Sample records for laboratories livermore snll

  1. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less

  2. Lawrence Livermore National Laboratory Environmental Report 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  3. Lawrence Livermore National Laboratory Environmental Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, C. A.; Jones, H. E.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  4. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  5. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  6. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  7. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  8. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division. [Methods available at Lawrence Livermore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutmacher, R.; Crawford, R.

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel.

  9. Lawrence Livermore National Laboratory environmental report for 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silvermore » concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.« less

  10. Tiger Team Assessment of the Sandia National Laboratories, Livermore, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    This report provides the results of the Tiger Team Assessment of the Sandia National Laboratories (SNL) in Livermore, California, conducted from April 30 to May 18, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety and health (ES H) activities at SNL, Livermore. The assessment was conducted by a team consisting of three subteams of federal and private sector technical specialists in the disciplines of environment, safety and health, and management. On-site activities for the assessment included document reviews, observation of site operations, and discussions and interviews with DOE personnel,more » site contractor personnel, and regulators. Using these sources of information and data, the Tiger Team identified a significant number of findings and concerns having to do with the environment, safety and health, and management, as well as concerns regarding noncompliance with Occupational Safety and Health Administration (OSHA) standards. Although the Tiger Team concluded that none of the findings or concerns necessitated immediate cessation of any operations at SNL, Livermore, it does believe that a sizable number of them require prompt management attention. A special area of concern identified for the near-term health and safety of on-site personnel pertained to the on-site Trudell Auto Repair Shop site. Several significant OSHA concerns and environmental findings relating to this site prompted the Tiger Team Leader to immediately advise SNL, Livermore and AL management of the situation. A case study was prepared by the Team, because the root causes of the problems associated with this site were believed to reflect the overall root causes for the areas of ES H noncompliance at SNL, Livermore. 4 figs., 3 tabs.« less

  11. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  12. Lawrence Livermore National Laboratory Environmental Report 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H E; Bertoldo, N A; Campbell, C G

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special

  13. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments Database

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  14. Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less

  15. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  16. Bringing Theory into Practice: A Study of Effective Leadership at Lawrence Livermore National Laboratory

    ERIC Educational Resources Information Center

    Khoury, Anne

    2006-01-01

    Leadership development, a component of HRD, is becoming an area of increasingly important practice for all organizations. When companies such as Lawrence Livermore National Laboratory rely on knowledge workers for success, leadership becomes even more important. This research paper tests the hypothesis that leadership credibility and the courage…

  17. Special-Status Plant Species Surveys and Vegetation Mapping at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R E

    This report presents the results of Jones & Stokes special-status plant surveys and vegetation mapping for the University of California, Lawrence Livermore National Laboratory (LLNL). Special-status plant surveys were conducted at Site 300 in April to May 1997 and in March to April 2002. Eight special-status plants were identified at Site 300: large-flowered fiddleneck, big tarplant, diamond-petaled poppy, round-leaved filaree, gypsum-loving larkspur, California androsace, stinkbells, and hogwallow starfish. Maps identifying the locations of these species, a discussion of the occurrence of these species at Site 300, and a checklist of the flora of Site 300 are presented. A reconnaissance surveymore » of the LLNL Livermore Site was conducted in June 2002. This survey concluded that no special-status plants occur at the Livermore Site. Vegetation mapping was conducted in 2001 at Site 300 to update a previous vegetation study done in 1986. The purpose of the vegetation mapping was to update and to delineate more precisely the boundaries between vegetation types and to map vegetation types that previously were not mapped. The vegetation map is presented with a discussion of the vegetation classification used.« less

  18. Final Report Bald and Golden Eagle Territory Surveys for the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratanduono, M. L.

    2014-11-25

    Garcia and Associates (GANDA) was contracted by the Lawrence Livermore National Laboratory (LLNL) to conduct surveys for bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) at Site 300 and in the surrounding area out to 10-miles. The survey effort was intended to document the boundaries of eagle territories by careful observation of eagle behavior from selected viewing locations throughout the study area.

  19. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Ruben P.; Bellah, Wendy

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  20. Sandia National Laboratories: Livermore Valley Open Campus (LVOC)

    Science.gov Websites

    Visiting the LVOC Locations Livermore Valley Open Campus (LVOC) Open engagement Expanding opportunities for open engagement of the broader scientific community. Building on success Sandia's Combustion Research Facility pioneered open collaboration over 30 years ago. Access to DOE-funded capabilities Expanding access

  1. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, E; Woollett, J

    2004-11-16

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grasslandmore » community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.« less

  2. Historic Context and Building Assessments for the Lawrence Livermore National Laboratory Built Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, R. A.; Sullivan, M. A.

    2007-09-14

    This document was prepared to support u.s. Department of Energy / National Nuclear Security Agency (DOE/NNSA) compliance with Sections 106 and 110 of the National Historic Preservation Act (NHPA). Lawrence Livermore National Laboratory (LLNL) is a DOE/NNSA laboratory and is engaged in determining the historic status of its properties at both its main site in Livermore, California, and Site 300, its test site located eleven miles from the main site. LLNL contracted with the authors via Sandia National Laboratories (SNL) to prepare a historic context statement for properties at both sites and to provide assessments of those properties of potentialmore » historic interest. The report contains an extensive historic context statement and the assessments of individual properties and groups of properties determined, via criteria established in the context statement, to be of potential interest. The historic context statement addresses the four contexts within which LLNL falls: Local History, World War II History (WWII), Cold War History, and Post-Cold War History. Appropriate historic preservation themes relevant to LLNL's history are delineated within each context. In addition, thresholds are identified for historic significance within each of the contexts based on the explication and understanding of the Secretary of the Interior's Guidelines for determining eligibility for the National Register of Historic Places. The report identifies specific research areas and events in LLNL's history that are of interest and the portions of the built environment in which they occurred. Based on that discussion, properties of potential interest are identified and assessments of them are provided. Twenty individual buildings and three areas of potential historic interest were assessed. The final recommendation is that, of these, LLNL has five individual historic buildings, two sets of historic objects, and two historic districts eligible for the National Register. All are eligible

  3. A case-control study of malignant melanoma among Lawrence Livermore National Laboratory employees: A critical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupper, L.L.; Setzer, R.W.; Schwartzbaum, J.

    1987-07-01

    This document reports on a reevaluation of data obtained in a previous report on occupational factors associated with the development of malignant melanomas at Lawrence Livermore National Laboratory. The current report reduces the number of these factors from five to three based on a rigorous statistical analysis of the original data. Recommendations include restructuring the original questionnaire and trying to contact more individuals that worked with volatile photographic chemicals. 17 refs., 7 figs., 22 tabs. (TEM)

  4. Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woollett, J J

    2008-09-18

    The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portionsmore » of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).« less

  5. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilmer, J.

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided,more » this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.« less

  6. Lightning Protection Certification for High Explosives Facilities at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Brown, C G; Ong, M M

    2006-01-11

    Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less

  7. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  8. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R.; Gard, E.; Sketchley, J.

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas),more » and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.« less

  9. A Monte Carlo Simulation of the in vivo measurement of lung activity in the Lawrence Livermore National Laboratory torso phantom.

    PubMed

    Acha, Robert; Brey, Richard; Capello, Kevin

    2013-02-01

    A torso phantom was developed by the Lawrence Livermore National Laboratory (LLNL) that serves as a standard for intercomparison and intercalibration of detector systems used to measure low-energy photons from radionuclides, such as americium deposited in the lungs. DICOM images of the second-generation Human Monitoring Laboratory-Lawrence Livermore National Laboratory (HML-LLNL) torso phantom were segmented and converted into three-dimensional (3D) voxel phantoms to simulate the response of high purity germanium (HPGe) detector systems, as found in the HML new lung counter using a Monte Carlo technique. The photon energies of interest in this study were 17.5, 26.4, 45.4, 59.5, 122, 244, and 344 keV. The detection efficiencies at these photon energies were predicted for different chest wall thicknesses (1.49 to 6.35 cm) and compared to measured values obtained with lungs containing (241)Am (34.8 kBq) and (152)Eu (10.4 kBq). It was observed that no statistically significant differences exist at the 95% confidence level between the mean values of simulated and measured detection efficiencies. Comparisons between the simulated and measured detection efficiencies reveal a variation of 20% at 17.5 keV and 1% at 59.5 keV. It was found that small changes in the formulation of the tissue substitute material caused no significant change in the outcome of Monte Carlo simulations.

  10. Lawrence Livermore National Laboratory`s Computer Security Short Subjects Videos: Hidden Password, The Incident, Dangerous Games and The Mess; Computer Security Awareness Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.

  11. 75 FR 4822 - Decision To Evaluate a Petition To Designate a Class of Employees for the Lawrence Livermore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ...: Lawrence Livermore National Laboratory. Location: Livermore, California. Job Titles and/or Job Duties: All... L. Hinnefeld, Interim Director, Office of Compensation Analysis and Support, National Institute for...

  12. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy quarter ending September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.

    1994-10-01

    This report presents the details of the Lawrence Livermore National Laboratory safeguards and securities program. This program is focused on developing new technology, such as x- and gamma-ray spectrometry, for measurement of special nuclear materials. This program supports the Office of Safeguards and Securities in the following five areas; safeguards technology, safeguards and decision support, computer security, automated physical security, and automated visitor access control systems.

  13. LINCS: Livermore's network architecture. [Octopus computing network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J.G.

    1982-01-01

    Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessingmore » process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.« less

  14. DHS-STEM Internship at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, B

    2008-08-18

    This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL)more » current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and

  15. Final Report for the Arroyo Las Positas Maintenance Impact Study, Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Hattem, M; Paterson, L

    2006-01-12

    In 2000, the Lawrence Livermore National Laboratory's (LLNL) Environmental Protection Department, in coordination with Plant Engineering (PE), began dredging sections of the Arroyo Las Positas (ALP) to alleviate concerns about flooding of sensitive facilities within the mainsite of Lawrence Livermore National Laboratory. In order to reduce potential impacts on the federally threatened California red-legged frog (Rana aurora draytonii), LLNL proposed to dredge sections of the ALP in a ''checkerboard pattern'', resulting in a mosaic of open water habitat and vegetated sections (Figure 1). The Arroyo Las Positas Management Plan (Plan) was coordinated with both state and federal agencies including themore » U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDF&G), San Francisco Regional Water Quality Control Board (SFRWQCB), and the Army Corp of Engineers (ACOE). Water Discharge Requirements (WDRs) were issued for this project on December 30, 1999 (Order No. 99-086) by the SFRWQCB. Provision 19 of the WDRs outlined a five-year (2000 through 2004) Maintenance Impact Study (MIS) that LLNL began in coordination with dredging work that was conducted as part of the Arroyo Las Positas Management Plan. Provision 20 of these WDRs requires LLNL to submit a final report of the results of the Maintenance Impact Study for this project to the SFRWQCB. The purpose of this report is to present the results of the Maintenance Impact Study for Arroyo Las Positas and meet the requirements of Provision 20. A description of the annual monitoring included in this Maintenance Impact Study is included in the methods section of this report. Initially the Plan called for dredging the entire length of the Arroyo Las Positas (approximately 6,981 linear feet) over a 5-year period to minimize temporal impacts on the California red-legged frog. Dredging occurred in 2000 ({approx}1,300 ft.), 2001 ({approx}800 ft.), and 2002 ({approx}1,200 ft.), which constituted

  16. Delineation of Waters of the United States for Lawrence Livermore National Laboratory, Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R E

    2006-09-25

    This report presents the results of a delineation of waters of the United States, including wetlands, for Lawrence Livermore National Laboratory's Site 300 in Alameda and San Joaquin Counties, California. Jones & Stokes mapped vegetation at Site 300 in August, 2001, using Global Positioning System (GPS) data recorders to collect point locations and to record linear features and map unit polygons. We identified wetlands boundaries in the field on the basis of the plant community present. We returned to collect additional information on wetland soils on July 3, 2002. Forty-six wetlands were identified, with a total area of 3.482 hectaresmore » (8.605 acres). The wetlands include vernal pools, freshwater seeps, and seasonal ponds. Wetlands appearing to meet the criteria for federal jurisdictional total 1.776 hectares (4.388 acres). A delineation map is presented and a table is provided with information on the type, size, characteristic plant species of each wetland, and a preliminary jurisdictional assessment.« less

  17. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes

  18. Screening Program Reduced Melanoma Mortality at the Lawrence Livermore National Laboratory, 1984-1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, MD, J S; II, PhD, D; MD, PhD, M

    Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet demonstrated reduction in mortality. We evaluated the education, self examination and targeted screening campaign at the Lawrence Livermore National Laboratory (LLNL) from its beginning in July 1984 through 1996. The thickness and crude incidence of melanoma from the years before the campaign were compared to those obtained during the 13 years of screening. Melanoma mortality during the 13-year period was based on a National Death Index search. Expected yearly deaths from melanoma among LLNL employees were calculated by using California mortality data matched by age,more » sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. After the program began, crude incidence of melanoma thicker than 0.75 mm decreased from 18 to 4 cases per 100,000 person-years (p = 0.02), while melanoma less than 0.75mm remained stable and in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period compared with a calculated 3.39 expected deaths (p = 0.034). Education, self examination and selective screening for melanoma at LLNL significantly decreased incidence of melanoma thicker than 0.75 mm and reduced the melanoma-related mortality rate to zero. This significant decrease in mortality rate persisted for at least 3 yr after employees retired or otherwise left the laboratory.« less

  19. Recent Livermore Excitation and Dielectronic Recombination Measurements for Laboratory and Astrophysical Spectral Modeling

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Gu, M.-F.; Harris, C. L.; Kahn, S. M.; Kim, S.-H.; Neill, P. A.; Savin, D. W.; Smith, A. J.; Utter, S. B.

    2000-01-01

    Using the EBIT facility in Livermore we produce definitive atomic data for input into spectral synthesis codes. Recent measurements of line excitation and dielectronic recombination of highly charged K-shell and L-shell ions are presented to illustrate this point.

  20. 2003 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for Lawrence Livermore National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  1. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  2. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A; Dreicer, M; Essner, J

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship;more » (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.« less

  3. The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.

    2000-01-01

    The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.

  4. PHYSICS: Will Livermore Laser Ever Burn Brightly?

    PubMed

    Seife, C; Malakoff, D

    2000-08-18

    The National Ignition Facility (NIF), a superlaser being built here at Lawrence Livermore National Laboratory in an effort to use lasers rather than nuclear explosions to create a fusion reaction, is supposed to allow weapons makers to preserve the nuclear arsenal--and do nifty fusion science, too. But a new report that examines its troubled past also casts doubt on its future. Even some of NIF's scientific and political allies are beginning to talk openly of a scaled-down version of the original 192-laser design.

  5. Los Alamos and Lawrence Livermore National Laboratories Code-to-Code Comparison of Inter Lab Test Problem 1 for Asteroid Impact Hazard Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Robert P.; Miller, Paul; Howley, Kirsten

    The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less

  6. Arroyo Mocho Boulder Removal Project: Lawrence Livermore National Laboratory Hetch Hetchy Pump Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, L; Kato, T; Van Hattem, M

    2007-06-28

    The purpose of this biological assessment is to review the proposed Arroyo Mocho Boulder Removal Project in sufficient detail to determine to what extent the proposed action may affect any of the threatened, endangered, proposed, or sensitive species and designated or proposed critical habitats listed below. In addition, the following information is provided to comply with statutory requirements to use the best scientific and commercial information available when assessing the risks posed to listed and/or proposed species and designated and/or proposed critical habitat by proposed federal actions. This biological assessment is prepared in accordance with legal requirements set forth undermore » regulations implementing Section 7 of the Endangered Species Act (50 CFR 402; 16 U.S.C 1536 (c)). It is our desire for the Arroyo Mocho Boulder Removal Project to receive incidental take coverage for listed species and critical habitat within the greater project area by means of amending the previous formal Section 7 consultation (1-1-04-F-0086) conducted a few hundred meters downstream by Lawrence Livermore National Laboratory (LLNL) in 2002. All conservation measures, terms and conditions, and reporting requirements from the previous Biological Opinion (1-1-04-F-0086) have been adopted for this Biological Assessment and/or amendment.« less

  7. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Ranamore » catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.« less

  8. 27 CFR 9.46 - Livermore Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate maps for determining the boundary of the Livermore Valley... 1980); (12) Hayward, CA (1993); and (13) Las Trampas Ridge, CA (1995). (c) Boundary. The Livermore... miles, passing through the Dublin map near Walpert Ridge, onto the Hayward map to the point where the...

  9. 27 CFR 9.46 - Livermore Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate maps for determining the boundary of the Livermore Valley... 1980); (12) Hayward, CA (1993); and (13) Las Trampas Ridge, CA (1995). (c) Boundary. The Livermore... miles, passing through the Dublin map near Walpert Ridge, onto the Hayward map to the point where the...

  10. Computer Security Awareness Guide for Department of Energy Laboratories, Government Agencies, and others for use with Lawrence Livermore National Laboratory`s (LLNL): Computer security short subjects videos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education & Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1-3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices. Leaders may incorporate the Short Subjects into presentations. After talkingmore » about a subject area, one of the Short Subjects may be shown to highlight that subject matter. Another method for sharing them could be to show a Short Subject first and then lead a discussion about its topic. The cast of characters and a bit of information about their personalities in the LLNL Computer Security Short Subjects is included in this report.« less

  11. Livermore Site Spill Prevention, Control, and Countermeasures Plan, May 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, D.; Mertesdorf, E.

    This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Livermore Site in Livermore, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil.

  12. Livermore study says oil leaks not severe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, L.

    The Petroleum Marketers Association of America (PMAA), which is working to reform the federal Leaking Underground Storage Tank program, got some strong ammunition last month. A study that the Lawrence Livermore National Laboratory performed for the California State Water Resources Control Board has found that the environmental threat of leaks is not as severe as formerly thought. The study said: such leaks rarely jeopardize drinking water; fuel hydrocarbons have limited impacts on health, the environment, and groundwater; and cleanups often are done contrary to the knowledge and experience gained from prior remediations. As a result of the study, Gov. Petemore » Wilson ordered California cleanups halted at sites more than 250 feet from drinking water supplies.« less

  13. Ecology of Lawrence Livermore Laboratoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, D.R.

    1977-03-10

    The ecological impact of the Lawrence Livermore Laboratory on man, plants and animals, soil, water, and air has been on the positive side since the removal of much of the former airbase runway system. Many new trees have been planted, and the total biological energy has been increased. Although there has been destruction of some native plants, many new ecological niches have been formed. Cliff swallows, quail, and other birds have been able to find territories. Even a muskrat has appeared from the overflow storm drains. Opossums, brush rabbits, field mice, and predatory birds (kites, hawks, eagles, and sparrow hawks)more » are numerous. The use of herbicides and insecticides has upset the balance somewhat, but California poppies, owl clover, dragonflies, lacewings, bees, and wasps indicate that the effects are limited and that there is a wealth of animal life in the open areas and around the buildings.« less

  14. Shallow 3-D vertical seismic profiling around a contaminant withdrawal well on the Lawrence Livermore National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, J.; Bainer, R.; Milligan, P.

    1997-01-30

    One of the major problems associated with ground water contaminant remediation is well placement. Optimal-placement of wells requires an accurate knowledge of geologic structure and stratigraphy in the near surface sediments and rock (0 to 100 m). Without the development of remote imaging provided by geophysical techniques, the required spacing between treatment wells may be less than 2 m in order to be confident that all contaminant reservoirs had been remediated. One method for characterizing geologic structure and stratigraphy in the near surface is vertical seismic profiling (VSP), a technique often used on deep exploration wells to calibrate surface seismicmore » reflection data. For near-surface applications, VSP data can be acquired efficiently using an array of hydrophones lowered into a fluid-filled borehole (Milligan et al, 1997). In this paper we discuss the acquisition and processing of a 3-D VSP collected at a shallow remediation site located on the grounds of the Lawrence Livermore National Laboratory (LLNL) near Livermore, California. The site was used by the United States Navy as an air training base. At this time, initial releases of hazardous materials to the environment occurred in the form of solvents [volatile organic compounds (VOCs)] that were used for the cleaning of airplanes and their parts. Gasoline, diesel and other petroleum-based compounds are also known to have leaked into the ground. California Research and Development Company, a subsidy of Standard Oil, occupied the southeastern portion of the site from 1950 to 1954. The first releases of radioactive materials to the environment occurred at this time, with the beginning of testing of radioactive materials at the site. In 1952, LLNL acquired the site. Additional releases of VOCS, polychlorinated biphenyls (PCBs), metals, radionuclides (primarily tritium), gasoline and pesticides have occurred since. These releases were due to localized spills, landfills, surface impoundments

  15. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE PAGES

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  16. LTSS compendium: an introduction to the CDC 7600 and the Livermore Timesharing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, K. W.

    1977-08-15

    This report is an introduction to the CDC 7600 computer and to the Livermore Timesharing System (LTSS) used by the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network) on their 7600's. This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been broadened to point out differences in implementation at LLLCC. It also contains information about LLLCC not relevant to NMFECC. This report is written for computational physicists who want to prepare large production codes to run under LTSSmore » on the 7600's. The generalized discussion of the operating system focuses on creating and executing controllees. This document and its companion, UCID-17557, CDC 7600 LTSS Programming Stratagems, provide a basis for understanding more specialized documents about individual parts of the system.« less

  17. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and

  18. CDC 7600 LTSS programming stratagens: preparing your first production code for the Livermore Timesharing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, K. W.

    1977-08-15

    This report deals with some techniques in applied programming using the Livermore Timesharing System (LTSS) on the CDC 7600 computers at the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network). This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been revised to accommodate differences between LLLCC and NMFECC implementations. Topics include: maintaining programs, debugging, recovering from system crashes, and using the central processing unit, memory, and input/output devices efficiently and economically. Routines that aid in these procedures aremore » mentioned. The companion report, UCID-17556, An LTSS Compendium, discusses the hardware and operating system and should be read before reading this report.« less

  19. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less

  20. 76 FR 28305 - Amendment of Class D and Class E Airspace; Livermore, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... E airspace at Livermore, CA, to accommodate aircraft using new Instrument Landing System (ILS... surface of the earth. * * * * * AWP CA E5 Livermore, CA [Amended] Livermore Municipal Airport, CA (Lat. 37...

  1. Livermore Site Spill Prevention, Control, and Countermeasures (SPCC) Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellah, W.; Griffin, D.; Mertesdorf, E.

