Sample records for labile dissolved organic

  1. Labile dissolved organic carbon supply limits hyporheic denitrification

    Treesearch

    Jay P. Zarnetske; Roy Haggerty; Steven M. Wondzell; Michelle A. Baker

    2012-01-01

    We used an in situ steady state 15N-labeled nitrate and acetate well-to-wells injection experiment to determine how the availability of labile dissolved organic carbon as acetate influences microbial denitrification in the hyporheic zone of an upland (third-order) agricultural stream.

  2. Biologically labile photoproducts from riverine non-labile dissolved organic carbon in the coastal waters

    NASA Astrophysics Data System (ADS)

    Kasurinen, V.; Aarnos, H.; Vähätalo, A.

    2015-06-01

    In order to assess the production of biologically labile photoproducts (BLPs) from non-labile riverine dissolved organic carbon (DOC), we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%). Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE) compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM). The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39) (μmol C mol photons-1) at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320) (μmol C mol photons-1). According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence) to 584 (Yangtze) mmol C m-2 yr-1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr-1 from the rivers examined in this study and globally 38 Mt yr-1 (15% of riverine DOC flux from all rivers), which support 4.1 Mt yr-1 of bacterial production and 33.9 Mt yr-1 bacterial respiration.

  3. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  4. Labile dissolved organic carbon supply limits hyporheic denitrification

    NASA Astrophysics Data System (ADS)

    Zarnetske, Jay P.; Haggerty, Roy; Wondzell, Steven M.; Baker, Michelle A.

    2011-12-01

    We used an in situ steady state 15N-labeled nitrate (15NO3-) and acetate (AcO-) well-to-wells injection experiment to determine how the availability of labile dissolved organic carbon (DOC) as AcO-influences microbial denitrification in the hyporheic zone of an upland (third-order) agricultural stream. The experimental wells receiving conservative (Cl- and Br) and reactive (15NO3-) solute tracers had hyporheic median residence times of 7.0 to 13.1 h, nominal flowpath lengths of 0.7 to 3.7 m, and hypoxic conditions (<1.5 mg O2 L-1). All receiving wells demonstrated 15N2 production during ambient conditions, indicating that the hyporheic zone was an environment with active denitrification. The subsequent addition of AcO- stimulated more denitrification as evidenced by significant δ15N2 increases by factors of 2.7 to 26.1 in receiving wells and significant decreases of NO3- and DO in the two wells most hydrologically connected to the injection. The rate of nitrate removal in the hyporheic zone increased from 218 kg ha-1 yr-1 to 521 kg ha-1 yr-1 under elevated AcO- conditions. In all receiving wells, increases of bromide and 15N2 occurred without concurrent increases in AcO-, indicating that 100% of AcO- was retained or lost in the hyporheic zone. These results support the hypothesis that denitrification in anaerobic portions of the hyporheic zone is limited by labile DOC supply.

  5. Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms

    NASA Astrophysics Data System (ADS)

    de Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2015-04-01

    Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation

  6. Microbially driven export of labile organic carbon from the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Musilova, Michaela; Tranter, Martyn; Wadham, Jemma; Telling, Jon; Tedstone, Andrew; Anesio, Alexandre M.

    2017-04-01

    Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland ice sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater. Further, we determined that freely available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities are the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces, and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.

  7. Lability of High Molecular Weight Dissolved Organic Matter Polysaccharides Increases with Mild Acid or Base Treatment.

    NASA Astrophysics Data System (ADS)

    Pedler Sherwood, B.; Sosa, O.; Nelson, C. E.; Repeta, D.; DeLong, E.

    2016-02-01

    Approximately 662 Pg of dissolved organic carbon (DOC) has accumulated in the global ocean, yet the biological and chemical constraints on DOC turnover remain poorly understood. High molecular weight dissolved organic matter (HMWDOM) is largely comprised of semi-labile polysaccharides. These polysaccharides resist degradation even in the presence of nutrient amendments, suggesting unknown factors of polysaccharide composition affect microbial degradation. In a series of microcosm incubations conducted at station ALOHA in the North Pacific Subtropical Gyre, we tested the affect of mild base (KOH-DOM) and acid (HCl-DOM) treatments on polysaccharide lability. KOH-DOM, HCl-DOM, and untreated HMWDOM was added to seawater from the deep chlorophyll maximum and 200m. Microcosms amended with KOH-DOM and HCl-DOM yielded higher bacterial abundance and greater carbon drawdown relative to untreated HMWDOM and unamended controls. Microcosms amended with KOH-DOM and HCl-DOM also showed significant production of fluorescent DOM (fDOM), whereas untreated HMWDOM and unamended controls showed a net decrease in fDOM as measured by parallel factor analysis of DOM excitation-emission spectra. Metagenomic analyses revealed that microcosms amended with untreated HMWDOM and controls became dominated by Alteromonas genera ( 60% total sequence reads). In contrast, KOH-DOM and HCl-DOM amended microcosms yielded greater bacterial diversity; Alteromonas genera comprised 25% of sequence reads, with differences primarily accounted for by proportional increases in vibrio, roseobacter, rugeria and marinomonas clades. Transcriptomic analyses identified differential gene expression during growth on each DOM fraction. This study provides new insight into specific chemical moieties that may limit the bacterial degradation rate of semi-labile HMWDOM in the ocean.

  8. Freshwater processing of terrestrial dissolved organic matter: What governs lability?

    NASA Astrophysics Data System (ADS)

    D'Andrilli, J.; Smith, H. J.; Junker, J. R.; Scholl, E. A.; Foreman, C. M.

    2016-12-01

    Aquatic and terrestrial ecosystems are linked through the transfer of energy and materials. Allochthonous organic matter (OM) is central to freshwater ecosystem function, influencing local food webs, trophic state, and nutrient availability. In order to understand the nature and fate of OM from inland headwaters to the open ocean, it is imperative to understand the links between OM lability and ecosystem function. Thus, biological, chemical, and physical factors need to be evaluated together to inform our understanding of environmental lability. We performed a laboratory processing experiment on naturally occurring OM leachates from riparian leaves, grasses, and pine needles. Measures of water chemistry, OM optical and molecular characterization, bacterial abundances, microbial assemblage composition, respiration, and C:N:P were integrated to discern the nature and fate of labile and recalcitrant OM in a freshwater stream. Peak processing of all OM sources in the stream water occurred after two days, with spikes in bacterial cell abundances, respiration rates, microbial assemblage shifts, and maximum C utilization. Respiration rates and microbial assemblages were dependent on the degree of lability of the OM molecular composition. Within the first few days, no differences in respiration rates were observed between leachate sources, however, beyond day five, the rates diverged with C processing efficiency correlated with OM lability. Originally comprised of amino acid-like, labile fluorescent species, the inoculated stream water OM became more recalcitrant after 16 days, indicating humification processing over time. Our study highlights the importance of interdisciplinary approaches for understanding the processing and fate of OM in aquatic ecosystems.

  9. Labile, dissolved and particulate PAHs and trace metals in wastewater: passive sampling, occurrence, partitioning in treatment plants.

    PubMed

    Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C

    2011-01-01

    The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.

  10. Labile Dissolved Organic Carbon Availability Controls Hyporheic Denitrification: a 15N Tracer Study

    NASA Astrophysics Data System (ADS)

    Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Baker, M. A.

    2009-12-01

    We used an in situ 15N-labeled nitrate (15NO3-) and acetate injection experiment to determine how the availability of labile dissolved organic carbon (DOC) as acetate influences microbial denitrification in the hyporheic zone (HZ) of an upland (3rd-order) agricultural stream. A 48 h steady-state injection of a conservative tracer, chloride, and 15NO3- was used to quantify ambient HZ denitrification via 15N2 production. Following ambient plateau measurements of denitrification during the first 24 h, a second conservative tracer, bromide, and labile DOC source, acetate, were co-injected for an additional 24 h to measure HZ denitrification under increased DOC supply. Conservative tracers were observed at 4 of the 6 down gradient wells. Receiving wells represented HZ median residence times of 7.0 to 13.1 h, nominal flowpath lengths of 0.7 to 3.7 m, and hypoxic conditions (7.5 to 9.3 mg-O2 L-1 deficit). All 4 receiving wells demonstrated 15N2 production during ambient conditions indicating that the HZ was an active denitrification environment. Acetate addition stimulated significant increases in 15N2 production by factors of 2.7 to 26.1 in all receiving wells, and significant decreases of NO3- and DOC aromaticity (via SUVA254) in the two wells most hydrologically connected to the injection. In all receiving wells, increases of bromide and 15N2 production occurred without concurrent increases in acetate indicating that 100% of acetate was retained in the HZ, a portion of which is due to biological consumption. These results support our hypothesis that microbial denitrification in anaerobic portions of the hyporheic zone is limited by labile DOC supply.

  11. Differences in dissolved organic matter lability between alpine glaciers and alpine rock glaciers of the American West

    NASA Astrophysics Data System (ADS)

    Hall, E.; Fegel, T. S., II; Baron, J.; Boot, C. M.

    2015-12-01

    While alpine glaciers in montane regions represent the largest flux of dissolved organic matter (DOM) from global ice melt no research has examined the bioavailability of DOM melted out of glacial ice in the western continental United States. Furthermore, rock glaciers are an order of magnitude more abundant than ice glaciers in U.S., yet are not included in budgets for perennial ice carbon stores. Our research aims to understand differences in the bioavailability of carbon from ice glaciers and rock glaciers along the Central Rocky Mountains of Colorado. Identical microbial communities were fed standardized amounts of DOM from four different ice glacier-rock glaciers pairs. Using laboratory incubations, paired with mass spectrometry based metabolomics and 16S gene sequencing; we were able to examine functional definitions of DOM lability in glacial ice. We hypothesized that even though DOM quantities are similar in the outputs of both glacial types in our study area, ice glacial DOM would be more bioavailable than DOM from rock glaciers due to higher proportions of byproducts from microbial metabolism than rock glacier DOM, which has higher amounts of "recalcitrant" plant material. Our results show that DOM from ice glaciers is more labile than DOM from geologically and geographically similar paired rock glaciers. Ice glacier DOM represents an important pool of labile carbon to headwater ecosystems of the Rocky Mountains. Metabolomic analysis shows numerous compounds from varying metabolite pathways, including byproducts of nitrification before and after incubation, meaning that, similar to large maritime glaciers in Alaska and Europe, subglacial environments in the mountain ranges of the United States are hotspots for biological activity and processing of organic carbon.

  12. Amino Acid Enantiomeric Ratios in Semi-Labile vs. Refractory Dissolved Organic Matter: Implications for a Microbial N Pump

    NASA Astrophysics Data System (ADS)

    Bour, A. L.; Broek, T.; Gier, E. J.; Mccarthy, M. D.

    2016-02-01

    Microbes are key moderators in the cycling of marine dissolved organic matter (DOM), most of which remains unidentifiable at the molecular level. A major current question, however, is to what degree heterotrophic bacteria directly mediate C and N sequestration in the deep sea. Amino acids (AA) represent almost all organic N that can be identified at the molecular level, while D-AA enantiomers represent unique source-specific biomarkers for prokaryotes, known to be highly enriched in ocean DOM. If increasing bacterial-sourced material ultimately leads to millennial scale sequestration of refractory DOM (RDOM), then one would expect a clear correlation between bacterial biomarkers and DOM radiocarbon (Δ14C) ages, in particular in the deep sea. Here we directly test this idea for the first time, by measuring D-AA abundance and distribution in isolated Δ14C young vs. old DOM from the central north pacific gyre. We used a coupled ultrafiltration/solid phase extraction approach to isolate semi-labile vs. RDOM, based on known molecular weight and Δ14C age correlations. The Δ14C ages of isolated material ranged from 205-275 ybp for surface semi-labile DOM, to 6680-6740 ybp for deep ocean RDOM. We measured enantiomeric (D/L) AA ratios, as well as AA molar percentages to estimate traditional degradation parameters (DI and RI), in semi-labile vs. RDOM fractions from the surface to deep ocean at HOT, Station ALOHA. We interpret our results in terms of the hypothesis of a microbial N pump, examining the similarity of microbial source signatures (D/L distributions) and calculated organic N contributions from heterotrophic bacteria, in the context of the Δ14C age of each fraction. Finally, we also evaluate these data vs. common AA molar percentage based indices of degradation.

  13. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream

    Treesearch

    E.N. Jack Brookshire; H. Maurice Valett; Steven A. Thomas; Jackson R. Webster

    2005-01-01

    Dissolved organic nitrogen (DON) is an abundant but poorly understood pool of N in many ecosystems. We assessed DON cycling in a N-limited headwater forest stream via whole-ecosystem additions of dissolved inorganic nitrogen (DIN) and labile dissolved organic matter (DOM), hydrologic transport and biogeochemical modeling, and laboratory experiments with native...

  14. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  15. Glaciers as a source of ancient and labile organic matter to the marine environment.

    Treesearch

    Eran Hood; Jason Fellman; Robert G.M. Spencer; Peter J. Hernes; Rick Edwards; David D' Amore; Durelle Scott

    2009-01-01

    Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage. In...

  16. Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Woods, Gwen C.; Simpson, Myrna J.; Pautler, Brent G.; Lamoureux, Scott F.; Lafrenière, Melissa J.; Simpson, André J.

    2011-11-01

    Arctic landscapes are believed to be highly sensitive to climate change and accelerated disturbance of permafrost is expected to significantly impact the rate of carbon cycling. While half the global soil organic matter (SOM) is estimated to reside in Arctic soils, projected warmer temperatures and permafrost disturbance will release much of this SOM into waterways in the form of dissolved organic matter (DOM). The spring thaw and subsequent flushing of soils releases the highest contributions of DOM annually but has historically been undersampled due to the difficulties of sampling during this period. In this study, passive samplers were placed throughout paired High Arctic watersheds during the duration of the 2008 spring flush in Nunavut, Canada. The watersheds are very similar with the exception of widespread active layer detachments (ALDs) that occurred within one of the catchments during a period of elevated temperatures in the summer of 2007. DOM samples were analyzed for structural and spectral characteristics via nuclear magnetic resonance (NMR) and fluorescence spectroscopy as well as vulnerability to degradation with simulated solar exposure. Lignin-derived phenols were further assessed utilizing copper(II) oxide (CuO) oxidation and gas chromatography/mass spectrometry (GC/MS). The samples were found to have very low dissolved lignin phenol content (˜0.07% of DOC) and appear to originate from primarily non-woody angiosperm vegetation. The acid/aldehyde ratios for dissolved vanillyl phenols were found to be high (up to 3.6), indicating the presence of highly oxidized lignin. Differences between DOM released from the ALD vs. the undisturbed watershed suggest that these shallow detachment slides have significantly impacted the quality of Arctic DOM. Although material released from the disturbed catchment was found to be highly oxidized, DOM in the lake into which this catchment drained had chemical characteristics indicating high contributions from

  17. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  18. Distribution of dissolved labile and particulate iron and copper in Terra Nova Bay polynya (Ross Sea, Antarctica) surface waters in relation to nutrients and phytoplankton growth

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Ianni, Carmela; Massolo, Serena; Abelmoschi, M. Luisa; De Vittor, Cinzia; Frache, Roberto

    2011-05-01

    The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900-130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.

  19. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes

    USDA-ARS?s Scientific Manuscript database

    Limited information is available to understand the chemical structure of biochar’s labile dissolved organic carbon (DOC) fraction that will change amended soil’s DOC composition. This study utilized the high sensitivity of fluorescence excitation-emission (EEM) spectrophotometry to understand the s...

  20. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea).

    PubMed

    Sokolowski, A; Wolowicz, M; Hummel, H

    2001-10-01

    Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe

  1. Evaluating Multiple Drivers of Soil Organic Matter Lability and Structure in a Sub-Alpine Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Hall, E.; Fegel, T. S., II; Boot, C. M.

    2014-12-01

    Aeolian deposition of reactive nitrogen (N) is reaching even the most remote ecosystems. There has been an abundance of research investigating how these subsidies of reactive N may alter fundamental ecosystem characteristics such as soil organic matter (SOM) pool size. Previous studies have reported that additions of reactive N have the potential to both increase and decrease SOM content. While there are a series of different variables that may affect the size of the SOM pool it has been suggested that the lability or recalcitrance of the SOM may be related to its chemical composition (kind and relative abundance of constituent molecules). To address this we sampled 6 experimental plots in a sub-alpine forest in Rocky Mountain National Park (3 control and 3 treated with reactive N for 18 years) during two months in the summers of 2011 and 2012. We found the SOM content of the control plots was greater than that of the experimental plots. To assess lability of each SOM sample we extracted the SOM from each plot with water and incubated the dissolved organic carbon with a common aquatic microbial community from a lake within the watershed. To assess structure of the SOM pool we used ultra performance liquid chromatography (UPLC) coupled with MS of each extract before incubation with the bacterial community. The dissolved component of the SOM showed clear differences in lability both in total quantity and rate of decomposition during incubation with aquatic microorganisms. Principle components analysis indicated season was a stronger driver of DOM composition than fertilization, describing the majority of the variability between July and September 2012. When samples were considered within a season and year there were additional differences in both lability and composition of DOM. Here we evaluate the relative influence of inter- and intra-annual variability and reactive N on both the characteristics and composition of SOM. By linking UPLC-MS with a functional assay of

  2. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds

    Treesearch

    Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White

    2009-01-01

    The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...

  3. Production of Dissolved Organic Matter During Doliolid Feeding

    NASA Astrophysics Data System (ADS)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  4. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China.

    PubMed

    Yuan, Ye; Zhao, Zhongqiu; Li, Xuezhen; Wang, Yangyang; Bai, Zhongke

    2018-02-01

    The reclamation of discarded spoils has the potential to stimulate carbon (C) sequestration in reclaimed mine soils (RMSs). Nevertheless, to date the temporal dynamics of labile organic C fractions have not been sufficiently elucidated in RMSs. In this study, soil organic carbon (SOC) and labile organic C fractions, including microbial biomass organic C (MBC), easily oxidizable organic C (EOC) and dissolved organic C (DOC), were determined in Robinia pseudoacacia monoculture forests (reclamation periods of 0, 8, 10, 13, 15, 18 and 30years), Pinus tabuliformis forests (reclamation periods of 0, 10, 19, 23 and 25years) and Ulmus pumila forests (reclamation periods of 0, 18, 20 and 22years) situated on RMSs in the Pingshuo opencast coal mine, China. Changes in labile organic C fractions within the soil profiles (0-100cm) were also identified at the 18- or 19-year plots under the three monoculture forests. Our results showed that, SOC and labile organic C fractions, together with soil microbial quotient (SMQ) and C management index (CMI), increased with time since reclamation, indicating that the quality of RMSs improved over time after initial reclamation under the three forest types. R. pseudoacacia significantly increased the accretion of SOC and EOC in the early stage of reclamation while P. tabuliformis accelerated the accumulation of the MBC fraction. Results for U. pumila indicated that this species had a better ability to store C in RMSs 10years or more after reclamation. SOC and labile organic C fractions both had S-shaped distributions within the soil profiles (0-100cm), with the 0-20cm layer recording the highest values (P<0.05). Labile organic C fractions were closely associated and correlated with soil physicochemical properties; our results also showed that nitrogen played an important role in the development of labile organic C fractions. Overall, reclamation accelerated the accretion of both SOC and labile organic C fractions, results of which varied

  5. Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean.

    PubMed

    Arrieta, Jesús M; Mayol, Eva; Hansman, Roberta L; Herndl, Gerhard J; Dittmar, Thorsten; Duarte, Carlos M

    2015-04-17

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. Copyright © 2015, American Association for the Advancement of Science.

  6. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    PubMed

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  7. INTERACTIONS BETWEEN PHOTOCHEMICAL AND MICROBIAL DECOMPOSITION IN MODIFYING THE BIOLOGICAL AVAILABILITY AND OPTICAL PROPERTIES OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
    important pathways for the loss of dissolved organic matter in coastal waters. Here we report
    lab...

  8. Elemental composition and functional groups in soil labile organic matter fractions

    USDA-ARS?s Scientific Manuscript database

    Labile organic matter fractions are major components involved in nutrient cycle in soil. In this chapter, we examine three labile organic matter fraction: light fraction (LF), humic acid (HA) and fulvic acid (HA) in Alabama cotton soils (ultisol) amended with chemical fertilizer (NH4NO3) and poult...

  9. Experimental evidence for an effect of early-diagenetic interaction between labile and refractory marine sedimentary organic matter on nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Domeyer, Bettina; Graf, Gerhard

    2007-05-01

    In most natural sedimentary systems labile and refractory organic material (OM) occur concomitantly. Little, however, is known on how different kinds of OM interact and how such interactions affect early diagenesis in sediments. In a simple sediment experiment, we investigated how interactions of OM substrates of different degradability affect benthic nitrogen (N) dynamics. Temporal evolution of a set of selected biogeochemical parameters was monitored in sandy sediment over 116 days in three experimental set-ups spiked with labile OM (tissue of Mytilus edulis), refractory OM (mostly aged Zostera marina and macroalgae), and a 1:1 mixture of labile and refractory OM. The initial amounts of particulate organic carbon (POC) were identical in the three set-ups. To check for non-linear interactions between labile and refractory OM, the evolution of the mixture system was compared with the evolution of the simple sum of the labile and refractory systems, divided by two. The sum system is the experimental control where labile and refractory OM are virtually combined but not allowed to interact. During the first 30 days there was evidence for net dissolved-inorganic-nitrogen (DIN) production followed by net DIN consumption. (Here 'DIN' is the sum of ammonium, nitrite and nitrate.) After ˜ 30 days a quasi steady state was reached. Non-linear interactions between the two types of OM were reflected by three main differences between the early-diagenetic evolutions of nitrogen dynamics of the mixture and sum (control) systems: (1) In the mixture system the phases of net DIN production and consumption commenced more rapidly and were more intense. (2) The mixture system was shifted towards a more oxidised state of DIN products [as indicated by increased (nitrite + nitrate)/(ammonium) ratios]. (3) There was some evidence that more OM, POC and particulate nitrogen were preserved in the mixture system. That is, in the mixture system more particulate OM was preserved while a higher

  10. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC

  11. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

    EPA Science Inventory

    Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, a...

  12. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    USGS Publications Warehouse

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  13. Effect of photodegradation and biodegradation on the concentration and composition of dissolved organic matter in diverse waterbodies

    NASA Astrophysics Data System (ADS)

    Manalilkada Sasidharan, S.; Dash, P.; Singh, S.; Lu, Y.

    2017-12-01

    The objective of this research was to quantify the effects of photodegradation and biodegradation on the dissolved organic matter (DOM) concentration and composition in five distinct waterbodies with diverse types of watershed land use and land cover in the southeastern United States. The water bodies included an agricultural pond, a lake in a predominantly forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared from these water bodies by dispensing filtered water samples to unfiltered samples in 10:1 ratio. The first set was kept in the sunlight during the day (12 hours), and colored dissolved organic matter (CDOM) absorption and fluorescence were measured periodically over a 30-day period for examining the effects of combined photo- and biodegradation. The second set of samples was kept in the dark for examining the effects of biodegradation alone, and CDOM absorption and fluorescence were measured at the same time as the sunlight-exposed samples. Subsequently, spectrometric results in tandem with multivariate statistical analysis were used to interpret the lability vs. composition of DOM. Parallel factor analysis (PARAFAC) revealed the presence of four DOM components (C1-C4). C1 and C4 were microbial tryptophan-like, labile lighter components, while C2 and C3 were terrestrial humic like or fulvic acid type, larger aromatic refractory components. The principal component analysis (PCA) also revealed two distinct groups of DOM - C1 and C4 vs. C2 and C3. The negative PC1 loadings of C2, C3, HIX, a254 and SUVA indicated humic-like or fulvic-like structurally complex refractory aromatic DOM originated from higher plants in forested areas. C1, C4, SR, FI and BI had positive PC1 loadings, which indicated structurally simpler labile DOM were derived from agricultural areas or microbial activity. There was a decrease in dissolved organic carbon (DOC) due to combined photo- and biodegradation, and transformation of components C2

  14. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability

    PubMed Central

    D'Andrilli, Juliana; Cooper, William T; Foreman, Christine M; Marshall, Alan G

    2015-01-01

    Rationale Determining the chemical constituents of natural organic matter (NOM) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICRMS) remains the ultimate measure for probing its source material, evolution, and transport; however, lability and the fate of organic matter (OM) in the environment remain controversial. FTICRMS-derived elemental compositions are presented in this study to validate a new interpretative method to determine the extent of NOM lability from various environments. Methods FTICRMS data collected over the last decade from the same 9.4 tesla instrument using negative electrospray ionization at the National High Magnetic Field Laboratory in Tallahassee, Florida, was used to validate the application of a NOM lability index. Solid-phase extraction cartridges were used to isolate the NOM prior to FTICRMS; mass spectral peaks were calibrated internally by commonly identified NOM homologous series, and molecular formulae were determined for NOM composition and lability analysis. Results A molecular lability boundary (MLB) was developed from the FTICRMS molecular data, visualized from van Krevelen diagrams, dividing the data into more and less labile constituents. NOM constituents above the MLB at H/C ≥1.5 correspond to more labile material, whereas NOM constituents below the MLB, H/C <1.5, exhibit less labile, more recalcitrant character. Of all marine, freshwater, and glacial environments considered for this study, glacial ecosystems were calculated to contain the most labile OM. Conclusions The MLB extends our interpretation of FTICRMS NOM molecular data to include a metric of lability, and generally ranked the OM environments from most to least labile as glacial > marine > freshwater. Applying the MLB is useful not only for individual NOM FTICRMS studies, but also provides a lability threshold to compare and contrast molecular data with other FTICRMS instruments that survey NOM from around the world. Copyright © 2015

  15. Detrital Controls on Dissolved Organic Matter in Soils: A Field Experiment

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Crow, S.; Yano, Y.; Kaushal, S.; Sulzman, E.; Sollins, P.

    2004-12-01

    We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils and soil density fractions from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the effect of adding woody debris was to increase dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; %hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and narrower C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among detrital treatments in the field, suggesting microbial equalization of DOM leachate in the field. In long-term laboratory incubations, light fraction material did not have higher rates of respiration than heavy fraction or bulk soils, suggesting that physical protection or N availability controls different turnover times of heavy fraction material, rather than differences in chemical lability. Soils from plots that had both above- and below-ground litter inputs excluded had significantly lower DOC loss rates, and a non-significant trend for lower

  16. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE PAGES

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; ...

    2017-05-25

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  17. Construction of hierarchically porous metal-organic frameworks through linker labilization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  18. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  19. Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England)

    NASA Astrophysics Data System (ADS)

    Monbet, Phil; McKelvie, Ian D.; Worsfold, Paul J.

    2009-02-01

    The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L -1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L -1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.

  20. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland

    PubMed Central

    Shao, Xuexin; Yang, Wenying; Wu, Ming

    2015-01-01

    Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands. PMID:26560310

  1. Lability of Secondary Organic Particulate Matter

    DOE PAGES

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM,more » no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.« less

  2. Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks

    NASA Astrophysics Data System (ADS)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-05-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC in aquatic environments, little is known on the large-scale patterns in biologically and photo-chemically degradable DOC (Bd-DOC and Pd-DOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explore the patterns of Bd- and Pd-DOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophy and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of Bd- and Pd-DOC co-varied across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM, identified by fluorescence analyses) in ambient waters. A combination of nutrients and protein-like DOM explained nearly half of the variation in Bd-DOC, whereas Pd-DOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific fluorescent DOM (FDOM) pools that we experimentally determined. The concentrations of colored DOM (CDOM), a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both Bd- and Pd-DOC. The concentrations of CDOM and of the putative bio-labile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in browner streams and wetlands. This suggests a baseline autochthonous Bd-DOC pool fuelled by internal production that is gradually overwhelmed by land-derived Bd-DOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photo-chemically degradable DOC for continental watersheds resulted in a partial coupling of those carbon pools in

  3. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada).

    PubMed

    Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline

    2016-07-01

    Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p < 0.05), indicating that protein-like DOM possibly affected the DGT-labile V concentration in Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Treesearch

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  5. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic

    PubMed Central

    Sipler, Rachel E.; Kellogg, Colleen T. E.; Connelly, Tara L.; Roberts, Quinn N.; Yager, Patricia L.; Bronk, Deborah A.

    2017-01-01

    Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated. PMID:28649233

  6. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic.

    PubMed

    Sipler, Rachel E; Kellogg, Colleen T E; Connelly, Tara L; Roberts, Quinn N; Yager, Patricia L; Bronk, Deborah A

    2017-01-01

    Warming at nearly twice the global rate, higher than average air temperatures are the new 'normal' for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.

  7. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, Brian D; Bernhardt, Emily; Roberts, Brian

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolvedmore » organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the

  8. Release and microbial degradation of dissolved organic matter (DOM) from the macroalgae Ulva prolifera.

    PubMed

    Zhang, Tao; Wang, Xuchen

    2017-12-15

    Release and microbial degradation of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) from the macroalgae Ulva prolifera were studied in laboratory incubation experiments. The release of DOM and CDOM from Ulva prolifera was a rapid process, and hydrolysis played an important role in the initial leaching of the organic compounds from the algae. Bacterial activity enhanced the release of DOM and CDOM during degradation of the algae and utilization of the released organic compounds. It is calculated that 43±2% of the C and 63±3% of the N from Ulva prolifera's biomass were released during the 20-day incubation, and 65±3% of the released C and 87±4% of the released N were utilized by bacteria. In comparison, only 18±1% of the algae's C and 17±1% of its N were released when bacterial activities were inhibited. The fluorescence characteristics of the CDOM indicate that protein-like DOM was the major organic component released from Ulva prolifera that was highly labile and biodegradable. Bacteria played an important role in regulating the chemical composition and fluorescence characteristics of the DOM. Our study suggests that the release of DOM from Ulva prolifera provides not only major sources of organic C and N, but also important food sources to microbial communities in coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    PubMed

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  10. Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility.

    PubMed

    Mladenov, Natalie; Zheng, Yan; Simone, Bailey; Bilinski, Theresa M; McKnight, Diane M; Nemergut, Diana; Radloff, Kathleen A; Rahman, M Moshiur; Ahmed, Kazi Matin

    2015-09-15

    In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility.

  11. Dissolved organic nitrogen in urban streams: Biodegradability and molecular composition studies.

    PubMed

    Lusk, Mary G; Toor, Gurpal S

    2016-06-01

    A portion of the dissolved organic nitrogen (DON) is biodegradable in water bodies, yet our knowledge of the molecular composition and controls on biological reactivity of DON is limited. Our objective was to investigate the biodegradability and molecular composition of DON in streams that drain a gradient of 19-83% urban land use. Weekly sampling over 21 weeks suggested no significant relationship between urban land use and DON concentration. We then selected two streams that drain 28% and 83% urban land use to determine the biodegradability and molecular composition of the DON by coupling 5-day bioassay experiments with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Both urban streams contained a wide range of N-bearing biomolecular formulas and had >80% DON in lignin-like compounds, with only 5-7% labile DON. The labile DON consisted mostly of lipid-and protein-like structures with high H/C and low O/C values. Comparison of reactive formulas and formed counterparts during the bioassay experiments indicated a shift toward more oxygenated and less saturated N-bearing DON formulas due to the microbial degradation. Although there was a little net removal (5-7%) of organic-bound N over the 5-day bioassay, there was some change to the carbon skeleton of DON compounds. These results suggest that DON in urban streams contains a complex mixture of compounds such as lipids, proteins, and lignins of variable chemical structures and biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition

    NASA Astrophysics Data System (ADS)

    Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus

    2016-04-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater

  13. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    PubMed

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the

  14. Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip

    2017-04-01

    Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and

  15. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park

    USGS Publications Warehouse

    McKnight, Diane M.; Harnish, R.; Wershaw, R. L.; Baron, Jill S.; Schiff, S.

    1997-01-01

    The chemical relationships among particulate and colloidal organic material and dissolved fulvic acid were examined in an alpine and subalpine lake and two streams in Loch Vale Watershed, Rocky Mountain National Park. The alpine lake, Sky Pond, had the lowest dissolved organic carbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13 mgC/L), and high algal biomass. The watershed of Sky Pond is primarily talus slope, and DOC and POC may be autochthonous. Both Andrews Creek and Icy Brook gain DOC as they flow through wet sedge meadows. The subalpine lake, The Loch, receives additional organic material from the surrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis, stable carbon isotopic compositon, and 13C-NMR characterization showed that: 1) particulate material had relatively high inorganic contents and was heterogeneous in compositon, 2) colloidal material was primarily carbohydrate material with a low inorganic content at all sites; and 3) dissolved fulvic acid varied in compositon among sites. The low concentration and carbohydrate-rich character of the colloidal material suggests that this fraction is labile to microbial degradation and may be turning over more rapidly than particulate fractions or dissolved fulvic acid. Fulvic acid from Andrews Creek had the lowest N content and aromaticity, whereas Sky Pond fulvic acid had a higher N content and lower aromaticity than fulvic acid from The Loch. The UV-visible spectra of the fulvic acids demonstrate that variation in characteristics with sources of organic carbon can explain to some extent the observed nonlinear relationship between UV-B extinction coefficients and DOC concentrations in lakes.

  16. Lability of secondary organic particulate matter

    PubMed Central

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Gilles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.

    2016-01-01

    The energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere. PMID:27791063

  17. Lability of secondary organic particulate matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan

    2016-10-24

    We report the energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representativemore » of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate D org for the biogenic case is at least 10 3 times greater than that of the anthropogenic case. In conclusion, these differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere.« less

  18. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.

    PubMed

    Mirjafari, Parissa; Baldwin, Susan A

    2015-01-01

    Successful operation of sulphate-reducing bioreactors using complex organic materials depends on providing a balance between more easily degrading material that achieves reasonable kinetics and low hydraulic retention times, and more slowly decomposing material that sustains performance in the long term. In this study, two organic mixtures containing the same ingredients typical of bioreactors used at mine sites (woodchips, hay and cow manure) but with different ratios of wood (recalcitrant) to hay (labile) were tested in six continuous flow bioreactors treating synthetic mine-affected water containing 600 mg/L of sulphate and 15 μg/L of selenium. The reactors were operated for short (5-6 months) and long (435-450 days) periods of time at the same hydraulic retention time of 15 days. There were no differences in the performance of the bioreactors in terms of sulphate-reduction over the short term, but the wood-rich bioreactors experienced variable and sometimes unreliable sulphate-reduction over the long term. Presence of more hay in the organic mixture was able to better sustain reliable performance. Production of dissolved organic compounds due to biodegradation within the bioreactors was detected for the first 175-230 days, after which their depletion coincided with a crash phase observed in the wood-rich bioreactors only.

  19. Labile and Non-labile Soil Carbon Fractions Equally Contributed to Carbon Changes under Long-term Fertilization

    NASA Astrophysics Data System (ADS)

    Liang, F.; Li, J.; Xu, M.; Huang, S.

    2017-12-01

    Soil organic carbon (SOC) storages are altered under long-term fertilization in croplands, it however remains unclear how fast- to slow-cycling SOC fractions each respond to fertilization practices. Based on five two-decade Chinese long-term fertilization experiments (GZL: Gongzhuling; ZZ: Zhengzhou; CQ: Chongqing; JX: Jinxian; QY: Qiyang) under three fertilization treatments (CK: cropping with no fertilizer input; NPK: chemical nitrogen, phosphorus and potassium fertilizers; and NPKM: NPK with manure input), we quantified very labile, labile, non-labile and total SOC stocks at 0-20cm soil depth. Results showed that SOC stocks varied among sites (GZL, JX, CQ > ZZ, QY) and generally increased with fertilizations (CK-1 at ZZ, GZL, QY, CQ and JX, respectively. The corresponding changes of the sum of very labile and labile SOC fractions were 2.6, 2.0, 1.8, 0.8 and -0.5 Mg ha-1 at ZZ, QY, GZL, CQ and JX, respectively. Also, NPKM increased total SOC stock by 18.3, 16.2, 14.4, 10.5, and 6.5 Mg ha-1 at QY, GZL, ZZ, CQ and JX, respectively. The corresponding changes of the sum of very labile and labile SOC fractions were 8.6, 6.8, 6.6, 3.2 and -1.6 Mg ha-1 at QY, GZL, ZZ, CQ and JX, respectively. These results suggested that about half or more than half SOC stock accretions under fertilization were induced by increase in non-labile SOC fractions. It thus informs the importance of non-labile SOC fractions in contributing to soil C sequestration under long-term fertilizations in Chinese croplands. Future research should improve our mechanistic understanding of biogeochemical transformation of non-labile organic C in soils.

