rouyer-Fessard, P.; Garel, M.C.; Domenget, C.; Guetarni, D.; Bachir, D.; Colonna, P.; Beuzard, Y. )

    1989-11-15

    The soluble pool of alpha hemoglobin chains present in blood or bone marrow cells was measured with a new affinity method using a specific probe, beta A hemoglobin chain labeled with ({sup 3}H)N-ethylmaleimide. This pool of soluble alpha chains was 0.067 {plus minus} 0.017% of hemoglobin in blood of normal adult, 0.11 {plus minus} 0.03% in heterozygous beta thalassemia and ranged from 0.26 to 1.30% in homozygous beta thalassemia intermedia. This elevated pool of soluble alpha chains observed in human beta thalassemia intermedia decreased 33-fold from a value of 10% of total hemoglobin in bone marrow cells to 0.3% in the most dense red blood cells. The amount of insoluble alpha chains was measured by using the polyacrylamide gel electrophoresis in urea and Triton X-100. In beta thalassemia intermedia the amount of insoluble alpha chains was correlated with the decreased spectrin content of red cell membrane and was associated with a decrease in ankyrin and with other abnormalities of the electrophoretic pattern of membrane proteins. The loss and topology of the reactive thiol groups of membrane proteins was determined by using ({sup 3}H)N-ethylmaleimide added to membrane ghosts prior to urea and Triton X-100 electrophoresis. Spectrin and ankyrin were the major proteins with the most important decrease of thiol groups.

  17. A Novel Antifouling Defense Strategy from Red Seaweed: Exocytosis and Deposition of Fatty Acid Derivatives at the Cell Wall Surface.

    PubMed

    Paradas, Wladimir Costa; Tavares Salgado, Leonardo; Pereira, Renato Crespo; Hellio, Claire; Atella, Georgia Correa; de Lima Moreira, Davyson; do Carmo, Ana Paula Barbosa; Soares, Angélica Ribeiro; Menezes Amado-Filho, Gilberto

    2016-05-01

    We investigated the organelles involved in the biosynthesis of fatty acid (FA) derivatives in the cortical cells of Laurencia translucida (Rhodophyta) and the effect of these compounds as antifouling (AF) agents. A bluish autofluorescence (with emission at 500 nm) within L. translucida cortical cells was observed above the thallus surface via laser scanning confocal microscopy (LSCM). A hexanic extract (HE) from L. translucida was split into two isolated fractions called hydrocarbon (HC) and lipid (LI), which were subjected to HPLC coupled to a fluorescence detector, and the same autofluorescence pattern as observed by LSCM analyses (emission at 500 nm) was revealed in the LI fraction. These fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), which revealed that docosane is the primary constituent of HC, and hexadecanoic acid and cholesterol trimethylsilyl ether are the primary components of LI. Nile red (NR) labeling (lipid fluorochrome) presented a similar cellular localization to that of the autofluorescent molecules. Transmission and scanning electron microscopy (TEM and SEM) revealed vesicle transport processes involving small electron-lucent vesicles, from vacuoles to the inner cell wall. Both fractions (HC and LI) inhibited micro-fouling [HC, lower minimum inhibitory concentration (MIC) values of 0.1 µg ml(-1); LI, lower MIC value of 10 µg ml(-1)]. The results suggested that L. translucida cortical cells can produce FA derivatives (e.g. HCs and FAs) and secrete them to the thallus surface, providing a unique and novel protective mechanism against microfouling colonization in red algae.

  18. Quantitative Absorption Cytometry for Measuring Red Blood Cell Hemoglobin Mass and Volume

    PubMed Central

    Schonbrun, Ethan; Malka, Roy; Di Caprio, Giuseppe; Schaak, Diane; Higgins, John M.

    2015-01-01

    We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately. PMID:24677669

  19. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion.

    PubMed

    Stiess, Michael; Wegehingel, Sabine; Nguyen, Chuong; Nickel, Walter; Bradke, Frank; Cambridge, Sidney B

    2015-08-01

    Recent evidence suggests that the extracellular protein milieu is much more complex than previously assumed as various secretome analyses from different cell types described the release of hundreds to thousands of proteins. The extracellular function of many of these proteins has yet to be determined particularly in the context of three-dimensional tissues with abundant cell-cell contacts. Toward this goal, we developed a strategy of dual SILAC labeling astrocytic cultures for in silico exclusion of unlabeled proteins from serum or neurons used for stimulation. For constitutive secretion, this strategy allowed the precise quantification of the extra-to-intracellular protein ratio of more than 2000 identified proteins. Ratios covered 4 orders of magnitude indicating that the intracellular vs extracellular contributions of different proteins can be variable. Functionally, the secretome of labeled forebrain astrocytic cultures specifically changed within hours after adding unlabeled, "physiological" forebrain neurons. "Nonphysiological" cerebellar hindbrain neurons, however, elicited a different, highly repulsive secretory response. Our data also suggest a significant association of constitutive secretion with the classical secretion pathway and regulated secretion with unconventional pathways. We conclude that quantitative proteomics can help to elucidate general principles of cellular secretion and provide functional insight into the abundant extracellular presence of proteins.