    This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Livermore Site in Livermore, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil. This SPCC Plan complies with the Oil Pollution Prevention regulation in Title 40 of the Code of Federal Regulations (40 CFR), Part 112 (40 CFR 112) and with 40 CFR 761.65(b) and (c), which regulates the temporary storage of polychlorinated biphenyls (PCBs). This Plan has also been prepared in accordance with Division 20, Chapter 6.67 ofmore » the California Health and Safety Code (HSC 6.67) requirements for oil pollution prevention (referred to as the Aboveground Petroleum Storage Act [APSA]), and the United States Department of Energy (DOE) Order No. 436.1. This SPCC Plan establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines for aboveground oil storage and use at the Livermore Site.« less

  2. Summary Report of Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Gretchen M.; Terusaki, Stan H.

    2013-12-01

    An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC

  3. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savy, J B; Foxall, W

    The Lawrence Livermore National Laboratory (LLNL) Site Seismic Safety Program was conceived in 1979 during the preparation of the site Draft Environmental Impact Statement. The impetus for the program came from the development of new methodologies and geologic data that affect assessments of geologic hazards at the LLNL site; it was designed to develop a new assessment of the seismic hazard to the LLNL site and LLNL employees. Secondarily, the program was also intended to provide the technical information needed to make ongoing decisions about design criteria for future construction at LLNL and about the adequacy of existing facilities. Thismore » assessment was intended to be of the highest technical quality and to make use of the most recent and accepted hazard assessment methodologies. The basic purposes and objectives of the current revision are similar to those of the previous studies. Although all the data and experience assembled in the previous studies were utilized to their fullest, the large quantity of new information and new methodologies led to the formation of a new team that includes LLNL staff and outside consultants from academia and private consulting firms. A peer-review panel composed of individuals from academia (A. Cornell, Stanford University), the Department of Energy (DOE; Jeff Kimball), and consulting (Kevin Coppersmith), provided review and guidance. This panel was involved from the beginning of the project in a ''participatory'' type of review. The Senior Seismic Hazard Analysis Committee (SSHAC, a committee sponsored by the U.S. Nuclear Regulatory Commission, DOE, and the Electric Power Research Institute) strongly recommends the use of participatory reviews, in which the reviewers follow the progress of a project from the beginning, rather than waiting until the end to provide comments (Budnitz et al., 1997). Following the requirements for probabilistic seismic hazard analysis (PSHA) stipulated in the DOE standard DOE-STD-1023-95, a

  4. Terahop and Lawrence Livermore National LaboratoryStructural Fire RF Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugen, P; Pratt, G

    The Georgia Public Safety Training Center's Live Fire Training Facility in Forsyth, GA is a three story structure constructed of rebar-reinforced concrete wall and floors. All the door and window coverings on the building are constructed of thick, plate metal to withstand the high temperatures generated inside the building during training exercises. All of the building's walls and floors are 1-foot thick, and regular concrete columns run up along the inside of the wall increasing the thickness to 20-inches in those locations. A center concrete staircase divides the structure in half. For typical exercises, fires are started in the backmore » right corner of the building on the first floor and in the front right corner on the second floor as shown in Figure 2. Due to the high heat generated during these exercises, measured at 300 F on the floor and 700 F near the ceilings, there were limited locations at which equipment could be placed that did not incorporate heat shielding, such as the Lawrence Livermore National Laboratory's UWB system. However, upon inspection of the building, two preferable locations were identified in which equipment could be placed that would be protected from the temperature extremes generated by the fires. These locations are identified in Figure 2 as the tested TX locations. These were preferred locations because, while they protected the hardware from temperature extremes, they also force the RF transmission path through the building to cross very near the fire locations and anticipated plasma generation regions. Both of the locations listed in Figure 2 were tested by the UWB equipment and found to be suitable deployment locations to establish a solid RF link for data collection. The transmission location on the first floor was ultimately chosen for use during the actual exercises because it was accessible to the data collection team during the exercises. This allowed them to remove the hardware once the testing was complete without

  5. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less

  6. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Jeffrey S.

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. Tomore » make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.« less

  7. Report of the Preliminary Archaeological Reconnaissance of the Lawrence Livermore Laboratory Site 300, San Joaquin County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, C

    2009-11-24

    The area subject to this investigation is the existing Lawrence Livermore Laboratory Site 300, located in the region north of Corral Hollow; approximately eight and one half miles southwest of Tracy, San Joaquin County, California. Cartographic location can be determined from the Tracy and Midway USGS 7.5 minute topographic quadrangles, the appropriate portions of which are herein reproduced as Maps 1 and 2. The majority of the approximate 7000 acres of the location lies within San Joaquin County. This includes all of the area arbitrarily designated the 'Eastern Portion' on Map 2 and the majority of the area designated themore » 'Western Portion' on Map 1. The remaining acreage, along the western boundary of the location, lies within Alameda County. The area is located in the region of open rolling hills immediately north of Corral Hollow, and ranges in elevation from approximately 600 feet, on the flood plain of Corral Hollow Creek, to approximately 1700 feet in the northwest portion of the project location. Proposed for the area under investigation are various, unspecified improvements or modifications to the existing Site 300 facilities. Present facilities consist of scattered buildings, bunkers and magazines, utilized for testing and research purposes, including the necessary water, power, and transportation improvements to support them. The vast majority of the 7000 acres location is presently open space, utilized as buffer zones between test locations and as firing ranges.« less

  8. Summary of Environmental Data Analysis and Work Performed by Lawrence Livermore National Laboratory (LLNL) in Support of the Navajo Nation Abandoned Mine Lands Project at Tse Tah, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taffet, Michael J.; Esser, Bradley K.; Madrid, Victor M.

    This report summarizes work performed by Lawrence Livermore National Laboratory (LLNL) under Navajo Nation Services Contract CO9729 in support of the Navajo Abandoned Mine Lands Reclamation Program (NAMLRP). Due to restrictions on access to uranium mine waste sites at Tse Tah, Arizona that developed during the term of the contract, not all of the work scope could be performed. LLNL was able to interpret environmental monitoring data provided by NAMLRP. Summaries of these data evaluation activities are provided in this report. Additionally, during the contract period, LLNL provided technical guidance, instructional meetings, and review of relevant work performed by NAMLRPmore » and its contractors that was not contained in the contract work scope.« less

  9. Laboratory Directed Research and Development FY 2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  10. Lawrence Livermore National Laboratory Experimental Test Site, Site 300, Biological Review, January 1, 2009 through December 31, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, Lisa E.; Woollett, Jim S.

    2014-01-01

    The Lawrence Livermore National Laboratory’s (LLNL’s) Environmental Restoration Department (ERD) is required to conduct an ecological review at least every five years to ensure that biological and contaminant conditions in areas undergoing remediation have not changed such that existing conditions pose an ecological hazard (Dibley et al. 2009a). This biological review is being prepared by the Natural Resources Team within LLNL’s Environmental Functional Area (EFA) to support the 2013 five-year ecological review.

  11. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-04-24

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling

  12. Development of a design basis tornado and structural design criteria for Lawrence Livermore Laboratory's Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-11-01

    Criteria are prescribed and guidance is provided for professional personnel who are involved with the evaluation of existing buildings and facilities at Site 300 near Livermore, California to resist the possible effects of extreme winds and tornadoes. The development of parameters for the effects of tornadoes and extreme winds and guidelines for evaluation and design of structures are presented. The investigations conducted are summarized and the techniques used for arriving at the combined tornado and extreme wind risk model are discussed. The guidelines for structural design methods for calculating pressure distributions on walls and roofs of structures and methods formore » accommodating impact loads from missiles are also presented. (auth)« less

  13. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improvingmore » our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers

  14. Lawrence Livermore National Laboratory Pre-project Rare Plant and Wildlife Surveys For the Pit 7 Drainage Diversion and Groundwater Extraction and Treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, L; Woollett, J

    In January 2007, the Department of Energy (DOE) released the final Environmental Assessment for the Proposed Environmental Remediation at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. At the same time, the Department of Toxic Substances Control (DTSC) released the final Negative Declaration and Initial Study covering the Pit 7 remediation. No substantial adverse effect on wildlife species of concern was anticipated from the project. However, it was proposed that wildlife surveys should be conducted prior to construction because species locations and breeding areas could potentially change by the time construction activities began. Although no known populationsmore » of rare or endangered/threatened plant species were known to occur within the project impact area at the time these documents were released, rare plants listed by the California Native Plant Society had been observed in the vicinity. As such, both DOE and DTSC proposed that plant surveys would be undertaken at the appropriate time of year to determine if rare plants would be impacted by project construction. This document provides the results of wildlife and rare plant surveys taken prior to the start of construction at the Pit 7 Complex.« less

  15. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take intomore » account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.« less

  16. Department of Homeland Security Fellowship Internship Experience at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, J

    2006-08-30

    As a DHS intern at Lawrence Livermore National Laboratory (LLNL), I was a member of the Agricultural Domestic Demonstration and Application Program (AgDDAP) under the mentorship of Benjamin Hindson. This group is focused on developing assays for the rapid detection of animal diseases that threaten agriculture in the United States. The introduction of a foreign animal disease to the US could potentially result in devastating economic losses. The 2001 Foot-and-Mouth Disease (FMD) outbreak in the UK cost over 20 billion dollars and resulted in the death of over 6 million animals. FMD virus is considered to be one of greatestmore » threats to agriculture due to its high infectivity, robustness, and broad species range. Thus, export of meat and animal products from FMD endemic countries is strictly regulated. Although the disease is rarely fatal in adult animals, morbidity is close to 100%. FMD also causes overall production (i.e. milk, mass) to decrease dramatically and can reduce it permanently. The rapid and accurate diagnosis of FMD and other foreign animal diseases is essential to prevent these diseases from spreading and becoming endemic to the country. Every hour delay in the detection of FMD is estimated to cost up to 3 million dollars. Diagnosis of FMD is often complicated by other diseases manifesting similar symptoms in the animal, such as vesicular stomatitis, bluetongue, etc. Typically, diagnosis cannot be made by clinical signs alone and samples must be sent away for testing. Depending on the test, such as in virus isolation, this can take several days. AgDDAP had previously developed a high-throughput multiplexed polymerase chain reaction (PCR) assay for the rule-out of Foot-and-Mouth Disease and six other look-alike diseases. This assay is intended for use in FMD surveillance, differential diagnosis in an outbreak scenario, and to establish an FMD-clean state after an outbreak. PCR based assays are favorable for multiple reasons. Viral nucleic acids

  17. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  18. Report on the Threatened Valley Elderberry Longhorn Beetle and its Elderberry Food Plant at the Lawrence Livermore National Laboratory--Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Ph.D., R A; Woollett, J

    2004-11-16

    This report describes the results of an entomological survey in 2002 to determine the presence of the federally-listed, threatened Valley Elderberry Longhorn Beetle or ''VELB'' (Desmocerus culifornicus dimorphus: Coleoptera, Cerambycidae) and its elderberry food plant (Sumbucus mexicana: Caprifoliaceae) on the Lawrence Livermore National Laboratory's (LLNL) Experimental Test Site, known as Site 300. In addition, an area located immediately southeast of Site 300, which is owned and managed by the California Department of Fish and Game (CDFG), but secured by LLNL, was also included in this survey. This report will refer to the survey areas as the LLNL-Site 300 and themore » CDFG site. The 2002 survey included mapping the locations of elderberry plants that were observed using a global positioning system (GPS) to obtain positional coordinates for every elderberry plant at Site 300. In addition, observations of VELB adults and signs of their infestation on elderberry plants were also mapped using GPS technology. LLNL requested information on the VELB and its elderberry food plants to update earlier information that had been collected in 1991 (Arnold 1991) as part of the 1992 EIS/EIR for continued operation of LLNL. No VELB adults were observed as part of this prior survey. The findings of the 2002 survey reported herein will be used by LLNL as it updates the expected 2004 Environmental Impact Statement for ongoing operations at LLNL, including Site 300.« less

  19. LIP: The Livermore Interpolation Package, Version 1.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, F. N.

    2016-01-04

    This report describes LIP, the Livermore Interpolation Package. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since it is a general-purpose package that need not be restricted to equation of state data, which uses variables ρ (density) and T (temperature).

  20. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  1. 77 FR 21762 - ReEnergy Livermore Falls LLC; Supplemental Notice That Revised Market-Based Rate Tariff Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1432-000] ReEnergy Livermore Falls LLC; Supplemental Notice That Revised Market-Based Rate Tariff Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of ReEnergy Livermore Falls LLC's tariff...

  2. Conversion of the Livermore Education Center to College Status.

    ERIC Educational Resources Information Center

    Freitas, Joseph M.; And Others

    In March 1988, the South County Community College District (SCCCD) requested the approval of the Board of Governors of the California Community Colleges to change the status of the Livermore Education Center from an "educational center" to a "college." An analysis by the Chancellor's Office of the request indicated that the District met Title 5…

  3. Pension fund activities at Department laboratories managed by the University of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy`s (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department`s interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department`s contract administration of its interest in those pension plans.

  4. Laboratory Astrophysics Using a Spare XRS Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Audley, M. Damian; Beiersdorfer, Peter; Porter, Frederick Scott; Brown, Gregory; Boyce, Kevin R.; Brekosky, Regis; Brown, Gregory V.; Gendreau, Keith C.; Gygax, John; Kahn, Steve; hide

    2000-01-01

    The XRS instrument on Astro-E is a fully self-contained microcalorimeter x-ray instrument capable of acquiring optimally filtering, and characterizing events for 32 independent pixels. With the launch of the Astro-E spacecraft, a full flight spare detector system has been integrated into a laboratory cryostat for use on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory. The detector system contains a microcalorimeter array with 32 instrumented pixels heat sunk to 60 mK using an adiabatic demagnetization refrio,erator. The instrument has a composite resolution of 8eV at 1 keV and 12eV at 6 keV with a minimum of 95% quantum efficiency. This will allow high spectral resolution, broadband observations of collisionally excited plasmas which are produced in the EBIT experiment. Unique to our instrument are exceptionally well characterized 1000 Angstrom thick aluminum on polyimide infrared blocking filters. The detailed transmission function including the edc,e fine structure of these filters has been measured in our laboratory using an erect field grating spectrometer. This will allow the instrument to perform the first broadband absolute flux measurements with the EBIT instrument. The instrument performance as well as the results of preliminary measurements will be discussed. Work performed under the auspices of the U.S. D.o.E. by Lawrence Livermore National Laboratory under contract W-7405-ENG-48 and was supported by the NASA High Energy Astrophysics Supporting Research and Technology Program.

  5. Feasibility of Key Star Wars Technology at Center of Debate over Information a Cal. Laboratory Gave Government.

    ERIC Educational Resources Information Center

    McDonald, Kim

    1988-01-01

    The question of whether a university is responsible for the technical accuracy of information released by senior administrators of a laboratory it is charged with overseeing is examined in the case involving a dispute at the Lawrence Livermore National Laboratory that is overseen by the University of California. (MLW)

  6. Cross Domain Deterrence: Livermore Technical Report, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Peter D.; Bahney, Ben; Matarazzo, Celeste

    2016-08-03

    Lawrence Livermore National Laboratory (LLNL) is an original collaborator on the project titled “Deterring Complex Threats: The Effects of Asymmetry, Interdependence, and Multi-polarity on International Strategy,” (CDD Project) led by the UC Institute on Global Conflict and Cooperation at UCSD under PIs Jon Lindsay and Erik Gartzke , and funded through the DoD Minerva Research Initiative. In addition to participating in workshops and facilitating interaction among UC social scientists, LLNL is leading the computational modeling effort and assisting with empirical case studies to probe the viability of analytic, modeling and data analysis concepts. This report summarizes LLNL work on themore » CDD Project to date, primarily in Project Years 1-2, corresponding to Federal fiscal year 2015. LLNL brings two unique domains of expertise to bear on this Project: (1) access to scientific expertise on the technical dimensions of emerging threat technology, and (2) high performance computing (HPC) expertise, required for analyzing the complexity of bargaining interactions in the envisioned threat models. In addition, we have a small group of researchers trained as social scientists who are intimately familiar with the International Relations research. We find that pairing simulation scientists, who are typically trained in computer science, with domain experts, social scientists in this case, is the most effective route to developing powerful new simulation tools capable of representing domain concepts accurately and answering challenging questions in the field.« less

  7. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  8. Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work onmore » Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be

  9. The effect of Livermore OPAL opacities on the evolutionary masses of RR Lyrae stars

    NASA Technical Reports Server (NTRS)

    Yi, Sukyoung; Lee, Young-Wook; Demarque, Pierre

    1993-01-01

    We have investigated the effect of the new Livermore OPAL opacities on the evolution of horizontal-branch (HB) stars. This work was motivated by the recent stellar pulsation calculations using the new Livermore opacities, which suggest that the masses of double-mode RR Lyrae stars are 0.1-0.2 solar mass larger than those based on earlier opacities. Unlike the pulsation calculations, we find that the effect of opacity change on the evolution of HB stars is not significant. In particular, the effect of the mean masses of RR Lyrae stars is very small, showing a decrease of only 0.01-0.02 solar mass compared to the models based on old Cox-Stewart opacities. Consequently, with the new Livermore OPAL opacities, both the stellar pulsation and evolution models now predict approximately the same masses for the RR Lyrae stars. Our evolutionary models suggest that the mean masses of the RR Lyrae stars are about 0.76 and about 0.71 solar mass for M15 (Oosterhoff group II) and M3 (group I), respectively. If (alpha/Fe) = 0.4, these values are decreased by about 0.03 solar mass. Variations of the mean masses of RR Lyrae stars with HB morphology and metallicity are also presented.

  10. Pension fund activities at Department laboratories managed by the University of California. [Contains Management and Auditor Comments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy's (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department's interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department's contract administration of its interest in those pension plans.

  11. Experimental Studies of Very-High Mach Number Hydrodynamics

    DTIC Science & Technology

    1994-02-14

    BUCKINGHAM Lawrence Livermore National Laboratory Livermore, California IRA KOHLBERG Kohlberg Associates, Inc. Alexandria, Virginia 9 / 1 321 February 14...34** Lawrence Livermore National Laboratory, Livermore, CA tKohlberg Associates, Inc., Alexandria, VA 12a. DISTRIBUTION/AVAILABlUTY STATEMENT 12b...Kohlberg 3 IPlasma Physics Division, Naval Research Laboratory, Washington DC 20375, USA 2 Lawrence Livermore National Laboratory, Liveraore, Ca. USA 3

  12. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  13. Approval of Las Positas College in Livermore: A Report to the Governor and Legislature on the Development of Las Positas College (Formerly the Livermore Education Center of Chabot College).

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    The Livermore Education Center (LEC), an off-campus center of Chabot College, was established in 1975. In 1986, the South County Community College District designated the LEC a full-service community college campus eligible for state funding of facilities, and in 1988, the Board of Governors of the California Community Colleges approved Las…

  14. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  15. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser

  16. Thin-window high-efficiency position sensitive proportional counter for the vacuum flat crystal spectrometers on the Lawrence Livermore National Laboratory electron beam ion trap (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Goddard, R.

    2001-01-01

    We have mounted 1 {mu}m thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties ofmore » these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 {mu}m thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 {mu}m aluminized polyimide windows to the 4 {mu}m aluminized polypropylene windows. The comparison shows an average increase in efficiency of {approx}40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region.« less

  17. Ultra-trace analysis of 41Ca in urine by accelerator mass spectrometry: an inter-laboratory comparison

    PubMed Central

    Jackson, George S.; Hillegonds, Darren J.; Muzikar, Paul; Goehring, Brent

    2013-01-01

    A 41Ca interlaboratory comparison between Lawrence Livermore National Laboratory (LLNL) and the Purdue Rare Isotope Laboratory (PRIME Lab) has been completed. Analysis of the ratios assayed by accelerator mass spectrometry (AMS) shows that there is no statistically significant difference in the ratios. Further, Bayesian analysis shows that the uncertainties reported by both facilities are correct with the possibility of a slight under-estimation by one laboratory. Finally, the chemistry procedures used by the two facilities to produce CaF2 for the cesium sputter ion source are robust and don't yield any significant differences in the final result. PMID:24179312

  18. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet,more » there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected

  19. 03-NIF Dedication: Norm Pattiz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norm Pattiz

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Norm Pattiz, the chairman of Lawrence Livermore National Security, which manages Lawrence Livermore National Laboratory for the U.S. Department of Energy.

  20. 03-NIF Dedication: Norm Pattiz

    ScienceCinema

    Norm Pattiz

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Norm Pattiz, the chairman of Lawrence Livermore National Security, which manages Lawrence Livermore National Laboratory for the U.S. Department of Energy.

  1. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Oxides within DOE-STD-3013-2000 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mount, M E; O'Connell, W J

    2005-06-03

    Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised ofmore » a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm{sup 3} to 4.62 g/cm{sup 3}) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results.« less

  2. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  3. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  4. Comparisons of laboratory wavelength measurements with theoretical calculations for neon-like through lithium-like argon, sulfur, and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepson, J K; Beiersdorfer, P; Behar, E

    Atomic structure codes have a difficult time accurately calculating the wavelengths of many-electron ions without the benefit of laboratory measurements. This is especially true for wavelengths of lines in the extreme ultraviolet and soft x-ray regions. We are using the low-energy capability of the Livermore electron beam ion traps to compile a comprehensive catalog of astrophysically relevant emission lines in support of satellite x-ray observations. Our database includes wavelength measurements, relative intensities, and line assignments, and is compared to a full set of calculations using the Hebrew University - Lawrence Livermore Atomic Code (HULLAC). Mean deviation of HULLAC calculations frommore » our measured wavelength values is highest for L-shell transitions of neon-like ions and lowest for lithium-like ions, ranging from a mean deviation of over 0.5 {angstrom} for Si V to 12 m{angstrom} in Ar XVI.« less

  5. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, Natalie

    K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1–10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential – whether through global spectral modeling or through diagnostics from local modeling of individual lines –more » the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro- H/Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data

  6. The Pyramid Liner Concept

    DTIC Science & Technology

    2003-06-01

    Albuquerque, NM, 1992. Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory: Livermore, CA, 1981 Geiger, W.; Honcia, G...L.; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL -50422; Lawrence Livermore National Laboratory...ARMAMENT LAB AFATL DLJR J FOSTER D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA

  7. Measurement of L-shell transitions in M-shell ions in the laboratory and identification in stellar coronae

    DOE PAGES

    Lepson, J. K.; Beiersdorfer, P.; Hell, N.; ...

    2017-04-04

    Based on laboratory data from the Lawrence Livermore EBIT-I electron beam ion trap and calculations using the relativistic multi-reference Møller-Plesset (MRMP) perturbation theory approach, we identify L-shell transitions of M-shell iron ions in emission spectra of the nearby stars Capella and Procyon. In conclusion, these lines are weaker than the well known, prominent lines from Fe XVII. However, they need to be taken into account when modeling the spectra, especially of cool stars.

  8. Requirements Document for Development of a Livermore Tomography Tools Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seetho, I. M.