  20. Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03

    NASA Astrophysics Data System (ADS)

    Noble, Abigail E.; Ohnemus, Daniel C.; Hawco, Nicholas J.; Lam, Phoebe J.; Saito, Mak A.

    2017-06-01

    Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of

  1. Modeling Effects of Lability on Microbial Uptake of DOM in River Reaches

    NASA Astrophysics Data System (ADS)

    Li, A.; Drummond, J. D.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Packman, A. I.

    2017-12-01

    Rivers are hotspots for biological degradation of dissolved organic matter (DOM), contributing to 1.8 petagrams of carbon emissions per year. DOM represents approximately 60% of the total mass of organic carbon transported within river networks, fueling stream ecosystem metabolism. Not all DOM is biodegradable, biodegradation rates vary based on lability, and lability decreases with reaction time. Fluorescent fractions of DOM (FDOM) are often used as proxies of DOM lability. Humic-like FDOM, previously considered recalcitrant and thought to contribute minimally to the biodegradable DOM pools, has recently been shown to contribute more than 50% to DOM uptake in bioreactor columns colonized by bacteria in stream water. Protein-like FDOM, a proxy for the biodegradable DOM pool, also contributes to the recalcitrant DOM pool in bioreactors. However, the contribution of different lability pools to DOM uptake at the reach scale remains elusive. Here we combine local-scale results from a bioreactor study and measures of stream geomorphology parameters to model reach-scale DOM uptake in White Clay Creek, a Pennsylvania piedmont stream with an intact, forested riparian zone and inputs from upland agriculture. Steady state modeling of a point-source, continuous injection of FDOM shows that humic-like FDOM contributes up to 80% of the total removal of FDOM at the reach scale, suggesting its importance to in-stream DOM uptake. Tryptophan-like FDOM, a protein-like FDOM, contributes to 80% of the remaining fraction of FDOM at the reach scale that incorporates longer timescales of transport and retention. This is consistent with recent local-scale findings that the lability of tryptophan-like FDOM decreases substantially with reaction time in bioreactors, such that it becomes much more recalcitrant as it travels downstream. Steady state modeling of a distributed source, continuous injection of FDOM shows that contributing sources distribute differently along the river reach for

  2. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    USGS Publications Warehouse

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  3. Analytical method for dissolved-organic carbon fractionation

    USGS Publications Warehouse

    Leenheer, Jerry A.; Huffman, Edward W. D.

    1979-01-01

    A standard procedure for analytical-scale dissolved organic carbon fractionation is presented, whereby dissolved organic carbon in water is first fractionated by a nonionic macroreticular resin into acid, base, and neutral hydrophobic organic solute fractions, and next fractionated by ion-exchange resins into acid, base, and neutral hydrophilic solute fractions. The hydrophobic solutes are defined as those sorbed on a nonionic, acrylic-ester macroreticular resin and are differentiated into acid, base, and nautral fractions by sorption/desorption controlled by pH adjustment. The hydrophilic bases are next sorbed on strong-acid ion-exchange resin, followed by sorption of hydrophilic acids on a strong-base ion-exchange resin. Hydrophilic neutrals are not sorbed and remain dissolved in the deionized water at the end of the fractionation procedure. The complete fractionation can be performed on a 200-milliliter filtered water sample, whose dissolved organic carbon content is 5-25 mg/L and whose specific conductance is less than 2,000 μmhos/cm at 25°C. The applications of dissolved organic carbon fractionation analysis range from field studies of changes of organic solute composition with synthetic fossil fuel production, to fundamental studies of the nature of sorption processes.

  4. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  5. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    PubMed

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  6. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  7. Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary

    NASA Astrophysics Data System (ADS)

    Suryaputra, I. G. N. A.; Santos, I. R.; Huettel, M.; Burnett, W. C.; Dittmar, T.

    2015-11-01

    The role of submarine groundwater discharge (SGD) in releasing fluorescent dissolved organic matter (FDOM) to the coastal ocean and the possibility of using FDOM as a proxy for dissolved organic carbon (DOC) was investigated in a subterranean estuary in the northeastern Gulf of Mexico (Turkey Point, Florida). FDOM was continuously monitored for three weeks in shallow beach groundwater and in the adjacent coastal ocean. Radon (222Rn) was used as a natural groundwater tracer. FDOM and DOC correlated in groundwater and seawater samples, implying that FDOM may be a proxy of DOC in waters influenced by SGD. A mixing model using salinity as a seawater tracer revealed FDOM production in the high salinity region of the subterranean estuary. This production was probably a result of infiltration and transformation of labile marine organic matter in the beach sediments. The non-conservative FDOM behavior in this subterranean estuary differs from most surface estuaries where FDOM typically behaves conservatively. At the study site, fresh and saline SGD delivered about 1800 mg d-1 of FDOM (quinine equivalents) to the coastal ocean per meter of shoreline. About 11% of this input was related to fresh SGD, while 89% were related to saline SGD resulting from FDOM production within the shallow aquifer. If these fluxes are representative of the Florida Gulf Coast, SGD-derived FDOM fluxes would be equivalent to at least 18% of the potential regional riverine FDOM inputs. To reduce uncertainties related to the scarcity of FDOM data, further investigations of river and groundwater FDOM inputs in Florida and elsewhere are necessary.

  8. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures

    PubMed Central

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-01-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  9. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: Results from a decomposition experiment

    USGS Publications Warehouse

    Cleveland, C.C.; Neff, J.C.; Townsend, A.R.; Hood, E.

    2004-01-01

    Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several ecosystem types. The water-extractable fraction of organic C was high for all five plant species, as was the biodegradable fraction; in most cases, more than 70% of the initial DOM was decomposed in the first 10 days of the experiment. The chemical composition of the DOM changed as decomposition proceeded, with humic (hydrophobic) fractions becoming relatively more abundant than nonhumic (hydrophilic) fractions over time. However, in spite of proportional changes in humic and nonhumic fractions over time, our data suggest that both fractions are readily decomposed in the absence of physicochemical reactions with soil surfaces. Our data also showed no changes in the ??13C signature of DOM during decomposition, suggesting that isotopic fractionation during DOM uptake is not a significant process. These results suggest that soil microorganisms preferentially decompose more labile organic molecules in the DOM pool, which also tend to be isotopically heavier than more recalcitrant DOM fractions. We believe that the interaction between DOM decomposition dynamics and soil sorption processes contribute to the ??13C enrichment of soil organic matter commonly observed with depth in soil profiles.

  10. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    PubMed

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  11. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean.

    PubMed

    Romera-Castillo, Cristina; Pinto, Maria; Langer, Teresa M; Álvarez-Salgado, Xosé Antón; Herndl, Gerhard J

    2018-04-12

    Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of heterotrophic microbes. Our estimates indicate that globally up to 23,600 metric tons of DOC are leaching from marine plastics annually. About 60% of it is available to microbial utilization in less than 5 days. If exposed to solar radiation, however, this DOC becomes less labile. Thus, plastic pollution of marine surface waters likely alters the composition and activity of the base of the marine food webs. It is predicted that plastic waste entering the ocean will increase by a factor of ten within the next decade, resulting in an increase in plastic-derived DOC that might have unaccounted consequences for marine microbes and for the ocean system.

  12. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    PubMed

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  13. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks

    NASA Astrophysics Data System (ADS)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-10-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC (dissolved organic carbon) in aquatic environments, little is known of the large-scale patterns in biologically and photochemically degradable DOC (BDOC and PDOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explored the patterns in the concentrations and proportions of BDOC and PDOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophic status and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of BDOC and PDOC covaried across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM; identified by fluorescence analyses) in ambient waters. Concentrations of nutrients and protein-like fluorescent DOM (FDOM) explained nearly half of the variation in BDOC, whereas PDOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific FDOM pools that we experimentally determined. The concentrations of colored DOM (CDOM), which we use here as a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both BDOC and PDOC. The concentrations of CDOM and of the putative biolabile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in darker streams and wetlands. This suggests a baseline autochthonous BDOC pool fueled by internal production that is gradually overwhelmed by land-derived BDOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photochemically degradable DOC for

  14. The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Norman, Louiza; Thomas, David N.; Stedmon, Colin A.; Granskog, Mats A.; Papadimitriou, Stathys; Krapp, Rupert H.; Meiners, Klaus M.; Lannuzel, Delphine; van der Merwe, Pier; Dieckmann, Gerhard S.

    2011-05-01

    An investigation of coloured dissolved organic matter (CDOM) and its relationships to physical and biogeochemical parameters in Antarctic sea ice and oceanic water have indicated that ice melt may both alter the spectral characteristics of CDOM in Antarctic surface waters and serve as a likely source of fresh autochthonous CDOM and labile DOC. Samples were collected from melted bulk sea ice, sea ice brines, surface gap layer waters, and seawater during three expeditions: one during the spring to summer and two during the winter to spring transition period. Variability in both physical (temperature and salinity) and biogeochemical parameters (dissolved and particulate organic carbon and nitrogen, as well as chlorophyll a) was observed during and between studies, but CDOM absorption coefficients measured at 375 nm (a 375) did not differ significantly. Distinct peaked absorption spectra were consistently observed for bulk ice, brine, and gap water, but were absent in the seawater samples. Correlation with the measured physical and biogeochemical parameters could not resolve the source of these peaks, but the shoulders and peaks observed between 260 and 280 nm and between 320 to 330 nm respectively, particularly in the samples taken from high light-exposed gap layer environment, suggest a possible link to aromatic and mycosporine-like amino acids. Sea ice CDOM susceptibility to photo-bleaching was demonstrated in an in situ 120 hour exposure, during which we observed a loss in CDOM absorption of 53% at 280 nm, 58% at 330 nm, and 30% at 375 nm. No overall coincidental loss of DOC or DON was measured during the experimental period. A relationship between the spectral slope (S) and carbon-specific absorption (a *375) indicated that the characteristics of CDOM can be described by the mixing of two broad end-members; and aged material, present in brine and seawater samples characterised by high S values and low a *375; and a fresh material, due to elevated in situ

  15. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterizing Dissolved Organic Matter (DOM) Isolated From Specific Allochthonous and Autochthonous Sources in a North-Temperate Stream Ecosystem

    NASA Astrophysics Data System (ADS)

    Wong, J. C.; Williams, D.

    2009-05-01

    Detrital energy in temperate headwater streams is mainly derived from the annual input of leaf litter from the surrounding landscape. Presumably, its decomposition and other sources of autochthonous organic matter will change dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) quality. To investigate this, DOM was leached from two allochthonous sources: white birch (Betula papyrifera) and white cedar (Thuja occidentalis); and one autochthonous source, streambed biofilm, for a period of 7 days on 3 separate occasions in fall 2007. As a second treatment, microorganisms from the water column were filtered out. Deciduous leaf litter was responsible for high, short-term increases to DOC concentrations whereas the amounts leached from conifer needles were relatively constant in each month. Using UV spectroscopy, changes to DOM characteristics like aromaticity, spectral slopes, and molecular weight were mainly determined by source and indicated a preferential use of the labile DOM pool by the microorganisms. Excitation-emission matrices (EEMs) collected using fluorescence spectroscopy suggested that cedar litter was an important source of protein-like fluorescence and that the nature of the fluorescing DOM components changed in the presence of microorganisms. This study demonstrates that simultaneous examination of DOC concentrations and DOM quality will allow a better understanding of the carbon dynamics that connect terrestrial with aquatic ecosystems.

  17. Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters.

    PubMed

    Perez, Magali; Simpson, Stuart L; Lespes, Gaëtane; King, Josh J; Adams, Merrin S; Jarolimek, Chad V; Grassl, Bruno; Schaumlöffel, Dirk

    2016-12-01

    Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics. The performance was compared to an established Chelex-column method that measures labile copper concentrations by discrete sampling, and the ability to predict acute toxicity to the cladoceran, Ceriodaphnia dubia. The labile copper concentrations measured by the DMG and Chelex-column methods decreased with increasing dissolved organic carbon (DOC) (1.9-15 mg L -1 ) and hardness (21-270 mg CaCO 3  L -1 hardness), with 20-70% of total dissolved copper being present as labile copper. Toxicity decreased with increasing DOC and hardness. Strong linear relationships existed between the EC50 for C. dubia and DOC, and when the EC50 was related to either the labile copper concentrations measured by DMG (r 2  = 0.874) or the Chelex column (0.956) methods. The study demonstrates that the DMG passive sampler is a relevant tool for the in situ assessment of environmental risks posed by metals whose toxicity is strongly influenced by speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    USGS Publications Warehouse

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  19. Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition.

    PubMed

    Nguyen, Hang Vo-Minh; Choi, Jung Hyun

    2015-06-01

    In this study, we conducted growth chamber experiments using three types of soil (wetland, rice paddy, and forest) under the conditions of a severe increase in the temperature and N-deposition in order to investigate how extreme weather influences the characteristics of the dissolved organic matter (DOM) leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 5 months of incubation, the dissolved organic carbon (DOC) concentrations decreased in the range of 21.1 to 88.9 %, while the specific UV absorption (SUVA) values increased substantially in the range of 19.9 to 319.9 % for all of the samples. Higher increases in the SUVA values were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The parallel factor analysis (PARAFAC) results showed that four fluorescence components: terrestrial humic-like (component 1 (C1)), microbial humic-like (component 2 (C2)), protein-like (component 3 (C3)), and anthropogenic humic-like (component 4 (C4)) constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. The principle component analysis (PCA) results indicated that severe temperatures and N-deposition could enhance the contribution of the aromatic carbon compounds and humic-like components in the soil samples.

  20. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter

    USGS Publications Warehouse

    Fleck, Jacob A.; Gill, Gary W.; Bergamaschi, Brian A.; Kraus, Tamara E.C.; Downing, Bryan D.; Alpers, Charles N.

    2014-01-01

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5 × 10-3 m2 mol-1 (s.d. 3.5 × 10-3) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg–DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.

  1. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.

    PubMed

    Fleck, Jacob A; Gill, Gary; Bergamaschi, Brian A; Kraus, Tamara E C; Downing, Bryan D; Alpers, Charles N

    2014-06-15

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems. Published by Elsevier B.V.

  2. Molecular Hysteresis of Dissolved Organic Matter in the Connecticut River Watershed

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Hoyle, J. B.; Matt, S.; Raymond, P. A.; Saiers, J. E.; Dittmar, T.; Stubbins, A.

    2017-12-01

    Rainfall-runoff processes have emerged as key controllers of the quantity and quality of terrestrial dissolved organic matter (DOM) exported from the landscape to inland waters. Hydrological events result in increased river discharge and a concomitant release of large amounts of DOM into fluvial networks. This study is part of a Macrosystems project which aims to test the Pulse-Shunt Concept: where rivers are converted from active to passive pipes during high discharge events ("pulse"), transporting labile, terrestrial DOM downstream ("shunt"), and relocating biogeochemical hotspots for DOM from the upper to the lower reaches of the watershed. The primary objective of our study was to track hysteretic changes in riverine DOM molecular composition over the course of a storm event. Samples were collected from nested watersheds in the Passumpsic River catchment, a tributary of the Connecticut River (USA). High resolution monitoring (via in-situ sondes) and high frequency collection of discreet samples (for FT-ICR/MS and other analyses) was necessary to capture short-term, hydrologically-driven variations in DOM concentration and composition. At the onset of the discharge event, we observed a unique DOM signature, enriched in aliphatic, and potentially biolabile, DOM. During peak discharge, and along the falling limb of the hydrograph, an aromatic, terrestrial-type DOM signature was more prevalent. These initial findings support the pulse-shunt hypothesis, providing evidence for the release of labile forms of DOM into rivers during the onset of a storm event, which apparently persists across low-to-high stream orders. Insights into the molecular hysteresis of fluvial DOM spotlights the impact of watershed hydrology on biogeochemical cycling in river networks.

  3. Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns

    NASA Astrophysics Data System (ADS)

    Zhao, Lu Y. L.; Schulin, Rainer; Weng, Liping; Nowack, Bernd

    2007-07-01

    Dissolved organic carbon (DOC) is a key component involved in metal displacement in soils. In this study, we investigated the concentration profiles of soil-borne DOC, Cu and Zn at various irrigation rates with synthetic rain water under quasi steady-state conditions, using repacked soil columns with a metal-polluted topsoil and two unpolluted subsoils. Soil solution was collected using suction cups installed at centimeter intervals over depth. In the topsoil the concentrations of DOC, dissolved metals (Zn and Cu), major cations (Ca 2+ and Mg 2+) and anions ( NO3- and SO42-) increased with depth. In the subsoil, the Cu and Zn concentrations dropped to background levels within 2 cm. All compounds were much faster mobilized in the first 4 cm than in the rest of the topsoil. DOC and Cu concentrations were higher at higher flow rates for a given depth, whereas the concentrations of the other ions decreased with increasing flow rate. The decomposition of soil organic matter resulted in the formation of DOC, SO42-, and NO3- and was the main driver of the system. Regression analysis indicated that Cu mobilization was governed by DOC, whereas Zn mobilization was primarily determined by Ca and to a lesser extent by DOC. Labile Zn and Cu 2+ concentrations were well predicted by the NICA-Donnan model. The results highlight the value of high-resolution in-situ measurements of DOC and metal mobilization in soil profiles.

  4. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    USDA-ARS?s Scientific Manuscript database

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  5. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  6. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.

    2007-01-01

    The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic

  7. Orbitrap-MS and FT-ICR-MS of Free and Labile Organic Matter from Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Orthous-Daunay, F.-R.; Thissen, R.; Vuitton, V.; Somogyi, A.; Mespoulede, M.; Beck, P.; Bonnet, J.-Y.; Dutuit, O.; Schmitt, B.; Quirico, E.

    2011-03-01

    We used two types of high-resolution FT-MS to analyze the free and labile organic matter in carbonaceous chondrites of type 1 and 2. The methanol extraction and laser desorption gave access to highly and poorly functionalized molecules respectively.

  8. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  9. A model predicting waterborne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium, and temperature.

    PubMed

    Pellet, Bastien; Geffard, Olivier; Lacour, Céline; Kermoal, Thomas; Gourlay-francé, Catherine; Tusseau-vuillemin, Marie-hélène

    2009-11-01

    Metal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex: a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence f ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates (ku). In mineral water, where Cd was considered fully labile, the ku was 0.46 L g⁻¹ d⁻¹, and the depuration rate was 0.032 d⁻¹. The initial Cd influxes were lowered significantly by additions of 10 μg L⁻¹ of EDTA or 10 mg L⁻¹ of HA in the water but not at 5 mg L⁻¹HA, even if DGT measurements proved that Cd formed Cd-HA complexes in that treatment. Increasing Ca concentrations lowered ku values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of k, values was observed when the temperature was increased by 8°C, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies.

  10. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  11. Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity

    PubMed Central

    Haas, Andreas F.; Nelson, Craig E.; Wegley Kelly, Linda; Carlson, Craig A.; Rohwer, Forest; Leichter, James J.; Wyatt, Alex; Smith, Jennifer E.

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef

  12. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.

    PubMed

    Weston, Nathaniel B; Joye, Samantha B

    2005-11-22

    The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures.

  13. Microbial formation of labile organic carbon in Antarctic glacial environments

    USGS Publications Warehouse

    Smith, H.J.; Foster, R.; McKnight, D.M.; Lisle, John T.; Littmann, S.; Kuypers, M.M.M.; Foreman, C.M.

    2017-01-01

    Roughly six petagrams of organic carbon are stored within ice worldwide. This organic carbon is thought to be of old age and highly bioavailable. Along with storage of ancient and new atmospherically deposited organic carbon, microorganisms may contribute substantially to the glacial organic carbon pool. Models of glacial microbial carbon cycling vary from net respiration to net carbon fixation. Supraglacial streams have not been considered in models although they are amongst the largest ecosystems on most glaciers and are inhabited by diverse microbial communities. Here we investigate the biogeochemical sequence of organic carbon production and uptake in an Antarctic supraglacial stream in the McMurdo Dry Valleys using nanometre-scale secondary ion mass spectrometry, fluorescence spectroscopy, stable isotope analysis and incubation experiments. We find that heterotrophic production relies on highly labile organic carbon freshly derived from photosynthetic bacteria rather than legacy organic carbon. Exudates from primary production were utilized by heterotrophs within 24 h, and supported bacterial growth demands. The tight coupling of microbially released organic carbon and rapid uptake by heterotrophs suggests a dynamic local carbon cycle. Moreover, as temperatures increase there is the potential for positive feedback between glacial melt and microbial transformations of organic carbon.

  14. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  15. Uncoupling of Bacterial and Terrigenous Dissolved Organic Matter Dynamics in Decomposition Experiments

    PubMed Central

    Herlemann, Daniel P. R.; Manecki, Marcus; Meeske, Christian; Pollehne, Falk; Labrenz, Matthias; Schulz-Bull, Detlef; Dittmar, Thorsten; Jürgens, Klaus

    2014-01-01

    The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4–16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot

  16. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  17. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    USGS Publications Warehouse

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  18. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    PubMed

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  19. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGES

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; ...

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO 2 and CH 4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO 2 and CH 4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO 2 and CH 4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  20. Self-organization of dissolved organic matter to micelle-like microparticles in river water.

    PubMed

    Kerner, Martin; Hohenberg, Heinz; Ertl, Siegmund; Reckermann, Marcus; Spitzy, Alejandro

    2003-03-13

    In aquatic systems, the concept of the 'microbial loop' is invoked to describe the conversion of dissolved organic matter to particulate organic matter by bacteria. This process mediates the transfer of energy and matter from dissolved organic matter to higher trophic levels, and therefore controls (together with primary production) the productivity of aquatic systems. Here we report experiments on laboratory incubations of sterile filtered river water in which we find that up to 25% of the dissolved organic carbon (DOC) aggregates abiotically to particles of diameter 0.4-0.8 micrometres, at rates similar to bacterial growth. Diffusion drives aggregation of low- to high-molecular-mass DOC and further to larger micelle-like microparticles. The chemical composition of these microparticles suggests their potential use as food by planktonic bacterivores. This pathway is apparent from differences in the stable carbon isotope compositions of picoplankton and the microparticles. A large fraction of dissolved organic matter might therefore be channelled through microparticles directly to higher trophic levels--bypassing the microbial loop--suggesting that current concepts of carbon conversion in aquatic systems require revision.

  1. Peer reviewed: Characterizing aquatic dissolved organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.; Croué, Jean-Philippe

    2003-01-01

    Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.

  2. Estimating labile particulate iron concentrations in coastal waters from remote sensing data

    NASA Astrophysics Data System (ADS)

    McGaraghan, Anna R.; Kudela, Raphael M.

    2012-02-01

    Owing to the difficulties inherent in measuring trace metals and the importance of iron as a limiting nutrient for biological systems, the ability to monitor particulate iron concentration remotely is desirable. This study examines the relationship between labile particulate iron, described here as weak acid leachable particulate iron or total dissolvable iron, and easily obtained bio-optical measurements. We develop a bio-optical proxy that can be used to estimate large-scale patterns of labile iron concentrations in surface waters, and we extend this by including other environmental variables in a multiple linear regression statistical model. By utilizing a ratio of optical backscatter and fluorescence obtained by satellite, we identify patterns in iron concentrations confirmed by traditional shipboard sampling. This basic relationship is improved with the addition of other environmental parameters in the statistical linear regression model. The optical proxy detects known temporal and spatial trends in average surface iron concentrations in Monterey Bay. The proxy is robust in that similar performance was obtained using two independent particulate iron data sets, but it exhibits weaker correlations than the full statistical model. This proxy will be a valuable tool for oceanographers seeking to monitor iron concentrations in coastal regions and allows for better understanding of the variability of labile particulate iron in surface waters to complement direct measurement of leachable particulate or total dissolvable iron.

  3. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    PubMed

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  4. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  5. Influence of anoxic pore water dissolved organic matter on the fate and transport of hydrophobic organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunchak-Kariouk, K.

    1992-01-01

    Pore water dissolved organic matter is an overlooked pool of organic matter important to the environmental fate of hydrophobic organic pollutants. The association of polychlorinated biphenyls, polyaromatic hydrocarbons and chlorinated pesticides with pore water dissolved organic matter influences their distribution and mobility within the bottom sediment environment. Steep physical, biological and chemical gradients at the sediment/water interface isolate the pore water and create unique conditions within the sediment. This study indicates that any disturbance of this environment will alter the distribution and mobility of organic pollutants by changing their association to the pore water dissolved organic matter. A small volumemore » closed equilibration method was developed to measure the solubility enhancement of 2,2' 4,4'-tetrachlorobiphenyl (TeCB) by natural dissolved organic matter. Chemical coated micro-glass beads were equilibrated with anoxic and laboratory aerated (oxic) pore water samples in flame sealed ampules. The TeCB enhanced solubilities were used to determine the pore water dissolved organic matter partition coefficient, K[sub pwdom]. The measured TeCB solubility and K[sub pwdom] were much smaller for anoxic than oxic pore waters. The dissolved organic matter sorptive capacity for the TeCB increased as the water was aerated. This change is attributed to coagulative fractionation and structural changes of the pore water dissolved organic matter during aeration and was characterized by differences in the dissolved organic matter concentration, UV absorption at 254 nm, interfacial surface tension, and sorption capacity of molecular weight fractions of anoxic and oxic pore water dissolved organic matter. The increase in partitioning indicates that there will be an increase in the mobility of the TeCB as an anoxic bottom sediment environment is disturbed and aerated.« less

  6. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-03-01

    Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.

  7. Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil.

    PubMed

    Costa, Luiza Dy Fonseca; Wallner-Kersanach, Mônica

    2013-08-01

    The dissolved labile and labile particulate fractions (LPF) of Cu and Zn were analyzed during different seasons and salinity conditions in estuarine waters of marina, port, and shipyard areas in the southern region of the Patos Lagoon (RS, Brazil). The dissolved labile concentration was determined using the diffusive gradients in thin films technique (DGT). DGT devices were deployed in seven locations of the estuary for 72 h and the physicochemical parameters were also measured. The LPF of Cu and Zn was determined by daily filtering of water samples. Seasonal variation of DGT-Cu concentrations was only significant (p < 0.05) at one shipyard area, while DGT-Zn was significant (p < 0.05) in every locations. The LPF of Cu and Zn concentrations demonstrated seasonal and spatial variability in all locations, mainly at shipyard areas during high salinity conditions. In general, except the control location, the sampling locations showed mean variations of 0.11-0.45 μg L(-1) for DGT-Cu, 0.89-9.96 μg L(-1) for DGT-Zn, 0.65-3.69 μg g(-1) for LPF-Cu, and 1.35-10.87 μg g(-1) for LPF-Zn. Shipyard areas demonstrated the most expressive values of labile Cu and Zn in both fractions. Strong relationship between DGT-Zn and LPF-Zn was found suggesting that the DGT-Zn fraction originates from the suspended particulate matter. Water salinity and suspended particulate matter content indicated their importance for the control of the labile concentrations of Cu and Zn in the water column. These parameters must be taken into consideration for comparison among labile metals in estuaries.

  8. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  9. Non-labile Soil Nitrogen Retention beneath Three Tree Species in a Tropical Plantation

    Treesearch

    Jason P. Kaye; Dan Binkley; Xiaoming Zou

    2002-01-01

    Soil organic matter is the largest sink for N additions to forests. Species composition may affect soilNretention by altering the amount or proportion of added N stored in non-labile organic pools. We measured 15N tracer retention in labile and non-labile pools of surface (0–20 cm) mineral soils, 7 yr after the tracer was applied to a 9 yr-old Puerto Rican tree...

  10. A Global Assessment of Rain-Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Heald, C. L.

    2017-12-01

    Precipitation is the largest physical removal pathway of atmospheric organic carbon from the atmosphere. The removed carbon is transferred to the land and ocean in the form of dissolved organic carbon (DOC). Limited measurements have hindered efforts to characterize global DOC. In this poster presentation, we show the first simulated global DOC distribution based on a GEOS-Chem model simulation of the atmospheric reactive carbon budget. Over the ocean, simulated DOC concentrations are between 0.1 to 1 mgCL-1 with a total of 85 TgCyr-1 deposited. DOC concentrations are higher inland, ranging between 1 and 10 mgCL-1, producing a total of 188 TgCyr-1 terrestrial organic wet deposition. We compare the 2010 simulated DOC to a 30-year synthesis of available DOC measurements over different environments. Despite imperfect matching of observational and simulated time intervals, the model is able to reproduce much of the spatial variability of DOC (r= 0.63), with a low bias of 35%. We compare the global average carbon oxidation state (OSc) of both atmospheric and dissolved organic carbon, as a simple metric for describing the chemical composition of organics. In the global atmosphere reactive organic carbon (ROC) is dominated by hydrocarbons and ketones, and OSc, ranges from -1.8 to -0.6. In the dissolved form, formaldehyde, formic acid, primary and secondary semi-volatiles organic aerosol dominate the DOC concentrations. The increase in solubility upon oxidation leads to a global increase in OSc in rainwater with -0.6<=OSc <=0. This simulation provides new insight into the current model representation of the flow of atmospheric and rain-dissolved organic carbon, and new opportunities to use observations and simulations to understand the DOC reaching land and ocean.

  11. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2015-01-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off the Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolyzable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ~ 2% in the surface waters to 0.9% near 300 m. These AA yields revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Alteration state was also assessed by trends in C / N ratio, %D-AA and degradation index. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ~ 15% of POM and ~ 30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  12. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2014-10-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolysable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ∼2% in the surface waters to 0.9% near 300 m. These AA yields and other markers revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ∼15% of POM and ∼30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron, likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  13. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments

    USGS Publications Warehouse

    Strauss, E.A.; Lamberti, G.A.

    2002-01-01

    1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P = 0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L-1 of each leachate. Nitrification rates ranged from below detection to 0.49 ??g N mL sediment-1 day-1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r = -0.594, P = 0.0093) and specific ultraviolet absorbance (r = 0.469, P = 0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L-1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out-competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.

  14. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: Importance of dissolved organic nitrogen fluxes to the ocean

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hoon; Kwon, Eunhwa; Kim, Intae; Lee, Shin-Ah; Kim, Guebuem

    2013-04-01

    We observed the origin, behavior, and flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), colored dissolved organic matter (CDOM), and dissolved inorganic nitrogen (DIN) in the subterranean estuary of a volcanic island, Jeju, Korea. The sampling of surface seawater and coastal groundwater was conducted in Hwasun Bay, Jeju, in three sampling campaigns (October 2010, January 2011, and June 2011). We observed conservative mixing of these components in this subterranean environment for a salinity range from 0 to 32. The fresh groundwater was characterized by relatively high DON, DIN, and CDOM, while the marine groundwater showed relatively high DOC. The DON and DIN fluxes through submarine groundwater discharge (SGD) in the groundwater of Hwasun Bay were estimated to be 1.3 × 105 and 2.9 × 105 mol d- 1, respectively. In the seawater of Hwasun Bay, the groundwater-origin DON was almost conservative while about 91% of the groundwater-origin DIN was removed perhaps due to biological production. The DON flux from the entire Jeju was estimated to be 7.9 × 108 mol yr- 1, which is comparable to some of the world's large rivers. Thus, our study highlights that DON flux through SGD is potentially important for delivery of organic nitrogen to further offshore while DIN is readily utilized by marine plankton in near-shore waters under N-limited conditions.

  15. Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.

    2014-12-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.

  16. A simple approach to estimate daily loads of total, refractory, and labile organic carbon from their seasonal loads in a watershed

    Treesearch

    Ying Ouyang; Johnny M. Grace; Wayne C. Zipperer; Jeff Hatten; Janet Dewey

    2018-01-01

    Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) instreams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities throughabsorption of light and complex metals with production of carcinogenic compounds....

  17. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  18. Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils

    NASA Astrophysics Data System (ADS)

    Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.

    2017-12-01

    Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved

  19. Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream

    USGS Publications Warehouse

    McKnight, Diane M.; Smith, R.L.; Harnish, R.A.; Miller, C.L.; Bencala, K.E.

    1993-01-01

    The relationships between the abundance and activity of planktonic, heterotrophic microorganisms and the quantity and characteristics of dissolved organic carbon (DOC) in a Rocky Mountain stream were evaluated. Peak values of glucose uptake, 2.1 nmol L-1 hr-1, and glucose concentration, 333 nM, occurred during spring snowmelt when the water temperature was 4.0??C and the DOC concentration was greatest. The turnover time of the in situ glucose pool ranged seasonally from 40-1110 hours, with a mean of 272 hr. Seasonal uptake of3H-glucose, particulate ATP concentrations, and direct counts of microbial biomass were independent of temperature, but were positively correlated with DOC concentrations and negatively correlated with stream discharge. Heterotrophic activity in melted snow was generally low, but patchy. In the summer, planktonic heterotrophic activity and microbial biomass exhibited small-scale diel cycles which did not appear to be related to fluctuations in discharge or DOC, but could be related to the activity of benthic invertebrates. Leaf-packs placed under the snow progressively lost weight and leachable organic material during the winter, indicating that the annual litterfall in the watershed may be one source of the spring flush of DOC. These results indicate that the availability of labile DOC to the stream ecosystem is the primary control on seasonal variation in heterotrophic activity of planktonic microbial populations. ?? 1993 Kluwer Academic Publishers.

  20. Effects of lability of metal complex on free ion measurement using DMT.

    PubMed

    Weng, Liping; Van Riemsdijk, Willem H; Temminghoff, Erwin J M

    2010-04-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT. Analysis of new experimental studies using synthetic solution containing NTA as the ligand and Cu(2+) ions shows that when the ionic strength is low (dissolved organic matter (DOM) is the most important source of ligands that complex metals. By comparing the fraction of labile species measured using other dynamic sensors (DGT, GIME) in several freshwaters, it is concluded that in most waters ion transport in DMT is controlled by diffusion in the membrane. Only in very soft waters (<0.7 mM Ca+Mg), the dissociation rate of natural metal complex may influence ion transport in DMT. In this case, neglecting this effect may lead to an underestimation of the free metal ion concentration measured.

  1. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Albert, D. B.; Martens, C. S.

    1994-11-01

    Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic

  2. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; p<0.05). Lignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.

  3. Non-labile Soil 15Nitrogen Retention beneath Three Tree Species in a Tropical Plantation

    Treesearch

    Jason P. Kaye; Dan Binkley; Xiaoming Zou

    2002-01-01

    Soil organic matter is the largest sink for N additions to forests.Species composition may affect soilNretention by altering the amount or proportion of added N stored in non-labile organic pools. We measured 15N tracer retention in labile and non-labile pools of surface (0–20 cm) mineral soils, 7 yr after the tracer was applied to a 9 yr-old Puerto Rican tree...

  4. The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon.

    PubMed

    Tang, Jie; Cheng, Hao; Fang, Changming

    2017-01-01

    The response of resistant soil organic matter to temperature change is crucial for predicting climate change impacts on C cycling in terrestrial ecosystems. However, the response of the decomposition of different soil organic carbon (SOC) fractions to temperature is still under debate. To investigate whether the labile and resistant SOC components have different temperature sensitivities, soil samples were collected from three forest and two grass land sites, along with a gradient of latitude from 18°40'to 43°17'N and elevation from 600 to 3510 m across China, and were incubated under changing temperature (from 12 to 32 oC) for at least 260 days. Soil respiration rates were positively related to the content of soil organic carbon and soil microbial carbon. The temperature sensitivity of soil respiration, presented as Q10 value, varies from 1.93 ± 0.15 to 2.60 ± 0.21. During the incubation, there were no significant differences between the Q10 values of soil samples from different layers of the same site, nor a clear pattern of Q10 values along with the gradient of latitude. The result of this study does not support current opinion that resistant soil carbon decomposition is more sensitive to temperature change than labile soil carbon.

  5. The Effect of UV-B Radiation on Dissolved Organic Matter and Nitrogen Biogeochemistry in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Suddick, E. C.; Uher, G.; Woodward, M.; Upstill-Goddard, R. C.