  20. Ex-vivo expansion of red blood cells: How real for transfusion in humans?

    PubMed Central

    Migliaccio, Anna Rita; Masselli, Elena; Varricchio, Lilian; Whitsett, Carolyn

    2013-01-01

    Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compared to other cell therapies transfusion poses the unique challenge of requiring great cell doses (2.5 × 1012 cells vs 107 cells). Although production of such cell numbers is theoretically possible, current technologies generate red cells in numbers sufficient only for safety studies. It is conceived that by the time these studies will be completed, technical barriers to mass cell production will have been eliminated making transfusion with ex-vivo generated red cells a reality. PMID:22177597

  1. Differentiation of focal intrahepatic lesions with 99mTc-red blood cell imaging

    SciTech Connect

    Engel, M.A.; Marks, D.S.; Sandler, M.A.; Shetty, P.

    1983-03-01

    The appearance of focal hepatic lesions on 99mTc-sulfur colloid images is nonspecific. As it is important to distinguish hemangiomas from other lesions prior to biopsy, a prospective study was performed using 99mTc-labeled red blood cells. Dynamic perfusion and delayed blood-pool images (1-2 hours) were obtained and lesion activity categorized as increased, equal, or decreased compared with the liver. Of 21 patients studied, 9 (43%) had one or more hepatic hemangiomas, and 8 of these 9 patients (89%) demonstrated increased blood-pool activity. The 12 nonhemangiomatous lesions consisted of 7 metastatic tumors, 2 hepatomas, 1 cirrhotic nodule, and 2 hepatic cysts. None of these 12 patients had increased activity on delayed blood-pool images. Early dynamic images of hepatic hemangiomas demonstrated variable activity (vascularity) and were not useful in differentiating hemangiomas from other lesions. Sensitivity was 89% and specificity 100%. Although liver enzymes are usually normal with hepatic hemangiomas, they may also be normal in metastatic disease. The authors recommend that delayed blood-pool imaging be performed prior to biopsy, particularly in patients without a known primary tumor or those with normal liver enzyme levels.

  2. Differentiation of focal intrahepatic lesions with /sup 99m/Tc-red blood cell imaging

    SciTech Connect

    Engel, M.A.; Marks, D.S.; Sandler, M.A.; Shetty, P.

    1983-03-01

    The appearance of focal hepatic lesions on /sup 99m/Tc-sulfur colloid images is nonspecific. As it is important to distinguish hemangiomas from other lesions prior to biopsy, a prospective study was performed using /sup 99m/Tc-labeled red blood cells. Dynamic perfusion and delayed blood-pool images (1-2 hours) were obtained and lesion activity categorized as increased, equal, or decreased compared with the liver. Of 21 patients studied, 9 (43%) had one or more hepatic hemangiomas, and 8 of these 9 patients (89%) demonstrated increased blood-pool activity. The 12 nonhemangiomatous lesions consisted of 7 metastatic tumors, 2 hepatomas, 1 cirrhotic nodule, and 2 hepatic cysts. None of these 12 patients had increased activity on delayed blood-pool images. Early dynamic images of hepatic hemangiomas demonstrated variable activity (vascularity) and were not useful in differentiating hemangiomas from other lesions. Sensitivity was 89% and specificity 100%. Although liver enzymes are usually normal with hepatic hemangiomas, they may also be normal in metastatic disease. The authors recommend that delayed blood-pool imaging be performed prior to biopsy, particularly in patients without a known primary tumor or those with normal liver enzyme levels.

  3. Selective Methyl Labeling of Eukaryotic Membrane Proteins Using Cell-Free Expression

    PubMed Central

    2015-01-01

    Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl labeling is now well established for bacterial expression using suitable precursors, corresponding methods are still lacking for cell-free expression, which is often the only choice for producing labeled eukaryotic membrane proteins in mg quantities. Here we show that we can express methyl-labeled human integral membrane proteins cost-effectively by cell-free expression based of crude hydrolyzed ILV-labeled OmpX inclusion bodies. These are obtained in Escherichia coli with very high quantity and represent an optimal intermediate to channel ILV precursors into the eukaryotic proteins. PMID:24937763

  4. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia.

    PubMed

    Grau, Marijke; Lauten, Alexander; Hoeppener, Steffen; Goebel, Bjoern; Brenig, Julian; Jung, Christian; Bloch, Wilhelm; Suhr, Frank

    2016-09-12

    The aim was to study impacts of mild to severe hypoxia on human red blood cell (RBC)-nitric oxide synthase (NOS)-dependent NO production, protein S-nitrosylation and deformability.Ambient air oxygen concentration of 12 healthy subjects was step-wisely reduced from 20.95% to 16.21%, 12.35%, 10% and back to 20.95%. Additional in vitro experiments involved purging of blood (±sodium nitrite) with gas mixtures corresponding to in vivo intervention.Vital and hypoxia-associated parameters showed physiological adaptation to changing demands. Activation of RBC-NOS decreased with increasing hypoxia. RBC deformability, which is influenced by RBC-NOS activation, decreased under mild hypoxia, but surprisingly increased at severe hypoxia in vivo and in vitro. This was causatively induced by nitrite reduction to NO which increased S-nitrosylation of RBC α- and β-spectrins -a critical step to improve RBC deformability. The addition of sodium nitrite prevented decreases of RBC deformability under hypoxia by sustaining S-nitrosylation of spectrins suggesting compensatory mechanisms of non-RBC-NOS-produced NO.The results first time indicate a direct link between maintenance of RBC deformability under severe hypoxia by non-enzymatic NO production because RBC-NOS activation is reduced. These data improve our understanding of physiological mechanisms supporting adequate blood and, thus, oxygen supply to different tissues under severe hypoxia.