    In this document, we outline an exercise performed at LLNL to evaluate the user interface deficits of a LLNL-developed CT reconstruction software package, Livermore Tomography Tools (LTT). We observe that a difficult-to-use command line interface and the lack of support functions compound to generate a bottleneck in the CT reconstruction process when input parameters to key functions are not well known. Through the exercise of systems engineering best practices, we generate key performance parameters for a LTT interface refresh, and specify a combination of back-end (“test-mode” functions) and front-end (graphical user interface visualization and command scripting tools) solutions to LTT’smore » poor user interface that aim to mitigate issues and lower costs associated with CT reconstruction using LTT. Key functional and non-functional requirements and risk mitigation strategies for the solution are outlined and discussed.« less

  9. The Power of Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    Institutions Lawrence Livermore National Laboratory conduct similar or complementary research often excel through collaboration. Indeed, much of Lawrence Livermore's research involves collaboration with other institutions, including universities, other national laboratories, government agencies, and private industry. In particular, Livermore's strategic collaborations with other University of California (UC) campuses have proven exceptionally successful in combining basic science and applied multidisciplinary research. In joint projects, the collaborating institutions benefit from sharing expertise and resources as they work toward their distinctive missions in education, research, and public service. As Laboratory scientists and engineers identify resources needed to conduct their work, they often turn tomore » university researchers with complementary expertise. Successful projects can expand in scope to include additional scientists and engineers both from the Laboratory and from UC, and these projects may become an important element of the research portfolios of the cognizant Livermore directorate and the university department. Additional funding may be provided to broaden or deepen a research project or perhaps develop it for transfer to the private sector for commercial release. Occasionally, joint projects evolve into a strategic collaboration at the institutional level, attracting the attention of the Laboratory director and the UC chancellor. Government agencies or private industries may contribute funding in recognition of the potential payoff of the joint research, and a center may be established at one of the UC campuses. Livermore scientists and engineers and UC faculty are recruited to these centers to focus on a particular area and achieve goals through interdisciplinary research. Some of these researchers hold multilocation appointments, allowing them to work at Livermore and another UC campus. Such centers also attract postdoctoral researchers

  10. Lawrence Livermore National Laboratory Environmental Report 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, Crystal

    The purposes of the Environmental Report 2016 are to record LLNL’s compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring. Specifically, the report discusses LLNL’s EMS; describes significant accomplishments in pollution prevention; presents the results of air, water, vegetation, and foodstuff monitoring; reports radiological doses from LLNL operations; summarizes LLNL’s activities involving special status wildlife, plants, and habitats; and describes the progress LLNL has made in remediating groundwater contamination. Environmental monitoring at LLNL, including analysis of samples and data, is conducted according to documented standard operating procedures. Duplicate samplesmore » are collected and analytical results are reviewed and compared to internal acceptance standards. This report is prepared for DOE by LLNL’s Environmental Functional Area (EFA). Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.” The report is distributed in electronic form and is available to the public at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning with 1994 are also on the website.« less

  11. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  12. Stellar and laboratory XUV/EUV line ratios in Fe XVIII and Fe XIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traebert, E.; Beiersdorfer, P.; Clementson, J.

    2012-05-25

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines observed in the XUV and EUV ranges of the spectrum of the star Capella as observed by the Chandra spacecraft, even after correction for interstellar absorption. This excess becomes apparent in the comparison of the observations with simulations of stellar spectra obtained using collisional-radiative models that employ, for example, the Atomic Plasma Emission Code (APEC) or the Flexible Atomic Code (FAC). We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT).

  13. An overview of Laser-Produced Relativistic Positrons in the Laboratory

    NASA Astrophysics Data System (ADS)

    Edghill, Brandon; Williams, Gerald; Chen, Hui; Beg, Farhat

    2017-10-01

    The production of relativistic positrons using ultraintense lasers can facilitate studies of fundamental pair plasma science in the relativistic regime and laboratory studies of scaled energetic astrophysical mechanisms such as gamma ray bursts. The positron densities and spatial scales required for these applications, however, are larger than current capabilities. Here, we present an overview of the experimental laser-produced positron results and their respective modeling for both the direct laser-irradiated process and the indirect process (laser wakefield accelerated electrons irradiating a high-Z converter). Conversion efficiency into positrons and positron beam characteristics are compared, including total pair yield, mean energy, angular divergence, and inferred pair density for various laser and target conditions. Prospects towards increasing positron densities and beam repetition rates will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and funded by LDRD (#17-ERD-010).

  14. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less

  15. Science & Technology Review November 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, K

    This months issue of Science and Technology Review has the following articles: (1) High-Tech Help for Fighting Wildfires--Commentary by Leland W. Younker; (2) This Model Can Take the Heat--A physics-based simulation program to combat wildfires combines the capabilities and resources of Lawrence Livermore and Los Alamos national laboratories. (3) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory. (4) A view to Kill--Livermore sensors are aimed at the ''kill'' vehicle when it intercepts an incoming ballistic missile. (5) 50th Anniversary Highlight--Biological Research Evolves at Livermore--Livermore's biological research program keepsmore » pace with emerging national issues, from studying the effects of ionizing radiation to detecting agents of biological warfare.« less

  16. LIP: The Livermore Interpolation Package, Version 1.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, F N

    2011-07-06

    This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the 'LEOS Interpolation Package'. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewisemore » bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional functions with a common independent variable. LIP has an object-oriented design, but it is implemented in ANSI Standard C for efficiency and compatibility with existing applications. First, a 'LIP interpolation object' is created and initialized with the data to be interpolated. Then the interpolation coefficients for the selected method are computed and added to the object. Since version 1.1, LIP has options to instead estimate derivative values or merely store data in the object. (These are referred to as 'partial setup' options.) It is then possible to pass the object to functions that

  17. LIP: The Livermore Interpolation Package, Version 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, F N

    2011-01-04

    This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the ''LEOS Interpolation Package''. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewisemore » bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional functions with a common independent variable. LIP has an object-oriented design, but it is implemented in ANSI Standard C for efficiency and compatibility with existing applications. First, a ''LIP interpolation object'' is created and initialized with the data to be interpolated. Then the interpolation coefficients for the selected method are computed and added to the object. Since version 1.1, LIP has options to instead estimate derivative values or merely store data in the object. (These are referred to as ''partial setup'' options.) It is then possible to pass the object to functions

  18. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  19. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  20. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE PAGES

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  1. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  2. A Uniaxial Nonlinear Thermoviscoelastic Constitutive Model with Damage for M30 Gun Propellant

    DTIC Science & Technology

    1994-06-01

    Gun Propellants at High Pressure." Lawrence Livermore National Laboratory, UCRL -88521, 1983. n g Design - k _ ao tics of Gum-’ AMCP 706-150, U.S. Army...07806-5000 Bethesda, MD 20054-5000 2 Commander 5 Director DARPA Lawrence Livermore National ATTN: J. Kelly Laboratory B. Wilcox ATTN: R. Christensen 3701

  3. Numerical Modeling of Buried Mine Explosions

    DTIC Science & Technology

    2001-03-01

    Lawrence Livermore Laboratory Report, UCRL -50108, Rev. 1, June 1977. 12. Dobratz, B. M., and P. C. Crawford. “LLNL Explosives Handbook.” Lawrence...Livermore National Laboratory Report, UCRL -52997, January 1985. 13. Kerley, G. I. “Multiphase Equation of State for Iron.” Sandia National Laboratories...BOX 202797 AUSTIN TX 78720-2797 1 DARPA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 US MILITARY ACADEMY MATH SCI

  4. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  5. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  6. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  7. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept (LIFE) by the Lawrence Livermore National Laboratory.

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2009-05-01

    The recently proposed Super Marx pure deuterium micro-detonation ignition concept [1] is compared to the Lawrence Livermore National Ignition Facility (NIF) laser DT fusion-fission hybrid concept (LIFE) [2]. A typical example of the LIFE concept is a fusion gain 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation gains of the same magnitude can in theory be reached. If the theoretical prediction can be supported by more elaborate calculations, the Super Marx approach is likely to make lasers obsolete as a means for the ignition of thermonuclear micro-explosions. [1] ``Ignition of a Deuterium Micro-Detonation with a Gigavolt Super Marx Generator,'' Winterberg, F., Journal of Fusion Energy, Springer, 2008. http://www.springerlink.com/content/r2j046177j331241/fulltext.pdf. [2] ``LIFE: Clean Energy from Nuclear Waste,'' https://lasers.llnl.gov/missions/energy&_slash;for&_slash;the&_slash;future/life/

  8. NGSI student activities in open source information analysis in support of the training program of the U.S. DOE laboratories for the entry into force of the additional protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, M Analisa; Uribe, Eva C; Sandoval, Marisa N

    2009-01-01

    In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describesmore » how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.« less

  9. Technology Innovation for the CTBT, the National Laboratory Contribution

    NASA Astrophysics Data System (ADS)

    Goldstein, W. H.

    2016-12-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) and its Protocol are the result of a long history of scientific engagement and international technical collaboration. The U.S. Department of Energy National Laboratories have been conducting nuclear explosive test-ban research for over 50 years and have made significant contributions to this legacy. Recent examples include the RSTT (regional seismic travel time) computer code and the Smart Sampler—both of these products are the result of collaborations among Livermore, Sandia, Los Alamos, and Pacific Northwest National Laboratories. The RSTT code enables fast and accurate seismic event locations using regional data. This code solves the long-standing problem of using teleseismic and regional seismic data together to locate events. The Smart Sampler is designed for use in On-site Inspections to sample soil gases to look for noble gas fission products from a potential underground nuclear explosive test. The Smart Sampler solves the long-standing problem of collecting soil gases without contaminating the sample with gases from the atmosphere by operating only during atmospheric low-pressure events. Both these products are being evaluated by the Preparatory Commission for the CTBT Organization and the international community. In addition to R&D, the National Laboratories provide experts to support U.S. policy makers in ongoing discussions such as CTBT Working Group B, which sets policy for the development of the CTBT monitoring and verification regime.

  10. Feasibility of Wide-Area Decontamination of Bacillus anthracis Spores Using a Germination-Lysis Approach

    DTIC Science & Technology

    2011-11-16

    Security, LLC 2011 CBD S& T Conference November 16, 2011 LLNL-PRES-508394 Lawrence Livermore National Laboratory LLNL-PRES-  Background...PRES-  Gruinard Island 5% formaldehyde  Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...508394 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011

  11. Fixatives Application for Risk Mitigation Following Contamination with a Biological Agent

    DTIC Science & Technology

    2011-11-02

    PRES-  Gruinard Island 5% formaldehyde  Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...507816 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011...LL L-PRES-507816 Lawrence Livermore National Laboratory LLNL-PRES-  High disinfectant concentrations increase operational costs and risk

  12. A Collection of Articles Reprinted from Science & Technology Review on University Relations Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radousky, H; Rennie, G; Henke, A

    2006-08-23

    This month's issue has the following articles: (1) The Power of Partnership--Livermore researchers forge strategic collaborations with colleagues from other University of California campuses to further science and better protect the nation; (2) Collaborative Research Prepares Our Next-Generation Scientists and Engineers--Commentary by Laura R. Gilliom; (3) Next-Generation Scientists and Engineers Tap Lab's Resources--University of California Ph.D. candidates work with Livermore scientists and engineers to conduct fundamental research as part of their theses; (4) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory; and (5) Faculty on Sabbatical Find amore » Good Home at Livermore--Faculty members from around the world come to the Laboratory as sabbatical scholars.« less

  13. Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Hindmarsh, Alan C.

    1993-01-01

    LSODE, the Livermore Solver for Ordinary Differential Equations, is a package of FORTRAN subroutines designed for the numerical solution of the initial value problem for a system of ordinary differential equations. It is particularly well suited for 'stiff' differential systems, for which the backward differentiation formula method of orders 1 to 5 is provided. The code includes the Adams-Moulton method of orders 1 to 12, so it can be used for nonstiff problems as well. In addition, the user can easily switch methods to increase computational efficiency for problems that change character. For both methods a variety of corrector iteration techniques is included in the code. Also, to minimize computational work, both the step size and method order are varied dynamically. This report presents complete descriptions of the code and integration methods, including their implementation. It also provides a detailed guide to the use of the code, as well as an illustrative example problem.

  14. Environmental Report 1996 Volume 2

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  15. Environmental Report 1994

    DOT National Transportation Integrated Search

    1995-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  16. Environmental Report 1996 Volume 1

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  17. Environmental Report 1995

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  18. Environmental Report 1993

    DOT National Transportation Integrated Search

    1994-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  19. Environmental Report 1995, Volume 2

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  20. Physics and Advanced Technologies 2003 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the bestmore » science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in

  1. Characterization of Jets From Exploding Bridge Wire Detonators

    DTIC Science & Technology

    2005-05-01

    Laboratories: Albuquerque, NM, 1992. 8. Lee, E. L; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL ...Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory, University of California: Livermore, CA 1981. 22...ATTN AFATL DLJR D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA ATTN W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 2 LOS

  2. Voiced Excitations

    DTIC Science & Technology

    2004-12-01

    3701 North Fairfax Drive Arlington, VA 22203-1714 NA NA NA Radar & EM Speech, Voiced Speech Excitations 61 ULUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED...New Ideas for Speech Recognition and Related Technologies”, Lawrence Livermore National Laboratory Report, UCRL -UR-120310 , 1995 . Available from...Livermore Laboratory report UCRL -JC-134775M Holzrichter 2003, Holzrichter J.F., Kobler, J. B., Rosowski, J.J., Burke, G.J., (2003) “EM wave

  3. Sending an Instrument to Psyche, the Largest Metal Asteroid in the Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Morgan

    In a few years, an instrument designed and built by Lawrence Livermore National Laboratory researchers will be flying hundreds of millions of miles through space to explore a rare, largely metal asteroid. The Livermore gamma ray spectrometer will be built in collaboration with researchers from the Johns Hopkins Applied Physics Laboratory for the first-ever visit to Psyche, the largest metal asteroid in the solar system.

  4. Numerical Simulations of 3D Seismic Data Final Report CRADA No. TC02095.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, S. J.; Kostov, C.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of Califomia)/Lawrence-Livermore National Laboratory (LLNL) and Schlumberger Cambridge Research (SCR), to develop synthetic seismic data sets and supporting codes.

  5. 10-NIF Dedication: Ellen Tauscher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congresswoman Ellen Tauscher

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Ellen Tauscher, of California's 10th district, which includes Livermore.

  6. 10-NIF Dedication: Ellen Tauscher

    ScienceCinema

    Congresswoman Ellen Tauscher

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Ellen Tauscher, of California's 10th district, which includes Livermore.

  7. Modeling of Near-Field Blast Performance

    DTIC Science & Technology

    2013-11-01

    The freeze-out temperature is chosen by comparison of calorimetry experiments (2, 3) and thermoequilibrium calculations using CHEETAH (4). The near...P.; Vitello, P. CHEETAH Users Manual; Lawrence Livermore National Laboratory: Livermore, CA, 2012. 5. Walter, P. Introduction to Air Blast

  8. 07-NIF Dedication: Jerry McNerney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congressman Jerry McNerney

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congressman Jerry McNerney, of California's 11th district, which adjoins Livermore.

  9. 07-NIF Dedication: Jerry McNerney

    ScienceCinema

    Congressman Jerry McNerney

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congressman Jerry McNerney, of California's 11th district, which adjoins Livermore.

  10. Demonstration of Regional Discrimination of Eurasian Seismic Events Using Observations at Soviet IRIS and CDSN Stations

    DTIC Science & Technology

    1992-03-01

    Propagation of Lg Waves Across Eastern Europe and Asia, Lawrence Livermore National Laboratory Report, LLNL Report No. UCRL -52494. Press, F., and M. Ewing...the Nuclear Testing Ground in Eastern Kazakhstan, Lawrence Livermore National Laboratory Report, LLNL Report No. UCRL -52856. Ruzaikin, A., I. Nersesov...Derring Hall University Park, PA 16802 Blacksburg, VA 24061 Dr. Ralph Alewine, III Dr. Stephen Bratt DARPAftMRO Center for Seismic Studies 3701 North Fairax

  11. Recent Methodological Developments in Magnitude Determination and Yield Estimation with Applications to Semipalatinsk Explosions

    DTIC Science & Technology

    1991-07-16

    UCRL -51414-REV1, Lawrence Livermore Laboratory, University of California, CA. - 47 - North, R. G. (1977). Station magnitude bias --- its determination...1976 at and near the nuclear testing ground in eastern Kazakhstan, UCRL -52856, Lawrence Livermore Laboratory, University of California, CA. Ryall, A...VA 24061 Dr. Ralph Alewine, I Dr. Stephen Bratt DARPA/NMRO Center for Seismic Studies 3701 North Fairfax Drive 1300 North 17th Street Arlington, VA

  12. Proceedings of the Annual PL/DARPA Seismic Research Symposium (14th) Held in Tucson, AZ on 16-18 September 1992

    DTIC Science & Technology

    1992-08-17

    01731-5000 UP, No. 1106 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER DARPA/NMRO 3701 North...the peaceful uses of nuclear explosives, UCRL -5414, Lawrence Livermore National Laboratory, 1973. Nordyke, M.D., A review of Soviet data on the peaceful...Lawrence Livermore national Laboratory, UCRL -JC-107941, preprint. Haskell, N. A. (1964). Radiation pattern of surface waves from point sources in a

  13. Nuclear security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingell, J.D.

    1991-02-01

    The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secretmore » document control program was also assessed.« less

  14. Welding of Vanadium, Tantalum, 304L and 21-6-9 Stainless Steels, and Titanium Alloys at Lawrence Livermore National Laboratory using a Fiber Delivered 2.2 kW Diode Pumped CW Nd:YAG Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T; Elmer, J; Pong, R

    This report summarizes the results of a series of laser welds made between 2003 and 2005 at Lawrence Livermore National Laboratory (LLNL). The results are a compilation of several, previously unpublished, internal LLNL reports covering the laser welding of vanadium, tantalum, 304L stainless steel, 21-6-9 (Nitronic 40) steel, and Ti-6Al-4V. All the welds were made using a Rofin Sinar DY-022 diode pumped continuous wave Nd:YAG laser. Welds are made at sharp focus on each material at various power levels and travel speeds in order to provide a baseline characterization of the performance of the laser welder. These power levels aremore » based on measurements of the output power of the laser system, as measured by a power meter placed at the end of the optics train. Based on these measurements, it appears that the system displays a loss of approximately 10% as the beam passes through the fiber optic cable and laser optics. Since the beam is delivered to the fixed laser optics through a fiber optic cable, the effects of fiber diameter are also briefly investigated. Because the system utilizes 1:1 focusing optics, the laser spot size at sharp focus generally corresponds to the diameter of the fiber with which the laser is delivered. Differences in the resulting weld penetration in the different materials system are prevalent, with the welds produced on the Nitronic 40 material displaying the highest depths (> 5 mm) and minimal porosity. A Primes focusing diagnostic has also been installed on this laser system and used to characterize the size and power density distribution of the beams as a function of both power and focus position. Further work is planned in which this focusing diagnostic will be used to better understand the effects of changes in beam properties on the resulting weld dimensions in these and other materials systems.« less

  15. Composite Flywheel Development for Energy Storage

    DTIC Science & Technology

    2005-01-01

    Fiber-Composite Flywheel Program: Quarterly Progress Report; UCRL -50033-76-4; Lawrence Livermore National Laboratory: Livermore, CA, 1976. 2...BEACH DAHLGREN VA 22448 1 WATERWAYS EXPERIMENT D SCOTT 3909 HALLS FERRY RD SC C VICKSBURG MS 39180 1 DARPA B WILCOX 3701 N FAIRFAX DR

  16. Final Report on Contract N00014-92-C-0173 (Office of Naval Research)

    DTIC Science & Technology

    2001-01-10

    PHILPOTTI* t Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550, USA SIBM Research Division, Almaden Research Center...defines the ITP on one electrode and adsorbed hydrated lithium ion defines the OlIP on the second electrode. Ions have been classified according to

  17. High-Resolution Regional Phase Attenuation Models of the Iranian Plateau and Zagros (Postprint)

    DTIC Science & Technology

    2012-05-12

    15 September 2011, Tucson, AZ, Volume I, pp 153-160. Government Purpose Rights. Johann Wolfgang Goethe -Universität 1, and Lawrence Livermore...University of Missouri1, Johann Wolfgang Goethe -Universität 2, and Lawrence Livermore National Laboratory3 Sponsored by the Air Force

  18. Building CHAOS: An Operating System for Livermore Linux Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garlick, J E; Dunlap, C M

    2003-02-21

    The Livermore Computing (LC) Linux Integration and Development Project (the Linux Project) produces and supports the Clustered High Availability Operating System (CHAOS), a cluster operating environment based on Red Hat Linux. Each CHAOS release begins with a set of requirements and ends with a formally tested, packaged, and documented release suitable for use on LC's production Linux clusters. One characteristic of CHAOS is that component software packages come from different sources under varying degrees of project control. Some are developed by the Linux Project, some are developed by other LC projects, some are external open source projects, and some aremore » commercial software packages. A challenge to the Linux Project is to adhere to release schedules and testing disciplines in a diverse, highly decentralized development environment. Communication channels are maintained for externally developed packages in order to obtain support, influence development decisions, and coordinate/understand release schedules. The Linux Project embraces open source by releasing locally developed packages under open source license, by collaborating with open source projects where mutually beneficial, and by preferring open source over proprietary software. Project members generally use open source development tools. The Linux Project requires system administrators and developers to work together to resolve problems that arise in production. This tight coupling of production and development is a key strategy for making a product that directly addresses LC's production requirements. It is another challenge to balance support and development activities in such a way that one does not overwhelm the other.« less

  19. Lawrence Livermore National Laboratory two-stage light-gas gun

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Nellis, W. J.; Trinor, R. J.

    1981-10-01

    The APS conference on shock waves in condensed matter was held at Menlo Park, Ca, USA on 23 June 1981. The diagnostics and experimental program of a facility used to study condensed matter at high pressures are described.

  20. Rapid Assessment of Individual Soldier Operational Readiness Final Report CRADA No. TC02104.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turteltaub, K.; Mapes, J.

    This was a collaborative effort between Lawrence Livermore National Security (LLNS) (formerly The Regents of the University of California), Lawrence Livermore National Laboratory (LLNL) and Rules Based Medicine, Inc. {RBM), to identify markers in blood that would be candidates for determining the combat readiness of troops.

  1. CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruminer, J.J.

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.

  2. 360 Video Tour of 3D Printing Labs at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  3. High Peak Power Ka-Band Gyrotron Oscillator Experiments with Slotted and Unslotted Cavities.

    DTIC Science & Technology

    1987-11-10

    cylindrical graphite cathode by explosive plasma formation. (In order to optimize the compression ratio for these experiments, a graphite cathode was employed...48106 Attn: S.B. Segall I copy Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J

  4. Laboratory Measurements of the Dielectronic Recombination Satellite Transitions of He-Like FE XXV and H-Like FE XXVI

    NASA Technical Reports Server (NTRS)

    Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,

    2012-01-01

    We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.

  5. Analysis of Proton Transport Experiments.

    DTIC Science & Technology

    1980-09-05

    which can inhibit transport, may grow . The abrupt loss of transport at higher currents in the small channel suggests this possibility. Future experiments... Unicorn Park Drive Woburn, MA 01801 Attn: H. Linnerud 1 copy Lawrence Livermore Laboratory P. 0. Box 808 Livermore, CA 94550 Attn: R. J. Briggs 1 copy R

  6. HCCI Combustion Engines Final Report CRADA No. TC02032.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.; Lyford-Pike, E.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.

  7. 2015 Cross-Domain Deterrence Seminar Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, A.

    2016-01-11

    Lawrence Livermore National Laboratory (LLNL) hosted the 2nd Annual Cross-Domain Deterrence Seminar on November 17th, 2015 in Livermore, CA. The seminar was sponsored by LLNL’s Center for Global Security Research (CGSR), National Security Office (NSO), and Global Security program. This summary covers the seminar’s panels and subsequent discussions.

  8. Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal Final Report CRADA No. TC02009.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, L. A.; Barker, J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC/Lawrence Livermore National Laboratory (LLNL) (formerly the University of California) and Jet Research Center, a wholly owned division of Halliburton Energy Services, Inc. to design and prototype an improved explosive cutter for cutting the support legs of offshore oil and gas platforms.