    2006-12-01

    Peatlands are globally important reservoirs of carbon and represent important freshwater catchments in many regions. These waters generally contain high levels of dissolved organic matter (DOM), which contains a significant fraction of chromophoric, dissolved organic material (CDOM). CDOM is primarily responsible for light attenuation in these waters and affects a variety of biogeochemically relevant photo-processes including the formation of climatically active trace gases such as CO2, CO, COS and the release of essential plant micro-nutrients such as ammonium. Significant increases in DOM concentrations have been observed in various peatland waters over recent years, associated with increases in temperatures linked to global climate change. UV-B fluxes have also been projected to increase in the future as a consequence of stratospheric ozone depletion. Enhanced UV-B radiation can affect the balance between the biological processes that produce DOM and the chemical and microbial processes that degrade it. This infers that the rate of photochemical release of nutrients such as ammonium (photo-ammonification) is also likely to increase with increasing incident UV-B radiation. Samples of freshwater, riverine and marine, filtered (0.2 ìM) water were exposed to short-term natural and solar simulated irradiation which reduced their absorbance at 350 nm (a350) and total fluorescence intensity within the UV and visible regions and also produced changes in fluorescence excitation-emission matrix (EEM) measurements, such as the hypsochromic shift of peak A towards shorter wavelengths. Samples were taken from a variety of aqueous environments predominantly from Northern Scotland peatland freshwater catchments but also from the River Tyne, North East England and from the Iberian Coast, Atlantic Ocean, covering the a350 range 0.3 to 50 m-1. The photo-chemical release of ammonium from aquatic dissolved organic matter (DOM) was also concurrent with the photo-bleaching of DOM

  6. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Hawco, Nicholas J.; Ohnemus, Daniel C.; Resing, Joseph A.; Twining, Benjamin S.; Saito, Mak A.

    2016-10-01

    Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.

  7. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François

    2015-07-01

    Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  8. Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin

    2012-11-01

    Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.

  9. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    PubMed

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  10. The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics.

    PubMed

    McKay, Garrett; Korak, Julie A; Erickson, Paul R; Latch, Douglas E; McNeill, Kristopher; Rosario-Ortiz, Fernando L

    2018-01-16

    The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Dissolved organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to changes in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were largely unaffected by these changes, indicating that the distribution of absorbing and emitting species was unchanged. Overall, these results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for dissolved organic matter photophysics.

  11. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    PubMed

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  12. Excitation Emission Matrix Spectra (EEMS) of Chromophoric Dissolved Organic Matter Produced during Microbial Incubation

    NASA Astrophysics Data System (ADS)

    McDonald, N.; Nelson, N. B.; Parsons, R.

    2013-12-01

    The chromophoric or light-absorbing fraction of dissolved organic matter (CDOM) is present ubiquitously in natural waters and has a significant impact on ocean biogeochemistry, affecting photosynthesis and primary production as well direct and indirect photochemical reactions (Siegel et al., 2002; Nelson et al., 2007). It has been largely researched in the past few decades, however the exact chemical composition remains unknown. Instrumental methods of analysis including simultaneous excitation-emission fluorescence spectra have allowed for further insight into source and chemical composition. While certain excitation-emission peaks have been associated with ';marine' sources, they have not been exclusively linked to bacterial production of CDOM (Coble, 1996; Zepp et al., 2004). In this study, ';grazer diluted' seawater samples (70% 0.2μm filtered water; 30% whole water) were collected at the Bermuda Atlantic Time Series (BATS) site in the Sargasso Sea (31° 41' N; 64° 10' W) and incubated with an amendment of labile dissolved organic carbon (10μM C6H12O6), ammonium (1μM NH4Cl) and phosphate (0.1μM K2HPO4) to facilitate bacterial production. These substrates and concentrations have been previously shown to facilitate optimum bacterial and CDOM production (Nelson et al., 2004). Sample depths were chosen at 1m and 200m as water at these depths has been exposed to UV light (the Subtropical Mode Water at 200m has been subducted from the surface) and therefore has low initial concentrations of CDOM. After the samples were amended, they were incubated at in-situ temperatures in the dark for 72 hours, with bacteria counts, UV-Vis absorption and EEMS measurements taken at 6-8 hour intervals. Dissolved organic carbon (DOC) measurements were collected daily. For the surface water experiment specific bacteria populations were investigated using Fluorescence In-Situ Hybridization (FISH) analysis. Results showed a clear production of bacteria and production of CDOM, which

  13. Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Schulz, K. G.; Riebesell, U.

    2007-11-01

    Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 750 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) but not a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Although specific phosphate affinity and specific APA tended to be higher in 3×CO2 than in 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, no statistical differences were found. Responses of specific glucose affinity for bacteria were similar at the three different pCO2 levels. Measured specific glucose affinities were consistently much lower than the theoretical maximum predicted from the diffusion-limited model, suggesting that bacterial growth was not limited by the availability of labile dissolved organic carbon. These results suggest that availability of phosphate and glucose was similar at the three different pCO2 levels.

  14. Molecular Features of Dissolved Organic Matter Produced by Picophytoplankton

    NASA Astrophysics Data System (ADS)

    Ma, X.; Coleman, M.; Waldbauer, J.

    2016-02-01

    Compounds derived from picophytoplankton through exudation, grazing and viral lysis contribute a large proportion of labile DOM to the ocean. This labile DOM is rapidly turned over by and exchanged among microbial communities. However, identifying labile DOM compounds and tracking their sources and sinks in ocean ecosystems is complicated by the presence of non-labile DOM which has a significantly larger reservoir size and longer residence time. This study focuses on investigating labile DOM produced by single-strain cyanobacteria isolates via different modes of release and varied nutrient conditions. DOM compounds are analyzed by high-resolution mass spectrometry. Statistical comparison between intracellular and extracellular molecular data of Synechococcus WH7803 revealed noticeable differences in terms of compound number, size and structure. Incubation experiments using combined whole seawater and diluent of grazer-free or viral-free water at the BATS time-series station in Sargasso Sea yielded complimentary data to be synthesized with data from lab cultures. The compositional features of each type of DOM could serve as future proxies for different modes of DOM production in the oceans.

  15. Major structural components in freshwater dissolved organic matter.

    PubMed

    Lam, Buuan; Baer, Andrew; Alaee, Mehran; Lefebvre, Brent; Moser, Arvin; Williams, Antony; Simpson, André J

    2007-12-15

    Dissolved organic matter (DOM) contains a complex array of chemical components that are intimately linked to many environmental processes, including the global carbon cycle, and the fate and transport of chemical pollutants. Despite its importance, fundamental aspects, such as the structural components in DOM remain elusive, due in part to the molecular complexity of the material. Here, we utilize multidimensional nuclear magnetic resonance spectroscopy to demonstrate the major structural components in Lake Ontario DOM. These include carboxyl-rich alicyclic molecules (CRAM), heteropolysaccharides, and aromatic compounds, which are consistent with components recently identified in marine dissolved organic matter. In addition, long-range proton-carbon correlations are obtained for DOM, which support the existence of material derived from linear terpenoids (MDLT). It is tentatively suggested that the bulk of freshwater dissolved organic matter is aliphatic in nature, with CRAM derived from cyclic terpenoids, and MDLT derived from linear terpenoids. This is in agreement with previous reports which indicate terpenoids as major precursors of DOM. At this time it is not clear in Lake Ontario whether these precursors are of terrestrial or aquatic origin or whether transformations proceed via biological and/ or photochemical processes.

  16. [Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain].

    PubMed

    Xu, Xia; Chen, Yue-Qin; Wang, Jia-She; Fang, Yan-Hong; Quan, Wei; Ruan, Hong-Hua; Xu, Zi-Kun

    2008-03-01

    By using sequential fumigation-incubation method, this paper determined the soil labile organic carbon (LOC) content under evergreen broadleaf forest, coniferous forest, sub-alpine dwarf forest, and alpine meadow along an altitude gradient in Wuyi Mountain National Nature Reserve in Fujian Province of China, with its relations to soil microbial biomass carbon (MBC), total organic carbon (TOC), total nitrogen (TN), and fine root biomass (FRB) analyzed. The results showed that soil LOC occupied 3.40%-7.46% of soil TOC, and soil MBC occupied 26.87%-80.38% of the LOC. The LOC under different forest stands increased significantly with altitude, and decreased with soil depth. Soil LOC had very significant correlations with soil MBC, TOC, TN and FRB, and its content was obviously higher at higher altitudes than at lower altitudes.

  17. [Effects of the different land use on soil labile organic matter and carbon management index in Junyun Mountain].

    PubMed

    Xu, Peng; Jiang, Chang-Sheng; Hao, Qing-Ju; Zhu, Tao

    2013-10-01

    The impacts of different land use on soil organic matter (SOM), soil labile organic matter (SLOM) and their efficiency ratios (ER), and soil carbon management index (CMI) were studied in this study. Subtropical evergreen broad-leaved forest (abbreviation: forest) , sloping farmland, orchard and abandoned land were selected and soils at the depths of 0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm were sampled in the spring of 2011 to determine the contents of soil organic matter and labile organic matter. The results showed that the contents of soil organic matter and soil labile organic matter both decreased with the increase of soil depth under all four land use types; however, forest and orchard enriched SOM and SLOM contents in the 0-10 cm and 0-20 cm soil layers, respectively, while the contents of SOM and SLOM decreased evenly in sloping farmland and abandoned land. In the whole soil layer (0-60 cm) , the order of SOM and SLOM contents was abandoned land > forest > orchard > sloping farmland, indicating that at the conversion from forest into orchard or sloping farmland, SOM was reduced by 21.56% (P >0.05) and 55.90% (P <0.05), respectively, and at the conversion from sloping farmland into abandoned land, the low SLOM, middle SLOM and high SLOM increased by 144.2% (P<0.05) , 153.3% (P <0.05) and 242.7% (P <0.05), respectively. There was no significant difference in low ER, middle ER and high ER among the four land uses as suggested by ANOVA which showed that SRs were not sensible to the change of land use. All three CMis were in the order of abandoned land > forest > orchard > sloping farmland, revealing that forest reclamation resulted in the reduction of soil organic carbon storage and the decline of soil quality, and the abandonment of sloping farmland would increase soil carbon sink and improve soil quality. Three kinds of SLOM were all positively correlated with soil total nitrogen, available phosphorus and available potassium, while negatively correlated

  18. Response of Bacterial Metabolic Activity to Riverine Dissolved Organic Carbon and Exogenous Viruses in Estuarine and Coastal Waters: Implications for CO2 Emission

    PubMed Central

    Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J.; Liu, Hongbin

    2014-01-01

    A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7–12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary. PMID:25036641

  19. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: implications for CO2 emission.

    PubMed

    Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J; Liu, Hongbin

    2014-01-01

    A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7-12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary.

  20. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea.

    PubMed

    Harvey, E Therese; Kratzer, Susanne; Andersson, Agneta

    2015-06-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.

  1. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    PubMed Central

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  2. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between < 0.06 and 22 μmol L-1. The filtered water samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  3. Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory

    NASA Astrophysics Data System (ADS)

    Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter; Koch, Boris P.

    2016-10-01

    Although sulfur is an essential element for marine primary production and critical for climate processes, little is known about the oceanic pool of nonvolatile dissolved organic sulfur (DOS). We present a basin-scale distribution of solid-phase extractable DOS in the East Atlantic Ocean and the Atlantic sector of the Southern Ocean. Although molar DOS versus dissolved organic nitrogen (DON) ratios of 0.11 ± 0.024 in Atlantic surface water resembled phytoplankton stoichiometry (sulfur/nitrogen ~ 0.08), increasing dissolved organic carbon (DOC) versus DOS ratios and decreasing methionine-S yield demonstrated selective DOS removal and active involvement in marine biogeochemical cycles. Based on stoichiometric estimates, the minimum global inventory of marine DOS is 6.7 petagrams of sulfur, exceeding all other marine organic sulfur reservoirs by an order of magnitude.

  4. ESTIMATING DISSOLVED ORGANIC CARBON PARTITION COEFFICIENTS FOR NONIONIC ORGANIC CHEMICALS

    EPA Science Inventory

    A literature search was performed for dissolved organic carbon/water partition coefficients for nonionic chemicals (Kdoc) and Kdoc data was taken from more than sixty references. The Kdoc data were evaluated as a function of the n-octanol/water partition coefficients (Kow). A pre...

  5. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  6. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.

    PubMed

    Aryal, Rupak; Grinham, Alistair; Beecham, Simon

    2016-03-01

    Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.

  7. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  8. Changes in Labile Organic Carbon Fractions and Soil Enzyme Activities after Marshland Reclamation and Restoration in the Sanjiang Plain in Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Yanyu; Song, Changchun; Yang, Guisheng; Miao, Yuqing; Wang, Jiaoyue; Guo, Yuedong

    2012-09-01

    The extensive reclamation of marshland into cropland has tremendously impacted the ecological environment of the Sanjiang Plain in northeast China. To understand the impacts of marshland reclamation and restoration on soil properties, we investigated the labile organic carbon fractions and the soil enzyme activities in an undisturbed marshland, a cultivated marshland and three marshlands that had been restored for 3, 6 and 12 years. Soil samples collected from the different management systems at a depth of 0-20 cm in July 2009 were analyzed for soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily degradable organic carbon. In addition, the activities of the invertase, β-glucosidase, urease and acid phosphatase were determined. These enzymes are involved in C, N and P cycling, respectively. Long-term cultivation resulted in decreased SOC, DOC, MBC, microbial quotient and C (invertase, β-glucosidase) and N-transforming (urease) enzyme activities compared with undisturbed marshland. After marshland restoration, the MBC and DOC concentrations and the soil invertase, β-glucosidase and urease activities increased. Soil DOC and MBC concentrations are probably the main factors responsible for the different invertase, β-glucosidase and urease activities. In addition, marshland restoration caused a significant increase in the microbial quotient, which reflects enhanced efficiency of organic substrate use by microbial biomass. Our observations demonstrated that soil quality recovered following marshland restoration. DOC, MBC and invertase, β-glucosidase and urease activities were sensitive for discriminating soil ecosystems under the different types of land use. Thus, these parameters should be considered to be indicators for detecting changes in soil quality and environmental impacts in marshlands.

  9. Distribution, Source and Fate of Dissolved Organic Matter in Shelf Seas

    NASA Astrophysics Data System (ADS)

    Carr, N.; Mahaffey, C.; Hopkins, J.; Sharples, J.; Williams, R. G.; Davis, C. E.

    2016-02-01

    Dissolved organic matter (DOM) is a complex array of molecules containing carbon (DOC), nitrogen (DON) and phosphorous (DOP), and represents the largest pool of organic matter in the marine environment. DOM in the sea originates from a variety of sources, including allochthonous inputs of terrestrial DOM from land via rivers, and autochthonous inputs through in-situ biotic processes that include phytoplankton exudation, grazing and cell lysis. Marine DOM is a substrate for bacterial growth and can act as a source of nutrients for autotrophs. However, a large component of DOM is biologically refractory. This pool is carbon-rich and nutrient-poor, and can transport and store its compositional elements over large areas and on long time scales. The role of DOM in the shelf seas is currently unclear, despite these regions acting as conduits between the land and open ocean, and also being highly productive ecosystems. Using samples collected across the Northwest European Shelf Sea, we studied the distribution, source, seasonality and potential fate of DOM using a combination of analytical tools, including analysis of amino acids, DOM absorbance spectra and excitation emission matrices, in conjunction with parallel factor analysis (PARAFAC). Strong cross shelf and seasonal gradients in DOM source and lability were found. We observed a strong seasonally dependent significant correlation between salinity and terrestrial DOM in the bottom mixed layer, an enrichment of DOM at the shelf edge in winter and a three-fold increase in fresh marine DOM coinciding with the timing of a spring bloom. Together, our findings illustrate the dynamic nature of DOM in shelf seas over a seasonal cycle and, highlight the potential for DOM to play a key role in the carbon cycle in these regions.

  10. Source and Processes of Dissolved Organic Matter in a Bangladesh Groundwater

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Simone, B. E.; Mladenov, N.; Zheng, Y.; Legg, T. M.; Nemergut, D.

    2010-12-01

    Arsenic contamination of groundwater is a global health crisis, especially in Bangladesh where an estimated 40 million people are at risk. The release of geogenic arsenic bound to sediments into groundwater is thought to be influenced by dissolved organic matter (DOM) through several biogeochemical processes. Abiotically, DOM can promote the release of sediment bound As through the formation of DOM-As complexes and competitive interactions between As and DOM for sorption sites on the sediment. Additionally, the labile portion of groundwater DOM can serve as an electron donor to support microbial growth and the more recalcitrant humic DOM may serve as an electron shuttle, facilitating the eventual reduction of ferric iron present as iron oxides in sediments and consequently the mobilization of sorbed As and organic material. The goal of this study is to understand the source of DOM in representative Bangladesh groundwaters and the DOM sorption processes that occur at depth. We report chemical characteristics of representative DOM from a surface water, a shallow low-As groundwater, mid-depth high-As groundwater from the Araihazar region of Bangladesh. The humic DOM from groundwater displayed a more terrestrial chemical signature, indicative of being derived from plant and soil precursor materials, while the surface water humic DOM had a more microbial signature, suggesting an anthropogenic influence. In terms of biogeochemical processes occurring in the groundwater system, there is evidence from a diverse set of chemical characteristics, ranging from 13C-NMR spectroscopy to the analysis of lignin phenols, for preferential sorption onto iron oxides influencing the chemistry and reactivity of humic DOM in high As groundwater in Bangladesh. Taken together, these results provide chemical evidence for anthropogenic influence and the importance of sorption reactions at depth controlling the water quality of high As groundwater in Bangladesh.

  11. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiko T.; McCarthy, Matthew D.

    2018-01-01

    This study explores the use of compound-specific nitrogen isotopes of amino acids (δ15NAA) of coupled dissolved and particulate organic nitrogen (DON, PON) samples as a new approach to examine relative sources, transformation processes, and the potential coupling of these two major forms of N cycle in the ocean water column. We measured δ15NAA distributions in high-molecular-weight dissolved organic nitrogen (HMW DON) and suspended PON in the North Pacific Subtropical Gyre (NPSG) from surface to mesopelagic depths. A new analytical approach achieved far greater δ15NAA measurement precision for DON than earlier work, allowing us to resolve previously obscured differences in δ15NAA signatures, both with depth and between ON pools. We propose that δ15N values of total hydrolysable amino acids (THAA) represents a proxy for proteinaceous ON δ15N values in DON and PON. Together with bulk δ15N values, this allows δ15N values and changes in bulk, proteinaceous, and ;other-N; to be directly evaluated. These novel measurements suggest three main conclusions. First, the δ15NAA signatures of both surface and mesopelagic HMW DON suggest mainly heterotrophic bacterial sources, with mesopelagic HMW DON bearing signatures of far more degraded material compared to surface material. These results contrast with a previous proposal that HMW DON δ15NAA patterns are essentially ;pre-formed; by cyanobacteria in the surface ocean, undergo little change with depth. Second, different δ15NAA values and patterns of HMW DON vs. suspended PON in the surface NPSG suggest that sources and cycling of these two N reservoirs are surpisingly decoupled. Based on molecular δ15N signatures, we propose a new hypothesis that production of surface HMW DON is ultimately derived from subsurface nitrate, while PON in the mixed layer is strongly linked to N2 fixation and N recycling. In contrast, the comparative δ15NAA signatures of HMW DON vs. suspended PON in the mesopelagic also suggest a

  12. Marine methane paradox explained by bacterial degradation of dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.

    2016-12-01

    Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.

  13. Characterizing The Microbial Lability And Isotopic (14C, 13C) Signatures Of Marine Organic Matter With A Novel Culture Vessel System

    NASA Astrophysics Data System (ADS)

    Beaupre, S. R.; Mahmoudi, N.; Pearson, A.

    2016-02-01

    The rate at which non-living organic matter is respired in the ocean is an unconstrained and important property of the marine carbon cycle. Studies of inherent mineralization rates are complicated by the fact that marine organic matter is a mixture of compounds that vary in reactivity and concentration. While natural radiocarbon ages (14C, half-life = 5730 yr) have served as proxies for lability, they have not been used extensively to characterize that fraction of marine organic matter that is biologically accessible. To address this problem, we developed a novel batch culture system to monitor the time-dependent production rates and isotopic signatures of CO2 released during microbial degradation of natural organic matter. The system simulated a nepheloid layer by maintaining a slurry of decarbonated sediment and minimal media (M9) in a custom 2-liter culture vessel. The natural microbial community was allowed to develop within the sediment, and respired CO2 was continuously sparged from the medium with helium and oxygen, quantified in real time with an infrared gas analyzer, and isolated as a series of contiguous fractions for subsequent isotopic (∆14C, d13C) characterization. Control experiments indicated the accumulation of just 4.5 mg of background carbon per hour of continuous gas flow, which constituted ≤ 10 % of the respired carbon mass in each fraction. Since ∆14C values are conserved during molecular transformations, this low-blank system enables the detection of subtle shifts in the "age" of organic matter respired during the course of a culture experiment. Analyses of sediments from Falmouth, MA revealed both a variable CO2 production rate and an increase in post-bomb ∆14C values during a 10-day incubation. This suggests that the microbial lability of organic matter at this site decreased non-linearly with apparent 14C age, and that the least labile fraction observed was not more than 50 years old. These results underscore the complex

  14. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.

    2011-01-01

    Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  15. Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses

    NASA Astrophysics Data System (ADS)

    Zigah, Prosper K.; Minor, Elizabeth C.; McNichol, Ann P.; Xu, Li; Werne, Josef P.

    2017-07-01

    We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71%) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25-43‰) and HMW DOC (Δ14C = 22-32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ∼ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.

  16. Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Aiken, George R.; Kane, Evan S.; Jones, Jeremy B.

    2010-01-01

    Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate the relationship between source water (shallow versus deep groundwater flow paths) and DOC chemical composition. Using base cation chemistry and principal component analysis, we observed high contributions of deep groundwater to glacial and clearwater streams, whereas blackwater streams received larger contributions from shallow groundwater sources. DOC concentration and specific ultraviolet absorbance peaked during spring snowmelt in all streams, and were consistently higher in blackwater streams than in glacial and clearwater streams. The hydrophobic acid fraction of DOC dominated across all streams and seasons, comprising between 35% and 56% of total DOC. The hydrophilic acid fraction of DOC was more prominent in glacial (23% ± 3%) and clearwater streams (19% ± 1%) than in blackwater streams (16% ± 1%), and was enriched during winter base flow (29% ± 1%) relative to snowmelt and summer base flow. We observed that an increase in the contribution of deep groundwater to streamflow resulted in decreased DOC concentration, aromaticity, and DOC-to-dissolved organic nitrogen ratio, and an increase in the proportion of hydrophilic acids relative to hydrophobic acids. Our findings suggest that future permafrost degradation and higher contributions of groundwater to streamflow may result in a higher fraction of labile DOM in streams of the Yukon basin.

  17. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure.

    PubMed

    Johnson, Arthur H; Frizano, Jaqueline; Vann, David R

    2003-05-01

    Forest ecologists and biogeochemists have used a variety of extraction techniques to assess labile vs. non-labile soil P pools in chronosequences, the balance between biological vs. geochemical control of P transformations across a wide range of soil orders, the role of plants with either N-fixing or mycorrhizal symbionts in controlling soil P fractions, and to make inferences about plant-available P. Currently, variants of the sequential extraction procedure developed by M. J. Hedley and co-workers afford the greatest discrimination among labile and non-labile organic and inorganic P pools. Results of recent studies that used this technique to evaluate P fractions in forest soils indicate the following: (1) in intact, highly weathered forest soils of the humid tropics, Hedley-labile P values are several times larger than extractable P values resulting from mildly acidic extracting solutions which were commonly used in the past 2 decades; (2) pools of Hedley-labile P are several times larger than the annual forest P requirement and P required from the soil annually in both temperate and tropical forests; (3) long-term trends in non-labile P pools during pedogenesis are adequately represented by the Walker and Syers' model of changes in P fractionation during soil development. However, to better represent trends in pools that can supply plant-available P across forest soils of different age and weathering status, the paradigm should be modified; and (4) across a wide range of tropical and temperate forest soils, organic matter content is an important determinant of Hedley-labile P.

  18. The carbon commute: Effects of urbanization on dissolved organic carbon quality on a suburban New England river network

    NASA Astrophysics Data System (ADS)

    Balch, E.; Robison, A.; Wollheim, W. M.

    2017-12-01

    Understanding anthropogenic influence on the sources and fluxes of carbon is necessary for interpreting the carbon cycle and contaminant transport throughout a river system. As urbanization increases worldwide, it is critical to understand how urbanization affects the carbon cycle so that we may be able to predict future changes. Rivers act as both transporters of terrestrial dissolved organic carbon (DOC) to coastal regions, and active transformers of DOC. The character (lability) of the carbon found within a river network is influenced by its sources and fluxes, as determined by the ecological processes, land use, and discharge, which vary throughout the network. We have characterized DOC quantity and quality throughout a suburban New England river network (Ipswich River, MA) in an attempt to provide a detailed picture of how DOC quality varies within a network, and how urbanization influences these changes. We conducted a synoptic survey of 45 sites over two hydrologically similar days in the Ipswich River network in northeast Massachusetts, USA. We collected discrete grab samples for DOC quantity and quality analyses. We also collected dissolved oxygen, conductivity, and nutrients (major anions and cations) as an extension of the synoptic survey. We plan to determine the source of the DOC by using excitation-emission matrices (EEMs), and specific UV absorption (SUVA) at 254 nm. These analyses will provide us with a detailed picture of how DOC quality varies within a network, and how urbanization influences these changes. Using land use data of the Ipswich River watershed, we are able to model the changes in DOC quality throughout the network. In highly urbanized headwaters, through the progressively more forested and wetland dominated main stem reaches, we expect to see the imprint of urbanization throughout the network due to its decreased lability. Studying the imprint of urbanization on DOC throughout a river network helps us complete our understanding of

  19. Controls on the distribution of fluorescent dissolved organic matter during an under-ice algal bloom in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Mendoza, Wilson G.; Weiss, Elliot L.; Schieber, Brian; Greg Mitchell, B.

    2017-07-01

    In this study we used fluorescence excitation and emission matrix spectroscopy, hydrographic data, and a self-organizing map (SOM) analysis to assess the spatial distribution of labile and refractory fluorescent dissolved organic matter (FDOM) for the Chukchi and Beaufort Seas at the time of a massive under-ice phytoplankton bloom during early summer 2011. Biogeochemical properties were assessed through decomposition of water property classes and sample classification that employed a SOM neural network-based analysis which classified 10 clusters from 269 samples and 17 variables. The terrestrial, humic-like component FDOM (ArC1, 4.98 ± 1.54 Quinine Sulfate Units (QSU)) and protein-like component FDOM (ArC3, 1.63 ± 0.88 QSU) were found to have elevated fluorescence in the Lower Polar Mixed Layer (LPML) (salinity 29.56 ± 0.76). In the LPML water mass, the observed contribution of meteoric water fraction was 17%, relative to a 12% contribution from the sea ice melt fraction. The labile ArC3-protein-like component (2.01 ± 1.92 QSU) was also observed to be elevated in the Pacific Winter Waters mass, where the under-ice algal bloom was observed ( 40-50 m). We interpreted these relationships to indicate that the accumulation and variable distribution of the protein-like component on the shelf could be influenced directly by sea ice melt, transport, and mixing processes and indirectly by the in situ algal bloom and microbial activity. ArC5, corresponding to what is commonly considered marine humic FDOM, indicated a bimodal distribution with high values in both the freshest and saltiest waters. The association of ArC5 with deep, dense salty water is consistent with this component as refractory humic-like FDOM, whereas our evidence of a terrestrial origin challenges this classic paradigm for this component.

  20. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    NASA Astrophysics Data System (ADS)

    Peterson, Fox S.; Lajtha, Kate J.

    2013-07-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil characteristics, and current and historical vegetation composition and structure versus SOM fractions and DOC pools and leaching on a small catchment (WS1) in the H.J. Andrews Experimental Forest, located in the western Cascades Range of Oregon, USA. We predicted that aboveground net primary productivity (ANPP), litter fall, and nitrogen mineralization would be positively correlated with SOM, DOC, and carbon (C) content of the soil based on the principle that increased C inputs cause C stores in and losses from in the soil. We expected that in tandem, certain microtopographical and microclimatic characteristics might be associated with elevated C inputs and correspondingly, soil C stores and losses. We confirmed that on this site, positive relationships exist between ANPP, C inputs (litter fall), and losses (exportable DOC), but we did not find that these relationships between ANPP, inputs, and exports were translated to SOM stores (mg C/g soil), C content of the soil (% C/g soil), or DOC pools (determined with salt and water extractions). We suggest that the biogeochemical processes controlling C storage and lability in soil may relate to longer-term variability in aboveground inputs that result from a heterogeneous and evolving forest stand.

  1. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  2. Mood lability and psychopathology in youth.

    PubMed

    Stringaris, A; Goodman, R

    2009-08-01

    Mood lability is a concept widely used. However, data on its prevalence and morbid associations are scarce. We sought to establish the occurrence and importance of mood lability in a large community sample of children and adolescents by testing a priori hypotheses. Cross-sectional data were taken from a national mental health survey including 5326 subjects aged 8-19 years in the UK. The outcomes were prevalence and characteristics of mood lability and its associations with psychopathology and overall impairment. Mood lability occurred in more than 5% of the population of children and adolescents, both by parent and self-report. Mood lability was strongly associated with a wide range of psychopathology and was linked to significant impairment even in the absence of psychiatric disorders. Mood lability was particularly strongly associated with co-morbidity between internalizing and externalizing disorders, even when adjusting for the association with individual disorders. The pattern of results did not change after excluding youth with bipolar disorder or with episodes of elated mood. Clinically significant mood lability is relatively common in the community. Our findings indicate that mood lability is not a mere consequence of other psychopathology in that it is associated with significant impairment even in the absence of psychiatric diagnoses. Moreover, the pattern of association of mood lability with co-morbidity suggests that it could be a risk factor shared by both internalizing and externalizing disorders. Our data point to the need for greater awareness of mood lability and its implications for treatment.

  3. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, John; Waite, William F.; Bauer, James E.; Osburn, Christopher L.; Chapman, N. Ross

    2011-01-01

    Marine sediments contain about 500–10,000 Gt of methane carbon1, 2, 3, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined1, 4, but it releases relatively little methane to the ocean and atmosphere5. Sedimentary microbes convert most of the dissolved methane to carbon dioxide6, 7. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use Δ14C and δ13C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000–6,000 year age of dissolved organic carbon in the deep ocean8, and provide reduced organic matter and energy to deep-ocean microbial communities.

  4. Optical Characterization and Bioavailability of Dissolved Organic Matter of Leaf Leachates from Restored and Forested Delmarva Bay Catchments

    NASA Astrophysics Data System (ADS)

    Reed, E.; Armstrong, A.

    2016-12-01

    The optical properties and lability of fresh leaf and litter leachates obtained from Delmarva wetlands were analyzed to gain a further understanding of the carbon inputs and outputs of that wetland system. Carbon entering the wetland system may be digested by microbes and then given off as either carbon dioxide or methane, both of which enter the atmosphere as greenhouse gases. Delmarva Bays are often considered geographically isolated and only have surface water present in certain times of year. The vegetation around the wetlands are assumed to be a major input of the dissolved organic matter (DOM) in the wetland surface water. An understanding of the sources and lability of wetland water DOM can lead to further insight into the connections between vegetation, wetland management, and carbon cycling. Two paired wetland sites were sampled in this study, each included a forested catchment and a prior-converted agricultural wetland that had undergone hydrological ecosystem restoration. Leaf samples of Liquidambar styraciflua, Acer rubrum, Nyssa sylvatica, Polygonum, and Typha were taken directly from the living plant or from surrounding ground as litter. Spectral properties of the leachates were determined from fluorescence and absorbance, including PARAFAC components, fluorescence index (FI), humification index (HI), and the specific ultraviolet absorbance (SUVA). Leachates were also incubated with microbes taken from Tuckahoe Creek, a stream to which all sampled sites eventually drain, to determine the bioavailability of the carbon. There were measurable differences found between samples obtained from leaves and litter, as well as a difference between the herbaceous and tree samples. The results obtained from this study can help create more accurate models of how carbon cycles through these wetlands, both in forested and restored environments.

  5. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost

    Treesearch

    Kelly L. Balcarczyk; Jeremy B. Jones; Rudolf Jaffe; Nagamitsu Maie

    2009-01-01

    We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. The stream draining the high permafrost watershed had higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOCDON and greater specific...

  6. The Influence of Land-Use Change on Soil and Dissolved Organic Matter Age, Lability, and Chemical Characteristics in Brazilian Oxisols

    NASA Astrophysics Data System (ADS)

    James, J. N.; Harrison, R. B.; Gross, C. D.; Dwivedi, P.; Myers, T.; Butman, D. E.

    2017-12-01

    Recent advances in freshwater research indicate that the age of carbon exported from major rivers globally increases with greater human disturbance in the watershed. This implies that human land-use can release old, previously mineral-associated C into solution with subsequent export to groundwater and ultimately freshwater systems where terrestrial organic matter is either mineralized to CO2, stored in aquatic sediments, or exported to the ocean. It is important to understand the mechanisms that cause the release of mineral-bound soil organic matter (SOM) into solution in response to human disturbance and land-use change. To better characterize the response of the total soil organic matter (SOM) pool to disturbance, this study examines the interactions between dissolved and bulk soil pools in response to conversion of Brazilian Cerrado (savannah forest) to Eucalyptus plantations. Water-extractable organic matter (WEOM) was obtained from soil samples down to 150 cm at 4 sites in Sao Paulo State, Brazil. These WEOM samples were characterized using fluorescence and NMR spectroscopy, incubated to assess biolability, and carbon-dated. Simultaneously, bulk mineral soil samples were analyzed for microbial biomass, carbon content and age, and characterized using Fourier Transform Infrared Spectroscopy. FTIR spectra of SOM were obtained by washing subsamples with sodium hypochlorite and subtracting the subsequent mineral matrix spectra from bulk soil spectra. Preliminary results show that microbial biomass decreases much more quickly with depth than WEOM, suggesting that C released into solution from deeper horizons may be less likely to be intercepted, and thus preferentially leached to groundwater. Native Cerrado forests had substantially more roots compared to Eucalyptus, and also released substantially larger quantities of WEOM from their O horizons. Furthermore, the age of WEOM released under Eucalyptus forest was more similar in age to bulk SOM, while Cerrado forest

  7. Dissolved organic carbon reduces the toxicity of copper to germlings of the macroalgae, Fucus vesiculosus.

    PubMed

    Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V

    2008-05-01

    This study investigates the effects of waterborne copper exposure on germling growth in chemically defined seawater. Germlings of the macroalgae, Fucus vesiculosus were exposed to a range of copper and dissolved organic carbon (DOC as humic acid) concentrations over 14 days. Germling growth was found to be a sensitive indicator of copper exposure with total copper (TCu) and labile copper (LCu) EC(50) values of approximately 40 and 20 microg/L, respectively, in the absence of added DOC. The addition of DOC into the exposure media provided germlings with protection against copper toxicity, with an increased TCu EC(50) value of 117.3 microg/L at a corrected DOC (cDOC from humic acid only) concentration of 2.03 mg/L. The LCu EC(50) was not affected by a cDOC concentration of 1.65 mg/L or less, suggesting that the LCu concentration not the TCu concentration was responsible for inhibiting germling growth. However, at a cDOC concentration of approximately 2mg/L an increase in the LCu EC(50) suggests that the LCu concentration may play a role in the overall toxicity to the germlings. This is contrary to current understanding of aquatic copper toxicity and possible explanations for this are discussed.

  8. Meridional fluxes of dissolved organic matter in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.

    1992-01-01

    Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.

  9. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  10. Relationship between the colored dissolved organic matter and dissolved organic carbon and the application on remote sensing in East China Sea

    NASA Astrophysics Data System (ADS)

    Qiong, Liu; Pan, Delu; Huang, Haiqing; Lu, Jianxin; Zhu, Qiankun

    2011-11-01

    A cruise was conducted in the East China Sea (ECS) in autumn 2010 to collect Dissolved Organic Carbon (DOC) and Colored Dissolved Organic Matter (CDOM) samples. The distribution of DOC mainly controlled by the hydrography since the relationship between DOC and salinity was significant in both East China Sea. The biological activity had a significant influence on the concentration of DOC with a close correlation between DOC and Chl a. The absorption coefficient of CDOM (a355) decreased with the salinity increasing in the shelf of East China Sea (R2=0.9045). CDOM and DOC were significantly correlated in ECS where DOC distribution was dominated largely by the Changjiang diluted water. Based on the relationship of CDOM and DOC, we estimated the DOC concentration of the surface in ECS from satellite-derived CDOM images. Some deviations induced by the biological effect and related marine DOC accumulations were discussed.

  11. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    EPA Science Inventory

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  12. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  13. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes.

    PubMed

    Mladenov, N; Sommaruga, R; Morales-Baquero, R; Laurion, I; Camarero, L; Diéguez, M C; Camacho, A; Delgado, A; Torres, O; Chen, Z; Felip, M; Reche, I

    2011-07-26

    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  15. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    NASA Astrophysics Data System (ADS)

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the

  16. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Treesearch

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  17. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  18. Optical properties and molecular diversity of dissolved organic matter in the Bering Strait and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.

    2017-10-01

    Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.