  5. Remote ischemia preconditioning increases red blood cell deformability through red blood cell-nitric oxide synthase activation.

    PubMed

    Grau, Marijke; Kollikowski, Alexander; Bloch, Wilhelm

    2016-09-12

    Remote ischemia preconditioning (rIPC), short cycles of ischemia (I) and reperfusion (R) of a region remote from the heart, protects against myocardial I/R injury. This effect is triggered by endothelial derived nitric oxide (NO) production. Red blood cells (RBC) are also capable of NO production and it is hypothesized that the beneficial effect of rIPC in terms of cardioprotection is strengthened by increased RBC dependent NO production and improved RBC function after rIPC maneuver. For this purpose, twenty male participants were subjected to four cycles of no-flow ischemia with subsequent reactive hyperemia within the forearm. Blood sampling and measurement of blood pressures and heart rate were carried out pre intervention, after each cycle and 15 min post intervention at both the non-treated and treated arm. These are the first results that show improved RBC deformability in the treated arm after rIPC cycles 1- 4 caused by significantly increased RBC-NO synthase activation. This in turn was associated to increased NO production in both arms after rIPC cycles 3 + 4. Also, systolic and diastolic blood pressures were decreased after rIPC. The findings lead to the conclusion that the cardioprotective effects associated with rIPC include improvement of the RBC-NOS/NO signaling in RBC.

  6. Variability of the thymidine labeling index in squamous cell carcinoma of the head and neck

    SciTech Connect

    Greenberg, B.; Woo, L.; Blatchford, S.; Aguirre, M.; Garewal, H.

    1988-06-01

    Tritiated thymidine (/sup 3/HTdR) labeling is the standard technique for determining the kinetic activity of tumors. This method has been used to label multiple sections of tumor specimens obtained from seven patients with advanced squamous cell carcinoma of the head and neck. Considerable variability was observed in the labeling index in different sites from the same specimen. To reduce the large sampling error due to heterogeneity, we recommend that an average value be determined from multiple sections when employing this technique.

  7. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes

    PubMed Central

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2016-01-01

    Purpose Recent findings indicate that the beneficial effects of adipose stem cells (ASCs), reported in several neurodegenerative experimental models, could be due to their paracrine activity mediated by the release of exosomes. The aim of this study was the development and validation of an innovative exosome-labeling protocol that allows to visualize them with magnetic resonance imaging (MRI). Materials and methods At first, ASCs were labeled using ultrasmall superparamagnetic iron oxide nanoparticles (USPIO, 4–6 nm), and optimal parameters to label ASCs in terms of cell viability, labeling efficiency, iron content, and magnetic resonance (MR) image contrast were investigated. Exosomes were then isolated from labeled ASCs using a standard isolation protocol. The efficiency of exosome labeling was assessed by acquiring MR images in vitro and in vivo as well as by determining their iron content. Transmission electron microscopy images and histological analysis were performed to validate the results obtained. Results By using optimized experimental parameters for ASC labeling (200 µg Fe/mL of USPIO and 72 hours of incubation), it was possible to label 100% of the cells, while their viability remained comparable to unlabeled cells; the detection limit of MR images was of 102 and 2.5×103 ASCs in vitro and in vivo, respectively. Exosomes isolated from previously labeled ASCs retain nanoparticles, as demonstrated by transmission electron microscopy images. The detection limit by MRI was 3 µg and 5 µg of exosomes in vitro and in vivo, respectively. Conclusion We report a new approach for labeling of exosomes by USPIO that allows detection by MRI while preserving their morphology and physiological characteristics. PMID:27330291

  8. Rheological properties of RBC in the microcirculation of mammalian skeletal muscle. [red blood cells

    NASA Technical Reports Server (NTRS)

    Ehrenberg, M. H.

    1974-01-01

    In the investigation the established technique of direct microscopic viewing was combined with the use of a closed circuit television system and cinematography. The red cell flow patterns in all capillaries were found to be oscillatory with characteristic cycle frequencies and amplitudes for all concentrations of inspired oxygen greater than 8%. Generally, there was a transient decrease in mean flow rate with increasing severity of hypoxia, with a gradual return toward control values. Red cell flow patterns are discussed along with questions of red cell configuration.

  9. Detection of IgG sensitization of red cells with /sup 125/I staphylococcal protein A

    SciTech Connect

    Yam, P.; Petz, L.D.; Spath, P.

    1982-06-01

    Most cases of immune hemolytic anemia are associated with a positive direct antiglobulin test. However, in some cases, the antiglobulin test is not sensitive enough to detect low levels of red-cell bound antibodies. This report describes a method using radiolabelled purified staphylococcal protein A which is capable of detecting IgG sensitization of red cells beyond the threshold of serologic techniques. It is less cumbersome than previously described methods and does not require antibody purification procedures. Its effectiveness was demonstrated for the detection of red-cell alloantibodies and in evaluation of patients with acquired hemolytic anemias associated with a negative direct antiglobulin test.

  10. Dynamics of red blood cells and vesicles in microchannels of oscillating width

    NASA Astrophysics Data System (ADS)

    Braunmüller, S.; Schmid, L.; Franke, T.