  9. Megavolt, Multi-Kiloamp Ka-Band Gyrotron Oscillator Experiment

    DTIC Science & Technology

    1989-03-15

    pulseline accelerator with 20 K2 output impedance and 55 nsec voltage pulse was used to generate a multi-kiloamp annular electron beam by explosive plasma...Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J. Orzechowski 1 copy Dr. J. Chase 1

  10. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  11. Science & Technology Review October/November 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, R. L.; Meissner, C. N.; Kotta, P. R.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’smore » National Nuclear Security Administration. LLNS is a partnership involving Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle in affiliation with Texas A&M University. More information about LLNS is available online at www.llnsllc.com. Please address any correspondence (including name and address changes) to S&TR, Mail Stop L-664, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, or telephone (925) 423-3893. Our e-mail address is str-mail@llnl.gov. S&TR is available on the Web at str.llnl.gov.« less

  12. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-01-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)

  13. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-06-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)

  14. 360 Video Tour of 3D Printing Labs at LLNL

    ScienceCinema

    None

    2018-01-16

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  15. 78 FR 56706 - Decision to Evaluate a Petition to Designate a Class of Employees from the Sandia National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ...NIOSH gives notice as required by Department of Health and Human Services regulations of a decision to evaluate a petition to designate a class of employees from the Sandia National Laboratory- Livermore in Livermore, California to be included in the Special Exposure Cohort under the Energy Employees Occupational Illness Compensation Program Act of 2000.

  16. Hydrodynamic Scalings: from Astrophysics to Laboratory

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Remington, B. A.

    2000-05-01

    A surprisingly general hydrodynamic similarity has been recently described in Refs. [1,2]. One can call it the Euler similarity because it works for the Euler equations (with MHD effects included). Although the dissipation processes are assumed to be negligible, the presence of shocks is allowed. For the polytropic medium (i.e., the medium where the energy density is proportional to the pressure), an evolution of an arbitrarily chosen 3D initial state can be scaled to another system, if a single dimensionless parameter (the Euler number) is the same for both initial states. The Euler similarity allows one to properly design laboratory experiments modeling astrophysical phenomena. We discuss several examples of such experiments related to the physics of supernovae [3]. For the problems with a single spatial scale, the condition of the smallness of dissipative processes can be adequately described in terms of the Reynolds, Peclet, and magnetic Reynolds numbers related to this scale (all three numbers must be large). However, if the system develops small-scale turbulence, dissipation may become important at these smaller scales, thereby affecting the gross behavior of the system. We analyze the corresponding constraints. We discuss also constraints imposed by the presence of interfaces between the substances with different polytropic index. Another set of similarities governs evolution of photoevaporation fronts in astrophysics. Convenient scaling laws exist in situations where the density of the ablated material is very low compared to the bulk density. We conclude that a number of hydrodynamical problems related to such objects as the Eagle Nebula can be adequately simulated in the laboratory. We discuss also possible scalings for radiative astrophysical jets (see Ref. [3] and references therein). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48

  17. Algorithms and Architectures for Elastic-Wave Inversion Final Report CRADA No. TC02144.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, S.; Lindtjorn, O.

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Schlumberger Technology Corporation (STC), to perform a computational feasibility study that investigates hardware platforms and software algorithms applicable to STC for Reverse Time Migration (RTM) / Reverse Time Inversion (RTI) of 3-D seismic data.

  18. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P.; McKannay, R. H.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  19. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less

  20. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their

  1. Surface faulting near Livermore, California, associated with the January 1980 earthquakes

    USGS Publications Warehouse

    Bonilla, Manuel G.; Lienkaemper, James J.; Tinsley, John C.

    1980-01-01

    The earthquakes of 24 January (Ms 5.8) 1980 north of Livermore, California, and 26 January (Ms 5.2), were accompanied by surface faulting in the Greenville fault zone and apparently in the Las Positas fault zone also. The surface faulting was discontinuous and of small displacement. The main rupture within the Greenville fault zone trended about N.38°W. It was at least 4.2 km long and may have extended southward to Interstate Highway 580, giving a possible length of 6.2 km; both of these lengths included more gaps than observed surface rupture. Maximum displacements measured by us were about 25 mm of right slip (including afterslip through 28 January); vertical components of as much as 50 mm were seen locally, but these included gravity effects of unknown amount. The main break within the Greenville fault zones is very close to a fault strand mapped by Herd (1977, and unpublished data). A subsidiary break within the Greenville fault zone was about 0.5 km. long, had a general trend of N.46°W., and lay 0.12 to 0.25 km east of the main break. It was characterized by extension of as much as 40 mm and right slip of as much as 20 mm. This break was no more than 25 m from a fault mapped by Herd (unpublished data). Another break within the Greenville fault zone lay about 0.3 km southwest of the projection of the main break and trended about N33°W. It was at least 0.3 km long and showed mostly extension, but at several places a right-lateral component (up to 5 mm) was seen. This break was 80 to 100 m from a strand of the Greenville fault mapped by Herd (1977). Extensional fractures within the Greenville fault zone on the frontage roads north and south of Interstate Highway 580 may be related to regional extension or other processes, but do not seem to have resulted from faulting of the usual kind. One exception in this group is a fracture at the east side of Livermore valley which showed progressive increase in right-lateral displacement in February and March, 1980, and

  2. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work;more » therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.« less

  3. H-division quarterly report, October--December 1977. [Lawrence Livermore Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-10

    The Theoretical EOS Group develops theoretical techniques for describing material properties under extreme conditions and constructs equation-of-state (EOS) tables for specific applications. Work this quarter concentrated on a Li equation of state, equation of state for equilibrium plasma, improved ion corrections to the Thomas--Fermi--Kirzhnitz theory, and theoretical estimates of high-pressure melting in metals. The Experimental Physics Group investigates properties of materials at extreme conditions of pressure and temperature, and develops new experimental techniques. Effort this quarter concerned the following: parabolic projectile distortion in the two-state light-gas gun, construction of a ballistic range for long-rod penetrators, thermodynamics and sound velocities inmore » liquid metals, isobaric expansion measurements in Pt, and calculation of the velocity--mass profile of a jet produced by a shaped charge. Code development was concentrated on the PELE code, a multimaterial, multiphase, explicit finite-difference Eulerian code for pool suppression dynamics of a hypothetical loss-of-coolant accident in a nuclear reactor. Activities of the Fluid Dynamics Group were directed toward development of a code to compute the equations of state and transport properties of liquid metals (e.g. Li) and partially ionized dense plasmas, jet stability in the Li reactor system, and the study and problem application of fluid dynamic turbulence theory. 19 figures, 5 tables. (RWR)« less

  4. LLNL: Science in the National Interest

    ScienceCinema

    George Miller

    2017-12-09

    This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

  5. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  6. Manufacturing Steps for Commercial Production of Nano-Structure Capacitors Final Report CRADA No. TC02159.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbee, T. W.; Schena, D.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and TroyCap LLC, to develop manufacturing steps for commercial production of nano-structure capacitors. The technical objective of this project was to demonstrate high deposition rates of selected dielectric materials which are 2 to 5 times larger than typical using current technology.

  7. May 2003 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R; Salari, K; Ortega, J

    2003-05-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University,more » and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.« less

  8. Emergency Response Capability Baseline Needs Assessment - Compliance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharry, John A.

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by LLNL Emergency Management Department Head, James Colson. This document is the second of a two-part analysis on Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2016 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2016more » BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. The 2013 BNA was approved by NNSA’s Livermore Field Office on January 22, 2014.« less

  9. Progress Toward a Multidimensional Representation of the 5.56-mm Interior Ballistics

    DTIC Science & Technology

    2009-08-01

    were performed as a check of all the major species formed at one atmosphere pressure. Cheetah (17) thermodynamics calculations were performed under...in impermeable boundaries that only yield to gas-dynamic flow after a prescribed pressure load is reached act as rigid bodies within the chamber... Cheetah Code, version 4.0; Lawrence Livermore National Laboratory: Livermore, CA, 2005. 18. Williams, A. W.; Brant, A. L.; Kaste, P. J.; Colburn, J. W

  10. Development of a Laser for Landmine Destruction Final Report CRADA No. TC02126.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, R.; Sheppard, C.

    2017-08-31

    This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system.

  11. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, M.; Cunningham, P.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  12. Material Modeling for Terminal Ballistic Simulation

    DTIC Science & Technology

    1992-09-01

    DYNA-3D-a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics- user manual. Technical Report UCRL -MA...Rep. UCRL -50108, Rev. 1, Lawrence Livermore Laboratory, 1977. [34] S. P. Marsh. LASL Shock Hugoniot Data. University of California Press, Berkeley, CA...Steinberg. Equation of state and strength properties of selected ma- teriaJs. Tech. Rep. UCRL -MA-106439, Lawrence Livermore National Labo- ratory, 1991. [371

  13. The Future Role and Need for Nuclear Weapons in the 21st Century

    DTIC Science & Technology

    2007-01-01

    program, the Manhattan Project : Einstein‘s letter to Roosevelt in 1939 regarding the use of the energy from uranium for bombs, ―the imaginary German...succeed, nuclear weapons were introduced by the US into our world in 1945. The Manhattan Project efforts produced four bombs within its first three...Proceedings‖ (Livermore, CA: Lawrence Livermore National Laboratory, 1991), 14. 6 Ibid. , 12. 7 ― Manhattan Project ,‖ MSN Encarta, 2, http://encarta

  14. Radioprotective Drugs: A Synopsis of Current Research and a Proposed Research Plan for the Federal Emergency Management Agency.

    DTIC Science & Technology

    1985-04-01

    Lawrence Livermore National Laboratory *P.O. Box 808 2431D Livermore, CA 94550 ______ 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE April 1985...administration of drugs is preferred, to give the highest degree of control possible. Specific tumors are to be made more sensitive to radiation, while the...PJlanification c/Evaristo San Miguel, 8 Madrid-8 SPAIN Ministero dell Interno * ~Direzione Generale della -’- - Protezione Civile 00100 Rome ITALY

  15. Rethinking Approaches to Strategic Stability in the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Brian

    Lawrence Livermore National Laboratory (LLNL) hosted a two-day conference on rethinking approaches to strategic stability in the 21st century on October 20-21, 2016 in Livermore, CA. The conference was jointly convened by Lawrence Livermore, Los Alamos, and Sandia National Laboratories, and was held in partnership with the United States Department of State’s Bureau of Arms Control, Verification and Compliance. The conference took place at LLNL’s Center for Global Security Research (CGSR) and included a range of representatives from U.S. government, academic, and private institutions, as well as representatives from U.S. allies in Europe and Asia.The following summary covers topics andmore » discussions from each of the panels. It is not intended to capture every point in detail, but seeks to outline the range of views on these complex and inter-related issues while providing a general overview of the panel topics and discussions that took place. The conference was held under the Chatham House rule and does not attribute any remarks to any specific individual or institution. The views reflected in this report do not represent the United States Government, Department of State, or the national laboratories.« less

  16. Cross-scale MD simulations of dynamic strength of tantalum

    NASA Astrophysics Data System (ADS)

    Bulatov, Vasily

    2017-06-01

    Dislocations are ubiquitous in metals where their motion presents the dominant and often the only mode of plastic response to straining. Over the last 25 years computational prediction of plastic response in metals has relied on Discrete Dislocation Dynamics (DDD) as the most fundamental method to account for collective dynamics of moving dislocations. Here we present first direct atomistic MD simulations of dislocation-mediated plasticity that are sufficiently large and long to compute plasticity response of single crystal tantalum while tracing the underlying dynamics of dislocations in all atomistic details. Where feasible, direct MD simulations sidestep DDD altogether thus reducing uncertainties of strength predictions to those of the interatomic potential. In the specific context of shock-induced material dynamics, the same MD models predict when, under what conditions and how dislocations interact and compete with other fundamental mechanisms of dynamic response, e.g. twinning, phase-transformations, fracture. In collaboration with: Luis Zepeda-Ruiz, Lawrence Livermore National Laboratory; Alexander Stukowski, Technische Universitat Darmstadt; Tomas Oppelstrup, Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Wide Area Recovery and Resiliency Program (WARRP) Knowledge Enhancement Events: CBR Workshop After Action Report

    DTIC Science & Technology

    2012-01-01

    Laboratories Walker Ray Walker Engineering Solutions, LLC Williams Patricia Denver Office of Emergency Management Wood- Zika Annmarie Lawrence Livermore...llnl.gov AnnMarie Wood- Zika woodzika1@llnl.gov Pacific Northwest National Laboratory Ann Lesperance ann.lesperance@pnnl.gov Jessica Sandusky

  18. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, A.; Orgren, A.

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less

  19. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, A M; Anderson, S G; Betts, S

    2005-05-19

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.; Arsenlis, T.; Bailey, A.

    Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNLmore » capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.« less

  1. A Damage Mechanics Source Model for Underground Nuclear Explosions.

    DTIC Science & Technology

    1991-08-01

    California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical...ENSCO, Inc. Department of Geological Sciences 445 Pineda Court . , -7’- 9 Meibcurr..e, F 3940 6 William Kikendall Prof. Amos Nur Teledyne Geotech...Teledyne Geotech Lawrence Livermore National Laboratory 3a¢,l Shiloh Road L-205 Garland, TX 75041 P. 0. Box 808 Livermore, CA 94550 Dr. Matthew Sibol

  2. Accelerator-Detector Complex for Photonuclear Detection of Hidden Explosives Final Report CRADA No. TC2065.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowdermilk, W. H.; Brothers, L. J.

    This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.

  3. Studies of Near-Source and Near-Receiver Scattering and Low-Frequency Lg from East Kazakh and NTS Explosions

    DTIC Science & Technology

    1991-12-04

    ADDRESS(ES) 10. SPONSORING/MONITORING DARPA/NMRO Phillips Laboratory AGENCY REPORT NUMBER (Attn: Dr. A. Ryall) Hanscom AFB, MA 01731-5000 3701 North...areas and media at the USERDA Nevada Test Site, UCRL -51948, Lawrence Livermore La- boratory, Livermore, California. Stead, R. J. and D. V. HeImberger...University Park, PA 16802 Blacksburg, VA 24061 Dr. Ralph Alewine, III Dr. Stephen Bratt DARPA/NMRO Center for Seismic Studies 3701 North Fairfax Drive 1300

  4. Computational Studies of X-ray Framing Cameras for the National Ignition Facility

    DTIC Science & Technology

    2013-06-01

    Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 USA Abstract The NIF is the world’s most powerful laser facility and is...a phosphor screen where the output is recorded. The x-ray framing cameras have provided excellent information. As the yields at NIF have increased...experiments on the NIF . The basic operation of these cameras is shown in Fig. 1. Incident photons generate photoelectrons both in the pores of the MCP and

  5. Calculating the Vulnerability of Synthetic Polymers to Autoignition during Nuclear Flash.

    DTIC Science & Technology

    1985-03-01

    Lawrence Livermore National Laboratory P.O. Box 808 2561C Livermore, California 94550 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE~March...34Low Emissivity and Solar Control Coatings on Architectural Glass," Proc. SPIE 37, 324 (1982). 10. R. C. Weast, Ed., Handbook of Chemistry and Physics...Attn: Michael Frankel Chief of Engineers Washington, D.C. 20305 Department of the Army Attn: DAEN-RDZ-A Command and Control Technical Center Washington

  6. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensuremore » that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD

  7. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps [Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore EBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, N.; Beiersdorfer, P.; Magee, E. W.

    2016-08-04

    Here, we report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r=67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5–3 degree spectral range atmore » Bragg angles around 51.3 degree. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (> 10000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in first and second order, and derived the ion temperatures from these lines. We have also made use of the 50µm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.« less

  8. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  9. 2010 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2011-08-16

    The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  10. 2008 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2009-09-21

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  11. 2007 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2008-05-20

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  12. 2006 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2008-03-27

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  13. Evaluation of sonic IR for NDE at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W O

    2001-02-01

    Sonic IR was evaluated as an NDE technique at LLNL using a commercial ThermoSoniX system from Indigo Systems Corp. The main effort was to detect small cracks in aluminum oxide, a dense stiff ceramic. Test coupons were made containing 0.2-mm cracks by surface grinding, 1-mm cracks by compression with a Vickers bit, and 4-mm cracks by 3-point bending. Only the 3-point bend cracks produced thermal images. Several parts shattered during testing, perhaps by being forced at resonance by the 20-kHz acoustic probe. Tests on damaged carbon composite coupons produced thermal images that were in excellent agreement with ultrasonic inspection. Themore » composite results also showed some dependence on contact location of the acoustic probe, and on the method of support. Tests on glass with surface damage produced weak images at the pits. Tests on metal ballistic targets produced thermal images at the impact sites. Modal analyses suggest that the input frequency should be matched to the desired response, and also that forced resonance damaged some parts.« less

  14. Laboratory-Produced X-Ray Photoionized Plasmas for Astrophysics Exploration

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Le Pape, Sebastien; Liedahl, Duane; Ma, Tammy; Berzak-Hopkins, Laura; Reverdin, Charles; Rousseaux, Christophe; Renaudin, Patrick; Blancard, Christophe; Nottet, Edouard; Bidault, Niels; Mancini, Roberto; Koenig, Michel

    2015-11-01

    X-ray photoionized plasmas are rare in the laboratory, but of broad importance in astrophysical objects such as active galactic nuclei, x-ray binaries. Indeed, existing models are not yet able to accurately describe these plasmas where ionization is driven by radiation rather than electron collisions. Here, we describe an experiment on the LULI2000 facility whose versatility allows for measuring the X-ray absorption of the plasma while independently probing its electron density and temperature. The bright X-ray source is created by the two main beams focused inside a gold hohlraum and is used to photoionise a Neon gas jet. Then, a thin gold foil serves as a source of backlit photons for absorption spectroscopy. The transmitted spectrum through the plasma is collected by a crystal spectrometer. We will present the experimental setup used to characterize both plasma conditions and X-ray emission. Then we will show the transmitted spectra through the plasma to observe the transition from collision dominated to radiation dominated ionization and compare it to model predictions. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore Natl Lab under Contract No. DE-AC52-07NA27344.

  15. Webinar: Delivering Transformational HPC Solutions to Industry

    ScienceCinema

    Streitz, Frederick

    2018-01-16

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  16. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharry, John A.

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, firemore » department training records, and fire department policies and procedures.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, C. V.; Mendez, A. J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.

  18. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; McGreevy, T. E.

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  19. The Use of Carbon Aerogel Electrodes for Deionizing Water and Treating Aqueous Process Wastes

    DTIC Science & Technology

    1996-01-01

    Wastes Joseph C. Farmer, Gregory V. Mack and David V. Fix Lawrence Livermore National Laboratory Livermore, California 94550 Abstract A wide variety of...United States Department of Interior, 190 pages, May (1966). 9. A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne , C. M. Wong, , W. S. Gillam...Dept. Interior Pub. 200 056, 31 pages, March (1970). 10. A. M. Johnson, A. W. Venolia, R. G Wilbourne , J. Newman, "The Electrosorb Process for

  20. Fiscal Year 2012 United States Air Force Agency Financial Report

    DTIC Science & Technology

    2012-01-01

    Air Force Research Laboratory (AFRL) and Lawrence Livermore National Laboratory (LLNL) aggressively designed and tested an advanced warhead to...Reaper procurement & RPA capabilities, Light Attack Armed Reconnaissance buys, Joint Strike Fighter, satellites). Research , Development, Test and...Military Personnel Operations, Readiness & Support Procurement Research , Development, Test & Evaluation

  1. Double-shell target fabrication workshop-2016 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Oertel, John; Farrell, Michael

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less

  2. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  3. Multi-pulse power injection and spheromak sustainment in SSPX

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Hill, D. N.; Hooper, E. B.; Bulmer, R. H.; McLean, H. S.; Wood, R. D.; Woodruff, S.; Sspx Team

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. Spheromak formation (gun injection phase) and sustainment experiments are now routine in SSPX using a multi-bank power system. Gun voltage, impedance, and power coupling show a clear current threshold dependence on gun flux (I_th~=λ_0φ_gun/μ_0), increasing with current above the threshold, and are compared with CTX results. The characteristic gun inductance, L_gun~=0.6 μH, derived from the gun voltage dependence on di/dt, is larger than expected from Corsica modeling of the spheromak equilibrium. It’s value is consistent with the n=1 ‘doughook’ mode structure reported in SPHEX and believed important for helicity injection and toroidal current drive. Results of helicity and power balance calculations of spheromak poloidal field buildup are compared with experiment and used to project sustainment with a future longer pulse power supply. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  4. Enhanced verification test suite for physics simulation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.

    2008-09-01

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  5. Science& Technology Review September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    2003-09-01

    This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Lessmore » Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.« less

  6. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, Anastasia Dawn; Storey, Bradford G.; Bowidowicz, Martin

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelitymore » cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.« less

  7. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, A. F.; Smith, P. M.

    This project was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and FlexICs, Inc. to develop thin film transistor (TFT) electronics for active matrix displays.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, James B.

    National Security Office (NSO) newsletter's main highlight is on the annual Strategic Weapons in the 21st Century that the Los Alamos and Lawrence Livermore National Laboratories host in Washington, DC.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P; Walter, K

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory'smore » significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced

  11. 01-NIF Dedication: George Miller

    ScienceCinema

    George Miller

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  12. 09-NIF Dedication: Arnold Schwarzenegger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Governor Arnold Schwarzenegger

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by California Governor Arnold Schwarzenegger.

  13. Small Optics Laser Damage Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin

    2017-10-19

    This specification defines the requirements and procedure for laser damage testing of coatings and bare surfaces designated for small optics in the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Moses

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.

  15. 09-NIF Dedication: Arnold Schwarzenegger

    ScienceCinema

    Governor Arnold Schwarzenegger

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by California Governor Arnold Schwarzenegger.

  16. 01-NIF Dedication: George Miller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Miller

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  17. 02-NIF Dedication: Edward Moses

    ScienceCinema

    Edward Moses

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.

  18. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  19. Element 117

    ScienceCinema

    None

    2018-06-12

    An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas.

  20. Nuclear winter from gulf war discounted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, E.

    Would a major conflagration in Kuwait's oil fields trigger a climate catastrophe akin to the 'nuclear winter' that got so much attention in the 1980s This question prompted a variety of opinions. The British Meteorological Office and researchers at Lawrence Livermore National Laboratory concluded that the effect of smoke from major oil fires in Kuwait on global temperatures is likely to be small; however, the obscuration of sunlight might significantly reduce surface temperatures locally. Michael MacCracken, leader of the researchers at Livermore, predicts that the worst plausible oil fires in the Gulf would produce a cloud of pollution about asmore » severe as that found on a bad day at the Los Angeles airport. The results of some mathematical modeling by the Livermore research group are reported.« less

  1. Science & Technology Review November 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinn, D J

    2007-10-16

    This month's issue has the following articles: (1) Simulating the Electromagnetic World--Commentary by Steven R. Patterson; (2) A Code to Model Electromagnetic Phenomena--EMSolve, a Livermore supercomputer code that simulates electromagnetic fields, is helping advance a wide range of research efforts; (3) Characterizing Virulent Pathogens--Livermore researchers are developing multiplexed assays for rapid detection of pathogens; (4) Imaging at the Atomic Level--A powerful new electron microscope at the Laboratory is resolving materials at the atomic level for the first time; (5) Scientists without Borders--Livermore scientists lend their expertise on peaceful nuclear applications to their counterparts in other countries; and (6) Probing Deepmore » into the Nucleus--Edward Teller's contributions to the fast-growing fields of nuclear and particle physics were part of a physics golden age.« less

  2. Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitland, D.; Metzger, M. F.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.