  19. Organic carbon export from the Greenland Ice Sheet: sources, sinks and downstream fluxes

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Lawson, E.; Tranter, M.; Stibal, M.; Telling, J.; Lis, G. P.; Nienow, P. W.; Anesio, A. M.; Butler, C. E.

    2012-12-01

    Runoff from small glacier systems has been shown to contain dissolved organic carbon (DOC) rich in low molecular weight (LMW), and hence more labile forms, designating glaciers as an important source of carbon for downstream heterotrophic activity. Here we assess glacier surfaces as potential sources of labile DOC to downstream ecosystems, presenting data from a wide range of glacier systems to determine sources and sinks of DOC in glacial and proglacial systems. We subsequently focus upon the Greenland Ice Sheet (GrIS) which is the largest source of glacial runoff at present (400 km3 yr-1), with predicted increases in future decades. We report high fluxes of particulate organic carbon (POC), DOC and LMW labile fractions from a large GrIS catchment during two contrasting melt seasons. POC dominates OC export, is sourced from the ice sheet bed and contains a significant bioreactive component (~10% carbohydrates). The LMW-DOC "labile" fraction derives almost entirely from microbial activity on the ice sheet surface, which is supported by data from glacier systems also presented here. Annual fluxes of DOC, POC and labile components were lower in 2010 than 2009, despite a ~2 fold increase in runoff fluxes in 2010, suggesting production-limited DOC/POC sources. Scaled to the entire ice sheet, combined DOC and POC fluxes are of a similar order of magnitude to other large Arctic river systems and may represent an important source of organic carbon to the North Atlantic, Greenland and Labrador Seas.

  20. Antarctic snow: metals bound to high molecular weight dissolved organic matter.

    PubMed

    Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo

    2017-05-01

    In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    USGS Publications Warehouse

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  2. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (< 20 µm) occluded in aggregated soil structures which differed in the chemical composition from larger organic particles. This was

  4. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  5. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.

    PubMed

    Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J; Geissen, Violette

    2017-10-01

    Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH 4 + , NO 3 - , dissolved organic phosphorus (DOP), and PO 4 3- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A watershed-scale characterication of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Treesearch

    Daniel L. Tufford; Setsen Alton-Ochir; Warren Hankinson

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  7. A watershed-scale characterization of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Treesearch

    Daniel Tufford; Setsen Alton-Ochir

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  8. Controls on the distribution of fluorescent dissolved organic matter during an under‐ice algal bloom in the western Arctic Ocean

    PubMed Central

    Weiss, Elliot L.; Schieber, Brian; Greg Mitchell, B.

    2017-01-01

    Abstract In this study we used fluorescence excitation and emission matrix spectroscopy, hydrographic data, and a self‐organizing map (SOM) analysis to assess the spatial distribution of labile and refractory fluorescent dissolved organic matter (FDOM) for the Chukchi and Beaufort Seas at the time of a massive under‐ice phytoplankton bloom during early summer 2011. Biogeochemical properties were assessed through decomposition of water property classes and sample classification that employed a SOM neural network‐based analysis which classified 10 clusters from 269 samples and 17 variables. The terrestrial, humic‐like component FDOM (ArC1, 4.98 ± 1.54 Quinine Sulfate Units (QSU)) and protein‐like component FDOM (ArC3, 1.63 ± 0.88 QSU) were found to have elevated fluorescence in the Lower Polar Mixed Layer (LPML) (salinity ~29.56 ± 0.76). In the LPML water mass, the observed contribution of meteoric water fraction was 17%, relative to a 12% contribution from the sea ice melt fraction. The labile ArC3‐protein‐like component (2.01 ± 1.92 QSU) was also observed to be elevated in the Pacific Winter Waters mass, where the under‐ice algal bloom was observed (~40–50 m). We interpreted these relationships to indicate that the accumulation and variable distribution of the protein‐like component on the shelf could be influenced directly by sea ice melt, transport, and mixing processes and indirectly by the in situ algal bloom and microbial activity. ArC5, corresponding to what is commonly considered marine humic FDOM, indicated a bimodal distribution with high values in both the freshest and saltiest waters. The association of ArC5 with deep, dense salty water is consistent with this component as refractory humic‐like FDOM, whereas our evidence of a terrestrial origin challenges this classic paradigm for this component. PMID:28989231

  9. Controls on the distribution of fluorescent dissolved organic matter during an under-ice algal bloom in the western Arctic Ocean.

    PubMed

    Mendoza, Wilson G; Weiss, Elliot L; Schieber, Brian; Greg Mitchell, B

    2017-07-01

    In this study we used fluorescence excitation and emission matrix spectroscopy, hydrographic data, and a self-organizing map (SOM) analysis to assess the spatial distribution of labile and refractory fluorescent dissolved organic matter (FDOM) for the Chukchi and Beaufort Seas at the time of a massive under-ice phytoplankton bloom during early summer 2011. Biogeochemical properties were assessed through decomposition of water property classes and sample classification that employed a SOM neural network-based analysis which classified 10 clusters from 269 samples and 17 variables. The terrestrial, humic-like component FDOM (ArC1, 4.98 ± 1.54 Quinine Sulfate Units (QSU)) and protein-like component FDOM (ArC3, 1.63 ± 0.88 QSU) were found to have elevated fluorescence in the Lower Polar Mixed Layer (LPML) (salinity ~29.56 ± 0.76). In the LPML water mass, the observed contribution of meteoric water fraction was 17%, relative to a 12% contribution from the sea ice melt fraction. The labile ArC3-protein-like component (2.01 ± 1.92 QSU) was also observed to be elevated in the Pacific Winter Waters mass, where the under-ice algal bloom was observed (~40-50 m). We interpreted these relationships to indicate that the accumulation and variable distribution of the protein-like component on the shelf could be influenced directly by sea ice melt, transport, and mixing processes and indirectly by the in situ algal bloom and microbial activity. ArC5, corresponding to what is commonly considered marine humic FDOM, indicated a bimodal distribution with high values in both the freshest and saltiest waters. The association of ArC5 with deep, dense salty water is consistent with this component as refractory humic-like FDOM, whereas our evidence of a terrestrial origin challenges this classic paradigm for this component.

  10. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean.

    PubMed

    Clifford, Elisabeth L; Hansell, Dennis A; Varela, Marta M; Nieto-Cid, Mar; Herndl, Gerhard J; Sintes, Eva

    2017-11-01

    Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g -1 C-biomass h -1 ) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g -1 C-biomass h -1 and 9.5 ± 2.1 μmol g -1 C-biomass h -1 ), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.

  11. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.

    1998-01-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  12. Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil.

    PubMed

    Arguelho, Maria de Lara Palmeira de Macedo; Alves, José do Patrocínio Hora; Monteiro, Adnívia Santos Costa; Garcia, Carlos Alexandre Borges

    2017-06-01

    The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L -1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.

  13. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    USGS Publications Warehouse

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  14. The Effects of Permafrost Thaw on Organic Matter Quality and Availability Along a Hill Slope in Northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spawn, S.; Ludwig, S.; Schade, J. D.; Natali, S.

    2014-12-01

    Climate warming and permafrost thaw in northeastern Siberia are expected to change the quantity and quality of organic matter (OM) transported through watersheds, releasing previously frozen carbon (C) to biologically available pool. Hill slopes have shown to influence the distribution of OM, resulting in a downhill accumulation of available C and nutrients relative to uphill. Here we examine how future permafrost thaw will change OM quality and availability along a hill slope in a larch-dominated watershed. We collected soils from the thawed organic and mineral layers, and 1m deep permafrost cores for dissolved organic C (DOC) and total dissolved N (TDN), C composition from measures of colored dissolved organic matter (CDOM), DOC lability from biodegradable DOC (BDOC) incubations, C and nutrient availability from extracellular-enzyme assays (EEA's), and microbial respiration from aerobic soil incubations. Here we show that organic soils (O), in comparison to mineral soils (M) and permafrost (P) are the most abundant source of C (avg O DOC: 51.6mg/L), exhibiting low molecular complexity (avg O SUVA254: 4.05) and high quality. Evidence suggests permafrost OM may be an equally abundant, and more labile source of C than mineral soils (highest P DOC: 16.1 mg/L, lowest P SUVA254: 6.32; median M DOC: 18.5 mg/L, median M SUVA254: 24.0). Furthermore, we demonstrate that there may be a positive relationship in the rate of C mineralization and distance downhill, showing 15-30% greater CO2 production/gC downhill relative to uphill. Evidence also supports a similar relationship in permafrost DOC content and molecular complexity, showing more DOC of a lower complexity further downhill. This indicates DOC transport may have been occurring through the active layer and downhill during ice-rich permafrost formation, and may supply a labile source of carbon to lowland areas and adjacent stream networks upon thaw.

  15. Dispersion of kaolinite by dissolved organic matter from Douglas-fir roots

    Treesearch

    Philip B. Durgin; Jesse G. Chaney

    1984-01-01

    The organic constituents of water extracts from Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) roots that cause kaolinite dispersion were investigated. The dissolved organic matter was fractionated according to molecular size and chemical characteristics into acids, neutrals, and bases of the hydrophilic and hydrophobic groups.

  16. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  17. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  18. Following The Money: Characterizing the Dynamics of Microbial Ecosystems and Labile Organic Matter in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; McNeal, K. S.

    2006-12-01

    The dynamics of soil microbial ecosystems and labile fractions of soil organic matter in grasslands have important implications for the response of these critical ecosystems to perturbations. Organic, inorganic and genetic biomarkers in the solid (e.g. lipids, microbial DNA), liquid (e.g. porewater ions) or gaseous phases (e.g. carbon dioxide) have been used to characterize carbon cycling and soil microbial ecology. These proxies are generally limited in the amount of temporal information that they can provide (i.e., solid-phase proxies) or the amount of specific information they can provide about carbon sources or microbial community processes (e.g. inorganic gases). It is the aim of this research to validate the use of soil volatile organic carbon emissions (VOCs) as useful indicators of subsurface microbial community shifts and processes as a function of ecosystem perturbations. We present results of method validation using laboratory microcosm, where VOC metabolites as characterized by gas chromatography and mass spectrometry (GC-MS), were related to other proxies including carbon dioxide (CO2) via infra-red technology, and microbial community shifts as measured by Biolog© and fatty acid methyl ester (FAME) techniques. Experiments with soil collected from grasslands along the coastal margin region in southern Texas were preformed where environmental factors such as soil water content, soil type, and charcoal content are manipulated. Results indicate that over fifty identifiable VOC metabolites are produced from the soils, where many (~15) can be direct indicators of microbial ecology. Principle component analysis (PCA) evidences these trends through similar cluster patterns for the VOC results, the Biolog© results, and FAME. Regression analysis further shows that VOCs are significant (p < 0.05) indicators of microbial stress. Our results are encouraging that characterizing VOCs production in grassland soils are easy to measure, relatively inexpensive method

  19. PHOTOCHEMICALLY-INDUCED TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN RIVERINE WATERS

    EPA Science Inventory

    We demonstrated that exposure of riverine water to natural sunlight initiated degradation and corresponding alteration to the stable carbon isotope ratio and biochemical composition of the associated dissolved organic carbon (DOC). Water samples were collected from two distinct ...

  20. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  2. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  3. Field evidence for a protistan role in an organically-contaminated aquifer

    USGS Publications Warehouse

    Kinner, Nancy E.; Harvey, Ronald W.; Shay, David M.; Metge, David W.; Warren, Alan

    2002-01-01

    The association between protists, bacteria, and dissolved organic carbon (DOC) in an oxygen-depleted, 6 km-long wastewater contaminant plume within a sandy aquifer (Cape Cod, MA) was investigated by comparing abundance patterns along longitudinal and vertical transects and at a control site. Strong linear correlations were observed between unattached bacterial abundance and DOC for much of the upgradient-half of the plume (0.1−2.5 km downgradient from the source) that is characterized by quasi-steady state chemistry. However, a logarithmic decrease was observed between the number of protists supported per mg of DOC and the estimated age of the DOC within the plume. The relatively labile dissolved organic contaminants that characterize the groundwater sampled from the plume ≤0.1 km downgradient from the contaminant source appeared to indirectly support 3−4 times as many protists (per mg of DOC) as the older, more recalcitrant DOC in the alkylbenzene sulfonate (ABS)-contaminated zone at 3 km downgradient (∼30 years travel time). Substantive numbers of protists (>104/cm3) were recovered from suboxic zones of the plume. The higher than expected ratios of protists to unattached bacteria (10 to 100:1) observed in much of the plume suggest that protists may be grazing upon both surface-associated and unattached bacterial communities to meet their nutritional requirements. In closed bottle incubation experiments, the presence of protists caused an increase in bacterial growth rate, which became more apparent at higher amendments of labile DOC (3−20 mgC/L). The presence of protists resulted in an increase in the apparent substrate saturation level for the unattached bacterial community, suggesting an important role for protists in the fate of more-labile aquifer organic contaminants.

  4. CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS

    EPA Science Inventory

    The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...

  5. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion?

    PubMed

    Hulatt, Chris J; Thomas, David N

    2010-11-01

    Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.

  6. Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoyan; Aiken, George R.; Spencer, Robert G. M.; Butler, Kenna; Mao, Jingdong; Schmidt-Rohr, Klaus

    2016-05-01

    Seasonal (spring freshet, summer-autumn, and winter) variability in the chemical composition of dissolved organic matter (DOM) from the Yukon River was determined using advanced one- and two-dimensional (2D) solid-state NMR spectroscopy, coupled with isotopic measurements and UV-visible spectroscopy. Analyses were performed on two major DOM fractions, the hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions obtained using XAD resins. Together these two fractions comprised 64-74% of the total DOM. Carboxyl-rich alicyclic molecules (CRAM) accounted for the majority of carbon atoms in the HPOA (63-77%) and TPIA (54-78%) samples, and more so in winter and summer than in spring samples. 2D and selective NMR data revealed association of abundant nonprotonated O-alkyl and quaternary alkyl C (OCnp, OCnpO and Cq, 13-17% of HPOA and 15-20% of TPIA) and isolated O-CH structures with CRAM, which were not recognized in previous studies. Spectral editing and 2D NMR allowed for the discrimination of carbohydrate-like O-alkyl C from non-carbohydrate O-alkyl C. Whereas two spring freshet TPIA samples contained carbohydrate clusters such as carboxylated carbohydrates (16% and 26%), TPIA samples from other seasons or HPOA samples mostly had small amounts (<8%) of sugar rings dispersed in a nonpolar alkyl environment. Though nonprotonated aromatic C represented the largest fraction of aromatic C in all HPOA/TPIA isolates, only a small fraction (∼5% in HPOA and 3% in TPIA) was possibly associated with dissolved black carbon. Our results imply a relatively stable portion of DOM exported by the Yukon River across different seasons, due to the predominance of CRAM and their associated nonprotonated C-O and O-C-O structures, and elevated reactivity (bio- and photo-lability) of spring DOM due to the presence of terrestrial inputs enriched in carbohydrates and aromatic structures.

  7. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) SOURCE CHARACTERIZATION IN THE LOUISIANA BIGHT

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in the Mississippi plume region may have several distinct sources: riverine (terrestrial soils), wetland (terrestrial plants), biological production (phytoplankton, zooplankton, microbial), and sediments. Complex mixing, photodegradati...

  8. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    PubMed

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  9. The Case Against Charge Transfer Interactions in Dissolved Organic Matter Optical Properties

    NASA Astrophysics Data System (ADS)

    McKay, G.; Korak, J.; Erickson, P. R.; Latch, D. E.; McNeill, K.; Rosario-Ortiz, F.

    2017-12-01

    The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Organic matter optical properties have been used by scientists and engineers for decades for remote sensing, in situ monitoring, and characterizing laboratory samples to track dissolved organic carbon concentration and character. However, there is still a lack of understanding of the origin of organic matter optical properties, which could conflict with other empirical fluorescence interpretation methods (e.g. PARAFAC). Organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to perturbations in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were unaffected by these perturbations, indicating that the distribution of absorbing and emitting species was unchanged. These results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for organic matter photophysics.

  10. Dissolving and melting phenomena of inorganic and organic crystals by addition of third or second components

    NASA Astrophysics Data System (ADS)

    Funakoshi, Kunio; Negishi, Rina; Nakagawa, Hiroshi; Kawasaki, Rentaro

    2017-06-01

    Dissolution of potassium sulphate (K2SO4) crystals was decelerated or stopped since the trivalent chrome ions (Cr(III)) or the iron ions were added into a K2SO4 aqueous solution, but inhibition mechanism of crystal dissolving by additives is not discussed well. Moreover, the melting inhibition of organic compound crystals by addition of the second components is not reported. In this study, inorganic or organic compound crystals are dissolved in a solution added the third component or were melted in a melt added the second one, and the dissolving and melting inhibition phenomena of the inorganic and organic crystals with additives are discussed. The dissolving rates of K2SO4 crystals decreased with the increasing of the amount of Cr(III) added into an K2SO4 unsaturated solution. The melting rates of m-chloronitrobenzene (CNB) crystals were also decreased by addition of p-CNB. The dissolving rates of a K2SO4 mother crystal and the melting rates of a m-CNB mother crystal were scattered during experiments and the dissolving and the melting phenomena would be caused by adsorption and detachments of additives on and from crystal surfaces.

  11. Chromophoric Dissolved Organic Matter Export from U.S. Rivers

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Aiken, G.; Dornblaser, M.; Butler, K. D.; Holmes, R. M.; Fiske, G.; Mann, P. J.; Stubbins, A.

    2012-12-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. Utilizing CDOM and dissolved organic carbon (DOC) flux data we establish a robust universal relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from the 15 U.S. rivers highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes.

  12. Sorption of Groundwater Dissolved Organic Carbon onto Minerals

    NASA Astrophysics Data System (ADS)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Meredith, K.; Andersen, M. S.; O'Carrol, D. M.; Baker, A.

    2017-12-01

    Our understanding of groundwater organic matter (OM) as a carbon source or sink in the environmental carbon cycle is limited. The dynamics of groundwater OM is mainly governed by biological processing and its sorption to minerals. In saturated groundwaters, dissolved OM (DOM) represents one part of the groundwater organic carbon pool. Without consideration of the DOM sorption, it is not possible to quantify governing groundwater OM processes. This research explores the rate and extent of DOM sorption on different minerals. Groundwater DOM samples, and International Humic Substances Society (IHSS) standard solutions, were analysed. Each was mixed with a range of masses of iron coated quartz, clean quartz, and calcium carbonate, and shaken for 2 hours to reach equilibrium before being filtered through 0.2 μm for total dissolved organic carbon (DOC) and composition analysis by size-exclusion chromatography-organic carbon detection (LC-OCD). Sorption isotherms were constructed and groundwater DOM sorption were compared to the sorption of IHSS standards. Initial results suggest that for the IHSS standards, the operationally-defined humic substances fraction had the strongest sorption compared to the other LC-OCD fractions and total DOC. Some samples exhibited a small increase in the low molecular weight neutral (LMW-N) aqueous concentration with increasing humic substances sorption. This gradual increase observed could be the result of humic substances desorbing or their breakdown during the experiment. Further results comparing these IHSS standards with groundwater samples will be presented. In conjunction with complementary studies, these results can help provide more accurate prediction of whether groundwater OM is a carbon source or sink, which will enable the management of the groundwater resources as part of the carbon economy.

  13. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    PubMed

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  14. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  15. FTIR-PAS: a powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products.

    PubMed

    Bekiaris, Georgios; Bruun, Sander; Peltre, Clément; Houot, Sabine; Jensen, Lars S

    2015-05-01

    Fourier transform infrared (FT-IR) spectroscopy has been used for several years as a fast, low-cost, reliable technique for characterising a large variety of materials. However, the strong influence of sample particle size and the inability to measure the absorption of very dark and opaque samples have made FTIR unsuitable for many waste materials. FTIR-photoacoustic spectroscopy (FTIR-PAS) can eliminate some of the shortcomings of traditional FTIR caused by scattering effects and reflection issues, and recent advances in PAS technology have made commercial instruments available. In this study, FTIR-PAS was used to characterise a wide range of organic waste products and predict their labile carbon fraction, which is normally determined from time-consuming assays. FTIR-PAS was found to be capable of predicting the labile fraction of carbon as efficiently as near infrared spectroscopy (NIR) and furthermore of identifying the compounds that are correlated with the predicted parameter, thus facilitating a more mechanistic interpretation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Measurement and importance of dissolved organic carbon. Chapter 13

    Treesearch

    Randall Kolka; Peter Weishampel; Mats Froberg

    2008-01-01

    The flux of dissolved organic carbon (DOC) from an ecosystem can be a significant component of carbon (C) budgets especially in watersheds containing wetlands. Although internal ecosystem cycling of DOC is generally greater than the fluxes to ground or surface waters, it is the transport out of the system that is a main research focus for carbon accounting. In...

  17. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2006-01-01

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of

  18. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2007-09-30

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of

  19. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2008-09-30

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean...umb.edu G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA...02125-3393 phone: (617) 287-7451 fax: (617) 287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences

  20. DISSOLVED ORGANIC MATTER AND METALS: EFFECTS OF PH ON PARTITIONING

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...

  1. Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...

  2. Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.

    2006-12-01

    The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a

  3. Production of fluorescent dissolved organic matter in Arctic Ocean sediments.

    PubMed

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-16

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R 2  > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R 2  > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  4. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    NASA Astrophysics Data System (ADS)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  5. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    PubMed Central

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-01-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans. PMID:27982085

  6. The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria-phytoplankton dynamics in two Minnesota lakes

    USGS Publications Warehouse

    Stets, E.G.; Cotner, J.B.

    2008-01-01

    The balance of production in any ecosystem is dependent on the flow of limiting nutrients into either the autotrophic or heterotrophic components of the food web. To understand one of the important controls on the flow of inorganic nutrients between phytoplankton and bacterioplankton in lakes, we manipulated dissolved organic carbon (DOC) in two lakes of different trophic status. We hypothesized that labile DOC additions would increase bacterial phosphorus (P) uptake and decrease the response of phytoplankton to nutrient additions. Supplemental nutrients and carbon (C), nitrogen (N, 1.6 ??mol NH4Cl L-1 d-1), P (0.1 ??mol KH 2PO4 L-1 d-1), and DOC (glucose, 15 ??mol C L-1 d-1) were added twice daily to 8-liter experimental units. We tested the effect of added DOC on chlorophyll concentration, bacterial production, biomass, and P uptake using size-fractionated 33P-PO4 uptake. In the oligotrophic lake, DOC additions stimulated bacterial production and increased bacterial biomass-specific P uptake. Bacteria consumed added DOC, and chlorophyll concentrations were significantly lower in carboys receiving DOC additions. In the eutrophic lake, DOC additions had less of a stimulatory effect on bacterial production and biomass-specific P uptake. DOC accumulated over the time period, and there was little evidence for a DOC-induced decrease in phytoplankton biomass. Bacterial growth approached the calculated ??max and yet did not accumulate biomass, indicating significant biomass losses, which may have constrained bacterial DOC consumption. Excess bacterial DOC consumption in oligotrophic lakes may result in greater bacterial P affinity and enhanced nutrient uptake by the heterotrophic compartment of the food web. On the other hand, constraints on bacterial biomass accumulation in eutrophic lakes, from either viral lysis or bacterial grazing, can allow labile DOC to accumulate, thereby negating the effect of excess DOC on the planktonic food web. ?? 2008, by the American

  7. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  8. Role of Dissolved Organic Matter and Geochemical Controls on Arsenic Cycling from Sediments to Groundwater along the Meghna River, Bangladesh: Tracking possible links to permeable natural reactive barrier

    NASA Astrophysics Data System (ADS)

    Datta, S.; Berube, M.; Knappett, P.; Kulkarni, H. V.; Vega, M.; Jewell, K.; Myers, K.

    2017-12-01

    Elevated levels of dissolved arsenic (As), iron (Fe) and manganese (Mn) are seen in the shallow groundwaters of southeast Bangladesh on the Ganges Brahmaputra Meghna River delta. This study takes a multi disciplinary approach to understand the extent of the natural reactive barrier (NRB) along the Meghna River and evaluate the role of the NRB in As sequestration and release in groundwater aquifers. Shallow sediment cores, and groundwater and river water samples were collected from the east and west banks of the Meghna. Groundwater and river water samples were tested for FeT, MnT, and AsT concentrations. Fluorescence spectroscopic characterization of groundwater dissolved organic matter (DOM) provided insight into the hydro geochemical reactions active in the groundwater and the hyporheic zones. Eight sediment cores of 1.5 m depth were collected 10 m away from the edge of the river. Vertical solid phase concentration profiles of Fe, Mn and As were measured via 1.2 M HCl digestion which revealed solid phase As accumulation along the riverbanks up to concentrations of 1500 mg/kg As. Microbial interactions with DOM prompts the reduction of Fe3+ to Fe2+, causing As to mobilize into groundwater and humic-like DOM present in the groundwater may catalyze this process. The extent to which microbially mediated release of As occurs is limited by labile dissolved organic carbon (DOC) availability. Aqueous geochemical results showed the highest dissolved As concentrations in shallow wells (<30 m depth), where organic matter was fresh, humic-like, and aromatic. Based on fluorescence characterization, shallow groundwater was found to contain microbial and terrestrial derived DOC, and decomposed, humified and aromatic DOM. Deeper aquifers had a significantly larger microbial OM signature than the shallower aquifers and was less aromatic, decomposed and humified. The results from this study illustrate the potential for humic substances to contribute to As cycling and quantify the

  9. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  10. Effects of a controlled freeze-thaw event on dissolved and colloidal soil organic matter.

    PubMed

    Kim, Eun-Ah; Lee, Ha Kyung; Choi, Jung Hyun

    2017-01-01

    This study investigated the effects of the freezing and thawing that accompany the warming process on the composition of the soil organic matter in the dissolved and colloidal fractions. Temperate soil samples were incubated in a refrigerator at 2 °C for 4 weeks and compared with those frozen at -20 °C in the second week followed by thawing at 2 °C to study a freeze-thaw effect with minimal effect from the thawing temperature. The freeze-thaw group was compared with those incubated at 25 °C in the last week to investigate a warming effect after thawing. Thawing at 2 °C after freezing at -20 °C increased the dissolved organic carbon (DOC), but decreased colloidal Ca. The subsequent warming condition greatly increased both DOC and colloidal Ca. The colloidal organic carbon (COC) and dissolved Ca showed rather subtle changes in response to the freeze-thaw and warming treatments compared to the changes in DOC and colloidal Ca. The fluorescence excitation-emission matrix (EEM) and Fourier transformation-infrared spectrometry (FT-IR) results showed that the freeze-thaw and warming treatments gave the opposite effects on the compositions of dissolved humic-like substances, polysaccharides or silicates, and aliphatic alcohols. A principal component analysis (PCA) with the DOC, fluorescence EEM, and FT-IR spectra produced two principal components that successfully distinguished the effects of the freeze-thaw and warming treatments. Due to the contrasting effects of the freeze-thaw and warming treatments, the overall effects of freeze-thaw events in nature on the dissolved and colloidal soil organic matter could vary depending on the thawing temperature.

  11. Dissolved organic matter in the unsaturated zone: the view from the cave

    NASA Astrophysics Data System (ADS)

    Baker, A.; Duan, W.; Rutlidge, H.; McDonough, L.; Oudone, P.; Meredith, K.; Andersen, M. S.; O'Carroll, D. M.; Coleborn, K.; Treble, P. C.

    2017-12-01

    Soil organic matter content is typically a few percent of the total soil composition. Diffuse recharge can mobilise some of this soil-derived organic matter. While soil pore water dissolved organic matter (DOM) concentrations are up to 100 ppm, the resulting groundwater dissolved organic matter concentration is typically less than 2ppm. Dissolved organic matter transported from the soil can be both biodegraded and sorbed to minerals, and the relative importance of these two processes in the unsaturated zone is poorly understood. Caves in karstified limestone uniquely provide direct access to water percolating from the soil to the groundwater. Cave percolation waters can be analysed for their DOM concentration and character. This provides insights into the extent and type of biological and chemical processing of DOM during transport from the soil to the groundwater. We determine the concentration and characteristics of DOM in cave percolation waters using liquid chromatography (LC-OCD) and optical spectrophotometry (fluorescence and absorbance). We sample DOM from multiple caves in SE Australia (Cathedral Cave, Wellington; South Glory and Harrie Wood Caves, Yarrangobilly), permitting comparison of unsaturated zone DOM properties at different depths (up to 30m below land surface) and different climate zones (montane and temperate). We use caves with long-term hydrological monitoring programs so that DOM in waters of contrasting residence times can be compared. Additionally, we compare these cave percolation water DOM characteristics to those from local and regional groundwater, sampled from nearby wells. Our results will help improve our understanding of how DOM is processed from soil to groundwater, and is also relevant to speleothem scientists interested in using organic matter preserved in speleothems as a paleoclimate or paleoenvironmental proxy.

  12. Sorption of benzimidazole anthelmintics to dissolved organic matter surrogates and sewage sludge.

    PubMed

    Kim, Hyo-Jung; Lee, Dong Soo; Kwon, Jung-Hwan

    2010-06-01

    The sorption coefficients of four rarely studied zwitterionic pharmaceuticals (benzimidazoles: fenbendazole, albendazole, thiabendazole and flubendazole) and four metabolites of fenbendazole to various dissolved organic matter surrogates (humic acid, sodium dodecyl sulfate micelle, hydroxypropyl-beta-cyclodextrin and liposomes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and sewage sludge) were measured to extend the available sorption coefficients and eventually to evaluate their environmental fate in soil and water environment. For the entire range of dissolved organic matters, the more hydrophobic fenbendazole and albendazole had higher sorption coefficients than thiabendazole and flubendazole, indicating that the traditional hypothesis of hydrophobic interaction holds for zwitterionic benzimidazole anthelmintics. However, the sorption coefficients of a given benzimidazole to selected dissolved organic matters (DOMs) varied within an order of magnitude. The measured K(oc) values decreased in the order of fenbendazole, albendazole, thiabendazole and flubendazole for sewage sludge and hydroxypropyl-beta-cyclodextrin whereas the orders were different for the other DOM surrogates, implying the hydrophilic nature of sewage sludge. This was also supported by the (N+O)/C elemental ratio of the sewage sludge sample used in this study. The correlations between log K(oc) and log K(ow) were weak (r(2)=0.28-0.64) and the magnitude of the sorption coefficients to the hydrophilic organic matters (hydroxypropyl-beta-cyclodextrin and sewage sludge) were similar to or slightly smaller than those for the hydrophobic organic matters (humic acids and liposome). This suggests that specific hydrophilic interactions also play a significant role in the sorption of moderately hydrophobic benzimidazoles to organic matters. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  14. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  15. Acid-base properties of Baltic Sea dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  16. DISSOLVED ORGANIC CARBON TRENDS RESULTING FROM CHANGES IN ATMOSPHERIC DEPOSITION CHEMISTRY

    EPA Science Inventory

    Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through ...

  17. PHOTOCHEMICAL ALTERATION OF DISSOLVED ORGANIC MATTER: EFFECTS ON THE CONCENTRATION AND ACIDITIES OF IONIZABLE SITES IN DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, USA

    EPA Science Inventory

    The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...

  18. Overstory vegetation influence nitrogen and dissolved organic carbon flux from the atmosphere to the forest floor: Boreal Plain, Canada

    Treesearch

    David E. Pelster; Randall K. Kolka; Ellie E. Prepas

    2009-01-01

    Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux...

  19. Chromophoric dissolved organic matter export from U.S. rivers

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-04-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  20. Chromophoric dissolved organic matter export from U.S. rivers

    USGS Publications Warehouse

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  1. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping

    PubMed Central

    Graham, P. W.; Baker, A.; Andersen, M. S.

    2015-01-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC). PMID:26691238

  2. Dissolved organic carbon export and its contribution to the carbon budget in a boreal peat landscape undergoing rapid permafrost thaw

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Fouche, J.; Helbig, M.; Karoline, W.; Hould Gosselin, G.; Hanisch, J.; Quinton, W. L.; Moore, T. R.

    2017-12-01

    Northern permafrost soils store 1035 ± 150 Pg of organic carbon in the first 3 m. In boreal lowlands with warm and thin isolated, sporadic and discontinuous permafrost, increasing temperatures cause a thaw-induced expansion of permafrost-free wetlands at the expense of forested permafrost peat plateaus. Permafrost thaw associated with warmer soils may enhance microbial decomposition of near-surface and deeper organic matter but also increase dissolved organic carbon (DOC) export to aquatic systems. Recent studies suggest that, under a warmer climate, the current net CO2 sink strength of boreal peat landscapes may decline over the next few decades, eventually turning them into net CO2 sources. DOC export from these organic-rich landscapes undergoing rapid permafrost thaw may play a non-negligible role for the carbon budget in a warmer climate. In this study, we quantify the DOC export from a boreal peat landscape in the southern Northwest Territories (Canada). We use half-hourly discharge measurements and DOC concentrations sampled at the outlets of three small catchments ( 0.1 km2) to quantify runoff and DOC export from April to August 2014, 2015 and 2016. We estimate the DOC export contribution to the overall carbon budget using concurrent eddy covariance measurements of net CO2 and methane exchanges. The primary control of DOC export is discharge. In 2016, 70% of the DOC was exported during the two weeks of the spring freshet in early May. DOC export from the three catchments was 3g C m-2 from April to August, which accounted for 15% of the annual net ecosystem exchange. For the same period, the cumulative methane emissions were 6 g C-CH4 m-2. Our findings suggest that thawing boreal peat landscapes along the southern limit of permafrost currently act as net carbon sinks with 11 g C m-2 y-1. Investigating the optical properties of the dissolved organic matter across the different landforms (e.g., transition between forested permafrost peat plateau and permafrost

  3. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks

    PubMed Central

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S.; Álvarez, Pedro A.

    2018-01-01

    Background Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. Methods During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian) only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and –holothurians (−H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. Results In the time-series, absorption coefficients at 325 nm (a325) and spectral slopes from 275 to 295 nm (S275−295) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m−1 and 16 µm−1, respectively) than in the effluent of the −holothurian tank (average: 0.69 m−1 and 34 µm−1, respectively), the former being

  4. Light availability affects sex lability in a gynodioecious plant.

    PubMed

    Varga, Sandra; Kytöviita, Minna-Maarit

    2016-11-01

    Sex lability (i.e., gender diphasy) in plants is classically linked to the larger resource needs associated with the female sexual function (i.e., seed production) compared to the male function (i.e., pollen production). Sex lability in response to the environment is extensively documented in dioecious species, but has been largely overlooked in gynodioecious plants. Here, we tested whether environmental conditions induce sex lability in the gynodioecious Geranium sylvaticum. We conducted a transplantation experiment in the field where plants with different sex expression were reciprocally transplanted between high light and low light habitats. We measured plants' reproductive output and sex expression over four years. Our results show that sex expression was labile over the study period. The light level at the destination habitat had a significant effect on sexual expression and reproductive output, because plants decreased their reproductive output when transplanted to the low light habitat. Transplantation origin did not affect any parameter measured. This study shows that sex expression in Geranium sylvaticum is labile and related to light availability. Sexually labile plants did not produce more seeds or pollen, and thus, there was no apparent fitness gain in sexually labile individuals. Sex lability in gynodioecious plants may be more common than previously believed because detection of sex lability necessitates data on the same individuals over time, which is rare in sexually dimorphic herbaceous plants. © 2016 Botanical Society of America.

  5. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes

    USDA-ARS?s Scientific Manuscript database

    Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...

  6. CARBON LOSS AND OPTICAL PROPERTY CHANGES DURING LONG-TERM PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
    Satilla...

  7. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid 13 C and solution 31 P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid 13 C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution 31 P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  8. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  9. Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment

    Treesearch

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire; James B. Shanley

    2015-01-01

    We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM)...

  10. Dissolved organic carbon biodegradability from leaf litter leachates of riparian tropical trees

    NASA Astrophysics Data System (ADS)

    Bastianoni, A.; Montoya, J. V.; Mendez, C.; Paolini, J.