    2011-05-01

    We have studied the dynamics of red blood cells and fluid lipid vesicles in hydrodynamic flow fields created by microchannels with periodically varying channel width. For red blood cells we find a transition from a regime with oscillating tilt angle and fixed shape to a regime with oscillating shape with increasing flow velocity. We have determined the crossover to occur at a critical ratio Ly/vm≈2.2 × 10 - 3 s with channel width Ly and red blood cell velocity vm. These oscillations are superposed by shape transitions from a discocyte to a slipper shape at low velocities and a slipper to parachute transition at high flow velocities.

  11. Safe extension of red blood cell storage life at 4{degree}C

    SciTech Connect

    Bitensky, M.; Yoshida, Tatsuro

    1996-04-01

    The project sought to develop methods to extend the storage life of red blood cells. Extended storage would allow donor to self or autologous transfusion, expand and stabilize the blood supply, reduce the cost of medical care and eliminate the risk of transfusion related infections, including a spectrum of hepatitides (A, B and C) and HIV. The putative cause of red blood cell spoilage at 4 C has been identified as oxidative membrane damage resulting from deoxyhemoglobin and its denaturation products including hemichrome, hemin and Fe{sup 3+}. Trials with carbon monoxide, which is a stabilizer of hemoglobin, have produced striking improvement of red blood cell diagnostics for cells stored at 4 C. Carbonmonoxy hemoglobin is readily converted to oxyhemoglobin by light in the presence of oxygen. These findings have generated a working model and an approach to identify the best protocols for optimal red cell storage and hemoglobin regeneration.

  12. Affinity labeling and binding of nitrobenzylthionosine (NBTI) to a membrane fraction (MF) of cultured cell lines

    SciTech Connect

    Woffendin, C.; Plagemann, P.G.W.

    1986-05-01

    Equilibrium binding identified high affinity NBTI binding sites (K/sub D/ = 1-3 nM) on the MF's of L929, L1210, P388, S49 and CHO cells. High affinity NBTI binding sites are associated with the nucleoside transporter since none were present in a MF of a transport-deficient mutant of S49 cells (AE1). MF's of Novikoff cells, like intact Novikoff cells, also lacked high affinity NBTI binding sites. MF's of the cell lines were equilibrium labeled with (/sup 3/H)NBTI using photoaffinity conditions and analyzed by SDS-polyacrylamide gel electrophoresis. Radioactivity was specifically incorporated covalently into a 50-70 Kd protein fraction, but the labeled proteins from CHO and L929 cells had a higher apparent molecular weight than those from S49 and P388 cells. In addition, in MF's from some cell lines lower molecular weight components became photoaffinity labeled. Maximum photoaffinity labeling of the MF proteins was observed with much higher (/sup 3/H)NBTI concentrations (100-200 nM) than those saturating the nucleoside transporter. This finding is explained by a reduced affinity of the photoactivated NBTI intermediate(s) for the transporter. When detergent solubilized MF's from cultured cells were chromotographed on a DEAE cellulose column, only 5-10% of the protein, but practically all high affinity NBTI sites, were recovered in the flow through fraction.

  13. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  14. Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin Eucheuma serra Agglutinin Isolated from a Marine Red Alga

    PubMed Central

    Hayashi, Keita; Walde, Peter; Miyazaki, Tatsuhiko; Sakayama, Kenshi; Nakamura, Atsushi; Kameda, Kenji; Masuda, Seizo; Umakoshi, Hiroshi; Kato, Keiichi

    2012-01-01

    Previously, we demonstrated that the novel lectin Eucheuma serra agglutinin from a marine red alga (ESA) induces apoptotic cell death in carcinoma. We now find that ESA induces apoptosis also in the case of sarcoma cells. First, propidium iodide assays with OST cells and LM8 cells showed a decrease in cell viability after addition of ESA. With 50 μg/ml ESA, the viabilities after 24 hours decreased to 54.7 ± 11.4% in the case of OST cells and to 41.7 ± 12.3% for LM8 cells. Second, using fluorescently labeled ESA and flow cytometric and fluorescence microscopic measurements, it could be shown that ESA does not bind to cells that were treated with glycosidases, indicating importance of the carbohydrate chains on the surface of the cells for efficient ESA-cell interactions. Third, Span 80 vesicles with surface-bound ESA as active targeting ligand were shown to display sarcoma cell binding activity, leading to apoptosis and complete OST cell death after 48 hours at 2 μg/ml ESA. The findings indicate that Span 80 vesicles with surface-bound ESA are a potentially useful drug delivery system not only for the treatment of carcinoma but also for the treatment of osteosarcoma. PMID:23346404

  15. Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin Eucheuma serra Agglutinin Isolated from a Marine Red Alga.