  3. Star Power on Earth: Path to Clean Energy Future

    ScienceCinema

    Ed Moses

    2017-12-09

    Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

  4. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  5. Energy and technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, W.J.; Canada, J.; de Vore, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  6. Development of a Landmine Detection Sensor Final Report CRADA No. TC02133.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, C. E.; Sheppard, C.

    2017-09-06

    This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system. The focus of this CRADA was on developing a sensor system that accurately detects landmines, and provides exact location information in a timely manner with extreme reliability.

  7. Human-factors engineering control-room design review/audit: Waterford 3 SES Generating Station, Louisiana Power and Light Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, J.W.

    1983-03-10

    A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  8. Announced United States nuclear tests, July 1945 through December 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This document lists chronologically and alphabetically by event name all nuclear tests conducted and announced by the United States from July 1945 through December 1987, with the exception of the GMX experiments. The 24 GMX experiments, conducted at the Nevada Test Site (NTS) between December 1954 and February 1956, were /open quotes/equation-of-state/close quotes/ physics studies that used small chemical explosives and small quantities of plutonium. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missle launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or inmore » the air. Data on United States tests were obtained from and verified by the Department of Energy's three weapons laboratories--Los Alamos National Laboratory, Los Alamos, New Mexico; Lawrence Livermore National Laboratory, Livermore, California; and Sandia National Laboratories, Albuquerque, New Mexico. Additionally, data were obtained from public announcements issued by the Atomic Energy Commission and its successors, the Energy Research and Development Administation and the Department of Energy, respectively.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Pruneda, J.H.

    This issue pays tribute to Roger Batzel, the Laboratory's sixth and longest-tenured direct (1971-1988). The articles in this issue are: (1) ''Roger Batzel--A Leader and a Gentleman''. (2) ''A Career of Distinguished Achievement'' A superb manager with a quiet and self-effacing demeanor. Roger Batzel presided over a period of unprecedented growth and technical diversification at Lawrence Livermore. (3) ''From Dosimetry to Genomics'' Roger Batzel's support of Livermore's relatively new biomedical research program led to its growth into a major contributor to the worldwide Human Genome Project. (4) ''Swords into Plowshares and Beyond'' Under Roger Batzel's leadership, the Laboratory championed numerousmore » long-term, innovative alternative energy technologies to help address challenges not unlike those we are facing today. (5) ''Adapting to a Changing Weapons Program'' Roger Batzel's knowledge of the US weapons program and his much-trusted professional judgment served the Laboratory and the nation well as arms control and deterrence emerged as national priorities.« less

  10. Experiments of the highly non-linear Rayleigh-Taylor instability regime and dependence on Atwood Number

    NASA Astrophysics Data System (ADS)

    Elgin, L.; Handy, T.; Malamud, G.; Huntington, C. M.; Trantham, M. R.; Klein, S. R.; Kuranz, C. C.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Potential flow models predict that a Rayleigh-Taylor unstable system will reach a terminal velocity (and constant Froude number) at low Atwood numbers. Numerical simulations predict a re-acceleration phase of Rayleigh-Taylor Instability (RTI) and higher Froude number at late times. To observe this effect, we are conducting a series of experiments at OMEGA 60 to measure single-mode RTI growth at low and high Atwood numbers and late times. X-ray radiographs spanning 40 + ns capture the evolution of these systems. Experimental design challenges and initial results are discussed here. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  11. 11-NIF Dedication: Dianne Feinstein

    ScienceCinema

    U.S. Senator Dianne Feinstein

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by U.S. Senator Dianne Feinstein of California.

  12. 11-NIF Dedication: Dianne Feinstein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Senator Dianne Feinstein

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by U.S. Senator Dianne Feinstein of California.

  13. 08-NIF Dedication: Zoe Lofgren

    ScienceCinema

    Congresswoman Zoe Lofgren

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Zoe Lofgren, of California's 16th district.

  14. 08-NIF Dedication: Zoe Lofgren

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congresswoman Zoe Lofgren

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Zoe Lofgren, of California's 16th district.

  15. Calorimetry exchange program amendment to 3rd quarter CY92 report LLNL isotopic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, T.M.

    1996-08-01

    This report is a series of ammendments to the Calorimetry Exchange Quarterly Data Report for third quarter CY1992. The ammendment is needed due to reporting errors encountered in the Lawrence Livermore National Laboratory isotopic data.

  16. Addressing Transportation Energy and Environmental Impacts: Technical and Policy Research Directions

    DOT National Transportation Integrated Search

    1995-08-10

    The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental...

  17. A Multi-Time Scale Morphable Software Milieu for Polymorphous Computing Architectures (PCA) - Composable, Scalable Systems

    DTIC Science & Technology

    2004-10-01

    MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency AFRL/IFTC 3701 North Fairfax Drive...Scalable Parallel Libraries for Large-Scale Concurrent Applications," Technical Report UCRL -JC-109251, Lawrence Livermore National Laboratory

  18. Observations of nonlinear and nonuniform kink dynamics in a laboratory flux rope

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Feng, Y.; Swan, H.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A plasma column with axial magnetic field and current has helically twisted field lines. When current density in the column exceeds the kink instability threshold this magnetic configuration becomes unstable. Flux ropes in the solar wind and some solar prominences exhibit this topology, with their dynamics strongly and nonlinearly coupled to the ratio of axial current to magnetic field. The current-driven kink mode is ubiquitous in laboratory plasmas and well suited to laboratory study. In the Reconnection Scaling Experiment (RSX), nonlinear stability properties beyond the simple perturbative kink model are observed and readily diagnosed. We use a plasma gun to generate a single plasma column 0.50 m in length, in which we then drive an axial plasma current at the limit of marginal kink stability. With plasma current maintained at this threshold, we observe a deformation to a new dynamic equilibrium with finite gyration amplitude, where the currents and magnetic fields that support the force balance have surprising axial structure. Three dimensional measurements of magnetic field, plasma density, plasma potential, and ion flow velocity in the deformed plasma column show variation in the axial direction of the instability parameter and in the terms of the momentum equation. Likewise the pitch of the kink is measured to be nonuniform over the column length. In addition there is a return current antiparallel to the driven plasma current at distances up to 0.30 m from the gun that also modifies the force balance. These axial inhomogeneities, which are not considered in the model of an ideal kink, may be the terms that allow the deformed equilibrium of the RSX plasma to exist. Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Crashworthiness simulation of composite automotive structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botkin, M E; Johnson, N L; Simunovic, S

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3D TM specifically for composite structures. This model is in LS-DYNA3D TM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrencemore » Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.« less

  20. ARC-2010-ACD10-0029-027

    NASA Image and Video Library

    2010-02-16

    Lawrence Livermore National Laboratories media Day for their LLNL project aimed at aerodynamic truck and trailer devices. Tests are being preformed in the Ames Full-Scale Aerodynamic Complex 80x120 foot wind tunnel. Gabriel and Sharon Lozano.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Moses

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.

  2. Engineering Research Division publication report, calendar year 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  3. 12-NIF Dedication: Concluding remarks and video

    ScienceCinema

    Edward Moses

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.

  4. Sscience & technology review; Science Technology Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    Given the significant impact of computing on society, it is important that all cultures, especially underrepresented cultures, are fully engaged in the field of computing to ensure that everyone benefits from the advances in computing. This proposal is focused on the field of high performance computing. The lack of cultural diversity in computing, in particular high performance computing, is especially evident with respect to the following ethnic groups – African Americans, Hispanics, and Native Americans – as well as People with Disabilities. The goal of this proposal is to organize and coordinate a National Laboratory Career Development Workshop focused onmore » underrepresented cultures (ethnic cultures and disability cultures) in high performance computing. It is expected that the proposed workshop will increase the engagement of underrepresented cultures in HPC through increased exposure to the excellent work at the national laboratories. The National Laboratory Workshops are focused on the recruitment of senior graduate students and the retention of junior lab staff through the various panels and discussions at the workshop. Further, the workshop will include a community building component that extends beyond the workshop. The workshop was held was held at the Lawrence Livermore National Laboratory campus in Livermore, CA. from June 14 - 15, 2012. The grant provided funding for 25 participants from underrepresented groups. The workshop also included another 25 local participants in the summer programs at Lawrence Livermore National Laboratory. Below are some key results from the assessment of the workshops: 86% of the participants indicated strongly agree or agree to the statement "I am more likely to consider/continue a career at a national laboratory as a result of participating in this workshop." 77% indicated strongly agree or agree to the statement "I plan to pursue a summer internship at a national laboratory." 100% of the participants indicated

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinn, D J

    This month's issue has the following articles: (1) The Edward Teller Centennial--Commentary by George H. Miller; (2) Edward Teller's Century: Celebrating the Man and His Vision--Colleagues at the Laboratory remember Edward Teller, cofounder of Lawrence Livermore, adviser to U.S. presidents, and physicist extraordinaire, on the 100th anniversary of his birth; (3) Quark Theory and Today's Supercomputers: It's a Match--Thanks to the power of BlueGene/L, Livermore has become an epicenter for theoretical advances in particle physics; and (4) The Role of Dentin in Tooth Fracture--Studies on tooth dentin show that its mechanical properties degrade with age.

  7. 322-R2U2 Engineering Assessment - August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abri, M.; Griffin, D.

    This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J. F.; Berner, J. K.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P; Walter, K

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate themore » Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the

  10. Federal enclaves: The community culture of Department of Energy cities Livermore, Los Alamos, Oak Ridge

    NASA Astrophysics Data System (ADS)

    Moore, Patrick Kerry

    During the Second World War, the United States Government funded the research of nuclear fusion to create the first atomic weapons. To accomplish this task, the Manhattan Engineering District recruited scientists and engineers to remote sites in New Mexico, Tennessee, and Washington. During the five decades of the Cold War, the congressionally created Atomic Energy Commission, and later the Department of Energy (DOE), funded and operated numerous facilities throughout the United States. The mission of the facilities was to design and stockpile atomic weapons and to further the understanding of nuclear energy. This dissertation examines the influences of the United States federal government on three communities associated with these facilities, Los Alamos, New Mexico, Oak Ridge, Tennessee, and Livermore, California. As isolated secret cities, these environments each created complex community structures. This work identifies how, unlike other community settings, the influences of the federal government, both directly and indirectly, created distinctive patterns of behavior within the residents of each city. Examining these behaviors within the framework of the dissertation's chapters provides the necessary context to understand fully the community culture of these Department of Energy cities. This work addresses contemporary community settings in new ways. It approaches the topic broadly by examining five specific areas of community interaction: social, political, business and economic, educational, and ethical. Through the use of oral history methodology and techniques, the researcher captured significant information from respondents. This approach provides valuable insights to the behavior and interaction of the individual populations while revealing important insights all aspects of each town's community culture.

  11. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  12. 06-NIF Dedication: Steven Koonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Koonin

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Steven Koonin, the undersecretary for science of the U.S. Department of Energy.

  13. Development of DNA Pillar Chip Final Report CRADA No. TSB-2035-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, K. D.; Long, G. W.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Tetracore, to demonstrate a proof of principal device for the capture and controlled release of DNA moving within a flow stream.

  14. ELECTROSTATICALLY CHARGED AEROSOL DECONTAMINATION SYSTEM FOR SMALL BUILDING DECONTAMINATION - PHASE I

    EPA Science Inventory

    Existing decontamination procedures are time-consuming, labor-intensive, and produce low-yielding results, and they have a high risk of personnel exposure and equipment damage. Foster-Miller, Inc., has teamed with Lawrence Livermore National Laboratory and other reagent suppl...

  15. Counter Trafficking System Development "Analysis Training Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dennis C.

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  16. 06-NIF Dedication: Steven Koonin

    ScienceCinema

    Steven Koonin

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Steven Koonin, the undersecretary for science of the U.S. Department of Energy.

  17. No Limit: Exploring the Science of the Universe

    ScienceCinema

    Meinecke, Jena; Remington, Bruce; Zylstra, Alex; Falcone, Roger; Rinderknecht, Hans; Casner, Alexis

    2018-06-13

    Scientists who conduct unique, cutting-edge Discovery Science experiments on Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) describe the excitement of doing research on the world’s largest and highest-energy laser system.

  18. LLNL NESHAPs 2015 Annual Report - June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, K. R.; Gallegos, G. M.; MacQueen, D. H.

    2016-06-01

    Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) in which radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 μSv) to any member of the public. Using measured and calculated emissions, andmore » building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 4.0.1.17, to calculate the dose to the maximally exposed individual member of the public for the Livermore Site and Site 300.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, R J

    This month's issue has the following articles: (1) Honoring a Legacy of Service to the Nation - The nation pays tribute to George Miller, who retired in December 2011 as the Laboratory's tenth director; (2) Life-Extension Programs Encompass All Our Expertise - Commentary by Bruce T. Goodwin; (3) Extending the Life of an Aging Weapon - Stockpile stewards have begun work on a multiyear effort to extend the service life of the aging W78 warhead by 30 years; (4) Materials by Design - Material microstructures go three-dimensional with improved additive manufacturing techniques developed at Livermore; (5) Friendly Microbes Power Energy-Producingmore » Devices - Livermore researchers are demonstrating how electrogenic bacteria and microbial fuel cell technologies can produce clean, renewable energy and purify water; and (6) Chemical Sensor Is All Wires, No Batteries - Livermore's 'batteryless' nanowire sensor could benefit applications in diverse fields such as homeland security and medicine.« less

  20. Purple Computational Environment With Mappings to ACE Requirements for the General Availability User Environment Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barney, B; Shuler, J

    2006-08-21

    Purple is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Lawrence Livermore National Laboratory (LLNL). The Purple Computational Environment documents the capabilities and the environment provided for the FY06 LLNL Level 1 General Availability Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories, but also documents needs of the LLNL and Alliance users working in the unclassified environment. Additionally,more » the Purple Computational Environment maps the provided capabilities to the Trilab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the General Availability user environment capabilities of the ASC community. Appendix A lists these requirements and includes a description of ACE requirements met and those requirements that are not met for each section of this document. The Purple Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the Tri-lab community.« less

  1. Federal Labs and Research Centers Benefiting California: 2017 Impact Report for State Leaders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koning, Patricia Brady

    Sandia National Laboratories is the largest of the Department of Energy national laboratories with more than 13,000 staff spread across its two main campuses in New Mexico and California. For more than 60 years, the Sandia National Laboratories campus in Livermore, California has delivered cutting-edge science and technology solutions to resolve the nation’s most challenging and complex problems. As a multidisciplinary laboratory, Sandia draws from virtually every science and engineering discipline to address challenges in energy, homeland security, cybersecurity, climate, and biosecurity. Today, collaboration is vital to ensuring that the Lab stays at the forefront of science and technology innovation.more » Partnerships with industry, state, and local governments, and California universities help drive innovation and economic growth in the region. Sandia contributed to California’s regional and statewide economy with more than $145 million in contracts to California companies, $92 million of which goes to California small businesses. In addition, Sandia engages the community directly by running robust STEM education programs for local schools and administering community giving programs. Meanwhile, investments like the Livermore Valley Open Campus (LVOC), an innovation hub supported by LLNL and Sandia, help catalyze the local economy.« less

  2. Improved detonation modeling with CHEETAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, A.

    1997-11-01

    A Livermore software program called CHEETAH, an important, even indispensable tool for energetic materials researchers worldwide, was made more powerful in the summer of 1997 with the release of CHEETAH 2.0, an advanced version that simulates a wider variety of detonations. Derived from more than 40 years of experiments on high explosives at Lawrence Livermore and Los Alamos national laboratories, CHEETAH predicts the results from detonating a mixture of specified reactants. It operates by solving thermodynamic equations to predict detonation products and such properties as temperature, pressure, volume, and total energy released. The code is prized by synthesis chemists andmore » other researchers because it allows them to vary the starting molecules and conditions to optimize the desired performance properties. One of the Laboratory`s most popular computer codes, CHEETAH is used at more than 200 sites worldwide, including ones in England, Canada, Sweden, Switzerland, and France. Most sites are defense-related, although a few users, such as Japanese fireworks researchers, are in the civilian sector.« less

  3. Instructor qualification for radiation safety training at a national laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department ofmore » Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities.« less

  4. Information engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  5. Science on Sequoia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Adam; Draeger, Erik; Richards, David

    2017-01-12

    With Sequoia at Lawrence Livermore National Laboratory, researchers explore grand challenging problems and are generating results at scales never before achieved. Sequoia is the first computer to have more than one million processors and is one of the fastest supercomputers in the world.

  6. Spherical harmonic results for the 3D Kobayashi Benchmark suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P N; Chang, B; Hanebutte, U R

    1999-03-02

    Spherical harmonic solutions are presented for the Kobayashi benchmark suite. The results were obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.

  7. Environmental Report 1993-1996

    DOT National Transportation Integrated Search

    2002-08-16

    These reports are prepared for the U.S. Department of Energy (DOE), as required by DOE Order 5400.1 and DOE Order 231.1, by the Environmental Protection Department (EPD) at the Lawrence Livermore National Laboratory (LLNL). The results of LLNL's envi...

  8. Global-Scale P-Wave Tomography Designed for Accurate Prediction of Regional and Teleseismic Travel Times for Middle East Events

    DTIC Science & Technology

    2010-09-01

    latitude-longitude grid. Building a spherical tessellation mesh involves recursive subdivision of triangular facets of an initial polyhedron (in our...of our local database at Lawrence Livermore National Laboratory (Ruppert et al. 2005) and the publicly available Engdahl-van der Hilst-Buland (EHB

  9. Installation and Testing Instructions for the Sandia Automatic Report Generator (ARG).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Robert L.

    Robert L. CLAY Sandia National Laboratories P.O. Box 969 Livermore, CA 94551, U.S.A. rlclay@sandia.gov In this report, we provide detailed and reproducible installation instructions of the Automatic Report Generator (ARG), for both Linux and macOS target platforms.

  10. Bullet Impact Safety Study of PBX-9502

    NASA Astrophysics Data System (ADS)

    Ferranti, Louis

    2013-06-01

    A new small arms capability for performing bullet impact testing into energetic materials has recently been activated at Lawrence Livermore National Laboratory located in the High Explosives Applications Facility (HEAF). The initial capability includes 0.223, 0.30, and 0.50 testing calibers with the flexibility to add other barrels in the near future. An initial test series has been performed using the 0.50 caliber barrel shooting bullets into targets using the TATB based explosive PBX-9502 and shows an expected non-violent reaction. Future experiments to evaluate the safety of new explosive formulations to bullet impact are planned. A highlight of the new capability along with discussion of the initial experiments to date will be presented including future areas of research. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, R J

    This month's issue has the following articles: (1) Dawn of a New Era of Scientific Discovery - Commentary by Edward I. Moses; (2) At the Frontiers of Fundamental Science Research - Collaborators from national laboratories, universities, and international organizations are using the National Ignition Facility to probe key fundamental science questions; (3) Livermore Responds to Crisis in Post-Earthquake Japan - More than 70 Laboratory scientists provided round-the-clock expertise in radionuclide analysis and atmospheric dispersion modeling as part of the nation's support to Japan following the March 2011 earthquake and nuclear accident; (4) A Comprehensive Resource for Modeling, Simulation, and Experimentsmore » - A new Web-based resource called MIDAS is a central repository for material properties, experimental data, and computer models; and (5) Finding Data Needles in Gigabit Haystacks - Livermore computer scientists have developed a novel computer architecture based on 'persistent' memory to ease data-intensive computations.« less

  12. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less

  13. Advances in radiation detection technologies for responders.

    PubMed

    Unterweger, Michael P; Pibida, Leticia S

    2005-11-01

    The Department of Homeland Security is supporting the development of a large number of standards for first responders. In the area of detection of radioactive and nuclear materials, four new standards (ANSI N42.32, N42.33, N42.34, and N42.35) and their corresponding test and evaluation protocols were developed to meet Department of Homeland Security needs. Testing of the standards and protocols was carried out at the National Institute of Standards and Technology, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory.

  14. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, V.; Singleton, M. J.; Visser, A.

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regionalmore » hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    East, D. R.; Sexton, J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and IBM TJ Watson Research Center to research, assess feasibility and develop an implementation plan for a High Performance Computing Innovation Center (HPCIC) in the Livermore Valley Open Campus (LVOC). The ultimate goal of this work was to help advance the State of California and U.S. commercial competitiveness in the arena of High Performance Computing (HPC) by accelerating the adoption of computational science solutions, consistent with recent DOE strategy directives. The desired result of this CRADA was a well-researched,more » carefully analyzed market evaluation that would identify those firms in core sectors of the US economy seeking to adopt or expand their use of HPC to become more competitive globally, and to define how those firms could be helped by the HPCIC with IBM as an integral partner.« less

  16. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema

    Chu, Steven [U.S. Energy Secretary

    2018-01-12

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jefferson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  17. Acoustic Cavitation Studies

    DTIC Science & Technology

    1981-09-01

    were made of the acoustic cavitation threshold as a function of polymer concentration for additives such as guar gum and polyethelene oxide. The...of California P.O. Box 808 Livermore, California 94550 Harry Diamond Laboratories I copy Technical Library 2800 Powder Mill Road Adelphi, Maryland

  18. SERS internship: Spring 1994 abstracts and research papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    1994-05-06

    This document contains abstracts from the science and engineering research semester from the Lawrence Livermore National Laboratory. Projects cover many areas in the fields of contaminant removal from the environment, physics, and genetics research. Individual projects were processed separately for the Department of Energy databases.

  19. Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1364-96: Phase I SBIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrobek, A. J.; Dunlay, R. T.

    This project was a relationship between Lawrence Livermore National Laboratory (LLNL) and Biological Detection, Inc. (now known as Cellomics, Inc.) It was funded as a Phase I SBIR from the National Institutes of Health (NIH) awarded to Cellomics, Inc. with a subcontract to LLNL.

  20. 05-NIF Dedication: Tom D'Agostino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom D'Agostino,

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Tom D'Agostino, the administrator of the U.S. Department of Energy's National Nuclear Security Administration.

  1. National Ignition Facility under fire over ignition failure

    NASA Astrophysics Data System (ADS)

    Allen, Michael

    2016-08-01

    The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).

  2. Scheduler-Conscious Synchronization.

    DTIC Science & Technology

    1994-12-01

    SPONSORING I MONITORING Office of Naval Research ARPA AGENCY REPORT NUMBER Information Systems 3701 N. Fairfax Drive TR 550 Arlington VA 22217 Arlington VA...Broughton. A New Approach to Exclusive Data Access in Shared Memory Multiprocessors. Technical Report UCRL -97663, Lawrence Livermore National Laboratory

  3. An Improvement to the Fourier Series Method for Inversion of Laplace Transforms Applied to Elastic and Viscoelastic Waves

    DTIC Science & Technology

    2007-01-01

    Lawrence Livermore National Laboratory Report UCRL -MA-107254 Rev. 1. NO. OF COPIES ORGANIZATION 1 DEFENSE TECHNICAL (PDF INFORMATION CTR...AFB FL 32542 3 DARPA L CHRISTODOULOU W COBLENZ S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 DIRECTOR US ARMY ARDEC

  4. Optimal Design of a Two-Layered Elastic Strip Subjected to Transient Loading

    DTIC Science & Technology

    2005-05-01

    M.J., 1999. GLO––global local optimizer users manual. Report UCRL -MA-133858, Energetic Materials Center, Lawrence Livermore National Laboratory...3 DARPA L CHRISTODOULOU W COBLENZ S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 DIRECTOR US ARMY RESEARCH LAB AMSRL CS

  5. Bibliographic Post-Processing with the TIS Intelligent Gateway: Analytical and Communication Capabilities.

    ERIC Educational Resources Information Center

    Burton, Hilary D.