    2012-04-01

    It is generally assumed that leaf litter with varying chemical composition may show different rates of mass loss, dissolved organic carbon (DOC) release, and DOC biodegradability. Leaf litter is composed of different organic compounds, which may differ in their release rates. Some authors consider leaf litter chemical quality (carbon to nitrogen ratio (C:N) and polyphenolics content) as an indicator of leaf litter mass losses and DOC released into stream water through leaching. In this research, we determined if leachate's DOC biodegradability exhibited a positive relationship with leaf litter chemical quality and leaf litter mass loss due to leaching. In order to test these hypotheses, leaf litter from six riparian tree species (Bambusa vulgaris; Castilla elastica; Artocarpus altilis; Cecropia peltata; Hura crepitans and Ficus maxima), present in the lower reaches of a fifth-order stream in northern Venezuela was collected during the dry season of 2010. To evaluate leaf litter mass loss, air-dried leaves were incubated in Milli-Q water at room temperature in the dark. After 1h, 6h, 1d, 2d, 4d, 8d and 15d, microcosms were removed from the assay to determine remaining mass. DOC biodegradability was measured using 24 h leachates that were added into a 1L glass flask containing 250mL of unfiltered stream water, 4g of stream sediment, and nutrient amendments until all incubations had equal initial DOC concentrations. Biodegradability of DOC was measured at 0, 1, 2, 5 and 7 days as the decrease in DOC concentration through time. Chemical characterization of leaf litter involved the determination of total concentrations of C, N, and poliphenolics. Three replicates were used for all analyses. Initial chemical characterization of leaf litter showed that only two species (C. elastica and A. altilis), had similar C:N ratios (~31). The other four species, showed different C and N contents but presented C:N ratios between 21 and 23. Total polyphenolics content varied greatly

  11. A Comparison of Dissolved and Particulate Organic Material in Two Southwestern Desert River Systems

    NASA Astrophysics Data System (ADS)

    Haas, P. A.; Brooks, P.

    2001-12-01

    Desert river systems of the southwestern U.S. acquire a substantial fraction of their dissolved organic matter (DOM) from the terrestrial environment during episodic rain events. This DOM provides carbon for stream metabolism and nitrogen, which is limiting in lower order streams in this environment. The San Pedro and Rio Grande Rivers represent two endpoints of catchment scale, discharge, and land use in the southwest. The San Pedro is a protected riparian corridor (San Pedro Riparian National Conservation Area), while the middle Rio Grande is a large river with extensive agriculture, irrigation, and reservoirs. Relative abundance and spectral properties of fulvic acids isolated from filtered samples were used to determine the source of dissolved organic carbon (DOC). Total DOC and particulate organic carbon (POC) changes with respect to episodic flooding events were compared for the two river systems. The San Pedro River DOC concentrations remain low approximately 2.2 to 3.3 ppm unless a relatively large storm event occurs when concentrations may go above 5.5 ppm (1000cfs flow). In contrast typical concentrations for the Rio Grande were approximately 5 ppm during the monsoon season. Particulate organic matter (POM) appears to be a more significant source of organic matter to the San Pedro than DOM. The relative importance of terrestrial vs. aquatic and dissolved vs. particulate organic matter with respect to aquatic ecosystems will be discussed.

  12. Time-resolved and Depth-dependent Photo-Degradation of Marine Dissolved Organic Matter Analyzed by Semi-continuous EEM Fluorescence Monitoring

    NASA Astrophysics Data System (ADS)

    Gonsior, M.; Timko, S.; Conte, M. H.; Schmitt-Kopplin, P.

    2016-02-01

    Ten liter water samples were collected at the Bermuda Atlantic Time Series Station (BATS) at 200 m intervals down to a maximum depth of 4530 m and solid-phase extracted. The methanol extracts were dried and re-dissolved in pure water and then used to determine the time-resolved photo-degradation of marine dissolved organic matter to be able to determine kinetic data. Excitation Emission Matrix (EEM) fluorescence spectra were recorded every 20 minutes using a custom-built flow-through photo-degradation system during 20 h of solar simulated light exposure. The resulting EEM spectra were modeled using Parallel Factor Analysis (PARAFAC) and results revealed reproducible and significant changes in the photo-degradation of marine FDOM originating from different depths. A five component model was fitted and the terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in the surface layer, which might be the reason for its prevalence in the open ocean. Surface ocean waters were depleted in the highly photo-degradable components while protein-like fluorescent components were enriched, which was in agreement with previous studies. Ultrahigh resolution mass spectrometry confirmed unique aliphatic molecular ions in the Surface Ocean and hydrogen-deficient molecules at depth. Multivariate statistical analyses revealed strong correlations between unsaturated/aromatic molecular ions and depth, where aliphatic molecular ions were more prevalent in the Surface Ocean and aromatic molecular ions at depth. Strong correlations were also found between hydrogen-deficient molecular ions and the humic-like fluorescent components. The rapid photo-degradation of the deep-sea FDOM and the surface oceans relative depletion of aromatic molecular ions suggested that deep-ocean FDOM may be too photochemically labile to survive meridional overturning circulation.

  13. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. Formore » example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.« less

  14. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater

    USGS Publications Warehouse

    Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron

    2012-01-01

    Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.

  15. Mangroves, a major source of dissolved organic carbon to the oceans

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  16. The role of labile sulfur compounds in thermochemical sulfate reduction

    USGS Publications Warehouse

    Amrani, A.; Zhang, T.; Ma, Q.; Ellis, G.S.; Tang, Y.

    2008-01-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S??, organic S) at temperatures of 330 and 356 ??C under a constant confining pressure. The in-situ pH was buffered to 3.5 (???6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (???0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  17. The role of labile sulfur compounds in thermochemical sulfate reduction

    NASA Astrophysics Data System (ADS)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  18. Terrestrial dissolved organic matter distribution in the North Sea.

    PubMed

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea.

    PubMed

    Gonsalves, Maria-Judith; Fernandes, Christabelle E G; Fernandes, Sheryl Oliveira; Kirchman, David L; Bharathi, P A Loka

    2011-11-01

    Coastal regions are potential zones for production of methane which could be governed by ecological/environmental differences or even sediment properties of a niche. In order to test the hypothesis that methanogenesis in most marine sediments could be driven more by proteins than by carbohydrates and lipid content of labile organic matter (LOM), incubation experiments were carried out with sediments from different environmental niches to measure methane production. The methane production rates were examined in relationship to the sediment biochemistry, i.e., carbohydrates, proteins, and lipids. The gas production measured by head space method ranged from 216 ng g( -1) day( -1) in the mangrove sediments to 3.1 μg g( -1) day( -1) in the shallow Arabian Sea. LOM ranged from 1.56 to 2.85 mg g( -1) in the shallow Arabian Sea, from 3.35 to 5.43 mg g( -1) in the mangrove estuary, and from 0.66 to 0.70 mg g( -1) in the sandy sediments with proteins contributing maximum to the LOM pool. Proteins influenced methane production in the clayey sediments of shallow depths of the Arabian Sea (r = 0.933, p < 0.001) and mangrove estuary (r = 0.981, p < 0.001) but in the sandy beach sediments, carbohydrates (r = 0.924, p < 0.001) governed the net methane production. The gas production was more pronounced in shallow and surface sediments and it decreased with depth apparently governed by the decrease in lability index. Thus, the lability index and protein content are important factors that determine methane production rates in these coastal ecosystems.

  20. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  1. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    PubMed

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  2. Protective Effect of Active Immunization with Purified Escherichia coli Heat-Labile Enterotoxin in Rats

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1979-01-01

    The protective effect of active immunization by different routes with a purified preparation of the polymyxin-release form of Escherichia coli heat-labile toxin was evaluated in rats. Immunized animals were challenged by placing toxin into ligated ileal loops at dosages which produced either 50% or the maximum secretory response in unimmunized rats. Immunization exclusively by the parenteral route yielded significant protection. Rats were also protected when parenteral priming was followed by boosting given either directly into the duodenum or perorally 2 h after intragastric cimetidine, but not when the peroral boosts were given with bicarbonate. Immunization administered entirely by the peroral route with cimetidine yielded protection but only when the immunizing dosage was fivefold greater than that found effective in the parenteral-peroral approach. Rats immunized exclusively by the parenteral route and those boosted perorally with cimetidine were also tested, and found to be protected, against challenge with viable organisms of strains that produce either heat-labile toxin alone or both heat-labile and heat-stable toxin, but they were not protected against a strain which produces just heat-stable toxin. Geometric mean serum antibody titers were increased by 16-fold or more over control values in those groups of rats in which protection was achieved, with the exception of those immunized exclusively by the peroral route. These observations demonstrate that (i) active immunization with purified E. coli heat-labile toxin results in significant protection against both this toxin as well as viable organisms which produce it, but not against viable strains which produce heat-stable toxin only, and (ii) concomitant ablation of gastric secretion by the use of cimetidine renders the peroral route of immunization effective. They suggest that prophylactic immunization against diarrheal disease caused by heat-labile toxin-producing strains of E. coli may be feasible in

  3. Submillimeter-scale heterogeneity of labile phosphorus in sediments characterized by diffusive gradients in thin films and spatial analysis.

    PubMed

    Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng

    2018-03-01

    Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers

    USGS Publications Warehouse

    Stubbins, Aron; Hood, Eran; Raymond, Peter A.; Aiken, George R.; Sleighter, Rachel L.; Hernes, Peter J.; Butman, David; Hatcher, Patrick G.; Striegl, Robert G.; Schuster, Paul F.; Abdulla, Hussain A.N.; Vermilyea, Andrew W.; Scott, Durelle T.; Spencer, Robert G.M.

    2012-01-01

    Glacier-derived dissolved organic matter represents a quantitatively significant source of ancient, yet highly bioavailable carbon to downstream ecosystems. This finding runs counter to logical perceptions of age–reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests overrun by glaciers have been invoked as the source of this organic matter. Here, we examine the radiocarbon age and chemical composition of dissolved organic matter in snow, glacier surface water, ice and glacier outflow samples from Alaska to determine the origin of the organic matter. Low levels of compounds derived from vascular plants indicate that the organic matter does not originate from forests or peatlands. Instead, we show that the organic matter on the surface of the glaciers is radiocarbon depleted, consistent with an anthropogenic aerosol source. Fluorescence spectrophotometry measurements reveal the presence of protein-like compounds of microbial or aerosol origin. In addition, ultrahigh-resolution mass spectrometry measurements document the presence of combustion products found in anthropogenic aerosols. Based on the presence of these compounds, we suggest that aerosols derived from fossil fuel burning are a source of pre-aged organic matter to glacier surfaces. Furthermore, we show that the molecular signature of the organic matter is conserved in snow, glacier water and outflow, suggesting that the anthropogenic carbon is exported relatively unchanged in glacier outflows.

  5. Importance of Dissolved Organic Nitrogen to Water Quality in Narragansett Bay

    EPA Science Inventory

    This preliminary analysis of the importance of the dissolved organic nitrogen (DON) pool in Narragansett Bay is being conducted as part of a five-year study of Narragansett Bay and its watershed. This larger study includes water quality and ecological modeling components that foc...

  6. INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...

  7. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    PubMed

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P < 0.01, n = 12; P < 0.01, n = 12), which might be caused by the variation in the sources and bioavailability of carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  8. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  9. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  10. Using In-Situ Optical Sensors to Understand the Biogeochemistry of Dissolved Organic Matter Across a Stream Network

    NASA Astrophysics Data System (ADS)

    Wymore, Adam S.; Potter, Jody; Rodríguez-Cardona, Bianca; McDowell, William H.

    2018-04-01

    The advent of high-frequency in situ optical sensors provides new opportunities to study the biogeochemistry of dissolved organic matter (DOM) in aquatic ecosystems. We used fDOM (fluorescent dissolved organic matter) to examine the spatial and temporal variability in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) across a heterogeneous stream network that varies in NO3- concentration. Across the ten study streams fDOM explained twice the variability in the concentration of DOC (r2 = 0.82) compared to DON (r2 = 0.39), which suggests that the N-rich fraction of DOM is either more variable in its sources or more bioreactive than the more stable C-rich fraction. Among sites, DON molar fluorescence was approximately 3x more variable than DOC molar fluorescence and was correlated with changes in inorganic N, indicating that DON is both more variable in composition as well as highly responsive to changes in inorganic N. Laboratory results also indicate that the fDOM sensors we used perform as well as the excitation-emission wavelength pair generally referred to as the "tryptophan-like" peak when measured under laboratory conditions. However, since neither the field sensor not the laboratory measurements explained a large percentage of variation in DON concentrations, challenges still remain for monitoring the ambient pool of dissolved organic nitrogen. Sensor networks provide new insights into the potential reactivity of DOM and the variability in DOC and DON biogeochemistry across sites. These insights are needed to build spatially explicit models describing organic matter dynamics and water quality.

  11. Winter to spring variations of chromophoric dissolved organic matter in a temperate estuary (Po River, northern Adriatic Sea).

    PubMed

    Berto, D; Giani, M; Savelli, F; Centanni, E; Ferrari, C R; Pavoni, B

    2010-07-01

    The light absorbing fraction of dissolved organic carbon (DOC), known as chromophoric dissolved organic matter (CDOM) showed wide seasonal variations in the temperate estuarine zone in front of the Po River mouth. DOC concentrations increased from winter through spring mainly as a seasonal response to increasing phytoplankton production and thermohaline stratification. The monthly dependence of the CDOM light absorption by salinity and chlorophyll a concentrations was explored. In 2003, neither DOC nor CDOM were linearly correlated with salinity, due to an exceptionally low Po river inflow. Though the CDOM absorbance coefficients showed a higher content of chromophoric dissolved organic matter in 2004 with respect to 2003, the spectroscopic features confirmed that the qualitative nature of CDOM was quite similar in both years. CDOM and DOC underwent a conservative mixing, only after relevant Po river freshets, and a change in optical features with an increase of the specific absorption coefficient was observed, suggesting a prevailing terrestrial origin of dissolved organic matter. Published by Elsevier Ltd.

  12. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe.

    PubMed

    Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang

    2012-01-01

    Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC:HFC ratio and LFN:HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change.

  13. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    PubMed

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.

  14. Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: relationships to carbon functionalities.

    PubMed

    Dodla, Syam K; Wang, Jim J; Delaune, Ronald D

    2012-10-01

    Adequate characterization of labile organic carbon (LOC) is essential to the understanding of C cycling in soil. There has been very little evaluation about the nature of LOC characterizations in coastal wetlands, where soils are constantly influenced by different redox fluctuations and salt water intrusions. In this study, we characterized and compared LOC fractions in coastal wetland soils of the Mississippi River deltaic plain using four different methods including 1) aerobically mineralizable C (AMC), 2) cold water extractable C (CWEC), 3) hot water extractable C (HWEC), and 4) salt extractable C (SEC), as well as acid hydrolysable C (AHC) which includes both labile and slowly degradable organic C. Molecular organic C functional groups of these wetland soils were characterized by (13)C solid-state nuclear magnetic resonance (NMR). The LOC and AHC increased with soil organic C (SOC) regardless of wetland soil type. The LOC estimates by four different methods were positively and significantly linearly related to each other (R(2)=0.62-0.84) and with AHC (R(2)=0.47-0.71). The various LOC fractions accounted for ≤4.3% of SOC whereas AHC fraction represented 16-49% of SOC. AMC was influenced positively by O/N-alkyl and carboxyl C but negatively by alkyl C, whereas CWEC and SEC fractions were influenced only positively by carboxyl C but negatively by alkyl C in SOC. On the other hand, HWEC fraction was found to be only influenced positively by carbonyl C, and AHC positively by O/N-alkyl and alkyl C but negatively by aromatic C groups in SOC. Overall these relations suggested different contributions of various molecular organic C moieties to LOC in these wetlands from those often found for upland soils. The presence of more than 50% non-acid hydrolysable C suggested the dominance of relatively stable SOC pool that would be sequestered in these Mississippi River deltaic plain coastal wetland soils. The results have important implications to the understanding of the

  15. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-07-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measurement of DOC, absorption spectrum of CDOM, Chla concentration, suspended sediment (SS), and salinity from cruises in different seasons around the Changjiang estuary. Our results show that around the Changjiang estuary the absorption coefficients of CDOM in general have the similar spatial and temporal characteristics as that of DOC, but the strength of the correlation between CDOM and DOC varies locally and seasonally. The input of pollutants from outside the estuary, the bloom of phytoplankton in spring, re-suspension of deposited sediment, and light bleaching all contribute to the local and seasonal variation of the correlation between DOC and CDOM. An inversion model for the determination of DOC from CDOM is established, but the stability of model parameters and its application in different environments need further study. We find that relative to the absorption coefficient of CDOM, the fitted parameters of the absorption spectrum of DOM are better indictors for the composition of DOC. In addition, it is found that the terrestrial input of DOC to Changjiang estuary is a typical two-stage dilution process instead of a linear diffusion process.

  16. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    ERIC Educational Resources Information Center

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  17. Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Bi, Lei; Pan, Gang

    2016-07-01

    Modified soils (MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch (CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water. This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils (CS-MSs). Results showed that the dissolved organic carbon (DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and 0.293meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7mg/L, respectively. The excitation-emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044meq/g was used, DOC was increased from 3.4 to 3.9mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures (e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation. Copyright © 2016. Published by Elsevier B.V.

  18. Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.

  19. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  20. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  1. Seasonal and downstream alterations of dissolved organic matter and dissolved inorganic ions in a human-impacted mountainous tributary of the Yellow River, China.

    PubMed

    Zhang, Shurong; Bai, Yijuan; Wen, Xin; Ding, Aizhong; Zhi, Jianhui

    2018-04-22

    Human activities impose important disturbances on both organic and inorganic chemistry in fluvial systems. In this study, we investigated the intra-annual and downstream variations of dissolved organic carbon (DOC), dissolved organic matter (DOM) excitation-emission matrix fluorescence (EEM) with parallel factor analysis (PARAFAC), major ions, and dissolved inorganic nitrogen (DIN) species in a mountainous tributary of the Yellow River, China. Both DOM quantity and quality, as represented by DOC and DOM fluorescence respectively, changed spatially and seasonally in the studied region. Fluorescence intensity of tryptophan-like components (C3) were found much higher at the populated downstream regions than in the undisturbed forested upstream regions. Seasonally, stronger fluorescence intensity of protein-like components (C3 and C4) was observed in the low-flow period (December) and in the medium-flow period (March) than in the high-flow period (May), particularly for the downstream reaches, reflecting the dominant impacts of wastewater pollution in the downstream regions. In contrast to the protein-like fluorescence, humic-like fluorescence components C1 and C2 exhibited distinctly higher intensity in the high-flow period with smaller spatial variation indicating strong flushing effect of increasing water discharge on terrestrial-sourced humic-like materials in the high-flow period. Pollution-affected dissolved inorganic ions, particularly Na + , Cl - , and NH 4 + -N, showed similar spatial and seasonal variations with protein-like fluorescence of DOM. The significant positive correlations between protein-like fluorescence of DOM and pollution-affected ions, particularly Na + , Cl - , and NH 4 + -N, suggested that there were similar pollution sources and transportation pathways of both inorganic and organic pollutants in the region. The combination of DOM fluorescence properties and inorganic ions could provide an important reference for the pollution source

  2. Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture.

    PubMed

    Chen, Xiangbi; Wang, Aihua; Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang; Ge, Tida; Wu, Jinshui; Kuzyakov, Yakov; Su, Yirong

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). (14)C labeled DOM, extracted from the (14)C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to (14)CO2 and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial (14)C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial (14)C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of (14)C incorporated into the microbial biomass (2.4-11.0% of the initial DOM-(14)C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to (14)CO2 within 100 days was 1.2-2.1-fold higher in the paddy soils (41.9-60.0% of the initial DOM-(14)C activity) than in the upland soils (28.7-35.7%), 2) (14)C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) (14)C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm indicates less aromaticity of DOM from the paddy soils than from the

  3. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradationmore » rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.« less

  4. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants.

    PubMed

    Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei

    2003-02-01

    A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of <0.45 microm (F(3)) and <0.2 microm (F(2)), and one truly dissolved fraction including free metal ions and inorganic and organic complexes (fractiondissolved fraction refers to labile rhizosphere soil solution fraction, F(lrss). For the soil solutions extracted with a mixture of LMWOAs the concentrations of heavy metals and rare earth elements in F(2) and F(3) were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in F(lrss) accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F(2). In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L(-1) acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r(1 kD, LMWOAs) >r(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients

  5. Export of pre-aged, labile DOM from a central California coastal upwelling system: Insights from D/L amino acids and Δ14C signatures

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.

    2014-12-01

    Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon (Δ14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.

  6. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  7. Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River

    USGS Publications Warehouse

    Cao, Xiaoyan; Aiken, George R.; Spencer, Robert G. M.; Butler, Kenna D.; Mao, Jingdong; Schmidt-Rohr, Klaus

    2016-01-01

    Seasonal (spring freshet, summer–autumn, and winter) variability in the chemical composition of dissolved organic matter (DOM) from the Yukon River was determined using advanced one- and two-dimensional (2D) solid-state NMR spectroscopy, coupled with isotopic measurements and UV–visible spectroscopy. Analyses were performed on two major DOM fractions, the hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions obtained using XAD resins. Together these two fractions comprised 64–74% of the total DOM. Carboxyl-rich alicyclic molecules (CRAM) accounted for the majority of carbon atoms in the HPOA (63–77%) and TPIA (54–78%) samples, and more so in winter and summer than in spring samples. 2D and selective NMR data revealed association of abundant nonprotonated O-alkyl and quaternary alkyl C (OCnp, OCnpO and Cq, 13–17% of HPOA and 15–20% of TPIA) and isolated O–CH structures with CRAM, which were not recognized in previous studies. Spectral editing and 2D NMR allowed for the discrimination of carbohydrate-like O-alkyl C from non-carbohydrate O-alkyl C. Whereas two spring freshet TPIA samples contained carbohydrate clusters such as carboxylated carbohydrates (16% and 26%), TPIA samples from other seasons or HPOA samples mostly had small amounts (<8%) of sugar rings dispersed in a nonpolar alkyl environment. Though nonprotonated aromatic C represented the largest fraction of aromatic C in all HPOA/TPIA isolates, only a small fraction (∼5% in HPOA and 3% in TPIA) was possibly associated with dissolved black carbon. Our results imply a relatively stable portion of DOM exported by the Yukon River across different seasons, due to the predominance of CRAM and their associated nonprotonated C–O and O–C–O structures, and elevated reactivity (bio- and photo-lability) of spring DOM due to the presence of terrestrial inputs enriched in carbohydrates and aromatic structures.

  8. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater.

    PubMed

    Chapelle, Francis H; Bradley, Paul M; McMahon, Peter B; Kaiser, Karl; Benner, Ron

    2012-01-01

    Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  9. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).

    PubMed

    Arnold, W R; Diamond, R L; Smith, D S

    2010-08-01

    This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.

  10. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter

    NASA Astrophysics Data System (ADS)

    Lapworth, D. J.; Gooddy, D. C.; Allen, D.; Old, G. H.

    2009-09-01

    Understanding groundwater-surface water (GW-SW) interaction in Chalk catchments is complicated by the degree of geological heterogeneity. At this study site, in southern United Kingdom, alluvial deposits in the riparian zone can be considered as a patchwork of varying grades and types with an equally varied lateral connectivity. Some display good connection with the river system and others good connection with the groundwater system and, by definition, poorer connectivity with the surface water. By coupling tangential flow fractionation (TFF) with fluorescence analysis we were able to characterize the organic matter in the river and hyporheic zone. There is a significant proportion of particulate and colloidal fluorescent organic matter (FOM) within the river system and at depth within the gravels beneath the river channel. At depth in the hyporheic zone, the surface water inputs are dampened by mixing with deeper groundwater FOM. The shallow (0-0.5 m below river bed) hyporheic zone is highly dynamic as a result of changing surface water inputs from upstream processes. Labile C in the form of protein-like FOM appears to be attenuated preferentially compared to fulvic-like fluorescence in the hyporheic zone compared to the adjacent gravel and sand deposits. These preliminary findings have important implications for understanding nutrient and trace element mobility and attenuation within the groundwater, surface water, and hyporheic zone of permeable Chalk catchments. Fluorescence analysis of dissolved organic matter has been shown to be a useful environmental tracer that can be used in conjunction with other methods to understand GW-SW processes within a permeable Chalk catchment.

  11. PHOTOCHEMICAL MINERALIZATION OF DISSOLVED ORGANIC NITROGEN TO AMMONIUM IN THE BALTIC SEA

    EPA Science Inventory

    Solar radiation-induced photochemistry can be considered as a new source of nutrients when photochemical reactions release bioavailable nitrogen from biologically non-reactive dissolved organic nitrogen (DON). Pretreatments of Baltic Sea waters in the dark indicated that >72% of ...

  12. Trace metal mobilization by organic soil amendments: insights gained from analyses of solid and solution phase complexation of cadmium, nickel and zinc.

    PubMed

    Welikala, Dharshika; Hucker, Cameron; Hartland, Adam; Robinson, Brett H; Lehto, Niklas J

    2018-05-01

    The accumulation of Cd in soils worldwide has increased the demand for methods to reduce the metal's plant bioavailability. Organic matter rich soil amendments have been shown to be effective in achieving this. However, it is not known how long these amendments can retain the Cd, and whether dissolved organic matter (DOM) released from them can enhance the metal's mobility in the environment. In this study we sought to test the Cd binding capacity of various organic soil amendments, and evaluate differences in characteristics of the DOM released to see if they can explain the lability of the Cd-DOM complexes. We collected ten organic soil amendments from around New Zealand: five different composts, biosolids from two sources, two types of peat and spent coffee grounds. We characterised the amendments' elemental composition and their ability to bind the Cd. We then selected two composts and two peats for further tests, where we measured the sorption of Ni or Zn by the amendments. We analysed the quality of the extracted DOM from the four amendments using 3D Excitation Emission Matrix analysis, and tested the lability of the metal-DOM complexes using an adapted diffusive gradients in thin-films (DGT) method. We found that composts bound the most Cd and that the emergent Cd-DOM complexes were less labile than those from the peats. Ni-DOM complexes were the least labile. The aromaticity of the extracted DOM appears to be an important factor in determining the lability of Ni complexes, but less so for Zn and Cd. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Modeling the Dynamics and Export of Dissolved Organic Matter in the Northeastern U.S. Continental Shelf

    NASA Technical Reports Server (NTRS)

    Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.

    2009-01-01

    Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.

  14. Molecular fractionation of dissolved organic matter with metal salts.

    PubMed

    Riedel, Thomas; Biester, Harald; Dittmar, Thorsten

    2012-04-17

    Coagulation of dissolved organic matter (DOM) by hydrolyzing metals is an important environmental process with particular relevance, e.g., for the cycling of organic matter in metal-rich aquatic systems or the flocculation of organic matter in wastewater treatment plants. Often, a nonremovable fraction of DOM remains in solution even at low DOM/metal ratios. Because coagulation by metals results from interactions with functional groups, we hypothesize that noncoagulating fractions have a distinct molecular composition. To test the hypothesis, we analyzed peat-derived dissolved organic matter remaining in solution after mixing with salts of Ca, Al, and Fe using 15 T Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Addition of metals resulted in a net removal of DOM. Also a reduction of molecular diversity was observed, as the number of peaks from the ESI-FT-ICR-MS spectra decreased. At DOM/metal ratios of ∼9 Ca did not show any preference for distinct molecular fractions, while Fe and Al removed preferentially the most oxidized compounds (O/C ratio >0.4) of the peat leachate. Lowering DOM/metal ratios to ∼1 resulted in further removal of less oxidized as well as more aromatic compounds ("black carbon"). Molecular composition in the residual solution after coagulation was more saturated, less polar, and less oxidized compared to the original peat leachate and exhibited a surprising similarity with DOM of marine origin. By identifying more than 9200 molecular formulas we can show that structural properties (saturation and aromaticity) and oxygen content of individual DOM molecules play an important role in coagulation with metals. We conclude that polyvalent cations not only alter the net mobility but also the very molecular composition of DOM in aquatic environments.

  15. Distributions and characteristics of dissolved organic matter in temperate coastal waters (Southern North Sea)

    NASA Astrophysics Data System (ADS)

    Lübben, Andrea; Dellwig, Olaf; Koch, Sandra; Beck, Melanie; Badewien, Thomas H.; Fischer, Sibylle; Reuter, Rainer

    2009-04-01

    The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.

  16. Sources, behaviors and degradation of dissolved organic matter in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song

    2016-03-01

    Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.

  17. Dissolved Pesticide and Organic Carbon Concentrations Detected in Surface Waters, Northern Central Valley, California, 2001-2002

    USGS Publications Warehouse

    Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn

    2004-01-01

    Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon

  18. [Effects of understory removal on soil labile organic carbon pool in a Cinnamomum camphora plantation].

    PubMed

    Wu, Ya-Cong; Li, Zheng-Cai; Cheng, Cai-Fang; Liu, Rong-Jie; Wang, Bin; Geri, Le-Tu

    2013-12-01

    Taking a 48-year-old Cinnamomum camphora plantation in the eastern area of our subtropics as test object, this paper studied the labile organic carbon contents and their ratios to the total organic carbon (TOC) in 0-60 cm soil layer under effects of understory removal (UR). As compared with no understory removal (CK), the soil TOC and easily-oxidized carbon (EOC) contents under UR decreased, with a decrement of 4.8% - 34.1% and 27.1% - 36.2%, respectively, and the TOC and EOC contents had a significant difference in 0-10 cm and 0-20 cm layers, respectively. The water-soluble organic carbon (WSOC) (except in 0-10 cm and 10-20 cm layers) and light fraction organic matter (LFOM) under UR increaesd, but the difference was not significant. The ratio of soil WSOC to soil TOC in UR stand was higher than that in CK stand, while the ratio of soil EOC to soil TOC showed an opposite trend. In the two stands, soil WSOC, EOC, and LFOM had significant or extremely significant correlations with soil TOC, and the correlation coefficients of soil EOC and LFOM with soil TOC were higher in UR stand than in CK, but the correlation coefficient between soil WSOC and TOC was in opposite. The soil EOC, LFOM, and TOC in the two stands were significantly or extremely significantly correlated with soil nutrients, but the soil WSOC in UR stand had no significant correlations with soil hydrolyzable N, available P, exchangeable Ca, and exchangeable Mg.

  19. Effect of a seasonal diffuse pollution migration on natural organic matter behavior in a stratified dam reservoir.

    PubMed

    Yu, Soon Ju; Lee, Jae Yil; Ha, Sung Ryong

    2010-01-01

    This article aims to describe the influence of diffuse pollution on the temporal and spatial characteristics of natural organic matter (NOM) in a stratified dam reservoir, the Daecheong Dam, on the basis of intensive observation results and the dynamic water quality simulation using CE-QUAL-W2. Turbidity is regarded as a comprehensive representation of allochothonous organic matter from diffuse sources in storm season because the turbidity concentration showed reasonable significance in a statistical correlation with the UV absorbance at 254 nm and total phosphorus. CE-QUAL-W2 simulation results showed good consistency with the observed data in terms of dissolved organic matter (DOM) including refractory dissolved organic carbon (RDOC) and labile DOC and also well explained the internal movement of constituents and stratification phenomenon in the reservoir. Instead turbidity and NOM were related well in the upper region of the reservoir according to flow distance, gradually as changing to dissolved form of organic matter, RDOM affected organic matter concentration of reservoir water quality compared to turbidity. To control the increase of soluble organic matters in the dam reservoir, appropriate dam water discharge gate operation provided effective measurement. Because of the gate operation let avoid the accumulation of organic matter within a dam reservoir by shorten of turbid regime retention time.

  20. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Lønborg, Christian; Yokokawa, Taichi; Herndl, Gerhard J.; Antón Álvarez-Salgado, Xosé

    2015-02-01

    The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of CDOM and the fluorescence intensity of proteins (Ex/Em 280/320 nm; F(280/320)) and marine humic-like substances (F(320/410)) were measured in the upper 200 m. DOC and DON showed higher concentrations in the top 20 m than below, and DOC increased southwards, while DON decreased. F(280/320) and F(320/410) showed maxima near the deep chlorophyll maximum (at about 50 m), suggesting that these fluorophores were linked to phytoplankton production and the metabolism of the associated microbial community. The coloured and fluorescent fractions of DOM showed low levels south of the Azores Front, at about 35 °N, likely due to the accumulated photobleaching of the waters transported eastwards by the Azores current into the study area (at 20°W). Twelve culture experiments were also conducted with surface water (5 m) to assess the impact of microbial degradation processes on the bulk, coloured and fluorescent fractions of DOM. After 72 h of incubation in the darkness, 14±9% (average±SD) of the initial DON was consumed at an average rate of 0.24±0.14 μmol l-1 d-1 and the protein-like fluorescence decayed by 29±9% at a net rate of 0.06±0.03 QSU d-1. These rates were significantly lower south of the Azores front, suggesting that DOM in this region was of a more recalcitrant nature. Conversely, the marine humic-like fluorescence increased at a net rate of 0.013±0.003 QSU d-1. The close linear relationship of DON uptake with F(280/320) consumption (R2= 0.91, p <0.0001, n=12) and F(320/410) production (R2= 0.52, p <0.008, n=12) that we found during these incubation experiments suggest that the protein-like fluorescence can be used as a proxy for the dynamics of the labile DON pool

  1. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades

    PubMed Central

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  2. Understanding dissolved organic matter reactivity in a global context: tribute to Dr. George Aiken's many contributions

    NASA Astrophysics Data System (ADS)

    McKnight, Diane

    2017-04-01

    As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.

  3. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter.

    PubMed

    Rowe, E C; Tipping, E; Posch, M; Oulehle, F; Cooper, D M; Jones, T G; Burden, A; Hall, J; Evans, C D

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the 'MADOC' model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dissolved Organic Carbon: Nitrate Ratios as a Driver of Methane Fluxes in Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Sullivan, B. W.; Wymore, A.; Schade, J. D.; McDowell, W. H.

    2016-12-01

    Fluvial ecosystems are poorly understood components of the global methane (CH4) budget because the ecology of CH4 fluxes in streams has yet to be sufficiently elucidated. Both CH4 production and uptake via oxidation are microbially mediated processes, but it is unclear where in the fluvial environment are the sources and sinks of CH4 and what role terrestrial inputs of carbon (C) and nutrients have on the magnitude and direction of CH4 flux. To address these uncertainties, we measured CH4 fluxes in a laboratory incubation from two temperate headwater streams that differed in ambient dissolved organic carbon (DOC) and nitrate (NO3-) concentrations. We amended stream water and sediment microcosms from each site with labile DOC from senesced leaf litter to assess how DOC concentration and the DOC:NO3- ratio affect proximate controls on CH4 flux. Lastly, we manipulated sediment and water column ratios (0-100%) to estimate sources and fates of CH4 flux within the ecosystem. We measured CH4 fluxes for the first 120 minutes of the incubation to simulate short-term, in stream processes. Initially, streams were a source of methane, but switched to a sink within 120 minutes. Methane fluxes were statistically similar in both stream sediment and water, suggesting that microbial processing of CH4 has similar directionality and magnitude in each environment. Both CH4 oxidation and production were significantly correlated with the DOC: NO3- ratio over the course of the incubation. Early in the incubation, increasing DOC: NO3- increased CH4 flux, but late in the incubation, increasing DOC: NO3- increased CH4 oxidation. Together, our results challenge existing paradigms of CH4 flux in the fluvial environment and identify the DOC:NO3- ratio as a possible mechanism that can explain spatial and temporal CH4 flux patterns in streams.

  5. DISSOLVED ORGANIC MATTER AND METALS: EFFECTS OF PH ON PARTITIONING NATURAL ORGANIC MATTER IN SOILS AND WATER

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...

  6. Export of dissolved organic matter in relation to land use along a European climatic gradient.

    PubMed

    Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal

    2009-03-01

    The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.

  7. Etidronate causes minimal changes in the ability of sodium hypochlorite to dissolve organic matter.

    PubMed

    Tartari, T; Guimarães, B M; Amoras, L S; Duarte, M A H; Silva e Souza, P A R; Bramante, C M

    2015-04-01

    To evaluate the effect of individual and combined use of sodium hypochlorite (NaOCl), etidronate (HEDP) and ethylenediaminetetraacetic acid (EDTA) in tissue dissolution. Sixty fragments of bovine muscle tissue were prepared and their weights determined on a precision scale. The samples were then distributed in the following groups (n = 10): G1 - saline solution (control); G2 - 17% EDTA; G3 - 18% HEDP; G4 - 2.5% NaOCl; G5 - mixture of 5% NaOCl + 17% EDTA; and G6 - mixture of 5% NaOCl + 18% HEDP. The specimens in each group were immersed in the solutions for 5, 10 and 15 min and reweighted at each time period. Analysis of variance (anova) and Tukey's multiple-comparison tests (α<0.05) were applied to identify the intragroup and intergroup differences. G1, G2, G3 and G5 did not dissolve the organic matter. G4 and G6 significantly reduced the weights of specimens at all periods. Amongst the groups, the difference in ability to dissolve organic matter was greater and significant in the following order G4 = G6 > G5 = G3 = G2 = G1 after 5 min of immersion and G4 > G6 > G5 = G3 = G2 = G1 after 10 and 15 min of immersion. The only solution capable of dissolving organic matter was NaOCl. In the mixtures analysed, this ability was arrested by EDTA; however, it was minimally affected by the HEDP, proving that this combination, if used during the biomechanical preparation, is able to dissolve of organic matter. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    USGS Publications Warehouse

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  9. Mineralisation assays of some organic resources of aquatic systems.