    PubMed

    Hayashi, Keita; Walde, Peter; Miyazaki, Tatsuhiko; Sakayama, Kenshi; Nakamura, Atsushi; Kameda, Kenji; Masuda, Seizo; Umakoshi, Hiroshi; Kato, Keiichi

    2012-01-01

    Previously, we demonstrated that the novel lectin Eucheuma serra agglutinin from a marine red alga (ESA) induces apoptotic cell death in carcinoma. We now find that ESA induces apoptosis also in the case of sarcoma cells. First, propidium iodide assays with OST cells and LM8 cells showed a decrease in cell viability after addition of ESA. With 50 μg/ml ESA, the viabilities after 24 hours decreased to 54.7 ± 11.4% in the case of OST cells and to 41.7 ± 12.3% for LM8 cells. Second, using fluorescently labeled ESA and flow cytometric and fluorescence microscopic measurements, it could be shown that ESA does not bind to cells that were treated with glycosidases, indicating importance of the carbohydrate chains on the surface of the cells for efficient ESA-cell interactions. Third, Span 80 vesicles with surface-bound ESA as active targeting ligand were shown to display sarcoma cell binding activity, leading to apoptosis and complete OST cell death after 48 hours at 2 μg/ml ESA. The findings indicate that Span 80 vesicles with surface-bound ESA are a potentially useful drug delivery system not only for the treatment of carcinoma but also for the treatment of osteosarcoma. PMID:23346404

  16. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease

    PubMed Central

    ALAPAN, YUNUS; KIM, CEONNE; ADHIKARI, ANIMA; GRAY, KAYLA E.; GURKAN-CAVUSOGLU, EVREN; LITTLE, JANE A.; GURKAN, UMUT A.

    2016-01-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  17. Current topics in red cell biology: report on the Red Cell Special Interest Group meeting held at NHS Blood and Transplant Bristol on 30 October 2015.

    PubMed

    Bullock, T; Bruce, L J; Ridgwell, K

    2016-08-01

    The Red Cell Special Interest Group (SIG) meeting, hosted by the British Blood Transfusion Society, provides an annual forum for the presentation of UK- and European-based red cell research. The 2015 meeting was held on Friday 30 October at the National Health Service Blood & Transplant (NHSBT) facility in Filton, Bristol and provided an exciting and varied programme on the themes of erythropoiesis, malaria biology and pathophysiology and red cells properties in stress and disease. Ten speakers presented on these topics over the course of one day. The meeting was well attended by over 90 delegates. Posters were presented during the lunch break, and abstracts from the posters are published at the end of this issue.

  18. Clinical significance of anti-Yt(b). Report of a case using a 51-chromium red cell survival study

    SciTech Connect

    Levy, G.J.; Selset, G.; McQuiston, D.; Nance, S.J.; Garratty, G.; Smith, L.E.; Goldfinger, D.

    1988-05-01

    Several published reports have documented the variable survival of Yt(a+) red cells (RBC) in patients with anti-Yt(a) as measured by 51-Chromium (Cr)-labeled RBC survival studies. Similar studies with anti-Yt(b) have not been reported. A /sup 51/Cr-labeled RBC survival study was performed using Yt(b+) RBCs and a monocyte monolayer assay in a young hemodialysis patient who required chronic transfusion therapy and who had developed anti-Yt(b). The survival of the transfused RBCs was 100 and 93 percent at 1 and 24 hours, respectively, with a half life of 21 days at termination of the study (normal, 28 to 32 days). These results showed no evidence of rapid destruction of the Yt(b+) RBCs, indicating that this patient could be transfused safely with blood from Yt(b+) donors. Long-term survival of the /sup 51/Cr-labeled Yt(b+) RBCs was shortened moderately, however, a finding that correlated with a slightly abnormal monocyte monolayer assay test.

  19. Isoelectric focusing of red blood cells in a density gradient stabilized column

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Miller, T. Y.

    1980-01-01

    The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.

  20. Diffusional water permeability of mammalian red blood cells.

    PubMed

    Benga, G; Borza, T

    1995-12-01

    An extensive programme of comparative nuclear magnetic resonance measurements of the membrane diffusional permeability for water (Pd) and of the activation energy (Ea,d) of this process in red blood cells (RBCs) from 21 mammalian species was carried out. On the basis of Pd, these species could be divided into three groups. First, the RBC's from humans, cow, sheep and "large" kangaroos (Macropus giganteus and Macropus rufus) had Pd values approximately 5 x 10(-3) cm/s at 25 degrees and 7 x 10(-3) cm/s at 37 degrees C. The RBCs from other marsupial species, mouse, rat, guinea pig and rabbit, had Pd values roughly twice higher, whereas echidna RBCs were twice lower than human RBCs. The value of Ea,d was in most cases correlated with the values of Pd. A value of Ea,d approximately 26 kJ/mol was found for the RBCs from humans and the species having similar Pd values. Low values of Ea,d (ranging from 15 to 22 kJ/mol) appeared to be associated with relatively high values of Pd. The highest values of Ea,d (33 kJ/mol) was found in echidna RBCs. This points to specialized channels for water diffusion incorporated in membrane proteins; a relatively high water permeability of the RBC membrane could be due to a greater number of channel proteins. There are, however, situations where a very high water permeability of RBCs is associated with a high value of Ea,d (above 25 kJ/mol) as in the case of RBCs from mouse, rat and tree kangaroo. Moreover, it was found that Pd in different species was positively correlated to the RBC membrane phosphatidylcholine and negatively correlated to the sphingomyelin content. This suggests that in addition to the number of channel proteins, other factors are involved in the water permeability of the RBC membrane.