    TIS (Technology Information System) is an intelligent gateway system capable of performing quantitative evaluation and analysis of bibliographic citations using a set of Process functions. Originally developed by Lawrence Livermore National Laboratory (LLNL) to analyze information retrieved from three major federal databases, DOE/RECON,…

  6. 360 Video Tour of the World’s Largest Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Welcome to the National Ignition Facility at Lawrence Livermore National Laboratory, the world’s largest and most energetic laser system. It draws researchers from around the globe for experiments that can’t be conducted anywhere else on Earth. Let’s take a closer look.

  7. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-11-01

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  8. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, N.; Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049; Beiersdorfer, P.

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range atmore » Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.« less

  9. Water-quality conditions and an evaluation of ground- and surface-water sampling programs in the Livermore-Amador Valley, California

    USGS Publications Warehouse

    Sorenson, S.K.; Cascos, P.V.; Glass, R.L.

    1984-01-01

    A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)

  10. Computer Aided Self-Forging Fragment Design,

    DTIC Science & Technology

    1978-06-01

    This value is reached so quickly that HEMP solutions using work hardening and those using only elastic—perfectly plastic formulations are quite...Elastic— Plastic Flow, UCRL—7322 , Lawrence Radiation Laboratory , Livermore , California (1969) . 4. Giroux , E. D . , HEMP Users Manual, UCRL—5l079...Laboratory, the HEMP computer code has been developed to serve as an effective design tool to simplify this task considerably. Using this code, warheads 78 06

  11. Tech Transfer Webinar: Amoeba Cysts as Natural Containers for the Transport and Storage of Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Etr, Sahar

    2014-10-08

    Sahar El-Etr, Biomedical Scientist at the Lawrence Livermore National Laboratory, shares a unique method for transporting clinical samples from the field to a laboratory. The use of amoeba as “natural” containers for pathogens was utilized to develop the first living system for the transport and storage of pathogens. The amoeba system works at ambient temperature for extended periods of time—capabilities currently not available for biological sample transport.

  12. ’Do-It-Yourself’ Fallout/Blast Shelter Evaluation

    DTIC Science & Technology

    1984-03-01

    N4AME & AOORIESS(I! dittvrevI !M’", Controlling Olif~t) IS. SEC’.JRITY CL-ASS. (GO this report) Lawrence Livermore National Laboratory Unclassified P...the data from the transient recorder iemory tirough the Computer Automated Measurement and Control (CAMAC) data busa und stores them on an $-inch...Command and Control Technical Center Emergency Technology Division Department of Defense 0a& Ridge Natioual Laboratory The Pentagon Attn: Librarian

  13. New design for interfacing computers to the Octopus network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, L.J.

    1977-03-14

    The Lawrence Livermore Laboratory has several large-scale computers which are connected to the Octopus network. Several difficulties arise in providing adequate resources along with reliable performance. To alleviate some of these problems a new method of bringing large computers into the Octopus environment is proposed.

  14. "TIS": An Intelligent Gateway Computer for Information and Modeling Networks. Overview.

    ERIC Educational Resources Information Center

    Hampel, Viktor E.; And Others

    TIS (Technology Information System) is being used at the Lawrence Livermore National Laboratory (LLNL) to develop software for Intelligent Gateway Computers (IGC) suitable for the prototyping of advanced, integrated information networks. Dedicated to information management, TIS leads the user to available information resources, on TIS or…

  15. First results of a polychromatic artificial sodium star for the correction of tilt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, H.; Foy, R..; Tallon, M.

    1996-03-06

    This paper presents the first results of a joint experiment carried out at Lawrence Livermore National Laboratory during January, 1996. Laser and optical systems were tested to provide a polychromatic artificial sodium star for the correction of tilt. This paper presents the results of that experiment.

  16. Microadaptive Flow Control Applied to a Spinning Projectile

    DTIC Science & Technology

    2005-09-01

    Finite Element Code for Solid and Structural Mechanics; UCRL -MA-107254, Rev. 1; Lawrence Livermore National Laboratory: Oak Ridge, TN, November 1993...COPIES ORGANIZATION 29 3 DARPA TTO S WALKER (2 CPS) A MORRISH 3701 FAIRFAX DR ARLINGTON VA 22203 1 DARPA ATO D HONEY 3701

  17. Numerical Simulation of Quarry Blast Sources

    DTIC Science & Technology

    1993-01-01

    Phillips Laboratory (PL/PKVA) AGENCY REPORT NUMBER 3701 N. Fairfax Dr. #717 3651 Lowry Avenue, SE Arlington, VA 2203-1714 Kirtland, AFB, NM 87117...Freeman and Company, San Francisco. Smith, A. T. (1992), "Discrimination of Explosions from Simultaneous Mining Blasts," Lawrence Livermore Report UCRL

  18. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Patel, Kamlesh D.

    2018-01-22

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  19. Educational Revolution on the Reservation: A Working Model.

    ERIC Educational Resources Information Center

    Murphy, Pete

    1993-01-01

    Since 1986, Navajo Community College (NCC) and Lawrence Livermore National Laboratory (LLNL) have collaborated to improve science and technical education on the Navajo Reservation through equipment loans, faculty exchanges, summer student work at LLNL, scholarships for NCC students, summer workshops for elementary science teachers, and classroom…

  20. Precision Cleaning and Protection of Coated Optical Components for NIF Small Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Jim

    The purpose of this procedure shall be to define the precision cleaning of finished, coated, small optical components for NIF at Lawrence Livermore National Laboratories. The term “small optical components” includes coated optics that are set into simple mounts, as well as coated, un-mounted optics.

  1. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Kamlesh D.

    2012-06-01

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  2. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how doesmore » this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.« less

  3. Science & Technology Review: September 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Meissner, Caryn N.; Chinn, Ken B.

    2016-09-30

    This is the September issue of the Lawrence Livermore National Laboratory's Science & Technology Review, which communicates, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. This month, there are features on "Laboratory Investments Drive Computational Advances" and "Laying the Groundwork for Extreme-Scale Computing." Research highlights include "Nuclear Data Moves into the 21st Century", "Peering into the Future of Lick Observatory", and "Facility Drives Hydrogen Vehicle Innovations."

  4. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  5. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  6. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffersonmore » National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).« less

  7. Evaluating the ISDN line to deliver interactive multimedia experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, D.K.

    1994-05-06

    We will use the 128 kilobit/sec ISDN connection from the Lawrence Livermore National Laboratory to the Livermore High School Math Learning Center to provide students there with interactive multimedia educational experiences. These experiences may consist of tutorials, exercises, and interactive puzzles to teach students` course material. We will determine if it is possible to store the multimedia files at LLNL and deliver them to the student machines via FTP as they are needed. An evaluation of the effect of the ISDN data rate is a substantial component of our research and suggestions on how to best use the ISDN linemore » in this capacity will be given.« less

  8. Mosaic Transparent Armor System Final Report CRADA No. TC02162.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, J. D.; Breslin, M.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windowsmore » would be introduced and commercially manufactured for military vehicles and aircraft.« less

  9. Slurry Coating System Statement of Work and Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S. M.

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for amore » new system. This document presents the specifications and requirements for the system.« less

  10. Training and qualification of health and safety technicians at a national laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbert, W.F.; Trinoskey, P.A.

    1994-10-01

    Over the last 30 years, Lawrence Livermore National Laboratory (LLNL) has successfully implemented the concept of a multi-disciplined technician. LLNL Health and Safety Technicians have responsibilities in industrial hygiene, industrial safety, health physics, as well as fire, explosive, and criticality safety. One of the major benefits to this approach is the cost-effective use of workers who display an ownership of health and safety issues which is sometimes lacking when responsibilities are divided. Although LLNL has always promoted the concept of a multi-discipline technician, this concept is gaining interest within the Department of Energy (DOE) community. In November 1992, individuals frommore » Oak Ridge Institute of Science and Education (ORISE) and RUST Geotech, joined by LLNL established a committee to address the issues of Health and Safety Technicians. In 1993, the DOE Office of Environmental, Safety and Health, in response to the Defense Nuclear Facility Safety Board Recommendation 91-6, stated DOE projects, particularly environmental restoration, typically present hazards other than radiation such as chemicals, explosives, complex construction activities, etc., which require additional expertise by Radiological Control Technicians. They followed with a commitment that a training guide would be issued. The trend in the last two decades has been toward greater specialization in the areas of health and safety. In contrast, the LLNL has moved toward a generalist approach integrating the once separate functions of the industrial hygiene and health physics technician into one function.« less

  11. Laboratories | NREL

    Science.gov Websites

    | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition

  12. Earth Sciences annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  13. Study of plasma convection and wall interactions in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    York, T. M.

    1986-06-01

    The subject contract research effort was initiated in September 1976 with two specific tasks: (1) to study the fundamental physics of confinement of an alternate concept (i.e., theta pinch based) devices; and (2) to study and to develop new diagnostic systems for use on major experiments at other locations in the country. There has been active collaboration with Los Alamos National Laboratory and Lawrence Livermore National Laboratory; there has been proposed collaboration with Princeton Plasma Physics Laboratory, Fusion Research Center at the University of Texas, and General Atomics.

  14. An Appreciation: Berni Julian Alder

    NASA Astrophysics Data System (ADS)

    Graham Hoover, William

    Berni Alder profoundly influenced my research career at Lawrence Livermore National Laboratory and the Davis Campus' Teller Tech, beginning in 1962 and lasting for over fifty years. I very much appreciate the opportunity provided by his Ninetieth Birthday Celebration to review some of the many high spots along the way.

  15. A Computerized Library and Evaluation System for Integral Neutron Experiments.

    ERIC Educational Resources Information Center

    Hampel, Viktor E.; And Others

    A computerized library of references to integral neutron experiments has been developed at the Lawrence Radiation Laboratory at Livermore. This library serves as a data base for the systematic retrieval of documents describing diverse critical and bulk nuclear experiments. The evaluation and reduction of the physical parameters of the experiments…

  16. Sperm Scoring Using Multi-Spectral Flow Imaging and FISH-IS Final Report CRADA No. TC02088.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F.; Morrissey, P. J.

    This was to be a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Amnis Corporation, to develop an automated system for scoring sperm interphase cells for the presence of chromosomal abnormalities using fluorescence in situ hybridization and the Amnis ImageStream technology platform.

  17. Tunable Wavelength Solid-State Lasers and Turbulent Jet Diagnostics by Rayleigh and Fluorescence Scattering.

    DTIC Science & Technology

    1981-09-01

    5320 radiation with 20 nsec pulse duration. The 12 molecules were introduced into the nozzle gas by placing small pellets of 12 crystals in the gas...ACKNOWLEDENTS We thank R. K. Chang and B. T. Chu for many helpful discussions and Sandia National Laboratories (Livermore) for the loan of the burner

  18. Fiberglass-Reinforced Rigid Polyurethane Expedient Pavement Subject to Simulated F-4 Aircraft Traffic.

    DTIC Science & Technology

    1980-05-01

    34 4,. * ., Table B-I. CPR-739 Rigid Polyurethane Foam Component Characteristics [ Cream Time, 120 sec; Rise Time, 13 sec; Cure Time, 24 hr at 750F...INC. E Colic Soil Tech Dept. Pennsauken. NJ SANDIA LABORATORIES Library Div., Livermore CA SCHUPACK ASSOC SO. NORWALK. CT (SCHUPACK) SHELL OIL CO

  19. Edward Teller

    Science.gov Websites

    physics, astrophysics, and statistical mechanics. Lawrence Livermore [National Laboratory] physicist Mort towering figures of 20th-century physics. ... Although his early training was in chemical physics and spectroscopy, Teller has made substantial contributions to such diverse fields as nuclear physics, plasma

  20. DOE Scientists Contribute to 2007 Nobel Peace Prize Research about Climate

    Science.gov Websites

    and resources were devoted to modeling the interactive effects of consequences, that is to say effects are more immediate and profound than previously anticipated, and old questions (are humans the Lawrence Livermore National Laboratory, DOE Technical Report, May 2005 Climate Effects of Global Land Cover

  1. Waves in Nature, Lasers to Tsumanis and Beyond

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  2. Waves in Nature, Lasers to Tsumanis and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-01

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  3. Development of Diagnostics for the Livermore DPF Devices

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Prasad, Rahul R.; Podpaly, Yuri A.; Cooper, Christopher M.; Chapman, Steven F.; Shaw, Brian H.; Povilus, Alexander P.; Schmidt, Andrea

    2017-10-01

    LLNL is commissioning several new diagnostics to understand and optimize ion and neutron production in their dense plasma focus (DPF) systems. Gas fills used in DPF devices at LLNL are Deuterium (D2) and He accelerated onto a Be target, for production of neutrons. Neutron yields are currently measured with Helium-3 tubes, and development of yttrium-based activation detectors is currently underway. Neutron time-of-flight (nTOF) signals from prompt neutrons will be measured with gadolinium-doped liquid scintillators. An ion energy analyzer will be used to diagnose energy distribution of D + and He +2 ions. Additionally, a fast frame ICCD camera has been applied to image the plasma sheath during the rundown and pinch phases. Sheath velocity will be measured with an array of discrete photodiodes with ns time responses. A discussion of our results will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344, and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL and the Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy.

  4. Tech Transfer Webinar: Amoeba Cysts as Natural Containers for the Transport and Storage of Pathogens

    ScienceCinema

    El-Etr, Sahar

    2018-01-16

    Sahar El-Etr, Biomedical Scientist at the Lawrence Livermore National Laboratory, shares a unique method for transporting clinical samples from the field to a laboratory. The use of amoeba as “natural” containers for pathogens was utilized to develop the first living system for the transport and storage of pathogens. The amoeba system works at ambient temperature for extended periods of time—capabilities currently not available for biological sample transport.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Konynenburg, R.A.

    In response to a request for the Director of the Los Alamos national Laboratory, several members of the staff of the Lawrence Livermore National Laboratory participated in a technical review of a draft paper by CD Bowman and F. Venneri dealing with the potential for nuclear criticality in the geologic disposal of fissile materials. This review consisted of a consideration of the technical issues raised in the draft paper, and did not include discussions with the authors.

  6. LLL Octopus network: some lessons and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, R.W.

    1978-06-27

    The Octopus network, designed and developed by the Lawrence Livermore Laboratory, is a pioneering, high-performance, local computer network. Several lessons derived from the 14 years of experience in the evolution of Octopus are described, and some of the directions to be taken in its medium-term future are indicated. 3 figures.

  7. Automated Acquisition, Cataloging, and Circulation in a Large Research Library.

    ERIC Educational Resources Information Center

    Boylan, Merle N.; And Others

    This report describes automated procedures now in use for book acquisition, and book and document cataloging and circulation, in the library at Lawrence Radiation Laboratory, Livermore. The purpose of the automation is to increase frequency and accuracy of record updatings, decrease the time required to maintain records, improve the formats of the…

  8. Breathable ‘Second Skin’ for Smart Uniforms

    ScienceCinema

    Fornasiero, Francesco

    2018-01-16

    Aiming to protect soldiers from biological and chemical threats, a team of Lawrence Livermore National Laboratory scientists have created a material that is highly breathable yet protective from biological agents. This material is the first key component of futuristic smart uniforms that also will respond to and protect from environmental chemical hazards.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornasiero, Francesco

    Aiming to protect soldiers from biological and chemical threats, a team of Lawrence Livermore National Laboratory scientists have created a material that is highly breathable yet protective from biological agents. This material is the first key component of futuristic smart uniforms that also will respond to and protect from environmental chemical hazards.

  10. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, R.; Davis, J. A.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  11. How to Read an LLNL Energy Flow Chart (Sankey Diagram)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, A. J.

    Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.

  12. 360 Video Tour of the World’s Largest Laser

    ScienceCinema

    None

    2018-01-16

    Welcome to the National Ignition Facility at Lawrence Livermore National Laboratory, the world’s largest and most energetic laser system. It draws researchers from around the globe for experiments that can’t be conducted anywhere else on Earth. Let’s take a closer look.

  13. Gamma-Ray Effects Testing in Lawrence Livermore National Laboratory’s Nova Upgrade Facility

    DTIC Science & Technology

    1992-03-01

    However, the distribution of energy between neutrons and photons from the ICF pellet will be different then that from a thermonuclear bomb . In a...of the neutron energy to photons. Photons make up most of the energy released from a thermonuclear bomb (Glasstone, S., 1977:340-342). The neutrons

  14. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10(exp 19) ions/((sq cm)(s)) and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.

  15. Science and Technology Review July/August 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blobaum, K M

    2010-05-27

    This issue has the following articles: (1) Deterrence with a Minimum Nuclear Stockpile - Commentary by Bruce T. Goodwin; (2) Enhancing Confidence in the Nation's Nuclear Stockpile - Livermore experts are participating in a national effort aimed at predicting how nuclear weapon materials and systems will likely change over time; (3) Narrowing Uncertainties - For climate modeling and many other fields, understanding uncertainty, or margin of error, is critical; (4) Insight into a Deadly Disease - Laboratory experiments reveal the pathogenesis of tularemia in host cells, bringing scientists closer to developing a vaccine for this debilitating disease. (5) Return tomore » Rongelap - On the Rongelap Atoll, Livermore scientists are working to minimize radiological exposure for natives now living on or wishing to return to the islands.« less

  16. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Morse, T.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprisemore » NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).« less

  17. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppes, W.; Oster, S.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased watermore » disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.« less

  18. Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.; Neumann, T.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in ordermore » to develop an industrially sound process for the manufacture of these ultra-hard materials.« less

  19. Michael M. May: Working toward solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.M.

    1993-07-01

    As part of LLNL's 40th anniversary celebration held during 1992, the six former Directors were asked to participate in a lecture series. Each of these men contributed in important ways toward making the Lawrence Livermore National Laboratory (LLNL) what it has become today. Each was asked to comment on some of the Laboratory's accomplishments, his career here, his view of the changing world, and where he sees the Laboratory going in the future. Michael M. May, LLNL's fifth Director and now a Director Emeritus, comments on a broad range of issues including arms control, nonproliferation, cooperative security, and the futuremore » role of the Laboratory.« less

  20. How to Read an LLNL Energy Flow Chart (Sankey Diagram)

    ScienceCinema

    Simon, A. J.

    2018-01-16

    Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.

  1. Contractors Meeting in Propulsion Held in Boulder Colorado on June 10- 14, 1991

    DTIC Science & Technology

    1991-08-02

    University Center for Chemical Engrg Blacksburg VA 24061 Gaithersburg MD 20899 (703)231-5950 Dr R G Rehm Dr Rolf D Reitz 3 National Institute of...AC/LKVE Sandia National Laboratories Edwards AFB CA 93523-5000 Livermore CA 94550 (805)275-5540 (415)294-2650 I AV525-5540 I Dr Charles Merkle Dr

  2. Robert B. Laughlin and the Fractional Quantum Hall Effect

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis Robert B. Laughlin and the Fractional Quantum Hall Effect Tsui discovered the effect. In 1983, Laughlin, then at the Lawrence Livermore National Laboratory , provided the theoretical explanation of the effect in terms of fractionally charged particles. It was a

  3. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutaleb, T.; Pluschkell, T. P.

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  4. The Future of Nonproliferation in a Changed and Changing Environment: A Workshop Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreicer, M.

    2016-08-30

    The Center for Global Security Research and Global Security Principal Directorate at Lawrence Livermore National Laboratory convened a workshop in July 2016 to consider “The Future of Nonproliferation in a Changed and Changing Security Environment.” We took a broad view of nonproliferation, encompassing not just the treaty regime but also arms control, threat reduction, counter-­proliferation, and countering nuclear terrorism. We gathered a group of approximately 60 experts from the technical, academic, political, defense and think tank communities and asked them what—and how much—can reasonably be accomplished in each of these areas in the 5 to 10 years ahead. Discussion wasmore » on a not-­for-­attribution basis. This document provides a summary of key insights and lessons learned, and is provided to help stimulate broader public discussion of these issues. It is a collection of ideas as informally discussed and debated among a group of experts. The ideas reported here are the personal views of individual experts and should not be attributed to Lawrence Livermore National Laboratory.« less

  5. The ODTX System for the Study of Thermal Sensitivity and Thermal Explosion Violence of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon

    2013-06-01

    Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Simulations of the National Ignition Facility Opacity Sample

    NASA Astrophysics Data System (ADS)

    Martin, M. E.; London, R. A.; Heeter, R. F.; Dodd, E. S.; Devolder, B. G.; Opachich, Y. P.; Liedahl, D. A.; Perry, T. S.

    2017-10-01

    A platform to study the opacity of high temperature materials at the National Ignition Facility has been developed. Experiments to study the opacity of materials relevant to inertial confinement fusion and stellar astrophysics are being conducted. The initial NIF experiments are focused on reaching the same plasma conditions (T >150 eV and Ne >= 7 ×1021 cm-3) , for iron, as those achieved in previous experiments at Sandia National Laboratories' (SNL) Z-facility which have shown discrepancies between opacity theory and experiment. We developed a methodology, using 1D HYDRA simulations, to study the effects of tamper thickness on the conditions of iron-magnesium samples. We heat the sample using an x-ray drive from 2D LASNEX hohlraum simulations. We also use this methodology to predict sample uniformity and expansion for comparison with experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  7. Laboratory Measurements of the K-Shell Transition Energies in L-Shell Ions of Si and S

    NASA Technical Reports Server (NTRS)

    Hell, N.; Brown, G.V.; Wilms, J.; Grinberg, V.; Clementson, J.; Liedahl, D.; Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.; Beiersrdorfer, P.

    2016-01-01

    We have measured the energies of the strongest 1s-2 l (azimuthal quantum number) (l = s, p (s, p are angular momentum states)) transitions in He- through Ne-like silicon and sulfur ions to an accuracy of less than 1 electronvolt using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree-Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of 100 kilometers per second. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's 100 kilometers per second limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. We show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.

  8. Proceedings of the 5. joint Russian-American computational mathematics conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    These proceedings contain a record of the talks presented and papers submitted by participants. The conference participants represented three institutions from the United States, Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and two from Russia, Russian Federal Nuclear Center--All Russian Research Institute of Experimental Physics (RFNC-VNIIEF/Arzamas-16), and Russian Federal Nuclear Center--All Russian Research Institute of Technical Physics (RFNC-VNIITF/Chelyabinsk-70). The presentations and papers cover a wide range of applications from radiation transport to materials. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. The AMTEX Partnership{trademark} mid year report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Complex (ITC), the US Department of Energy (DOE), the DOE national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Three AMTEX projects funded in FY 1997 are Diamond Activated Manufacturing Architecture (DAMA), Computer-Aided Fabric Evaluation (CAFE), and Textile Resource Conservation (TReC). The five sites involved in AMTEX work are Sandia National Laboratory (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), the Oak Ridgemore » Y-12 Plant, and the Oak Ridge National Laboratory (ORNL) (the latter is funded through Y-12).« less

  10. Neutron capture cross section of ^243Am

    NASA Astrophysics Data System (ADS)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  11. Development of Plastic Substrate Technology for Active Matrix Liquid Crystal Displays Final Report CRADA No. TC-761-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, P.; Kamath, H.

    Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.