    PubMed

    Bitar, A L; Bianchini, Júnior I

    2002-11-01

    Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.

  10. Chemical leaching methods and measurements of marine labile particulate Fe

    NASA Astrophysics Data System (ADS)

    Revels, B. N.; John, S.

    2012-12-01

    Iron (Fe) is an essential nutrient for life. Yet its low solubility and concentration in the ocean limits marine phytoplankton productivity in many regions of the world. Dissolved phase Fe (<0.4μm) has traditionally been considered the most biologically accessible form, however, the particulate phase (>0.4μm) may contain an important, labile reservoir of Fe that may also be available to phytoplankton. However, concentration data alone cannot elucidate the sources of particulate Fe to the ocean and to what extent particulate iron may support phytoplankton growth. Isotopic analysis of natural particles may help to elucidate the biogeochemical cycling of Fe, though it is important to find a leaching method which accesses bioavailable Fe. Thirty-three different chemical leaches were performed on a marine sediment reference material, MESS-3. The combinations included four different acids (25% acetic acid, 0.01M HCl, 0.5M HCl, 0.1M H2SO4 at pH2), various redox conditions (0.02M hydroxylamine hydrochloride or 0.02M H2O2), three temperatures (25°C, 60°C, 90°C), and three time points (10 minutes, 2 hours, 24 hours). Leached Fe concentrations varied from 1mg/g to 35mg/g, with longer treatment times, stronger acids, and hotter temperatures generally associated with an increase in leached Fe. δ56Fe in these leaches varied from -1.0‰ to +0.2‰. Interestingly, regardless of leaching method used, there was a very similar relationship between the amount of Fe leached from the particles and the δ56Fe of this iron. Isotopically lighter δ56Fe values were associated with smaller amounts of leached Fe whereas isotopically heavier δ56Fe values were associated with larger amounts of leached Fe. Two alternate hypotheses could explain these data. Either, the particles may contain pools of isotopically light Fe that are easily accessed early in dissolution, or isotopically light Fe may be preferentially leached from the particle due to a kinetic isotope effect during dissolution

  11. Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water.

    PubMed

    Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M

    2014-05-01

    The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil.

    PubMed

    Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui

    2016-01-01

    Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re

  13. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil

    PubMed Central

    Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui

    2016-01-01

    Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased

  14. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    NASA Astrophysics Data System (ADS)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    been applied to estimate the labile pool of mercury in contaminated soils. We performed a series of soil incubations spiked with 196Hg2+aiming at measuring and modelling the progressive assimilation of Hg ions into less labile forms. Soils with a wide range of characteristics are taken for our research purpose, inclusive of Hg concentrations ranging from 0.1 to 390 mg kg-1, pH between 3.5 - 7.5 and total organic carbon (TOC) between 2.5 - 8 %. In parallel, the labile pool of Hg estimated using ID will be compared with that determined using conventional extraction methods, e.g. sequential extraction procedures. These altogether allows us to answer (1) how the E-value of Hg in soils is comparable to those estimated based on selective extraction methods, (2) how the labile Hg correlates with the total soil Hg, soil pH and TOC, and (3) how the solubility of added Hg (e.g. via rainfall) decreased in soils of different properties during aging. The obtained results fills the knowledge gap concerning Hg biogeochemistry in the terrestrial environment and serves as a basis for estimating (and predicting) the risk of soil Hg diffusion from a point source to the adjacent environments.

  15. Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe

    PubMed Central

    Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang

    2012-01-01

    Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC∶HFC ratio and LFN∶HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change. PMID:22479373

  16. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Treesearch

    L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen

    2014-01-01

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...

  17. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs.

  18. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-07-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo

  19. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-11-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo

  20. Emotional Lability and Affective Synchrony in Borderline Personality Disorder

    PubMed Central

    Schoenleber, Michelle; Berghoff, Christopher R.; Tull, Matthew T.; DiLillo, David; Messman-Moore, Terri; Gratz, Kim L.

    2015-01-01

    Extant research on emotional lability in borderline personality disorder (BPD) has focused almost exclusively on lability of individual emotions or emotion types, with limited research considering how different types of emotions shift together over time. Thus, this study examined the temporal dynamics of emotion in BPD at the level of both individual emotions (i.e., self-conscious emotions [SCE], anger, and anxiety) and mixed emotions (i.e., synchrony between emotions). One hundred forty-four women from the community completed a diagnostic interview and laboratory study involving five emotion induction tasks (each of which was preceded and followed by a 5-min resting period or neutral task). State ratings of SCE, anger, and anxiety were provided at 14 time points (before and after each laboratory task and resting period). Hierarchical linear modeling results indicate that women with BPD reported greater mean levels of SCE and Anxiety (but not Anger), and greater lability of Anxiety. Women with BPD also exhibited greater variability in lability of all three emotions (suggestive of within-group differences in the relevance of lability to BPD). Results also revealed synchrony (i.e., positive relations) between each possible pair of emotions, regardless of BPD status. Follow-up regression analyses suggest the importance of accounting for lability when examining the role of synchrony in BPD, as the relation of SCE-Anger synchrony to BPD symptom severity was moderated by Anger and SCE lability. Specifically, synchronous changes in SCE and Anger were associated with greater BPD symptom severity when large shifts in SCE were paired with minor shifts in Anger. PMID:27362623

  1. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    PubMed

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B

  2. Low biodegradability of dissolved organic matter and trace metals from subarctic waters.

    PubMed

    Oleinikova, Olga V; Shirokova, Liudmila S; Drozdova, Olga Y; Lapitskiy, Sergey A; Pokrovsky, Oleg S

    2018-03-15

    The heterotrophic mineralization of dissolved organic matter (DOM) controls the CO 2 flux from the inland waters to the atmosphere, especially in the boreal waters, although the mechanisms of this process and the fate of trace metals associated with DOM remain poorly understood. We studied the interaction of culturable aquatic (Pseudomonas saponiphila) and soil (Pseudomonas aureofaciens) Gammaproteobacteria with seven different organic substrates collected in subarctic settings. These included peat leachate, pine crown throughfall, fen, humic lake, stream, river, and oligotrophic lake with variable dissolved organic carbon (DOC) concentrations (from 4 to 60mgL -1 ). The highest removal of DOC over 4days of reaction was observed in the presence of P. aureofaciens (33±5%, 43±3% and 53±7% of the initial amount in fen water, humic lake and stream, respectively). P. saponiphila degraded only 5% of DOC in fen water but did not affect all other substrates. Trace elements (TE) were essentially controlled by short-term (0-1h) adsorption on the surface of cells. Regardless of the nature of organic substrate and the identity of bacteria, the degree of adsorption ranged from 20 to 60% for iron (Fe 3+ ), 15 to 55% for aluminum (Al), 10 to 60% for manganese (Mn), 10 to 70% for nickel (Ni), 20 to 70% for copper (Cu), 10 to 60% for yttrium (Y), 30 to 80% for rare earth elements (REE), and 15 to 50% for uranium (U VI ). Rapid adsorption of organic and organo-mineral colloids on bacterial cell surfaces is novel and potentially important process, which deserves special investigation. The long-term removal of dissolved Fe and Al was generally consistent with solution supersaturation degree with respect to Fe and Al hydroxides, calculated by visual Minteq model. Overall, the biomass-normalized biodegradability of various allochthonous substrates by culturable bacteria is much lower than that of boreal DOM by natural microbial consortia. Copyright © 2017 Elsevier B.V. All rights

  3. Effect of past peat cultivation practices on present dynamics of dissolved organic carbon.

    PubMed

    Frank, S; Tiemeyer, B; Bechtold, M; Lücke, A; Bol, R

    2017-01-01

    Peatlands are a major source of dissolved organic carbon (DOC) for aquatic ecosystems. Naturally high DOC concentrations in peatlands may be increased further by drainage. For agricultural purposes, peat has frequently been mixed with sand, but the effect of this measure on the release and cycling of DOC has rarely been investigated. This study examined the effects of (i) mixing peat with sand and (ii) water table depth (WTD) on DOC concentrations at three grassland sites on shallow organic soils. The soil solution was sampled bi-weekly for two years with suction plates at 15, 30 and 60cm depth. Selected samples were analysed for dissolved organic nitrogen (DON), δ 13 C DOM and δ 15 N DOM . Average DOC concentrations were surprisingly high, ranging from 161 to 192mgl -1 . There was no significant impact of soil organic carbon (SOC) content or WTD on mean DOC concentrations. At all sites, DOC concentrations were highest at the boundary between the SOC-rich horizon and the mineral subsoil. In contrast to the mean concentrations, the temporal patterns of DOC concentrations, their drivers and the properties of dissolved organic matter (DOM) differed between peat-sand mixtures and peat. DOC concentrations responded to changes in environmental conditions, but only after a lag period of a few weeks. At the sites with a peat-sand mixture, temperature and therefore probably biological activity determined the DOC concentrations. At the peat site, the contribution of vegetation-derived DOM was higher. The highest concentrations occurred during long, cool periods of waterlogging, suggesting a stronger physicochemical-based DOC mobilisation. Overall, these results indicate that mixing peat with sand does not improve water quality and may result in DOC losses of around 200kg DOCha -1 a -1 . Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  4. Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data

    EPA Science Inventory

    Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed...

  5. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    PubMed Central

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  6. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system.

    PubMed

    Li, Jing; Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0-10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  7. Linking Water Pathways and Sources of Dissolved Organic Matter at the Hillslope Scale: A 24-Day Sprinkling Experiment

    NASA Astrophysics Data System (ADS)

    van Verseveld, W. J.; Graham, C. B.; Barnard, H. R.; McDonnell, J. J.; Lajtha, K.; Brooks, R. J.; Bond, B. J.

    2006-12-01

    The link between water flow paths, dissolved organic matter (DOM) sources and DOM production is poorly understood. The few investigations that have explored such relations in forest systems have relied passively on natural rainfall and drainage events. As a result, it has been difficult to identify the first order controls on water- biogeochemical processes. While we often assume an unlimited supply of DOM in our hydro-biogeochemical models, few studies have explicitly tested this. This work reports on a 24-day sprinkler experiment in Watershed-10 at the H.J. Andrews Experimental Forest in Oregon, USA. Our research objectives were: (1) To quantify the labile DOM pool in the upper soil layers at the hillslope scale, (2) To resolve the dominant flowpath at the hillslope scale that flush DOM from the soil profile to the stream channel, and (3) quantify the mixing between sprinkler water and hillslope subsurface flux. We injected 0,8 L of 100% deuterium into the sprinkler water for 24 hours and sampled soil and groundwater at daily to 2 days intervals throughout the 24 day experiment. We extracted 10 soil samples each week from the test hillslope and an adjacent similar reference plot and incubated them to quantify potential N mineralization and supply of organic carbon and nitrogen. Preliminary results suggested that DOM was transport-limited during the sprinkler experiment. Shallow lateral flow through the unsaturated zone; at 30 cm depth was very likely the dominant DOM pathway to the stream for the first two days (and 95 mm of sprinkled water) of the sprinkler experiment. After more than 4 days (and 395 mm of sprinkled water), saturation occurred at 100 cm, and deeper flowpaths became activated. These results challenge many of the assumptions in hydro-biogeochemical models where an unlimited supply of DOM is usually assumed.

  8. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef

    PubMed Central

    Meyer, Friedrich W.; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  9. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    PubMed

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  10. Association of dissolved mercury with dissolved organic carbon in U.S. rivers and streams: The role of watershed soil organic carbon

    NASA Astrophysics Data System (ADS)

    Stoken, Olivia M.; Riscassi, Ami L.; Scanlon, Todd M.

    2016-04-01

    Streams and rivers are important pathways for the export of atmospherically deposited mercury (Hg) from watersheds. Dissolved Hg (HgD) is strongly associated with dissolved organic carbon (DOC) in stream water, but the ratio of HgD to DOC is highly variable between watersheds. In this study, the HgD:DOC ratios from 19 watersheds were evaluated with respect to Hg wet deposition and watershed soil organic carbon (SOC) content. On a subset of sites where data were available, DOC quality measured by specific ultra violet absorbance at 254 nm, was considered as an additional factor that may influence HgD:DOC . No significant relationship was found between Hg wet deposition and HgD:DOC, but SOC content (g m-2) was able to explain 81% of the variance in the HgD:DOC ratio (ng mg-1) following the form: HgD:DOC=17.8*SOC-0.41. The inclusion of DOC quality as a secondary predictor variable explained only an additional 1% of the variance. A mathematical framework to interpret the observed power-law relationship between HgD:DOC and SOC suggests Hg supply limitation for adsorption to soils with relatively large carbon pools. With SOC as a primary factor controlling the association of HgD with DOC, SOC data sets may be utilized to predict stream HgD:DOC ratios on a more geographically widespread basis. In watersheds where DOC data are available, estimates of HgD may be readily obtained. Future Hg emissions policies must consider soil-mediated processes that affect the transport of Hg and DOC from terrestrial watersheds to streams for accurate predictions of water quality impacts.

  11. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska

    Treesearch

    Jason B. Fellman; David V. D' Amore; Eran Hood; Richard D. Boone

    2008-01-01

    Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation-emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic...

  12. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  13. Characterization of plasma labile heme in hemolytic conditions

    PubMed Central

    Gouveia, Zélia; Carlos, Ana R.; Yuan, Xiaojing; Aires-da-Silva, Frederico; Stocker, Roland; Maghzal, Ghassan J.; Leal, Sónia S.; Gomes, Cláudio M.; Todorovic, Smilja; Iranzo, Olga; Ramos, Susana; Santos, Ana C.; Hamza, Iqbal; Gonçalves, João; Soares, Miguel P.

    2018-01-01

    Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro-oxidant manner and regulates cellular metabolism while exerting pro-inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme-specific single domain antibodies (sdAbs) that together with a cellular-based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7 m and that 2–8% (∼ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme-binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7 m. The heme-specific sdAbs neutralize the pro-oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme-specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme-specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme. PMID:28783254

  14. PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS

    EPA Science Inventory

    Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...

  15. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  16. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Treesearch

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  17. Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS).

    PubMed

    Valle, Juliana; Gonsior, Michael; Harir, Mourad; Enrich-Prast, Alex; Schmitt-Kopplin, Philippe; Bastviken, David; Conrad, Ralf; Hertkorn, Norbert

    2018-02-01

    Dissolved organic matter (DOM) contained in lake sediments is a carbon source for many microbial degradation processes, including aerobic and anaerobic mineralization. During anaerobic degradation, DOM is partially consumed and transformed into new molecules while the greenhouse gases methane (CH 4 ) and carbon dioxide (CO 2 ) are produced. In this study, we used ultrahigh resolution mass spectrometry to trace differences in the composition of solid-phase extractable (PPL resin) pore water DOM (SPE-DOM) isolated from surface sediments of three boreal lakes before and after 40 days of anoxic incubation, with concomitant determination of CH 4 and CO 2 evolution. CH 4 and CO 2 production detected by gas chromatography varied considerably among replicates and accounted for fractions of ∼2-4 × 10 -4 of sedimentary organic carbon for CO 2 and ∼0.8-2.4 × 10 -5 for CH 4 . In contrast, the relative changes of key bulk parameters during incubation, such as relative proportions of molecular series, elemental ratios, average mass and unsaturation, were regularly in the percent range (1-3% for compounds decreasing and 4-10% for compounds increasing), i.e. several orders of magnitude higher than mineralization alone. Computation of the average carbon oxidation state in CHO molecules of lake pore water DOM revealed rather non-selective large scale transformations of organic matter during incubation, with depletion of highly oxidized and highly reduced CHO molecules, and formation of rather non-labile fulvic acid type molecules. In general, proportions of CHO compounds slightly decreased. Nearly saturated CHO and CHOS lipid-like substances declined during incubation: these rather commonplace molecules were less specific indicators of lake sediment alteration than the particular compounds, such as certain oxygenated aromatics and carboxyl-rich alicyclic acids (CRAM) found more abundant after incubation. There was a remarkable general increase in many CHNO compounds during

  18. [The remove characteristics of dissolved organic matter in landfill leachate during the treatment process].

    PubMed

    He, Xiao-Song; Yu, Jing; Xi, Bei-Dou; Jiang, Yong-Hai; Zhang, Jin-Bao; Li, Dan; Pan, Hong-Wei; Liu, Hong-Liang

    2012-09-01

    In order to investigate remove characteristics of dissolved organic matter in landfill leachate, leachates were sampled during the process (i. e. , adjusting tank, anaerobic zone, oxidation ditch and MBR processing). Dissolved organic matter was extracted and its content and structure were characterized by fluorescence excitation-emission matrix spectra, UV-Vis specrtra and FTIR spectra. The results showed that an amount of 377.6 mg x L(-1) dissolved organic carbon (DOC) was removed during the whole treatment process, and the total removal rate was up to 78.34%. The 25.56% of DOC in the adjusting tank was removed during the anaerobic zone, 41.58% of DOC in anaerobic effluent was removed during the oxidation ditch, while 50.19% of DOC in the oxidation ditch effluent decreased in the MBR process. The anaerobic process increased the content of unsaturated compound and polysaccharides in leachate DOM, which improved the leachate biochemical characteristics. The unsaturated compound and polysaccharides were removed effectively during being in oxidation ditch. Protein-like and humic-like fluorescence peaks were observed in the adjusting tank and anaerobic zone, while humic-like fluorescence peaks were just presented in the oxidation ditch and MBR processing. Protein-like and fulvic-like substances were biodegraded in the adjusting tank and anaerobic zone, while humic-like materials were removed in the MBR process.

  19. Assessing the Role of Dissolved Organic Phosphate on Rates of Microbial Phosphorus Cycling

    NASA Astrophysics Data System (ADS)

    Gonzalez, A. C.; Popendorf, K. J.; Duhamel, S.

    2016-02-01

    Phosphorus (P) is an element crucial to life, and it is limiting in many parts of the ocean. In oligotrophic environments, the dissolved P pool is cycled rapidly through the activity of microbes, with turnover times of several hours or less. The overarching aim of this study was to assess the flux of P from picoplankton to the dissolved pool and the role this plays in fueling rapid P cycling. To determine if specific microbial groups are responsible for significant return of P to the dissolved pool during cell lifetime, we compared the rate of cellular P turnover (cell-Pτ, the rate of cellular P uptake divided by cellular P content) to the rate of cellular biomass turnover (cellτ). High rates of P return to the dissolved pool during cell lifetime (high cell-Pτ/cellτ) indicate significant P regeneration, fueling more rapid turnover of the dissolved P pool. We hypothesized that cell-Pτ/cellτ varies widely across picoplankton groups. One factor influencing this variation may be each microbial group's relative uptake of dissolved organic phosphorus (DOP) versus dissolved inorganic phosphorus (DIP). As extracellular hydrolysis is necessary for P incorporation from DOP, this process may return more P to the dissolved pool than DIP incorporation. This leads to the question: does a picoplankton's relative uptake of DOP (versus DIP) affect the rate at which it returns phosphorus to the dissolved pool? To address this question, we compared the rate of cellular P turnover based on uptake of DOP and uptake DIP using cultured representatives of three environmentally significant picoplankton groups: Prochlorococcus, Synechococcus, and heterotrophic bacteria. These different picoplankton groups are known to take up different ratios of DOP to DIP, and may in turn make significantly different contributions to the regeneration and cycling phosphorus. These findings have implications towards our understanding of the timeframes of biogeochemical cycling of phosphorus in the

  20. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    USDA-ARS?s Scientific Manuscript database

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  1. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Nelson, Norman B.; Siegel, David A.; Carlson, Craig A.; Swan, Chantal M.

    2010-02-01

    Basin-scale distributions of light absorption by chromophoric dissolved organic matter (CDOM) are positively correlated (R2 > 0.8) with apparent oxygen utilization (AOU) within the top kilometer of the Pacific and Indian Oceans. However, a much weaker correspondence is found for the Atlantic (R2 < 0.05). Strong correlation between CDOM and AOU indicates that CDOM is created as a byproduct of the oxidation of organic matter from sinking particles. The observed meridional-depth sections of CDOM result from a balance between biogeochemical processes (autochthonous production and solar bleaching) and the meridional overturning circulation. Rapid mixing in the Atlantic dilutes CDOM in the interior and implies that the time scale for CDOM accumulation is greater than ˜50 years. CDOM emerges as a unique tracer for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen, with the additional feature that it can be quantified from satellite observation.

  2. Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer☆

    PubMed Central

    Moser, Justin C.; Rawal, Malvika; Wagner, Brett A.; Du, Juan; Cullen, Joseph J.; Buettner, Garry R.

    2013-01-01

    Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors. PMID:24396727

  3. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    PubMed

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Spectral analysis of coniferous foliage and possible links to soil chemistry: are spectral chlorophyll indices related to forest floor dissolved organic C and N?

    PubMed

    Albrechtova, Jana; Seidl, Zdenek; Aitkenhead-Peterson, Jacqueline; Lhotáková, Zuzana; Rock, Barrett N; Alexander, Jess E; Malenovský, Zbynek; McDowell, William H

    2008-10-15

    Dissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability. The aim of this study was to examine potential links among spectral foliar data, and the organic C and N of forest soils. Two coniferous species (red spruce and balsam fir) were studied in the White Mountains of New Hampshire, USA. Six trees of each species were sampled at 5 watersheds (2 in the Hubbard Brook Experimental Forest, 3 in the Bartlett Experimental Forest). We hypothesized that in a coniferous forest, chemistry of old foliage would better predict the chemical composition of the forest floor litter layer than younger foliage, which is the more physiologically active and the most likely to be captured by remote sensing of the canopy. Contrary to our expectations, chlorophyll concentration of young needles proved to be most tightly linked to soil properties, in particular water-extractable dissolved organic carbon. Spectral indices related to the chlorophyll content of needles could be used to predict variation in forest floor dissolved organic carbon and dissolved organic nitrogen. Strong correlations were found between optical spectral indices based on chlorophyll absorption and forest floor dissolved organic carbon, with higher foliage chlorophyll content corresponding to lower forest floor dissolved organic carbon. The mechanisms behind these correlations are uncertain and need further investigation. However, the direction of the linkage from soil to tree via nutrient

  5. Biochemical Composition of Dissolved Organic Matter Released During Experimental Diatom Blooms

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2002-01-01

    An axenic culture of Skeletonema costatum was grown to late-log phase to examine the molecular weight distribution and the biochemical composition of high molecular weight dissolved organic matter released in the absence of actively growing bacteria. A second culture was grown in a 5 m(exp 3) mesocosm and placed in darkness for a period of 51 days to examine the impact of phytoplankton bloom dynamics and microbial decomposition on dissolved (DOM) and particulate organic matter (POM) composition. DOM was separated using tangential-flow ultrafiltration into three nominal size fractions: LDOM (less than 1 kDa DOM), HDOM (1-30 kDa) and VHDOM (30 kDa-0.2 micron) and characterized. Both axenic and mesocosm diatom blooms released 28-33% of net primary production as dissolved organic carbon (DOC). In the axenic culture, HDOM and LDOM each comprised about half of the diatom-released DOC with less than l% as VHDOM. Diatoms from both experiments released carbohydrate-rich high molecular weight DOM. Much of the axenic diatom-released high molecular weight DOC could be chemically characterized (61% of HDOM and 78% of VHDOM) with carbohydrates as the primary component (45% of HDOM and 55% of VHDOM). Substantial amounts of hydrolyzable amino acids (16% of HDOM and 22% of VHDOM) and small amounts of lipids (less than 1%) were also released. Proportions of recognizable biochemical components in DOM produced in the mesocosm bloom were lower compared to the axenic culture. The presence of bacterial fatty acids and peptidoglycan-derived D-amino acids within high molecular weight fractions from the mesocosm bloom revealed that bacteria contributed a variety of macromolecules to DOM during the growth and decay of the diatom bloom. Release of significant amounts of DOC by diatoms demonstrates that DOM excretion is an important component of phytoplankton primary production. Similarities in high molecular weight DOM composition in marine waters and diatom cultures highlight the importance

  6. Factors regulating nitrification in aquatic sediments: Effects of organic carbon, nitrogen availability, and pH

    USGS Publications Warehouse

    Strauss, E.A.; Mitchell, N.L.; Lamberti, G.A.

    2002-01-01

    We investigated the response in nitrification to organic carbon (C) availability, the interactive effects of the C: nitrogen (N) ratio and organic N availability, and differing pH in sediments from several streams in the upper midwestern United States. In addition, we surveyed 36 streams to assess variability in sediment nitrification rates. Labile dissolved organic carbon (DOC) additions of 30 mg C??L-1 (as acetate) to stream sediments reduced nitrification rates (P < 0.003), but lower concentration additions or dilution of ambient DOC concentration had no effect on nitrification. C:N and organic N availability strongly interacted to affect nitrification (P < 0.0001), with N availability increasing nitrification most at lower C:N. Nitrification was also strongly influenced by pH (P < 0.002), with maximum rates occurring at pH 7.5. A multiple regression model developed from the stream survey consisted of five variables (stream temperature, pH, conductivity, DOC concentration, and total extractable NH4+) and explained 60% of the variation observed in nitrification. Our results suggest that nitrification is regulated by several variables, with NH4+ availability and pH being the most important. Organic C is likely important at regulating nitrification only under high environmental C:N conditions and if most available C is relatively labile.

  7. The global distribution and dynamics of chromophoric dissolved organic matter.

    PubMed

    Nelson, Norman B; Siegel, David A

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.

  8. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Origins and bioavailability of dissolved organic matter in groundwater

    USGS Publications Warehouse

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  10. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability

    Treesearch

    Kimberly P. Wickland; Jason C. Neff; George R. Aiken

    2007-01-01

    The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential...

  11. Bioavailability of riverine dissolved organic matter to phytoplankton in the marine coastal waters

    NASA Astrophysics Data System (ADS)

    Jurgensone, Iveta; Aigars, Juris

    2012-07-01

    Nutrient inputs from catchments with intensive agriculture are mostly dominated by inorganic nutrients, whereas the contribution of organic nutrients from catchments with natural forests can be considerable but there is a pooere understanding of this nutrient source. Consequently this study investigated spring, summer and autumn phytoplankton community responses to enrichment by riverine dissolved organic matter (DOM). Dissolved organic substances were extracted from the Daugava River, fractionated into three molecular size classes: 1) 5-100 kDa, 2) 100-1000 kDa, and 3) >1000 kDa, and added to a microcosm with natural assemblages from the Gulf of Riga. During the spring the phytoplankton community was dominated (97%) by diatoms and the species composition did not change over the course of the experiment. Specific species and functional groups of the summer and autumn phytoplankton communities responded positively to these treatments. Small-celled cyanobacteria and Monoraphidium contortum responded to almost all size fractions of DOM for the summer and autumn experiments. Oocystis spp. characteristic for the summer and Chaetoceros wighamii, Cyclotella spp., Thalassiosira baltica for the autumn responded to treatment by two and three size classes of organic substances, respectively, while Merismopedia spp. shifted from one food source to another during the summer experiment.

  12. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  13. Shifts in vegetation affect organic carbon quality in a coastal marsh along the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Zhang, A. H.; Corbett, J. E.; Tfaily, M. M.; Martin, I.; Ho, L.; Sun, E.; Sevilla, L.; Vincent, S.; Newton, R.; Peteet, D. M.

    2015-12-01

    To better understand carbon storage in coastal salt marshes, samples were collected from Piermont Marsh, NY (40 ̊00' N, 73 ̊55'W) located within the Hudson River Estuary. Porewater from three different vegetation sites was analyzed to compare the quality of the dissolved organic carbon. Sites contained either native or invasive vegetation with variations in live plant root depth. Porewater was taken from 0-3m in 50cm intervals, and sites were dominated either by invasive Phragmites australis, native Eleocharis , or native mixed vegetation (Spartina patens, Scirpus, and Typha angustifolia). Sites dominated by invasive Phragmites australis were found to have lower dissolved organic carbon (DOC) concentrations, lower cDOM absorption values, and more labile organic carbon compounds. The molecular composition of the DOC was determined with Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS). Labile DOC components were defined as proteins, carbohydrates, and amino sugars while recalcitrant DOC components were defined as lipids, unsaturated hydrocarbons, lignins, tannins, and condensed hydrocarbons. For the Phragmites, Eleocharis, and mixed vegetation sites, average DOC concentrations with depth were found to be 1.71 ± 1.06, 4.64 ± 1.73, and 4.62 ± 3.5 (mM), respectively and cDOM absorption values with depth were found to be 13.22 ± 4.81, 49.42 ± 10.8, and 35.74 ± 17.49 (m-1). Additionally, DOC concentrations increased with depth in the mixed vegetation and Eleocharis sites, but remained relatively constant in the Phragmites site. The percent of labile compounds in the surface samples were found to be 19.02, 14.64, and 14.07% for the Phragmites, Eleocharis, and mixed vegetation sites, respectively. These findings suggest that sites dominated by Phragmites may have more reactive DOC substrates than sites dominated by native vegetation. These results indicate that the carbon storage in marshes invaded by Phragmites would be expected to decrease over time.

  14. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity.

    PubMed

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2008-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000-2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R(2) = 0.86; p < 0.01), but inconsistently correlated over time, indicating seasonal and interannual variability in external factors and a differential response of DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition.

  15. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity

    PubMed Central

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2010-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000–2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R2 = 0.86; p < 0.01), but inconsistently correlated over time, indicating seasonal and interannual variability in external factors and a differential response of DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition. PMID:20582227

  16. Transient acidosis while retrieving a fear-related memory enhances its lability

    PubMed Central

    Du, Jianyang; Price, Margaret P; Taugher, Rebecca J; Grigsby, Daniel; Ash, Jamison J; Stark, Austin C; Hossain Saad, Md Zubayer; Singh, Kritika; Mandal, Juthika; Wemmie, John A; Welsh, Michael J

    2017-01-01

    Attenuating the strength of fearful memories could benefit people disabled by memories of past trauma. Pavlovian conditioning experiments indicate that a retrieval cue can return a conditioned aversive memory to a labile state. However, means to enhance retrieval and render a memory more labile are unknown. We hypothesized that augmenting synaptic signaling during retrieval would increase memory lability. To enhance synaptic transmission, mice inhaled CO2 to induce an acidosis and activate acid sensing ion channels. Transient acidification increased the retrieval-induced lability of an aversive memory. The labile memory could then be weakened by an extinction protocol or strengthened by reconditioning. Coupling CO2 inhalation to retrieval increased activation of amygdala neurons bearing the memory trace and increased the synaptic exchange from Ca2+-impermeable to Ca2+-permeable AMPA receptors. The results suggest that transient acidosis during retrieval renders the memory of an aversive event more labile and suggest a strategy to modify debilitating memories. DOI: http://dx.doi.org/10.7554/eLife.22564.001 PMID:28650315

  17. Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen

    Treesearch

    Evan S. Kane; Merritt R. Turetsky; Jennifer W. Harden; A. David McGuire; James M. Waddington

    2010-01-01

    Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table...

  18. Dissolved Organic Matter Composition and Export from U.S. Rivers

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Butman, D. E.; Spencer, R. G.; Raymond, P.

    2012-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with water and land resource management. Organic source materials, watershed geochemistry, oxidative processes and hydrology strongly influence the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals. In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of a multi-year study designed to assess the seasonal and spatial variability of DOM quantity and quality for 15 large North American river basins. Samples were collected from the mouths of the rivers using a sampling program designed to capture hydrologic and seasonal variability of DOM export. DOM concentrations and composition, based on DOM fractionation on XAD resins, chromophoric dissolved organic matter (CDOM) parameters (ultraviolet /visible absorption and fluorescence spectroscopy), specific compound analyses, and DO14C content varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration and carbon specific ultra-violet absorbance at 254 nm (SUVA254), an optical measurement that is an indicator of DOM aromatic carbon content. In almost all systems, CDOM optical parameters correlated strongly with DOC concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances). In

  19. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  20. Effects of watershed history on dissolved organic matter characteristics in headwater streams

    Treesearch

    Youhei Yamashita; Brian D. Kloeppel; Jennifer Knoepp; Gregory L. Zausen; Rudolf Jaffe'

    2011-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver in aquatic ecosystem function. Climate, land use, and forest cover changes all impact stream DOM and alter biogeochemical cycles in terrestrial environments. We determined the temporal variation in DOM quantity and quality in headwater streams at a...

  1. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans

    NASA Astrophysics Data System (ADS)

    Lawson, E. C.; Wadham, J. L.; Tranter, M.; Stibal, M.; Lis, G. P.; Butler, C. E. H.; Laybourn-Parry, J.; Nienow, P.; Chandler, D.; Dewsbury, P.

    2013-12-01

    Runoff from small glacier systems contains dissolved organic carbon (DOC), rich in protein-like, low molecular weight (LMW) compounds, designating glaciers as an important source of bioavailable carbon for downstream heterotrophic activity. Fluxes of DOC and particulate organic carbon (POC) exported from large Greenland catchments, however, remain unquantified, despite the Greenland Ice Sheet (GrIS) being the largest source of global glacial runoff (ca. 400 km3 yr-1). We report high and episodic fluxes of POC and DOC from a large (1200 km2) GrIS catchment during contrasting melt seasons. POC dominates organic carbon (OC) export (70-89% on average), is sourced from the ice sheet bed and contains a significant bioreactive component (9% carbohydrates). A major source for the "bioavailable" (free carbohydrates) LMW-DOC fraction is microbial activity on the ice sheet surface, with some further addition of LMW-DOC to meltwaters by biogeochemical processes at the ice sheet bed. The bioavailability of the exported DOC (30-58%) to downstream marine microorganisms is similar to that reported from other glacial watersheds. Annual fluxes of DOC and free carbohydrates during two melt seasons were similar, despite the ~ 2 fold difference in runoff fluxes, suggesting production-limited DOC sources. POC fluxes were also insensitive to an increase in seasonal runoff volumes, indicating supply-limitation of suspended sediment in runoff. Scaled to the GrIS, the combined DOC and POC fluxes (0.13-0.17 Tg C yr-1 DOC, 0.36-1.52 Tg C yr-1 mean POC) are of a similar order of magnitude to a large Arctic river system, and hence represent an important OC source to the North Atlantic, Greenland and Labrador Seas.

  2. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Treesearch

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  3. ISOTOPIC BIOGEOCHEMISTRY OF DISSOLVED ORGANIC NITROGEN: A NEW TECHNIQUE AND APPLICATION. (R825151)

    EPA Science Inventory

    We present a new technique for isolating and isotopically characterizing dissolved organic nitrogen (DON) for non-marine waters, 15N values for DON from lacustrine samples and data suggesting that this technique will be a...

  4. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  5. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool.

    PubMed

    Jamnongkan, Wassana; Thanan, Raynoo; Techasen, Anchalee; Namwat, Nisana; Loilome, Watcharin; Intarawichian, Piyapharom; Titapun, Attapol; Yongvanit, Puangrat

    2017-07-01

    Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke-associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte

  6. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    PubMed

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  8. Seasonal and Latitudinal Variations in Dissolved Methane from 42 Lakes along a North-South Transect in Alaska

    NASA Astrophysics Data System (ADS)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K. C.; Anthony, P.; Thalasso, F.

    2013-12-01

    Armando Sepulveda-Jauregui,* Katey M. Walter Anthony,* Karla Martinez-Cruz,* ** Peter Anthony,* and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Northern lakes are important reservoirs and sources to the atmosphere of methane (CH4), a potent greenhouse gas. It is estimated that northern lakes (> 55 °N) contribute about 20% of the total global lake methane emissions, and that emissions from these lakes will increase with climate warming. Temperature rise enhances methane production directly by providing the kinetic energy to methanogenesis, and indirectly by supplying organic matter from thawing permafrost. Warmer lakes also store less methane since methane's solubility is inversely related to temperature. Alaskan lakes are located in three well-differentiated permafrost classes: yedoma permafrost with high labile carbon stocks, non-yedoma permafrost with lower carbon stocks, and areas without permafrost, also with generally lower carbon stocks. We sampled dissolved methane from 42 Alaskan lakes located in these permafrost cover classes along a north-south Alaska transect from Prudhoe Bay to the Kenai Peninsula during open-water conditions in summer 2011. We sampled 26 of these lakes in April, toward the end of the winter ice-covered period. Our results indicated that the largest dissolved methane concentrations occurred in interior Alaska thermokarst lakes formed in yedoma-type permafrost during winter and summer, with maximal concentrations of 17.19 and 12.76 mg L-1 respectively. In these lakes, emission of dissolved gases as diffusion during summer and storage release in spring were 18.4% and 17.4% of the annual emission budget, while ebullition (64.2 %) comprised the rest. Dissolved oxygen was inversely correlated with dissolved methane concentrations in both seasons; the

  9. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Thornton, Daniel C. O.; Yvon-Lewis, Shari A.; King, Gary M.; Eglinton, Timothy I.; Shields, Michael R.; Ward, Nicholas D.; Curtis, Jason

    2015-07-01

    The role of priming processes in the remineralization of terrestrially derived dissolved organic carbon (TDOC) in aquatic systems has been overlooked. We provide evidence for TDOC priming using a lab-based microcosm experiment in which TDOC was primed by the addition of 13C-labeled algal dissolved organic carbon (ADOC) or a 13C-labeled disaccharide (trehalose). The rate of TDOC remineralization to carbon dioxide (CO2) occurred 4.1 ± 0.9 and 1.5 ± 0.3 times more rapidly with the addition of trehalose and ADOC, respectively, relative to experiments with TDOC as the sole carbon source over the course of a 301 h incubation period. Results from these controlled experiments provide fundamental evidence for the occurrence of priming of TDOC by ADOC and a simple disaccharide. We suggest that priming effects on TDOC should be considered in carbon budgets for large-river deltas, estuaries, lakes, hydroelectric reservoirs, and continental shelves.