  1. Red Cell Properties after Different Modes of Blood Transportation

    PubMed Central

    Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P.; Mañú-Pereira, María del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars

    2016-01-01

    Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca2+ handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na+, K+, Ca2+) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to

  2. Red blood cell sodium transport in patients with cirrhosis.

    PubMed

    Henriksen, Ulrik Lütken; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming; Henriksen, Jens H

    2016-09-01

    Patients with advanced cirrhosis have abnormal sodium homoeostasis. The study was undertaken to quantify the sodium transport across the plasma membrane of red blood cells (RBC) in patients with cirrhosis. RBC efflux and influx of sodium were studied in vitro with tracer (22) Na(+) according to linear kinetics in 24 patients with cirrhosis and 14 healthy controls. The sodium efflux was modified by ouabain (O), furosemide (F) and a combination of O and F (O + F). RBC sodium was significantly decreased (4·6 versus control 6·3 mmol l(-1) , P<0·001) and directly related to serum sodium (r = 0·57, P<0·05). The RBC fractional sodium efflux was higher in patients with cirrhosis (+46%, P<0·01) compared to controls. Inhibition in both high (145 mmol l(-1) )- and low (120 mmol l(-1) )-sodium buffers showed that the F-insensitive sodium efflux was twice as high in cirrhosis as in controls (P = 0·03-0·007), especially the O-sensitive, F-insensitive efflux was increased (+ 225%, P = 0·01-0·006). Fractional F-sensitive transport was normal in cirrhosis. RBC sodium influx was largely normal in cirrhosis. In conclusion, RBC sodium content is reduced in patients with cirrhosis with a direct relation to serum sodium. Increased RBC sodium efflux is especially related to ouabain-sensitive, furosemide-insensitive transport and thus most likely due to upregulated activity of the sodium-potassium pump. The study gives no evidence to an altered intracellular/extracellular sodium ratio or to a reduced fractional furosemide-sensitive sodium transport in cirrhosis.

  3. Red Cell Properties after Different Modes of Blood Transportation.

    PubMed

    Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P; Mañú-Pereira, María Del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars

    2016-01-01

    Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the

  4. Vesiculation of healthy and defective red blood cells

    NASA Astrophysics Data System (ADS)

    Li, He; Lykotrafitis, George

    2015-07-01

    Vesiculation of mature red blood cells (RBCs) contributes to removal of defective patches of the erythrocyte membrane. In blood disorders, which are related to defects in proteins of the RBC membrane, vesiculation of the plasma membrane is intensified. Several hypotheses have been proposed to explain RBC vesiculation but the exact underlying mechanisms and what determines the sizes of the vesicles are still not completely understood. In this work, we apply a two-component coarse-grained molecular dynamics RBC membrane model to study how RBC vesiculation is controlled by the membrane spontaneous curvature and by lateral compression of the membrane. Our simulation results show that the formation of small homogeneous vesicles with a diameter less than 40 nm can be attributed to a large spontaneous curvature of membrane domains. On the other hand, compression on the membrane can cause the formation of vesicles with heterogeneous composition and with sizes comparable with the size of the cytoskeleton corral. When spontaneous curvature and lateral compression are simultaneously considered, the compression on the membrane tends to facilitate formation of vesicles originating from curved membrane domains. We also simulate vesiculation of RBCs with membrane defects connected to hereditary elliptocytosis (HE) and to hereditary spherocytosis (HS). When the vertical connectivity between the lipid bilayer and the membrane skeleton is elevated, as in normal RBCs, multiple vesicles are shed from the compressed membrane with diameters similar to the cytoskeleton corral size. In HS RBCs, where the connectivity between the lipid bilayer and the cytoskeleton is reduced, larger-size vesicles are released under the same compression ratio as in normal RBCs. Lastly, we find that vesicles released from HE RBCs can contain cytoskeletal filaments due to fragmentation of the membrane skeleton while vesicles released from the HS RBCs are depleted of cytoskeletal filaments.

  5. Red Cell Properties after Different Modes of Blood Transportation.

    PubMed

    Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P; Mañú-Pereira, María Del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars

    2016-01-01

    Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the

  6. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system.

    PubMed

    Chehrehasa, Fatemah; Meedeniya, Adrian C B; Dwyer, Patrick; Abrahamsen, Greger; Mackay-Sim, Alan

    2009-02-15

    Labelling and identifying proliferating cells is central to understanding neurogenesis and neural lineages in vivo and in vitro. We present here a novel thymidine analogue, ethynyl deoxyuridine (EdU) for labelling dividing cells, detected with a fluorescent azide which forms a covalent bond via the "click" chemistry reaction (the Huisgen 1,3-dipolar cycloaddition reaction of an organic azide to a terminal acetylene). Unlike the commonly used BrdU, EdU detection requires no heat or acid treatment. It is quick and easy and compatible with multiple probes for fluorescence immunochemistry, facilitating the characterisation of proliferating cells at high resolution.

  7. Labeling Cell Surface GPIs and GPI-Anchored Proteins through Metabolic Engineering with Artificial Inositol Derivatives.

    PubMed

    Lu, Lili; Gao, Jian; Guo, Zhongwu

    2015-08-10

    Glycosylphosphatidylinositol (GPI) anchoring of proteins to the cell surface is important for various biological processes, but GPI-anchored proteins are difficult to study. An effective strategy was developed for the metabolic engineering of cell-surface GPIs and GPI-anchored proteins by using inositol derivatives carrying an azido group. The azide-labeled GPIs and GPI-anchored proteins were then tagged with biotin on live cells through a click reaction, which allows further elaboration with streptavidin-conjugated dyes or other molecules. The strategy can be used to label GPI-anchored proteins with various tags for biological studies.