  12. LINC Modeling of August 19, 2004 Queen City Barrel Company Fire In Cincinnati, OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, M B; Nasstrom, J S; Baskett, R L

    This report details the information received, assumptions made, actions taken, and products delivered by the Lawrence Livermore National Laboratory (LLNL) during the August 19, 2004 fire at the Queen City Barrel Company (QCB) in Cincinnati, OH. During the course of the event, LLNL provided four sets of plume model products to various Cincinnati emergency response organizations.

  13. NIF featured on BBC "Horizon"

    ScienceCinema

    Brian Cox

    2017-12-09

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  14. NIF featured on BBC "Horizon"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Cox

    2010-01-12

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  15. User's manual for a two-dimensional, ground-water flow code on the Octopus computer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.

    1978-08-30

    A ground-water hydrology computer code, programmed by R.L. Taylor (in Proc. American Society of Civil Engineers, Journal of Hydraulics Division, 93(HY2), pp. 25-33 (1967)), has been adapted to the Octopus computer system at Lawrence Livermore Laboratory. Using an example problem, this manual details the input, output, and execution options of the code.

  16. Institutional research and development, FY 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  17. Preliminary assessment of the electromagnetic environment in the immediate vicinity of the ETA accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Bogdan, E.; Zicker, J.

    The electromagnetic fields in the immediate vicinity of the Experimental Test Accelerator (ETA) at the Lawrence Livermore Laboratory have been characterized. Various EM sensors that cover the frequency band from the very low frequencies up into the GHz region have been used. The report describes in detail the probes, the test set-up and the data processing techniques.

  18. Target Recognition in Ultra-Wideband SAR Imagery

    DTIC Science & Technology

    1994-08-01

    Poles in a Transfer Function for Real Frequency Informa- tion," Lawrence Livermore Laboratory, UCRL -52050 (April 1974). 24. V. K Jain, T. K. Sarker, and...0.777 Gaussian 0.849 1 5,265 0.978 93 Distribution Adrnnstr ARPAJASTO Defris Techi Info Ctr Attn T DePersia Attn DTIC-DDA (2 copies) 3701 N Fairfax Dr

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvenskyy, S.

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm 2 of active detector area.

  20. Picosecond laser filamentation in air

    DTIC Science & Technology

    2016-09-02

    experimentsmake use of theComet laser systemwhich is a part of the Jupiter Laser Facility at the Lawrence LivermoreNational Laboratory inCalifornia, USA [24...bottompanels, respectively. 8 New J. Phys. 18 (2016) 093005 A Schmitt-Sody et al FA9550-12-1-0482 and number FA9550-16-1-0013. The use of the Jupiter Laser

  1. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    NASA Astrophysics Data System (ADS)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations

  2. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2017-12-09

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  3. Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P; Flyimoto, T

    The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination,more » and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated.« less

  4. Development of a Bio-Equivalent Ultraviolet Dosimeter to Monitor the Capacity for Vitamin D Synthesis of Sunlight Final Report CRADA No. TC02086.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C. F.; Wood, D.

    This project represents a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Rhyolite Technology Group, Inc. (Rhyolite) to develop concepts and designs for a consumer ultraviolet (UV) biodosimeter based on the human biochemistry of Vitamin D synthesis. Rhyolite was established to engage in product development, licensing and consulting for the manufacture and supply of new products worldwide. Rhyolite worked jointly with LLNL and the Kiev Institute of Physics (KIP) in Ukraine to leverage previously developed UV sensor technologies by extending the previous work into commercially viable products. The projectmore » consisted primarily of the scientific, engineering and business activities needed to develop the UV bio-dosimeter for applications that include health and industrial measurement of ultraviolet radiation.« less

  5. Beamlet diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theys, M.

    1994-05-06

    Beamlet is a high power laser currently being built at Lawrence Livermore National Lab as a proof of concept for the National Ignition Facility (NIF). Beamlet is testing several areas of laser advancements, such as a 37cm Pockels cell, square amplifier, and propagation of a square beam. The diagnostics on beamlet tell the operators how much energy the beam has in different locations, the pulse shape, the energy distribution, and other important information regarding the beam. This information is being used to evaluate new amplifier designs, and extrapolate performance to the NIF laser. In my term at Lawrence Livermore Nationalmore » Laboratory I have designed and built a diagnostic, calibrated instruments used on diagnostics, setup instruments, hooked up communication lines to the instruments, and setup computers to control specific diagnostics.« less

  6. Trinitromethyl Heterocyclic Oxidizers as a Solid Propellant Ingredient Final Report CRADA No TC02146.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagoria, P.; Racoveanu, A.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis of two novel energetic heterocyclic oxidizers as possible replacements for ammonium perchlorate (AP) in rocket propellant formulations. This CRADA resulted from the award of the Phase I Small Business Technology Transfer (STTR) from DOD. The CRADA consisted of two phases. The goal for Phase 1 was to produce a new oxidizer called TNMDNP. Phase 2 is optional (based on the success of Phase 1) and the goal of Phase 2more » (optional) was to produce a new oxidizer called TNMDNT. Phase 2 tasks would be performed based on the successful results of Phase 1.« less

  7. Preservation Study for Ultra-Dilute VX Standards | Science ...

    EPA Pesticide Factsheets

    Report Lawrence Livermore National Laboratory (LLNL) supplies ultra-dilute (10 µg/mL) chemical warfare agent (CWA) standards to the Environmental Response Laboratory Network (ERLN) laboratories to allow the use of authentic standards to assist in analyses required for a remediation event involving CWAs. For this reason, it is important to collect data regarding the shelf-lives of these standards. The instability has the potential to impact quality control in regional ERLN laboratories, resulting in data that are difficult to interpret. Thus, this study investigated the use of chemical stabilizers to increase the shelf-life of VX standards. VX standards with long shelf-lives are desirable, as long shelf-life would significantly reduce the costs associated with synthesizing and resupplying the ERLN laboratories with VX.

  8. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering

  9. California Energy Systems for the 21st Century 2016 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Randwyk, J.; Boutelle, A.; McClelland, C.

    The California Energy Systems for the 21st Century (CES-21) Program is a public-private collaborative research and development program between the California Joint Utilities1 and Lawrence Livermore National Laboratory (LLNL). The purpose of this annual report is to provide the California Public Utilities Commission (CPUC or Commission) with a summary of the 2016 progress of the CES-21 Program.

  10. Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels

    DTIC Science & Technology

    2006-01-01

    Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations

  11. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan,

    2018-05-30

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  12. Microstructure and Dynamic Failure Properties of Freeze-Cast Materials for Thermobaric Warhead Cases

    DTIC Science & Technology

    2012-12-01

    Function LLNL Lawrence Livermore National Laboratory PDF Probability Density Function PMMA Poly(Methyl Methacrylate) RM Reactive Materials SEM...FREEZE CAST MATERIALS Freeze casting technology combines compounds such as aluminum oxide and poly(methyl methacrylate) ( PMMA ) to develop a...Subsequently, the porous structure can be infiltrated with a variety of materials, such as a standard polymer like PMMA . This hybrid material is believed

  13. The High-Repetition-Rate Advanced Petawatt Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci

    2017-02-02

    The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.

  14. Diet and Cancer Are Cooked Meats Involved

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    Diet has been associated with differences in cancer rates in human populations for many years. Mark Knize presents the latest research on cancer causes including work performed at Lawrence Livermore National Laboratory investigating some interesting chemical products created when meat is cooked and how to reduce them. Series: Science on Saturday [10/2006] [Health and Medicine] [Science] [Show ID: 11542

  15. Methodology for characterizing potential adversaries of Nuclear Material Safeguards Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkwood, C.W.; Pollock, S.M.

    1978-11-01

    The results are described of a study by Woodward--Clyde Consultants to assist the University of California Lawrence Livermore Laboratory in the development of methods to analyze and evaluate Nuclear Material Safeguards (NMS) Systems. The study concentrated on developing a methodology to assist experts in describing, in quantitative form, their judgments about the characteristics of potential adversaries of NMS Systems.

  16. Breast Cancer Diagnostic System Final Report CRADA No. TC02098.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubenchik, A. M.; DaSilva, L. B.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Liver more National Laboratory (LLNL) and BioTelligent, Inc. together with a Russian Institution (BioFil, Ltd.), to develop a new system ( diagnostic device, operating procedures, algorithms and software) to accurately distinguish between benign and malignant breast tissue (Breast Cancer Diagnostic System, BCDS).

  17. Climate Change What We Know and What We Need to Learn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-01

    How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544

  18. Laser Shot Peening Final Report CRADA No. TC-02059-03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, B. C.; Hackel, L.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.

  19. AmeriFlux US-Dia Diablo

    DOE Data Explorer

    Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Dia Diablo. Site Description - The site is on land owned by Lawrence Livermore National Laboratory (Site 300) and has no grazing or management history since the 1950's except for summer-time burning of selected acres for fire management (not included in the tower footprint).

  20. Method of improving superconducting qualities of fabricated constructs by shock preprocessing of precursor materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    Disclosed is a method of improving the physical properties of superconducting materials which comprises: a. applying a high strain rate deformation to said materi The United States Government has rights in this invention pursuant to Contract No. W-7405-ENG-48 between the U.S. Department of Energy and the University of California, for the operation of Lawrence Livermore National Laboratory.

  1. Climate Change What We Know and What We Need to Learn

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544

  2. Gaining New Military Capability: An Experiment in Concept Development.

    DTIC Science & Technology

    1998-01-01

    Angeles Police Department ( LAPD ) were invited, at- tended, and made important contributions.1 ORGANIZING COG DISCUSSIONS We sought to structure COG...Terry Covington, RAND; Charles Duke, Los Angeles Police Department ; Gene Gritton, RAND; Thomas Karr, Lawrence Livermore Laboratory; LTC Will Irwin, USA...Munition Joint Requirements Oversight Council Joint Stand-off Weapon Joint Strategic Tracking and Radar System Laser radar Los Angeles Police

  3. Blast Fragmentation Modeling and Analysis

    DTIC Science & Technology

    2010-10-31

    weapons device containing a multiphase blast explosive (MBX). 1. INTRODUCTION The ARL Survivability Lethality and Analysis Directorate (SLAD) is...velocity. In order to simulate the highly complex phenomenon, the exploding cylinder is modeled with the hydrodynamics code ALE3D , an arbitrary...Lagrangian-Eulerian multiphysics code, developed at Lawrence Livermore National Laboratory. ALE3D includes physical properties, constitutive models for

  4. The role of total laboratory automation in a consolidated laboratory network.

    PubMed

    Seaberg, R S; Stallone, R O; Statland, B E

    2000-05-01

    In an effort to reduce overall laboratory costs and improve overall laboratory efficiencies at all of its network hospitals, the North Shore-Long Island Health System recently established a Consolidated Laboratory Network with a Core Laboratory at its center. We established and implemented a centralized Core Laboratory designed around the Roche/Hitachi CLAS Total Laboratory Automation system to perform the general and esoteric laboratory testing throughout the system in a timely and cost-effective fashion. All remaining STAT testing will be performed within the Rapid Response Laboratories (RRLs) at each of the system's hospitals. Results for this laboratory consolidation and implementation effort demonstrated a decrease in labor costs and improved turnaround time (TAT) at the core laboratory. Anticipated system savings are approximately $2.7 million. TATs averaged 1.3 h within the Core Laboratory and less than 30 min in the RRLs. When properly implemented, automation systems can reduce overall laboratory expenses, enhance patient services, and address the overall concerns facing the laboratory today: job satisfaction, decreased length of stay, and safety. The financial savings realized are primarily a result of labor reductions.

  5. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    NASA Astrophysics Data System (ADS)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  6. The National Ignition Facility: the path to a carbon-free energy future.

    PubMed

    Stolz, Christopher J

    2012-08-28

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, P; Bonin, TA; Newman, JF

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  8. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  9. Giving peeps to my props: Using 3D printing to shed new light on particle transport in fractured rock.

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Du Frane, W. L.; Vericella, J. J.; Aines, R. D.

    2014-12-01

    Smart tracers and smart proppants promise new methods for sensing and manipulating rock fractures. However, the correct use and interpretation of these technologies relies on accurate models of their transport. Even for less exotic particles, the factors controlling particle transport through fractures are poorly understood. In this presentation, we will describe ongoing research at Lawrence Livermore National Laboratory into the transport properties of particles in natural rock fractures. Using three dimensional printing techniques, we create clear-plastic reproductions of real-world fracture surfaces, thereby enabling direct observation of the particle movement. We will also discuss how particle tracking of dense particle packs can be further enhanced by using such specially tailored flow cells in combination with micro-encapsulated tracer particles. Experimental results investigating the transport behavior of smart tracers and proppants close to the neutrally buoyant limit will be presented and we will describe how data from these experiments can be used to improve large-scale models of particle transport in fractures. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    NASA Astrophysics Data System (ADS)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  11. A >2-MJ, 1014-W laser system for DT fusion—NIF: a note in celebration of the 75th birthday of Prof. Theodore Haensch

    NASA Astrophysics Data System (ADS)

    Holzrichter, John F.; Manes, Kenneth R.

    2017-01-01

    In 1970, Dr. Theodore Haensch joined A.L. Schawlow's group in the physics department at Stanford, as a NATO postdoctoral researcher. Within a short time, he and his colleagues had invented a new, high-resolution, tunable laser system using expanded reflection gratings and an N2 laser for pumping the fluorescing dyes. This work resulted in a high-brightness, high-repetition-rate, narrow-band laser probe for conducting optical spectroscopy at extreme levels of precision. Dr. Haensch, and his many colleagues, particularly Prof. Arthur Schawlow and their students at Stanford, then proceeded to revolutionize optical spectroscopy and to train several generations of exceptional young scientists. At the same time, the Siegman, Harris, and Byer laboratories also at Stanford were making major contributions to the laser and quantum electronics fields. Several students from both groups joined the Livermore Laboratory. That early work, and that of others, encouraged teams at the Lawrence Livermore National Laboratory to design and build a series of increasing complicated, high-power multi-beam laser systems to investigate the potential of laser fusion. The National Ignition Facility, recently completed, is enabling investigations of matter at very high temperatures, T > 1 million K and densities 100-1000× normal. In addition, researchers are creating 1015 DT fusion neutrons per fusion experiment and generating new knowledge about unusual and important conditions of matter.

  12. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  13. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  14. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The next phase of the Axion Dark Matter eXperiment

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo; Asztalos, S.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Lyapustin, D.; Rosenberg, L.; Rybka, G.; Wagner, A.; Hoskins, J.; Martin, C.; Sikivie, P.; Sullivan, N.; Tanner, D.; Bradley, R.; Clarke, J.; ADMX Collaboration

    2011-04-01

    Axions are a well motivated dark matter candidate which may be detected by their resonant conversion to photons in the presence of a large static magnetic field. The Axion Dark Matter eXperiment recently finished a search for DM axions using a new ultralow noise microwave receiver based on a SQUID amplifier. The success of this precursor experiment has paved the way for a definitive axion search which will see the system noise temperature lowered from 1.8 K to 100 mK, dramatically increasing sensitivity to even pessimistic axion models as well as increasing scan speed. Here we discuss the implementation of this next experimental phase. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Te,Se)3

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2014-03-01

    The group V-VI compounds--like Bi2Se3, Sb2Te3, or Bi2Te3--have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and compare that behavior with other binary V-VI compounds under pressure. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  17. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  18. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based onmore » expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.« less

  19. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, W.J.; Canada, J.; de Vore, L.

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide bettermore » healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.« less

  1. Improving the Automated Detection and Analysis of Secure Coding Violations

    DTIC Science & Technology

    2014-06-01

    eliminating software vulnerabilities and other flaws. The CERT Division produces books and courses that foster a security mindset in developers, and...website also provides a virtual machine containing a complete build of the Rosecheckers project on Linux . The Rosecheckers project leverages the...Compass/ROSE6 project developed at Law- rence Livermore National Laboratory. This project provides a high-level API for accessing the abstract syntax tree

  2. Medical Isotope Program: O-18, C-13, and Xe-129 Final Report CRADA No. TC-2043-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheibner, K. F.; Fought, J.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Spectra Gases, Inc., to develop new and cheaper sources of Oxgyen-18 (O-18), Carbon-13 (C-13), and Xenon-129 (Xe-129), and to develop new applications of these stable medical isotopes in medicine resulting in a substantial increase in stable isotopes that are important to human health sciences.

  3. Case Studies of Seismic Discrimination Problems and Regional Discriminant Transportability.

    DTIC Science & Technology

    1995-07-31

    UCRL -JC- 118551 Part 1, Lawrence Livermore National Laboratory, September 1994. Wuster, J. (1993). Discrimination of chemical explosions and...Steven Bratt Dr. Jeffrey W. Given ARPA/NMRO SAIC 3701 North Fairfax Drive 10260 Campus Point Drive Arlington, VA 22203-1714 San Diego, CA 92121 Dale...5007 BERGEN NORWAY Newington, VA 22122 ARPA, OASB/Library David Jepsen 3701 North Fairfax Drive Acting Head, Nuclear Monitoring Section Arlington, VA

  4. The Shock and Vibration Bulletin. Part 2. Fluid-Structure Dynamics and Dynamic Analysis

    DTIC Science & Technology

    1983-05-01

    0.060041-03 1 ~~~COLUMN 13701010 ý41 44 13 3.483001-03 2499 T2 8.377715-02 2491 13 2.323511-02 3701 73 1.700031-03 5702 12 3.36397E-03 572 133.792&31-03...plausible, there is no theoretical basis Finite-Element Method", UCRL -52066, to assure the convergence of either Lawrence Livermore Laboratory, calculations

  5. Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepp, T.; Feeley, T.

    Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.

  6. Electromagnetic Pulse (EMP) Handbook for Air Force Communications Service Communications-Electronics-Meteorological Engineers

    DTIC Science & Technology

    1976-11-01

    protec- tion and will require additional measures, such as the application of conductive filter-loaded plastic resins to each joint connection...Lawrence Liver- more Laboratory, Livermore CA, 1974 31. Whitson, A. L., "DCA HEMP Hardness Certification Methodology Status", Stanford Research...of Chief of Engineers, Depot of the Army, December 1971 34. "Development of HEMP Assessment Methodology for Satellite Terminals", Intelcom Rad Tech

  7. Climate Change Planning for Military Installations: Findings and Implications

    DTIC Science & Technology

    2010-10-01

    Meridional Overturning Circulation ARFORGEN Army Force Generation BASH Bird Aircraft Strike Hazard BLM Bureau of Land Management BOR Bureau of Reclamation...Cover and Land Use Change LLNL Lawrence Livermore National Laboratory MOC Meridional Overturning Circulation NASA National Aeronautics and Space...to discern effects of climate change. D.7.9 Bureau of Land Management BLM is responsible for managing much of the federal land affected by

  8. The Enhancement of Gas Pressure Diagnostics in the P-ODTX System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Peter C.; Jones, Aaron; Tesillo, Lynda

    The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory is a useful tool for thermal safety assessment of energetic material. It has been used since 1970s to measure times to explosion, threshold thermal explosion temperature, thermal explosion violence, and determine decomposition kinetic parameters of energetic materials. ODTX data obtained for the last 40 years can be found elsewhere.

  9. Visible Spectrum of Stable Sonoluminescence

    DTIC Science & Technology

    1992-12-01

    Lawrence Livermore National Laboratory. 9. Interview between Dr. David S. Davis, Physics Department, Naval Postgraduate School, Monterey California, and the...December 1992. 11. B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman , and S. J. Putterman, "Resolving the picosecond characteristics of synchronous...author, 12 November 1992. 14. Interview between Dr. David S. Davis, Physics Department, Naval Postgraduate School, Monterey California, and the author, 14

  10. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  11. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hughes, John P.

    Concepts pertaining to the language laboratory are clarified for the layman unfamiliar with recent educational developments in foreign language instruction. These include discussion of: (1) language laboratory components and functions, (2) techniques used in the laboratory, (3) new linguistic methods, (4) laboratory exercises, (5) traditional…

  12. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  13. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  14. Underground Test Area Fiscal Year 2013 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krenzien, Susan; Marutzky, Sam

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and correctivemore » action tracking was instituted.« less

  15. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  16. Teaching laboratory neuroscience at bowdoin: the laboratory instructor perspective.

    PubMed

    Hauptman, Stephen; Curtis, Nancy

    2009-01-01

    Bowdoin College is a small liberal arts college that offers a comprehensive Neuroscience major. The laboratory experience is an integral part of the major, and many students progress through three stages. A core course offers a survey of concepts and techniques. Four upper-level courses function to give students more intensive laboratory research experience in neurophysiology, molecular neurobiology, social behavior, and learning and memory. Finally, many majors choose to work in the individual research labs of the Neuroscience faculty. We, as laboratory instructors, are vital to the process, and are actively involved in all aspects of the lab-based courses. We provide student instruction in state of the art techniques in neuroscience research. By sharing laboratory teaching responsibilities with course professors, we help to prepare students for careers in laboratory neuroscience and also support and facilitate faculty research programs.

  17. Computation Directorate and Science& Technology Review Computational Science and Research Featured in 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alchorn, A L

    Thank you for your interest in the activities of the Lawrence Livermore National Laboratory Computation Directorate. This collection of articles from the Laboratory's Science & Technology Review highlights the most significant computational projects, achievements, and contributions during 2002. In 2002, LLNL marked the 50th anniversary of its founding. Scientific advancement in support of our national security mission has always been the core of the Laboratory. So that researchers could better under and predict complex physical phenomena, the Laboratory has pushed the limits of the largest, fastest, most powerful computers in the world. In the late 1950's, Edward Teller--one of themore » LLNL founders--proposed that the Laboratory commission a Livermore Advanced Research Computer (LARC) built to Livermore's specifications. He tells the story of being in Washington, DC, when John Von Neumann asked to talk about the LARC. He thought Teller wanted too much memory in the machine. (The specifications called for 20-30,000 words.) Teller was too smart to argue with him. Later Teller invited Von Neumann to the Laboratory and showed him one of the design codes being prepared for the LARC. He asked Von Neumann for suggestions on fitting the code into 10,000 words of memory, and flattered him about ''Labbies'' not being smart enough to figure it out. Von Neumann dropped his objections, and the LARC arrived with 30,000 words of memory. Memory, and how close memory is to the processor, is still of interest to us today. Livermore's first supercomputer was the Remington-Rand Univac-1. It had 5600 vacuum tubes and was 2 meters wide by 4 meters long. This machine was commonly referred to as a 1 KFlop machine [E+3]. Skip ahead 50 years. The ASCI White machine at the Laboratory today, produced by IBM, is rated at a peak performance of 12.3 TFlops or E+13. We've improved computer processing power by 10 orders of magnitude in 50 years, and I do not believe there's any reason to think

  18. Pleiades Experiments on the NIF: Phase II-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benstead, James; Morton, John; Guymer, Thomas

    2015-06-08

    Pleiades was a radiation transport campaign fielded at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) between 2011 and 2014. The primary goals of the campaign were to develop and characterise a reproducible ~350eV x-ray drive and to constrain a number of material data properties required to successfully model the propagation of radiation through two low-density foam materials. A further goal involved the development and qualification of diagnostics for future radiation transport experiments at NIF. Pleiades was a collaborative campaign involving teams from both AWE and the Los Alamos National Laboratory (LANL).

  19. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  20. Laboratory Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  1. Nevada National Security Site Underground Radionuclide Inventory, 1951-1992: Accounting for Radionuclide Decay through September 30, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, David Lawrence; Bowen, Scott Michael; Thompson, Joseph L.