  10. Detection and structural identification of dissolved organic matter in Antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy.

    PubMed

    Pautler, Brent G; Simpson, André J; Simpson, Myrna J; Tseng, Li-Hong; Spraul, Manfred; Dubnick, Ashley; Sharp, Martin J; Fitzsimons, Sean J

    2011-06-01

    Dissolved organic matter (DOM) is ubiquitous in aquatic ecosystems and is derived from various inputs that control its turnover. Glaciers and ice sheets are the second largest water reservoir in the global hydrologic cycle, but little is known about glacial DOM composition or contributions to biogeochemical cycling. Here we employ SPR-W5-WATERGATE (1)H NMR spectroscopy to elucidate and quantify the chemical structures of DOM constituents in Antarctic glacial ice as they exist in their natural state (average DOC of 8 mg/L) without isolation or preconcentration. This Antarctic glacial DOM is predominantly composed of a mixture of small recognizable molecules differing from DOM in marine, lacustrine, and other terrestrial environments. The major constituents detected in three distinct types of glacial ice include lactic and formic acid, free amino acids, and a mixture of simple sugars and amino sugars with concentrations that vary between ice types. The detection of free amino acid and amino sugar monomer components of peptidoglycan within the ice suggests that Antarctic glacial DOM likely originates from in situ microbial activity. As these constituents are normally considered to be biologically labile (fast cycling) in nonglacial environments, accelerated glacier melt and runoff may result in a flux of nutrients into adjacent ecosystems.

  11. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  12. Effects of dissolved organic carbon on the toxicity of copper to the developing embryos of the Pacific oyster (Crassostrea gigas).

    PubMed

    Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V

    2007-08-01

    The effects of humic acid (HA) on copper speciation and its subsequent toxicity to the sensitive early life stages of the Pacific oyster (Crassostrea gigas) are presented. Differential pulse anodic stripping voltammetry with a hanging mercury drop electrode was used to measure the copper species as labile copper (LCu; free ion and inorganic copper complexes) and total copper (TCu) with respect to increasing HA concentration. The TCu and LCu 50% effect concentrations (EC50s) in the absence of HA were 20.77 microg/L (95% confidence interval [CI], 24.02-19.97 microg/L) and 8.05 microg/L (95% CI, 9.6-5.92 microg/L) respectively. A corrected dissolved organic carbon (DOC) concentration (HA only) of 1.02 mg/L was required to significantly increase the TCu EC50 to approximately 41.09 microg/L (95% CI, 44.27-37.52 microg/L; p < 0.05), almost doubling that recorded when DOC (as HA) was absent from the test media. In contrast, the LCu EC50 was unaffected by changes in DOC concentration and was stable throughout the corrected DOC concentration range. The absence of change in the LCu EC50, despite increased HA concentration, suggests that the LCu fraction, not TCu, was responsible for the observed toxicity to the oyster embryo. This corresponds with the current understanding of copper toxicity and supports the free-ion activity model for copper toxicity.

  13. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions

  14. [Determination of chromphoric dissolved organic matter in water from different sources].

    PubMed

    Liu, Xian-ping; Li, Lei; Dai, Jin-feng; Wang, Xiao-ru; Lee, Frank S C

    2007-10-01

    Chromophoric dissolved organic matter (CDOM) represents the fraction of the dissolved organic pool which absorbs light in the visible as well as UV ranges. It could affect the color of the waters. It is necessary to study it during in research on ecosystem, remote sensing of the water color and the cycle of carbon in waters. CDOM can fluoresce when excited, so fluorescence spectrum has been used to study its origin, distribution, and change. In the present article the fluorescence spectrophotometer was used to study the relation between the fluorescence intensity, spectrum area and the concentration of CDOM. When the concentration of CDOM is low (less than 75 mg x L(-1)), there is a better linear relationship (r2 > 0.98) between the fluorescence intensity, the spectrum area and the concentration of CDOM. Meanwhile good linear relations were found between the fluorescence intensity and spectrum area, which showed the same changeable trend of the fluorescence intensity and spectrum area with the concentration change of CDOM. A method was established to quantify the concentration of CDOM in water from different source using the linear relationship between the spectrum area and the concentration. It suits the complicated constituent analysis of CDOM and could really and accurately show the concentration of CDOM in natural water.

  15. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    EPA Science Inventory

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  16. Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils.

    PubMed

    Ding, Qing; Wu, Hai Lang; Xu, Yun; Guo, Li Juan; Liu, Kai; Gao, Hui Min; Yang, Hong

    2011-06-15

    Isoproturon is a selective herbicide belonging to the phenylurea family and widely used for pre- and post-emergence control of annual weeds. Soil amendments (e.g. organic compounds or dissolved organic matter) may affect environmental behavior and bioavailability of pesticides. However, whether the physiochemical process of isoproturon in soils is affected by organic amendments and how it is affected in different soil types are unknown. To evaluate the impact of low molecular weight organic acids (LMWOA) and dissolved organic matter (DOM) on sorption/desorption and mobility of isoproturon in soils, comprehensive analyses were performed using two distinct soil types (Eutric gleysols and Hap udic cambisols). Our analysis revealed that adsorption of isoproturon in Eutric gleysols was depressed, and desorption and mobility of isoproturon were promoted in the presence of DOM and LMWOA. However, the opposite result was observed with Hap udic cambisols, suggesting that the soil type affected predominantly the physiochemical process. We also characterized differential components of the soils using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectroscopy and show that the two soils displayed different intensity of absorption bands for several functional groups. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    NASA Astrophysics Data System (ADS)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological

  18. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system.

    PubMed

    Wilding, Andrew; Liu, Ruixia; Zhou, John L

    2005-07-01

    Through cross-flow filtration (CFF) with a 1-kDa regenerated cellulose Pellicon 2 module, the ultrafiltration characteristics of river organic matter from Longford Stream, UK, were investigated. The concentration of organic carbon (OC) in the retentate in the Longford Stream samples increased substantially with the concentration factor (cf), reaching approximately 40 mg/L at cf 15. The results of dissolved organic carbon (DOC) and colloidal organic carbon (COC) analysis, tracking the isolation of colloids from river waters, show that 2 mg/L of COC was present in those samples and good OC mass balance (77-101%) was achieved. Fluorescence measurements were carried out for the investigation of retentate and permeate behaviour of coloured dissolved organic materials (CDOM). The concentrations of CDOM in both the retentate and permeate increased with increasing cf, although CDOM were significantly more concentrated in the retentate. The permeation model expressing the correlation between log[CDOM] in the permeate and logcf was able to describe the permeation behaviour of CDOM in the river water with regression coefficients (r(2)) of 0.94 and 0.98. Dry weight analysis indicated that the levels of organic colloidal particles were from 49 to 71%, and between 29 and 51% of colloidal particles present were inorganic. COC as a percentage of DOC was found to be 10-16% for Longford Stream samples.

  19. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes.

    PubMed

    He, Yuhong; Song, Na; Jiang, He-Long

    2018-04-01

    In recent years, the black water phenomenon has become an environmental event in eutrophic shallow lakes in China, leading to deterioration of lake ecosystems and potable water crises. Decomposition of macrophyte debris has been verified as a key inducement for black water events. In this study, the effects of the decomposition of dissolved organic matter (Kottelat et al., WASP 187:343-351, 2008) derived from macrophyte leachate on the occurrence of black water events are investigated to clarify the detailed mechanisms involved. Results show that dissolved organic matter (DOM) is composed of a trace of chromophoric DOM and mostly non-chromophoric dissolved organic matter (CDOM). DOM decomposition is accompanied by varied concentration of CDOM components, generation of organic particles, and increased microbial concentrations. These processes increase water chroma only during initial 48 h, so the intensified water color cannot be maintained by DOM decomposition alone. During DOM decomposition, microorganisms first consume non-CDOM, increasing the relative CDOM concentration and turning the water color to black (or brown). Simultaneously, tryptophan and aromatic proteins, which are major ingredients of CDOM, enhance UV light absorption, further aggravating the macroscopic phenomenon of black color. Our results show that DOM leached from decayed macrophytes promotes or even triggers the occurrence of black water events and should be taken more seriously in the future.

  20. Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments

    NASA Astrophysics Data System (ADS)

    Pape, Ellen; van Oevelen, Dick; Moodley, Leon; Soetaert, Karline; Vanreusel, Ann

    2013-10-01

    Sediments sampled from the Galicia Bank seamount and the adjacent slope (northeast Atlantic), and from a western Mediterranean slope site, were injected onboard with 13C-enriched dissolved organic matter (DOM) to evaluate nematode feeding strategies and the fate of DOM carbon in different benthic environments. We hypothesized that nematode 13C label assimilation resulted from either direct DOM uptake or feeding on 13C labeled bacteria. Slope sediments were injected with glucose ("simple" DOM) or "complex" diatom-derived DOM to investigate the influence of DOM composition on carbon assimilation. The time-series (1, 7 and 14 days) experiment at the seamount site was the first study to reveal a higher 13C enrichment of nematodes than bacteria and sediments after 7 days. Although isotope dynamics indicated that both DOM and bacteria were plausible candidate food sources, the contribution to nematode secondary production and metabolic requirements (estimated from biomass-dependent respiration rates) was higher for bacteria than for DOM at all sites. The seamount nematode community showed higher carbon assimilation rates than the slope assemblages, which may reflect an adaptation to the food-poor environment. Our results suggested that the trophic importance of bacteria did not depend on the amount of labile sedimentary organic matter. Furthermore, there was a discrepancy between carbon assimilation rates observed in the experiments and the feeding type classification, based on buccal morphology. Sites with a similar feeding type composition (i.e. the northeast Atlantic sites) showed large differences in uptake, whilst the nematode assemblages at the two slope sites, which had a differing trophic structure, took up similar amounts of the DOM associated carbon. Our results did not indicate substantial differences in carbon processing related to the complexity of the DOM substrate. The quantity of processed carbon (5-42% of added DOM) was determined by the bacteria, and

  1. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  2. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  3. Generation of Volatile Organic Compounds from Dissolved Organic Matter in far North Atlantic Surface Ocean Waters.

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2005-12-01

    The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.

  4. Temporal changes in photoreactivity of dissolved organic carbon and implications for aquatic carbon fluxes from peatlands

    NASA Astrophysics Data System (ADS)

    Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.

    2017-04-01

    Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is

  5. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Zhuo; Zhang, Hong-Hai; Zhang, Jing; Yang, Gui-Peng

    2018-04-01

    The absorption coefficient and fluorescent components of chromophoric dissolved organic matter (CDOM) in the Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) in spring and autumn were analyzed in this study. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) identified three components, namely, humic-like C1, tyrosine-like C2 and tryptophan-like C3. The seasonal variations in the vertical patterns of the CDOM absorption coefficient (aCDOM(355)) and fluorescent components were influenced by the seasonal water mass except for the terrestrial input. The relationship between aCDOM(355) and dissolved organic matter (DOC) was attributed to their own mixing behavior. The correlation of the fluorescent components with DOC was disturbed by other non-conservative processes during the export of CDOM to the open ocean. The different chemical compositions and origins of DOC and CDOM led to variability in carbon-specific CDOM absorption (a*CDOM(355)) and fluorescent component ratios (ICn/IC1). The relationship between a*CDOM(355) and aCDOM(355) demonstrated that dissolved organic matter (DOM) in the BS, but not in the ECS, highly contributed non-absorbing DOC to the total DOC concentration. The photodegradation of dominant terrestrially derived CDOM in the ECS contributed to the positive relationship between a*CDOM(355) and ICn/IC1. By contrast, the abundant autochthonous CDOM in the YS was negatively correlated with ICn/IC1 in autumn. Our established box models showed that water exchange is a potentially important source of the aromatic components in the BS, YS, and ECS. Hence, the seasonal variations in water exchange might contribute to the variability of CDOM chemical composition in the BS, YS, and ECS, and significantly influence the structure and function of their ecosystems.

  6. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  7. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  8. Geomorphic Influences on Large Wood Dam Loadings, Particulate Organic Matter and Dissolved Organic Carbon in an 0ld-Growth Northern Hardwood Watershed

    Treesearch

    P. Charles Goebel; Kurt S. Pregitzer; Brain J. Palik

    2003-01-01

    We quantified large wood loadings and seasonal concentrations of particulate organic matter (POM) and dissolved organic carbon (DOC) in three different geomonghic zones (each with unique hydrogeomorphic characteristics) of a pristine, old-growth northern hardwood watershed. The highest large wood dam loadings were in the high-gradient, bedrock controlled geomorphic...

  9. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans

    NASA Astrophysics Data System (ADS)

    Lawson, E. C.; Wadham, J. L.; Tranter, M.; Stibal, M.; Lis, G. P.; Butler, C. E. H.; Laybourn-Parry, J.; Nienow, P.; Chandler, D.; Dewsbury, P.

    2014-07-01

    Runoff from small glacier systems contains dissolved organic carbon (DOC) rich in protein-like, low molecular weight (LMW) compounds, designating glaciers as an important source of bioavailable carbon for downstream heterotrophic activity. Fluxes of DOC and particulate organic carbon (POC) exported from large Greenland catchments, however, remain unquantified, despite the Greenland Ice Sheet (GrIS) being the largest source of global glacial runoff (ca. 400 km3 yr-1). We report high and episodic fluxes of POC and DOC from a large (>600 km2) GrIS catchment during contrasting melt seasons. POC dominates organic carbon (OC) export (70-89% on average), is sourced from the ice sheet bed, and contains a significant bioreactive component (9% carbohydrates). A major source of the "bioavailable" (free carbohydrate) LMW-DOC fraction is microbial activity on the ice sheet surface, with some further addition of LMW-DOC to meltwaters by biogeochemical processes at the ice sheet bed. The bioavailability of the exported DOC (26-53%) to downstream marine microorganisms is similar to that reported from other glacial watersheds. Annual fluxes of DOC and free carbohydrates during two melt seasons were similar, despite the approximately two-fold difference in runoff fluxes, suggesting production-limited DOC sources. POC fluxes were also insensitive to an increase in seasonal runoff volumes, indicating a supply limitation in suspended sediment in runoff. Scaled to the GrIS, the combined DOC (0.13-0.17 Tg C yr-1 (±13%)) and POC fluxes (mean = 0.36-1.52 Tg C yr-1 (±14%)) are of a similar order of magnitude to a large Arctic river system, and hence may represent an important OC source to the near-coastal North Atlantic, Greenland and Labrador seas.

  10. Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams

    Treesearch

    Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones

    2009-01-01

    Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...

  11. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  12. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    USGS Publications Warehouse

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  13. Spatio-temporal variability of dissolved organic nitrogen (DON), carbon (DOC), and nutrients in the Nile River, Egypt.

    PubMed

    Badr, El-Sayed A

    2016-10-01

    Increases in human activity have resulted in enhanced anthropogenic inputs of nitrogen (N) and carbon (C) into the Nile River. The Damietta Branch of the Nile is subject to inputs from industrial, agricultural, and domestic wastewater. This study investigated the distribution and seasonality of dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and nutrients in the Nile Damietta Branch. Water samples were collected from 24 sites between May 2009 and February 2010. Dissolved organic nitrogen concentrations averaged 251 ± 115 μg/l, with a range of 90.2-671 μg/l, and contributed 40.8 ± 17.7 % to the total dissolved nitrogen (TDN) pool. Relative to autumn and winter, DON was a larger fraction of the TDN pool during spring and summer indicating the influence of bacterioplankton on the nitrogen cycle. Concentrations of DOC ranged from 2.23 to 11.3 mg/l with an average of 5.15 ± 2.36 mg/l, reflecting a high organic matter load from anthropogenic sources within the study area, and were highest during autumn. Higher values of biochemical oxygen demand (BOD), chemical oxygen demand (COD), DON, nitrate, and phosphate occurred downstream of the Damietta Branch and were probably due to anthropogenic inputs to the Nile from the Damietta district. A bacterial incubation experiment indicated that 52.1-95.0 % of DON was utilized by bacteria within 21 days. The decrease in DON concentration was accompanied by an increase in nitrate concentration of 54.8-87.3 %, presumably through DON mineralization. Based on these results, we recommend that water quality assessments consider DON and DOC, as their omission may result in an underestimation of the total organic matter load and impact.

  14. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    PubMed

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  16. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    NASA Astrophysics Data System (ADS)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  17. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions

    Treesearch

    Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie

    2009-01-01

    Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...

  18. Colored dissolved organic matter in Tampa Bay, Florida

    USGS Publications Warehouse

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  19. Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    PubMed Central

    Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains

  20. A Global Assessment of Dissolved Organic Carbon in Precipitation

    NASA Astrophysics Data System (ADS)

    Safieddine, Sarah A.; Heald, Colette L.

    2017-11-01

    Precipitation is the largest physical removal pathway of atmospheric reactive organic carbon in the form of dissolved organic carbon (DOC). We present the first global DOC distribution simulated with a global model. A total of 85 and 188 Tg C yr-1 are deposited to the ocean and the land, respectively, with DOC ranging between 0.1 and 10 mg C L-1 in this GEOS-Chem simulation. We compare the 2010 simulated DOC to a 30 year synthesis of measurements. Despite limited measurements and imperfect temporal matching, the model is able to reproduce much of the spatial variability of DOC (r = 0.63), with a low bias of 35%. We present the global average carbon oxidation state (OSc>¯) as a simple metric for describing the chemical composition. In the atmosphere, -1.8≤OSc>¯≤-0.6, and the increase in solubility upon oxidation leads to a global increase in OSc>¯ in precipitation with -0.6≤OSc>¯DOC≤0.

  1. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters.

    PubMed

    Zhu, Wen-Zhuo; Yang, Gui-Peng; Zhang, Hong-Hai

    2017-12-31

    Chromophoric dissolved organic matter (CDOM), carbohydrates, and amino acids were analyzed to investigate the photochemistry of total dissolved (<0.22μm) organic matter (DOM), high-molecular-weight (HMW, 1kDa-0.22μm) DOM and low-molecular-weight (LMW, <1kDa) DOM at stations in the Yangtze River and its coastal area, and in the Western Pacific Ocean. Results revealed that the humic-like and tryptophan-like CDOM fluorescent components in riverine, coastal, and oceanic surface waters were photodegraded during irradiation. However, the photochemical behavior of tyrosine-like component was obscured by the excessive fluorescence intensities of humic- and tryptophan-like fluorescent components. Light sensitivity varied depending on the source material; terrestrially derived DOM was more susceptible to irradiation than autochthonous DOM. In contrast to the expected photodegradation of CDOM, photo-induced synthetic reaction transformed the LMW matters to polysaccharides (PCHO) and degradation reaction decomposed the HMW DOM to Monosaccharides. Colloidal DOM preferentially underwent photodegradation, whereas permeate DOM mainly photosynthesized PCHO. The total hydrolysable amino acid (THAA) pool changed because of the additional input by the photodegradation of DOM or THAA itself. The compositions of THAA changed during the irradiation experiments, indicating that the different photochemical behavior of individual amino acids were related to their different original photoreactivities; the relatively stable amino acids (e.g., Ser and Gly) significantly accumulated during irradiation, whereas photo-active aromatic amino acids (e.g. Tyr and His) were prone to photodegradation. The data presented here demonstrated that irradiation significantly influence the conversion between dissolved and colloid organic matter. These results can promote the understanding of irradiation effect on the carbon and nitrogen cycle in riverine, estuarine and oceanic ecosystems. Copyright © 2017

  2. Dissolved organic carbon fluxes from hydropedologic units in Alaskan coastal temperate rainforest watersheds

    Treesearch

    David V. D' Amore; Rick T. Edwards; Paul A. Herendeen; Eran Hood; Jason B. Fellman

    2015-01-01

    Dissolved organic C (DOC) transfer from the landscape to coastal margins is a key component of regional C cycles. Hydropedology provides a conceptual and observational framework for linking soil hydrologic function to landscape C cycling. We used hydropedology to quantify the export of DOC from the terrestrial landscape and understand how soil temperature and water...

  3. Fate of dissolved organic nitrogen in two stage trickling filter process.

    PubMed

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Quantifying and correcting the impacts of freezing samples on dissolved organic matter absorbance

    NASA Astrophysics Data System (ADS)

    Griffin, C. G.; McClelland, J. W.; Frey, K. E.; Holmes, R. M.

    2012-12-01

    The use of optical measurements as proxies for organic matter concentration and composition has become increasingly popular in recent years. Absorbance of chromophoric dissolved organic matter (CDOM) can be used to estimate concentrations of dissolved organic carbon (DOC), as a qualitative assessment of dissolved organic matter (DOM) average molecular weight and is often used to calibrate satellite remote sensing of organic matter. However, there is evidence that preservation of samples can lead to significant changes in CDOM absorbance spectra. Freezing is a popular means of preservation, but can result in flocculation of DOM when samples are thawed for analysis. We hypothesize that the particles generated as a result of a freeze/thaw cycle lead to increasing absorption in visible wavelengths (400-800 nm). Yet, absorbance in the UV spectra should remain similar to original values. These hypotheses are tested on CDOM spectra collected from two large Arctic watersheds (the Mackenzie and Yukon rivers) and four smaller Texas watersheds (the Colorado, Guadalupe, Nueces and San Antonio rivers). In addition, we experiment with additional filtering and sonication to correct for flocculation from frozen samples. Preliminary data show that short wavelengths are relatively well preserved (200-300 nm). However, CDOM absorption changes unpredictably from 350-450 nm, the wavelengths most commonly used to estimate DOC. Absorption coefficients tend to be higher in these wavelengths after a freeze/thaw cycle, but the magnitude of this increase varies. Some of these impacts can be corrected for with sonication. For instance, when comparing experimental treatments to initial absorption at 365 nm from Mackenzie River samples, R2 increases from 0.60 to 0.79 for samples undergoing one freeze/thaw cycle to those that were also sonicated. Regardless of treatment, however, no spectral slopes were well preserved after a freeze/thaw cycle. These results reinforce earlier work that it is

  5. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  6. Influence of Multiple Environmental Factors on Organic Matter Chlorination in Podsol Soil.

    PubMed

    Svensson, Teresia; Montelius, Malin; Andersson, Malin; Lindberg, Cecilia; Reyier, Henrik; Rietz, Karolina; Danielsson, Åsa; Bastviken, David

    2017-12-19

    Natural chlorination of organic matter is common in soils. The abundance of chlorinated organic compounds frequently exceeds chloride in surface soils, and the ability to chlorinate soil organic matter (SOM) appears widespread among microorganisms. Yet, the environmental control of chlorination is unclear. Laboratory incubations with 36 Cl as a Cl tracer were performed to test how combinations of environmental factors, including levels of soil moisture, nitrate, chloride, and labile organic carbon, influenced chlorination of SOM from a boreal forest. Total chlorination was hampered by addition of nitrate or by nitrate in combination with water but enhanced by addition of chloride or most additions including labile organic matter (glucose and maltose). The greatest chlorination was observed after 15 days when nitrate and water were added together with labile organic matter. The effect that labile organic matter strongly stimulated the chlorination rates was confirmed by a second independent experiment showing higher stimulation at increased availability of labile organic matter. Our results highlight cause-effect links between chlorination and the studied environmental variables in podsol soil-with consistent stimulation by labile organic matter that did overrule the negative effects of nitrate.

  7. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm.

  8. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    PubMed

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

  9. Non-labile silver species in biosolids remain stable throughout ...

    EPA Pesticide Factsheets

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with 110mAg showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO3 extractable Ag from 1.2 to 609 µg/kg (0.002 - 3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability. This paper presents an overview of biosolids Ag chemistry in historic and contemporary biosolids sourced from the UK, USA and Australia from the 1950s until today by drawing on a unique collection of archived, stockpiled and contemporary biosolids samples. Characteristics of biosolids Ag chemistry determined in this study included total Ag measurement by neutron activation analysis (NAA); the assessment of Ag lability by 110mAg isotopic dilution (E-values); and Ag speciation by X-ray Absorp

  10. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    NASA Astrophysics Data System (ADS)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  11. Toward Radiocarbon Measurement of Individual Amino Acids in Marine Dissolved Organic Matter (DOM): Δ14C Blank Quantification for an HPLC Purification Method.

    NASA Astrophysics Data System (ADS)

    Bour, A. L.; Broek, T.; Walker, B. D.; Mccarthy, M. D.

    2014-12-01

    The presence of much of the marine dissolved organic nitrogen (DON) pool as uncharacterized, biologically recalcitrant molecules is a central mystery in the marine nitrogen cycle. Radiocarbon (Δ14C) isotopic measurements have been perhaps the most important data constraining the cycling of dissolved organic matter (DOM), but little Δ14C data specific to DON is available. Amino acids (AAs) are the major component of DON that can be isolated on a molecular level. Δ14C measurements for the operational "protein-like" fraction of DOM in the deep ocean indicate that this compound class has radiocarbon ages greater than several ocean mixing cycles, suggesting remarkable preservation of labile AAs exported from the surface. However, it is possible that the previously defined operational "protein-like" fraction may also contain non-AA material. Radiocarbon measurement of purified individual AAs would provide a more direct and reliable proxy for DON Δ14C age and cycling rate. We present here Δ14C blank characterization of an AA purification method based on HPLC, with on-line fraction collection. This method allows the recovery of unmodified AAs, but accurate measurement of small AA samples that can be extracted from DOM requires a system with extremely low Δ 14C blanks. Here we assess the impact of HPLC purification on the Δ14C age of known amino acids standards. Individual AA standards with contrasting (modern vs. dead) and well- characterized Δ14C ages were processed in a range of sample sizes. The eluted peaks were collected and dried, and measurement of their post-chromatography Δ14C content allowed for determination of the Δ14C blank by method of additions. The same protocol was applied to a mixture of six AA standards, to evaluate tailing effects in consecutive AA peaks of contrasting Δ14C age. AA standards were selected to include both Δ14C modern and dead AAs that elute both early and late in the chromatographic solvent program. We discuss implications

  12. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    PubMed

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P<0.05) and the protein-like FDOM (P<0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  13. Effect of disinfection upon dissolved organic carbon (DOC) in wastewater: bacterial bioassays.

    PubMed

    Arana, I; Santorum, P; Muela, A; Barcina, I

    2000-08-01

    Quantitative and qualitative changes in organic matter content of wastewater effluents attributable to chlorination and ozonation have been analysed using bioassays as well as organic carbon direct measures. Bioassays were carried out using the bacterial populations of wastewater and two Escherichia coli strains as test micro-organisms. Our results indicate that pure strains present some advantages over indigenous bacteria. Although wastewater bacterial populations are better adapted to growth in wastewater, E. coli strains are more sensitive to changes in dissolved organic carbon (DOC) content. Moreover, the use of pure cultures allows estimation of the portion of DOC which can be converted in cell biomass, the assimilable organic carbon (AOC). Finally, the results obtained using prototrophic and the auxotrophic strains of E. coli suggested that ozonation alters the amino acid composition of wastewater while chlorination does not change the quantity nor the quality of the DOC present in effluents.

  14. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications.

    PubMed

    Michael-Kordatou, I; Michael, C; Duan, X; He, X; Dionysiou, D D; Mills, M A; Fatta-Kassinos, D

    2015-06-15

    Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.

    PubMed

    Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew

    2007-04-01

    The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.

  16. Deepwater Horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool.

    PubMed

    Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen

    2014-08-19

    Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.

  17. Chemical fractionation-enhanced structural characterization of marine dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Arakawa, N.; Aluwihare, L.

    2016-02-01

    Describing the molecular fingerprint of dissolved organic matter (DOM) requires sample processing methods and separation techniques that can adequately minimize its complexity. We have employed acid hydrolysis as a way to make the subcomponents of marine solid phase-extracted (PPL) DOM more accessible to analytical techniques. Using a combination of NMR and chemical derivatization or reduction analyzed by comprehensive (GCxGC) gas chromatography, we observed chemical features strikingly similar to terrestrial DOM. In particular, we observed reduced alicylic hydrocarbons believed to be the backbone of previously identified carboxylic rich alicyclic material (CRAM). Additionally, we found carbohydrates, amino acids and small lipids and acids.

  18. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...

  19. Biochar amendment to soil changes dissolved organic matter content and composition.

    PubMed

    Smebye, Andreas; Alling, Vanja; Vogt, Rolf D; Gadmar, Tone C; Mulder, Jan; Cornelissen, Gerard; Hale, Sarah E

    2016-01-01

    Amendments of biochar, a product of pyrolysis of biomass, have been shown to increase fertility of acidic soils by enhancing soil properties such as pH, cation-exchange-capacity and water-holding-capacity. These parameters are important in the context of natural organic matter contained in soils, of which dissolved organic matter (DOM) is the mobile and most bioavailable fraction. The effect of biochar on the content and composition of DOM in soils has received little research attention. This study focuses on the effects of amendments of two different biochars to an acidic acrisol and a pH-neutral brown soil. A batch experiment showed that mixing biochar with the acrisols at a 10 wt.% dose increased the pH from 4.9 to 8.7, and this resulted in a 15-fold increase in the dissolved organic carbon concentration (from 4.5 to 69 mg L(-1)). The pH-increase followed the same trend as the release of DOM in the experiment, causing higher DOM solubility and desorption of DOM from mineral sites. The binding to biochar of several well-characterised reference DOM materials was also investigated and results showed a higher sorption of aliphatic DOM to biochar than aromatic DOM, with DOM-water partitioning coefficients (Kd-values) ranging from 0.2 to 590 L kg(-1). A size exclusion occurring in biochar's micropores, could result in a higher sorption of smaller aliphatic DOM molecules than larger aromatic ones. These findings indicate that biochar could increase the leaching of DOM from soil, as well as change the DOM composition towards molecules with a larger size and higher aromaticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Molecular imaging of labile iron(II) pools in living cells with a turn-on fluorescent probe.

    PubMed

    Au-Yeung, Ho Yu; Chan, Jefferson; Chantarojsiri, Teera; Chang, Christopher J

    2013-10-09

    Iron is an essential metal for living organisms, but misregulation of its homeostasis at the cellular level can trigger detrimental oxidative and/or nitrosative stress and damage events. Motivated to help study the physiological and pathological consequences of biological iron regulation, we now report a reaction-based strategy for monitoring labile Fe(2+) pools in aqueous solution and living cells. Iron Probe 1 (IP1) exploits a bioinspired, iron-mediated oxidative C-O bond cleavage reaction to achieve a selective turn-on response to Fe(2+) over a range of cellular metal ions in their bioavailable forms. We show that this first-generation chemical tool for fluorescence Fe(2+) detection can visualize changes in exchangeable iron stores in living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Moreover, IP1 can be used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin, providing a starting point for further investigations of iron signaling and stress events in living systems as well as future probe development.

  1. Dissolved organic carbon loading from the field to watershed scale in tile-drained landscapes

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic carbon (DOC) is an integral part to the functioning of aquatic ecosystems; yet, there is a paucity of data on DOC delivery and management in tile-drained agricultural headwater watersheds. The objective of this study was to quantify the contribution of subsurface tile drains to wat...

  2. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean.

    PubMed

    Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J

    2017-09-01

    Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. PATTERNS AND CONTROLS OF DISSOLVED ORGANIC MATTER EXPORT BY MAJOR RIVERS: A NEW SEASONAL, SPATIALLY EXPLICIT, GLOBAL MODEL

    EPA Science Inventory

    River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...

  4. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, James; Decker, David; Patterson, Gary

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC)more » were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  5. Effects of Different Tillage and Straw Return on Soil Organic Carbon in a Rice-Wheat Rotation System

    PubMed Central

    Zhu, Liqun; Hu, Naijuan; Yang, Minfang; Zhan, Xinhua; Zhang, Zhengwen

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC) and labile organic C fractions at three soil depths (0–7, 7–14 and 14–21 cm) for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC), dissolved organic C (DOC) and microbial biomass C (MBC) contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0–7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7–14 cm depth. However, at 14–21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta. PMID:24586434

  6. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M

    2013-05-07

    A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).

  7. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  8. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGES

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; ...

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr -1 (143 Tmol C yr -1, 16.4 Tmol N yr -1, and 1 Tmol P yr -1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  9. CHANGES IN SPECTRAL AND PHOTOCHEMICAL PROPERTIES OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL ESTUARY

    EPA Science Inventory

    Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...

  10. Snowball Earth prevention by dissolved organic carbon remineralization.

    PubMed

    Peltier, W Richard; Liu, Yonggang; Crowley, John W

    2007-12-06

    The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.

  11. Fate and lability of silver in soils: Effect of ageing

    EPA Science Inventory

    The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...

  12. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    USGS Publications Warehouse

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-01-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d−1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d−1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 μM; 0.26–1 mg L−1) and ultraviolet absorption coefficient values (a254 < 5 m−1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  13. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-09-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  14. Diversity of bacterial communities and dissolved organic matter in a temperate estuary.

    PubMed

    Osterholz, Helena; Kirchman, David L; Niggemann, Jutta; Dittmar, Thorsten

    2018-06-14

    Relationships between bacterial community and dissolved organic matter (DOM) include microbial uptake, transformation and secretion, all of which influence DOM composition. In this study, we explore diversity and similarity metrics of dissolved organic molecules (Fourier-transform ion cyclotron resonance mass spectrometry) and bacterial communities (tag-sequencing of 16S rRNA genes) along the salinity gradient of the Delaware Estuary (USA). We found that even though mixing, discharge and seasonal changes explained most of the variation in DOM and bacterial communities, there was still a relationship, albeit weak, between the composition of DOM and bacterial communities in the estuary. Overall, many DOM molecular formulas (MFs) and bacterial operational taxonomic units (OTUs) reoccurred over years and seasons while the frequency of MF-OTU correlations varied. Diversity based on MFs and OTUs was significantly correlated, decreasing towards the open ocean. However, while the diversity of bacterial OTUs dropped markedly with low salinity, MF diversity decreased strongly only at high salinities. We hypothesize that the different turnover times of DOM and bacteria lead to different abundance distributions of OTUs and MFs. A significant portion of the detected DOM is of a more refractory nature with lifetimes largely exceeding the mixing time of the estuary, while bacterial community turnover times in the Delaware Estuary are estimated at several days.

  15. How appetizing is the dissolved organic matter (DOM) trees lose during rainfall?

    NASA Astrophysics Data System (ADS)

    Howard, D.; Van Stan, J. T., II; Whitetree, A.; Zhu, L.; Stubbins, A.

    2017-12-01

    Dissolved organic carbon (DOC) is the chemical backbone of dissolved organic matter (DOM), which is important because it drives many processes in soils and waterways. Current DOC work has paid little attention to interactions between rain and plant canopies, where rainfall is partitioned into throughfall and stemflow. Even less DOC research has investigated the effect of arboreal epiphytes on throughfall and stemflow DOC. The purpose of this study is twofold: (1) assess the degree and timing of DOC consumption by microbial communities (biolability) in throughfall and stemflow, and (2) determine whether the presence of arboreal epiphytes in the canopy affect DOC biolability. Biolability of stemflow and throughfall DOC from Juniperus virginiana (cedar) was determined by incubating samples for 14 days. Throughfall and stemflow DOC was highly biolabile with DOC concentrations decreasing by 30-60%. Throughfall DOC was more biolabile than stemflow DOC. DOC in both throughfall and stemflow from epiphyte-covered cedars was less biolabile than DOC from trees without epiphytes. The high biolability of tree-derived DOC indicates that its supply provides carbon substrates to the microbial community at the forest floor, in soils and the rhizosphere. Epiphytes appear to be important in determining the biolability of DOC and therefore the size of this carbon subsidy to the soil ecosystem.