  8. Labeling cells in microtiter plates for determination of [3H]thymidine uptake.

    PubMed

    Shevach, E M

    2001-05-01

    A number of protocols in Current Protocols in Immunology use as their end-point the determination of cell proliferation by determining the incorporation of [(3)H]thymidine into cellular DNA. This appendix presents a protocol in which the radioactive label is added during the last 4 to 24 hr of the culture. A semiautomated cell harvesting apparatus is then used to lyse the cells with water and precipitate the labeled DNA on glass fiber filters. The filter pads are then dried and counted by standard liquid scintillation counting techniques in a scintillation counter. PMID:18432656

  9. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  10. Red cell and platelet concentrates from blood collected into half-strength citrate anticoagulant: improved maintenance of red cell 2,3-diphosphoglycerate in half-citrate red cells.

    PubMed

    Farrugia, A; Douglas, S; James, J; Whyte, G

    1992-01-01

    This study confirms previous work suggesting equivalent in vitro properties in blood components prepared from donations collected into half-citrate preservative (HCPD) compared to components derived from donations collected into standard citrate-phosphate-dextrose (CPD) preservatives. In addition, red cell products harvested from HCPD donations showed significantly improved maintenance of pH over storage, and this was reflected in improved maintenance of intracellular 2,3-diphosphoglycerate (2,3-DPG). This effect was observed in whole blood and in red cells suspended in a phosphate-containing additive solution (Tuta AAS). Collection into HCPD also improved 2,3-DPG maintenance in red cell concentrates processed following an 18-hour hold at 22 degrees C. These improvements were less pronounced in red cells suspended in a non-phosphate-containing medium (Fenwal Adsol) in which a higher pH was maintained even in units collected in CPD. Platelets harvested from HCPD blood and suspended in plasma showed equivalent quality to platelets from standard donations. Some deterioration of platelet properties was observed when HCPD platelets were stored in a non-citrate synthetic medium. Together with data indicating improved coagulation factor stability, these results suggest that collection into HCPD improves stored blood quality and may also allow logistical benefits in blood component preparation.

  11. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    SciTech Connect

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-05-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the CaS /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular CaS is allowed to rise. Since cellular CaS in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of TH-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated TSP incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition.

  12. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.

    PubMed

    Gambaruto, Alberto M

    2016-07-26

    Vessel with 'circular' or 'star-shaped' cross sections are studied, representing respectively dilated or constricted cases where endothelial cells smoothly line or bulge into the lumen. Computational haemodynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell 'tube' hematocrit value=24%. A further simulation of a single red blood cell serves for comparison purposes. The bulk motion of the red blood cells reproduces well-known effects, including the presence of a cell-free layer and the apparent shear-thinning non-Newtonian rheology. The velocity flow field is analysed in a Lagrangian reference frame, relative to any given red blood cell, hence removing the bulk coaxial motion and highlighting instead the complex secondary flow patterns. An aggregate formation becomes apparent, continuously rearranging and dynamic, brought about by the inter-cellular fluid mechanics interactions and the deformability properties of the cells. The secondary flow field induces a vacillating radial migration of the red blood cells. At different radial locations, the red blood cells express different residence times, orientation and shape. The shear stresses exerted by the flow on the vessel wall are influenced by the motion of red blood cells, despite the presence of the cell-free layer. Spatial (and temporal) variations of wall shear stress patters are observed, especially for the 'circular' vessel. The 'star-shaped' vessel bears considerable stress at the protruding endothelial cell crests, where the stress vectors are coaxially aligned. The bulging endothelial cells hence regularise the transmission of stresses on the vessel wall. PMID:26822224

  13. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.

    PubMed

    Gambaruto, Alberto M

    2016-07-26

    Vessel with 'circular' or 'star-shaped' cross sections are studied, representing respectively dilated or constricted cases where endothelial cells smoothly line or bulge into the lumen. Computational haemodynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell 'tube' hematocrit value=24%. A further simulation of a single red blood cell serves for comparison purposes. The bulk motion of the red blood cells reproduces well-known effects, including the presence of a cell-free layer and the apparent shear-thinning non-Newtonian rheology. The velocity flow field is analysed in a Lagrangian reference frame, relative to any given red blood cell, hence removing the bulk coaxial motion and highlighting instead the complex secondary flow patterns. An aggregate formation becomes apparent, continuously rearranging and dynamic, brought about by the inter-cellular fluid mechanics interactions and the deformability properties of the cells. The secondary flow field induces a vacillating radial migration of the red blood cells. At different radial locations, the red blood cells express different residence times, orientation and shape. The shear stresses exerted by the flow on the vessel wall are influenced by the motion of red blood cells, despite the presence of the cell-free layer. Spatial (and temporal) variations of wall shear stress patters are observed, especially for the 'circular' vessel. The 'star-shaped' vessel bears considerable stress at the protruding endothelial cell crests, where the stress vectors are coaxially aligned. The bulging endothelial cells hence regularise the transmission of stresses on the vessel wall.