    This report is an update of report LA-13859-MS (Bowen et al., 2001). In that original report, the underground radionuclide inventory at the Nevada National Security Site (NNSS) was decay corrected to September 23, 1992, the date of the last underground nuclear test at the NNSS. In this report, the inventory is updated to account for the decay of radionuclides over two additional decades (1992-2012) and revised tritium, fission product and actinide inventory figures and tables are presented. The maximum contaminant levels for radionuclides were also updated to Safe Drinking Water Act Maximum Contaminant Levels (MCLs) (CFR, 2013). Also, a numbermore » of minor errata found in the original publication were corrected. An inventory of radionuclides produced by 828 underground nuclear tests conducted at the NNSS by the Lawrence Livermore National Laboratory, the Los Alamos National Laboratory, and the Department of the Defense from 1951 to 1992 includes tritium, fission products, actinides, and activation products. The inventory presented in this report provides an estimate of radioactivity remaining underground at the NNSS after nuclear testing. The original test inventory is decayed to September 30, 2012, and predictions of inventory decay over the subsequent 1000 years are presented. For the purposes of summary and publication, the Los Alamos National Laboratory and Lawrence Livermore National Laboratory authors of this report subdivided the inventory into five areas corresponding to the principal geographic test centers at the NNSS. The five areas roughly correspond to Underground Test Area “Corrective Action Units” (CAUs) for remediation of groundwater. In addition, the inventory is further subdivided for the Yucca Flat region by tests where the working point depth is more than 328 feet (100 meters) above the water table and tests that were detonated below that level. Water levels used were those from the U. S. Department of Energy, Nevada Operations Office

  2. Virtual Laboratory "vs." Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry?

    ERIC Educational Resources Information Center

    Hawkins, Ian; Phelps, Amy J.

    2013-01-01

    The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…

  3. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    1995-12-31

    milestone and Sandia Technical Report. A much-needed report describing in detail the operation of the Supercritical Fluids Reactor (SFR) was also...years. In addition, the literature research required to arrive at this optimal design will be used to improve the performance of the Supercritical Fluids ...the Supercritical Fluids Reactor (SFR)" (Sandia National Laboratories Report SAND-8203, Livermore, CA, 1995). R. R. Steeper, "Methane and Methanol

  4. US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, Anthony

    In November 2015, the Center for Global Security Research, NSO, and Global Security program jointly sponsored a seminar investigating questions related to cross-domain deterrence at Lawrence Livermore National Laboratory. At the seminar, experts were asked to moderate discussion based on the four topics below. For each of these topics, we have compiled a short list of literature that will help analysts develop a baseline understanding of the issue.

  6. A Microwave Method for Measuring Moisture Content, Density, and Grain Angle of Wood.

    DTIC Science & Technology

    1985-03-01

    Livermore, CA 94550. James, William L; Yen , You - Hsin ; King, Ray J. A microwave method for measuring moisture content,density, and grain angle of wood...Note S FPL-0250 March 1985 Density, and Grain 8 Angle of Wood William L. James, Physicist Forest Products Laboratory, Madison, WI You -Hain Yen ... Yen . You -1tsin. Microwave electromagnetic nondestructive testing of wood in real- time. Madison. WI: Department of Electronic and Computer

  7. Testing a potential national strategy for cost-effective medical technology

    NASA Astrophysics Data System (ADS)

    Fitch, J. Patrick

    1995-10-01

    The Center for Healthcare Technologies at Lawrence Livermore National Laboratory is a partnership among government, industry, and universities that focuses on improving healthcare through development of cost-effective technology. With the guidance of healthcare providers, medical institutions, and medical instrument manufacturers, technology can be harnessed to reduce healthcare costs. The partnership is a miniature test case for a potential national strategy for development and adoption of technology specifically to reduce costs.

  8. Nonthermal plasma reactors for treatment of NO{sub x} and other hazardous gas emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.S.

    1994-05-06

    The 1990 Clean Air Act Amendments passed by the United States government has prompted a great deal of interest in reducing the amount of hazardous pollutants released into the air. Of particular interest to Lawrence Livermore National Laboratory is the reduction of NO{sub x} produced by mobile diesel engines. The use of nonthermal plasma technologies is employed in the effort to reduce the amount of toxins present in diesel exhaust.

  9. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W.R.; Thomson, W.B.

    1978-05-31

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.

  10. Department of Energy Natural Phenomena Hazards Mitigation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  11. Physics of X-ray Multilayer Structures: Summaries of Papers Presented at the Physics of X-ray Multilayer Structures Topical Meeting Held in Jackson Hole, Wyoming on March 2-5, 1992. (1992 Technical Digest Series Volume 7).

    DTIC Science & Technology

    1992-03-01

    Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ

  12. The electromechanical battery: The new kid on the block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R.F.

    1993-08-01

    In a funded program at the Lawrence Livermore National Laboratory new materials and novel designs are being incorporated into a new approach to an old concept -- flywheel energy storage. Modular devices, dubbed ``electromechanical batteries`` (EMB) are being developed that should represent an important alternative to the electrochemical storage battery for use in electric vehicles or for stationary applications, such as computer back-up power or utility load-leveling.

  13. Extraction of Iodine from Source Rock and Oil for Radioiodine Dating Final Report CRADA No. TC-1550-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, J. E.; Summa, L.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Exxon Production Research Company (EPR) to develop improved techniques for extracting, concentrating, and measuring iodine from large volumes of source rock and oil. The purpose of this project was to develop a technique for measuring total iodine extracted from rock, obtain isotopic ratios, and develop age models for samples provided by EPR.

  14. Ultra-Low Density Aerogel Mirror Substrates

    DTIC Science & Technology

    1993-04-01

    Silica aerogel materials were fabricated by both the high temperature and low temperature methods at the Lawrence Livermore National Laboratory in...evaporation techniques were used to planarize the silica aerogel with SiO 2 prior to metalization. The PECVD was performed at the Cornell University...incident hv. Defect Physics Silica aerogel is an amorphous SiO, matrix of high porosity (or a low density disordered material). The amorphous r~ature of

  15. Adaptive Backoff Synchronization Techniques

    DTIC Science & Technology

    1989-07-01

    The Simple Code. Technical Report, Lawrence Livermore Laboratory, February 1978. [6] F. Darems-Rogers, D. A. George, V. A. Norton, and G . F. Pfister...Heights, November 1986. 20 [7] Daniel Gajski , David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In International...17] Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE Transactions on Com- puters, C-31(4):296-304, April 1982. [18] G

  16. Calgary Laboratory Services

    PubMed Central

    2015-01-01

    Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million) and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context. PMID:28725754

  17. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  18. Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.

    2017-10-01

    As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.

  19. Laboratory Governance: Issues for the Study Group on Regional Laboratories.

    ERIC Educational Resources Information Center

    Schultz, Thomas; Dominic, Joseph

    Background information and an analysis of issues involved in the governance of new regional educational laboratories are presented. The new laboratories are to be established through a 1984 competition administered by the National Institute of Education (NIE). The analysis is designed to assist the Study Group on Regional Laboratories to advise…

  20. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  1. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  2. Studies of Short Time Response Options for Potentially Hazardous Objects: Current and Forthcoming Results

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Greenaugh, Kevin C.; Seery, Bernard D.; Bambacus, Myra; Leung, Ronald Y.; Finewood, Lee; Dearborn, David S. P.; Miller, Paul L.; Weaver, Robert P.; Plesko, Catherine; hide

    2017-01-01

    NASA's Goddard Space Flight Center (GSFC) and the National Nuclear Security Administration (NNSA), Department of Energy (DOE) National Laboratories, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory(LANL), and Sandia National Laboratory (SNL) are collaborating on Planetary Defense Research. The research program is organized around three case studies: 1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36)[OSIRIS-REx mission target], 2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target], 3. Deflection of a scaled-down version of the comet 67PChuryumov-Gerasimenko [Rosetta mission target]. NASAGSFC is providing astrodynamics and spacecraft mission design expertise, while NNSA, DOE, LLNL, LANL and SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.

  3. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  4. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scielzo, N. D.; Wu, C.

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β ± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can bemore » reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146Ba where the octupole deformation is evident from the measured B(E3; 3 -→0 +) strengths that significantly greater than the theoretical predictions. We anticipate that CHICO2 will continue to be a viable charged-­particle detector for the research need of the low-­energy nuclear physics community.« less

  5. Sub-nanosecond cinematography in laser fusion research: Current techniques and applications at the Lawrence Livermore Laboratory

    NASA Astrophysics Data System (ADS)

    Coleman, L. W.

    1985-01-01

    Progress in laser fusion research has increased the need for detail and precision in the diagnosis of experiments. This has spawned the development and use of sophisticated sub-nanosecond resolution diagnostic systems. These systems typically use ultrafast X-ray or optical streak cameras in combination with spatially imaging or spectrally dispersing elements. These instruments provide high resolution data essential for understanding the processes occurring in the interaction of high intensity laser light with targets. Several of these types of instruments and their capabilities will be discussed. The utilization of these kinds of diagnostics systems on the nearly completed 100 kJ Nova laser facility will be described.

  6. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  7. Safety in laboratories: Indian scenario.

    PubMed

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  8. Observation of ionization shifts in K-shell emission from short-pulse laser irradiated micro-dot targets

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried

    2006-10-01

    X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.

  9. Injection of externally produced kinetic electrons into a self-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Ralph, Joseph; Albert, Felicie; Shaw, Jessica; Clayton, Christopher; Marsh, Ken; Joshi, Chan; Mori, Warren; Kesler, Leigh; Mills, Sarah; Severson, Brian; Rigby, Alexandra; Glenzer, Siegfried

    2012-10-01

    A two-stage laser wakefield accelerator is being developed at the Lawrence Livermore National Laboratory using the Callisto laser system. The first stage is a high density (˜10^19 cm-3), 5 mm He gas jet plasma which is driven by 30 TW of 800 nm laser light focused to an a0˜ 2. The <100 MeV electrons produced in this stage are deflected by a 0.5 T dipole magnet onto the axis of the second stage, which is a low density (˜10^18 cm-3), 15 mm He gas cell driven by 200 TW of 800 nm light also focused to an a0˜ 2; no additional electrons are trapped in this stage. Electrons injected into the second stage can then be further accelerated to higher energy without increasing the energy spread. Measurements of the transmitted laser profile and spectrum from the second stage indicate that the laser pulse is self-guided throughout the gas cell and that a strong wake is driven. These results compare well with particle-in-cell (PIC) simulations performed with the code OSIRIS. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA-27344.

  10. Creation of ultra-high energy density matter using nanostructured targets

    NASA Astrophysics Data System (ADS)

    Tommasini, Riccardo; Park, J.; London, R.; Chen, H.; Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V.; Capeluto, M.; Keiss, D.; Townsend, A.; Rocca, J. J.; Kaymak, V.; Pukhov, A.; Hill, M.

    2015-11-01

    Recent experiments have demonstrated that trapping of 60 femtosecond laser pulses of relativistic intensity deep within ordered nanowire arrays can create a new ultra-hot plasma regime. Here we report on the experiments at the Titan laser at the Lawrence Livermore National Laboratory that aim to scale these results by two orders of magnitude in laser energy. Preliminary analysis of the Titan results show that sub-picosecond laser irradiation of vertically aligned nanostructures of Au, Ag and Ni produces an increase of a factor greater than 1.6 in the suprathermal electron temperatures and an increase by a factor of 3 in the conversion efficiency into continuum x-rays, both with respect to flat targets of the same composition. Kα radiation from nanowire array targets also shows an increase between 3x and 5x over flat targets. The nanowire array targets reflected a 5x smaller fraction of the laser energy, indicating significantly larger absorption of the laser pulse. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the Office of Fusion Energy Sciences, U.S Department of Energy, and by the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079.

  11. The National Ignition Facility Status and Plans for Laser Fusion and High Energy Density Experimental Studies

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.

    2001-03-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  12. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    NASA Astrophysics Data System (ADS)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  13. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  14. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  15. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...

  16. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...

  17. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  18. The proceedings of the 1st international workshop on laboratory astrophysics experiments with large lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remington, B.A.; Goldstein, W.H.

    1996-08-09

    The world has stood witness to the development of a number of highly sophisticated and flexible, high power laser facilities (energies up to 50 kJ and powers up to 50 TW), driven largely by the world-wide effort in inertial confinement fusion (ICF). The charter of diagnosing implosions with detailed, quantitative measurements has driven the ICF laser facilities to be exceedingly versatile and well equipped with diagnostics. Interestingly, there is considerable overlap in the physics of ICF and astrophysics. Both typically involve compressible radiative hydrodynamics, radiation transport, complex opacities, and equations of state of dense matter. Surprisingly, however, there has beenmore » little communication between these two communities to date. With the recent declassification of ICF in the USA, and the approval to commence with construction of the next generation ``superlasers``, the 2 MJ National Ignition Facility in the US, and its equivalent, the LMJ laser in France, the situation is ripe for change. . Given the physics similarities that exist between ICF and astrophysics, one strongly suspects that there should exist regions of overlap where supporting research on the large lasers could be beneficial to the astrophysics community. As a catalyst for discussions to this end, Lawrence Livermore National Laboratory sponsored this workshop. Approximately 100 scientists attended from around the world, representing eight countries: the USA, Canada, UK, France, Germany, Russia, Japan, and Israel. A total of 30 technical papers were presented. The two day workshop was divided into four sessions, focusing on nonlinear hydrodynamics, radiative hydrodynamics, radiation transport, and atomic physics-opacities. Copies of the presentations are contained in these proceedings.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less

  20. Timing system for firing widely spaced test nuclear detonations

    NASA Technical Reports Server (NTRS)

    Partridge, Ralph E.

    1992-01-01

    The national weapons design laboratories (Los Alamos National Laboratory and Lawrence Livermore National Laboratory) test fire nuclear devices at the Nevada Test Site (NTS), which is spread over an area of over 1200 square miles. On each test there are hundreds of high time resolution recordings made of nuclear output waveforms and other phenomena. In order to synchronize these recordings with each other, with the nuclear device, and with offsite recordings, there is a requirement that the permanent command center and the outlying temporary firing sites be time tied to each other and to UTC to permit firing the shot at a predetermined time with an accuracy of about a microsecond. Various aspects of the test setup and timing system are discussed.

  1. Automated Information System (AIS) Alarm System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunteman, W.

    1997-05-01

    The Automated Information Alarm System is a joint effort between Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratory to demonstrate and implement, on a small-to-medium sized local area network, an automated system that detects and automatically responds to attacks that use readily available tools and methodologies. The Alarm System will sense or detect, assess, and respond to suspicious activities that may be detrimental to information on the network or to continued operation of the network. The responses will allow stopping, isolating, or ejecting the suspicious activities. The number of sensors, the sensitivity of the sensors, themore » assessment criteria, and the desired responses may be set by the using organization to meet their local security policies.« less

  2. Safety in the Chemical Laboratory: Procedures for Laboratory Destruction of Chemicals.

    ERIC Educational Resources Information Center

    McKusick, Blaine C.

    1984-01-01

    Discusses a National Research Council report which summarizes what laboratories need to know about Environmental Protection Agency and Department of Transportation regulations that apply to laboratory waste. The report provides guidelines for establishing and operating waste management systems for laboratories and gives specific advice on waste…

  3. Proceedings of the International Symposium on Detonation (6th) Held at Coronado, California on 24-27 August 1976

    DTIC Science & Technology

    1976-08-01

    SHOCK-TO-DETONATION TRANSITION AND DETONATION STUDIES Chairmen: Joseph Hershkowitz Picatinny Arsenal Paul A. Urtiew Lawrence Livermore Laboratory I. -[-1...explosive-hotspots whose growth is sup- pressed. We are unaware of chemical kinetic evidence 2. B. D. Trott and R. G. Jung, "Effect of Pulse for the...proportional to the particle ve- years ago. However, Gittings (4), Trott and Jung (5), locity change at the shock front, thus the hot-spotand

  4. Tapered Wiggler Analysis of High Gain Free Electron Laser Oscillators.

    DTIC Science & Technology

    1987-12-12

    Vladislav Bevc Livermore, CA 94550 Synergy Research Institute P.O. Box 561 Dr. H. Brandt San Ramon , CA 94583 Department of the Army Harry Diamond...800 N. Quincy Street 3011 Malibu Canyon Road Arlington, VA 22217 Malibu, CA 90265 Dr. B. Robinson Dr. Antonio Sanchez Boeing Aerospace Company...Walsh, Jr. Dr. R. Whitefield Bell Laboratories 15260 Dickens Ave. 600 Mountain Avenue San Jose , CA 95124 Room I-D 332 Murray Hill, NJ 07974 Ms

  5. Annihilation of Antiprotons in Heavy Nuclei.

    DTIC Science & Technology

    1986-04-01

    Scattering Models, Acta Physica Polonica 1311, 425 (1980). T.E. Kalogeropoalos, L. Gray, A . Nandy, and J. Roy, Antiproton-nucleon Annihilation into...I th a Rpor Annihilation of AntiprotonsI the period ,- tpril 1985 to in Heavy Nuclei December 1985 April 1986 Author: Lawrence Livermore National...will be available to the general public, including foreign nationals. A ~AY 2 - >i K2U~ prepared for the: Air Force Rocket Propulsion Laboratory Air

  6. The 1999 Conference on Molecular Energy Transfer (COMET XVI)

    DTIC Science & Technology

    1999-07-14

    Farrell,* John D. DeSain, Craig A. Taaties Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, CA 94551-0969 The...Knowles, with contributions by J. Alml~f, R. D. Amos, M. J. 0. Deegan , S. T. Elbert, C. Hampel, W. Meyer, K. A. Peterson, R. M. Pitzer, A. J. Stone...Department of Molecular and Laser Physics Fax: +84 564 54 2254 University of Nijmegen Toernooi veld 1 6525 Nijmegen Taatjes, Craig The Netherlands

  7. Calculations of the Performance of Explosive Impulse Generators

    DTIC Science & Technology

    1979-08-01

    low impedance material such as lexan or some other plastic between the tungsten and the titanium, the stress is reduced even further. As we said...codes modeled after the HEMP family of codes^ cur- rently in use at the Lawrence Livermore Laboratory. The codes have a broad range of capabilities...for problems involving the dynamics of fluid and solid continua. They contain a full range of material property models including elastic- plastic flow

  8. Centers for Disease Control and Prevention (CDC) Radiation Hazard Scale Data Product Review Feedback Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askin, A.; Buddemeier, B.; Alai, M.

    In support of the Department of Energy (DOE) National nuclear Security Administration (NNSA) and the Centers for Disease Control and Prevention (CDC), Lawrence Livermore National Laboratory (LLNL) assisted in the development of new data templates for disseminating and communicating FRMAC1 data products using the CDC Radiation Hazard Scale communication tool. To ensure these data products will be useful to stakeholders during a radiological emergency, LLNL facilitated opportunities for product socialization and review.

  9. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2003-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.

  10. Adaptive Backoff Synchronization Techniques

    DTIC Science & Technology

    1989-06-01

    The Simple Code. Technical Report, Lawrence Livermore Laboratory, February 1978. [6J F. Darems-Rogers, D. A. George, V. A. Norton, and G . F. Pfister...Heights, November 1986. 20 [7] Daniel Gajski , David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In International Conference...17] Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE Transactions on Com- puters, C-31(4):296-304, April 1982. [18] G

  11. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  13. [Study of quality of a branch laboratory--an opinion of a laboratory manager].

    PubMed

    Yazawa, Naoyuki

    2006-11-01

    At the stage of establishing a branch laboratory, quality evaluation is extremely difficult. Even the results of a control survey by the headquarters of the branch laboratory are unhelpful. For a clinical laboratory, the most important function is to provide reliable data all the time, and to maintain the reliability of clinical doctors with informed responses. We mostly refer to control surveys and daily quality control data to evaluate a clinical laboratory, but we rarely check its fundamental abilities, such as planning events, preserving statistical data about the standard range, using the right method for quality control and others. This is generally disregarded and it is taken for granted that they will be correct the first time. From my six years of experience working with X's branch laboratory, I realized that there might be some relation between the quality of a branch laboratory and the fundamental abilities of the company itself. I would never argue that all branch laboratories are ineffective, but they should be conscious of fundamental activities. The referring laboratory, not the referral laboratory, should be responsible for ensuring that the referral laboratory's examination results and findings are correct.

  14. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  15. First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    2017-10-01

    Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.

  16. Implementing a laboratory automation system: experience of a large clinical laboratory.

    PubMed

    Lam, Choong Weng; Jacob, Edward

    2012-02-01

    Laboratories today face increasing pressure to automate their operations as they are challenged by a continuing increase in workload, need to reduce expenditure, and difficulties in recruitment of experienced technical staff. Was the implementation of a laboratory automation system (LAS) in the Clinical Biochemistry Laboratory at Singapore General Hospital successful? There is no simple answer, so the following topics comparing and contrasting pre- and post-LAS have been explored: turnaround time (TAT), laboratory errors, and staff satisfaction. The benefits and limitations of LAS from the laboratory experience were also reviewed. The mean TAT for both stat and routine samples decreased post-LAS (30% and 13.4%, respectively). In the 90th percentile TAT chart, a 29% reduction was seen in the processing of stat samples on the LAS. However, no significant difference in the 90th percentile TAT was observed with routine samples. It was surprising to note that laboratory errors increased post-LAS. Considerable effort was needed to overcome the initial difficulties associated with adjusting to a new system, new software, and new working procedures. Although some of the known advantages and limitations of LAS have been validated, the claimed benefits such as improvements in TAT, laboratory errors, and staff morale were not evident in the initial months.

  17. Science & Technology Review June 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A

    2012-04-20

    This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments aremore » furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.« less

  18. The Axion Dark Matter Experiment: Big Science with a (relatively) Small Team

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo

    2016-03-01

    The idea of the solitary physicist tinkering alone in a lab was my image of how science was done growing up (mostly influenced by popular culture). Of course this is not generally how experimental physics is done now days with examples of experiments at the LHC now involving thousands of scientists. In this talk I will describe my experience in a relatively modest project, the Axion Dark Matter eXperiment (ADMX), which involves only a few dozen scientists at various universities and national labs. I will outline ADMX's humble beginnings at Lawrence Livermore National Laboratory (LLNL), where it began in the mid-1990s, and describe how the collaboration has evolved and grown throughout the years, as we pursue our elusive quarry: the dark-matter axion. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  19. Development, Manufacturing, and Preparation for Serial Production of Low Noise Seismometers Final Report CRADA No. TC02096.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergino, E. S.; Passmore, P. R.

    2012-01-23

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Refraction Technology, Inc. (REF TEK), to collaborate on the development of a broadband, competitive low-noise seismometer, rugged and easy to use for field deployments. The work involved collaborative work between LLNL, REF TEK and a group led by Federal State Unitary Enterprise, Research Institute of Pulse Technique (RIPT), Moscow, Russia. The proposed work focused on bringing an improved version of the Russian SDSE seismometer from development phase to production in two versions. The first was a very lowmore » cost, rugged, broadband seismometer for field deployment that would achieve noise levels comparable to the standard earth low noise model (LNM) of the USGS. All three components were integrated into one case, and have sensitivity near 2000 v/m/s, and analog output with bandwidth of .01 to 40 Hz with high coherence.« less

  20. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priest, R. E.; Sauvageau, J. E.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments inmore » LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.« less