  16. Controls on the dynamics of dissolved organic matter in soils: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalbitz, K.; Solinger, S.; Park, J.H.

    Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soils. The authors focus on comparing results between laboratory and field investigations and on the differences between the dynamics of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP). Both laboratory and field studies show that litter and humus are the most important DOM sources in soils. However, it is impossible to quantifymore » the individual contributions of each of these sources to DOM release. In addition, it is not clear how changes in the pool sizes of litter or humus may affect DOM release. High microbial activity, high fungal abundance, and any conditions that enhance mineralization all promote high DOM concentrations. However, under field conditions, hydrologic variability in soil horizons with high carbon contents may be more important than biotic controls. In subsoil horizons with low carbon contents, DOM may be adsorbed strongly to mineral surfaces, resulting in low DOM concentrations in the soil solution. There are strong indications that microbial degradation of DOM also controls the fate of DOM in the soil.« less

  17. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  18. Mixing and photoreactivity of dissolved organic matter in the Nelson/Hayes estuarine system (Hudson Bay, Canada)

    NASA Astrophysics Data System (ADS)

    Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.

    2016-09-01

    This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.

  19. Reactivity of Triplet Excited States of Dissolved Natural Organic Matter in Stormflow from Mixed-Use Watersheds.

    PubMed

    McCabe, Andrew J; Arnold, William A

    2017-09-05

    Dissolved organic matter (DOM) quantity and composition control the rate of formation (R f,T ) of triplet excited states of dissolved natural organic matter ( 3 DOM*) and the efficiency of 3 DOM* formation (the apparent quantum yield, AQY T ). Here, the reactivity of 3 DOM* in stormflow samples collected from watersheds with variable land covers is examined. Stormflow DOM reflects variability in DOM quantity and composition as a function of land cover and may be important in controlling the fate of cotransported pollutants. R f,T and AQY T were measured using 2,4,6-trimethylphenol in stormflow samples under simulated sunlight. The DOM source and composition was characterized using absorbance and fluorescence spectroscopies and high-resolution mass spectrometry. R f,T and the total rate of light absorption by the water samples (R a ) increased with the dissolved organic carbon (DOC) concentration. AQY T was independent of DOC concentration, but varied with DOM source: developed land cover (4-6%) ≈ open water > vegetated land cover (3%). AQY T was positively related to an index for microbial/algal DOM content and negatively related to DOM molecular weight, DOM aromaticity, and the content of polyphenols. This work demonstrates that TMP is an effective probe for the determination of R f,T and AQY T in whole water samples after accounting for the inhibition of TMP photodegradation by DOM.

  20. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2017-04-01

    The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.

  1. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter.

    PubMed

    Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura

    2016-04-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.

  2. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen

    USGS Publications Warehouse

    McHale, M.R.; Mitchell, M.J.; McDonnell, Jeffery J.; Cirmo, C.P.

    2000-01-01

    Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, U.S.A. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3/- and NH4/+ contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3/-, and NH4/+ constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3/-, and NH4+ stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3/- and NH4/+ flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P<0.01) and growing season (R2= 0.09; P<0.01). There was no significant relationship between NO3/- concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P<0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3- concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.

  3. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    PubMed

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Redox processes in the rhizosphere of restored peatlands - The impact of vascular plant species on electrochemical properties of dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Agethen, Svenja; Wolff, Franziska; Knorr, Klaus-Holger

    2016-04-01

    Restoration of cut over peatlands in Central Europe is challenging in a landscape overused for agriculture. Excess nutrient availability by excess fertilization triggers uncharacteristic vegetation that is one key driver for carbon cycling. Those nutrient rich systems are often dominated by graminoids, and were often found to emit substantial amounts of methane. Plants grown under nutrient rich conditions provide more labile carbon in rhizodeposition and litter that fuels methanogenesis. Such species often have aerenchyma that facilitates direct CH4 emissions to the atmosphere and therefore impair the climate cooling function of bogs. On the other hand, aerenchymatic tissue supplies oxygen to the rhizosphere, which may reduce methanogenesis or stimulate methane oxidation, as methanogenesis is a strictly anaerobic process. Which of the effects prevail is often unclear. Therefore, the aim of this study was to test the impact of different vegetation on rhizospheric redox conditions and methanogenesis, including aerenchymatic vascular plants that are dominant in restored cut over peatlands. As ombrotrophic peat is poor in inorganic electron acceptors (EAs) to suppress methanogenesis, we analyzed the electron acceptor (EACs) and electron donor capacities (EDCs) of dissolved organic matter (DOM) in the rhizosphere to understand the impact of vegetation on anaerobic organic matter degradation. We planted Juncus effusus, Eriophorum vaginatum, Eriophorum angustifolium, Sphagnum (mixture of S. magellanicum, S. papillosum, S. sec. acutifolia, 1/3 each) plus non-vegetated controls; six replicates per batch; in containers with untreated homogenized peat. The plants grow under constant conditions (20° C, 12h diurnal light cycles and 80% RH). Anoxic conditions were achieved by keeping the water table at +10 cm. For monitoring, the rhizosphere is equipped with suction and gas samplers. We measure dissolved CO2 and CH4 concentrations, inorganic EAs (NO3-, Fe(III), and SO42-) and

  5. Hot regions of labile and stable soil organic carbon in Germany - Spatial variability and driving factors

    NASA Astrophysics Data System (ADS)

    Vos, Cora; Jaconi, Angélica; Jacobs, Anna; Don, Axel

    2018-06-01

    Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools, as labile pools with a high turnover may be accumulated much faster but are also more vulnerable to losses. The aims of this study were to (1) assess how soil organic carbon (SOC) is distributed among SOC fractions on a national scale in Germany, (2) identify factors influencing this distribution and (3) identify regions with high vulnerability to SOC losses. The SOC content and proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (< 87 g kg-1 SOC) covering Germany, using near-infrared reflectance spectroscopy. Drivers of the spatial variability in SOC fractions were determined using the machine learning algorithm cforest. The SOC content and proportions of fractions were predicted with good accuracy (SOC content: R2 = 0.87-0.90; SOC proportions: R2 = 0.83; ratio of performance to deviation (RPD): 2.4-3.2). The main explanatory variables for the distribution of SOC among the fractions were soil texture, bulk soil C / N ratio, total SOC content and pH. For some regions, the drivers were linked to the land-use history of the sites. Arable topsoils in central and southern Germany were found to contain the highest proportions and contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-western Germany contains an area of sandy soils with unusually high SOC contents and high proportions of light SOC fractions, which are commonly regarded as representing a labile carbon pool. This is true for the former peat soils in this area, which have already lost and are at high risk of losing high proportions of their SOC stocks. Those black sands can, however, also contain high amounts of stable SOC due to former heathland vegetation and need to be treated and discussed separately from non

  6. Examining the role of dissolved organic nitrogen in stream ecosystems across biomes and Critical Zone gradients

    NASA Astrophysics Data System (ADS)

    Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.

    2016-12-01

    Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.

  7. CONSTANTS FOR MERCURY BINDING BY DISSOLVED ORGANIC MATTER ISOLATES FROM THE FLORIDA EVERGLADES. (R827653)

    EPA Science Inventory

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...

  8. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Zheng, Le; Fan, Shu-Xiu; Verhozina, V A

    2009-02-15

    A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.

  9. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    PubMed

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  10. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years

    PubMed Central

    Han, Xiaozeng; Yu, Wantai; Wang, Peng; Cheng, Weixin

    2017-01-01

    Soil organic carbon (SOC) is a major component in the global carbon cycle. Yet how input of plant litter may influence the loss of SOC through a phenomenon called priming effect remains highly uncertain. Most published results about the priming effect came from short-term investigations for a few weeks or at the most for a few months in duration. The priming effect has not been studied at the annual time scale. In this study for 815 days, we investigated the priming effect of added maize leaves on SOC decomposition of two soil types and two treatments (bare fallow for 23 years, and adjacent old-field, represent stable and relatively labile SOC, respectively) of SOC stabilities within each soil type, using a natural 13C-isotope method. Results showed that the variation of the priming effect through time had three distinctive phases for all soils: (1) a strong negative priming phase during the first period (≈0–90 days); (2) a pulse of positive priming phase in the middle (≈70–160 and 140–350 days for soils from Hailun and Shenyang stations, respectively); and (3) a relatively stabilized phase of priming during the last stage of the incubation (>160 days and >350 days for soils from Hailun and Shenyang stations, respectively). Because of major differences in soil properties, the two soil types produced different cumulative priming effects at the end of the experiment, a positive priming effect of 3–7% for the Mollisol and a negative priming effect of 4–8% for the Alfisol. Although soil types and measurement times modulated most of the variability of the priming effect, relative SOC stabilities also influenced the priming effect for a particular soil type and at a particular dynamic phase. The stable SOC from the bare fallow treatment tended to produce a narrower variability during the first phase of negative priming and also during the second phase of positive priming. Averaged over the entire experiment, the stable SOC (i.e., the bare fallow) was at

  11. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species.

    PubMed

    Jiang, Tao; Chen, Xueshuang; Wang, Dingyong; Liang, Jian; Bai, Weiyang; Zhang, Cheng; Wang, Qilei; Wei, Shiqiang

    2018-01-15

    Dissolved organic matter (DOM) plays an important environmental and ecological role in inland aquatic systems, including lakes. In this study, using fluorescence analysis, we investigated the seasonal dynamics of DOM characteristics in Changshou Lake, which is a typical inland lake in the Three Gorges Reservoir (TGR) area. We also discuss the environmental implications of DOM for mercury (Hg) dynamics. Based on the origins of two end-members, the variations in DOM observed in this study in Changshou Lake suggest that hydrological processes (e.g., terrestrial inputs resulting from runoff and humic-like component residences) and biological activities (e.g., microbial and algae growth) are the two main principal components controlling the seasonal dynamics of DOM characteristics. Furthermore, the dynamics of dissolved Hg co-varied with variations in DOM properties, rather than with dissolved organic carbon (DOC) concentrations. This indicates that the previously reported simple correlations between DOC and Hg were not comprehensive and may lead to misunderstanding the interactions between DOM and Hg. Therefore, we recommend that when using DOM-Hg correlations to evaluate the role of DOM in the environmental fate of Hg, especially in field investigations of the spatial and temporal distribution of Hg, the properties of DOM must be taken into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    USGS Publications Warehouse

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  13. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    PubMed

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  14. Groundwater contributions of flow, nitrate, and dissolved organic carbon to the lower San Joaquin River, California, 2006-08

    USGS Publications Warehouse

    Zamora, Celia; Dahlgren, Randy A.; Kratzer, Charles R.; Downing, Bryan D.; Russell, Ann D.; Dileanis, Peter D.; Bergamaschi, Brian A.; Phillips, Steven P.

    2013-01-01

    The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of

  15. Soil organic matter composition affected by potato cropping managements

    USDA-ARS?s Scientific Manuscript database

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  16. Assessing SOC labile fractions through respiration test, density-size fractionation and thermal analysis - A comparison of methods

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Cécillon, Lauric; Chenu, Claire; Baudin, François; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the biggest terrestrial carbon reservoir, storing 3 to 4 times more carbon than the atmosphere. However, despite its major importance for climate regulation SOM dynamics remains insufficiently understood. For instance, there is still no widely accepted method to assess SOM lability. Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes have been used for decades and are now considered as classical estimates of very labile and labile soil organic carbon (SOC), respectively. But the pertinence of these methods to characterize SOM turnover can be questioned. Moreover, they are very time-consuming and their reproducibility might be an issue. Alternate ways of determining the labile SOC component are thus well-needed. Thermal analyses have been used to characterize SOM among which Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of SOM biogeochemical stability (Gregorich et al., 2015; Barré et al., 2016). Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions, including deep samples (up to 1 m depth), we compared different techniques used for SOM lability assessment. We explored whether results from soil respiration test (10-week laboratory incubations), SOM size-density fractionation and RE6 thermal analysis were comparable and how they were correlated. A set of 222 (respiration test and RE6), 103 (SOM fractionation and RE6) and 93 (respiration test, SOM fractionation and RE6) forest soils samples were respectively analyzed and compared. The comparison of the three methods (n = 93) using a principal component analysis separated samples from the surface (0-10 cm) and deep (40-80 cm) layers, highlighting a clear effect of depth on the short-term persistence of SOC. A correlation analysis demonstrated that, for these samples, the two classical methods of labile SOC determination (respiration and SOM fractionation

  17. Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams

    Treesearch

    Clifford N. Dahm

    1981-01-01

    Removal of dissolved organic carbon (DOC) from water resulting from adsorption and microbial uptake was examined to determine the importance of biotic and abiotic pathways. Physical–chemical adsorption to components of the stream sediment or water and biotic assimilation associated with the microbial population was determined in recirculating chambers utilizing...

  18. Determination of dissolved aluminum in water samples

    USGS Publications Warehouse

    Afifi, A.A.

    1983-01-01

    A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

  19. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  20. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    PubMed

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  1. Memory expression is independent of memory labilization/reconsolidation.

    PubMed

    Barreiro, Karina A; Suárez, Luis D; Lynch, Victoria M; Molina, Víctor A; Delorenzi, Alejandro

    2013-11-01

    There is growing evidence that certain reactivation conditions restrict the onset of both the destabilization phase and the restabilization process or reconsolidation. However, it is not yet clear how changes in memory expression during the retrieval experience can influence the emergence of the labilization/reconsolidation process. To address this issue, we used the context-signal memory model of Chasmagnathus. In this paradigm a short reminder that does not include reinforcement allows us to evaluate memory labilization and reconsolidation, whereas a short but reinforced reminder restricts the onset of such a process. The current study investigated the effects of the glutamate antagonists, APV (0.6 or 1.5 μg/g) and CNQX (1 μg/g), prior to the reminder session on both behavioral expression and the reconsolidation process. Under conditions where the reminder does not initiate the labilization/reconsolidation process, APV prevented memory expression without affecting long-term memory retention. In contrast, APV induced amnesic effects in the long-term when administered before a reminder session that triggers reconsolidation. Under the present parametric conditions, the administration of CNQX prior to the reminder that allows memory to enter reconsolidation impairs this process without disrupting memory expression. Overall, the present findings suggest that memory reactivation--but not memory expression--is necessary for labilization and reconsolidation. Retrieval and memory expression therefore appear not to be interchangeable concepts. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  3. The impact of large river system on the signal of dissolved organic matter: a case study on the Changjiang (Yangtze River), China

    NASA Astrophysics Data System (ADS)

    xiaona, W.; Bao, H.; Wu, Y.

    2013-12-01

    As one of the largest river in the world, studying the properties of dissolved organic matter in Changjiang can help us reveal the change of terrestrial organic matter in typical large subtropical river system. Samples collected from mid-lower reaches of Changjiang and its main tributaries/lakes in July 2010 and August 2012 were analysed for dissolved organic carbon (DOC), dissolved lignin phenols and chromophoric dissolved organic carbon (CDOM). Based on the hydrological condition, both of the two cruises are in flood season, while the latter is extremely flood season. The hydrological condition can impact the signal of dissolved lignin phenols as well as DOC. The DOC concentration is similar for both the cruises, with an average of 139×21 μM in 2010 and 130×36 μM in 2012. But the dissolved lignin phenols show obvious difference, the concentration is 13.6×3.4 μg/L and 12.7×5.2 μg/L for the main stream and tributaries/lakes in 2010 respectively, but it decreases to 8.7×2.5 μg/L and 6.5×3.5 μg/L in 2012.The dissolved lignin phenols show positive correlation with DOC in August 2012, but no similar trend is observed in 2010. Excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEMs-PARAFAC) decomposes the fluorescence matrices of CDOM into three humic-like (H1: 315(250)/400 nm, H2: 350(280)/460 nm, H3: 250/450~485 nm) and two protein-like (P1: 270/315 nm, P2: 285/350 nm) components. Good linear correlations are observed within three humic-like components and two protein-like components, indicating that the same types of components (humic-like or protein-like) have similar origin and geochemical behaviors. However, these two kinds of components show different tendency. The total content of dissolved lignin phenols is correlated with the absorption in 280 nm, indicating the optical property of CDOM is related to its structure. There are many factors impacting the composition of dissolved organic matter in large river

  4. Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments

    NASA Astrophysics Data System (ADS)

    Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.

  5. Biochemical Composition of Dissolved Organic Carbon Derived from Phytoplankton and Used by Heterotrophic Bacteria

    PubMed Central

    Sundh, Ingvar

    1992-01-01

    The molecular size distribution and biochemical composition of the dissolved organic carbon released from natural communities of lake phytoplankton (photosynthetically produced dissolved organic carbon [PDOC]) and subsequently used by heterotrophic bacteria were determined in three lakes differing in trophic status and concentration of humic substances. After incubation of epilimnetic lake water samples with H14CO3- over one diel cycle, the phytoplankton were removed by size-selective filtration. The filtrates, still containing most of the heterotrophic bacteria, were reincubated in darkness (heterotrophic incubation). Differences in the amount and composition of PDO14C between samples collected before the heterotrophic incubation and samples collected afterwards were considered to be a result of bacterial utilization. The PDO14C collected at the start of the heterotrophic incubations always contained both high (>10,000)- and low (<1,000)-molecular-weight (MW) components and sometimes contained intermediate-MW components as well. In general, bacterial turnover rates of the low-MW components were fairly rapid, whereas the high-MW components were utilized slowly or not at all. In the humic lake, the intermediate-MW components accounted for a large proportion of the net PDO14C and were subject to rapid bacterial utilization. This fraction probably consisted almost entirely of polysaccharides of ca. 6,000 MW. Amino acids and peptides, other organic acids, and carbohydrates could all be quantitatively important parts of the low-MW PDO14C that was utilized by the heterotrophic bacteria, but the relative contributions of these fractions differed widely. It was concluded that, generally, low-MW components of PDOC are quantitatively much more important to the bacteria than are high-MW components, that PDOC released from phytoplankton does not contain substances of quantitative importance as bacterial substrates in all situations, and that high-MW components of PDOC probably

  6. Photodegradation of Pyrogenic Dissolved Organic Matter (Biochar Leachates)

    NASA Astrophysics Data System (ADS)

    Bostick, K. W.; Zimmerman, A. R.; Hatcher, P.; Mitra, S.; Wozniak, A. S.

    2017-12-01

    A large portion of soil organic matter has been suggested to be pyrogenic (e.g., charred biomass or soot). While pyrogenic organic matter has been regarded as relatively stable in the environment, significant losses of pyrogenic organic carbon can occur via degradation and solubilization. Pyrogenic dissolved organic matter (py-DOM) could be an important intermediate in global C cycling, however its geochemical fate is still unknown. In the current study, the mineralization and transformation of py-DOM were explored through a series of photodegradation experiments. A biochar prepared by pyrolyzing oak wood at 400 °C was leached for a period of 48 hours. This leachate was exposed to light simulating the irradiance and spectra of natural sunlight from 295 to 365 nm. Photodegraded leachate was subsampled during a period of 20 days and analyzed for TOC, DIC and TN. Additionally, solid phase (PPL) extracts of leachate DOM were oxidized in hot nitric acid and analyzed via HPLC for benzenepolycarboxylic acids (BPCAs). In previous studies, the proportion of aromatically condensed py-DOM (as indicated carboxyl substitution in BPCA) in biochar leachates was found to increase with parent char pyrolysis temperature. Thus, to explore the influence of py-DOM type on photodegradation, losses of C, N, and condensed aromatic C were examined in leachates of an oak biochar thermal series (pyrolyzed at 400, 525, 650 °C). The resulting rates of photo-degradative losses in py-C and condensed aromatics in these leachates can be used to estimate the stability/longevity of py-DOM in aquatic systems, potential for py-DOM export from terrestrial systems, and negative effects to aquatic ecosystems.

  7. Response to Comment on “Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory”

    NASA Astrophysics Data System (ADS)

    Koch, Boris P.; Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter

    2017-05-01

    Dittmar et al. proposed that mixing alone can explain our observed decrease in marine dissolved organic sulfur with age. However, their simple model lacks an explanation for the origin of sulfur-depleted organic matter in the deep ocean and cannot adequately reproduce our observed stoichiometric changes. Using radiocarbon age also implicitly models the preferential cycling of sulfur that they are disputing.

  8. Transformations and Fates of Terrigenous Dissolved Organic Matter in River-influenced Ocean Margins

    NASA Astrophysics Data System (ADS)

    Fichot, Cedric G.

    Rivers contribute about 0.25 Pg of terrigenous dissolved organic carbon (tDOC) to the ocean each year. The fate and transformations of this material have important ramifications for the metabolic state of the ocean, air-sea CO2 exchange, and the global carbon cycle. Stable isotopic compositions and terrestrial biomarkers suggest tDOC must be efficiently mineralized in ocean margins. Nonetheless, the extent of tDOC mineralization in these environments remains unknown, as no quantitative estimate is available. The complex interplay of biogeochemical and physical processes in these systems compounded by the limited practicality of chemical proxies (organic biomarkers, isotopic compositions) make the quantification of tDOC mineralization in these dynamic systems particularly challenging. In this dissertation, new optical proxies were developed (Chapters 1 and 2) and facilitated the first quantitative assessment of tDOC mineralization in a dynamic river-influenced ocean margin (Chapter 3) and the monitoring of continental runoff distributions in the coastal ocean using remote sensing (Chapter 4). The optical properties of chromophoric dissolved organic matter (CDOM) were used as optical proxies for dissolved organic carbon concentration ([DOC]) and %tDOC. In both proxies, the CDOM spectral slope coefficient ( S275-295) was exploited for its informative properties on the chemical nature and composition of dissolved organic matter. In the first proxy, a strong relationship between S275-295 and the ratio of CDOM absorption to [DOC] facilitated accurate retrieval (+/- 4%) of [DOC] from CDOM. In the second proxy, the existence of a strong relationship between S275-295 and the DOC-normalized lignin yield facilitated the estimation of the %tDOC from S 275-295. Using the proxies, the tDOC concentration can be retrieved solely from CDOM absorption coefficients (lambda = 275-295 nm) in river-influenced ocean margins. The practicality of optical proxies facilitated the calculation

  9. [Evolution of Dissolved Organic Matter Properties in a Constructed Wetland of Xiao River, Hebei].

    PubMed

    Ma, Li-na; Zhang, Hui; Tan, Wen-bing; Yu, Min-da; Huang, Zhi-gang; Gao, Ru-tai; Xi, Bei-dou; He, Xiao-song

    2016-01-01

    The evolution of water DOC and COD, and the source, chemical structure, humification degree and redox of dissolved organic matter (DOM) in a constructed wetland of Xiao River, Hebei, was investigated by 3D excitation--emission matrix fluorescence spectroscopy coupled with ultraviolet spectroscopy and chemical reduction, in order to explore the geochemical processes and environmental effects of DOM. Although DOC contributes at least 60% to COD, its decrease in the constructed wetland is mainly caused by the more extensive degradation of elements N, H, S, and P than C in DOM, and 65% is contributed from the former. DOM is mainly consisted of microbial products based on proxies f470/520 and BIX, indicating that DOM in water is apparently affected by microbial degradation. The result based on PARAFAC model shows that DOM in the constructed wetland contains protein-like and humus-like components, and Fulvic- and humic-like components are relatively easier to degrade than protein-like components. Fulvic- and humic-like components undergo similar decomposition in the constructed wetland. A common source of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) exists; both CDOM and FDOM are mainly composed of a humus-like material and do not exhibit selective degradation in the constructed wetland. The proxies E2 /E3, A240-400, r(A, C) and HIX in water have no changes after flowing into the constructed wetland, implying that the humification degree of DOM in water is hardly affected by wet constructed wetland. However, the constructed wetland environment is not only beneficial in forming the reduced state of DOM, but also facilitates the reduction of ferric. It can also improve the capability of DOM to function as an electron shuttle. This result may be related to the condition that the aromatic carbon of DOM can be stabilized well in the constructed wetland.

  10. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  11. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  12. Determination and theoretical aspects of the equilibrium between dissolved organic matter and hydrophobic organic micropollutants in water (Kdoc).

    PubMed

    Krop, H B; van Noort, P C; Govers, H A

    2001-01-01

    Literature on the equilibrium constant for distribution between dissolved organic carbon (DOC) (Kdoc) data of strongly hydrophobic organic contaminants were collected and critically analyzed. About 900 Kdoc entries for experimental values were retrieved and tabulated, including those factors that can influence them. In addition, quantitative structure-activity relationship (QSAR) prediction equations were retrieved and tabulated. Whether a partition or association process between the contaminant and DOC takes place could not be fully established, but indications toward an association process are strong in several cases. Equilibrium between a contaminant and DOC in solution was shown to be achieved within a minute. When the equilibrium shifts in time, this was caused by either a physical or chemical change of the DOC, affecting the lighter fractions most. Adsorption isotherms turned out to be linear in the contaminant concentration for the relevant DOC concentration up to 100 mg of C/L. Eighteen experimental methods have been developed for the determination of the pertinent distribution constant. Experimental Kdoc values revealed the expected high correlation with partition coefficients over n-octanol and water (Kow) for all experimental methods, except for the HPLC and apparent solubility (AS) method. Only fluorescence quenching (FQ) and solid-phase microextraction (SPME) methods could quantify fast equilibration. Only 21% of the experimental values had a 95% confidence interval, which was statistically significantly different from zero. Variation in Kdoc values was shown to be high, caused mainly by the large variation of DOC in water samples. Even DOC from one sample gave different equilibrium constants for different DOC fractions. Measured Kdoc values should, therefore, be regarded as average values. Kdoc was shown to increase on increasing molecular mass, indicating that the molecular mass distribution is a proper normalization function for the average Kdoc at

  13. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology

    PubMed Central

    Turan, Belma; Tuncay, Erkan

    2017-01-01

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144

  14. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.

    PubMed

    Turan, Belma; Tuncay, Erkan

    2017-11-12

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.

  15. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Treesearch

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  16. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  17. Spatial distribution and mobility of organic carbon (POC and DOC) in a coastal Mediterranean environment (Saronikos Gulf, Greece) during 2007-2009 period.

    PubMed

    Evangeliou, Nikolaos; Florou, Heleny

    2013-08-01

    Particulate (POC) and dissolved organic carbon (DOC) is an important parameter for the pollution assessment of coastal marine systems, especially those affected by anthropogenic, domestic, and industrial activities. In the present paper, a similar marine system (Saronikos Gulf) located in the west-central Aegean Sea (eastern Mediterranean Sea) was examined, in terms of the temporal and spatial distribution of organic carbon (POC and DOC), with respect to marine sources and pathways. POC was maximum in winter in the Saronikos Gulf, due to the bloom of phytoplankton, whereas in the Elefsis Bay (located in the north side of the Saronikos Gulf) in summer, since phytoplankton grazes in the Bay in the end of summer (except for winter). Approximately 60 % of the bulk DOC of the water column was estimated as non-refractory (labile and semi-labile), due to the major anthropogenic, domestic, and industrial effects of the region and the shallow depths. The spatial distribution of POC and DOC mainly affects the northeastern section of the Gulf, since that region has been accepted major organic discharges for a long time period, in connection to the relatively long renewal times of its waters.

  18. DNA lability induced by nimustine and ramustine in rat glioma cells.

    PubMed Central

    Mineura, K; Fushimi, S; Itoh, Y; Kowada, M

    1988-01-01

    The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017

  19. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.

    PubMed

    Heddam, Salim

    2014-11-01

    The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).

  20. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.

    PubMed

    Keith, Alexandra; Singh, Balwant; Singh, Bhupinder Pal

    2011-11-15

    Biochar is considered as an attractive tool for long-term carbon (C) storage in soil. However, there is limited knowledge about the effect of labile organic matter (LOM) on biochar-C mineralization in soil or the vice versa. An incubation experiment (20 °C) was conducted for 120 days to quantify the interactive priming effects of biochar-C and LOM-C mineralization in a smectitic clayey soil. Sugar cane residue (source of LOM) at a rate of 0, 1, 2, and 4% (w/w) in combination with two wood biochars (450 and 550 °C) at a rate of 2% (w/w) were applied to the soil. The use of biochars (~ -36‰) and LOM (-12.7‰) or soil (-14.3‰) with isotopically distinct δ(13)C values allowed the quantification of C mineralized from biochar and LOM/soil. A small fraction (0.4-1.1%) of the applied biochar-C was mineralized, and the mineralization of biochar-C increased significantly with increasing application rates of LOM, especially during the early stages of incubation. Concurrently, biochar application reduced the mineralization of LOM-C, and the magnitude of this effect increased with increasing rate of LOM addition. Over time, the interactive priming of biochar-C and LOM-C mineralization was stabilized. Biochar application possesses a considerable merit for long-term soil C-sequestration, and it has a stabilizing effect on LOM in soil.

  1. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  2. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  3. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang

    2018-03-01

    Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Research Highlight: Water-extractable organic matter from sandy loam soils

    USDA-ARS?s Scientific Manuscript database

    Labile organic matter plays important roles in soil health and nutrient cycling because of its dynamic nature. Water-extractable organic matter is part of the soil labile organic matter. In an article recently published in Agricultural & Environmental Letters, researchers report on the level and na...

  5. In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection.

    PubMed

    Aron, Allegra T; Heffern, Marie C; Lonergan, Zachery R; Vander Wal, Mark N; Blank, Brian R; Spangler, Benjamin; Zhang, Yaofang; Park, Hyo Min; Stahl, Andreas; Renslo, Adam R; Skaar, Eric P; Chang, Christopher J

    2017-11-28

    Iron is an essential metal for all organisms, yet disruption of its homeostasis, particularly in labile forms that can contribute to oxidative stress, is connected to diseases ranging from infection to cancer to neurodegeneration. Iron deficiency is also among the most common nutritional deficiencies worldwide. To advance studies of iron in healthy and disease states, we now report the synthesis and characterization of iron-caged luciferin-1 (ICL-1), a bioluminescent probe that enables longitudinal monitoring of labile iron pools (LIPs) in living animals. ICL-1 utilizes a bioinspired endoperoxide trigger to release d-aminoluciferin for selective reactivity-based detection of Fe 2+ with metal and oxidation state specificity. The probe can detect physiological changes in labile Fe 2+ levels in live cells and mice experiencing iron deficiency or overload. Application of ICL-1 in a model of systemic bacterial infection reveals increased iron accumulation in infected tissues that accompany transcriptional changes consistent with elevations in both iron acquisition and retention. The ability to assess iron status in living animals provides a powerful technology for studying the contributions of iron metabolism to physiology and pathology.

  6. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.

    PubMed

    Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri

    2016-07-28

    The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.

  7. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  8. Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean†

    PubMed Central

    Church, Matthew J.; Hutchins, David A.; Ducklow, Hugh W.

    2000-01-01

    The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean. PMID:10653704

  9. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    PubMed

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. Copyright © 2015. Published by Elsevier B.V.

  10. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  11. Transport of Proteins Dissolved in Organic Solvents Across Biomimetic Membranes

    NASA Astrophysics Data System (ADS)

    Bromberg, Lev E.; Klibanov, Alexander M.

    1995-02-01

    Using lipid-impregnated porous cellulose membranes as biomimetic barriers, we tested the hypothesis that to afford effective transmembrane transfer of proteins and nucleic acids, the vehicle solvent should be able to dissolve both the biopolymers and the lipids. While the majority of solvents dissolve one or the other, ethanol and methanol were found to dissolve both, especially if the protein had been lyophilized from an aqueous solution of a pH remote from the protein's isoelectric point. A number of proteins, as well as RNA and DNA, dissolved in these alcohols readily crossed the lipidized membranes, whereas the same biopolymers placed in nondissolving solvents (e.g., hexane and ethyl acetate) or in those unable to dissolve lipids (e.g., water and dimethyl sulfoxide) exhibited little transmembrane transport. The solubility of biopolymers in ethanol and methanol was further enhanced by complexation with detergents and poly(ethylene glycol); significant protein and nucleic acid transport through the lipidized membranes was observed from these solvents but not from water.

  12. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil.

    PubMed

    Obrador, Ana; Gonzalez, Demetrio; Alvarez, Jose M

    2013-05-22

    To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.

  13. Anthropogenic inputs of dissolved organic matter in New York Harbor

    NASA Astrophysics Data System (ADS)

    Gardner, G. B.; Chen, R. F.; Olavasen, J.; Peri, F.

    2016-02-01

    The Hudson River flows into the Atlantic Ocean through a highly urbanized region which includes New York City to the east and Newark, New Jersey to the west. As a result, the export of Dissolved Organic Carbon (DOC) from the Hudson to the Atlantic Ocean includes a significant anthropogenic component. A series of high resolution studies of the DOC dynamics of this system were conducted between 2003 and 2010. These included both the Hudson and adjacent large waterways (East River, Newark Bay, Kill Van Kull and Arthur Kill) using coastal research vessels and smaller tributaries (Hackensack, Pasaic and Raritan rivers) using a 25' boat. In both cases measurements were made using towed instrument packages which could be cycled from near surface to near bottom depths with horizontal resolution of approximately 20 to 200 meters depending on depth and deployment strategy. Sensors on the instrument packages included a CTD to provide depth and salinity information and a chromophoric dissolved organic matter(CDOM) fluorometer to measure the fluorescent fraction of the DOC. Discrete samples allowed calibration of the fluorometer and the CDOM data to be related to DOC. The combined data set from these cruises identified multiple scales of source and transport processes for DOC within the Hudson River/New York Harbor region. The Hudson carries a substantial amount of natural DOC from its 230 km inland stretch. Additional sources exist in fringing salt marshes adjacent to the Hackensack and Raritan rivers. However the lower Hudson/New Harbor region receives a large input of DOC from multiple publically owned treatment works (POTW) discharges. The high resolution surveys allowed us to elucidate the distribution of these sources and the manner in which they are rapidly mixed to create the total export. We estimate that anthropogenic sources account for up to 2.5 times the DOC flux contributed by natural processes.

  14. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    PubMed

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Molecular characterization of dissolved organic matter (DOM): a critical review.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  16. Photodegradation of dissolved organic matter in ice under solar irradiation.

    PubMed

    Xue, Shuang; Wang, Chao; Zhang, Zhaohong; Song, Youtao; Liu, Qiang

    2016-02-01

    The photodegradation behavior of dissolved organic matter (DOM) with different origins in ice under solar irradiation was investigated. Exposure to sunlight at 2.7 × 10(5) J m(-2) resulted in dissolved organic carbon (DOC) reductions of 22.1-36.5% in ice. The naturally occurring DOM had higher photodegradation potentials than the wastewater-derived DOM in ice. Ultraviolet (UV)-absorbing compounds in DOM, regardless of DOM origin, had much higher photodegradation potentials than gross DOC in ice. The susceptibility of UV-absorbing compounds with natural origin to sunlight exposure in ice was higher than those derived from wastewater. Trihalomethane (THM) precursors were more susceptible to photochemical reactions than gross DOC and haloacetic acid (HAA) precursors in ice. THM precursors in naturally occurring DOM were more photoreactive than those in wastewater-derived DOM in ice, while the photoreactivity of HAA precursors in ice was independent of DOM origin. In ice, the photoreactivity of humic-like fluorescent materials, regardless of DOM origin, was higher than that of gross DOC and protein-like fluorescent materials. DOC reductions caused by sunlight irradiation were found to be negatively correlated to DOC levels, and positively correlated to the aromaticity of DOM. The photodegradation of both wastewater-derived and naturally occurring DOM in ice was significantly facilitated at both acid and alkaline pH, as compared to neutral pH. The photodegradation of DOM in ice, regardless of the origin, was facilitated by nitrate ion [Formula: see text] , nitrite ion [Formula: see text] , ferric ion (Fe(3+)) and ferrous ion (Fe(2+)), and on the other hand, was inhibited by chloridion ion (Cl(-)) and copper ion (Cu(2+)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Selective ionization of dissolved organic nitrogen by positive ion atmospheric pressure photoionization coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Podgorski, David C; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T

    2012-06-05

    Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.

  18. Comparison between the evaluation of bacterial regrowth capability in a turbidimeter and biodegradable dissolved organic carbon bioreactor measurements in water.

    PubMed

    Kott, Y; Ribas, F; Frías, J; Lucena, F

    1997-09-01

    In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic microorganisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield (Y = cfu/delta TOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.

  19. Long-Term Experimental Acidification Drives Watershed Scale Shift in Dissolved Organic Matter Composition and Flux

    Treesearch

    Michael D. SanClements; Ivan J. Fernandez; Robert H. Lee; Joshua A. Roberti; Mary Beth Adams; Garret A. Rue; Diane M. McKnight

    2018-01-01

    Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-...

  20. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    NASA Technical Reports Server (NTRS)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.