  14. Near-Infrared Imaging of Adoptive Immune Cell Therapy in Breast Cancer Model Using Cell Membrane Labeling

    PubMed Central

    Youniss, Fatma M.; Sundaresan, Gobalakrishnan; Graham, Laura J.; Wang, Li; Berry, Collin R.; Dewkar, Gajanan K.; Jose, Purnima; Bear, Harry D.; Zweit, Jamal

    2014-01-01

    The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell) sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR), a lipophilic near infrared fluorescent dye that labels the cell membrane. Assays for viability, proliferation, and function of labeled T-lymphocytes showed that they were unaffected by DiR labeling. The DiR labeled cells were injected via tail vein in mice bearing 4T1 tumors in the flank. In some cases labeled 4T1 specific T-lymphocytes were injected a week before 4T1 tumor cell implantation. Multi-spectral in vivo fluorescence imaging was done to subtract the autofluorescence and isolate the near infrared signal carried by the T-lymphocytes. In recipient mice with established 4T1 tumors, labeled 4T1 specific T-lymphocytes showed marked tumor retention, which peaked 6 days post infusion and persisted at the tumor site for up to 3 weeks. When 4T1 tumor cells were implanted 1-week post-infusion of labeled T-lymphocytes, T-lymphocytes responded to the immunologic challenge and accumulated at the site of 4T1 cell implantation within two hours and the signal persisted for 2 more weeks. Tumor accumulation of labeled 4T1 specific T-lymphocytes was absent in mice bearing Meth A sarcoma tumors. When lysate of 4T1 specific labeled T-lymphocytes was injected into 4T1 tumor bearing mice the near infrared signal was not detected at the tumor site. In conclusion, our validated results confirm that the near infrared signal detected at the tumor site represents the DiR labeled 4T1 specific viable T-lymphocytes and their response to immunologic challenge can be imaged in

  15. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    NASA Astrophysics Data System (ADS)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  16. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    PubMed Central

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants. PMID:27174199

  17. Assessment of a Nuclear Affinity Labeling Method for Tracking Implanted Mesenchymal Stem Cells

    PubMed Central

    Leiker, Merced; Suzuki, Gen; Iyer, Vijay S.; Canty, John M.; Lee, Techung

    2010-01-01

    Therapeutic implantation of mesenchymal stem cells (MSCs) is entering the realm of clinical trials for several human diseases, and yet much remains uncertain regarding their dynamic distribution and cell fate after in vivo application. Discrepancies in the literature can be attributed in part to the use of different cell labeling/tracking methods and cell administration protocols. To identify a stem cell detection method suitable for myocardial implantation in a large animal model, we experimented on three different MSC labeling methods: adenovirus-mediated expression of enhanced green fluorescence protein (EGFP) and β-galactosidase (LacZ), and nuclear staining with DAPI. Intramuscular and intracoronary administrations of labeled porcine MSCs identified the nuclear affinity dye to be a reliable stem cell tracking marker. Stem cell identification is facilitated by an optimized live cell labeling condition generating bright blue fluorescence sharply confined to the nucleus. DAPI-labeled MSCs retained full viability, ceased proliferation, and exhibited an increased differentiation potential. The labeled MSCs remained fully active in expressing key growth factor and cytokine genes, and notably exhibited enhanced expression of the chemokine receptor CXCR4 and its ligand SDF1, indicating their competency in response to tissue injury. Histological analysis revealed that approximately half a million MSCs or ∼2% of the administered MSCs remained localized in the normal pig heart 2 weeks after coronary infusion. That the vast majority of these identified MSCs were interstitial indicated the ability of MSCs to migrate across the coronary endothelium. No evidence was obtained indicating MSC differentiation to cardiomyocyte. PMID:19069634

  18. Uncovering stem-cell heterogeneity in the microniche with label-free microfluidics

    NASA Astrophysics Data System (ADS)

    Sohn, Lydia L.

    2013-03-01

    Better suited for large number of cells from bulk tissue, traditional cell-screening techniques, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, they rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. We have developed a label-free, single-cell analysis microfluidic platform capable of quantifying cell-surface marker expression of functional organ stem cells directly isolated from their micro-anatomical niche. With this platform, we have screened single quiescent muscle stem (satellite) cells derived from single myofibers, and we have uncovered an important heterogeneity in the surface-marker expression of these cells. By sorting the screened cells with our microfluidic device, we have determined what this heterogeneity means in terms of muscle stem-cell functionality. For instance, we show that the levels of beta1-integrin can predict the differentiation capacity of quiescent satellite cells, and in contrast to recent literature, that some CXCR4 + cells are not myogenic. Our results provide the first direct demonstration of a microniche-specific variation in gene expression in stem cells of the same lineage. Overall, our label-free, single-cell analysis and cell-sorting platform could be extended to other systems involving rare-cell subsets. This work was funded by the W. M. Keck Foundation, NIH, and California Institute of Regenerative Medicine

  19. Genetic studies of water buffalo blood markers. I. Red cell acid phosphatase, albumin, catalase, red cell alpha-esterase-3, group-specific component, and protease inhibitor.

    PubMed

    Tan, S G; Barker, J S; Selvaraj, O S; Mukherjee, T K; Wong, Y F

    1993-06-01

    We have developed the methodologies for typing and family studies to establish the modes of inheritance of water buffalo red cell acid phosphatase (Acp), protease inhibitor (Pi), and group-specific component (Gc) on isoelectric focusing and albumin (Alb), red cell alpha-esterase-3 (Est-3), and catalase (Cat) on polyacrylamide gel electrophoresis. Family studies showed that Pi, Gc, Alb, and Cat are coded by autosomal genes with two codominant alleles, while Est-3 is autosomal with two codominant alleles and a recessive null allele and Acp exhibits three codominant alleles.

  20. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    PubMed

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed.